WO2007061032A1 - Deformed silicone particle and process for production thereof - Google Patents

Deformed silicone particle and process for production thereof Download PDF

Info

Publication number
WO2007061032A1
WO2007061032A1 PCT/JP2006/323396 JP2006323396W WO2007061032A1 WO 2007061032 A1 WO2007061032 A1 WO 2007061032A1 JP 2006323396 W JP2006323396 W JP 2006323396W WO 2007061032 A1 WO2007061032 A1 WO 2007061032A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
polyorganosiloxane
mol
average particle
alkoxysilane
Prior art date
Application number
PCT/JP2006/323396
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Takaki
Tomomichi Hashimoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007546493A priority Critical patent/JPWO2007061032A1/en
Publication of WO2007061032A1 publication Critical patent/WO2007061032A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes

Definitions

  • the present invention relates to a modified silicone particle and a method for producing the same.
  • background art regarding atypical silicone particles whose shape, particle diameter, etc. are controlled, and a method for producing the same
  • Silicone has unique properties such as heat resistance, cold resistance, releasability, and water repellency. Polyorganosiloxane graft copolymers using this unique property are used in the market as a number of high-value-added products such as flame retardants, impact modifiers, impact modifiers, and release agents.
  • Silicone particles are also expected to exhibit various physical properties that cannot be achieved by ordinary spherical particles by controlling the particle structure, shape, and the like.
  • the technology is known and obscene.
  • a polyorganosiloxane latex having a small particle size includes cyclopolyorganosiloxane, a surfactant (0.1 to 5 times the weight of polyorganosiloxane), and an emulsion precursor consisting of water. Is sequentially added to an aqueous solution containing a polymerization catalyst to obtain a latex having an average particle size of 0.15 m or less (see Patent Document 3).
  • Patent Document 1 JP 2003-119396 A
  • Patent Document 2 U.S. Pat.No. 2891920
  • Patent Document 3 Japanese Patent Application Laid-Open No. 62-141029
  • Patent Document 4 Japanese Patent Laid-Open No. 5-194740
  • Patent Document 5 International Publication WO2006Z16490 Publication
  • An object of the present invention is to provide atypical silicone particles and a method for producing the same.
  • the present invention provides a modified silicone particle having a controlled shape, particle diameter, etc. and a method for producing the same.
  • the subject is to provide.
  • the present inventors have found that atypical particles can be synthesized and have completed the present invention.
  • the first of the present invention is an R SiO unit (wherein R is an alkyl having 1 to 4 carbon atoms)
  • the present invention relates to an atypical silicone particle characterized in that it is synthesized by adding alkoxysilane (C) containing 50 mol% or more of an alkyl group of 4 or an aromatic group of 6 to 24 carbon atoms.
  • the embodiment relates to the above-mentioned silicone modified particle, wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 ⁇ m.
  • the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the modified silicone particles is b
  • the value of b / a is 1.5 or more.
  • a preferred embodiment relates to the modified silicone particles according to any one of the above, wherein the weight ratio force of (A) Z ((B) + (C)) is from 100Z1 to 100Z250.
  • the second of the present invention is an R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or
  • a polyorganosiloxane (A) containing 50 mol% or more of an aromatic group having 6 to 24 carbon atoms) is first RSiO units (wherein R is an alkyl group having 1 to 4 carbon atoms or 6 to 6 carbon atoms).
  • alkoxysilane (B) containing 50 mol% or more of 24 (representing 24 aromatic groups), and then adding a water-soluble electrolyte, and also RSiO units (wherein R is an alkyl having 1 to 4 carbon atoms).
  • an alkoxy silane (C) containing 50 mol% or more of an alkyl group or an aromatic group having 6 to 24 carbon atoms It relates to the manufacturing method.
  • the embodiment relates to the above-mentioned method for producing modified silicone particles, wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 ⁇ m.
  • the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the modified silicone particles is b
  • the value of b / a is 1.5 or more.
  • the present invention relates to any one of the above-mentioned methods for producing atypical silicone particles. The invention's effect
  • the polyorganosiloxane is first converted into an alkoxysilane containing RSiO units.
  • Silicone atypical particles can be synthesized by adding silane.
  • the silicone modified particles can be expected to improve various performances in various fields.
  • the present invention provides an R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or a carbon number)
  • Polyorganosiloxane (A) containing 50 mol% or more of 6 to 24 aromatic groups and having a volume average particle diameter a is first RSiO units (wherein R is an alkyl having 1 to 4 carbon atoms).
  • C alkoxysilane
  • the polyorganosiloxane (A) used in the present invention has 50 mol of R SiO units in the molecule.
  • JP polyorganosiloxane (A) R a SiO units is less than 50 mole 0/0 rubber in
  • the volume average particle diameter a of the polyorganosiloxane (A) is preferably less than 1 ⁇ m, more preferably less than 0.1 ⁇ m, more preferably 0.05 ⁇ m. It is particularly preferred that it is less than.
  • Polyorganosiloxane (A) having a volume average particle size of 1 ⁇ m or more tends to be difficult to synthesize by ordinary emulsion polymerization.
  • Volume of polyorganosiloxane (A) The lower limit of the average particle diameter is not particularly limited, but is preferably 0.001 ⁇ m or more in consideration of ease of synthesis.
  • the volume average particle size can be measured using, for example, a particle size analyzer NPA 150 manufactured by Nikkiso Co., Ltd. as a measuring device.
  • R SiO unit of the polyorganosiloxane (A) As a raw material for forming the R SiO unit of the polyorganosiloxane (A), R SiX (formula
  • R represents the same group as described above.
  • X is the same or different halogen, hydroxyl group, or dehydration condensation product of hydroxyl group.
  • organosiloxane having a linear, branched or cyclic structure. Specific examples include dimethyldimethoxysilane, dipheninoresimethoxymethoxy, methinorefininoresimethoxymethoxysilane, dimethinoresoxysilane, diphenyljetoxysilane, methylphenyljetoxysilane, jetyldimethoxysilane, ethylphenyldimethoxysilane, Tilgetoxysilane, ethylphenyljetoxysilane, etc.
  • Materials containing iO units include methyltrimethoxysilane, methyltriethoxysilane, methyl
  • Examples thereof include rutripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane.
  • Tetrameth as a raw material containing SiO 2 unit
  • Examples thereof include xylsilane, tetraethoxysilane, tetrapropoxysilane, and condensates thereof.
  • polyorganosiloxane (A) is, for example, R SiO emulsified using a milky agent.
  • a catalyst it is carried out by adding a catalyst to a raw material containing a compound forming 2 2/2 units and heating.
  • a hydrophilic and swellable seed polymer is placed in an acid catalyst aqueous solution, heated, and then emulsified R SiO units are added.
  • a method of continuously adding a raw material containing a compound to be formed can be used.
  • an anionic emulsifier or a nonionic emulsifier can be used as the emulsifier.
  • the emulsifier include powers such as sodium alkylbenzene sulfonate, sodium lauryl sulfonate, potassium oleate and the like. Particularly, sodium dodecylbenzene sulfonate can be preferably used.
  • Specific examples of the non-one emulsifier include, for example, polyoxyethylene norphenyl ether and polyoxyethylene lauryl ether.
  • the emulsifier is mixed with a raw material containing a compound forming an R SiO unit and water, for example,
  • an emulsion can be prepared by a homogenizer, a line mixer, or the like.
  • Examples of the acid catalyst that can be used in the present invention include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzene sulfonic acid, and aliphatic substituted naphthalene sulfonic acid, and minerals such as sulfuric acid, hydrochloric acid, and nitric acid.
  • sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzene sulfonic acid, and aliphatic substituted naphthalene sulfonic acid
  • minerals such as sulfuric acid, hydrochloric acid, and nitric acid.
  • acids include acids.
  • the heating for the reaction can be set as appropriate 30 In that a moderate polymerization rate can be obtained.
  • the alkoxysilane (B) containing an RSiO unit used in the present invention is an alkoxysilane (
  • RSiO unit is less than 50 mol%
  • the target silicone atypical particles are difficult to obtain.
  • the raw material containing the RSiO unit examples include methyltrimethoxysilane, methyl
  • Examples thereof include triethoxysilane, methyltripropoxysilane, etyltrimethoxysilane, etyltrimethoxysilane, etyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane. If necessary, an R SiO unit or a silane compound containing a SiO unit may be prepared. R SiO single
  • Raw materials include dimethyldimethoxysilane, diphenyldimethoxysilane, methylphenolimethoxysilane, dimethylenoletoxysilane, diphenenoletoxysilane, and methinophenyljetoxysilane. Hexamethylcyclohexane, Jetyldimethoxysilane, Ethylphenyldimethoxysilane, Jetyljetoxysilane, Ethylphenyloxysilane, etc.
  • Cyclic combinations such as trisiloxane (D3), otamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), trimethyltriphenyl cyclotrisiloxane
  • D3 trisiloxane
  • D4 otamethylcyclotetrasiloxane
  • D5 decamethylcyclopentasiloxane
  • D6 dodecamethylcyclohexasiloxane
  • trimethyltriphenyl cyclotrisiloxane trimethyltriphenyl cyclotrisiloxane
  • Tetramethoxysilane as raw material for SiO unit
  • Tetraethoxysilane Tetrapropoxysilane, and condensates thereof.
  • the polyorganosiloxane (A) is first coated with an alkoxysilane (B).
  • the polyorganosiloxane (A) which is rubber-like spherical particles, has a hard component and By continuously adding the alkoxysilane (B) to coat the particle surface, the particles constituting the final atypical particle can maintain the original spherical shape. If this coating is not sufficient, the irregularities on the surface of the final atypical particles that have agglomerated and thickened tend to be unclear.
  • the appearance of the alkoxysilane (B) coating around the polyorganosiloxane (A) particles can be confirmed by mixing the latex sample before agglomeration with water-soluble epoxy and curing it, followed by TEM observation after osmium staining. it can.
  • the polyorganosiloxane (A) is coated with alkoxysilane (B), and then a water-soluble electrolyte is added.
  • the water-soluble electrolyte contains 50 mol of RSiO units. %
  • Examples include compounds that dissociate into 3_ , NO-, NO-, PO 3_ , CO 2_ , OH-, etc.
  • Specific compounds include, for example, NaCl, KC1, Na SO, CaCl, A1C1, etc.
  • the amount of water-soluble electrolyte that can be appropriately set is 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of polyorganosiloxane (A), alkoxysilane (B), and alkoxysilane (C). . If the amount of the water-soluble electrolyte added is less than 0.1 part by weight, the coagulation enlargement is difficult. On the other hand, if it exceeds 10 parts by weight, the stability of the latex tends to be insufficient and the polymerization scale tends to increase.
  • the alkoxysilane (C) containing an RSiO unit used in the present invention is an alkoxysilane (
  • Examples of raw materials containing RSiO units include methyltrimethoxysilane and methyltriethate.
  • Examples include xylsilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane. . R S if necessary
  • Silane compounds containing iO units or SiO units may be prepared.
  • 2/2 4/2 2 2/2 include dimethyldimethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, dimethinoresoxysilane, dipheninoletoxysilane, methinolevinoinoxy oxysilane, and jetinoresidue.
  • cyclic compounds such as benzene (D5), dodecamethylcyclohexasiloxane (D6), and trimethyltricyclocyclotrisiloxane
  • linear or branched organosiloxanes can be used.
  • the raw materials for SiO units are tetramethoxysilane, tetraeth
  • Examples include toxisilane, tetrapropoxysilane, and condensates thereof.
  • the proportion of polyorganosiloxane (A), alkoxysilane (B) and alkoxysilane (C) used in the modified silicone particles of the present invention is not particularly limited. It is preferable that the weight ratio of (A) / ((B) + (C)) is 100/1 ⁇ : L00 / 250 from the point of taking advantage of the flexible characteristics of (A) 100Z5 ⁇ : L00Z100 More preferably.
  • the volume average particle diameter b of the irregularly shaped silicone particles obtained after the above-mentioned agglomeration and enlargement is, from the viewpoint of stability, when the silicone particles in water are stabilized by an emulsifier, from 0.1 to The range of 3 / ⁇ ⁇ is preferable, and the range of 0.1 to 1 / ⁇ ⁇ is more preferable.
  • the term “atypical particle” means that it is not a so-called spherical particle, and examples thereof include a bunch of grapes and a complex sugar.
  • the ratio of the volume average particle diameter b of the irregularly shaped silicone particles b to the volume average particle diameter a of the polyorganosiloxane (A) bZa is preferably 1.5 or more, more preferably 10 or more and less than 200. Yo More preferable.
  • the shape of the finally obtained silicone particles becomes, for example, atypical particles having a good cluster structure, and new characteristics can be expected in various technical fields.
  • the shape of the modified silicone particles can be confirmed, for example, by mixing and curing the latex-like final modified silicone particles with a water-soluble epoxy, osmium staining, and TEM observation.
  • the volume average particle diameters of the seed polymer, polyorganosiloxane (A), and silicone variant particles were measured in the latex state.
  • the volume average particle diameter (m) was measured using a particle size analyzer NPA 150 manufactured by Nikkiso Co., Ltd. as a measuring device.
  • the mixture was further polymerized for 1 hour by adding 0.005 parts by weight of cac acid '2Na salt and 0.2 parts by weight of sodium formaldehydesulfoxylate. Thereafter, a mixed solution of 90 parts by weight of butyl acrylate, 27 parts by weight of t-decyl mercaptan, and 0.1 part by weight of paramenthanic nodroperoxide was continuously added over 3 hours. Post-polymerization was performed for 2 hours to obtain a seed polymer. The volume average particle diameter after synthesis was 0.04 / z m.
  • the emulsion obtained by stirring for 5 minutes was continuously added over 3 hours. After completion of the addition, stirring was continued at 80 ° C for 2 hours, and then cooled to 25 ° C and left for 20 hours. Thereafter, the volume average particle diameter a of the polyorganosiloxane (A) was measured, and the results are shown in Table 1.
  • MTMS methyltrimethoxysilane
  • Table 1 the same amount of MTMS as water, and MTMS 5% by weight sodium dodecylbenzenesulfonate was stirred at 7000 rpm for 5 minutes using a homomixer.
  • the resulting emulsion was continuously added over 2 hours.
  • the volume average particle diameter b of the silicone particles was measured and shown in Table 1.
  • D4 O Kuta methylcyclopentadienyl ⁇ tiger siloxane
  • DBSA dodecylbenzenesulfonic acid
  • MTMS methyltrimethoxysilane
  • SS Na 2 SO.
  • a polyorganosiloxane containing R SiO units is first

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

[PROBLEMS] To provide a deformed silicone particle and a process for production of the deformed silicone particle, specifically a deformed silicone particle having controlled shape, particle size or the like and a process for production of the deformed silicone particle. [MEANS FOR SOLVING PROBLEMS] A deformed silicone particle can be synthesized by a process comprising: coating a polyorganosiloxane (A) having 50 mol% or more of an R2SiO2/2 unit (wherein R represents an alkyl group having 1 to 4 carbon atoms or an aromatic group having 6 to 24 carbon atoms) with an alkoxysilane (B) having 50 mol% or more of an RSiO3/2 unit (wherein R represents an alkyl group having 1 to 4 carbon atoms or an aromatic group having 6 to 24 carbon atoms); adding a water-soluble electrolyte to the coated product; and further adding an alkoxysilane (C) having 50 mol% or more of an RSiO3/2 unit (wherein R represents an alkyl group having 1 to 4 carbon atoms or an aromatic group having 6 to 24 carbon atoms) to the resulting mixture.

Description

シリコーン異型粒子およびその製造方法  Atypical silicone particles and method for producing the same
技術分野  Technical field
[0001] 本発明は、シリコーン異型粒子およびその製造方法に関する。さらに詳細には、そ の形状、粒子径などが制御されたシリコーン異型粒子およびその製造方法に関する 背景技術  [0001] The present invention relates to a modified silicone particle and a method for producing the same. In more detail, background art regarding atypical silicone particles whose shape, particle diameter, etc. are controlled, and a method for producing the same
[0002] シリコーンは耐熱性、耐寒性、離型性、撥水性等の特異な性質を持って 、る。この 特異な性質を応用したポリオルガノシロキサンのグラフト共重合体は、難燃剤、衝撃 性改良剤、衝撃性改良助剤、離型剤等の数々の高付加価値商品として市場で利用 されている。  [0002] Silicone has unique properties such as heat resistance, cold resistance, releasability, and water repellency. Polyorganosiloxane graft copolymers using this unique property are used in the market as a number of high-value-added products such as flame retardants, impact modifiers, impact modifiers, and release agents.
[0003] プラスチックにポリオルガノシロキサン系グラフト共重合体などのゴム含有粒子を分 散させてプラスチックを改質する場合、通常は球状の粒子を用いることが一般的であ る。力 シリコーン系以外のゴム粒子に関しては、例えば、水溶性電解質の存在下で 小さなブタジエン系ゴム粒子にビュル単量体をグラフト重合した異型粒子は、塩ィ匕ビ 二ル系榭脂の耐衝撃性を向上させることが開示されている (特許文献 1参照)。  [0003] When modifying plastics by dispersing rubber-containing particles such as polyorganosiloxane-based graft copolymers in plastics, it is common to use spherical particles. For non-silicone rubber particles, for example, atypical particles in which a butyl monomer is graft-polymerized to a small butadiene rubber particle in the presence of a water-soluble electrolyte are the impact resistance of a vinyl chloride resin. Is disclosed (see Patent Document 1).
[0004] シリコーン系粒子についても、その粒子構造、形状などを制御することにより、通常 の球状粒子では達成できな 、様々な物性を発現させることが期待されて 、るが、そ のような制御技術は知られて ヽな 、。  [0004] Silicone particles are also expected to exhibit various physical properties that cannot be achieved by ordinary spherical particles by controlling the particle structure, shape, and the like. The technology is known and obscene.
[0005] 一方、例えば、プラスチックにゴム粒子を分散させてプラスチックを改質する場合、 プラスチックの種類によって異なる最適分散粒子径があることが知られており、プラス チックの種類によっては、平均粒子径の小さ!/、ポリオルガノシロキサンが必要となる 場合もある。  [0005] On the other hand, for example, when modifying plastic by dispersing rubber particles in plastic, it is known that there is an optimum dispersed particle size depending on the type of plastic, and depending on the type of plastic, the average particle size is In some cases, polyorganosiloxane may be required.
[0006] ポリオルガノシロキサンの乳化重合法としては、 Hydeらによる方法がよく知られてい る(特許文献 2参照)。この方法では、ポリジメチルシロキサンの前駆物質、界面活性 剤、水および重合触媒を混合、撹拌、加熱してラテックスを得ているが、平均粒子径 が 0. 1 μ m以下のポリオルガノシロキサンラテックス粒子は得られていない。 [0007] 小粒子径のポリオルガノシロキサンラテックスの製造方法としては、シクロポリオルガ ノシロキサン、界面活性剤(ポリオルガノシロキサンの 0. 15〜5倍の重量)、および水 カゝらなるェマルジヨン前駆体を重合触媒を含む水溶液に逐次添加して、平均粒子径 0. 15 m以下のラテックスを得る方法が示されている(特許文献 3参照)。 [0006] As an emulsion polymerization method of polyorganosiloxane, a method by Hyde et al. Is well known (see Patent Document 2). In this method, a polydimethylsiloxane precursor, a surfactant, water, and a polymerization catalyst are mixed, stirred, and heated to obtain a latex, but polyorganosiloxane latex particles having an average particle size of 0.1 μm or less. Is not obtained. [0007] A polyorganosiloxane latex having a small particle size includes cyclopolyorganosiloxane, a surfactant (0.1 to 5 times the weight of polyorganosiloxane), and an emulsion precursor consisting of water. Is sequentially added to an aqueous solution containing a polymerization catalyst to obtain a latex having an average particle size of 0.15 m or less (see Patent Document 3).
[0008] また、シロキサン系架橋剤を必須とするポリオルガノシロキサンラテックスではあるが 、オルガノシロキサン系混合物、乳化剤および水力ゝらなる混合 '乳化物を、最終オル ガノシロキサン系混合物 Z (酸 +乳化剤)の重量比が 100Z2〜12になるような重合 触媒 (酸)系に連続滴下して、数平均粒子径が 0. 1 μ m以下のラテックスを得る製造 方法が示されて!/ヽる (特許文献 4参照)。  [0008] Further, although it is a polyorganosiloxane latex in which a siloxane-based cross-linking agent is essential, an organosiloxane-based mixture, an emulsifier and a hydraulic mixture are mixed into an emulsion, and the final organosiloxane-based mixture Z (acid + emulsifier) Shows a production method for obtaining a latex having a number average particle size of 0.1 μm or less by continuously dripping onto a polymerization catalyst (acid) system in which the weight ratio of the polymer becomes 100Z2-12! (Ref. 4).
[0009] これらの技術によれば小粒子径のポリオルガノシロキサンを製造することはできるが 、これらの技術では多量の乳化剤量や酸触媒量を使用しているため、成形中に成形 体が熱劣化を起こしたり、成形体の機械的性質の低下が起ったりする問題が発生す る場合がある。  [0009] According to these techniques, it is possible to produce a polyorganosiloxane having a small particle diameter. However, since these techniques use a large amount of an emulsifier and an acid catalyst, the molded body is heated during molding. There are cases where problems such as deterioration or deterioration of the mechanical properties of the molded article occur.
[0010] この問題を解決するために、我々は平均粒子径が 0. 075 μ m以下の小粒子径の ポリオルガノシロキサンを合成する方法を既に開発して ヽる(特許文献 5参照)。  [0010] In order to solve this problem, we have already developed a method for synthesizing a polyorganosiloxane having a small particle size with an average particle size of 0.075 μm or less (see Patent Document 5).
[0011] 乳ィ匕剤と酸触媒の使用量が少ない小粒子径のポリオルガノシロキサンはそのままで も十分活用できるものの、それだけでは用途が限られる場合もあるため、小粒子径の ポリオルガノシロキサンを使用しながら、さらに色々な性能を広く向上させることが求 められている。  [0011] Although a small amount of polyorganosiloxane with a small amount of a milky agent and an acid catalyst can be used as it is, its use may be limited by itself. While being used, it is required to improve various performances widely.
特許文献 1:特開 2003 - 119396号公報  Patent Document 1: JP 2003-119396 A
特許文献 2 :米国特許第 2891920号明細書  Patent Document 2: U.S. Pat.No. 2891920
特許文献 3 :特開昭 62— 141029号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 62-141029
特許文献 4:特開平 5— 194740号公報  Patent Document 4: Japanese Patent Laid-Open No. 5-194740
特許文献 5:国際公開 WO2006Z16490号公報  Patent Document 5: International Publication WO2006Z16490 Publication
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、シリコーン異型粒子およびその製造方法を提供することを課題とする。 [0012] An object of the present invention is to provide atypical silicone particles and a method for producing the same.
更には、形状、粒子径等が制御されたシリコーン異型粒子およびその製造方法を提 供することを課題とする。 Furthermore, the present invention provides a modified silicone particle having a controlled shape, particle diameter, etc. and a method for producing the same. The subject is to provide.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者らは、上記課題について鋭意検討を重ねた結果、ポリオルガノシロキサン を、まず RSiO 単位を含むアルコキシシランで被覆し、次に水溶性電解質を添カロ [0013] As a result of intensive studies on the above problems, the present inventors first coated polyorganosiloxane with alkoxysilane containing RSiO units, and then added water-soluble electrolyte.
3/2  3/2
し、さらにまた RSiO 単位を含むアルコキシシランを添カ卩することによりシリコーン  In addition, by adding alkoxysilane containing RSiO units,
3/2  3/2
異型粒子が合成できることを見出し、本発明を完成させるに至った。  The present inventors have found that atypical particles can be synthesized and have completed the present invention.
[0014] すなわち、本発明の第 1は R SiO 単位(式中、 Rは、炭素数 1乃至 4のアルキル That is, the first of the present invention is an R SiO unit (wherein R is an alkyl having 1 to 4 carbon atoms)
2 2/2  2 2/2
基または炭素数 6乃至 24の芳香族基を示す)を 50モル%以上含むポリオルガノシロ キサン (A)を、まず RSiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭  A polyorganosiloxane (A) containing at least 50 mol% of a group or an aromatic group having 6 to 24 carbon atoms), RSiO units (wherein R is an alkyl group having 1 to 4 carbon atoms or carbon
3/2  3/2
素数 6乃至 24の芳香族基を示す)を 50モル%以上含むアルコキシシラン (B)で被覆 し、次に水溶性電解質を添加し、さらにまた RSiO 単位 (式中、 Rは、炭素数 1乃至  Coat with an alkoxysilane (B) containing 50 mol% or more of an aromatic group having a prime number of 6 to 24, and then add a water-soluble electrolyte. Furthermore, RSiO units (wherein R is a carbon number of 1 to
3/2  3/2
4のアルキル基または炭素数 6乃至 24の芳香族基を示す)を 50モル%以上含むァ ルコキシシラン (C)を添加することにより合成されることを特徴とする、シリコーン異型 粒子に関する。  The present invention relates to an atypical silicone particle characterized in that it is synthesized by adding alkoxysilane (C) containing 50 mol% or more of an alkyl group of 4 or an aromatic group of 6 to 24 carbon atoms.
[0015] 好ま 、実施態様は、前記ポリオルガノシロキサン (A)の体積平均粒子径が 0. 1 μ m未満であることを特徴とする、前記のシリコーン異型粒子に関する。  [0015] Preferably, the embodiment relates to the above-mentioned silicone modified particle, wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 μm.
[0016] 好ま ヽ実施態様は、前記ポリオルガノシロキサン (A)の体積平均粒子径を a、シリ コーン異型粒子の体積平均粒子径を bとした場合、 b/aの値が 1. 5以上であることを 特徴とする、前記いずれかに記載のシリコーン異型粒子に関する。  [0016] Preferably, when the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the modified silicone particles is b, the value of b / a is 1.5 or more. The modified silicone particles according to any one of the above, which are characterized by being.
[0017] 好ましい実施態様は、(A)Z( (B) + (C) )の重量比率力 100Z1から 100Z250 であることを特徴とする、前記いずれかに記載のシリコーン異型粒子に関する。  [0017] A preferred embodiment relates to the modified silicone particles according to any one of the above, wherein the weight ratio force of (A) Z ((B) + (C)) is from 100Z1 to 100Z250.
[0018] 本発明の第 2は、 R SiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または  [0018] The second of the present invention is an R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or
2 2/2  2 2/2
炭素数 6乃至 24の芳香族基を示す)を 50モル%以上むポリオルガノシロキサン (A) を、まず RSiO 単位(式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 6乃至  A polyorganosiloxane (A) containing 50 mol% or more of an aromatic group having 6 to 24 carbon atoms) is first RSiO units (wherein R is an alkyl group having 1 to 4 carbon atoms or 6 to 6 carbon atoms).
3/2  3/2
24の芳香族基を示す)を 50モル%以上含むアルコキシシラン (B)で被覆し、次に水 溶性電解質を添加し、さらにまた RSiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキ  Coated with alkoxysilane (B) containing 50 mol% or more of 24 (representing 24 aromatic groups), and then adding a water-soluble electrolyte, and also RSiO units (wherein R is an alkyl having 1 to 4 carbon atoms).
3/2  3/2
ル基または炭素数 6乃至 24の芳香族基を示す)を 50モル%以上含むアルコキシシ ラン (C)を添加することにより合成されることを特徴とする、シリコーン異型粒子の製 造方法に関する。 Or an alkoxy silane (C) containing 50 mol% or more of an alkyl group or an aromatic group having 6 to 24 carbon atoms). It relates to the manufacturing method.
[0019] 好ま 、実施態様は、前記ポリオルガノシロキサン (A)の体積平均粒子径が 0. 1 μ m未満であることを特徴とする、前記のシリコーン異型粒子の製造方法に関する。  [0019] Preferably, the embodiment relates to the above-mentioned method for producing modified silicone particles, wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 μm.
[0020] 好ま ヽ実施態様は、前記ポリオルガノシロキサン (A)の体積平均粒子径を a、シリ コーン異型粒子の体積平均粒子径を bとした場合、 b/aの値が 1. 5以上であることを 特徴とする、前記いずれかに記載のシリコーン異型粒子の製造方法に関する。 発明の効果  [0020] Preferably, when the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the modified silicone particles is b, the value of b / a is 1.5 or more. The present invention relates to any one of the above-mentioned methods for producing atypical silicone particles. The invention's effect
[0021] 本発明によれば、ポリオルガノシロキサンを、まず RSiO 単位を含むアルコキシシ  [0021] According to the present invention, the polyorganosiloxane is first converted into an alkoxysilane containing RSiO units.
3/2  3/2
ランで被覆し、次に水溶性電解質を添加し、さらにまた RSiO 単位を含むアルコキ  Coat with run, then add water-soluble electrolyte, and also add alkoxy containing RSiO units.
3/2  3/2
シシランを添加することにより、シリコーン異型粒子を合成できる。当該シリコーン異型 粒子は、色々な分野で色々な性能を向上させることが期待できる。  Silicone atypical particles can be synthesized by adding silane. The silicone modified particles can be expected to improve various performances in various fields.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明は、 R SiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 [0022] The present invention provides an R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or a carbon number)
2 2/2  2 2/2
6乃至 24の芳香族基を示す)を 50モル%以上含み、体積平均粒子径 aであるポリオ ルガノシロキサン (A)を、まず RSiO 単位(式中、 Rは、炭素数 1乃至 4のアルキル  Polyorganosiloxane (A) containing 50 mol% or more of 6 to 24 aromatic groups and having a volume average particle diameter a is first RSiO units (wherein R is an alkyl having 1 to 4 carbon atoms).
3/2  3/2
基または炭素数 6乃至 24の芳香族基を示す)を 50モル%以上含むアルコキシシラン (B)で被覆し、次に水溶性電解質を添加し、さらにまた RSiO 単位 (式中、 Rは、炭  Or an alkoxysilane (B) containing 50 mol% or more of a group or an aromatic group having 6 to 24 carbon atoms), then adding a water-soluble electrolyte, and further adding RSiO units (wherein R is carbon
3/2  3/2
素数 1乃至 4のアルキル基または炭素数 6乃至 24の芳香族基を示す)を 50モル%以 上含むアルコキシシラン (C)を添加することにより合成される体積平均粒子径 bである シリコーン異型粒子を提供するものである。  Silicon atypical particles having a volume average particle size b synthesized by adding alkoxysilane (C) containing 50 mol% or more of an alkyl group having 1 to 4 prime atoms or an aromatic group having 6 to 24 carbon atoms) Is to provide.
[0023] 本発明に使用するポリオルガノシロキサン (A)は、分子内に R SiO 単位を 50モ [0023] The polyorganosiloxane (A) used in the present invention has 50 mol of R SiO units in the molecule.
2 2/2  2 2/2
ル%以上含む必要があり、更には当該単位が 90モル%以上含まれることがより好ま し 、。ポリオルガノシロキサン(A)中の R SiO 単位が 50モル0 /0未満ではゴムの特 More preferably, the unit should be contained in an amount of 90 mol% or more. JP polyorganosiloxane (A) R a SiO units is less than 50 mole 0/0 rubber in
2 2/2  2 2/2
性がでない場合がある。  It may not be sex.
[0024] また、ポリオルガノシロキサン (A)の体積平均粒子径 aは 1 μ m未満であることが好 ましぐ更には 0. 1 μ m未満であることがより好ましぐ 0. 05 μ m未満であることが特 に好ましい。ポリオルガノシロキサン (A)の体積平均粒子径が 1 μ m以上のものは通 常の乳化系の重合では合成し難 、傾向がある。ポリオルガノシロキサン (A)の体積 平均粒子径の下限値については特に制限はないが、合成し易さを考慮すると 0. 00 1 μ m以上であることが好ましい。なお、体積平均粒子径は、例えば、測定装置として 日機装株式会社製の粒度分析計 NPA 150を用いて測定できる。 [0024] The volume average particle diameter a of the polyorganosiloxane (A) is preferably less than 1 μm, more preferably less than 0.1 μm, more preferably 0.05 μm. It is particularly preferred that it is less than. Polyorganosiloxane (A) having a volume average particle size of 1 μm or more tends to be difficult to synthesize by ordinary emulsion polymerization. Volume of polyorganosiloxane (A) The lower limit of the average particle diameter is not particularly limited, but is preferably 0.001 μm or more in consideration of ease of synthesis. The volume average particle size can be measured using, for example, a particle size analyzer NPA 150 manufactured by Nikkiso Co., Ltd. as a measuring device.
[0025] ポリオルガノシロキサン (A)の R SiO 単位を形成する原料としては、 R SiX (式 [0025] As a raw material for forming the R SiO unit of the polyorganosiloxane (A), R SiX (formula
2 2/2 2 2 中、 Rは、上記と同じ基を表す。 Xは、同一又は異なってもよぐハロゲン、水酸基、ま たは水酸基の脱水縮合物である。)で表される化合物や、直鎖状、分岐状または環 状構造を有するオルガノシロキサンである。具体例としては、ジメチルジメトキシシラン 、ジフエニノレジメトキシシラン、メチノレフエニノレジメトキシシラン、ジメチノレジェトキシシ ラン、ジフエ二ルジェトキシシラン、メチルフエ二ルジェトキシシラン、ジェチルジメトキ シシラン、ェチルフエ二ルジメトキシシラン、ジェチルジェトキシシラン、ェチルフエ二 ルジェトキシシランなど、へキサメチルシクロトリシロキサン(D3)、オタタメチルシクロ テトラシロキサン(D4)、デカメチルシクロペンタシロキサン(D5)、ドデカメチルシクロ へキサシロキサン(D6)、トリメチルトリフエ-ルシクロトリシロキサンなどの環状化合物 のほかに、直鎖状あるいは分岐状のオルガノシロキサンなどを挙げることができる。こ れらオルガノシロキサンは、単独でも、あるいは 2種以上を併用することもできる。また 必要に応じて、 RSiO 単位や SiO 単位を含むシラン化合物を加えてもよい。 RS  In 2 2/2 2 2, R represents the same group as described above. X is the same or different halogen, hydroxyl group, or dehydration condensation product of hydroxyl group. Or an organosiloxane having a linear, branched or cyclic structure. Specific examples include dimethyldimethoxysilane, dipheninoresimethoxymethoxy, methinorefininoresimethoxymethoxysilane, dimethinoresoxysilane, diphenyljetoxysilane, methylphenyljetoxysilane, jetyldimethoxysilane, ethylphenyldimethoxysilane, Tilgetoxysilane, ethylphenyljetoxysilane, etc. Hexamethylcyclotrisiloxane (D3), Otamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5), Dodecamethylcyclohexasiloxane (D6) In addition to cyclic compounds such as trimethyltriphenylcyclotrisiloxane, linear or branched organosiloxanes can be used. These organosiloxanes can be used alone or in combination of two or more. If necessary, a silane compound containing RSiO units or SiO units may be added. RS
3/2 4/2  3/2 4/2
iO 単位を含む原料としてはメチルトリメトキシシラン、メチルトリエトキシシラン、メチ Materials containing iO units include methyltrimethoxysilane, methyltriethoxysilane, methyl
3/2 3/2
ルトリプロボキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ェチルトリ プロポキシシラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン、フエニルトリ プロボキシシランなどを挙げることができる。 SiO 単位を含む原料としてはテトラメト  Examples thereof include rutripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane. Tetrameth as a raw material containing SiO 2 unit
4/2  4/2
キシシラン、テトラエトキシシラン、テトラプロボキシシラン、およびそれらの縮合物など が挙げられる。  Examples thereof include xylsilane, tetraethoxysilane, tetrapropoxysilane, and condensates thereof.
[0026] ポリオルガノシロキサン (A)の合成は、例えば、乳ィ匕剤を用いて乳化した R SiO  [0026] The synthesis of polyorganosiloxane (A) is, for example, R SiO emulsified using a milky agent.
2 2/2 単位を形成する化合物を含む原料に触媒を加えて加温することにより行われる。特 に粒子径の小さ 、ポリオルガノシロキサンを得た ヽ場合には、最初に親水性と膨潤 性のあるシードポリマーを酸触媒水溶液にカ卩え、加温後、乳化した R SiO 単位を  It is carried out by adding a catalyst to a raw material containing a compound forming 2 2/2 units and heating. In particular, when polyorganosiloxane is obtained with a small particle size, first, a hydrophilic and swellable seed polymer is placed in an acid catalyst aqueous solution, heated, and then emulsified R SiO units are added.
2 2/2 形成する化合物を含む原料を連続的に追加する方法が利用できる。  2 2/2 A method of continuously adding a raw material containing a compound to be formed can be used.
[0027] 乳化剤としては、ァニオン系乳化剤ゃノニオン系乳化剤が使用されうる。ァニオン 系乳化剤の具体例としては、アルキルベンゼンスルホン酸ナトリウム、ラウリルスルホ ン酸ナトリウム、ォレイン酸カリウムなどが挙げられる力 特にドデシルベンゼンスルホ ン酸ナトリウムが好ましく用いられうる。ノ-オン系乳化剤の具体例としては、例えば、 ポリオキシエチレンノ-ルフエ-ルエーテルやポリオキシエチレンラウリルエーテルな どが挙げられる。 [0027] As the emulsifier, an anionic emulsifier or a nonionic emulsifier can be used. Canyon Specific examples of the emulsifier include powers such as sodium alkylbenzene sulfonate, sodium lauryl sulfonate, potassium oleate and the like. Particularly, sodium dodecylbenzene sulfonate can be preferably used. Specific examples of the non-one emulsifier include, for example, polyoxyethylene norphenyl ether and polyoxyethylene lauryl ether.
[0028] 乳化剤は、 R SiO 単位を形成する化合物を含む原料および水と混合され、例え  [0028] The emulsifier is mixed with a raw material containing a compound forming an R SiO unit and water, for example,
2 2/2  2 2/2
ば、ホモジナイザーやラインミキサー等によって乳化液を調製することができる。  For example, an emulsion can be prepared by a homogenizer, a line mixer, or the like.
[0029] 本発明に用いることのできる酸触媒は、例えば、脂肪族スルホン酸、脂肪族置換べ ンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸などのスルホン酸類、および硫 酸、塩酸、硝酸などの鉱酸類が挙げられる。これらの中では、オルガノシロキサンの 乳化安定性にも優れる脂肪族置換ベンゼンスルホン酸が好ましく、 n—ドデシルペン ゼンスルホン酸が特に好まし 、。 [0029] Examples of the acid catalyst that can be used in the present invention include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzene sulfonic acid, and aliphatic substituted naphthalene sulfonic acid, and minerals such as sulfuric acid, hydrochloric acid, and nitric acid. Examples include acids. Of these, aliphatic substituted benzene sulfonic acid having excellent emulsion stability of organosiloxane is preferred, and n-dodecylbenzene sulfonic acid is particularly preferred.
[0030] 反応のための加熱は適宜設定できる力 適度な重合速度が得られるという点で 30[0030] The heating for the reaction can be set as appropriate 30 In that a moderate polymerization rate can be obtained.
〜120°Cが好ましぐ 40〜90°Cがより好ましい。 -120 ° C is preferred 40-90 ° C is more preferred.
[0031] 本発明に使用する RSiO 単位を含むアルコキシシラン(B)は、アルコキシシラン( [0031] The alkoxysilane (B) containing an RSiO unit used in the present invention is an alkoxysilane (
3/2  3/2
B)中に RSiO 単位を 50モル%以上含む必要があり、更には当該単位を 70モル  B) it is necessary to contain 50 mol% or more of RSiO unit, and further 70 mol of the unit.
3/2  3/2
%以上含むことが好まし 、。 RSiO 単位が 50モル%未満では、その後の凝集肥  It is preferable to include more than%. If the RSiO unit is less than 50 mol%,
3/2  3/2
大が起こり難くなる傾向があり、 目的のシリコーン異型粒子が得られにくい場合がある [0032] 前記の RSiO 単位を含む原料としては、例えば、メチルトリメトキシシラン、メチル  In some cases, the target silicone atypical particles are difficult to obtain. [0032] Examples of the raw material containing the RSiO unit include methyltrimethoxysilane, methyl
3/2  3/2
トリエトキシシラン、メチルトリプロポキシシラン、ェチルトリメトキシシラン、ェチルトリエ トキシシラン、ェチルトリプロポキシシラン、フエニルトリメトキシシラン、フエニルトリエト キシシラン、フエ-ルトリプロボキシシランなどを挙げることができる。また必要に応じ て、 R SiO 単位や SiO 単位を含むシラン化合物をカ卩えてもよい。 R SiO 単 Examples thereof include triethoxysilane, methyltripropoxysilane, etyltrimethoxysilane, etyltrimethoxysilane, etyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane. If necessary, an R SiO unit or a silane compound containing a SiO unit may be prepared. R SiO single
2 2/2 4/2 2 2/2 位の原料としてはジメチルジメトキシシラン、ジフエ二ルジメトキシシラン、メチルフエ- ノレジメトキシシラン、ジメチノレジェトキシシラン、ジフエニノレジェトキシシラン、メチノレフ ェニルジェトキシシラン、ジェチルジメトキシシラン、ェチルフエ二ルジメトキシシラン、 ジェチルジェトキシシラン、ェチルフエ二ルジェトキシシランなど、へキサメチルシクロ トリシロキサン(D3)、オタタメチルシクロテトラシロキサン(D4)、デカメチルシクロペン タシロキサン(D5)、ドデカメチルシクロへキサシロキサン(D6)、トリメチルトリフエ-ル シクロトリシロキサンなどの環状ィ匕合物のほかに、直鎖状あるいは分岐状のオルガノ シロキサンなどを挙げることができる。 SiO 単位の原料としてはテトラメトキシシラン 2 2/2 4/2 2 2/2 Raw materials include dimethyldimethoxysilane, diphenyldimethoxysilane, methylphenolimethoxysilane, dimethylenoletoxysilane, diphenenoletoxysilane, and methinophenyljetoxysilane. Hexamethylcyclohexane, Jetyldimethoxysilane, Ethylphenyldimethoxysilane, Jetyljetoxysilane, Ethylphenyloxysilane, etc. Cyclic combinations such as trisiloxane (D3), otamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), trimethyltriphenyl cyclotrisiloxane In addition to these, linear or branched organosiloxanes can be mentioned. Tetramethoxysilane as raw material for SiO unit
4/2  4/2
、テトラエトキシシラン、テトラプロボキシシラン、およびそれらの縮合物などが挙げら れる。  , Tetraethoxysilane, tetrapropoxysilane, and condensates thereof.
[0033] 本発明にお!/、ては、まず前記ポリオルガノシロキサン (A)をアルコキシシラン(B)で 被覆するが、ゴム状の球状粒子であるポリオルガノシロキサン (A)に、硬い成分となる アルコキシシラン (B)を連続的に添加して粒子表面を被覆することで、最終異型粒子 の構成粒子が元の球形を保てるようにする。この被覆が十分でないと凝集肥大した 最終の異型粒子表面の凹凸が明瞭にならない傾向がある。ポリオルガノシロキサン( A)粒子の周りをアルコキシシラン (B)が被覆している様子は、凝集肥大前のラテック スサンプルを水溶性エポキシに混合'硬化してオスミウム染色後、 TEM観察すること により確認できる。  [0033] In the present invention, first, the polyorganosiloxane (A) is first coated with an alkoxysilane (B). The polyorganosiloxane (A), which is rubber-like spherical particles, has a hard component and By continuously adding the alkoxysilane (B) to coat the particle surface, the particles constituting the final atypical particle can maintain the original spherical shape. If this coating is not sufficient, the irregularities on the surface of the final atypical particles that have agglomerated and thickened tend to be unclear. The appearance of the alkoxysilane (B) coating around the polyorganosiloxane (A) particles can be confirmed by mixing the latex sample before agglomeration with water-soluble epoxy and curing it, followed by TEM observation after osmium staining. it can.
[0034] 本発明にお!/、ては、ポリオルガノシロキサン (A)をアルコキシシラン(B)で被覆し、 次に水溶性電解質を添加するが、当該水溶性電解質は、 RSiO 単位を 50モル%  [0034] In the present invention, the polyorganosiloxane (A) is coated with alkoxysilane (B), and then a water-soluble electrolyte is added. The water-soluble electrolyte contains 50 mol of RSiO units. %
3/2  3/2
以上含むシリコーンで被覆されたポリオルガノシロキサンを、その次の RSiO 単位  Polyorganosiloxane coated with silicone containing the above, the next RSiO unit
3/2 を 50モル%以上含むシリコーンとの反応中に凝集肥大するために使用されるもので あり、具体的には Na+、 K+、 Mg+、 Ca2+、 Al3+、 H+などや、 Cl—、 Br_、 SO 2_、 SO It is used to agglomerate and enlarge during the reaction with silicone containing 3/2 or more of 50% by mole. Specifically, Na +, K +, Mg +, Ca 2+ , Al 3+ , H +, etc., Cl —, Br _ , SO 2_ , SO
4  Four
3_、 NO―、 NO―、 PO 3_、 CO 2_、 OH—などに解離する化合物などがあげられる Examples include compounds that dissociate into 3_ , NO-, NO-, PO 3_ , CO 2_ , OH-, etc.
4 2 3 4 3 4 2 3 4 3
。具体的な化合物としては、例えば、 NaCl、 KC1、 Na SO、 CaCl、 A1C1などがあ  . Specific compounds include, for example, NaCl, KC1, Na SO, CaCl, A1C1, etc.
2 4 2 3 げられる。水溶性電解質の添加量としては適宜設定できる力 ポリオルガノシロキサ ン(A)、アルコキシシラン(B)、アルコキシシラン(C)の合計量 100重量部に対し、 0. 1〜10重量部が好ましい。水溶性電解質の添加量が 0. 1重量部未満だと凝集肥大 しにくぐ逆に 10重量部を越えるとラテックスの安定性が不足して重合スケールが多く なる傾向がある。  2 4 2 3 The amount of water-soluble electrolyte that can be appropriately set is 0.1 to 10 parts by weight with respect to 100 parts by weight of the total amount of polyorganosiloxane (A), alkoxysilane (B), and alkoxysilane (C). . If the amount of the water-soluble electrolyte added is less than 0.1 part by weight, the coagulation enlargement is difficult. On the other hand, if it exceeds 10 parts by weight, the stability of the latex tends to be insufficient and the polymerization scale tends to increase.
[0035] 本発明に使用する RSiO 単位を含むアルコキシシラン(C)は、アルコキシシラン(  [0035] The alkoxysilane (C) containing an RSiO unit used in the present invention is an alkoxysilane (
3/2  3/2
C)中に RSiO 単位を 50モル%以上含む必要があり、更には当該単位を 70モル %以上含むことが好まし 、。 RSiO 単位が 50モル%未満ではアルコキシシラン (C C) it is necessary to contain 50 mol% or more of RSiO units, and further 70 mols of these units. It is preferable to include more than%. If the RSiO unit is less than 50 mol%, alkoxysilane (C
3/2  3/2
)の縮合反応中の凝集肥大が起こり難くなる傾向がある。  ) Tends to be less likely to occur during the condensation reaction.
[0036] RSiO 単位を含む原料としては、例えば、メチルトリメトキシシラン、メチルトリエト [0036] Examples of raw materials containing RSiO units include methyltrimethoxysilane and methyltriethate.
3/2  3/2
キシシラン、メチルトリプロポキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシ シラン、ェチルトリプロポキシシラン、フエニルトリメトキシシラン、フエニルトリエトキシシ ラン、フエニルトリプロボキシシランなどを挙げることができる。また必要に応じて、 R S  Examples include xylsilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and phenyltripropoxysilane. . R S if necessary
2 iO 単位や SiO 単位を含むシラン化合物をカ卩えてもよい。 R SiO 単位の原料 2 Silane compounds containing iO units or SiO units may be prepared. Raw material of R SiO unit
2/2 4/2 2 2/2 としてはジメチルジメトキシシラン、ジフエ二ルジメトキシシラン、メチルフエ二ルジメトキ シシラン、ジメチノレジェトキシシラン、ジフエニノレジェトキシシラン、メチノレフエニノレジェ トキシシラン、ジェチノレジメトキシシラン、ェチノレフエニノレジメトキシシラン、ジェチノレジ エトキシシラン、ェチルフエ二ルジェトキシシランなど、へキサメチルシクロトリシロキサ ン(D3)、オタタメチルシクロテトラシロキサン(D4)、デカメチルシクロペンタシロキサ ン(D5)、ドデカメチルシクロへキサシロキサン(D6)、トリメチルトリフエ-ルシクロトリ シロキサンなどの環状ィ匕合物のほかに、直鎖状あるいは分岐状のオルガノシロキサ ンなどを挙げることができる。 SiO 単位の原料としてはテトラメトキシシラン、テトラエ 2/2 4/2 2 2/2 include dimethyldimethoxysilane, diphenyldimethoxysilane, methylphenyldimethoxysilane, dimethinoresoxysilane, dipheninoletoxysilane, methinolevinoinoxy oxysilane, and jetinoresidue. Methoxysilane, ethinolevenoresimethoxymethoxysilane, jetinoresi ethoxysilane, ethylphenyljetoxysilane, hexamethylcyclotrisiloxane (D3), otamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxax In addition to cyclic compounds such as benzene (D5), dodecamethylcyclohexasiloxane (D6), and trimethyltricyclocyclotrisiloxane, linear or branched organosiloxanes can be used. The raw materials for SiO units are tetramethoxysilane, tetraeth
4/2  4/2
トキシシラン、テトラプロボキシシラン、およびそれらの縮合物などが挙げられる。  Examples include toxisilane, tetrapropoxysilane, and condensates thereof.
[0037] 本発明のシリコーン異型粒子にお!、て、ポリオルガノシロキサン (A)、アルコキシシ ラン (B)およびアルコキシシラン (C)の使用比率については、特に制限はないが、ポ リオルガノシロキサン (A)の柔軟な特性を活かす点から、 (A) / ( (B) + (C) )の重量 比率が、 100/1〜: L00/250であることが好ましぐ 100Z5〜: L00Z100であるこ とがより好ましい。  [0037] The proportion of polyorganosiloxane (A), alkoxysilane (B) and alkoxysilane (C) used in the modified silicone particles of the present invention is not particularly limited. It is preferable that the weight ratio of (A) / ((B) + (C)) is 100/1 ~: L00 / 250 from the point of taking advantage of the flexible characteristics of (A) 100Z5 ~: L00Z100 More preferably.
[0038] 本発明にお ヽて、上記凝集肥大後に得られるシリコーン異型粒子の体積平均粒子 径 bは、乳化剤により水中のシリコーン粒子を安定ィ匕させる場合、安定性の点から、 0 . 1〜3 /ζ πιの範囲であることが好ましぐ更には 0. 1〜1 /ζ πιの範囲がより好ましい。 なお、本発明において異型粒子とは、いわゆる球形粒子でないことを意味し、例えば 、ぶどうの房状、コンペィ糖状などを例示することができる。  [0038] In the present invention, the volume average particle diameter b of the irregularly shaped silicone particles obtained after the above-mentioned agglomeration and enlargement is, from the viewpoint of stability, when the silicone particles in water are stabilized by an emulsifier, from 0.1 to The range of 3 / ζ πι is preferable, and the range of 0.1 to 1 / ζ πι is more preferable. In the present invention, the term “atypical particle” means that it is not a so-called spherical particle, and examples thereof include a bunch of grapes and a complex sugar.
[0039] また、シリコーン異型粒子の体積平均粒子径 bとポリオルガノシロキサン (A)の体積 平均粒子径 aとの比 bZaの値は、 1. 5以上が好ましぐ更には 10以上 200未満がよ り好ましい。条件を満たすと最終的に得られるシリコーン粒子の形状は、例えば良好 なクラスター構造を有する異型粒子となり、様々な技術分野にぉ 、て新 、特性が期 待できる。なお、シリコーン異型粒子の形状の確認は、例えば、ラテックス状の最終シ リコーン異型粒子を水溶性エポキシに混合'硬化してオスミウム染色後、 TEM観察 すること〖こより可會 となる。 [0039] Further, the ratio of the volume average particle diameter b of the irregularly shaped silicone particles b to the volume average particle diameter a of the polyorganosiloxane (A) bZa is preferably 1.5 or more, more preferably 10 or more and less than 200. Yo More preferable. When the conditions are satisfied, the shape of the finally obtained silicone particles becomes, for example, atypical particles having a good cluster structure, and new characteristics can be expected in various technical fields. The shape of the modified silicone particles can be confirmed, for example, by mixing and curing the latex-like final modified silicone particles with a water-soluble epoxy, osmium staining, and TEM observation.
実施例  Example
[0040] 本発明を実施例に基づき具体的に説明するが、本発明はこれらのみに限定されな い。なお、以下の実施例および比較例における測定および試験はつぎのように行つ た。  [0040] The present invention will be specifically described based on examples, but the present invention is not limited thereto. Measurements and tests in the following examples and comparative examples were performed as follows.
[0041] [体積平均粒子径]  [0041] [Volume average particle diameter]
シードポリマー、ポリオルガノシロキサン (A)およびシリコーン異型粒子の体積平均 粒子径をラテックスの状態で測定した。測定装置として、 日機装株式会社製の粒度 分析計 NPA 150を用いて体積平均粒子径( m)を測定した。  The volume average particle diameters of the seed polymer, polyorganosiloxane (A), and silicone variant particles were measured in the latex state. The volume average particle diameter (m) was measured using a particle size analyzer NPA 150 manufactured by Nikkiso Co., Ltd. as a measuring device.
[0042] (実施例 1〜4、比較例 1〜3)  [0042] (Examples 1 to 4, Comparative Examples 1 to 3)
撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた 5口フラスコに 、水 400重量部(種々の希釈水も含む水の総量)およびドデシルベンゼンスルホン酸 ソーダ(SDBS) 8重量部(固形分)を混合した後 50°Cに昇温し、液温が 50°Cに達し た後、窒素置換を行った。その後ブチルアタリレート 10重量部、 t—ドデシルメルカブ タン 3重量部、パラメンタンノ、イド口パーオキサイド 0. 01重量部の混合液をカ卩えた。 3 0分後、硫酸第一鉄 (FeSO · 7Η Ο) 0. 002重量部、エチレンジアミンテトラァセティ  In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, additional monomer port, thermometer, 400 parts by weight of water (total amount of water including various dilution water) and sodium dodecylbenzenesulfonate (SDBS) ) After 8 parts by weight (solid content) were mixed, the temperature was raised to 50 ° C, and after the liquid temperature reached 50 ° C, nitrogen substitution was performed. Thereafter, a mixed solution of 10 parts by weight of butyl acrylate, 3 parts by weight of t-dodecyl mercaptan, paramentanno, and 0.01 part by weight of id-peroxide was prepared. After 30 minutes, ferrous sulfate (FeSO 7Η Ο) 0.002 parts by weight, ethylenediaminetetraacety
4 2  4 2
ックアシッド ' 2Na塩 0. 005重量部、ホルムアルデヒドスルフォキシル酸ソーダ 0. 2重 量部をカ卩えてさらに 1時間重合させた。その後ブチルアタリレート 90重量部、 tードデ シルメルカプタン 27重量部、パラメンタンノヽィドロパーオキサイド 0. 1重量部の混合 液を 3時間かけて連続追加した。 2時間の後重合を行いシードポリマーを得た。合成 後の体積平均粒子径は 0. 04 /z mであった。  The mixture was further polymerized for 1 hour by adding 0.005 parts by weight of cac acid '2Na salt and 0.2 parts by weight of sodium formaldehydesulfoxylate. Thereafter, a mixed solution of 90 parts by weight of butyl acrylate, 27 parts by weight of t-decyl mercaptan, and 0.1 part by weight of paramenthanic nodroperoxide was continuously added over 3 hours. Post-polymerization was performed for 2 hours to obtain a seed polymer. The volume average particle diameter after synthesis was 0.04 / z m.
[0043] 撹拌機、還流冷却器、窒素吹込口、単量体追加口、温度計を備えた 5口フラスコに 、水 400重量部(種々の希釈水も含む水の総量)、シードポリマーおよびドデシルべ ンゼンスルホン酸 (DBSA)表 1に示した量(固形分)を混合した後 80°Cに昇温し、液 温が 80°Cに達した後、窒素置換を行った。その後、別途純水 75重量部、ドデシルべ ンゼンスルホン酸ソーダ 0. 25重量部(固形分)、オタタメチルシクロテトラシロキサン( D4)表 1に示した量力もなる混合物をホモミキサーを用い 7000rpmで 5分間撹拌し て得た乳化液を 3時間かけて連続添加した。添加終了後、 80°Cで 2時間撹拌を続け た後、 25°Cに冷却して 20時間放置した。その後、このポリオルガノシロキサン (A)の 体積平均粒子径 aを測定し、結果を表 1に示した。 [0043] In a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, thermometer, 400 parts by weight of water (total amount of water including various dilution water), seed polymer and dodecyl Benzene sulfonic acid (DBSA) After mixing the amount shown in Table 1 (solid content), the temperature was raised to 80 ° C and the liquid After the temperature reached 80 ° C, nitrogen substitution was performed. Separately, 75 parts by weight of pure water, 0.25 parts by weight of sodium dodecylbenzene sulfonate (solid content), otatamethylcyclotetrasiloxane (D4) were mixed at a speed of 7000 rpm using a homomixer. The emulsion obtained by stirring for 5 minutes was continuously added over 3 hours. After completion of the addition, stirring was continued at 80 ° C for 2 hours, and then cooled to 25 ° C and left for 20 hours. Thereafter, the volume average particle diameter a of the polyorganosiloxane (A) was measured, and the results are shown in Table 1.
[0044] 上記ポリオルガノシロキサンを撹拌しながら窒素気流下で 60°Cまで昇温した。 60°C 到達後、メチルトリメトキシシラン(MTMS)表 1に示した量、 MTMSと同量の水、 MT MSの 5重量%のドデシルベンゼンスルホン酸ソーダからなる混合物をホモミキサー を用い 7000rpmで 5分間撹拌して得た乳化液を 0. 5時間(比較例の場合は 2時間) かけて連続添カ卩した。追加終了 0. 5時間後、この MTMS被覆ポリオルガノシロキサ ンの体積平均粒子径を測定し、表 1に示した。  [0044] While stirring the polyorganosiloxane, the temperature was raised to 60 ° C under a nitrogen stream. After reaching 60 ° C, a mixture of methyltrimethoxysilane (MTMS) as shown in Table 1, the same amount of water as MTMS, and 5% by weight of MTMS sodium dodecylbenzenesulfonate was used at 7000rpm for 5 minutes using a homomixer. The emulsion obtained by stirring for a minute was continuously added for 0.5 hour (2 hours in the case of the comparative example). 0.5 hours after the completion of addition, the volume average particle diameter of this MTMS-coated polyorganosiloxane was measured and shown in Table 1.
[0045] つづいて、 10重量%Na SO (SS)水溶液を表 1に示した量(固形分)添カ卩した。そ  [0045] Subsequently, a 10 wt% Na 2 SO (SS) aqueous solution was added in the amount (solid content) shown in Table 1. So
2 4  twenty four
の後、メチルトリメトキシシラン(MTMS)表 1に示した量、 MTMSと同量の水、 MTM Sの 5重量%のドデシルベンゼンスルホン酸ソーダからなる混合物をホモミキサーを 用い 7000rpmで 5分間撹拌して得た乳化液を 2時間かけて連続添加した。追加終 了 1時間後、このシリコーン粒子の体積平均粒子径 bを測定し、表 1に示した。  After that, a mixture of methyltrimethoxysilane (MTMS) shown in Table 1, the same amount of MTMS as water, and MTMS 5% by weight sodium dodecylbenzenesulfonate was stirred at 7000 rpm for 5 minutes using a homomixer. The resulting emulsion was continuously added over 2 hours. One hour after the completion of the addition, the volume average particle diameter b of the silicone particles was measured and shown in Table 1.
[0046] [表 1] [0046] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
D4:ォクタメチルシクロ亍トラシロキサン、 DBSA:ドデシルベンゼンスルホン酸、 MTMS:メチルトリメトキシシラン、 SS: Na2SO. D4: O Kuta methylcyclopentadienyl亍tiger siloxane, DBSA: dodecylbenzenesulfonic acid, MTMS: methyltrimethoxysilane, SS: Na 2 SO.
R SiO 単位を含むポリオルガノシロキサンを、まず RSiO 単位を以上含むァA polyorganosiloxane containing R SiO units is first
2 2/2 3/2 2 2/2 3/2
ルコキシシランで被覆し、次に水溶性電解質を添加し、さらにまた RSiO 単位を含 Coat with alkoxysilane, then add water-soluble electrolyte, and also contain RSiO units.
3/2 むアルコキシシランを添加することによりシリコーン異型粒子を得た。  By adding 3 / 2-alkoxysilane, atypical silicone particles were obtained.

Claims

請求の範囲 The scope of the claims
[1] R SiO 単位(式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 6乃至 24の  [1] R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or 6 to 24 carbon atoms)
2 2/2  2 2/2
芳香族基を示す)を 50モル%以上含むポリオルガノシロキサン (A)を、まず RSiO  Polyorganosiloxane (A) containing 50 mol% or more of aromatic groups)
3/2 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 6乃至 24の芳香族基を 示す)を 50モル%以上含むアルコキシシラン (B)で被覆し、次に水溶性電解質を添 加し、さらにまた RSiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭素  Coated with alkoxysilane (B) containing 50 mol% or more of 3/2 units (wherein R represents an alkyl group having 1 to 4 carbon atoms or an aromatic group having 6 to 24 carbon atoms), and then water-soluble. In addition, an RSiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or carbon
3/2  3/2
数 6乃至 24の芳香族基を示す)を 50モル%以上含むアルコキシシラン (C)を添加す ることにより合成されることを特徴とする、シリコーン異型粒子。  Silicone atypical particles characterized in that they are synthesized by adding an alkoxysilane (C) containing 50 mol% or more of an aromatic group of the number 6 to 24).
[2] 前記ポリオルガノシロキサン (A)の体積平均粒子径が 0. 1 μ m未満であることを特 徴とする、請求項 1に記載のシリコーン異型粒子。 [2] The modified silicone particles according to [1], wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 μm.
[3] 前記ポリオルガノシロキサン (A)の体積平均粒子径を a、シリコーン異型粒子の体 積平均粒子径を bとした場合、 bZaの値が 1. 5以上であることを特徴とする、請求項[3] When the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the silicone modified particles is b, the value of bZa is 1.5 or more. Term
1または 2に記載のシリコーン異型粒子。 3. The unusual silicone particle according to 1 or 2.
[4] (A) / ( (B) + (C) )の重量比率力 100Z1から 100Z250であることを特徴とする[4] The weight ratio force of (A) / ((B) + (C)) is 100Z1 to 100Z250
、請求項 1乃至 3のいずれかに記載のシリコーン異型粒子。 4. Atypical silicone particles according to any one of claims 1 to 3.
[5] R SiO 単位(式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 6乃至 24の [5] R SiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or 6 to 24 carbon atoms)
2 2/2  2 2/2
芳香族基を示す)を 50モル%以上含むポリオルガノシロキサン (A)を、まず RSiO  Polyorganosiloxane (A) containing 50 mol% or more of aromatic groups)
3/2 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭素数 6乃至 24の芳香族基を 示す)を 50モル%以上含むアルコキシシラン (B)で被覆し、次に水溶性電解質を添 加し、さらにまた RSiO 単位 (式中、 Rは、炭素数 1乃至 4のアルキル基または炭素  Coated with alkoxysilane (B) containing 50 mol% or more of 3/2 units (wherein R represents an alkyl group having 1 to 4 carbon atoms or an aromatic group having 6 to 24 carbon atoms), and then water-soluble. In addition, an RSiO unit (wherein R is an alkyl group having 1 to 4 carbon atoms or carbon
3/2  3/2
数 6乃至 24の芳香族基を示す)を 50モル%以上含むアルコキシシラン (C)を添加す ることにより合成されることを特徴とする、シリコーン異型粒子の製造方法。  A method for producing atypical silicone particles, characterized in that it is synthesized by adding an alkoxysilane (C) containing 50 mol% or more of an aromatic group of formula 6 to 24).
[6] 前記ポリオルガノシロキサン (A)の体積平均粒子径が 0. 1 μ m未満であることを特 徴とする、請求項 5に記載のシリコーン異型粒子の製造方法。 6. The method for producing modified silicone particles according to claim 5, wherein the polyorganosiloxane (A) has a volume average particle diameter of less than 0.1 μm.
[7] 前記ポリオルガノシロキサン (A)の体積平均粒子径を a、シリコーン異型粒子の体 積平均粒子径を bとした場合、 bZaの値が 1. 5以上であることを特徴とする、請求項[7] When the volume average particle diameter of the polyorganosiloxane (A) is a and the volume average particle diameter of the silicone atypical particles is b, the value of bZa is 1.5 or more. Term
5または 6に記載のシリコーン異型粒子の製造方法。 5. The method for producing atypical silicone particles according to 5 or 6.
PCT/JP2006/323396 2005-11-25 2006-11-24 Deformed silicone particle and process for production thereof WO2007061032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007546493A JPWO2007061032A1 (en) 2005-11-25 2006-11-24 Atypical silicone particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-339728 2005-11-25
JP2005339728 2005-11-25

Publications (1)

Publication Number Publication Date
WO2007061032A1 true WO2007061032A1 (en) 2007-05-31

Family

ID=38067257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323396 WO2007061032A1 (en) 2005-11-25 2006-11-24 Deformed silicone particle and process for production thereof

Country Status (2)

Country Link
JP (1) JPWO2007061032A1 (en)
WO (1) WO2007061032A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055632A1 (en) * 2008-11-13 2010-05-20 株式会社カネカ Silicone polymer particles and silicone compositions
US9597648B2 (en) 2012-10-17 2017-03-21 The Procter & Gamble Company Non-spherical droplet
CN113383033A (en) * 2018-12-27 2021-09-10 陶氏东丽株式会社 Silicone elastomer particles coated with silicone resin, organic resin additive, and other uses

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088040A (en) * 1983-10-21 1985-05-17 Mitsubishi Rayon Co Ltd Production of polyorganosiloxane latex
JPH07196815A (en) * 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd Fine silicone particle and its production
JPH11148009A (en) * 1997-11-14 1999-06-02 Kanegafuchi Chem Ind Co Ltd Silicone rubber particle and its production
JP2000204168A (en) * 1998-11-09 2000-07-25 Catalysts & Chem Ind Co Ltd Method for producing fine particle of polyorganosiloxane and liquid crystal display device
JP2000264968A (en) * 1999-03-16 2000-09-26 Kanegafuchi Chem Ind Co Ltd Production of polyorganosiloxane-based latex
JP2004224876A (en) * 2003-01-22 2004-08-12 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
WO2004092236A1 (en) * 2003-04-11 2004-10-28 Kaneka Corporation Polyorganosiloxane-containing graft copolymer, resin compositions containing the same and process for production of polyorganosiloxane emulsions
WO2006059719A1 (en) * 2004-12-03 2006-06-08 Kaneka Corporation Silicone polymer particle and silicone composition containing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088040A (en) * 1983-10-21 1985-05-17 Mitsubishi Rayon Co Ltd Production of polyorganosiloxane latex
JPH07196815A (en) * 1993-12-28 1995-08-01 Shin Etsu Chem Co Ltd Fine silicone particle and its production
JPH11148009A (en) * 1997-11-14 1999-06-02 Kanegafuchi Chem Ind Co Ltd Silicone rubber particle and its production
JP2000204168A (en) * 1998-11-09 2000-07-25 Catalysts & Chem Ind Co Ltd Method for producing fine particle of polyorganosiloxane and liquid crystal display device
JP2000264968A (en) * 1999-03-16 2000-09-26 Kanegafuchi Chem Ind Co Ltd Production of polyorganosiloxane-based latex
JP2004224876A (en) * 2003-01-22 2004-08-12 Ube Nitto Kasei Co Ltd Method for producing polyorganosiloxane particle and method for producing silica particle
WO2004092236A1 (en) * 2003-04-11 2004-10-28 Kaneka Corporation Polyorganosiloxane-containing graft copolymer, resin compositions containing the same and process for production of polyorganosiloxane emulsions
WO2006059719A1 (en) * 2004-12-03 2006-06-08 Kaneka Corporation Silicone polymer particle and silicone composition containing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055632A1 (en) * 2008-11-13 2010-05-20 株式会社カネカ Silicone polymer particles and silicone compositions
US9597648B2 (en) 2012-10-17 2017-03-21 The Procter & Gamble Company Non-spherical droplet
CN113383033A (en) * 2018-12-27 2021-09-10 陶氏东丽株式会社 Silicone elastomer particles coated with silicone resin, organic resin additive, and other uses

Also Published As

Publication number Publication date
JPWO2007061032A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US5188899A (en) Silica-core silicone-shell particles, emulsion containing the same dispersed therein, and process for producing the emulsion
US4618645A (en) Method of producing aqueous latex of crosslinked polydiorganosiloxane
JP5546384B2 (en) Polyorganosiloxane-containing graft copolymer, resin composition containing the same, and method for producing polyorganosiloxane emulsion
Xu et al. Bio-based core–shell casein-based silica nano-composite latex by double-in situ polymerization: Synthesis, characterization and mechanism
JPS6116927A (en) Manufacture of polydiorganosiloxane aqueous latex
JPH0324160A (en) Water dispersed liquid based on functidnal silicon oil capable of cross-linking elastomer
JP2010265410A (en) Led sealing agent
CN106432728B (en) A kind of pheiiyldimetliyl siloxy cage-type silsesquioxane silicone rubber crosslinking agent and preparation method thereof
JPH1036675A (en) Silicone emulsion composition and production of silicone powder therefrom
CN110511385A (en) A kind of polysiloxanes/polysilsesquioxane core-shell emulsion and preparation method thereof
WO2007061032A1 (en) Deformed silicone particle and process for production thereof
JPH04154861A (en) Resin composition
JP2006291122A (en) Method for producing functional group-containing diorganopolysiloxane emulsion
JP2992592B2 (en) Emulsion type silicone composition and method for producing silicone fine particles
JP3724554B2 (en) Method for producing organopolysiloxane emulsion
JP2012214340A (en) Method for producing silica particle
JP3154539B2 (en) Method for producing silicone rubber latex
JP2000264968A (en) Production of polyorganosiloxane-based latex
US20110201751A1 (en) Film Forming Silicone Emulsions
JP5341357B2 (en) Hollow silicone fine particles with controlled particle size and porosity distribution and method for producing the same
JP3124539B2 (en) Curable silicone emulsion composition
JP2004099351A (en) Surface treating agent for artificial marble filler
TW200523212A (en) Method for preparing a silica suspension in an optionally crosslinkable silicone material
CN107858034A (en) A kind of solvent based coating hydrophilic additive and preparation method thereof
JP2006117868A (en) Organopolysiloxane emulsion and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007546493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833200

Country of ref document: EP

Kind code of ref document: A1