WO2007055017A1 - Composite and process for producing the same - Google Patents

Composite and process for producing the same Download PDF

Info

Publication number
WO2007055017A1
WO2007055017A1 PCT/JP2005/020739 JP2005020739W WO2007055017A1 WO 2007055017 A1 WO2007055017 A1 WO 2007055017A1 JP 2005020739 W JP2005020739 W JP 2005020739W WO 2007055017 A1 WO2007055017 A1 WO 2007055017A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
composite material
fibers
thermoplastic resin
Prior art date
Application number
PCT/JP2005/020739
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Hatano
Akira Takayasu
Shinji Kanematsu
Shoichi Wakatake
Original Assignee
Takayasu Co., Ltd.
Du Pont-Toray Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takayasu Co., Ltd., Du Pont-Toray Company, Ltd. filed Critical Takayasu Co., Ltd.
Priority to PCT/JP2005/020739 priority Critical patent/WO2007055017A1/en
Publication of WO2007055017A1 publication Critical patent/WO2007055017A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers

Definitions

  • the present invention relates to a composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, a method for producing the same, and a molded body using the composite material.
  • Plastic composite materials composed of fiber reinforcements and matrix resins are lighter, more diverse, and have made remarkable progress compared to metal composite materials and ceramic composite materials. Molded products such as machinery, precision machinery, electrical / electronic equipment, building materials, vehicle parts / members, OA equipment, AV equipment, daily goods, sports equipment, medical equipment, aircraft, space equipment parts / members, etc. It is used.
  • inorganic fibers such as glass fibers and carbon fibers and organic fibers such as aramid fibers are mainly used because of their high strength, high elastic modulus, and excellent heat resistance.
  • Organic fibers have low specific gravity and light weight, and para-aramid fibers have the mechanical properties of high strength and high modulus in tensile properties among synthetic fibers, as well as heat resistance, dimensional stability, and chemical resistance. It is also used as a reinforcing material for plastic composite materials.
  • the matrix resin has excellent properties such as high strength, high elastic modulus, elongation at break, and excellent mechanical and environmental durability. It is required to have good formability with good affinity.
  • thermosetting resins such as epoxy resins and unsaturated polyester resins are widely used, and it has excellent mechanical properties, heat resistance, chemical resistance, etc., which have good moldability and adhesion to reinforcing fibers. ing.
  • thermosetting resins there is a limit to the time that they can be used and working because of the curing life of the resin, and because it involves a curing reaction, it is melted again and processed unlike thermoplastic resins that take a long time to mold. Is that you can't.
  • thermoplastic resin that has better moldability and impact resistance than thermosetting resins, and is excellent in fatigue, heat resistance, and chemical resistance, and can be re-melted after use.
  • Thermoplastic resin and matrix High performance composite materials have been put into practical use.
  • thermosetting resin Unlike a thermosetting resin, the production of a thermoplastic resin composite material is completed in steps of heating and melting without a curing reaction, pressurizing and compressing, shaping, and cooling.
  • a pre-predder is made by a method of impregnating resin into reinforcing fibers, or by adhering resin powder, and the matrix resin is softened or melted by heating the pre-predder using a mold or the like. At the same time, it is pressurized and compressed to form a predetermined shape and solidify by cooling.
  • Specific methods include (1) a method in which a resin is heated and melted and impregnated into a fiber (melt impregnation method), and (2) the resin is powdered and applied to the fiber by a fluidized bed method or a suspension method. (Powder method), and (3) a method of dissolving a resin and removing the solvent after impregnating the fiber (solution impregnation method).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-209034 proposes to use a tow made of an intimate blend of a matrix polymer spun fiber and a reinforcing fiber (Patent Document 1).
  • JP-A-61-130345 describes a yarn containing a mixture of continuous single fibers of PPS and continuous single fibers of a reinforcing material (Patent Document 2).
  • inorganic fibers such as glass fibers and carbon fibers are mainly used as reinforcing fibers, and the obtained molded product has anisotropy and warpage.
  • organic fibers such as aramid fibers instead of these, but the adhesion and impregnation between the organic fibers and the resin are insufficient, and the fiber is released from the resin during molding, particularly during pellet production.
  • Patent Document 1 JP-A-60-209034
  • Patent Document 2 JP-A-61-130345
  • Patent Document 3 Japanese Patent Laid-Open No. 2-112427
  • Patent Document 4 JP-A-6-107808
  • Patent Document 5 Japanese Patent Laid-Open No. 6-294033
  • the present invention is a lightweight, high strength, high elastic modulus, excellent in dimensional accuracy, heat resistance, wear resistance, impact resistance, and excellent in moldability and recyclability.
  • An object is to provide a reinforced thermoplastic resin composite material, a method for producing the same, and a molded body using the composite material.
  • the present inventors have found that a short fiber made of an organic fiber and a short fiber manufactured from a thermoplastic resin having high strength and excellent heat resistance and wear resistance.
  • the composite material in which the blended yarns are integrated by heating has been found to have excellent dimensional accuracy, heat resistance, wear resistance, and impact resistance, and the present invention has been completed. .
  • the present invention is as follows.
  • a composite material produced by heating a blended yarn to a temperature not lower than the melting point of the thermoplastic resin 2)
  • the ratio of the shrinkage ratio in the flow direction of the molded product to the shrinkage ratio in the direction perpendicular to the flow direction is in the range of 0.7 to 0.9, and the tensile strength in the flow direction of the molded product and the tensile strength in the direction perpendicular to the flow direction.
  • Total aromatic polyamide fiber strength S the composite material according to 3), which is at least one selected from polyparaphenylene terephthalamide fiber and copolyparaphenylene terephthalate 3,4'-oxydiphenylene terephthalamide fiber,
  • thermoplastic resin is polyester resin, polyamide resin, polyphenylene sulfide resin, polyolefin resin, polycarbonate resin, polyoxymethylene resin, polyether ketone resin, polyimide resin, phenol resin, fluororesin and liquid crystal resin and their
  • the invention's effect [0014] it is lightweight, excellent in heat resistance, wear resistance, impact resistance, flame retardancy, and electrical properties, and has good impregnation between fibers and thermoplastic resin, and is dimensionally stable.
  • An excellent composite material can be obtained.
  • the composite material does not use a solvent during molding, it has excellent working environment characteristics, and since it is thermoplastic, it has good moldability, and it can be reused by heating and melting, so it has excellent recyclability. . Therefore, by using the composite material, it is possible to easily obtain a molded article excellent in dimensional stability, heat resistance, wear resistance, impact resistance, and durability, and to easily recycle the force. Best form for carrying out the invention
  • the composite material of the present invention is a composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, wherein the short fibers made of the organic fibers and the short fibers made of the thermoplastic resin are mixed.
  • organic fibers that serve as the reinforcing material used in the present invention as long as they can exhibit desired strength, elastic modulus, and the like according to the purpose.
  • Organic fibers may be used alone or in combination of two or more.
  • the tensile strength is 7.5 cNZdtex or more, more preferably lOcNZdtex or more, particularly preferably 15 cNZdtex or more.
  • the tensile strength of the organic fiber is particularly preferably in the range of 15 to 48 cN / dtex. If the tensile strength is less than 7.5 cN / dtex, the matrix resin is not strengthened, and if it exceeds 48 cN / dtex, it is difficult to obtain from the plant.
  • the “tensile strength” is obtained by measuring according to ASTM D638.
  • the organic fiber has the above-described tensile strength and has a tensile modulus of 440 to 3, OOOcN / dtex.
  • the tensile modulus is particularly preferably in the range of 440 to 2,500 cN / dtex.
  • the single fiber fineness of the organic fiber is not particularly limited, but from the viewpoint of efficient spinning processability, usually 0.1 to 30. Odtex is used. Preferably ⁇ is 0.3 to 10. Odtex, more preferably 0.5 to 6. Odtex.
  • Specific examples of the organic fibers used in the present invention include, for example, heteroaromatic fibers such as polyparaphenylene benzobisoxazole fibers (PBO fibers), wholly aromatic polyester fibers, aramid fibers (total Aromatic polyamide fiber) and the like. These organic fibers are appropriately selected according to the use of the final product, the required performance, the production cost of the fiber or the processing cost of the product.
  • aramid fibers are particularly preferred because they are excellent in heat resistance and abrasion resistance, which are preferred by aramid fibers, wholly aromatic polyester fibers, and heterocyclic aromatic fibers.
  • Metal-mesh yarns obtained by applying metal-mesh to aramid fiber can also be used, and it is suitable for electrical and electronic parts that require electromagnetic shielding. Examples of metallic metals include copper, nickel, tin, gold, and silver.
  • the aramid fiber is not particularly limited as long as it is a fiber having at least one divalent aromatic group which may be usually substituted and having at least one amide bond. It may be a known material called a wholly aromatic polyamide fiber or aramid fiber.
  • an optionally substituted divalent aromatic group means a divalent aromatic group which may have one or more substituents which are the same or different (the same applies hereinafter). .
  • the aramid fiber includes a para aramid fiber and a meta aramid fiber, both of which are preferably used in the present invention, a force S, a high heat resistance and a high strength with less heat shrinkage.
  • para-aramide fibers include polyparaphenylene terephthalamide fibers (DuPont, USA, manufactured by Toray DuPont, trade name “KEVLARJ (registered trademark)), copolyparaphenylene-1,3,4,1oxydiphenylene terephthale Commercial products such as taramide fiber (manufactured by Teijin Techno Products Co., Ltd., trade name “Technola” (registered trademark)) can be used.
  • meta-aramide fiber for example, a commercially available product such as polymetaphenylene terephthalamide fiber (made by DuPont, USA, trade name “N0MEX” (registered trademark)) can be used.
  • the aramid fiber described above may be produced by a known method or a method analogous thereto.
  • the aramid fiber one having a film former, a silane coupling agent and a surfactant added to the fiber surface and inside the fiber can also be used.
  • adhesion is improved as well as adhesion, and voids are suppressed, and the strength, durability, impact resistance and the like of the composite material are improved.
  • the surface treatment agent aramid The solid adhesion amount to the fiber is desirably in the range of 0.01 to 20% by mass.
  • the film former a highly functional film former such as urethane or epoxy, which is used as a fiber surface treatment agent for composite materials, a starch, polybulol alcohol, acrylic, etc. And emulsion type oligomers dispersed in water, such as film formers.
  • silane coupling agents include conventionally used aminopropyltriethoxysilane, phenylaminopropyltrimethoxysilane, glycidylpropyltriethoxysilane, methacryloxypropyltrimethoxysilane, and butyltriethoxysilane. And a compound represented by the following general formula (1).
  • R in the formula (1) is an organic group that reacts or interacts strongly with the resin.
  • surfactant those that positively permeate the silane coupling agent and the film former into the crystalline fiber structure are used.
  • dimethylaminopropylalkylamidojetyl sulfate is preferred as a cationic surfactant.
  • the wholly aromatic polyester fiber described above is a fiber that is usually substituted and may have at least one divalent aromatic group and at least one ester bond. Anything can be used, and the present invention is not particularly limited.
  • the fully aromatic polyester fiber may be a known fiber called a wholly aromatic polyester fiber.
  • a wholly aromatic polyester fiber For example, a self-condensed polymer of parahydroxybenzoic acid, a polyester composed of terephthalic acid and hydroquinone, or parahydroxybenzoic acid. Examples include acid and 6-hydroxy-1,2-naphthoic acid, polyester fiber and the like. You may use what manufactured such a wholly aromatic polyester fiber by the well-known method or the method according to it.
  • a commercial product such as a trade name “Vectran” (manufactured by Kuraray Co., Ltd.) can be used.
  • the heterocyclic aromatic fiber described above may be any fiber that has at least one divalent aromatic heterocyclic group that may be substituted.
  • “optionally substituted divalent aromatic heterocyclic group” means a divalent aromatic heterocyclic group which may have one or more substituents which are the same or different.
  • a “divalent aromatic heterocyclic group” for example, as an atom (ring atom) constituting a ring system, at least one or four heteroatoms selected from an oxygen atom, a sulfur atom, a nitrogen atom and the like are the same or different. And an aromatic heterocyclic group having one.
  • Heterocyclic aromatic fiber may be a known fiber called heterocyclic aromatic fiber, for example, polyparaphenylene benzobisthiazole fiber, polyparaphenylene benzobisoxazole fiber (PB 0 fiber) Or polybens imidazole fiber etc. are mentioned. You may use what manufactured such a heterocyclic aromatic fiber by the well-known method or the method according to it.
  • PB 0 fiber polyparaphenylene benzobisoxazole fiber
  • the heterocyclic aromatic fiber for example, a commercially available PB0 fiber (trade name “Zylon”, manufactured by Toyobo Co., Ltd.) can be used.
  • thermoplastic resin used as the matrix used in the present invention is not particularly limited in the present invention as long as it is a resin that is not cured by heating.
  • polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; methacrylic resins such as polymethyl methacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin; polyethylene terephthalate (PET) resin
  • PET polyethylene terephthalate
  • Polyester resins such as polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexinoresidene methylene terephthalate (PCT) resin; 6-nylon resin, 6, 6—Polyamide (PA) resin such as nylon resin; Poly salt vinyl resin, Polyoxymethylene (POM) resin, Polycarbonate (PC) resin, Polyphenylene sulfide (PPS) resin
  • polyester (PET, PBT, PCT) resin polyamide (PA) resin, polyolefin resin, polyoxymethylene (POM) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, Polyether ketone (PEK) resin, polyimide (PI) resin, phenol resin, fluorine (F) resin, and liquid crystal resin are preferable.
  • thermoplastic resin fiber used in the present invention is not limited as long as it is produced from the thermoplastic resin as a matrix, and is produced according to a known method such as wet spinning, dry spinning or melt spinning. Can be used.
  • the thermoplastic resin fibers may be used alone or in combination of two or more.
  • the single fiber fineness is not particularly limited, but usually 0.:! To 30. Odtex. Preferably 0.3 to: 10. Odtex, more preferably 0.5 to 5. Odtex. It is also possible to use recycled products made from raw yarn, raw cotton and fiber products, and recycled products using scraps generated in the processing process.
  • the proportion of organic fibers in the composite material varies depending on the required performance of the final product, the production cost of the material, etc., but preferably 30% by mass in the entire composite material. A range of -80%, more preferably 40-60% is suitable. If the organic fiber content is less than 30% by mass, the composite material lacks rigidity and the molding shrinkage ratio increases. On the other hand, if it exceeds 80% by mass, the fluidity at the time of molding deteriorates, and a good molded product cannot be obtained.
  • various additives, modifiers, and the like may be blended in the thermoplastic resin as long as the object of the present invention is not impaired.
  • the additives include heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, dyes, fatty acid esters, organic lubricants such as waxes, and the like.
  • you may contain surfactant.
  • a compatibilizing agent may be blended in order to improve the adhesion between the organic fiber and the thermoplastic resin as long as the object of the present invention is not impaired.
  • various fillers can be blended in the composite material as desired to give desirable characteristics.
  • the ratio of the shrinkage rate in the flow direction of the molded product to the shrinkage rate in the direction perpendicular to the flow direction is preferably in the range of 0.7 to 0.9.
  • the ratio of the shrinkage between the two is this If it is out of the range, defects such as warpage occur at the time of molding, and it is difficult to obtain a molded product having a desired dimensional accuracy, and the molded product lacks the dimensional stability and has a deformation force S.
  • the ratio of the tensile strength in the flow direction of the molded product and the tensile strength in the direction perpendicular to the flow direction is preferably in the range of 0.6 to 0.9. If the shrinkage rate in both directions and the anisotropy of the tensile strength are large, it is not preferable because inconvenience is likely to occur during molding and subsequent use.
  • the flame retardancy can be improved by further blending a triazine compound.
  • triazine compounds include melamine, melam, melon, succinoguanamine, ethylene dimerane, triguanamine, tris (j3-cyanoethyl) isocyanurate, benzoguanamine, and acetateguanamine.
  • the amount of triazine compound added is 5 to 30 parts by weight, preferably 8 to 25 parts by weight, and more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the composite material.
  • the composite material of the present invention has a blended yarn obtained by mixing and spinning the short fiber of the organic fiber and the short fiber made of the thermoplastic resin at a temperature equal to or higher than the melting point of the thermoplastic resin. Manufactured by heating.
  • short fibers made of organic fibers and thermoplastic resins any of those produced by a conventionally known method from one or more of the above-mentioned fibers or resins can be used as appropriate.
  • the filament can be cut to a suitable length or checked.
  • recovered cotton recovered from used work gloves can be used.
  • recovered cotton from work gloves widely used in the automobile industry, such as aramid gloves has been conventionally difficult to apply and has been discarded by means of incineration, but it is effective in the present invention. Can be used.
  • the blended yarn obtained by mixing and spinning the short fibers is melted.
  • organic fibers and thermoplastic fibers can be uniformly dispersed, and a composite material with good adhesion between the organic fibers and the matrix resin can be obtained.
  • the short fiber a fiber having an average fiber length of 20 to about 150 mm is preferable.
  • the method for mixing the short fibers is not limited.
  • the short fiber masses to be prepared are arranged alternately on a 5 to 8 m horizontal lattice (conveyor that joins the board of the Itoda width in a saw-like pattern).
  • Bale openers and Examples of the method include feeding to a hopper bale breaker and performing cotton opening and mixing. An apparatus that performs this series of operations is referred to as a blender.
  • the spinning method may be any method such as a ring cotton spinning method, an eyelash method, a spinning method, a special spinning method, various open end spinning methods, etc., in that a relatively thick spun yarn can be obtained.
  • the spinning method and the special spinning method are preferred.
  • the special spinning method is similar to the spinning method, and is a method that goes through a blending (mixing) process, a card process, and a spinning process.
  • the number of twists of the blended yarn in the spinning process is preferably 500 to 11000, more preferably 6000 to 10,000, and even more preferably 6500 to 8,500, as the twist coefficient k represented by the following formula. If k is less than 5000, the yarn will break during the process of winding up the blended yarn with sufficient tensile strength or supplying it to the thermal melting process. On the other hand, if k exceeds 11000, the twist is too strong, causing a strong snarl or kink) to occur in the blended yarn, which causes problems such as winding the blended yarn around the guides when passing through the above process. Bring
  • the thickness of the blended yarn may be any thickness as long as it does not interfere with the passability of the process, but is desirably 100 to 10,000 dtex force S, and more desirably 1000 to 5000 dtex. If it is less than lOOdtex, the productivity will be low. If it exceeds lOOOOdtex, it will exceed the appropriate thickness of the existing spinning equipment in mixed spinning, which will impede the passage of the process.
  • the blended yarn obtained in this manner is led to a heating zone heated to a temperature at which the thermoplastic resin melts, heated to a temperature at which the thermoplastic resin melts, and then led to a cooling zone to melt the melted heat.
  • a cross-sectional structure is obtained that has a sea-island structure in which the organic fibers are islands and the thermoplastic resin is the sea.
  • the obtained gut is cut with a cutting machine such as a pelletizer or a cutter to obtain a pellet-shaped composite material composed of organic fibers and a thermoplastic resin. In addition, you may pressurize at the time of melt heating.
  • the composite material of the present invention is in the form of pellets, chopped strands or granules and has a minor axis of 0.:! When the length is 5 mm and the major axis is 0.3 to 10 mm, it is suitable for injection molding, extrusion molding, blow molding and film molding.
  • thermoplastic resin melts between the organic fibers as the reinforcing material, and the thermoplastic resin is well impregnated, and there is almost no unimpregnated region. A composite material is easily formed.
  • the blended yarn obtained by the above method is supplied to a cross die together with a molten thermoplastic resin in a twin-screw extruder, and the periphery of the blended yarn is made of a thermoplastic resin by a pultrusion method.
  • a covered gut can also be obtained. In this gut, the fibers of the thermoplastic resin constituting the blended yarn are melted by the heat of the molten thermoplastic resin, and the entire gut has a sea-island structure.
  • thermoplastic fibers can be used as the fibers made of the thermoplastic resin constituting the blended yarn.
  • blended fluorine fibers are used as a small proportion of the fibers. Then, slidability can be imparted to the molded product.
  • the mixed spun yarn can be used as a composite material by being molded into a pellet as it is as described above.
  • the mixed spun yarn is woven or knitted into a woven fabric, a knitted fabric, or a laminated fabric. In combination with these, thermoplastic films and nonwoven fabrics can be combined to produce a molded product.
  • the composite material of the present invention can be formed into various molded products by molding and processing by applying a known method or the like.
  • the molded body of the composite material according to the present invention can be used as a reinforcing material for all applications requiring heat resistance, wear resistance, and impact resistance.
  • mechanical elements for reinforcement, friction 'sliding, automobiles, ships, etc. plates, bearings, gears, cams, pipes, rods, bushes, washers, guides, pulleys, forcing, insulators , Rods, bearing retainers, etc., electrical 'electronic parts, connectors, plugs, arms, sockets, caps, rotors, motor parts, etc., AV' OA equipment parts, speaker cones, housings, bearings, rods, guides, gears, etc.
  • the composite material of the present invention uses organic fibers that are softer than inorganic fibers and short fibers as reinforcing materials, the fiber material retains a large fiber length against shearing even during recycling. Excellent recyclability with little reduction in strength.
  • Short fiber thickness 1 ⁇ 7dtex, para-aramid fiber short fiber with a fiber length of 51mm (KEVLAR (R) (registered trademark), manufactured by Toray DuPont Co., Ltd.) 50% by mass and commercially available short fiber thickness 2.2dtex, fiber A spun yarn was obtained by introducing 50% by mass of nylon 6 short fiber with a length of 75 mm into a special spinning process. That is, after mixing with a compounding machine, forming a sliver (sliver) through a carding process and scraping it, add 170 times / m twist (twisting coefficient k 760 2) with a ring spinning machine. A 2000dtex spun yarn was produced.
  • KEVLAR (R) registered trademark
  • the obtained spun yarn is passed through a heating zone heated to 270 ° C, and the nylon 6 is melted and guided to the cooling zone.
  • the nylon 6 is solidified to form a gut, which is made into a 3mm length.
  • To obtain composite pellets. Using the obtained pellets, the physical properties shown in Table 1, such as tensile strength and shrinkage ratio, were measured. The results are shown in Table 1.
  • the pellets of the present invention both have a tensile strength ratio and a shrinkage ratio in the direction perpendicular to the flow direction, both of which are close to 1, and less anisotropic than the material of Comparative Example 1. It was a thing.
  • Shrinkage Using an injection molding machine (IS-80), a square plate with a thickness of 3 mm and 80 mm x 80 mm was formed, and the shrinkage was measured.
  • Example 1 The same Kepler fiber used in Example 1 was used instead of the glass fiber in the same manner as in Comparative Example 1, but the Kepler fiber was set in a cotton-like shape and clogged in the hopper of the extruder. Of pellets could not be obtained.
  • a composite material pellet was obtained in the same manner as in Example 1, except that nylon 66 was used instead of nylon 6 in Example 1.
  • the pellets of the present invention containing a triazine compound both have a ratio of tensile strength in the direction perpendicular to the flow direction and a ratio of shrinkage ratio of 1 and In addition, it has excellent tracking resistance and flame retardancy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A fiber-reinforced thermoplastic resin composite material which is lightweight, has high strength and high modulus, gives molded articles having satisfactory dimensional accuracy, is excellent in heat resistance, wearing resistance, impact resistance, and flame retardancy, has satisfactory impregnability, and is excellent in moldability and suitability for recycling; and a molding comprising the composite material. The composite material is one comprising organic fibers as a reinforcement and a thermoplastic resin as a matrix, and is characterized by being produced by blending short fibers as the organic fibers with short fibers comprising the thermoplastic resin and heating the resulting fiber blend to at least the melting point of the thermoplastic resin.

Description

明 細 書  Specification
複合体及びその製造方法  Composite and production method thereof
技術分野  Technical field
[0001] 本発明は、有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする複合材料およ びその製造方法、ならびに該複合材料を用いた成形体に関する。  The present invention relates to a composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, a method for producing the same, and a molded body using the composite material.
背景技術  Background art
[0002] 繊維強化材とマトリックス樹脂からなるプラスチック系複合材料は、金属系複合材料 やセラミックス系複合材料に比べ、軽量で、多種多様な材料で、進展も目覚しい材料 である。成形体等として機械、精密機械、電気 ·電子機器、建築資材、車両用部品 · 部材、 OA機器、 AV機器、 日用雑貨、スポーツ用品、医療器具、航空機、宇宙用機 器部品 ·部材などに利用されてレ、る。  [0002] Plastic composite materials composed of fiber reinforcements and matrix resins are lighter, more diverse, and have made remarkable progress compared to metal composite materials and ceramic composite materials. Molded products such as machinery, precision machinery, electrical / electronic equipment, building materials, vehicle parts / members, OA equipment, AV equipment, daily goods, sports equipment, medical equipment, aircraft, space equipment parts / members, etc. It is used.
[0003] プラスチック系複合材料の強化繊維としては、高強度、高弾性率で耐熱性に優れる 点より、ガラス繊維、炭素繊維などの無機繊維や、ァラミド繊維などの有機繊維が主 に使用されている。有機繊維は比重も小さく軽量であり、パラ系ァラミド繊維は合成繊 維の中では引張り特性において高強度と高弾性率という機械的特性のほかに、耐熱 性、寸法安定性、耐ィ匕学薬品性などの特性も有しているため、プラスチック系複合材 料の強化材として利用されている。  [0003] As reinforcing fibers for plastic composite materials, inorganic fibers such as glass fibers and carbon fibers and organic fibers such as aramid fibers are mainly used because of their high strength, high elastic modulus, and excellent heat resistance. Yes. Organic fibers have low specific gravity and light weight, and para-aramid fibers have the mechanical properties of high strength and high modulus in tensile properties among synthetic fibers, as well as heat resistance, dimensional stability, and chemical resistance. It is also used as a reinforcing material for plastic composite materials.
[0004] 一方、マトリックス樹脂は、高強度、高弾性率、破断時の伸びなどの特性が優れて レ、ること、力学的、環境的な耐久性にも優れていること、強化材との親和性がよぐ成 形性が優れていることなどが求められる。マトリックス樹脂には、エポキシ樹脂ゃ不飽 和ポリエステル樹脂など熱硬化性樹脂が広く使用されており、成形性や強化繊維と の接着性がよぐ機械的特性や耐熱性、耐薬品性などが優れている。しかしながら、 熱硬化性樹脂で特に問題なのは、樹脂の硬化寿命のため、使用し作業できる時間 に制限があり、硬化反応を伴うため、成形時間が長ぐ熱可塑性樹脂とは異なり再び 溶融化して加工することができないという点である。従って、熱硬化性樹脂に比べて 成形性も良好で耐衝撃性にも優れた熱可塑性樹脂を利用し、疲労性や耐熱性、耐 薬品性などにも優れ、使用済み後に再溶融化可能な、熱可塑性樹脂をマトリックスと する高性能の複合材料が実用化されてきている。 [0004] On the other hand, the matrix resin has excellent properties such as high strength, high elastic modulus, elongation at break, and excellent mechanical and environmental durability. It is required to have good formability with good affinity. As the matrix resin, thermosetting resins such as epoxy resins and unsaturated polyester resins are widely used, and it has excellent mechanical properties, heat resistance, chemical resistance, etc., which have good moldability and adhesion to reinforcing fibers. ing. However, what is particularly problematic with thermosetting resins is that there is a limit to the time that they can be used and working because of the curing life of the resin, and because it involves a curing reaction, it is melted again and processed unlike thermoplastic resins that take a long time to mold. Is that you can't. Therefore, it uses a thermoplastic resin that has better moldability and impact resistance than thermosetting resins, and is excellent in fatigue, heat resistance, and chemical resistance, and can be re-melted after use. , Thermoplastic resin and matrix High performance composite materials have been put into practical use.
[0005] 熱可塑性樹脂複合材料の製造は、熱硬化性樹脂と異なり、硬化反応を伴うことなく 加熱し溶融した後、加圧、圧縮して賦形、冷却というステップで完了する。しかし、以 下のような方法も提案されている。すなわち、強化繊維に樹脂を含浸させる力、、ある いは樹脂粉体を付着させるなどの方法によりプリプレダをつくり、プリプレダを金型な どを利用して加熱してマトリックス樹脂を軟ィ匕あるいは溶融し、同時に加圧圧縮して 所定の形状に賦形し冷却固化させる。  [0005] Unlike a thermosetting resin, the production of a thermoplastic resin composite material is completed in steps of heating and melting without a curing reaction, pressurizing and compressing, shaping, and cooling. However, the following methods have also been proposed. In other words, a pre-predder is made by a method of impregnating resin into reinforcing fibers, or by adhering resin powder, and the matrix resin is softened or melted by heating the pre-predder using a mold or the like. At the same time, it is pressurized and compressed to form a predetermined shape and solidify by cooling.
[0006] 具体的な方法としては、(1)樹脂を加熱溶融し繊維に含浸させる方法 (溶融含浸法) 、(2)樹脂をパウダー化し流動床法や懸濁法によって繊維に塗布 *融着させる方法( パウダー法)、(3)樹脂を溶液化し、繊維に含浸後溶媒を除去する方法 (溶液含浸法) などがある。  [0006] Specific methods include (1) a method in which a resin is heated and melted and impregnated into a fiber (melt impregnation method), and (2) the resin is powdered and applied to the fiber by a fluidized bed method or a suspension method. (Powder method), and (3) a method of dissolving a resin and removing the solvent after impregnating the fiber (solution impregnation method).
[0007] 強化繊維にマトリックス樹脂を含浸させる方法として、強化繊維とマトリックス樹脂か らなる繊維とを混成し、得られた混成繊維をマトリックス樹脂の融点以上に加熱する 方法が知られている。例えば特開昭 60— 209034号公報には、マトリックスポリマー の紡糸繊維と強化用繊維との緊密ブレンドからなるトウをフィラメント卷き用に用いるこ とが提案されている(特許文献 1)。また、特開昭 61— 130345号公報には、 PPSの 連続単繊維と強化材料の連続単繊維を混成して含むヤーンが記載されてレ、る(特許 文献 2)。  [0007] As a method for impregnating a reinforcing fiber with a matrix resin, a method is known in which a reinforcing fiber and a fiber made of a matrix resin are mixed, and the resulting mixed fiber is heated to a temperature higher than the melting point of the matrix resin. For example, Japanese Patent Application Laid-Open No. 60-209034 proposes to use a tow made of an intimate blend of a matrix polymer spun fiber and a reinforcing fiber (Patent Document 1). JP-A-61-130345 describes a yarn containing a mixture of continuous single fibers of PPS and continuous single fibers of a reinforcing material (Patent Document 2).
[0008] しかし、連続繊維、特に単繊維を使用すると、長手方向のマトリックス斑や含浸不足 が生じやすい欠点があり、これを解消するため、裂断または牽切した不連続の繊維を 混紡または混繊した糸を用いることが提案された。例えば、特開平 2— 112427号公 報には、強化用繊維とマトリックス繊維とをそれぞれ延伸により裂断した後混合して紡 績した混紡糸が記載されている(特許文献 3)。また、特開平 6— 107808号公報、特 開平 6— 294033号公報等には、共に無撚り、かつ非連続のマトリックス繊維と強化 用繊維からなる混繊糸を同種の連続マトリックス繊維で捲回被覆した混繊糸が提案 されている(特許文献 4, 5)。  [0008] However, when continuous fibers, particularly single fibers, are used, there are drawbacks in that longitudinal matrix spots and insufficient impregnation tend to occur. In order to eliminate this, blended or mixed discontinuous fibers that have been cut or checked are used. It has been proposed to use fine yarn. For example, Japanese Laid-Open Patent Publication No. 2-112427 describes a blended yarn obtained by splitting reinforcing fibers and matrix fibers by stretching and then mixing and spinning (Patent Document 3). Also, JP-A-6-107808, JP-A-6-294033, etc. are both non-twisted, and a mixed yarn composed of discontinuous matrix fibers and reinforcing fibers is wound with the same kind of continuous matrix fibers. Mixed fiber yarns have been proposed (Patent Documents 4 and 5).
[0009] し力 ながら、これらの方法においては、強化繊維としては主としてガラス繊維や炭 素繊維などの無機繊維が用いられており、得られる成形品は異方性があり、そりがみ られるなど成形寸法精度に欠ける欠点がある。そこで、これらに代えてァラミド繊維な どの有機繊維を用いることが考えられるが、有機繊維と樹脂との密着性、含浸性が不 足し、成形時、特に、ペレット製造時に繊維が樹脂から遊離する問題を生じる。 [0009] However, in these methods, inorganic fibers such as glass fibers and carbon fibers are mainly used as reinforcing fibers, and the obtained molded product has anisotropy and warpage. There is a drawback that molding dimensional accuracy is lacking. Therefore, it is conceivable to use organic fibers such as aramid fibers instead of these, but the adhesion and impregnation between the organic fibers and the resin are insufficient, and the fiber is released from the resin during molding, particularly during pellet production. Produce.
[0010] このように、有機繊維と樹脂との親和性あるいは接着性が良好で、含浸性に優れ、 寸法精度がよぐ耐衝撃性、耐熱性、耐摩耗性、樹脂リサイクル性が良好で、しかも 成形加工性に優れた熱可塑性樹脂の複合材料は得られていないのが実状である。 特許文献 1 :特開昭 60— 209034号公報  [0010] Thus, the affinity or adhesion between the organic fiber and the resin is good, the impregnation property is excellent, the dimensional accuracy is good, and the impact resistance, heat resistance, wear resistance, resin recyclability are good, Moreover, the fact is that a thermoplastic resin composite material excellent in molding processability has not been obtained. Patent Document 1: JP-A-60-209034
特許文献 2:特開昭 61— 130345号公報  Patent Document 2: JP-A-61-130345
特許文献 3:特開平 2— 112427号公報  Patent Document 3: Japanese Patent Laid-Open No. 2-112427
特許文献 4:特開平 6— 107808号公報  Patent Document 4: JP-A-6-107808
特許文献 5:特開平 6— 294033号公報  Patent Document 5: Japanese Patent Laid-Open No. 6-294033
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、軽量、かつ高強度、高弾性率で、寸法精度、耐熱性、耐摩耗性、耐衝 撃性にも優れ、含浸性がよぐ成形性やリサイクル性に優れた繊維補強熱可塑性樹 脂複合材料及びその製造方法、ならびに該複合材料を用いた成形体を提供するこ とを目的とする。 [0011] The present invention is a lightweight, high strength, high elastic modulus, excellent in dimensional accuracy, heat resistance, wear resistance, impact resistance, and excellent in moldability and recyclability. An object is to provide a reinforced thermoplastic resin composite material, a method for producing the same, and a molded body using the composite material.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者らは、上記目的を達成すべく鋭意検討した結果、高強度で、耐熱性、耐 摩耗性に優れた有機繊維の短繊維と熱可塑性樹脂から製造された短繊維との混紡 糸が加熱によって一体化されている複合材料が、マトリックス樹脂の含浸性がよぐ寸 法精度、耐熱性、耐摩耗性、耐衝撃性に優れることを見出し、本発明を完成するに 至った。 [0012] As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that a short fiber made of an organic fiber and a short fiber manufactured from a thermoplastic resin having high strength and excellent heat resistance and wear resistance. The composite material in which the blended yarns are integrated by heating has been found to have excellent dimensional accuracy, heat resistance, wear resistance, and impact resistance, and the present invention has been completed. .
[0013] すなわち、本発明は下記のとおりである。  [0013] That is, the present invention is as follows.
1)有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする複合材料であって、前 記有機繊維の短繊維と前記熱可塑性樹脂よりなる短繊維とを混合して紡績して得ら れた混紡糸を前記熱可塑性樹脂の融点以上の温度に加熱することにより製造したこ とを特徴とする複合材料、 2)成形品の流れ方向の収縮率と流れ方向と直角方向の収縮率の比が 0. 7〜0. 9 の範囲にあり、成形品流れ方向の引張り強度と流れ方向と直角方向の引張り強度の 比が 0. 6〜0. 9の範囲にある前記 1)に記載の複合材料、 1) A composite material using organic fiber as a reinforcing material and thermoplastic resin as a matrix, and obtained by mixing and spinning the organic fiber short fiber and the short fiber made of the thermoplastic resin. A composite material produced by heating a blended yarn to a temperature not lower than the melting point of the thermoplastic resin, 2) The ratio of the shrinkage ratio in the flow direction of the molded product to the shrinkage ratio in the direction perpendicular to the flow direction is in the range of 0.7 to 0.9, and the tensile strength in the flow direction of the molded product and the tensile strength in the direction perpendicular to the flow direction. The composite material according to 1), wherein the ratio is in the range of 0.6 to 0.9,
3)有機繊維が、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維及びへテロ環 芳香族繊維から選ばれる少なくとも一種である前記 1)または 2)に記載の複合材料、 3) The composite material according to 1) or 2), wherein the organic fiber is at least one selected from wholly aromatic polyamide fiber, wholly aromatic polyester fiber, and heteroaromatic fiber,
4)全芳香族ポリアミド繊維力 S、ポリパラフエ二レンテレフタルアミド繊維及びコポリパラ フエ二レン一 3, 4'—ォキシジフエ二レンテレフタルアミド繊維から選ばれる少なくとも 一種である前記 3)に記載の複合材料、 4) Total aromatic polyamide fiber strength S, the composite material according to 3), which is at least one selected from polyparaphenylene terephthalamide fiber and copolyparaphenylene terephthalate 3,4'-oxydiphenylene terephthalamide fiber,
5)全芳香族ポリアミド繊維力 フィルムフォーマ、シランカップリング剤及び界面活性 剤が繊維表面及び繊維内部に付与されている前記 3)又は 4)に記載の複合材料、 5) Totally aromatic polyamide fiber strength Composite material according to 3) or 4), wherein a film former, a silane coupling agent and a surfactant are applied to the fiber surface and inside the fiber,
6)熱可塑性樹脂が、ポリエステル系樹脂、ポリアミド樹脂、ポリフエ二レンサルファイド 樹脂、ポリオレフイン系樹脂、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエ ーテルケトン樹脂、ポリイミド樹脂、フエノール樹脂、フッ素樹脂及び液晶樹脂および それらの共重合体樹脂から選ばれる少なくとも一種である前記 D〜5)のいずれか 1 項に記載の複合材料、 6) The thermoplastic resin is polyester resin, polyamide resin, polyphenylene sulfide resin, polyolefin resin, polycarbonate resin, polyoxymethylene resin, polyether ketone resin, polyimide resin, phenol resin, fluororesin and liquid crystal resin and their The composite material according to any one of the above D to 5 ), which is at least one selected from copolymer resins,
7)複合材料 100質量部に対して、トリアジン系化合物 5〜30質量部をさらに配合し てなる前記 1)〜6)のいずれ力 1項に記載の複合材料、  7) The composite material according to any one of 1) to 6) above, further comprising 5 to 30 parts by mass of a triazine compound per 100 parts by mass of the composite material,
8)ペレットの形態を有している前記:!)〜 7)のいずれ力 1項に記載の複合材料、 8) Said having the form of pellets! ) To 7) any one of the composite materials according to item 1,
9)有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする複合材料の製造方法で あって、前記有機繊維から構成される短繊維と熱可塑性樹脂よりなる短繊維とを混合 して紡績し、得られた紡績糸を、前記熱可塑性樹脂の融点以上の温度の加熱下に 成形することを特徴とする複合材料の製造方法、 9) A method for producing a composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, wherein the short fibers composed of the organic fibers and the short fibers composed of a thermoplastic resin are mixed and spun. A method for producing a composite material, wherein the obtained spun yarn is molded under heating at a temperature equal to or higher than the melting point of the thermoplastic resin;
10)前記:!)〜 8)のいずれ力 4項に記載の複合材料を成形してなることを特徴とする 成形体、  10) Any of the above-mentioned :!) to 8), wherein the composite material according to item 4 is molded,
11)補強用、摩擦 *摺動用、 自動車、船舶等産業用の機械要素部品、電気 ·電子部 品、 AV' OA機器部品、建築用の部品'部材、建材、建具、ノ ッキン類又はシール類 であることを特徴とする前記 10)に記載の成形体。  11) Reinforcing, friction * Sliding, machine element parts for automobiles, ships and other industries, electrical / electronic parts, AV'OA equipment parts, building parts' members, building materials, fittings, knockers or seals The molded article according to 10) above, wherein
発明の効果 [0014] 本発明によれば、軽量で、耐熱性、耐摩耗性、耐衝撃性、難燃性、電気特性に優 れるとともに、繊維と熱可塑性樹脂の含浸性が良好で、寸法安定性に優れた複合材 料を得ることができる。また、当該複合材料は、成形時に溶剤を使用しないため作業 環境特性に優れ、熱可塑性であるため成形性が良好で、加熱し溶融することにより 再利用することができるのでリサイクル性に優れている。従って、該複合材料を用いる ことにより、寸法安定性、耐熱性、耐摩耗性、耐衝撃性、耐久性に優れた成形体を容 易に得ることができ、し力、も容易にリサイクル使用できる環境にも優しい成形体となる 発明を実施するための最良の形態 The invention's effect [0014] According to the present invention, it is lightweight, excellent in heat resistance, wear resistance, impact resistance, flame retardancy, and electrical properties, and has good impregnation between fibers and thermoplastic resin, and is dimensionally stable. An excellent composite material can be obtained. In addition, since the composite material does not use a solvent during molding, it has excellent working environment characteristics, and since it is thermoplastic, it has good moldability, and it can be reused by heating and melting, so it has excellent recyclability. . Therefore, by using the composite material, it is possible to easily obtain a molded article excellent in dimensional stability, heat resistance, wear resistance, impact resistance, and durability, and to easily recycle the force. Best form for carrying out the invention
[0015] 本発明の複合材料は、有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする 複合材料であって、前記有機繊維の短繊維と前記熱可塑性樹脂よりなる短繊維とを 混合して紡績して得られた混紡糸を前記熱可塑性樹脂の融点以上の温度に加熱す ることにより製造したことを特徴とする複合材料である。  [0015] The composite material of the present invention is a composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, wherein the short fibers made of the organic fibers and the short fibers made of the thermoplastic resin are mixed. A composite material produced by heating a blended yarn obtained by spinning to a temperature equal to or higher than the melting point of the thermoplastic resin.
[0016] 本発明で用いられる強化材となる有機繊維は、 目的に応じて所望の強度、弾性率 等を発現しうるものであれば良ぐその種類や特性値は特に限定されない。有機繊維 は、単独で使用しても良いし、二種類以上を適宜組み合わせて使用しても良い。  [0016] There are no particular limitations on the type and characteristic values of the organic fibers that serve as the reinforcing material used in the present invention as long as they can exhibit desired strength, elastic modulus, and the like according to the purpose. Organic fibers may be used alone or in combination of two or more.
[0017] 強化繊維として用いる観点からは、引張強度が 7. 5cNZdtex以上が好ましぐさら に好ましくは lOcNZdtex以上、特に好ましくは 15cNZdtex以上の有機繊維を少 なくとも一部に含むことが好ましい。有機繊維の引張強度は、 15〜48cN/dtexの 範囲内であることが特に好ましい。引張強度が 7. 5cN/dtex未満ではマトリックス樹 脂が強化されず、 48cN/dtexを超えると巿場からの入手が困難である。なお、「引 張強度」は、 ASTM D638に従って測定することにより求められる。  [0017] From the viewpoint of use as a reinforcing fiber, it is preferable that the tensile strength is 7.5 cNZdtex or more, more preferably lOcNZdtex or more, particularly preferably 15 cNZdtex or more. The tensile strength of the organic fiber is particularly preferably in the range of 15 to 48 cN / dtex. If the tensile strength is less than 7.5 cN / dtex, the matrix resin is not strengthened, and if it exceeds 48 cN / dtex, it is difficult to obtain from the plant. The “tensile strength” is obtained by measuring according to ASTM D638.
[0018] 有機繊維は、前記の引張強度を有し、かつ引張弾性率が 440〜3, OOOcN/dtex であることがより好ましい。引張弾性率は 440〜2, 500cN/dtexの範囲内であるこ とが特に好ましい。  [0018] It is more preferable that the organic fiber has the above-described tensile strength and has a tensile modulus of 440 to 3, OOOcN / dtex. The tensile modulus is particularly preferably in the range of 440 to 2,500 cN / dtex.
[0019] 有機繊維の単繊維繊度は特に限定されなレ、が、効率的紡績加工性の観点から、 通常、 0. 1 ~30. Odtexのものを用レヽる。好ましく ίま 0. 3〜: 10. Odtex、より好ましく は 0. 5〜6. Odtexである。 [0020] 本発明で用いられる有機繊維の具体例としては、例えば、ポリパラフエ二レンべンゾ ビスォキサゾール繊維(PBO繊維)等のへテロ環芳香族繊維、全芳香族ポリエステ ル繊維、ァラミド繊維 (全芳香族ポリアミド繊維)等が挙げられる。これらの有機繊維は 、最終製品の用途、要求性能、繊維の製造コスト又は製品の加工コスト等に応じて、 適宜選択される。有機繊維の中でも、ァラミド繊維、全芳香族ポリエステル繊維、へテ 口環芳香族繊維が好ましぐ耐熱性、耐摩耗性に優れる点で、ァラミド繊維が特に好 ましレ、。ァラミド繊維に金属メツキを施した金属メツキ原糸を使用することもでき、電磁 波シールドが要求される電気 ·電子部品用として好適である。メツキ金属としては、銅 、ニッケル、錫、金、銀等が挙げられる。 [0019] The single fiber fineness of the organic fiber is not particularly limited, but from the viewpoint of efficient spinning processability, usually 0.1 to 30. Odtex is used. Preferably ί is 0.3 to 10. Odtex, more preferably 0.5 to 6. Odtex. [0020] Specific examples of the organic fibers used in the present invention include, for example, heteroaromatic fibers such as polyparaphenylene benzobisoxazole fibers (PBO fibers), wholly aromatic polyester fibers, aramid fibers (total Aromatic polyamide fiber) and the like. These organic fibers are appropriately selected according to the use of the final product, the required performance, the production cost of the fiber or the processing cost of the product. Among organic fibers, aramid fibers are particularly preferred because they are excellent in heat resistance and abrasion resistance, which are preferred by aramid fibers, wholly aromatic polyester fibers, and heterocyclic aromatic fibers. Metal-mesh yarns obtained by applying metal-mesh to aramid fiber can also be used, and it is suitable for electrical and electronic parts that require electromagnetic shielding. Examples of metallic metals include copper, nickel, tin, gold, and silver.
[0021] ここで、上記ァラミド繊維は、通常置換されていてもよい二価の芳香族基を少なくと も一個有する繊維であって、アミド結合を少なくとも一個有する繊維であれば特に限 定はなぐ全芳香族ポリアミド繊維、またはァラミド繊維と称される公知のものであって よい。上記において、「置換されていてもよい二価の芳香族基」とは、同一又は異なる 1以上の置換基を有していてもよい二価の芳香族基を意味する(以下同様である)。  [0021] Here, the aramid fiber is not particularly limited as long as it is a fiber having at least one divalent aromatic group which may be usually substituted and having at least one amide bond. It may be a known material called a wholly aromatic polyamide fiber or aramid fiber. In the above, “an optionally substituted divalent aromatic group” means a divalent aromatic group which may have one or more substituents which are the same or different (the same applies hereinafter). .
[0022] ァラミド繊維には、パラ系ァラミド繊維とメタ系ァラミド繊維とがあり、いずれも本発明 において好ましく用いられる力 S、加熱収縮が少なぐ高耐熱性、高強度であるパラ系 ァラミド繊維が特に好ましい。パラ系ァラミド繊維としては、例えば、ポリパラフエ二レン テレフタルアミド繊維 (米国デュポン株式会社、東レ'デュポン株式会社製、商品名「 KEVLARJ (登録商標))、コポリパラフエ二レン一 3, 4,一ォキシジフエ二レンテレフ タルアミド繊維(帝人テクノプロダクツ株式会社製、商品名「テクノーラ」(登録商標)) 等の市販品を用いることができる。メタ系ァラミド繊維としては、例えば、ポリメタフエ二 レンテレフタルアミド繊推 (米国デュポン株式会社製、商品名「N〇MEX」(登録商標 ) )等の市販品を用いることができる。なお、上記したァラミド繊維は、公知の方法又は それに準ずる方法で製造したものを用いても良い。  [0022] The aramid fiber includes a para aramid fiber and a meta aramid fiber, both of which are preferably used in the present invention, a force S, a high heat resistance and a high strength with less heat shrinkage. Particularly preferred. Examples of para-aramide fibers include polyparaphenylene terephthalamide fibers (DuPont, USA, manufactured by Toray DuPont, trade name “KEVLARJ (registered trademark)), copolyparaphenylene-1,3,4,1oxydiphenylene terephthale Commercial products such as taramide fiber (manufactured by Teijin Techno Products Co., Ltd., trade name “Technola” (registered trademark)) can be used. As the meta-aramide fiber, for example, a commercially available product such as polymetaphenylene terephthalamide fiber (made by DuPont, USA, trade name “N0MEX” (registered trademark)) can be used. The aramid fiber described above may be produced by a known method or a method analogous thereto.
[0023] 前記のァラミド繊維は、その繊維表面および繊維内部にフィルムフォーマ、シラン力 ップリング剤および界面活性剤が付与されているものを用いることもできる。該ァラミド 繊維を用いることにより、密着性の向上とともに接着性が改善され、ボイドが抑制され て複合材料の強度や耐久性、耐衝撃性等が向上する。前記の表面処理剤のァラミド 繊維に対する固形分付着量は、 0. 01〜20質量%の範囲であることが望ましい。 [0023] As the aramid fiber, one having a film former, a silane coupling agent and a surfactant added to the fiber surface and inside the fiber can also be used. By using the aramid fiber, adhesion is improved as well as adhesion, and voids are suppressed, and the strength, durability, impact resistance and the like of the composite material are improved. The surface treatment agent aramid The solid adhesion amount to the fiber is desirably in the range of 0.01 to 20% by mass.
[0024] ここで、前記のフィルムフォーマとしては、複合材料用繊維表面処理剤として用いら れているウレタン系、エポキシ系などの高機能付与型のフィルムフォーマやスターチ 系、ポリビュルアルコール系、アクリル系のフィルムフォーマなどの水に分散するエマ ルジョン型オリゴマー等が挙げられる。 [0024] Here, as the film former, a highly functional film former such as urethane or epoxy, which is used as a fiber surface treatment agent for composite materials, a starch, polybulol alcohol, acrylic, etc. And emulsion type oligomers dispersed in water, such as film formers.
[0025] シランカップリング剤としては、従来用いられているアミノプロピルトリエトキシシラン、 フエニルァミノプロピルトリメトキシシラン、グリシジルプロピルトリエトキシシラン、メタク リロキシプロピルトリメトキシシラン、ビュルトリエトキシシランを始めとする下記一般式( 1)で示される化合物等が挙げられる。  [0025] Examples of silane coupling agents include conventionally used aminopropyltriethoxysilane, phenylaminopropyltrimethoxysilane, glycidylpropyltriethoxysilane, methacryloxypropyltrimethoxysilane, and butyltriethoxysilane. And a compound represented by the following general formula (1).
[0026] R -Si- (OR ) (1)  [0026] R -Si- (OR) (1)
1 2 3  one two Three
式(1)の Rは樹脂に反応あるいは強い相互作用をする有機基であり、 Rは炭素原  R in the formula (1) is an organic group that reacts or interacts strongly with the resin.
1 2 子数 1〜4のアルキル基である。  1 2 An alkyl group having 1 to 4 children.
[0027] 前記の界面活性剤としては、上記のシランカップリング剤およびフィルムフォーマを 積極的に結晶性繊維構造内に浸透させるものが用いられる。特に、カチオン系界面 活性剤が望ましぐ例えばジメチルァミノプロピルアルキルアミドジェチル硫酸塩等が 挙げられる。 [0027] As the surfactant, those that positively permeate the silane coupling agent and the film former into the crystalline fiber structure are used. In particular, for example, dimethylaminopropylalkylamidojetyl sulfate is preferred as a cationic surfactant.
[0028] また、上記した全芳香族ポリエステル繊維は、通常置換されてレ、てもよレ、二価の芳 香族基を少なくとも一個有する繊維であって、エステル結合を少なくとも一個有する 繊維であればどのようなものでもよぐ本発明において特に限定されない。全芳香族 ポリエステル繊維は、全芳香族ポリエステル繊維と称される公知の繊維であってよぐ 例えば、パラヒドロキシ安息香酸の自己縮合ポリマー、テレフタル酸とハイドロキノン 力、らなるポリエステル、又は、パラヒドロキシ安息香酸と 6—ヒドロキシ一 2_ナフトェ酸 力、らなるポリエステル繊維等が挙げられる。このような全芳香族ポリエステル繊維を、 公知の方法又はそれに準ずる方法で製造したものを用いても良い。全芳香族ポリエ ステル繊維としては、例えば商品名「ベクトラン」(クラレ株式会社製)等の市販品を用 レ、ることができる。  [0028] Further, the wholly aromatic polyester fiber described above is a fiber that is usually substituted and may have at least one divalent aromatic group and at least one ester bond. Anything can be used, and the present invention is not particularly limited. The fully aromatic polyester fiber may be a known fiber called a wholly aromatic polyester fiber. For example, a self-condensed polymer of parahydroxybenzoic acid, a polyester composed of terephthalic acid and hydroquinone, or parahydroxybenzoic acid. Examples include acid and 6-hydroxy-1,2-naphthoic acid, polyester fiber and the like. You may use what manufactured such a wholly aromatic polyester fiber by the well-known method or the method according to it. As the wholly aromatic polyester fiber, for example, a commercial product such as a trade name “Vectran” (manufactured by Kuraray Co., Ltd.) can be used.
[0029] また、上記したヘテロ環芳香族繊維は、通常置換されていてもよい二価の芳香族 複素環基を少なくとも一個有する繊維であればどのようなものでもよぐ本発明におい て特に限定されない。上記において、「置換されていてもよい二価の芳香族複素環 基」とは、同一又は異なる 1以上の置換基を有していてもよい二価の芳香族複素環基 を意味する。かかる「二価の芳香族複素環基」としては、例えば環系を構成する原子 (環原子)として、酸素原子、硫黄原子及び窒素原子等から選ばれる同一又は異なる ヘテロ原子 1ないし 4種を少なくとも 1個有する芳香族複素環基等が挙げられる。へテ 口環芳香族繊維は、ヘテロ環芳香族繊維と称される公知の繊維であってよぐ例えば 、ポリパラフエ二レンべンゾビスチアゾール繊維、ポリパラフエ二レンべンゾビスォキサ ゾール繊維(PB〇繊維)又はポリべンズイミダゾール繊維等が挙げられる。このような ヘテロ環芳香族繊維を、公知の方法又はそれに準ずる方法で製造したものを用いて も良い。ヘテロ環芳香族繊維としては、例えば市販の PB〇繊維(商品名「ザィロン」、 東洋紡績株式会社製)等を用いることができる。 [0029] In addition, the heterocyclic aromatic fiber described above may be any fiber that has at least one divalent aromatic heterocyclic group that may be substituted. There is no particular limitation. In the above, “optionally substituted divalent aromatic heterocyclic group” means a divalent aromatic heterocyclic group which may have one or more substituents which are the same or different. As such a “divalent aromatic heterocyclic group”, for example, as an atom (ring atom) constituting a ring system, at least one or four heteroatoms selected from an oxygen atom, a sulfur atom, a nitrogen atom and the like are the same or different. And an aromatic heterocyclic group having one. Heterocyclic aromatic fiber may be a known fiber called heterocyclic aromatic fiber, for example, polyparaphenylene benzobisthiazole fiber, polyparaphenylene benzobisoxazole fiber (PB 0 fiber) Or polybens imidazole fiber etc. are mentioned. You may use what manufactured such a heterocyclic aromatic fiber by the well-known method or the method according to it. As the heterocyclic aromatic fiber, for example, a commercially available PB0 fiber (trade name “Zylon”, manufactured by Toyobo Co., Ltd.) can be used.
本発明で用いられるマトリックスとなる熱可塑性樹脂は、加熱によって硬化しない樹 脂であればどのようなものでもよぐ本発明において特に限定されない。例えば、ポリ エチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂等のポリオレフイン系樹脂;ポリ メチルメタタリレート樹脂等のメタクリル系樹脂;ポリスチレン樹脂、 ABS樹脂、 AS樹 脂等のポリスチレン系樹脂;ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテ レフタレート(PBT)樹脂、ポリトリメチレンテレフタレート樹脂、ポリエチレンナフタレー ト(PEN)樹脂、ポリ 1, 4ーシクロへキシノレジメチレンテレフタレート(PCT)樹脂等の ポリエステル系樹脂; 6—ナイロン樹脂、 6, 6—ナイロン樹脂等のポリアミド (PA)樹脂 ;ポリ塩ィ匕ビニル樹脂、ポリオキシメチレン (POM)樹脂、ポリカーボネート(PC)樹脂 、ポリフエ二レンサルファイド(PPS)樹脂、変性ポリフエ二レンエーテル(PPE)樹脂、 ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSF)樹脂、ポリエーテルスルホン(PE S)樹脂、ポリケトン樹脂、ポリエーテル二トリル (PEN)樹脂、ポリエーテルケトン (PE K)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEK K)樹脂、ポリイミド (PI)樹脂、ポリアミドイミド (PAI)樹脂、フエノール樹脂、フッ素 ) 樹脂;液晶ポリエステル樹脂等の液晶樹脂;ポリスチレン系、ポリオレフイン系、ポリウ レタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系又はフッ 素系等の熱可塑性エラストマ一;又はこれらの共重合体樹脂や変性樹脂等が挙げら れる。 The thermoplastic resin used as the matrix used in the present invention is not particularly limited in the present invention as long as it is a resin that is not cured by heating. For example, polyolefin resins such as polyethylene resin, polypropylene resin and polybutylene resin; methacrylic resins such as polymethyl methacrylate resin; polystyrene resins such as polystyrene resin, ABS resin and AS resin; polyethylene terephthalate (PET) resin Polyester resins such as polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate resin, polyethylene naphthalate (PEN) resin, poly 1,4-cyclohexinoresidene methylene terephthalate (PCT) resin; 6-nylon resin, 6, 6—Polyamide (PA) resin such as nylon resin; Poly salt vinyl resin, Polyoxymethylene (POM) resin, Polycarbonate (PC) resin, Polyphenylene sulfide (PPS) resin, Modified polyphenylene ether (PPE) Resin, polyetherimide (PEI) resin, Resulfone (PSF) resin, Polyethersulfone (PE S) resin, Polyketone resin, Polyethernitrile (PEN) resin, Polyetherketone (PE K) resin, Polyetheretherketone (PEEK) resin, Polyetherketoneketone ( PEK K) resin, polyimide (PI) resin, polyamide imide (PAI) resin, phenol resin, fluorine) resin; liquid crystal resin such as liquid crystal polyester resin; polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene Thermoplastic elastomers such as polyisoprene or fluorine, or copolymer resins or modified resins thereof. It is.
[0031] 中でも、ポリエステル系(PET、 PBT、 PCT)樹脂、ポリアミド(PA)樹脂、ポリオレフ イン系樹脂、ポリオキシメチレン (POM)樹脂、ポリカーボネート(PC)樹脂、ポリフエ 二レンサルファイド (PPS)樹脂、ポリエーテルケトン (PEK)樹脂、ポリイミド (PI)樹脂 、フエノール樹脂、フッ素 (F)樹脂、液晶樹脂が好ましい。  [0031] Among these, polyester (PET, PBT, PCT) resin, polyamide (PA) resin, polyolefin resin, polyoxymethylene (POM) resin, polycarbonate (PC) resin, polyphenylene sulfide (PPS) resin, Polyether ketone (PEK) resin, polyimide (PI) resin, phenol resin, fluorine (F) resin, and liquid crystal resin are preferable.
[0032] 本発明で使用される熱可塑性樹脂繊維は、マトリックスとなる上記熱可塑性樹脂か ら製造されるものであれば限定はなぐ例えば湿式紡糸、乾式紡糸又は溶融紡糸等 の公知の方法に従って製造したものを使用することができる。該熱可塑性樹脂繊維 は、単独で使用しても良いし、二種類以上を適宜組み合わせて使用しても良い。単 繊維繊度は特に限定されなレ、が、通常、 0. :!〜 30. Odtexのものを用いる。好ましく は 0. 3〜: 10. Odtex,より好ましくは 0. 5〜5. Odtexである。また、原糸、原綿および これらの繊維製品からの再生品や、加工工程で発生する屑を利用した再生品も使用 することちでさる。  [0032] The thermoplastic resin fiber used in the present invention is not limited as long as it is produced from the thermoplastic resin as a matrix, and is produced according to a known method such as wet spinning, dry spinning or melt spinning. Can be used. The thermoplastic resin fibers may be used alone or in combination of two or more. The single fiber fineness is not particularly limited, but usually 0.:! To 30. Odtex. Preferably 0.3 to: 10. Odtex, more preferably 0.5 to 5. Odtex. It is also possible to use recycled products made from raw yarn, raw cotton and fiber products, and recycled products using scraps generated in the processing process.
[0033] 本発明において、複合材料中に占める有機繊維の割合は、最終製品の要求性能 、材料の製造コスト等に応じて異なるが、好ましくは、複合材料全体中、質量分率に して 30〜80%、さらに好ましくは、 40〜60%の範囲が適当である。有機繊維の含有 量が 30質量%未満では複合材料の剛性が不足し、成形収縮率が大きくなる。一方、 80質量%を超えると成形時の流動性が低下し、良好な成形品を得ることができなレ、  [0033] In the present invention, the proportion of organic fibers in the composite material varies depending on the required performance of the final product, the production cost of the material, etc., but preferably 30% by mass in the entire composite material. A range of -80%, more preferably 40-60% is suitable. If the organic fiber content is less than 30% by mass, the composite material lacks rigidity and the molding shrinkage ratio increases. On the other hand, if it exceeds 80% by mass, the fluidity at the time of molding deteriorates, and a good molded product cannot be obtained.
[0034] 本発明では、本発明の目的を損なわない限り、熱可塑性樹脂には種々の添加剤や 改質剤等が配合されていても良い。前記添加剤としては、例えば熱安定剤、酸化防 止剤、紫外線吸収剤、帯電防止剤、難燃剤、顔料、染料、脂肪酸エステル又はヮック ス等の有機滑剤などが挙げられる。また、界面活性剤を含有していても良い。また、 本発明の目的を損なわない限り、有機繊維と熱可塑性樹脂との接着性を高めるため に相溶化剤を配合しても良い。また、複合材料に上記と同様にして所望により種々の 充填剤を配合し、望ましい特性を付与することもできる。 [0034] In the present invention, various additives, modifiers, and the like may be blended in the thermoplastic resin as long as the object of the present invention is not impaired. Examples of the additives include heat stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, dyes, fatty acid esters, organic lubricants such as waxes, and the like. Moreover, you may contain surfactant. In addition, a compatibilizing agent may be blended in order to improve the adhesion between the organic fiber and the thermoplastic resin as long as the object of the present invention is not impaired. Further, in the same manner as described above, various fillers can be blended in the composite material as desired to give desirable characteristics.
[0035] 本発明の複合材料は、成形品の成形品流れ方向の収縮率と流れ方向と直角方向 の収縮率の比が 0. 7〜0. 9の範囲にあることが好ましレ、。両者の収縮率の比がこの 範囲からはずれると成形時にそり等の欠点が生じ、所望の寸法精度の成形品を得る ことが困難であり、また成形品の寸法安定性に欠け、変形すること力 Sある。また、成形 品流れ方向の引張り強度と流れ方向と直角方向の引張り強度の比が 0. 6〜0. 9の 範囲にあることが好ましい。両方向の収縮率、引張り強度の異方性が大であると成形 品の成形時、その後の使用に際し、不都合を生じやすいので好ましくない。 [0035] In the composite material of the present invention, the ratio of the shrinkage rate in the flow direction of the molded product to the shrinkage rate in the direction perpendicular to the flow direction is preferably in the range of 0.7 to 0.9. The ratio of the shrinkage between the two is this If it is out of the range, defects such as warpage occur at the time of molding, and it is difficult to obtain a molded product having a desired dimensional accuracy, and the molded product lacks the dimensional stability and has a deformation force S. The ratio of the tensile strength in the flow direction of the molded product and the tensile strength in the direction perpendicular to the flow direction is preferably in the range of 0.6 to 0.9. If the shrinkage rate in both directions and the anisotropy of the tensile strength are large, it is not preferable because inconvenience is likely to occur during molding and subsequent use.
[0036] 本発明においては、さらにトリアジン系化合物を配合することにより、難燃性を改良 することが可能である。力かるトリアジン系化合物としては、メラミン、メラム、メロン、サ クシノグアナミン、エチレンジメラン、トリグアナミン、トリス(j3—シァノエチル)イソシァ ヌレート、ベンゾグアナミン、ァセトグアナミン等が挙げられる。  In the present invention, the flame retardancy can be improved by further blending a triazine compound. Examples of powerful triazine compounds include melamine, melam, melon, succinoguanamine, ethylene dimerane, triguanamine, tris (j3-cyanoethyl) isocyanurate, benzoguanamine, and acetateguanamine.
[0037] トリアジン系化合物の添カ卩量は、複合材料 100質量部に対して 5〜30質量部、好ま しくは 8〜25質量部、さらに好ましくは 10〜20質量部である。  [0037] The amount of triazine compound added is 5 to 30 parts by weight, preferably 8 to 25 parts by weight, and more preferably 10 to 20 parts by weight with respect to 100 parts by weight of the composite material.
[0038] 次に本発明の複合材料の製造方法について説明する。  Next, a method for producing the composite material of the present invention will be described.
[0039] 本発明の複合材料は、前記有機繊維の短繊維と前記熱可塑性樹脂よりなる短繊 維とを混合して紡績して得られた混紡糸を前記熱可塑性樹脂の融点以上の温度に 加熱することにより製造される。有機繊維の短繊維および熱可塑性樹脂からなる短繊 維はいずれも前記繊維または樹脂の一種または二種以上から従来公知の方法で製 造されたものを適宜使用することができる。例えば、フィラメントを適宜の長さに切断、 または牽切したものを挙げることができる。  [0039] The composite material of the present invention has a blended yarn obtained by mixing and spinning the short fiber of the organic fiber and the short fiber made of the thermoplastic resin at a temperature equal to or higher than the melting point of the thermoplastic resin. Manufactured by heating. As short fibers made of organic fibers and thermoplastic resins, any of those produced by a conventionally known method from one or more of the above-mentioned fibers or resins can be used as appropriate. For example, the filament can be cut to a suitable length or checked.
[0040] また、短繊維として、例えば使用済みの作業手袋などから回収した回収綿も使用で きる。特に、ァラミド手袋など、 自動車産業などで広く使用されている作業手袋からの 回収綿は、従来は応用が困難で焼却などの手段で破棄されることがあつたが、本発 明においては有効に活用することができる。  [0040] Further, as the short fiber, for example, recovered cotton recovered from used work gloves can be used. In particular, recovered cotton from work gloves widely used in the automobile industry, such as aramid gloves, has been conventionally difficult to apply and has been discarded by means of incineration, but it is effective in the present invention. Can be used.
[0041] 本発明においては、前記短繊維同士を混合、紡績して得られる混紡糸を溶融する 。混紡糸を用いると、有機繊維と熱可塑性繊維を均一に分散させることができ、有機 繊維とマトリックス樹脂の密着性の良好な複合材料を得ることができる。短繊維として は、平均繊維長が 20〜: 150mm程度の繊維が好ましい。短繊維の混合方法は限定 されないが、例えば、 5〜8mの水平ラチス(糸田幅の板をすのこ状につなぎ合わせてな るコンベア)の上に調合すべき短繊維塊を交互に並べ、これをベールオープナーや ホッパーベールブレーカに送り込んで開綿と混合を行う方法を挙げることができる。 なお、この一連の作業を行う装置を調合機と称する。 In the present invention, the blended yarn obtained by mixing and spinning the short fibers is melted. When blended yarn is used, organic fibers and thermoplastic fibers can be uniformly dispersed, and a composite material with good adhesion between the organic fibers and the matrix resin can be obtained. As the short fiber, a fiber having an average fiber length of 20 to about 150 mm is preferable. The method for mixing the short fibers is not limited. For example, the short fiber masses to be prepared are arranged alternately on a 5 to 8 m horizontal lattice (conveyor that joins the board of the Itoda width in a saw-like pattern). Bale openers and Examples of the method include feeding to a hopper bale breaker and performing cotton opening and mixing. An apparatus that performs this series of operations is referred to as a blender.
[0042] 紡績方法としては、リング綿紡方式、梳毛方式、紡毛方式、特紡方式、各種オーブ ンエンド紡績など、どのような方式であってもよいが、比較的太い紡績糸が得られる 点で、紡毛方式、特紡方式が好ましい。特紡方式は紡毛方式に類似する方式で、調 合 (混綿)工程、カード工程、精紡工程を経由する方式である。  [0042] The spinning method may be any method such as a ring cotton spinning method, an eyelash method, a spinning method, a special spinning method, various open end spinning methods, etc., in that a relatively thick spun yarn can be obtained. The spinning method and the special spinning method are preferred. The special spinning method is similar to the spinning method, and is a method that goes through a blending (mixing) process, a card process, and a spinning process.
[0043] 紡績工程における混紡糸の撚り数は、下記式で示される撚り係数 kが望ましくは 50 00〜11000、より望ましくは 6000〜10000、さらに望ましくは 6500〜8500である。 kが 5000未満では混紡糸の引張り強さが十分でなぐ巻き上げたり、熱溶融工程へ 供給するなどの工程において、糸切れをおこすなど、これらの工程に不具合をひき おこす。一方、 kが 11000を超えると撚りが強すぎるため、混紡糸に強いスナールほ たはキンク)が発生し、混紡糸が前記のような工程を通過するときにガイド類に巻きつ くなど、不具合をきたす。  [0043] The number of twists of the blended yarn in the spinning process is preferably 500 to 11000, more preferably 6000 to 10,000, and even more preferably 6500 to 8,500, as the twist coefficient k represented by the following formula. If k is less than 5000, the yarn will break during the process of winding up the blended yarn with sufficient tensile strength or supplying it to the thermal melting process. On the other hand, if k exceeds 11000, the twist is too strong, causing a strong snarl or kink) to occur in the blended yarn, which causes problems such as winding the blended yarn around the guides when passing through the above process. Bring
[0044] [数 1] k = TVD  [0044] [Equation 1] k = TVD
(式中、 k:撚り係数、 T:撚り数(回/ m)、 D:混紡糸の太さ(dtex)を示す。) (In the formula, k: twist coefficient, T: number of twists (times / m), D: blended yarn thickness (dtex))
[0045] 混紡糸の太さは、工程の通過性に支障がなければどのような太さであってもよいが 、 100〜10000dtex力 S望ましく、さらに望ましく ίま 1000〜5000dtexである。 lOOdt ex未満では生産性が低ぐ lOOOOdtexを超えると混紡紡績において既存の紡績設 備の適正太さを超えるので、工程の通過性に支障をきたす。 [0045] The thickness of the blended yarn may be any thickness as long as it does not interfere with the passability of the process, but is desirably 100 to 10,000 dtex force S, and more desirably 1000 to 5000 dtex. If it is less than lOOdtex, the productivity will be low. If it exceeds lOOOOdtex, it will exceed the appropriate thickness of the existing spinning equipment in mixed spinning, which will impede the passage of the process.
[0046] このようにして得られた混紡糸を熱可塑性樹脂が溶融する温度程度に加熱された 加熱ゾーンに導き、熱可塑性樹脂が溶融する温度に加熱した後、冷却ゾーンに導き 、溶融した熱可塑性樹脂を固化させることにより、断面構造が、有機繊維が島で熱可 塑性樹脂が海である海島構造のガットを得る。得られたガットをペレタイザ一やカツタ 一等の切断機で切断して有機繊維と熱可塑性樹脂からなるペレット状の複合材料を 得る。なお、溶融加熱時に加圧してもよい。 [0046] The blended yarn obtained in this manner is led to a heating zone heated to a temperature at which the thermoplastic resin melts, heated to a temperature at which the thermoplastic resin melts, and then led to a cooling zone to melt the melted heat. By solidifying the plastic resin, a cross-sectional structure is obtained that has a sea-island structure in which the organic fibers are islands and the thermoplastic resin is the sea. The obtained gut is cut with a cutting machine such as a pelletizer or a cutter to obtain a pellet-shaped composite material composed of organic fibers and a thermoplastic resin. In addition, you may pressurize at the time of melt heating.
[0047] 本発明の複合材料は、ペレット、チョップドストランドもしくは顆粒状で短径が 0.:!〜 5mm、長径が 0. 3〜: 10mmであると、射出成形、押出し成形、ブロー成形、フィルム 成形に好適である。 [0047] The composite material of the present invention is in the form of pellets, chopped strands or granules and has a minor axis of 0.:! When the length is 5 mm and the major axis is 0.3 to 10 mm, it is suitable for injection molding, extrusion molding, blow molding and film molding.
[0048] 溶融時の加熱方法としては、公知の方法を適宜用いることができる。加熱温度は、 熱可塑性樹脂の溶融温度以上とする。熱可塑性樹脂の溶融温度以上で一定時間 加熱することによって、強化材である有機繊維の間に熱可塑性樹脂が溶融していき、 熱可塑性樹脂が良く含浸された、未含浸領域の殆んどない複合材料が形成され易く なる。  [0048] As a heating method at the time of melting, a known method can be appropriately used. The heating temperature is higher than the melting temperature of the thermoplastic resin. By heating for a certain period of time above the melting temperature of the thermoplastic resin, the thermoplastic resin melts between the organic fibers as the reinforcing material, and the thermoplastic resin is well impregnated, and there is almost no unimpregnated region. A composite material is easily formed.
[0049] また、前記の方法で得られた混紡糸を二軸押出し機に、溶融した熱可塑性樹脂とと もに、クロスダイに供給し、プルトルージョン方式によって、混紡糸の周囲を熱可塑性 樹脂で覆われた形状のガットを得ることもできる。このガットにおいては、溶融した熱 可塑性樹脂の熱で、混紡糸を構成する熱可塑性樹脂からなる繊維も溶融し、ガット 全体が海島構造となる。  [0049] The blended yarn obtained by the above method is supplied to a cross die together with a molten thermoplastic resin in a twin-screw extruder, and the periphery of the blended yarn is made of a thermoplastic resin by a pultrusion method. A covered gut can also be obtained. In this gut, the fibers of the thermoplastic resin constituting the blended yarn are melted by the heat of the molten thermoplastic resin, and the entire gut has a sea-island structure.
[0050] さらに、前記混紡糸を構成する熱可塑性樹脂からなる繊維として、 2種以上の熱可 塑性繊維を用いることができることは前記のとおりであるが、少割合の繊維としてフッ 素繊維を混紡すると、成形品に摺動性を付与することができる。  [0050] Further, as described above, two or more kinds of thermoplastic fibers can be used as the fibers made of the thermoplastic resin constituting the blended yarn. However, as a small proportion of the fibers, blended fluorine fibers are used. Then, slidability can be imparted to the molded product.
[0051] 前記混紡糸は、そのまま、前記のようにしてペレット状に成形して複合材料として用 いることができる力 混紡糸を織成、編組によって織物、編物にし、または積層布等 にし、これらの組み合わせ、これらと熱可塑性フィルムゃ不織布と組み合わせて成形 品を製造することもできる。  [0051] The mixed spun yarn can be used as a composite material by being molded into a pellet as it is as described above. The mixed spun yarn is woven or knitted into a woven fabric, a knitted fabric, or a laminated fabric. In combination with these, thermoplastic films and nonwoven fabrics can be combined to produce a molded product.
[0052] 本発明の複合材料は、公知の方法等を適用して成形、加工することにより、種々の 成形体とすることができる。本発明の複合材料による成形体は、補強材料として、耐 熱性、耐摩耗性、耐衝撃性が求められる用途の全てに用いることができる。例えば、 補強用、摩擦 '摺動用、 自動車、船舶等産業用の機械要素部品で、プレート、軸受、 ギヤ一、カム、パイプ、棒材、ブッシュ、座金、ガイド、プーリー、フヱーシング、インシ ユレ一ター、ロッド、ベアリング保持器等、電気'電子部品でコネクタ、プラグ、アーム、 ソケット、キャップ、ロータ、モータ部品等、 AV' OA機器部品でスピーカコーン、筐体 、軸受、ロッド、ガイド、ギヤ一等、建築用の部品'部材、建具や建材としてのストツバ 一、ガイド、戸車、アングル等、パッキン類でグランドパッキン等、シール類、その他に ヘルメット、プラモデル部品、タイヤ用の中子材料、釣具用リール部品等を挙げること ができる。 [0052] The composite material of the present invention can be formed into various molded products by molding and processing by applying a known method or the like. The molded body of the composite material according to the present invention can be used as a reinforcing material for all applications requiring heat resistance, wear resistance, and impact resistance. For example, mechanical elements for reinforcement, friction 'sliding, automobiles, ships, etc., plates, bearings, gears, cams, pipes, rods, bushes, washers, guides, pulleys, forcing, insulators , Rods, bearing retainers, etc., electrical 'electronic parts, connectors, plugs, arms, sockets, caps, rotors, motor parts, etc., AV' OA equipment parts, speaker cones, housings, bearings, rods, guides, gears, etc. , Construction parts' components, strobes as joinery and building materials, guides, door wheels, angles, etc., packings, gland packings, seals, etc. Examples include helmets, plastic model parts, core materials for tires, and reel parts for fishing gear.
[0053] 本発明の複合材料は、強化材として、無機繊維と比べて柔軟な有機繊維を、し力も 短繊維を用いるので、リサイクルに際してもせん断に対する繊維長保持が大きぐ繊 維の折れに起因する強度低下が少なぐリサイクル性にも優れている。  [0053] Since the composite material of the present invention uses organic fibers that are softer than inorganic fibers and short fibers as reinforcing materials, the fiber material retains a large fiber length against shearing even during recycling. Excellent recyclability with little reduction in strength.
実施例  Example
[0054] 以下、実施例を用いて本発明を更に具体的に説明するが、本発明は以下の実施 例のみに限定されるものではない。  [0054] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[0055] (実施例 1) [Example 1]
短繊維太さ 1 · 7dtex、繊維長 51mmのパラ系ァラミド繊維短繊維(KEVLAR (R) (登録商標)、東レ'デュポン株式会社製) 50質量%と市販の短繊維太さ 2. 2dtex, 繊維長 75mmのナイロン 6短繊維 50質量%を、特紡方式の紡績工程に投入して紡 績糸を得た。すなわち、調合機で混ぜ合わせ、ついでカード工程を経て篠糸(スライ バー)を形成させ卷き取った後、リング精紡機で 170回/ mの撚り(撚り係数 k= 760 2)を加え、太さ 2000dtexの紡績糸を製造した。  Short fiber thickness 1 · 7dtex, para-aramid fiber short fiber with a fiber length of 51mm (KEVLAR (R) (registered trademark), manufactured by Toray DuPont Co., Ltd.) 50% by mass and commercially available short fiber thickness 2.2dtex, fiber A spun yarn was obtained by introducing 50% by mass of nylon 6 short fiber with a length of 75 mm into a special spinning process. That is, after mixing with a compounding machine, forming a sliver (sliver) through a carding process and scraping it, add 170 times / m twist (twisting coefficient k = 760 2) with a ring spinning machine. A 2000dtex spun yarn was produced.
[0056] 得られた紡績糸を 270°Cに加熱した加熱ゾーンを通過させ、ナイロン 6が溶融した 状態で冷却ゾーンに導き、ナイロン 6を固化させてガットとなし、これを 3mm長さに力 ットして複合材料ペレットを得た。得られたペレットを用いて、引張強度、収縮率等、 表 1に示す物性値を測定した。結果を表 1に示す。  [0056] The obtained spun yarn is passed through a heating zone heated to 270 ° C, and the nylon 6 is melted and guided to the cooling zone. The nylon 6 is solidified to form a gut, which is made into a 3mm length. To obtain composite pellets. Using the obtained pellets, the physical properties shown in Table 1, such as tensile strength and shrinkage ratio, were measured. The results are shown in Table 1.
[0057] (比較例 1)  [0057] (Comparative Example 1)
50質量0 /0のナイロン 6ペレットと繊維径 13 μ m、繊維長 3mmのガラス繊維 50質量 %をスクリュー径 30mm φの二軸押出機にて樹脂温度 270°Cで溶融混練し、ペレツ トを得た。得られたペレットについて実施例 1と同様に物性値を測定した。結果を表 1 に併せて示す。 50 mass 0/0 nylon 6 pellets and the fiber diameter 13 mu m, 50% by weight glass fibers having a fiber length 3mm were melt-kneaded in a twin-screw extruder having a screw diameter of 30 mm phi at a resin temperature of 270 ° C, the Peretz bets Obtained. The physical properties of the obtained pellets were measured in the same manner as in Example 1. The results are also shown in Table 1.
[0058] [表 1] 実施例 1 比較例 1 比重 1 . 2 8 1 . 5 5 [0058] [Table 1] Example 1 Comparative Example 1 Specific gravity 1.2 8 1.5 5 5
成形品流れ方向強度 成形品直角方向強度 0 . 8 0 . 3  Strength of molded product flow direction Strength of molded product perpendicular direction 0.8 8 0.3
成形品流れ方向収縮率ノ成形品直角方向収縮率 0 . 7 0 0 . 3 5  Shrinkage ratio in the flow direction of the molded product No contraction rate in the perpendicular direction of the molded product 0.7 0.7 0.3 5
耐トラッキング性 ランク 0 ランク 2  Tracking resistance Rank 0 Rank 2
難燃性 (U L 9 4 ) V - 1 H B  Flame retardant (U L 9 4) V-1 H B
[0059] 表 1に示すとおり、本発明のペレットは流れ方向と直角方向の引張強度の比、収縮 率の比がともに、 1に近似し、比較例 1の材料に比べ、異方性の小さいものであった。 [0059] As shown in Table 1, the pellets of the present invention both have a tensile strength ratio and a shrinkage ratio in the direction perpendicular to the flow direction, both of which are close to 1, and less anisotropic than the material of Comparative Example 1. It was a thing.
[0060] なお、実施例において、各特性値の測定方法は下記に従った。 [0060] In the examples, the measurement method of each characteristic value was as follows.
収縮率:射出成形機(IS— 80)を用いて、厚み 3mm、 80mm X 80mmの角板を成 形し、収縮率を測定した。  Shrinkage: Using an injection molding machine (IS-80), a square plate with a thickness of 3 mm and 80 mm x 80 mm was formed, and the shrinkage was measured.
引張強度: ASTM D638  Tensile strength: ASTM D638
比重:同上 D792  Specific gravity: D792
耐トラッキング性: IEC PUB1. 112  Tracking resistance: IEC PUB1. 112
[0061] (比較例 2) [0061] (Comparative Example 2)
比較例 1と同様の方法でガラス繊維の代わりに実施例 1で用いたのと同じケプラー 繊維を溶融混練しょうとしたが、ケプラー繊維が綿状に固まり、押出機のホッパーに 詰まってしまい、 目的のペレットを得ることができなかった。  The same Kepler fiber used in Example 1 was used instead of the glass fiber in the same manner as in Comparative Example 1, but the Kepler fiber was set in a cotton-like shape and clogged in the hopper of the extruder. Of pellets could not be obtained.
[0062] (実施例 2) [Example 2]
実施例 1においてナイロン 6の替わりにナイロン 66を使用した以外は、実施例 1と同 様の方法で複合材料ペレットを得た。このペレット 100質量部にメラム 15質量部を配 合した樹脂組成物を用い、実施例 1と同様の方法で機械物性、電気物性を測定した 。結果を表 2に示す。  A composite material pellet was obtained in the same manner as in Example 1, except that nylon 66 was used instead of nylon 6 in Example 1. Using a resin composition in which 15 parts by mass of melam was combined with 100 parts by mass of the pellets, mechanical properties and electrical properties were measured in the same manner as in Example 1. The results are shown in Table 2.
[0063] [表 2] 実施例 2 [0063] [Table 2] Example 2
比重 1. 25 Specific gravity 1. 25
成形品流れ方向強度 成形品直角方向強度 0. 8 Molded product flow direction strength Molded product perpendicular strength 0.8
成形品流れ方向収縮率 成形品直角方向収縮率 0. 70 Shrinkage rate in molded product flow direction Shrinkage in molded product perpendicular direction 0.70
耐トラッキング性 ランク 0 Tracking resistance Rank 0
難燃性 ( U L 94 ) 5 V 表 2に示すとおり、トリアジン系化合物を配合した本発明のペレットは、流れ方向と 直角方向の引張強度の比、収縮率の比がともに、 1に近似し、し力も耐トラッキング性 、難燃性に優れたものであった。 Flame Retardancy (UL 94) 5 V As shown in Table 2, the pellets of the present invention containing a triazine compound both have a ratio of tensile strength in the direction perpendicular to the flow direction and a ratio of shrinkage ratio of 1 and In addition, it has excellent tracking resistance and flame retardancy.

Claims

請求の範囲 The scope of the claims
[1] 有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする複合材料であって、前記 有機繊維の短繊維と前記熱可塑性樹脂よりなる短繊維とを混合して紡績して得られ た混紡糸を前記熱可塑性樹脂の融点以上の温度に加熱することにより製造したこと を特徴とする複合材料。  [1] A composite material using organic fibers as a reinforcing material and a thermoplastic resin as a matrix, and obtained by mixing and spinning the short fibers of the organic fibers and the short fibers of the thermoplastic resin A composite material produced by heating a yarn to a temperature equal to or higher than the melting point of the thermoplastic resin.
[2] 成形品の流れ方向の収縮率と流れ方向と直角方向の収縮率の比が 0. 7〜0. 9の範 囲にあり、成形品流れ方向の引張り強度と流れ方向と直角方向の引張り強度の比が 0. 6〜0. 9の範囲にある請求の範囲第 1項に記載の複合材料。  [2] The ratio of shrinkage in the flow direction of the molded product to the shrinkage rate in the direction perpendicular to the flow direction is in the range of 0.7 to 0.9, and the tensile strength in the flow direction of the molded product and the ratio perpendicular to the flow direction. The composite material according to claim 1, wherein the ratio of tensile strength is in the range of 0.6 to 0.9.
[3] 有機繊維が、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維及びへテロ環芳香 族繊維から選ばれる少なくとも一種である請求の範囲第 1項または第 2項に記載の複 合材料。  [3] The composite material according to claim 1 or 2, wherein the organic fiber is at least one selected from wholly aromatic polyamide fibers, wholly aromatic polyester fibers, and heteroaromatic fibers.
[4] 全芳香族ポリアミド繊維力 ポリパラフエ二レンテレフタルアミド繊維及びコポリパラフ ェニレン 3, 4'ーォキシジフエ二レンテレフタルアミド繊維から選ばれる少なくとも一 種である請求の範囲第 3項に記載の複合材料。  [4] Total aromatic polyamide fiber strength The composite material according to claim 3, which is at least one selected from polyparaphenylene terephthalamide fiber and copolyparaphenylene terephthalamide fiber and 4,4'-oxydiphenylene terephthalamide fiber.
[5] 全芳香族ポリアミド繊維力 フィルムフォーマ、シランカップリング剤及び界面活性剤 が繊維表面及び繊維内部に付与されている請求の範囲第 3項又は第 4項に記載の 複合材料。 [5] Totally aromatic polyamide fiber strength The composite material according to claim 3 or 4, wherein the film former, the silane coupling agent and the surfactant are applied to the fiber surface and inside the fiber.
[6] 熱可塑性樹脂が、ポリエステル系樹脂、ポリアミド樹脂、ポリフエ二レンサルファイド樹 脂、ポリオレフイン系樹脂、ポリカーボネート樹脂、ポリオキシメチレン樹脂、ポリエー テルケトン樹脂、ポリイミド樹脂、フヱノール樹脂、フッ素樹脂及び液晶樹脂およびそ れらの共重合体樹脂から選ばれる少なくとも一種である請求の範囲第 1項〜第 5項の いずれか 1項に記載の複合材料。  [6] The thermoplastic resin is a polyester resin, polyamide resin, polyphenylene sulfide resin, polyolefin resin, polycarbonate resin, polyoxymethylene resin, polyether ketone resin, polyimide resin, phenol resin, fluororesin and liquid crystal resin. 6. The composite material according to any one of claims 1 to 5, wherein the composite material is at least one selected from those copolymer resins.
[7] 複合材料 100質量部に対して、トリアジン系化合物 5〜30質量部をさらに配合してな る請求の範囲第 1項〜第 6項のいずれか 1項に記載の複合材料。  [7] The composite material according to any one of claims 1 to 6, further comprising 5 to 30 parts by mass of a triazine compound per 100 parts by mass of the composite material.
[8] ペレットの形態を有している請求の範囲第 1項〜第 7項のいずれ力 1項に記載の複合 材料。  [8] The composite material according to any one of claims 1 to 7, which has a pellet form.
[9] 有機繊維を強化材とし、熱可塑性樹脂をマトリックスとする複合材料の製造方法であ つて、前記有機繊維から構成される短繊維と熱可塑性樹脂よりなる短繊維とを混合し て紡績し、得られた紡績糸を、前記熱可塑性樹脂の融点以上の温度の加熱下に成 形することを特徴とする複合材料の製造方法。 [9] A method for producing a composite material using an organic fiber as a reinforcing material and a thermoplastic resin as a matrix, wherein the short fiber composed of the organic fiber and the short fiber composed of a thermoplastic resin are mixed. A method for producing a composite material, wherein the spun yarn obtained by spinning is formed under heating at a temperature equal to or higher than the melting point of the thermoplastic resin.
[10] 請求の範囲第 1項〜第 8項のいずれ力 1項に記載の複合材料を成形してなることを 特徴とする成形体。  [10] A molded article obtained by molding the composite material according to any one of claims 1 to 8.
[11] 補強用、摩擦 *摺動用、 自動車、船舶等産業用の機械要素部品、電気 ·電子部品、 [11] Reinforcing, friction * sliding, machine element parts for automobiles, ships and other industries, electrical / electronic parts,
AV' OA機器部品、建築用の部品'部材、建材、建具、パッキン類又はシール類であ ることを特徴とする請求の範囲第 10項に記載の成形体。 The molded article according to claim 10, wherein the molded article is an AV'OA equipment part, a building part 'member, a building material, a fitting, a packing or a seal.
PCT/JP2005/020739 2005-11-11 2005-11-11 Composite and process for producing the same WO2007055017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020739 WO2007055017A1 (en) 2005-11-11 2005-11-11 Composite and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/020739 WO2007055017A1 (en) 2005-11-11 2005-11-11 Composite and process for producing the same

Publications (1)

Publication Number Publication Date
WO2007055017A1 true WO2007055017A1 (en) 2007-05-18

Family

ID=38023028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020739 WO2007055017A1 (en) 2005-11-11 2005-11-11 Composite and process for producing the same

Country Status (1)

Country Link
WO (1) WO2007055017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421852A (en) * 2009-05-13 2012-04-18 柯尼卡美能达控股株式会社 Method for producing cellulose fiber-containing resin material
JP2017513733A (en) * 2014-04-08 2017-06-01 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Manufacturing method of composite preform

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155460A (en) * 1992-11-17 1994-06-03 Toyobo Co Ltd Yarn for thermoplastic composite
JPH07173299A (en) * 1993-12-21 1995-07-11 Toyobo Co Ltd Molding material for fiber-reinforced thermoplastic resin molding
JPH07173300A (en) * 1993-12-21 1995-07-11 Toyobo Co Ltd Fiber-reinforced thermoplastic resin molding
JPH11320737A (en) * 1998-05-14 1999-11-24 Toyobo Co Ltd Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same
JP2005298790A (en) * 2004-03-16 2005-10-27 Ichimura Sangyo Co Ltd Composite material, method for producing the same and molded product produced by using the same
JP2005343061A (en) * 2004-06-04 2005-12-15 Takayasu Co Ltd Method for producing fiber-reinforced composite material used in thermoplastic molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06155460A (en) * 1992-11-17 1994-06-03 Toyobo Co Ltd Yarn for thermoplastic composite
JPH07173299A (en) * 1993-12-21 1995-07-11 Toyobo Co Ltd Molding material for fiber-reinforced thermoplastic resin molding
JPH07173300A (en) * 1993-12-21 1995-07-11 Toyobo Co Ltd Fiber-reinforced thermoplastic resin molding
JPH11320737A (en) * 1998-05-14 1999-11-24 Toyobo Co Ltd Fiber reinforced thermoplastic molding material and housing for electronic/electric equipment using the same
JP2005298790A (en) * 2004-03-16 2005-10-27 Ichimura Sangyo Co Ltd Composite material, method for producing the same and molded product produced by using the same
JP2005343061A (en) * 2004-06-04 2005-12-15 Takayasu Co Ltd Method for producing fiber-reinforced composite material used in thermoplastic molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421852A (en) * 2009-05-13 2012-04-18 柯尼卡美能达控股株式会社 Method for producing cellulose fiber-containing resin material
CN102421852B (en) * 2009-05-13 2014-07-09 柯尼卡美能达控股株式会社 Method for producing cellulose fiber-containing resin material
JP2017513733A (en) * 2014-04-08 2017-06-01 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Manufacturing method of composite preform

Similar Documents

Publication Publication Date Title
Kausar Advances in carbon fiber reinforced polyamide-based composite materials
Zhang et al. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: a review
KR101927557B1 (en) Fabrication method for injection formed body
WO2004080698A1 (en) Method of making long fiber-reinforced thermoplastic composites utilizing hybrid or commingled yarn
JP5969714B2 (en) Assembly of molding material for injection molding, extrusion molding, or pultrusion molding, carbon fiber reinforced thermoplastic resin pellet, molded body, and method of manufacturing injection molded body
JP2012131918A (en) Resin composition for abrasion-resistant molding
EP1105277B1 (en) Coated, long fiber reinforcing composite structure and process of preparation thereof
Nayana et al. Advanced polymeric composites via commingling for critical engineering applications
JP2007284631A (en) Thermoplastic resin pellet reinforced with basalt filament
WO2007055017A1 (en) Composite and process for producing the same
JP5972721B2 (en) Thermoplastic resin composition
JPH06285855A (en) Strand for molding of long fiber reinforced synthetic resin product and its pellet
JP4878512B2 (en) Fiber reinforced thermoplastic resin gear
JP2005298790A (en) Composite material, method for producing the same and molded product produced by using the same
JP3845427B2 (en) Method for producing fiber-reinforced composite material used for thermoplastic molding
CN102850786B (en) Nylon 66 material and preparation method thereof
JP2005298663A (en) Automobile interior part made of resin
WO2021153366A1 (en) Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof
JP2914469B2 (en) Method for producing carbon fiber chopped strand
KR20220139553A (en) Modified carbon fiber/ABS composites and manufacturing method of the same
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JP6955506B2 (en) PEEK resin composition molded article
JP2005297338A (en) Resin automotive mechanism component
Koppiahraj et al. A review on the factors influencing natural fiber composite materials
JP6902395B2 (en) Manufacturing method of molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806262

Country of ref document: EP

Kind code of ref document: A1