WO2007049716A1 - 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体 - Google Patents

新規プラスミドベクター及びプラスミドを安定に保持する形質転換体 Download PDF

Info

Publication number
WO2007049716A1
WO2007049716A1 PCT/JP2006/321415 JP2006321415W WO2007049716A1 WO 2007049716 A1 WO2007049716 A1 WO 2007049716A1 JP 2006321415 W JP2006321415 W JP 2006321415W WO 2007049716 A1 WO2007049716 A1 WO 2007049716A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
plasmid
recombinant vector
transformant
genus
Prior art date
Application number
PCT/JP2006/321415
Other languages
English (en)
French (fr)
Inventor
Shunsuke Sato
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to CN200680039898.7A priority Critical patent/CN101297036B/zh
Priority to JP2007542665A priority patent/JP5650368B2/ja
Priority to EP06822384.1A priority patent/EP1942184B1/en
Publication of WO2007049716A1 publication Critical patent/WO2007049716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids

Definitions

  • the present invention relates to a novel vector.
  • the present invention is also in the field of plasmid stability. More specifically, the present invention is a hydrogen bacterium, and is stably maintained in Ralstonia genus bacteria, Cupr iavidus genus bacteria or Wautersia genus bacteria known as PHB synthesizing bacteria.
  • the present invention relates to a recombinant vector, a strain transformed with the vector, and a commercial production of polyhydroxyalkanoate by the strain.
  • Cloning and expression vectors commonly used in laboratories are usually multicopy plasmids, and their stable transmission to progeny is ensured by introducing multiple plasmids per cell genome (non- (See Patent Document 1).
  • Non- See Patent Document 1
  • instability of the introduced gene occurs due to the deletion of the plasmid during the nocteria growth cycle. Therefore, in an industrial production process, it is essential to stabilize the plasmid in bacteria until the culture in the fermenter is completed.
  • PJRD215 vectors and pBBR vectors have been mainly used as plasmid vectors for gene transfer into Ralstonia, Wautersia, and Cupriavidus (see Non-Patent Document 2 and Non-Patent Document 3). ).
  • these plasmid vectors become very unstable when the host bacterium accumulates polyhydroxyalkanoate and the like in the cells.
  • PJRD215-based vectors are cultured under conditions that do not accumulate a large amount of polyhydroxyalkanoate, about 80% of the cells retain the plasmid when transferred four times without applying selective pressure with an antibiotic.
  • pBBR solid Have similar characteristics.
  • plasmid vectors are wide-area host vectors developed for wide-area hosts (see Non-patent Document 4 and Non-Patent Document 5), but industrially substances using bacteria such as Ralstonia, Wautersia, and Cupriavidus. In production, it is necessary to develop a plasmid vector for gene transfer suitable for Ralstonia, Wautersia and Cupriavidus bacteria.
  • Plasmid vectors that can be used in the genus Ralstonia so far have been resistant to drugs such as chloramphee-chol, kanamycin, and ampicillin. It was only possible to select transformants that retained the.
  • drugs such as chloramphee-chol, kanamycin, and ampicillin. It was only possible to select transformants that retained the.
  • the use of antibiotic-resistant strains can be dangerous for the environment, (2) the amount of antibiotics required during the cultivation is (3) Antibiotics are undesirable in the production of substances used in human and animal treatments.
  • Transformants that retain plasmids due to drug resistance are produced in industrial production. Not applicable to!
  • a par system As a system for stably holding a plasmid, a par system is known in addition to a method of applying selective pressure with an antibiotic (see Non-Patent Documents 6 and 7).
  • the par system works, the duplicated plasmid is distributed to the daughter cells, so that a strain that stably holds the plasmid can be obtained without applying selective pressure due to antibiotic resistance.
  • vectors incorporating the RP4 plasmid par system that can be used in E. coli (see Patent Document 1) and vectors using the R1 plasmid par region (see Patent Document 2) have been developed.
  • the par region of the megaplasmid pMOL28 possessed by Cupriavi dus metallidurans CH34 strain contains the promoter par p, plasmid stabilization factors parA28, parB28 and the recognition sequence parS. These genes have already been cloned into the plasmid pSUP202, and their nucleotide sequences have already been published (see Non-Patent Document 8).
  • Patent Document 1 US Patent No. 6143518
  • Patent Document 2 US Patent No. 4760022
  • Non-patent literature l Jones IM et al., Mol Gen Genet. 180 (3): 579-84. (1980)
  • Non-patent literature 2 T. Fukui et al., Biotechnology Letters. Vol. 19, No. 11, Nov 1 997: 1093-97
  • Non-Patent Document 3 STEVEN SLATER, etc., JOURNAL OF BACTERIOLOGY, Apr. 1998: 1979-1987
  • Non-Patent Document 4 Luan Tao et al., Metabolic Engineering, Volume 7, Issue 1, January 2005: 10-17
  • Non-Patent Document 5 Davison J et al., Gene. 1987; 51 (2-3): 275-80.
  • Non-Patent Document 6 M. Gerlitz et al., Journal of Bacteriology, Nov: 6194-6203 (1
  • Non-Patent Document 7 B. Youngren et al., Journal of Bacteriology, July: 3924-3928 (2000)
  • Non-Patent Document 8 Safieh Taghavi et al., Mol. Gen. Genet, 250: 169-179 (1996)
  • Non-Patent Document 9 Gravin C. et al., Protein Expression & Purification Dec; 38 (2): 64-71 (2004)
  • the object of the present invention is to develop a new vector.
  • Ralstonia genus, Cupria vidus genus or Wautersia genus bacterium can be used as a host, and the object is to develop a vector that is stably retained in the bacterium even without selective pressure by antibiotics.
  • the transformant produces polyhydroxyalkanoate and further increases its productivity. The purpose is to stabilize.
  • the DNA sequence (ori) for replicating the vector in the host bacterium is essential.
  • a vector to be used for material production on an industrial scale not only the vector is replicated inside the host bacterium, 1) DNA base pair number for easy handling, 2) Transformant is selected. It is essential to have various characteristics such as a drug resistance gene and 3) lack of conjugative transmission.
  • the above-mentioned par system is considered to be very effective because it is not necessary to add antibiotics, and it is not necessary to introduce mutations into the host bacterial chromosome. .
  • the megaplasmid pMOL28 described above possesses the par system, it has a force of 280k that is stably retained in the host bacterium and does not possess a drug resistance gene with a very large number of base pairs. It was thought that it could not be used as a vector for bacteria, Cupriavidus bacteria and Wautersia bacteria.
  • the present inventors have determined that the replication initiation region and par system of the megaplasmid pMOL28 possessed by the Cupriavidus m etallidurans CH34 strain is a host different from the Cupriavidus metallidurans CH34 strain, For example, Cupri aviaus necator (former name: Ralstonia eutropha, eutropha) [If this functioned, it was found that the plasmid could be stably maintained without applying selective pressure due to antibiotic resistance, and a new plasmid vector could be developed.
  • Cupri aviaus necator former name: Ralstonia eutropha, eutropha
  • the first invention of the present invention is a recombinant vector comprising the sequence shown in SEQ ID NO: 18 and introduced with a replication initiation region which functions as a host of the genus Ralstonia, the genus Cupriavidus or the genus Wautersia.
  • it is a recombinant vector having no mob gene group and oriT sequence, that is, having no conjugative transfer, more preferably a DNA region that functions as a par system that is a mechanism for stabilizing a plasmid.
  • the second aspect of the present invention relates to a transformant in which a gene is introduced into a host bacterium by the above-described recombinant vector, and preferably relates to a transformant in which the host bacterium is a Cupriavidus necator.
  • the third aspect of the present invention relates to a method for producing PHA from the culture by culturing the transformant.
  • the first recombinant vector of the present invention comprises a sequence represented by SEQ ID NO: 18 and is introduced with a replication initiation region which functions as a host of Ralstonia genus bacteria, Cupriavidus genus bacteria or Wautersia genus bacteria. is there.
  • the replication origin region is a sequence that functions as a replication origin for replicating a recombinant vector.
  • the sequence represented by SEQ ID NO: 18 is a part of the replication initiation region (ori region) represented by SEQ ID NO: 7 in the megaplasmid PMOL28 held by Cupriavidus metallidurans CH34 strain. Any replication initiation region may be used as long as it contains the sequence of SEQ ID NO: 18 and functions as a host for Ralstonia bacteria, Cupriavidus bacteria or Wautersia bacteria. .
  • the sequence shown in SEQ ID NO: 7 may be used as the replication start region.
  • the recombinant vector of the present invention preferably has no mob gene group and oriT sequence. If the vector has a mob gene group or oriT sequence, contact with other microorganisms may result in conjugation transmission, which entails problems related to containment of recombinants and other safety issues. is there.
  • mob genes are genes that encode DNA
  • the protein encoded by the mob gene group has the function of nicking the oriT sequence and the function of stably transporting single-stranded DNA.
  • the oriT sequence is a recognition sequence for entering nick sites and nicks.
  • the recombinant vector of the present invention is preferably one into which a vector stabilizing region (par region) that functions as a par system is introduced.
  • the par region may have any sequence as long as it is a par system that functions in Ralstonia, Cupriavidus, or Wautersia, but Ralstonia, Cupriavidus, or Wautersia. More preferred is the par region in megaplasma, where the par region in the plasmid carried by the bacteria is preferred.
  • the sequence represented by SEQ ID NO: 19 is a part of the par region represented by SEQ ID NO: 8 in the megaplasmid pMOL28 possessed by Cup riavidus metallidurans CH34 strain, and includes the parA gene, parB gene and recognition sequence p arS. It is out.
  • SEQ ID NO: 19 Since the sequence represented by SEQ ID NO: 19 is a part of the par region in the megaplasmid PMOL28 possessed by Cupriavidus metallidurans strain CH34, a DNA fragment containing this sequence can function as a par system. In addition to the sequence shown in SEQ ID NO: 19, it is necessary to include a promoter and a terminator.
  • parP in the megaplasmid pMOL28 may be used, and promoters derived from other organisms can be used as long as they function as Ralstonia bacteria, Cupriavidus bacteria, or Wautersia bacteria.
  • the promoter parP in the megaplasmid pMOL28 corresponds approximately to the 2848th base sequence from the 2388th base of SEQ ID NO: 8.
  • the terminator in the megaplasmid pMOL28 may be used, or a terminator derived from another organism may be used as long as it functions as a host of the genus Ralstonia, Cupriavidus or Wautersia. You can also.
  • the terminator in the megaplasmid PMOL28 is contained in the base sequence from the 61st to the 202nd in SEQ ID NO: 8.
  • the sequence represented by SEQ ID NO: 8 is used. It may be used.
  • the recombinant vector of the present invention is preferably introduced with at least one gene involved in PHA synthesis. Then, the transformant of the recombinant vector can synthesize PHA more efficiently if all genes work effectively.
  • the transformant capable of synthesizing this PHA unlike the multi-copy type plasmid, stably replicates the plasmid, so it is possible to stably supply the gene involved in PHA synthesis to the host. And can accumulate commercially significant amounts of PHA.
  • the genes involved in PHA synthesis include thiolase, a reductase that is a 3HB supply system, PHB synthase that is a PHB synthase, PHA synthase that is a PHA synthase, and an acyl-CoA transferase that is a j8 oxidation enzyme.
  • Enolulu CoA hydratase, acyl-CoA dehydrogenase and the like can be mentioned, and a recombinant vector into which at least one selected from the group is introduced is preferable.
  • Examples of thiolase include / 3-ketothiolase, examples of reductase include acetoacetyl CoA reductase and the like, and examples of PHA synthase include N149SZD171G mutant, which is a PHA synthase mutant gene derived from Aeromonas caviae, Examples of the acyl-CoA transferase include 3-hydroxyacyl ACP-CoA transferase.
  • the gene When a gene involved in PHA synthesis is introduced into the recombinant vector of the present invention, the gene can be easily introduced by introducing a restriction enzyme site into the vector in advance.
  • the recombinant vector of the present invention preferably contains a selection marker.
  • a selection marker in the present invention, when the par region is introduced into the recombinant vector, the stability of the vector is excellent, and thus selective pressure with antibiotics or the like is not necessary.
  • host cells can be transformed with the recombinant vector of the present invention. This selectable marker can be used for selection of recombinant strains during conversion.
  • the selection marker is not particularly limited, and examples thereof include antibiotic resistance genes such as kanamycin, ampicillin, and tetracycline.
  • the selection marker is preferably the kanamycin resistance gene represented by SEQ ID NO: 14. [0019]
  • the recombinant vector obtained by introducing the above-described gene may be miniaturized.
  • the size of the recombinant vector can be reduced by deleting a replication initiation region, a par region, a selectable marker, and a portion unnecessary for expression of the PH A synthase gene.
  • the recombinant vector of the present invention preferably has no mob gene group and oriT sequence. Therefore, these gene group and sequence can be deleted to reduce the size.
  • the transformation rate can be improved when introduced into a host.
  • the recombinant vector of the present invention includes the sequence represented by SEQ ID NO: 18, and the replication initiation region that functions using a Ralstonia genus bacterium, a Cupriavidus genus bacterium, or a Wautersia genus bacterium as a host, and the SEQ ID NO: 14 More preferably, it contains a kanamycin resistance gene.
  • the recombinant vector of the present invention is a recombinant vector that can function in hosts other than Cupriavidus metallidurans by containing a replication origin region derived from a megaplasmid.
  • the vector used for the production of the recombinant vector of the present invention is not particularly limited, and the ability to use various plasmid phages is used as a shuttle vector with Escherichia coli. Therefore, it is preferable to use a plasmid derived from E. coli.
  • the production of the recombinant vector of the present invention is not particularly limited, and includes a replication initiation region that functions in bacteria of the genus Ralstonia, the genus Cupriavi dus, or the genus Wautersia, and if necessary, imparts the ability to withstand antibiotics.
  • a selectable marker such as a gene (kanamycin, ampicillin, tetracycline resistance conferring gene, etc.) and a par region that functions as a par system that stabilizes the recombinant vector, any plasmid vector can be produced.
  • the transformant of the second aspect of the present invention is transformed with the above recombinant vector. That is, the transformant of the present invention can be obtained by introducing the recombinant vector obtained above into a host bacterium suitable for the vector.
  • the host in the present invention is not particularly limited as long as it can be transformed using the above-described recombinant vector. However, other than Cupriavidus metallidurans, microorganisms isolated from nature, and strain deposit institutions (for example, IFO, ATCC, etc.) ) Can be used.
  • bacteria such as Ralstonia genus, Capriavidus genus, ⁇ Wautersia genus, Aeromonas genus, Escherichia genus, Alcaligenes genus, Pseudomonas genus Can be used.
  • the genus is preferably the genus Ralstonia, the genus Cupriavidus or the genus Wautersia, more preferably 3 or the cupriavidus necator.
  • the transformant of the present invention is obtained by the cupriavidus metallidurans using the above recombinant vector.
  • the method for producing the transformant of the present invention is not particularly limited, and the introduction of the recombinant vector into the host bacterium can be performed by a known method.
  • a known method for example, the Elect Mouth Pollation Method (Current Protocols in Morecular Biology, 1st, 1.8.4, 1994) and the Calsim Method (Lederberg. EM et al., J. Bacteriol. 119. 1072 (1974) ) Etc. can be used.
  • For selection of transformants select kanamycin resistant expression system, etc. Markers can be used.
  • a microorganism other than Cupriavidus metall idurans is used as the host, it is not necessary to intensively remove the host megaplasmid.
  • PHA in the present invention is represented by the following general formula (1).
  • R represents an alkyl group having 1 to 13 carbon atoms
  • m represents an integer of 2 or more
  • m Rs may be the same or different.
  • a copolymer polyester P (3HB- co- 3HH composed of monomer units of 3-hydroxybutyric acid and 3-hydroxyhexanoic acid represented by the formula (where n and p represent an integer of 1 or more) ) Is preferred.
  • the method for producing PHA of the present invention comprises culturing the above transformant and extracting and purifying PHA from the culture product.
  • the method is not particularly limited, but can be performed as follows.
  • sugar, fat or fatty acid is given as a carbon source, and the above traits are obtained using a medium containing a nitrogen source, inorganic salts, and other organic nutrient sources other than the carbon source.
  • the transformant can be cultured.
  • Ralstonia Ra Istonia, Capriavidus, autWautersia, Aeromonas, Escherichia, Alcalige nes, Pseudomonas and other microorganisms were used as hosts.
  • a medium for culturing the transformant a carbon source that can be assimilated by microorganisms is provided.
  • a medium in which any one of a nitrogen source, an inorganic salt, and an organic nutrient source is restricted for example, a nitrogen source is added.
  • a medium or the like limited to a force of 0.1% can be used.
  • Examples of the sugar include carbohydrates such as glucose and fructose.
  • Examples of the fats and oils include fats and oils containing a large amount of saturated and unsaturated fatty acids having 10 or more carbon atoms, such as coconut oil, palm oil, and palm kernel oil.
  • Fatty acids include saturated and unsaturated fatty acids such as hexanoic acid, octanoic acid, decanoic acid, lauric acid, oleic acid, palmitic acid, linoleic acid, linolenic acid, and myristic acid! And fatty acid derivatives.
  • nitrogen sources include ammonia salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, as well as peptone, meat extract, and yeast extract.
  • ammonia salts such as ammonia, ammonium chloride, ammonium sulfate, and ammonium phosphate, as well as peptone, meat extract, and yeast extract.
  • inorganic salts include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride salt, and the like.
  • examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine, and proline; vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • an antibiotic such as kanamycin
  • kanamycin corresponding to the drug resistance gene present in the expression vector may be added to the culture solution.
  • the culture temperature may be any temperature at which the bacterium can grow, but is preferably 20 ° C to 40 ° C.
  • the culture time is not particularly limited, but it may be about 1 to 10 days. After that, if the cultivated bacterial strength obtained also collects PHA,
  • recovery of PHA having a cell strength can be performed by, for example, the following method. After completion of the culture, the cells are separated from the culture solution with a centrifuge, and the cells are washed with distilled water and methanol, and dried. From this dried cell body, PHA is extracted using an organic solvent such as black mouth form. The bacterial cell components are removed from the organic solvent solution containing PHA by filtration, etc., and a poor solvent such as methanol or hexane is added to the filtrate. Precipitate HA. Remove the supernatant by filtration and centrifugation, and then dry to recover PHA.
  • the weight average molecular weight (Mw) and 3HH composition (mol%) of the obtained PHA can be analyzed, for example, by gas chromatography or nuclear magnetic resonance.
  • a staining method using Nilered can be used as a simple method for confirming PHA production.
  • the presence or absence of polyester production can be confirmed by adding Nilered to the agar medium where the recombinant bacteria are grown, culturing the recombinant bacteria for 1 to 7 days, and observing whether the recombinant bacteria turn red.
  • the recombinant vector of the present invention can use bacteria of the genus Ralstonia, Cupriavidus, and Wautersia, and has no mob gene group and oriT sequence. Those with the par region introduced are stably maintained in bacteria without selective pressure by antibiotics. In addition, the transformant can stably produce PHA.
  • the present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
  • the overall genetic manipulation can be performed as described in Molecular Cloning (Cold Spring Harbor Laboratory Press, (1989)). Enzymes, cloning hosts, etc. used for gene manipulation can be purchased from suppliers and used according to the explanation.
  • the enzyme is not particularly limited as long as it can be used for gene manipulation.
  • plasmid derived from E. coli contains the kanamycin resistance gene represented by SEQ ID NO: 14.
  • the plasmid vector for introducing the replication initiation region and the par region is not particularly limited as long as it can be used in bacteria of the genus Ralstonia.
  • the plasmid vector produced in this example uses the replication start region (SEQ ID NO: 7) of the megaplasmid (pMOL28) possessed by Cupriavidus metallidurans CH34 and the par region described in SEQ ID NO: 8.
  • SEQ ID NO: 7 the replication start region of the megaplasmid (pMOL28) possessed by Cupriavidus metallidurans CH34 and the par region described in SEQ ID NO: 8.
  • DNA purification kit Promega
  • a DNA region containing the sequences of SEQ ID NOs: 7 and 8 of about 4 kbp was amplified by PCR using the described primers. PCR conditions are (Promega)
  • PCR-Blunt 2-TOPO Invitrogen
  • DNA Ligase Ligation High (Toyobo Co., Ltd.) was ligated to produce the vector pCUP shown in FIG. 1 from which 641 bp had been deleted.
  • PCR conditions are (1) 98 ° C for 2 minutes, (2) 98 ° C for 30 seconds, (3) 55 ° C for 30 seconds, (4) 72 ° C for 7 minutes, (
  • a restriction enzyme Muni site was further introduced into the pCUP obtained in Example 1.
  • PCR was performed using the primers described in SEQ ID NOs: 5 and 6 by PCR using the pCUP prepared in Example 1 in a saddle shape, and the amplified fragment was ligated with DNA ligase (Ligation By connecting with High (Toyobo Co., Ltd.), the Muni site was introduced and pCUP2 shown in Fig. 2 was produced.
  • PCR conditions are (1) 98 ° C for 2 minutes, (2) 98 ° C for 30 seconds, (3) 55 ° C for 30 seconds, (4) 72 ° C for 5 minutes, (2) to (4) The 30 cycles, TaKaRa Pyrobest as a polymerase
  • a plasmid vector containing the DNA region represented by SEQ ID NO: 18 and the DNA region represented by SEQ ID NO: 19 and not including genes involved in conjugative transfer such as the mob gene group and the oriT sequence was prepared.
  • Example 3 Preparation of transformant using plasmid vector pCUP2 Transformation by the electopore position method was performed as follows.
  • a gene transfer apparatus used for the electoporation a gene pulser manufactured by Biorad was used, and a cuvette of the same gapO. 2 cm manufactured by Biorad was used. Inject a 400 ⁇ l of Ralstonia eu tropha H16 strain competent cells and 5 ⁇ 1 of plasmid pCUP2 preparation into a cuvette and set it in a pulse device. Capacitance 25 ⁇ F, voltage 1.5 kV, resistance 800 ⁇ An electric pulse was applied under conditions.
  • the bacterial solution in the cuvette was cultured in Nutrient Broth medium (DIFCO) at 30 ° C for 3 hours with shaking, and then selected plate (Nutrient Agar medium (DIFCO), kanamycin lOOmgZL) at 30 ° C. And cultured for 2 days to obtain transformants.
  • DIFCO Nutrient Broth medium
  • DIFCO Nutrient Agar medium
  • kanamycin lOOmgZL kanamycin lOOmgZL
  • a transformant using the plasmid vector PJRD215 was obtained in the same manner as in Example 3 except that pJRD215 was used, which did not have the sequence of SEQ ID NO: 18 or the par region.
  • the plasmid retention rate of the transformant obtained in Example 3 was tested. Tests are from lwZv% Meat ⁇ extract ⁇ ⁇ wZ v% Bacto— Trypton, 0.2 wZ v% Yeast ⁇ extract ⁇ 0.9 w / v% Na PO / 12H 0, 0.15 w / v% KH PO, pH 6.8 Kanama
  • a culture solution obtained by culturing a transformant using the plasmid vector pCUP2 obtained in Example 3 for 24 hours in MB + meat medium of isin-added porridge (50 mg / L) was obtained by adding 1. lw / v% Na PO ⁇ 12
  • the culture broth was diluted to 1/8 of 10 with sterilized water, and spread on a plate of kanamycin-free koji (Nutrient Agar medium (DIFCO)) for 10 ⁇ l and 100 ⁇ l. colony Further, 100 colonies were randomly replicated on a kanamycin-added (lOOmgZL) selection plate (Nutrient Agar medium (manufactured by DIF CO)), and the number of grown colonies was counted. Ability of only bacteria carrying the plasmid to form colonies on the plate The number of drug-resistant colonies obtained was defined as stability. The results are shown in Table 1.
  • the N149S / D171 G mutant a PHA synthase mutant gene derived from Aeromonas caviae, was prepared as follows. First, pBluescriptllKS (—) (manufactured by Toyobo Co., Ltd.) is treated with Pst I, and blunt-ended using a DNA Blunting Kit (manufactured by Takara Bio Inc.) and ligated to produce a plasmid pBlue-New lacking the Pstl site. did. A dl3 fragment excised with the same enzyme from PJRD215-EE32dl3 (JP-A-5-93049) was cloned into the EcoRI site of this plasmid (pBlue-dl3).
  • the clone E2-50-derived plasmid (Kichise et al., Appl. Environ. Microbiol, 68: 2411-2419 (2002;)) is used as a cage, and the primer set described in SEQ ID NOs: 9 and 10 and Two fragments were obtained by amplification by PCR using the primer sets set forth in SEQ ID NOs: 11 and 12, respectively.
  • the conditions are (1) 94 ° C for 2 minutes, (2) 94 ° C for 30 seconds, (3) 55 ° C for 30 seconds, (4) 72 ° C for 2 minutes, (2) to (4) 25 cycles, (5) 72 ° C for 5 minutes. Equimolar mixing of two amplified fragments Then, the PCR reaction was performed again to bind the two fragments.
  • the conditions are (1) 96 ° C for 5 minutes, (2) 95 ° C for 2 minutes, (3) 72 ° C for 1 minute, and (2) to (3) for 12 cycles.
  • the best DNA Polymerase (Takara Bio) was used.
  • a DNA fragment of the desired size was excised from an agarose electrophoresis gel, treated with Pstl and Xhol, and cloned into pBlue—dl3 treated with the same enzyme (pBlue—N149SZD171G).
  • Base sequencing was performed using DNA sequencer 310 Genetic Analyzer manufactured by PERIKIN ELMER APPLIED BIOSYSTEMS. Asparagine, the 149th amino acid of PHA synthase, was used as serine, and aspartic acid, the 171st amino acid, was used as glycine. It was confirmed that the mutant gene was replaced.
  • PBlue— N149SZD171G prepared as described above is treated with the restriction enzyme EcoRI, and pCUP2 treated with the restriction enzyme Muni is ligated with DNA Ligase (Ligation High, manufactured by Toyobo Co., Ltd.), so that the plasmid vector pCUP2EEACP14 containing PHA synthase 9NS / 171 DG was prepared.
  • Example 6 Preparation of Enolulu CoA hydratase gene-introduced plasmid vector
  • pCUP2EEphaJ An expression plasmid vector (pCUP2EEphaJ) incorporated into the restriction enzyme Muni site was prepared (Fig. 4). This vector was prepared as follows.
  • pJRD21 5-EE32 Japanese Patent Laid-Open No. 5-93049 containing the enol-CoA hydratase gene used in the present invention is used as a template for PCR using the primer set described in SEQ ID NOs: 15 and 16 Amplified by the method, an amplified fragment containing the Enolulu CoA hydratase gene described in SEQ ID NO: 17 was obtained.
  • the conditions are (1) 94 ° C for 2 minutes, (2) 98 ° C for 10 seconds, (3) 60 ° C for 10 seconds, (4) 68 ° C for 1 minute, (2) to (4) 30 cycles, (5) 68 ° C for 3 minutes.
  • LA Taq DNA Polymerase (Takara Bio Inc.) was used as the polymerase.
  • this amplified fragment was treated with Bglll and Aflll, and then treated with Bglll and Aflll, followed by alkaline phosphatase treatment and DNA dephosphorylation treatment with pJRD215-EE32dl3 and ligation treatment! ⁇ pJRD215-EE32dl3 Cloning was performed by replacing the DNA fragment between Bglll and Afl II in pJRD215—EEphaJ.
  • Ligation High (Toyobo Co., Ltd.) was used for the ligation.
  • PCUP2EEphaJ (Fig.
  • Example 7 Preparation of transformant using PHA synthetic gene introduction plasmid vector
  • the PHA synthetic gene introduction plasmid vector preparation solution (PCUP2EEACP149NSZ171DG) obtained in Example 5 was used.
  • a transformant using a PHA synthetic gene-transferred plasmid vector was prepared in the same manner as in Example 3 except that.
  • Ralstonia eutropha PHB-4 strain (Tsuge T et al., Macromol Biosci, Oct 20; 4 (10): 963-70. (2004)), which is a PHA-synthesizable strain, was used.
  • Example 7 Retaining the plasmid in the same manner as in Example 4 except that the transformant obtained in Example 7 was used instead of the transformant using the plasmid vector pCUP2 obtained in Example 3. The rate was tested. The results are shown in Table 2.
  • Example 10 Retention rate of transformant using plasmid vector pCUP2EEphaJ Transformant using plasmid vector pCUP2 obtained in Example 3 as a transformant Instead of using the transformant obtained in Example 8, the plasmid retention rate was tested in the same manner as in Example 4. The results are shown in Table 2.
  • the plasmid vector PJRD215 was used in the same manner as in Example 3 except that pJRD215 was used as the plasmid and that RJst215 was used as the host and Ralstonia Eutropha PHB-4 strain was used as the host. Obtained transformants.
  • Example 7 The transformant obtained in Example 7 was treated with Nilered-containing medium (2 sodium hydrogen phosphate ⁇ 12 hydrate 9 g, potassium dihydrogen phosphate 1.5 g, ammonium chloride 0.05 g, magnesium sulfate • 7 water Salt 0.02g, fructose 0.5g, salt ⁇ conol ⁇ hexahydrate 0.25ppm, salt ⁇ iron ( ⁇ ⁇ ) ⁇ hexahydrate 16ppm, calcium chloride ⁇ dihydrate 10.3ppm, nickel chloride ⁇ 6 water salt 0.12 ppm, copper sulfate 5 water salt 0.16 ppm, Nilered 0.5 mg, agar 15 g ZU was inoculated and cultured for 2 days at 30 ° C. As a result, the colony turned red. It was confirmed that polyester was accumulated.
  • Nilered-containing medium (2 sodium hydrogen phosphate ⁇ 12 hydrate 9 g, potassium dihydrogen phosphate 1.5 g, ammonium chloride 0.05 g, magnesium s
  • the plasmid vector of the present invention can use bacteria of the genus Ralstonia, Cupriavidus, or Wautersia, and has no mob gene group or oriT sequence. Furthermore, those with a par region introduced are stably maintained in bacteria even without selective pressure due to antibiotics. In addition, the transformant can stably produce PHA.
  • FIG. L pCUP gene and restriction enzyme map.
  • FIG. 2 pCUP2 gene and restriction enzyme map.
  • FIG. 3 shows a gene and restriction enzyme map of pCUP2EEACP149NSZl71DG.
  • FIG. 4 Gene and restriction enzyme map of pCUP2EEphaJ.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の目的は、新規ベクターを開発すること、好ましくは、Ralstonia属細菌、Cupriavidus属細菌、及びWautersia属細菌にて抗生物質による選択圧がなくても安定に保持され、接合伝達性の無い新規ベクターを開発すること、また、そのベクターを使用し、ポリヒドロキシアルカノエートの安定生産株及びそれを用いたポリヒドロキシアルカノエートの製造方法を提供することである。 本発明は、Ralstonia属細菌、Cupriavidus属細菌、又はWautersia属細菌にて機能するDNAの複製開始領域を含有している新規の組換えベクターであり、特に、Ralstonia属細菌、Cupriavidus属細菌、Wautersia属細菌にて機能するDNAの複製開始領域、及び、組換えベクターを安定化する領域(par領域)を含有している組換えベクターを用いて得られた形質転換体は、ベクターが細菌中にて安定に保持され、ポリヒドロキシアルカノエートを効率よく生産できる。

Description

明 細 書
新規プラスミドベクター及びプラスミドを安定に保持する形質転換体 技術分野
[0001] 本発明は、新規ベクターに関する。また、本発明はプラスミドの安定ィ匕の分野にあり、 より詳細には、水素細菌であり、 PHB合成菌として知られる Ralstonia属細菌、 Cupr iavidus属細菌又は Wautersia属細菌にて安定に保持される組換えベクター、該べ クタ一によつて形質転換された菌株、及び該菌株によるポリヒドロキシアルカノエート の商業生産に関する。
背景技術
[0002] 組換え DNAの技術を微生物による目的物質の生産に実際に適用してみると、一般 に組換えプラスミドが不安定であるという問題がある。
実験室で通常用いられるクローユング及び発現ベクターは、通常マルチコピープラス ミドであり、それらの後代への安定した伝達は、細胞ゲノム 1つあたりに多数のプラスミ ドを導入することにより確保される (非特許文献 1参照)。しかし、プラスミドを使用して 外来遺伝子を導入すると、ノ クテリアの増殖サイクルの期間にプラスミドが欠失する 事によって、導入した遺伝子の不安定性が生じてしまう。従って、工業的生産工程で は、醱酵器内での培養が終了するまでバクテリア中のプラスミドを安定化させることが 必須である。
[0003] これまで、 Ralstonia属、 Wautersia属及び Cupriavidus属細菌への遺伝子導入用 プラスミドベクターとして、主に PJRD215系ベクターや、 pBBR系ベクターが使用され てきた (非特許文献 2及び非特許文献 3参照)。しかし、これらのプラスミドベクターは 、宿主細菌がポリヒドロキシアルカノエートなどを細胞内に蓄積させた際に非常に不 安定になるという事が我々の研究で明ら力となった。例えば、 PJRD215系のベクター について、ポリヒドロキシアルカノエートを多量に蓄積させない条件での培養では、抗 生物質による選択圧を掛けなくとも 4回植え継いだ時に約 80%の細胞がプラスミドを 保持しているにも関わらず、ポリエステルを多量に蓄積させる条件での培養では、同 じく 4回植え継いだ時に 30%しかプラスミドを保持していない。また、 pBBR系のベタ ターも同様の特徴を示す。
[0004] これらプラスミドベクターは広域宿主用に開発された広域宿主ベクターであるが(非 特許文献 4及び非特許文献 5参照)、 Ralstonia属、 Wautersia属、 Cupriavidus属 細菌などを宿主として工業的に物質生産を行う際には、 Ralstonia属、 Wautersia属 及び Cupriavidus属細菌に適した遺伝子導入用プラスミドベクターを開発する事が 必要である。
[0005] これまでプラスミドを安定ィ匕させる為に様々な手法が考案されて来た力 今まで Ralst onia属において使用可能なプラスミドベクターは、クロラムフエ-コール、カナマイシ ン、アンピシリンなどの薬剤耐性によってプラスミドを保持した形質転換体を選択する ものしかなカゝつた。抗生物質による選択圧をかけて培養を行うと、(1)抗生物質耐性 菌株の使用は、環境に対して危険を呈する可能性がある、(2)培養中に必要な抗生 物質の量は生産コストを有意に増カロさせる、(3)抗生物質は、ヒト及び動物の治療で 用いられる物質の生産においては望ましくない、という問題があり、薬剤耐性によって プラスミドを保持した形質転換体は、工業生産には適用できな!ヽ。
[0006] プラスミドを安定に保持させるシステムとしては、抗生物質により選択圧をかける方法 の他に parシステムが知られている(非特許文献 6、 7参照)。 parシステムが働くと、複 製したプラスミドが娘細胞に分配される為、抗生物質耐性による選択圧を掛けなくて も安定にプラスミドを保持した菌株が得られる。これまでに大腸菌にて使用可能な RP 4プラスミドの parシステムを組み込んだベクター(特許文献 1参照)や、 R1プラスミド の par領域を使用したベクター(特許文献 2参照)が開発されている。また、 Cupriavi dus metallidurans CH34株が保有するメガプラスミド pMOL28の par領域には、 プロモーターである parp、プラスミドの安定化因子である parA28、 parB28及び認 識配列 parSが存在する事が知られており、これらの遺伝子は、プラスミド pSUP202 中に既にクローンィ匕されており、そのヌクレオチド配列はすでに公表されている(非特 許文献 8参照)。
[0007] 前述したように、 Ralstonia属細菌、 Cupriavidus属細菌、 Wautersia属細菌、特に Cupriavidus necatorはしばしばポリヒドロキシアルカノエート生産やタンパク質生 産菌として使用されており (非特許文献 9参照)、これらの細菌で特に使用可能であり 、接合伝達性が無ぐかつ抗生物質による選択圧をカゝけなくても安定に保持されるプ ラスミドベクターを開発することが求められている。し力しながら、前述したような par領 域の利用によるプラスミドの安定化は、 Ralstonia属細菌、 Cupriavidus属細菌、 Wa utersia属細菌に関しては行われておらず、これまでそのシステム構築やシステムが 実際にプラスミドの安定ィ匕に有効に働くかは分力つて 、な 、。
特許文献 1:米国特許第 6143518号明細書
特許文献 2:米国特許第 4760022号明細書
非特許文献 l:Jones IM等、 Mol Gen Genet. 180(3) :579-84. (1980) 非特許文献 2 :T. Fukui等, Biotechnology Letters. Vol.19, No.11, Nov 1 997:1093-97
非特許文献 3 : STEVEN SLATER等、 JOURNAL OF BACTERIOLOGY, Apr.1998:1979-1987
非特許文献 4:Luan Tao等、 Metabolic Engineering、 Volume 7, Issue 1、J anuary 2005:10—17
非特許文献 5: Davison J等、 Gene.1987;51 (2— 3) :275— 80.
非特許文献 6:M. Gerlitz等、 Journal of Bacteriology, Nov: 6194— 6203(1
990)
非特許文献 7:B. Youngren等、 Journal of Bacteriology, July : 3924- 3928 ( 2000)
非特許文献 8:Safieh Taghavi等、 Mol. Gen. Genet, 250:169-179(1996) 非特許文献 9:Gravin C.等、 Protein Expression & Purification Dec ;38 (2) :64-71(2004)
発明の開示
発明が解決しょうとする課題
本発明は、新規ベクターを開発する事を目的とする。好ましくは、 Ralstonia属、 Cup riavidus属又は Wautersia属の細菌を宿主として使用可能であり、抗生物質による 選択圧がなくても細菌中に安定に保持されるベクターを開発する事を目的とする。ま た、その形質転換体が、ポリヒドロキシアルカノエートを生産し、さらにはその生産性を 安定ィ匕することを目的とする。
課題を解決するための手段
[0009] 目的とする Ralstonia属細菌等の形質転換に用い得るベクターを作製する為には、 宿主細菌にてベクターを複製するための DNA配列(ori)が必須である事から、本発 明では、まず Ralstonia属細菌等にて機能する DNA複製開始領域 (ori)を含有した ベクターを開発する事で、 Ralstonia属、 Cupriavidus属、 Wautersia属細菌を宿主 として使用可能な新規ベクターを作製することができるのではな 、かと考えた。また、 工業生産規模での物質生産に使用するためのベクターとしては、宿主細菌内部でベ クタ一が複製されるだけではなぐ 1)簡便に扱えるための DNA塩基対数、 2)形質転 換体を選択するための薬剤耐性遺伝子、 3)接合伝達性がない、等の種々の特徴を 備えて 、ることが必須である。
更に、ベクターを安定化させる手段として、抗生物質を添加しなくても良い、宿主細 菌の染色体に変異を入れる必要がない等の理由から、前述した parシステムが非常 に有効であると考えられる。し力し、上述したメガプラスミド pMOL28は、 parシステム を保有しているため宿主細菌にて安定に保持される力 280kと非常に塩基対数が 多ぐ薬剤耐性遺伝子も保有していないため、 Ralstonia属細菌、 Cupriavidus属細 菌及び Wautersia属細菌用のベクターとしては使えないと考えられていた。
[0010] 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、 Cupriavidus m etallidurans CH34株が有するメガプラスミド pMOL28の複製開始領域および par システムを、 Cupriavidus metallidurans CH34株とは異なる宿主、例えば Cupri aviaus necator (旧名: Ralstonia eutropha、
Figure imgf000005_0001
eutropha)【こ て機能させたら、抗生物質耐性による選択圧を掛けなくてもプラスミドが安定に保持 されることを見出し、新規のプラスミドベクターを開発する事ができた。
[0011] 即ち、第一の本発明は、配列番号 18で示される配列を含み、かつ Ralstonia属細菌 、 Cupriavidus属細菌又は Wautersia属細菌を宿主として機能する複製開始領域 を導入してなる組換えベクターに関する。好ましくは、 mob遺伝子群および oriT配列 を有さない、すなわち接合伝達性を有さない組換えベクターであり、より好ましくは、 プラスミドを安定ィ匕する機構である parシステムとして機能する DNA領域である par領 域を導入してなる組換えベクターであり、更に好ましくは、 par領域として配列番号 19 で示される DNA断片を含有する組換えベクター、特に好ましくは、上記組換えべクタ 一に 3—ヒドロキシ酪酸(3HB)の供給系であるチオラーゼ、レダクターゼ、ポリヒドロ キシ酪酸(PHB)合成酵素である PHBシンターゼ、ポリヒドロキシアルカノエート(PH
A)合成酵素である PHAシンターゼ、 13酸化経路の酵素であるァシルー CoAトランス フェラーゼ、エノィルー Co Aヒドラターゼ及びァシルー CoAデヒドロゲナーゼから成る 遺伝子群より選択される PHA合成に関わる遺伝子を少なくとも 1つ導入してなる組換 えベクターに関する。 第二の本発明は、上記した組換えベクターによって宿主細菌に遺伝子導入された形 質転換体であり、好ましくは宿主細菌が Cupriavidus necatorである形質転換体に 関する。
第三の本発明は、上記形質転換体を培養し、該培養物からの PHAの製造方法に関 する。
[0012] 以下に本発明を詳細に説明する。
第一の本発明の組換えベクターは、配列番号 18で示される配列を含み、かつ Ralst onia属細菌、 Cupriavidus属細菌又は Wautersia属細菌を宿主として機能する複 製開始領域を導入してなるものである。
上記複製開始領域とは、組換えベクターを複製する複製起点として機能する配列で ある。配列番号 18で示される配列は、 Cupriavidus metallidurans CH34株が保 有するメガプラスミド PMOL28中の、配列番号 7で示される複製開始領域 (ori領域) の一部である。本発明でベクターに導入する複製開始領域は、配列番号 18の配列 を含み、 Ralstonia属細菌、 Cupriavidus属細菌又は Wautersia属細菌を宿主とし て機能するものであればどのようなものを用いてもよい。上記複製開始領域としては、 配列番号 7で示される配列を用いてもょ 、。
[0013] 本発明の組換えベクターは、 mob遺伝子群および oriT配列を有さない方が好ましい 。当該ベクターが mob遺伝子群や oriT配列を有すると、他の微生物と接触した際、 接合伝達が生じる可能性があり、組換え体の封じ込めと 、つた安全面での課題を有 してしまう為である。ここで、 mob遺伝子群とは DNAを運ぶ機能をコードする遺伝子 群の事であり、 mob遺伝子群がコードするタンパク質は oriT配列にニックを入れる機 能、さらに一本鎖となった DNAを安定に運ぶ機能を有する。 oriT配列とは、ニックサ イトとニックが入るための認識配列のことである。
[0014] また、本発明の組換えベクターは、 parシステムとして機能する、ベクターを安定化す る領域 (par領域)を導入してなるものが好ましい。前記 par領域としては、 Ralstonia 属細菌、 Cupriavidus属細菌又は Wautersia属細菌にて機能する parシステムであ ればどの様な配列であってもかまわないが、 Ralstonia属細菌、 Cupriavidus属細 菌又は Wautersia属細菌が保有するプラスミド中の par領域が好ましぐメガプラスミ ド中の par領域がより好ましい。本発明においては、配列番号 19で示される配列を含 む DNA断片を用いることが特に好ましい。上記配列番号 19で示される配列は、 Cup riavidus metallidurans CH34株が保有するメガプラスミド pMOL28中の、配列 番号 8で示される par領域の一部であり、 parA遺伝子、 parB遺伝子及び認識配列 p arSを含んでいる。
[0015] 配列番号 19で示される配列は、 Cupriavidus metallidurans CH34株が保有す るメガプラスミド PMOL28中の par領域の一部であるので、この配列を含む DNA断 片を parシステムとして機能させるには、配列番号 19で示される配列の他に、プロモ 一ターやターミネータ一を含む必要がある。
上記プロモーターとしては、上記メガプラスミド pMOL28中の parPを用いてもよいし 、 Ralstonia属細菌、 Cupriavidus属細菌又は Wautersia属細菌を宿主として機能 すれば、他の生物由来のプロモーターを用いることもできる。メガプラスミド pMOL28 中のプロモーター parPは、配列番号 8の 2388番目力ら 2848番目の塩基配列にほ ぼ相当する。
上記ターミネータ一としては、上記メガプラスミド pMOL28中のターミネータ一を用い てもよいし、 Ralstonia属細菌、 Cupriavidus属細菌又は Wautersia属細菌を宿主と して機能すれば、他の生物由来のターミネータ一を用いることもできる。メガプラスミド PMOL28中のターミネータ一は、配列番号 8の 61番目力ら 202番目の塩基配列中 に含まれる。
本発明の組換えベクターに導入する par領域としては、配列番号 8で示される配列を 用いてもよい。
[0016] また、本発明の組換えベクターは、 PHA合成に関わる遺伝子を少なくとも 1つ導入し てなることが好ましい。そうすれば、該組換えベクターの形質転換体は、全遺伝子が 有効に働けば、 PHAをより効率的に合成することができる。そしてこの PHAを合成 することができる形質転換体は、多コピー型のプラスミドとは異なって、安定的にブラ スミドが複製するので、宿主に PHA合成に関わる遺伝子を安定に供給する事が可 能であり、商業的に有意な量の PHAを蓄積することができる。
[0017] 前記 PHA合成に関わる遺伝子としては、 3HBの供給系であるチオラーゼ、レダクタ ーゼ、 PHB合成酵素である PHBシンターゼ、 PHA合成酵素である PHAシンターゼ 、 j8酸化の酵素であるァシルー CoAトランスフェラーゼ、エノィルー CoAヒドラターゼ 、ァシルー CoAデヒドロゲナーゼ等が挙げられ、それらの群より選択される少なくとも 1つが導入されてなる組換えベクターが好ましい。チオラーゼとしては、 /3ーケトチォ ラーゼ等が挙げられ、レダクターゼとしては、ァセトァセチル CoAレダクターゼ等が挙 げられ、 PHAシンターゼとしては、 Aeromonas caviae由来の PHAシンターゼ変 異体遺伝子である N149SZD171G変異体等が挙げられ、ァシル—CoAトランスフ エラーゼとしては、 3—ヒドロキシァシル ACP - CoAトランスフェラーゼ等が挙げられ る。
なお、本発明の組換えベクターに PHA合成に関わる遺伝子を導入する場合、あらか じめベクターに制限酵素サイトを導入しておくと、当該遺伝子を導入しやすくなる。
[0018] 更に、本発明の組換えベクターは、選択マーカーを含有するものが好ましい。本発明 では、組換えベクターに par領域を導入するとベクターの安定性に優れるため、抗生 物質等による選択圧は必要ないが、後述のように、本発明の組換えベクターを用い て宿主細胞を形質転換する際、組換え株の選択にこの選択マーカーを用いることが できる。
選択マーカーとしては特に限定されず、例えば、カナマイシン、アンピシリン、テトラサ イクリンなどの抗生物質耐性遺伝子等が挙げられる。本発明の組換えベクターにお いて、上記選択マーカーとしては、配列番号 14で示されるカナマイシン耐性遺伝子 が好ましい。 [0019] 本発明の組換えベクターは、また、上述の遺伝子を導入して得られた組換えべクタ 一を小型化してもよい。
組換えベクターを小型化するには、複製開始領域、 par領域、選択マーカー及び PH A合成酵素遺伝子の発現に不要な部分を欠失させることにより行える。例えば、本発 明の組換えベクターは、 mob遺伝子群および oriT配列を有さな 、方が好まし 、ので 、これらの遺伝子群や配列を欠失させて小型化することができる。本発明の組換えべ クタ一は、小型化することにより、宿主に導入する際、形質転換率を向上させることが できる。
[0020] 本発明の組換えベクターは、配列番号 18で示される配列を含み、かつ Ralstonia属 細菌、 Cupriavidus属細菌又は Wautersia属細菌を宿主として機能する複製開始 領域、及び、配列番号 14で示されるカナマイシン耐性遺伝子を含有することが更に 好ましい。
本発明の組換えベクターは、メガプラスミドに由来する複製開始領域を含有すること で、 Cupriavidus metallidurans以外の宿主においても機能することができる組換 えベクターとなる。
[0021] 本発明の組換えベクター作製に用いるベクターとしては特に限定されず、各種のプ ラスミドゃファージ等を用いることができる力 得られる組換えベクターを大腸菌とのシ ャトルべクタ一とすることが可能であることから、大腸菌由来のプラスミドを用いること が好ましい。
[0022] 本発明の組換えベクターの作製は、特に限定されず、 Ralstonia属細菌、 Cupriavi dus属細菌又は Wautersia属細菌にて機能する複製開始領域、並びに、必要に応 じて抗生物質耐性能力付与遺伝子等の選択マーカー (カナマイシン、アンピシリン、 テトラサイクリン耐性付与遺伝子等)、組換えベクターを安定ィ匕する parシステムとして 機能する par領域を組み込む事で、どの様なプラスミドベクター力 でも製作ができる
[0023] 第二の本発明の形質転換体は、上記の組換えベクターによって形質転換されたもの である。つまり、本発明の形質転換体は、上記で得られた組換えベクターを、当該べ クタ一に適合する宿主細菌中に導入することにより得られる。 [0024] 本発明における宿主としては、上記組換えベクターを用いて形質転換できれば特に 制限はないが、 Cupriavidus metallidurans以外の、天然から単離された微生物 や、菌株の寄託機関(例えば IFO、 ATCCなど)に寄託されている微生物等を使用 できる。具体的にはラルストニア(Ralstonia)属、カプリアビダス(Cupriavidus)属、 ヮウテルシア(Wautersia)属、ァエロモナス(Aeromonas)属、ェシエリキア(Escher ichia)属、アルカリゲネス(Alcaligenes)属、シユードモナス(Pseudomonas)属等 の細菌類を使用することができる。安全性及び生産性の観点から、好ましくはラルスト -ァ(Ralstonia)属、カプリアビダス(Cupriavidus)属、ヮウテルシア(Wautersia) 属であり、 らに好 3;しくは Cupriavidus necatorでめる。この Cupriavidus necat orは、分類学上、 Ralstonia eutropha^ Wautersia eutrophaと I PJ—で fco〔Van eechoutte M 等、 Int J Syst Evol Microbiol、 Mar、 54 (Pt2) : 317— 327 (2004)、 Vadamme P 等、 Int J Syst Evol Microbiol、 NoV、 54 (Pt6) : 22 85— 2589 (2004)〕。
[0025] 本発明の开質転換体は、上記組換えベクターにより、 Cupriavidus metallidurans
CH34株が保有するメガプラスミド pMOL28の ori領域や par領域の一部が導入さ れる。通常、メガプラスミドを有する微生物に、当該メガプラスミドに由来する遺伝子を 導入すると、相同的組換えが生じたり、同じ遺伝子を有するプラスミドが導入されるの を拒絶したりすることから、その微生物が有するメガプラスミド中の遺伝子を更に導入 することは困難である。しかしながら、本発明では、上記組換えベクターを用いて Cup riavidus metallidurans以外の宿主に形質転換を行うと、宿主が元来有するメガプ ラスミド中の複製開始領域と当該組換えベクターにより導入された複製開始領域等が 競合することなぐ両者が有する複製能や安定性の効果が相乗して、非常に高い複 製能や安定性が発現すると考えられる。
[0026] 本発明の形質転換体の作製方法は特に限定されず、宿主細菌への組換えベクター の導入は、公知の方法により行うことができる。例えば、エレクト口ポレーシヨン法 (Cu rrent Protocols in Morecular Biology、 1卷、 1. 8. 4頁、 1994年)や、カル シゥム法(Lederberg. E. M. et al.、J. Bacteriol. 119. 1072 (1974) )などを 用いることができる。形質転換体の選択には、カナマイシン耐性の表現系等の選択 マーカーを用いることができる。なお、本発明では、宿主として Cupriavidus metall idurans以外の微生物を用いるため、あら力じめ宿主のメガプラスミドを除去する操作 は不要である。
[0027] 次に、第三の本発明の PHAの製造方法について説明する。
本発明における PHAは以下の一般式(1)で表される。
[0028] [化 1]
R
H— I-0-CH— CH2-~CH-OH ( 1 )
0ノ m
[0029] (式中の Rは炭素数 1〜13のアルキル基、 mは 2以上の整数を表す。 m個の Rは同- であってもよいし、異なっていてもよい。 )
上記 PHAとしては、一般式(2)
[0030] [化 2]
Figure imgf000011_0001
[0031] (式中、 n、 pは 1以上の整数を表す)で示される、 3—ヒドロキシ酪酸と 3—ヒドロキシへ キサン酸のモノマーユニットで構成される共重合ポリエステル P (3HB— co— 3HH) が好ましい。
[0032] 本発明の PHAの製造方法は、上記形質転換体を培養し、該培養物カゝら PHAを抽 出精製することからなる。その方法は特に限定するわけではないが、以下のようにし て行う事ができる。
ポリヒドロキシアルカノエートの生産においては、糖、油脂または脂肪酸を炭素源とし て与え、炭素源以外の栄養源である窒素源、無機塩類、そのほかの有機栄養源を含 む培地を用いて、上記形質転換体を培養することができる。例えば、ラルストニア (Ra Istonia)属、カプリアビダス(Cupriavidus)属、ヮウテノレシァ(Wautersia)属、ァエロ モナス(Aeromonas)属、ェシエリキア(Escherichia)属、アルカリゲネス(Alcalige nes)属、シユードモナス(Pseudomonas)属等の微生物を宿主として得られた形質 転換体を培養する培地として、微生物が資化し得る炭素源を与え、場合によっては、 窒素源、無機塩類および有機栄養源のうちのいずれカゝを制限した培地、例えば窒素 源を 0. 01力 0. 1%に制限した培地等を用いることができる。
[0033] 糖としては、例えばグルコース、フラクトース等の炭水化物が挙げられる。油脂として は、炭素数が 10以上である飽和'不飽和脂肪酸を多く含む油脂、例えばヤシ油、パ ーム油、パーム核油等が挙げられる。脂肪酸としては、へキサン酸、オクタン酸、デカ ン酸、ラウリン酸、ォレイン酸、パルミチン酸、リノール酸、リノレン酸、ミリスチン酸等の 飽和 ·不飽和脂肪酸、ある!ヽはこれら脂肪酸のエステルや塩等の脂肪酸誘導体が挙 げられる。
[0034] 窒素源としては、例えばアンモニア、塩化アンモ-ゥム、硫酸アンモ-ゥム、リン酸ァ ンモ -ゥム等のアンモ-ゥム塩の他、ペプトン、肉エキス、酵母エキス等が挙げられる 。無機塩類としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシ ゥム、硫酸マグネシウム、塩ィ匕ナトリウム等が挙げられる。そのほかの有機栄養源とし ては、例えばグリシン、ァラニン、セリン、スレオニン、プロリン等のアミノ酸;ビタミン B1 、ビタミン B12、ビタミン C等のビタミン等が挙げられる。また、培養液中に、発現べク ターに存在する薬剤耐性遺伝子に対応する抗生物質 (カナマイシン等)を添加しても 良い。
[0035] 培養温度は、その菌が生育可能な温度であればよいが、 20°Cから 40°Cが好ましい。
培養時間は、特に制限はないが、 1から 10日間程度で良い。その後、得られた該培 養菌体力も PHAを回収すればょ 、。
[0036] 本発明において、菌体力もの PHAの回収は、例えば次のような方法により行うことが できる。培養終了後、培養液から遠心分離器等で菌体を分離し、その菌体を蒸留水 およびメタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロ口ホルム等の 有機溶剤を用いて PHAを抽出する。この PHAを含んだ有機溶剤溶液から、濾過等 によって菌体成分を除去し、そのろ液にメタノールやへキサン等の貧溶媒を加えて P HAを沈殿させる。さらに、濾過や遠心分離によって上澄み液を除去し、乾燥させて PHAを回収する。
[0037] 得られた PHAの重量平均分子量(Mw)や 3HH組成 (mol%)の分析は、例えば、ガ スクロマトグラフ法や核磁気共鳴法等により行うことができる。あるいは、 PHA生産確 認の簡易法としては、 Nileredを用いた染色法を利用できる。すなわち、組換え菌が 生育する寒天培地に Nileredを加え、組換え菌を 1〜7日間培養し、組換え菌が赤変 する力否かを観察することにより、ポリエステル生産の有無を確認できる。
発明の効果
[0038] 本発明の組換えベクターは、 Ralstonia属、 Cupriavidus属、 Wautersia属の細菌 を宿主として使用可能であり、なかでも mob遺伝子群および oriT配列を有さな 、もの は接合伝達性がなぐ更に par領域を導入したのものは、細菌中にて抗生物質による 選択圧がなくても安定に保持される。また、その形質転換体が、 PHAを安定的に生 産することができる。
発明を実施するための最良の形態
[0039] 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例 に何ら限定されるものではない。なお全体的な遺伝子操作は、 Molecular Clonin g (Cold Spring Harbor Laboratory Press, (1989) )に記載されているように 行うことができる。また、遺伝子操作に使用する酵素、クローユング宿主等は、巿場の 供給者から購入し、その説明に従い使用することができる。酵素としては、遺伝子操 作に使用できるものであれば特に限定されない。
また、以下の実施例では大腸菌由来のプラスミドを用いており、このプラスミドは配列 番号 14で示されるカナマイシン耐性遺伝子を含有している。
[0040] (実施例 1)プラスミドベクター pCUPの作製
本実施例において複製開始領域及び par領域を導入するプラスミドベクターとしては 、 Ralstonia属細菌にて使用可能なものであれば特に制限はない。本実施例にて作 製したプラスミドベクターは、 Cupriavidus metallidurans CH34株が保有するメ ガプラスミド (pMOL28)の複製開始領域 (配列番号 7)及び配列番号 8に記載の par 領域を用いている。 具体的な作製手順としては、まず、 Cupriavidus metallidurans CH34株から D NA Purification Kit (Promega社製)を使用し、メガプラスミドを含む DNAを調 製、この DNAを铸型に、配列番号 1及び 2に記載のプライマーを用いて PCR法によ つて約 4kbpの配列番号 7及び 8の配列を含む DNA領域を増幅した。 PCR条件は(
1) 98°Cで 2分、(2) 98°Cで 30秒、(3) 55°Cで 30秒、(4) 72°Cで 5分、(2)から(4)を 30サイクル、(5) 72°Cで 5分であり、ポリメラーゼとしては TaKaRa Pyrobest DN A Polymerase (タカラバイオ社製)を用いた。増幅断片を大腸菌用のクローユング ベクター PCR— Blunt2— TOPO (Invitrogen社製)にクローユングした。
次に、配列番号 3及び 4に記載のプライマーを用いて PCR法によって PCR— Blunt 2-TOPO (Invitrogen社製)ベクターの 206 lbp— 2702bp領域の両端より外側に 向かって増幅反応を行 、、 DNAリガーゼ (Ligation High (東洋紡社製) )によって 繋ぐ事により 641bpを欠失させた図 1によって示されるベクター pCUPを作製した。 P CR条件は(1) 98°Cで 2分、(2) 98°Cで 30秒、(3) 55°Cで 30秒、(4) 72°Cで 7分、(
2)から(4)を 30サイクル、(5) 72°Cで 7分であり、ポリメラーゼとしては TaKaRa Pyr obest DNA Polymerase (タカラバイオ社製)を用いた。
[0041] (実施例 2)プラスミドベクター pCUP2の作製
本発明のプラスミドベクターに遺伝子導入をしやすくするため、さらに実施例 1で得ら れた pCUPに制限酵素 Muniサイトを導入した。具体的な作製手順としては、まず配 列番号 5及び 6に記載のプライマーを用いて PCR法によって実施例 1にて作製した p CUPを铸型にして PCRを行い、増幅断片を DNAリガーゼ (Ligation High (東洋 紡社製))によって繋ぐ事により、 Muniサイトを導入し、図 2に示される pCUP2を作 製した。 PCR条件は(1) 98°Cで 2分、(2) 98°Cで 30秒、(3) 55°Cで 30秒、(4) 72°C で 5分、(2)から(4)を 30サイクル、である。ポリメラーゼとしては TaKaRa Pyrobest
DNA Polymerase (タカラバイオ社製)を用いた。
このようにして、配列番号 18で示される DNA領域及び配列番号 19で示される DNA 領域を含有し、 mob遺伝子群及び oriT配列など接合伝達に関与する遺伝子を含有 しな 、プラスミドベクターを作製した。
[0042] (実施例 3)プラスミドベクター pCUP2を用いた形質転換体の作製 エレクト口ポレーシヨン法による形質転換は、次のように実施した。エレクト口ポレーショ ンに使用する遺伝子導入装置としては Biorad社製のジーンパルサーを用い、キュべ ットは同じく Biorad社製の gapO. 2cmのものを用いた。キュベットに、 Ralstonia eu tropha H16株のコンビテント細胞 400 μ 1とプラスミド pCUP2調製液 5 μ 1を注入し てパルス装置にセットし、静電容量 25 μ F、電圧 1. 5kV、抵抗値 800 Ωの条件で電 気パルスをかけた。パルス後、キュベット内の菌液を Nutrient Broth培地(DIFCO 社製)で 30°C、 3時間振とう培養し、選択プレート (Nutrient Agar培地(DIFCO社 製)、カナマイシン lOOmgZL)で、 30°Cにて 2日間培養して、形質転換体を取得し た。
[0043] (比較例 1)プラスミドベクター PJRD215を用いた形質転換体の作製
プラスミドとして、配列番号 18の配列や par領域を有さな 、pJRD215を用いた以外 は、実施例 3と同様にしてプラスミドベクター PJRD215を用いた形質転換体を取得し た。
[0044] (実施例 4)プラスミドベクター pCUP2を用いた形質転換体の保持率
実施例 3で得られた形質転換体のプラスミドの保持率を試験した。試験は lwZv% Meat― extract^ 丄 wZ v% Bacto— Trypton、 0. 2wZ v% Yeast― extract^ 0 . 9w/v% Na PO /12H 0、 0. 15w/v% KH PO、 pH6. 8から成るカナマ
2 4 2 2 4
イシン添カ卩 (50mg/L)の MB+肉培地にて、実施例 3で得たプラスミドベクター pC UP2を用いた形質転換体を 24時間培養した培養液を、 1. lw/v% Na PO - 12
2 4
H 0、 0. 19w/v% KH PO、 1. 29w/v% (NH ) SO , 0. lw/v% MgS
2 2 4 4 2 4
O /7H 0、 2. 5w/v% パーム Wォレイン油、 0. 5vZv%微量金属塩溶液(0. 1
4 2
N塩酸に 1· 6w/v% FeCl · 6Η 0、 lw/v% CaCl · 2Η 0、 0· 02w/v% C
3 2 2 2
oCl · 6Η 0、 0. 016w/v% CuSO · 5Η 0、 0. 012w/v% NiCl · 6Η Oを溶
2 2 4 2 2 2 力したもの)からなるカナマイシン無添カ卩の MB +油培地に 1% (v/v)にて植え換え 、 24時間振とう培養した。この培養を 24時間毎に 3回継代し、 4回目の培養の 24時 間時にプラスミドの保持率を下記のように測定した。
まず、培養液を滅菌水によって 10の 8乗分の 1に希釈し、カナマイシン無添カ卩のプレ ート(Nutrient Agar培地(DIFCO社製) )に 10力ら 100 μ 1蒔き、得られたコロニー をさらにカナマイシン添加(lOOmgZL)の選択プレート (Nutrient Agar培地 (DIF CO社製))にランダムに 100コロニーレプリカし、生育してきたコロニーの数を数えた 。プラスミドを保持している細菌のみがプレート上にコロニーを形成する事ができる事 力 得られた薬剤耐性コロニーの数を安定性とした。結果を表 1に示す。
[0045] (比較例 2)プラスミドベクター PJRD215を用いた形質転換体の保持率
形質転換体として実施例 3で得たプラスミドベクター pCUP2を用いた形質転換体の 代わりに、比較例 1で得た形質転換体を用いた以外は、実施例 4と同様にしてプラス ミドの保持率を試験した。結果を表 1に示す。
[0046] [表 1]
Figure imgf000016_0001
[0047] (実施例 5) PHA合成遺伝子導入プラスミドベクターの作製
実施例 2で得たプラスミドベクター (pCUP2)に、 EcoRI処理によって調製した配列 番号 13で示す Aeromonas caviae由来の PHAシンターゼ変異体遺伝子である N 149SZD171G変異体を pCUP2の制限酵素 Muni部位に組み込んだ発現プラスミ ドベクター(pCUP2EEACP 149NS/ 171 DG)を作製した(図 3)。
Aeromonas caviae由来の PHAシンターゼ変異体遺伝子である N149S/D171 G変異体は、次のように作製した。まず、 pBluescriptllKS (—)(東洋紡社製)を Pst I処理し、 DNA Blunting Kit (タカラバイオ製)を用いて平滑末端ィ匕しライゲーショ ンすることにより Pstlサイトを欠失したプラスミド pBlue— Newを作製した。このプラス ミドの EcoRIサイトに PJRD215— EE32dl3 (特開平 5 - 93049号公報)より同酵素 で切り出した dl3断片をクローユングした (pBlue— dl3)。次に、クローン E2— 50由 来のプラスミド(Kichise等、 Appl. Environ. Microbiol, 68 : 2411— 2419 (2002 ;) )を铸型とし、配列番号 9及び 10に記載のプライマーのセット、及び、配列番号 11及 び 12に記載のプライマーのセットを用いてそれぞれ PCR法により増幅、 2断片を得た 。その条件は(1) 94°Cで 2分、(2) 94°Cで 30秒、(3) 55°Cで 30秒、(4) 72°Cで 2分 、(2)から (4)を 25サイクル、(5) 72°Cで 5分である。増幅された 2断片を等モル混合 し再び PCR反応を行い 2断片を結合させた。その条件は(1) 96°Cで 5分、(2) 95°C で 2分、(3) 72°Cで 1分、(2)から(3)を 12サイクルであり、ポリメラーゼとしては Pyro best DNA Polymerase (タカラバイオ製)を用いた。 目的サイズの DNA断片をァ ガロース電気泳動ゲルより切り出し Pstlと Xholで処理し、同酵素で処理した pBlue— dl3に断片を入れ替える形でクローユングした (pBlue— N149SZD171G)。塩基 配列決定を、 PERIKIN ELMER APPLIED BIOSYSTEMS社製の DNAシ 一タエンサー 310 Genetic Analyzerを用いて行い、 PHA合成酵素の 149番目 のアミノ酸であるァスパラギンがセリンに、 171番目のアミノ酸であるァスパラギン酸が グリシンに置換された変異遺伝子であることを確認した。
以上のように調製した pBlue— N149SZD171Gを制限酵素 EcoRIで処理し、制限 酵素 Muniで処理した pCUP2とを DNA Ligase (Ligation High、東洋紡社製) によって繋ぐ事で、 PHA合成酵素を含有したプラスミドベクター pCUP2EEACP14 9NS/171 DGを作製した。
(実施例 6)エノィルー CoAヒドラターゼ遺伝子導入プラスミドベクターの作製 実施例 2で得たプラスミドベクター (pCUP2)に、 EcoRI処理によって調製した配列 番号 17で示す Aeromonas caviae由来のエノィル一 CoAヒドラターゼ遺伝子を pC UP2の制限酵素 Muni部位に組み込んだ発現プラスミドベクター(pCUP2EEphaJ) を作製した(図 4)。このベクターは次のようにして作製した。
まず、本発明で使用するエノィル一 CoAヒドラターゼ遺伝子を含有して ヽる pJRD21 5— EE32 (特開平 5— 93049号公報)を铸型に配列番号 15及び 16に記載のプライ マーセットを用いて PCR法によって増幅、配列番号 17に記載のエノィルー CoAヒド ラターゼ遺伝子を含む増幅断片を得た。その条件は(1) 94°Cで 2分、(2) 98°Cで 10 秒、(3) 60°Cで 10秒、(4) 68°Cで 1分、(2)から(4)を 30サイクル、(5) 68°Cで 3分 である。ポリメラーゼとしては LA Taq DNA Polymerase (タカラバイオ社製)を使 用した。次にこの増幅断片を Bglll及び Aflllによって処理し、同じく Bglll及び Aflll で処理した後、アルカリホスファターゼ処理を行 、DNAを脱リン酸化処理した pJRD 215— EE32dl3とライゲーシヨン処理を行!ヽ、 pJRD215— EE32dl3の Bglllと Afl IIの間の DNA断片と入れ替える形でクロー-ングを行った(pJRD215— EEphaJ)。 ライゲーシヨンには Ligation High (東洋紡社製)を用いた。この様にして作製した p JRD215 - EEphaJから EcoRIにてエノィル Co Aヒドラターゼ遺伝子を含む DNA 断片を調整し、 Muni処理した pCUP2とライゲーシヨンを行う事で、 pCUP2EEphaJ (図 4)を作製した。ライゲーシヨンには Ligation High (東洋紡社製)を使用した。
[0049] (実施例 7) PHA合成遺伝子導入プラスミドベクターを用いた形質転換体の作製 プラスミド PCUP2調製液の代わりに、実施例 5で得た PHA合成遺伝子導入プラスミ ドベクター調製液 (PCUP2EEACP149NSZ171DG)を用いた以外は、実施例 3と 同様にして、 PHA合成遺伝子導入プラスミドベクターを用いた形質転換体を作製し た。形質転換には PHA合成不能株である Ralstonia eutropha PHB— 4株(Tsu ge T等、 Macromol Biosci、 Oct 20 ;4 (10) : 963— 70. (2004) )を用いた。
[0050] (実施例 8)エノィルー CoAヒドラターゼ遺伝子導入プラスミドベクターを用いた形質 転換体の作製
プラスミド PCUP2調製液の代わりに、実施例 6で得たエノィル— CoAヒドラターゼ遺 伝子導入プラスミドベクター (PCUP2EEphaJ)調製液を用いた以外は実施例 3と同 様にして、エノィルー CoAヒドラターゼ遺伝子導入プラスミドベクターを用いた形質転 換体を作製した。形質転換には PHA合成不能株である Ralstonia eutropha PH B— 4株を用いた。
[0051] (実施例 9)プラスミドベクター pCUP2EEACP149NSZl71DGを用いた形質転換 体の保持率
形質転換体として、実施例 3で得たプラスミドベクター pCUP2を用いた形質転換体 の代わりに、実施例 7で得た形質転換体を用いた以外は、実施例 4と同様にしてブラ スミドの保持率を試験した。結果を表 2に示す。
[0052] [表 2]
Figure imgf000018_0001
(実施例 10)プラスミドベクター pCUP2EEphaJを用いた形質転換体の保持率 形質転換体として、実施例 3で得たプラスミドベクター pCUP2を用いた形質転換体 の代わりに、実施例 8で得た形質転換体を用いた以外は、実施例 4と同様にしてブラ スミドの保持率を試験した。結果を表 2に示す。
[0054] (比較例 3)Ralstonia Eutropha PHB—4株を宿主としたプラスミドベクター pJRD 215を用いた形質転換体の作製
プラスミドとして配列番号 18の配列や par領域を有さな!/、pJRD215を用い、宿主とし て Ralstonia Eutropha PHB— 4株を用いた以外は、実施例 3と同様にしてプラス ミドベクター PJRD215を用 、た形質転換体を取得した。
[0055] (比較例 4) Ralstonia Eutropha PHB— 4株を宿主としたプラスミドベクター pJRD 215を用いた形質転換体の保持率
形質転換体として、実施例 3で得たプラスミドベクター pCUP2を用いた形質転換体 の代わりに、比較例 3で得た形質転換体を用いた以外は、実施例 4と同様にしてブラ スミドの保持率を試験した。結果を表 2に示す。
[0056] (実施例 11)実施例 7で得た形質転換体におけるポリエステル生産
実施例 7で得られた形質転換体を、 Nilered含有培地(リン酸水素 2ナトリウム · 12水 塩 9g、リン酸 2水素カリウム 1. 5g、塩化アンモ -ゥム 0. 05g、硫酸マグネシウム •7水塩 0. 02g、フルクトース 0. 5g、塩ィ匕コノ ルト · 6水塩 0. 25ppm、塩ィ匕鉄(Π Ι) · 6水塩 16ppm、塩化カルシウム · 2水塩 10. 3ppm、塩化ニッケル · 6水塩 0. 12ppm、硫酸銅 · 5水塩 0. 16ppm、 Nilered 0. 5mg、寒天 15gZUに播種し、 30°Cで 2日培養した。その結果、コロニーが赤変したこと力 菌体内にポリエステル が蓄積して 、ることを確認できた。
産業上の利用可能性
[0057] 本発明のプラスミドベクターは、 Ralstonia属、 Cupriavidus属、 Wautersia属の細 菌を宿主として使用可能であり、なかでも mob遺伝子群および oriT配列を有さな 、も のは接合伝達性がなぐ更に par領域を導入したのものは、細菌中にて抗生物質によ る選択圧がなくても安定に保持される。また、その形質転換体が、 PHAを安定的に 生産することができる。
図面の簡単な説明
[0058] [図 l]pCUPの遺伝子及び制限酵素地図。 [図 2]pCUP2の遺伝子及び制限酵素地図。
[図 3]pCUP2EEACP149NSZl71DGの遺伝子及び制限酵素地図。
[図 4]pCUP2EEphaJの遺伝子及び制限酵素地図。

Claims

請求の範囲
[1] 配列番号 18で示される配列を含み、かつ Ralstonia属細菌、 Cupriavidus属細菌 又は Wautersia属細菌を宿主として機能する複製開始領域を導入してなる組換えべ クタ一。
[2] mob遺伝子群および oriT配列を有さな 、請求項 1記載の組換えベクター。
[3] ベクターを安定ィ匕する領域を導入してなる請求項 1又は 2記載の組換えベクター。
[4] ベクターを安定ィ匕する領域として、配列番号 19で示される配列を含む DNA断片を 導入してなる請求項 3記載の組換えベクター。
[5] チオラーゼ、レダクターゼ、ポリヒドロキシ酪酸シンターゼ、ポリヒドロキシアルカノエー トシンターゼ、ァシルー CoAトランスフェラーゼ、エノィルー Co Aヒドラターゼ及びァシ ル一 CoAデヒドロゲナーゼカも成る遺伝子群より選択されるポリヒドロキシアル力ノエ ート合成に関わる遺伝子を少なくとも 1つ導入してなる請求項 1〜4何れか 1項に記載 の組換えベクター。
[6] 請求項 1〜5何れか 1項に記載の組換えベクターによって宿主細菌に遺伝子導入さ れた形質転換体。
[7] 宿主細菌が Cupriavidus necatorである請求項 6記載の形質転換体。
[8] 請求項 6又は 7記載の形質転換体を培養し、該培養物からポリヒドロキシアル力ノエ ートを抽出精製することを特徴とするポリヒドロキシアルカノエートの製造方法。
[9] ポリヒドロキシアルカノエートが 3—ヒドロキシ酪酸と 3—ヒドロキシへキサン酸のモノマ 一ユニットで構成される共重合ポリエステルであることを特徴とする請求項 8記載のポ リヒドロキシアルカノエートの製造方法。
PCT/JP2006/321415 2005-10-27 2006-10-26 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体 WO2007049716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680039898.7A CN101297036B (zh) 2005-10-27 2006-10-26 新质粒载体和稳定保持质粒的转化体
JP2007542665A JP5650368B2 (ja) 2005-10-27 2006-10-26 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体
EP06822384.1A EP1942184B1 (en) 2005-10-27 2006-10-26 Transformant capable of carrying plasmid stably

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-312921 2005-10-27
JP2005312921 2005-10-27

Publications (1)

Publication Number Publication Date
WO2007049716A1 true WO2007049716A1 (ja) 2007-05-03

Family

ID=37967826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321415 WO2007049716A1 (ja) 2005-10-27 2006-10-26 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体

Country Status (4)

Country Link
EP (1) EP1942184B1 (ja)
JP (1) JP5650368B2 (ja)
CN (1) CN101297036B (ja)
WO (1) WO2007049716A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145164A1 (ja) 2008-05-26 2009-12-03 株式会社カネカ 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法
WO2010013483A1 (ja) 2008-08-01 2010-02-04 株式会社カネカ 樹脂組成物及びシート
WO2014042076A1 (ja) 2012-09-14 2014-03-20 国立大学法人東京工業大学 改質油脂組成物を用いたポリヒドロキシアルカノエートの製造方法
WO2015115619A1 (ja) 2014-01-31 2015-08-06 株式会社カネカ R体特異的エノイル-CoAヒドラターゼ遺伝子の発現が調節された微生物及びそれを用いたポリヒドロキシアルカノエート共重合体の製造方法
WO2020174988A1 (ja) 2019-02-28 2020-09-03 株式会社カネカ 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
WO2021172559A1 (ja) 2020-02-28 2021-09-02 国立大学法人北海道大学 ブロック共重合体、及びその製造方法
WO2021206155A1 (ja) 2020-04-10 2021-10-14 株式会社カネカ 共重合ポリヒドロキシアルカン酸混合物の製造方法、及び形質転換微生物
WO2023054509A1 (ja) 2021-09-30 2023-04-06 株式会社カネカ 微生物の培養方法、形質転換微生物、及びポリ(3-ヒドロキシアルカノエート)の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355346A (zh) * 2020-08-21 2021-09-07 深圳蓝晶生物科技有限公司 删除稳定载体上冗余片段的方法,采用该方法得到的稳定载体及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760022A (en) * 1982-09-16 1988-07-26 A/S Alfred Benzon Stabilized plasmids
JP3062459B2 (ja) * 1996-08-14 2000-07-10 理化学研究所 ポリエステル重合酵素遺伝子及びポリエステルの製造方法
US6143518A (en) * 1994-09-16 2000-11-07 Rhone-Poulenc Rorer Sa Method for the production of recombinant proteins, plasmids and modified cells
WO2004074476A1 (ja) * 2003-02-21 2004-09-02 Kaneka Corporation 新規ベクター
WO2005098001A1 (ja) * 2004-04-09 2005-10-20 Kaneka Corporation 新規形質転換体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670343A (en) * 1990-04-24 1997-09-23 Rhone Poulenc Biochimie Cloning and/or expression vectors, preparation method and their use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760022A (en) * 1982-09-16 1988-07-26 A/S Alfred Benzon Stabilized plasmids
US6143518A (en) * 1994-09-16 2000-11-07 Rhone-Poulenc Rorer Sa Method for the production of recombinant proteins, plasmids and modified cells
JP3062459B2 (ja) * 1996-08-14 2000-07-10 理化学研究所 ポリエステル重合酵素遺伝子及びポリエステルの製造方法
WO2004074476A1 (ja) * 2003-02-21 2004-09-02 Kaneka Corporation 新規ベクター
WO2005098001A1 (ja) * 2004-04-09 2005-10-20 Kaneka Corporation 新規形質転換体

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GORIS J. ET AL: "Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia meallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend.", INT. J. SYST. EVOL. MICROBIOL., vol. 51, 2001, pages 1773 - 1782, XP003011955 *
MATSUMOTO K. ET AL: "Enhancement of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production in the transgenic Arabidopsis thaliana by the in vitro evolved highly active mutants of polyhydroxyalkanoate (PHA) synthase from Aeromonas caviae", BIOMACROMOLECULES, vol. 6, July 2005 (2005-07-01) - August 2005 (2005-08-01), pages 2126 - 2130, XP003011957 *
MERGEAY M. ET AL: "Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes", FEMS MICROBIOLOGY REVIEWS, vol. 27, 2003, pages 385 - 410, XP003011956 *
TAGHAVI S. ET AL: "Identification of a partition and replication region in the Alcaligenes eutrophus megaplasmid pMOL28", MOL. GEN. GENET, vol. 250, 1996, pages 169 - 179, XP003011952 *
TSUGE T. ET AL: "Biosynthesis and compositional regulation of poly[(3-hydroxybutyrate)-co-(3-hydroxyhexanoate)] in recombinant ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes", MACROMOLECULAR BIOSCIENCE, vol. 4, 2004, pages 238 - 242, XP003011958 *
VANDAMME P. ET AL: "Taxonomy of the genus Cupriavidus: a tale of lost and found", INT. J. SYST. EVOL. MICROBIOL., vol. 54, 2004, pages 2285 - 2289, XP003011953 *
VANEECHOUTTE M. ET AL: "Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov.", INT. J. SYST. EVOL. MICROBIOL., vol. 54, 2004, pages 317 - 327, XP003011954 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145164A1 (ja) 2008-05-26 2009-12-03 株式会社カネカ 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法
WO2010013483A1 (ja) 2008-08-01 2010-02-04 株式会社カネカ 樹脂組成物及びシート
WO2014042076A1 (ja) 2012-09-14 2014-03-20 国立大学法人東京工業大学 改質油脂組成物を用いたポリヒドロキシアルカノエートの製造方法
WO2015115619A1 (ja) 2014-01-31 2015-08-06 株式会社カネカ R体特異的エノイル-CoAヒドラターゼ遺伝子の発現が調節された微生物及びそれを用いたポリヒドロキシアルカノエート共重合体の製造方法
WO2020174988A1 (ja) 2019-02-28 2020-09-03 株式会社カネカ 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
WO2021172559A1 (ja) 2020-02-28 2021-09-02 国立大学法人北海道大学 ブロック共重合体、及びその製造方法
WO2021206155A1 (ja) 2020-04-10 2021-10-14 株式会社カネカ 共重合ポリヒドロキシアルカン酸混合物の製造方法、及び形質転換微生物
WO2023054509A1 (ja) 2021-09-30 2023-04-06 株式会社カネカ 微生物の培養方法、形質転換微生物、及びポリ(3-ヒドロキシアルカノエート)の製造方法

Also Published As

Publication number Publication date
CN101297036A (zh) 2008-10-29
JPWO2007049716A1 (ja) 2009-04-30
CN101297036B (zh) 2013-03-13
EP1942184A1 (en) 2008-07-09
EP1942184B1 (en) 2014-06-04
EP1942184A4 (en) 2009-06-03
JP5650368B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5650368B2 (ja) 新規プラスミドベクター及びプラスミドを安定に保持する形質転換体
Simon et al. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria
Voss et al. Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16
CN114908093A (zh) 用于c1固定菌的crispr/cas***
AU684556B2 (en) Lactic acid bacterial suppressor mutants and their use as selective markers and as means of containment in lactic acid bacteria
JP6518955B2 (ja) 亜リン酸デヒドロゲナーゼ遺伝子をマーカーとした微生物の選択的培養方法
Thakker et al. Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production
AU2011273176A1 (en) Self-deleting plasmid
KR101954530B1 (ko) 메탄을 이용하여 숙신산을 생성하는 재조합 미생물 및 이의 용도
KR20150083895A (ko) 박테리아 조작
JP4995469B2 (ja) 遺伝子組み換え微生物及びそれを用いたポリエステルの製造方法
Keasling et al. Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis
JPWO2008090873A1 (ja) ポリヒドロキシアルカノエートの製造方法
US20060160195A1 (en) Novel vector
IL103811A (en) DNA sequence encoding betaine utilization, vectors containing it, microorganisms transformed in it and their uses
US9051589B2 (en) Plasmid vector and transformant stably retaining plasmid
KR101898973B1 (ko) 플라스미드 기반의 비브리오 콜레라 ctx 파지 복제시스템
US6287844B1 (en) Compositions and methods for controlling genetically engineered organisms
US20210340574A1 (en) Compositions and methods for genetic manipulation of methanotrophs
JP2003235565A (ja) 乳酸菌用シャトルベクター
Sarma et al. Methods and mechanisms for genetic manipulation of microorganisms
JP2013005792A (ja) ヌクレアーゼ遺伝子を欠失または不活性化させたロドコッカス属細菌
KR101970471B1 (ko) Ctx 파지에 감염되고 콜레라 독소를 생산할 수 있는 비브리오 콜레라 균주
KR100738002B1 (ko) 로도코커스―대장균 셔틀벡터
JP2009225775A (ja) ポリヒドロキシアルカン酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039898.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542665

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006822384

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE