WO2007046135A1 - In-unit optical transmission device - Google Patents

In-unit optical transmission device Download PDF

Info

Publication number
WO2007046135A1
WO2007046135A1 PCT/JP2005/019175 JP2005019175W WO2007046135A1 WO 2007046135 A1 WO2007046135 A1 WO 2007046135A1 JP 2005019175 W JP2005019175 W JP 2005019175W WO 2007046135 A1 WO2007046135 A1 WO 2007046135A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
intra
optical transmission
transmission device
Prior art date
Application number
PCT/JP2005/019175
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Sumiya
Takashi Sekiguchi
Yoshihiro Kaneda
Yoshihiro Onoda
Takuya Suemura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/019175 priority Critical patent/WO2007046135A1/en
Publication of WO2007046135A1 publication Critical patent/WO2007046135A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum

Definitions

  • the present invention relates to an intra-unit optical transmission apparatus, and to an intra-unit optical transmission apparatus that transmits an optical signal to a plurality of circuits in the unit.
  • a transmission end and a reception end are connected by, for example, a wiring pattern provided on a print substrate, and an electric signal is transmitted by the wiring pattern.
  • Patent Document 1 a plurality of light emitting elements in a transmitter are arranged on a substantially concentric circumference, and signals are spatially propagated using the light emitting element power light, thereby receiving signals in a specific direction. It is described that it is transmitted to the light receiving element in the container.
  • Patent Document 1 JP-A-7-240712
  • wiring patterns are created in a plurality of layers and the respective layers are connected by via holes. As shown in A), impedance mismatch occurs due to the connection of wiring patterns PI and P2 with different widths. In this case, waveform distortion occurs as shown in FIG. 4B, and the timing is shifted by time t3.
  • the present invention has been made in view of the above points, and has a general object to transmit a signal to a plurality of circuits in a unit at the same timing.
  • an intra-unit optical transmission method of the present invention includes an optical transmission unit that is arranged in a unit and transmits an optical signal in all directions, and a circumference around the optical transmission unit. And a plurality of optical receivers that receive optical signals from the optical transmitter.
  • signals can be transmitted to a plurality of circuits in the unit at the same timing.
  • FIG. 1 is a diagram for explaining a wiring pattern length.
  • FIG. 2 is a diagram for explaining a change in load capacity due to a change in the number of receiving ends.
  • FIG. 3 is a diagram for explaining a change in delay time due to a change in load capacity.
  • FIG. 4 is a diagram for explaining impedance mismatch and waveform distortion.
  • FIG. 5 is a plan view and a side view of the first embodiment of the present invention.
  • FIG. 6 is a plan view and a side view of a second embodiment of the present invention.
  • FIG. 7 is a side view and a plan view of a third embodiment of the present invention.
  • FIG. 8 is a side view and a plan view of a modification of the third embodiment of the present invention.
  • FIG. 9 is a side view of the first embodiment of the optical transmitter.
  • FIG. 10 is a side view of the second embodiment of the optical transmitter.
  • FIG. 11 is a side view of the reflector.
  • FIG. 12 is a side view of a modification of the second embodiment of the optical transmitter.
  • FIG. 13 is a side view of a third embodiment of the optical transmitter.
  • FIG. 14 is a side view of the first embodiment of the optical receiver.
  • FIG. 15 is a side view of a modification of the first embodiment of the optical receiver.
  • FIG. 16 is a side view of another modification of the first embodiment of the optical receiver.
  • the transmission signal is transmitted in all directions as an optical signal from the optical transmitter 10 in the mute, and this optical signal is received by the optical receivers 20a to 20d and 30a to 30c in the mute.
  • the group of the optical receivers 20a to 20d and the group of the optical receivers 30a to 30c are arranged on a concentric circle with the optical transmitter 10 as the center. Therefore, the group of optical receivers 20a to 20d receives a signal from the optical transmitter 10 with the same delay time, and the group of optical receivers 30a to 30c receives an optical signal from the optical transmitter 10 with the same delay time. Is done.
  • the height of the optical transmission unit 10 from the printed circuit board 40 is higher than that of the optical reception units 20a to 20d and 30a to 30c so The receivers 20a to 20d and 30a to 3Oc can be seen through.
  • FIGS. 6A and 6B show a plan view and a side view of the second embodiment of the present invention.
  • a first optical transmission unit 10 and a second optical transmission unit 11 are arranged in a space apart from each other.
  • the optical transmitters 10 and 11 transmit the transmission signals as optical signals of different wavelengths ⁇ ⁇ and ⁇ 2 to all directions in the unit.
  • a group of the optical receivers 30a to 30c is arranged on a circumference centered on the optical transmitter 10, and a group of the optical receivers 35a to 35c is arranged on a circumference centered on the optical transmitter 11 ing. For this reason, in the group of optical receivers 30a to 30c, the optical transmitter 10 transmits the light with the same delay time. The signal is received, and the optical signal is received from the optical transmitter 11 in the group of the optical receivers 35a to 35c with the same delay time.
  • FIG. 7A and 7B show a side view and a plan view of a third embodiment of the present invention.
  • an optical transmission unit 10 is arranged in the unit, and the optical transmission unit 10 transmits a transmission signal as an optical signal in all directions in the unit.
  • the groups of the optical receiving units 30a to 30c are arranged on the circumference of the same distance from the optical transmitting unit 10.
  • An optical obstacle 42 such as a circuit component is disposed at a position where the optical transmission unit 10 becomes an obstacle when looking at any of the optical reception units 30a to 30c.
  • the optical transmitter 10, optical receivers 30a to 30c, and optical obstacle 42 arranged on the printed circuit board 40 are each covered with a unit case 44 so that no light is incident from the outside, and no signal light is received. It is shielded from leaking outside.
  • the upper surface of the printed circuit board 40, the inner surface of the unit case 44, and the surface of the circuit component disposed on the printed circuit board 40 are subjected to processing such as application of a light absorbing material so that the light reflectance is lowered. Being sung.
  • a reflection mirror 46 is installed at a position that can be seen from the optical transmitter 10.
  • the reflection mirror 46 has a ring shape with a radius LZ2 centered on the optical transmission unit 10 with respect to the distance L from the optical transmission unit 10 to the optical reception units 30a to 30c.
  • the optical signal transmitted from the optical transmitter 10 reaches the reflection mirror 46 without being blocked by the optical obstacle 42, is reflected by the reflection mirror 46, and reaches the optical receivers 30a to 30c. Received.
  • the upper surface of the printed circuit board 40 and the inner surface of the unit case 44 have low light reflectance, there is no possibility that multipaths of optical signals having different delay amounts will occur in each of the optical receiving units 30a to 30c.
  • FIGS. 8A and 8B show a side view and a plan view of a modification of the third embodiment of the present invention.
  • an optical transmitter 10 is arranged in the unit, and the optical transmitter 10 transmits a transmission signal as an optical signal in all directions in the unit.
  • the group of optical receivers 30a-30c is the optical transmitter 1 It is arranged on the circumference of the same distance L from 0.
  • An optical obstacle 42 such as a circuit component is disposed at a position where the optical transmission unit 10 becomes an obstacle when looking at any of the optical reception units 30a to 30c.
  • the optical transmitter 10, optical receivers 30a to 30c, and optical obstacle 42 arranged on the printed circuit board 40 are each covered with a unit case 44 so that no light is incident from the outside, and no signal light is received. It is shielded from leaking outside.
  • the upper surface of the printed circuit board 40, the inner surface of the unit case 44, and the surface of the circuit component disposed on the printed circuit board 40 are subjected to processing such as application of a light absorbing material so that the light reflectance is lowered. Being sung.
  • a reflection mirror 46 is installed on the inner surface of the unit case 44 at a position where it can be seen from the optical transmitter 10, and further, it is reflected at a position where it can be seen from the reflection mirror 46 on the upper surface of the printed circuit board 40.
  • the mirror 47 is installed, and the reflection mirror 48 is installed at a position that can be seen from the reflection mirror 47 on the inner surface of the unit case 44.
  • the reflecting mirrors 46, 47, 48 are ring-shaped with radii LZ4, L / 2, 3LZ4 centered on the optical transmitter 10 with respect to the distance L from the optical transmitter 10 to the optical receivers 30a to 30c. Arranged in a shape.
  • the optical signal transmitted from the optical transmitter 10 reaches the reflection mirror 46 without being blocked by the optical obstacle 42, is reflected by the reflection mirror 46, and is further reflected by the reflection mirrors 47 and 48. Then, the light reaches the optical receivers 30a to 30c and is received. Further, since the upper surface of the printed circuit board 40 and the inner surface of the cut case 44 have low light reflectivity, there is no possibility that multipaths of optical signals having different delay amounts occur in the optical receiving units 30a to 30c.
  • FIG. 9 shows a side view of the first embodiment of the optical transmitter.
  • the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50.
  • 51 and a reflector 52, and the reflector 52 is fixed to the electrical Z optical interface 50 by columns 53 and 54.
  • the optical signal output from the light source 51 is applied to the reflector 52.
  • the reflector 52 has a conical shape or a polygonal pyramid shape, and the irradiated optical signal is reflected obliquely downward on the outer peripheral surface thereof.
  • the optical signal reflected by the reflector 52 is transmitted toward the optical receiver 30a and the like.
  • FIG. 10 shows a side view of the second embodiment of the optical transmitter.
  • the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50.
  • the optical signal output from the light source 51 is collected by the lens 56 and applied to the reflector 52.
  • the optical signal applied to the conical reflector 52 is reflected obliquely downward on the outer peripheral surface thereof.
  • the optical signal reflected by the reflector 52 is transmitted toward the optical receiver 30a and the like.
  • the reflector 52 may be configured so that the outer peripheral surface has a bulge and diverges reflected light. As a result, the signal light irradiated in the vicinity of the optical receiver can be given a predetermined width (expansion).
  • FIG. 12 shows a side view of a modification of the second embodiment of the optical transmitter.
  • the optical transmitter includes an electrical / optical interface 50 fixed to the printed circuit board, a light source 51 such as a laser diode that emits light by an electrical signal supplied from the electrical Z optical interface 50, and a frame member 55 on the light source 51. And a reflector 58 integrated with the lens 56.
  • the lens 56 condenses the light from the light source 51 on the reflector 58.
  • the reflector 58 is formed in a substantially cylindrical shape with a material having a high light transmittance and a refractive index different from that of the lens 56, and one end 58 a is a concave portion having a curved shape matching the lens 56. They are integrated with each other.
  • the other end 58b of the reflector 58 is formed as a conical recess, and is provided with a reflective material such as aluminum foil. The optical signal incident on the one end 58a from the lens 56 is reflected by the reflective material on the other end 58b to be light. It is sent to the receiver.
  • FIG. 13 shows a side view of the third embodiment of the optical transmitter.
  • the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50.
  • the lens 55 is fixed at the center.
  • the optical signal output from the light source 51 is collected by the lens 56 and applied to the prism 60.
  • the optical signal applied to the conical prism 60 is refracted or refracted and reflected in the prism 60 and is emitted obliquely upward from the outer peripheral surface.
  • the optical signal reflected by the reflector 52 is transmitted toward the reflection mirror 46 of the unit case 44.
  • FIG. 14 is a side view of the first embodiment of the optical receiver.
  • the optical receiving unit is composed of a light receiving unit 70 such as a photodiode that receives an optical signal and performs photoelectric conversion, and an optical Z electrical interface 71 that is fixed to a printed circuit board and supports the light receiving unit 70.
  • the light receiving surface of the light receiving unit 70 has a circular structure with a diameter k.
  • a condenser lens 72 is provided on the light receiving surface of the light receiving unit 70. Since the incident light incident on the condenser lens 72 is refracted and collected on the light receiving surface of the light receiving unit 70, even if the incident angle of the incident light is the same as FIG. The width of incident light that can be received is larger than k 'sin ⁇ .
  • two optical receivers 80 and 81 having the structure shown in FIG. 15 are installed adjacent to the same distance from the optical transmitter.
  • a configuration may be adopted in which signals output from the optical / electrical interfaces 71 of the optical receivers 80 and 81 are added.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Disclosed is an in-unit optical transmission device comprising a light transmitting section which is arranged within a unit and sends out optical signals in all directions, and a plurality of light receiving sections which are arranged on a circumference having the light transmitting section as the center and receive the optical signals from the light transmitting section.

Description

ユニット内光伝送装置  Intra-unit optical transmission equipment
技術分野  Technical field
[0001] 本発明は、ユニット内光伝送装置に関し、ユニット内の複数回路に光信号を伝送す るユニット内光伝送装置に関する。 背景技術  The present invention relates to an intra-unit optical transmission apparatus, and to an intra-unit optical transmission apparatus that transmits an optical signal to a plurality of circuits in the unit. Background art
[0002] 従来、ユニット内で信号を伝送する場合には、送信端と受信端との間を例えばプリ ント基板上に設けた配線パターンにより接続し、配線パターンにより電気信号を伝送 している。  Conventionally, when a signal is transmitted within a unit, a transmission end and a reception end are connected by, for example, a wiring pattern provided on a print substrate, and an electric signal is transmitted by the wiring pattern.
[0003] なお、特許文献 1には、発信器内の複数の発光素子を略同心円周上に配置し、信 号を該発光素子力 光を用いて空間伝播させることにより、特定方向にある受信器内 の受光素子に伝送することが記載されて 、る。  [0003] In Patent Document 1, a plurality of light emitting elements in a transmitter are arranged on a substantially concentric circumference, and signals are spatially propagated using the light emitting element power light, thereby receiving signals in a specific direction. It is described that it is transmitted to the light receiving element in the container.
特許文献 1 :特開平 7— 240712号  Patent Document 1: JP-A-7-240712
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来のように電気信号を伝送する方法では、プリント基板上に配線パターンを作成 する必要があり、配線パターンの作成には物理的に微細化の限界がある。また、配 線パターンは、導線をプリント基板上にパターンとして配設するため、他の配線パタ ーンとの構造的な干渉を避けて作成する必要があり、直線で最短距離を接続するこ とができない場合がある。このため、同一信号を伝送する配線パターンであっても配 線長を同じ長さにできないことがある。長さが異なるということは、遅延時間が異なり、 信号の受信タイミングを合わせるのが困難となる。  [0004] In the conventional method of transmitting an electrical signal, it is necessary to create a wiring pattern on a printed circuit board, and the creation of the wiring pattern is physically limited. Also, since the wiring pattern is arranged on the printed circuit board as a wiring pattern, it is necessary to create a wiring pattern that avoids structural interference with other wiring patterns. May not be possible. For this reason, even if the wiring pattern transmits the same signal, the wiring length may not be the same. If the lengths are different, the delay time will be different and it will be difficult to match the signal reception timing.
[0005] 図 1 (A)に示すように、送信端 Aと受信端 Bの間を直線で接続するときの配線バタ ーン長 AB (= (L2 + M2) 1/2)に対して、図 1 (B)に示すように、送信端 Aから中継点 C を通り受信端 Bに接続するときの配線パターン長 ACB ( = L + M)は大きくなる。具体 的例として、配線パターン長が lcm異なると、約 20Gbpsで 1ビット分の時間差が生じ る。 [0006] また、 1つの送信端に対して複数の受信端がある場合、受信端の数により負荷容量 が変化し、結果としてタイミングに遅延が生じる。図 2 (A)に示すように送信端 Aに受 信端 Bだけが接続されている場合には負荷容量が小さぐ図 3 (A)に示すように信号 の立ち上がり及び立ち下がりの遅延時間は小さい。これに対し、図 2 (B)に示すよう に、送信端 Aに受信端 B, D, Eが接続されている場合には負荷容量が大きくなり、図 3 (B)に示すように信号の立ち上がり及び立ち下がりの遅延時間が大きくなりタイミン グがずれる。 [0005] As shown in Fig. 1 (A), with respect to the wiring pattern length AB (= (L 2 + M 2 ) 1/2 ) when connecting the transmitting end A and the receiving end B in a straight line Thus, as shown in FIG. 1 (B), the wiring pattern length ACB (= L + M) when connecting from the transmitting end A to the receiving end B through the relay point C becomes large. As a specific example, if the wiring pattern length differs by 1 cm, a time difference of 1 bit occurs at about 20 Gbps. [0006] Further, when there are a plurality of receiving ends with respect to one transmitting end, the load capacity changes depending on the number of receiving ends, resulting in a delay in timing. As shown in Fig. 2 (A), when only receiving end B is connected to transmitting end A, the load capacity is small.As shown in Fig. 3 (A), the delay time of signal rise and fall is small. On the other hand, as shown in Fig. 2 (B), when receiving ends B, D, and E are connected to transmitting end A, the load capacity increases, and as shown in Fig. 3 (B), the signal capacity is increased. Rise and fall delay times increase and timing is shifted.
[0007] また、多数の電気信号を伝送する配線パターンを実現するには、複数の層に配線 パターンを作成し各層間をビアホールで接続するため、配線パターンとビアホールの 接続、または、図 4 (A)に示すように幅が異なる配線パターン PI, P2の接続によって インピーダンス不整合が生じる。この場合、図 4 (B)に示すように波形歪を生じ、時間 t3だけタイミングがずれる。  [0007] In addition, in order to realize a wiring pattern for transmitting a large number of electrical signals, wiring patterns are created in a plurality of layers and the respective layers are connected by via holes. As shown in A), impedance mismatch occurs due to the connection of wiring patterns PI and P2 with different widths. In this case, waveform distortion occurs as shown in FIG. 4B, and the timing is shifted by time t3.
[0008] このため、ユニット内の複数の回路に対して同じタイミングでデータ及びクロック信 号を送信しょうとした場合、上記のタイミングのずれにより、データ及びクロックの遅延 時間の計算が複雑になる。つまり、遅延計算には、配線パターン長、導体の材質、プ リント基板の材質、負荷容量、インピーダンス不整合等による歪等を考慮する必要が ある。このため、伝送速度が速くなり、 1ビットの周期が短くなると遅延時間の影響が 顕著に現れ、複数の回路に対して同じタイミングでデータやクロック信号を送信する ことが困難になるという問題があった。  [0008] For this reason, when data and clock signals are transmitted to a plurality of circuits in the unit at the same timing, calculation of data and clock delay times becomes complicated due to the above-described timing shift. In other words, in the delay calculation, it is necessary to consider the wiring pattern length, conductor material, printed board material, load capacity, distortion due to impedance mismatch, and the like. For this reason, if the transmission speed is increased and the 1-bit period is shortened, the effect of the delay time becomes prominent, which makes it difficult to transmit data and clock signals to multiple circuits at the same timing. It was.
[0009] 本発明は、上記の点に鑑みなされたものであり、ユニット内の複数回路に同一タイミ ングで信号を伝送することを総括的な目的とする。  [0009] The present invention has been made in view of the above points, and has a general object to transmit a signal to a plurality of circuits in a unit at the same timing.
課題を解決するための手段  Means for solving the problem
[0010] この目的を達成するため、本発明のユニット内光伝送方法は、ユニット内に配置さ れ光信号を全方位に発信する光送信部と、前記光送信部を中心とする円周上に配 置され前記光送信部よりの光信号を受信する複数の光受信部を有し構成する。 発明の効果 In order to achieve this object, an intra-unit optical transmission method of the present invention includes an optical transmission unit that is arranged in a unit and transmits an optical signal in all directions, and a circumference around the optical transmission unit. And a plurality of optical receivers that receive optical signals from the optical transmitter. The invention's effect
[0011] このようなユニット内光伝送方法によれば、ユニット内の複数回路に同一タイミング で信号を伝送することができる。 図面の簡単な説明 [0011] According to such an intra-unit optical transmission method, signals can be transmitted to a plurality of circuits in the unit at the same timing. Brief Description of Drawings
[0012] [図 1]配線パターン長を説明するための図である。 FIG. 1 is a diagram for explaining a wiring pattern length.
[図 2]受信端の数の変化による負荷容量変化を説明するための図である。  FIG. 2 is a diagram for explaining a change in load capacity due to a change in the number of receiving ends.
[図 3]負荷容量変化による遅延時間の変化を説明するための図である。  FIG. 3 is a diagram for explaining a change in delay time due to a change in load capacity.
[図 4]インピーダンス不整合と波形歪を説明するための図である。  FIG. 4 is a diagram for explaining impedance mismatch and waveform distortion.
[図 5]本発明の第 1実施形態の平面図と側面図である。  FIG. 5 is a plan view and a side view of the first embodiment of the present invention.
[図 6]本発明の第 2実施形態の平面図と側面図である。  FIG. 6 is a plan view and a side view of a second embodiment of the present invention.
[図 7]本発明の第 3実施形態の側面図と平面図である。  FIG. 7 is a side view and a plan view of a third embodiment of the present invention.
[図 8]本発明の第 3実施形態の変形例の側面図と平面図である。  FIG. 8 is a side view and a plan view of a modification of the third embodiment of the present invention.
[図 9]光送信部の第 1実施形態の側面図である。  FIG. 9 is a side view of the first embodiment of the optical transmitter.
[図 10]光送信部の第 2実施形態の側面図である。  FIG. 10 is a side view of the second embodiment of the optical transmitter.
[図 11]反射器の側面図である。  FIG. 11 is a side view of the reflector.
[図 12]光送信部の第 2実施形態の変形例の側面図である。  FIG. 12 is a side view of a modification of the second embodiment of the optical transmitter.
[図 13]光送信部の第 3実施形態の側面図である。  FIG. 13 is a side view of a third embodiment of the optical transmitter.
[図 14]光受信部の第 1実施形態の側面図である。  FIG. 14 is a side view of the first embodiment of the optical receiver.
[図 15]光受信部の第 1実施形態の変形例の側面図である。  FIG. 15 is a side view of a modification of the first embodiment of the optical receiver.
[図 16]光受信部の第 1実施形態の他の変形例の側面図である。  FIG. 16 is a side view of another modification of the first embodiment of the optical receiver.
符号の説明  Explanation of symbols
[0013] 10, 11 光送信部 [0013] 10, 11 Optical transmitter
20a〜20d, 30a〜30c, 35a〜35c 光受信部  20a ~ 20d, 30a ~ 30c, 35a ~ 35c Optical receiver
40 プリント基板  40 PCB
42 光障害物  42 Light obstacle
44 ユニットケース  44 unit case
46-48 反射ミラー  46-48 Reflection mirror
50 電気 Z光インタフ ース  50 Electrical Z optical interface
51 光源  51 Light source
52 反射器  52 Reflector
53, 54, 57 支柱 55 枠部材 53, 54, 57 prop 55 Frame member
56 レンズ  56 lenses
58 反射器  58 Reflector
60 プリズム  60 prism
70 受光部  70 Receiver
71 光 Z電気インタフ ース  71 Hikari Z Electric Interface
72 集光レンズ  72 condenser lens
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、図面に基づいて本発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015] く第 1実施形態〉  [0015] First Embodiment>
図 5 (A) , (B)は、本発明の第 1実施形態の平面図と側面図を示す。同図中、ュ- ット内の光送信部 10から伝送信号を光信号として全方位に発信し、この光信号はュ -ッ卜内の光受信部 20a〜20d, 30a〜30cで受信される。光受信部 20a〜20dのグ ループと光受信部 30a〜30cのグループは光送信部 10を中心とする同心円の円周 上に配置されている。このため、光受信部 20a〜20dのグループでは光送信部 10か ら同じ遅延時間で信号が受信され、光受信部 30a〜30cのグループでは光送信部 1 0から同じ遅延時間で光信号が受信される。  5 (A) and 5 (B) show a plan view and a side view of the first embodiment of the present invention. In the figure, the transmission signal is transmitted in all directions as an optical signal from the optical transmitter 10 in the mute, and this optical signal is received by the optical receivers 20a to 20d and 30a to 30c in the mute. The The group of the optical receivers 20a to 20d and the group of the optical receivers 30a to 30c are arranged on a concentric circle with the optical transmitter 10 as the center. Therefore, the group of optical receivers 20a to 20d receives a signal from the optical transmitter 10 with the same delay time, and the group of optical receivers 30a to 30c receives an optical signal from the optical transmitter 10 with the same delay time. Is done.
[0016] また、図 5 (B)に示すように、光送信部 10のプリント基板 40からの高さは、光受信部 20a〜20d, 30a〜30cより高くして、光信号力全ての光受信部 20a〜20d, 30a〜3 Ocから見通せるようにして 、る。  Further, as shown in FIG. 5B, the height of the optical transmission unit 10 from the printed circuit board 40 is higher than that of the optical reception units 20a to 20d and 30a to 30c so The receivers 20a to 20d and 30a to 3Oc can be seen through.
[0017] く第 2実施形態〉  [0017] Second Embodiment>
図 6 (A) , (B)は、本発明の第 2実施形態の平面図と側面図を示す。同図中、ュ- ット内には第 1光送信部 10と第 2光送信部 11が離間して配置されている。光送信部 10, 11は伝送信号を互いに異なる波長 λ ΐ, λ 2の光信号としてユニット内の全方位 に発信する。  6A and 6B show a plan view and a side view of the second embodiment of the present invention. In the figure, a first optical transmission unit 10 and a second optical transmission unit 11 are arranged in a space apart from each other. The optical transmitters 10 and 11 transmit the transmission signals as optical signals of different wavelengths λ ΐ and λ 2 to all directions in the unit.
[0018] 光受信部 30a〜30cのグループは光送信部 10を中心とする円周上に配置され、光 受信部 35a〜35cのグループは光送信部 11を中心とする円周上に配置されている。 このため、光受信部 30a〜30cのグループでは光送信部 10から同じ遅延時間で光 信号が受信され、光受信部 35a〜35cのグループでは光送信部 11から同じ遅延時 間で光信号が受信される。 [0018] A group of the optical receivers 30a to 30c is arranged on a circumference centered on the optical transmitter 10, and a group of the optical receivers 35a to 35c is arranged on a circumference centered on the optical transmitter 11 ing. For this reason, in the group of optical receivers 30a to 30c, the optical transmitter 10 transmits the light with the same delay time. The signal is received, and the optical signal is received from the optical transmitter 11 in the group of the optical receivers 35a to 35c with the same delay time.
[0019] く第 3実施形態〉  [0019] Third Embodiment>
図 7 (A) , (B)は、本発明の第 3実施形態の側面図と平面図を示す。同図中、ュ- ット内には光送信部 10が配置されており、光送信部 10は伝送信号を光信号としてュ ニット内の全方位に発信する。光受信部 30a〜30cのグループは光送信部 10から同 一距離 の円周上に配置されて 、る。  7A and 7B show a side view and a plan view of a third embodiment of the present invention. In the figure, an optical transmission unit 10 is arranged in the unit, and the optical transmission unit 10 transmits a transmission signal as an optical signal in all directions in the unit. The groups of the optical receiving units 30a to 30c are arranged on the circumference of the same distance from the optical transmitting unit 10.
[0020] 光送信部 10から光受信部 30a〜30cのいずれかを見通したときに障害となる位置 に回路部品等の光障害物 42が配置されている。また、プリント基板 40上に配設され た光送信部 10、光受信部 30a〜30c、光障害物 42それぞれはユニットケース 44で 覆われて、外部から光が入射されず、かつ、信号光が外部に漏れないように遮蔽さ れている。なお、プリント基板 40の上面及びユニットケース 44の内面、更にはプリント 基板 40に配置される回路部品の表面は、光反射率が低くなるよう、例えば光吸収材 料を塗布する等の加工が施されて ヽる。  [0020] An optical obstacle 42 such as a circuit component is disposed at a position where the optical transmission unit 10 becomes an obstacle when looking at any of the optical reception units 30a to 30c. The optical transmitter 10, optical receivers 30a to 30c, and optical obstacle 42 arranged on the printed circuit board 40 are each covered with a unit case 44 so that no light is incident from the outside, and no signal light is received. It is shielded from leaking outside. Note that the upper surface of the printed circuit board 40, the inner surface of the unit case 44, and the surface of the circuit component disposed on the printed circuit board 40 are subjected to processing such as application of a light absorbing material so that the light reflectance is lowered. Being sung.
[0021] このユニットケース 44の内面には、光送信部 10から見通すことができる位置に反射 ミラー 46が設置されている。反射ミラー 46は、光送信部 10から光受信部 30a〜30c までの距離 Lに対し、光送信部 10を中心とする半径 LZ2のリング状とされている。  On the inner surface of the unit case 44, a reflection mirror 46 is installed at a position that can be seen from the optical transmitter 10. The reflection mirror 46 has a ring shape with a radius LZ2 centered on the optical transmission unit 10 with respect to the distance L from the optical transmission unit 10 to the optical reception units 30a to 30c.
[0022] このため、光送信部 10から発信された光信号は光障害物 42に遮蔽されることなく 反射ミラー 46に到達し、反射ミラー 46で反射されて光受信部 30a〜30cに到達し受 信される。また、プリント基板 40の上面及びユニットケース 44の内面は低光反射率で あるため、光受信部 30a〜30cそれぞれにお 、て遅延量の異なる光信号のマルチパ スが生じるおそれはない。  Therefore, the optical signal transmitted from the optical transmitter 10 reaches the reflection mirror 46 without being blocked by the optical obstacle 42, is reflected by the reflection mirror 46, and reaches the optical receivers 30a to 30c. Received. In addition, since the upper surface of the printed circuit board 40 and the inner surface of the unit case 44 have low light reflectance, there is no possibility that multipaths of optical signals having different delay amounts will occur in each of the optical receiving units 30a to 30c.
[0023] 更に、ユニットケース 44で覆われて、外部から光が入射されず、かつ、信号光が外 部に漏れな 、ように遮蔽されて 、るため、外部からの光雑音の影響を受けることがな ぐ高出力の信号光が外部に漏れだし、例えば人の目に入ることを防止できる。  [0023] Furthermore, since it is covered with the unit case 44 so that light is not incident from the outside and the signal light is not leaked to the outside, it is shielded so that it is affected by optical noise from the outside. Therefore, it is possible to prevent the high output signal light from leaking to the outside and entering the human eye, for example.
[0024] 図 8 (A) , (B)は、本発明の第 3実施形態の変形例の側面図と平面図を示す。同図 中、ユニット内には光送信部 10が配置されており、光送信部 10は伝送信号を光信号 としてユニット内の全方位に発信する。光受信部 30a〜30cのグループは光送信部 1 0から同一距離 Lの円周上に配置されている。 FIGS. 8A and 8B show a side view and a plan view of a modification of the third embodiment of the present invention. In the figure, an optical transmitter 10 is arranged in the unit, and the optical transmitter 10 transmits a transmission signal as an optical signal in all directions in the unit. The group of optical receivers 30a-30c is the optical transmitter 1 It is arranged on the circumference of the same distance L from 0.
[0025] 光送信部 10から光受信部 30a〜30cのいずれかを見通したときに障害となる位置 に回路部品等の光障害物 42が配置されている。また、プリント基板 40上に配設され た光送信部 10、光受信部 30a〜30c、光障害物 42それぞれはユニットケース 44で 覆われて、外部から光が入射されず、かつ、信号光が外部に漏れないように遮蔽さ れている。なお、プリント基板 40の上面及びユニットケース 44の内面、更にはプリント 基板 40に配置される回路部品の表面は、光反射率が低くなるよう、例えば光吸収材 料を塗布する等の加工が施されて ヽる。  [0025] An optical obstacle 42 such as a circuit component is disposed at a position where the optical transmission unit 10 becomes an obstacle when looking at any of the optical reception units 30a to 30c. The optical transmitter 10, optical receivers 30a to 30c, and optical obstacle 42 arranged on the printed circuit board 40 are each covered with a unit case 44 so that no light is incident from the outside, and no signal light is received. It is shielded from leaking outside. Note that the upper surface of the printed circuit board 40, the inner surface of the unit case 44, and the surface of the circuit component disposed on the printed circuit board 40 are subjected to processing such as application of a light absorbing material so that the light reflectance is lowered. Being sung.
[0026] このユニットケース 44の内面で光送信部 10から見通すことができる位置に反射ミラ 一 46が設置されており、更に、プリント基板 40の上面で反射ミラー 46から見通すこと ができる位置に反射ミラー 47が設置され、ユニットケース 44の内面で反射ミラー 47か ら見通すことができる位置に反射ミラー 48が設置されている。反射ミラー 46, 47, 48 は、光送信部 10から光受信部 30a〜30cまでの距離 Lに対し、光送信部 10を中心と する半径 LZ4, L/2, 3LZ4のリング状とされ、同心円状に配置されている。  [0026] A reflection mirror 46 is installed on the inner surface of the unit case 44 at a position where it can be seen from the optical transmitter 10, and further, it is reflected at a position where it can be seen from the reflection mirror 46 on the upper surface of the printed circuit board 40. The mirror 47 is installed, and the reflection mirror 48 is installed at a position that can be seen from the reflection mirror 47 on the inner surface of the unit case 44. The reflecting mirrors 46, 47, 48 are ring-shaped with radii LZ4, L / 2, 3LZ4 centered on the optical transmitter 10 with respect to the distance L from the optical transmitter 10 to the optical receivers 30a to 30c. Arranged in a shape.
[0027] このため、光送信部 10から発信された光信号は光障害物 42に遮蔽されることなく 反射ミラー 46に到達し、反射ミラー 46で反射され、更に、反射ミラー 47, 48で反射さ れ、光受信部 30a〜30cに到達し受信される。また、プリント基板 40の上面及びュ- ットケース 44の内面は低光反射率であるため、光受信部 30a〜30cそれぞれにおい て遅延量の異なる光信号のマルチパスが生じるおそれはない。  [0027] For this reason, the optical signal transmitted from the optical transmitter 10 reaches the reflection mirror 46 without being blocked by the optical obstacle 42, is reflected by the reflection mirror 46, and is further reflected by the reflection mirrors 47 and 48. Then, the light reaches the optical receivers 30a to 30c and is received. Further, since the upper surface of the printed circuit board 40 and the inner surface of the cut case 44 have low light reflectivity, there is no possibility that multipaths of optical signals having different delay amounts occur in the optical receiving units 30a to 30c.
[0028] く光送信部〉  [0028] Optical transmitter>
図 9は、光送信部の第 1実施形態の側面図を示す。同図中、光送信部は、プリント 基板に固定された電気 Z光インタフェース 50と、電気 Z光インタフェース 50に支持さ れ電気 Z光インタフェース 50から供給される電気信号で発光するレーザーダイォー ド等の光源 51と、反射器 52から構成され、反射器 52は支柱 53, 54によって電気 Z 光インタフェース 50に固定されている。  FIG. 9 shows a side view of the first embodiment of the optical transmitter. In the figure, the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50. 51 and a reflector 52, and the reflector 52 is fixed to the electrical Z optical interface 50 by columns 53 and 54.
[0029] 光源 51から出力された光信号は反射器 52に照射される。反射器 52は円錐形また は多角錐形状であり、照射された光信号はその外周面で斜め下方に反射される。反 射器 52で反射された光信号は光受信部 30a等に向けて発信される。 [0030] 図 10は、光送信部の第 2実施形態の側面図を示す。同図中、光送信部は、プリント 基板に固定された電気 Z光インタフェース 50と、電気 Z光インタフェース 50に支持さ れ電気 Z光インタフェース 50から供給される電気信号で発光するレーザーダイォー ド等の光源 51と、円錐形の反射器 52と、光源 51と反射器 52の間に枠部材 55で光 源 51に固定されたレンズ 56から構成され、反射器 52の頂点は支柱 57によってレン ズ 56の中心に固定されている。支柱 57をレンズ 56の中心に設けることにより、 360 度全周囲に信号光を発信できる。 The optical signal output from the light source 51 is applied to the reflector 52. The reflector 52 has a conical shape or a polygonal pyramid shape, and the irradiated optical signal is reflected obliquely downward on the outer peripheral surface thereof. The optical signal reflected by the reflector 52 is transmitted toward the optical receiver 30a and the like. FIG. 10 shows a side view of the second embodiment of the optical transmitter. In the figure, the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50. 51, a conical reflector 52, and a lens 56 fixed to the light source 51 with a frame member 55 between the light source 51 and the reflector 52, and the vertex of the reflector 52 is It is fixed at the center. By providing the column 57 at the center of the lens 56, signal light can be transmitted all around 360 degrees.
[0031] 光源 51から出力された光信号はレンズ 56で集光されて反射器 52に照射される。  The optical signal output from the light source 51 is collected by the lens 56 and applied to the reflector 52.
円錐形の反射器 52に照射された光信号はその外周面で斜め下方に反射される。反 射器 52で反射された光信号は光受信部 30a等に向けて発信される。  The optical signal applied to the conical reflector 52 is reflected obliquely downward on the outer peripheral surface thereof. The optical signal reflected by the reflector 52 is transmitted toward the optical receiver 30a and the like.
[0032] なお、反射器 52は図 11の側面図に示すように、外周面に膨らみを持たせ、反射光 を発散するよう構成しても良い。これにより、光受信部の近傍に照射される信号光に 所定の幅 (広がり)を持たせることができる。  As shown in the side view of FIG. 11, the reflector 52 may be configured so that the outer peripheral surface has a bulge and diverges reflected light. As a result, the signal light irradiated in the vicinity of the optical receiver can be given a predetermined width (expansion).
[0033] 図 12は、光送信部の第 2実施形態の変形例の側面図を示す。同図中、光送信部 は、プリント基板に固定された電気/光インタフェース 50と、電気 Z光インタフェース 50から供給される電気信号で発光するレーザーダイオード等の光源 51と、光源 51 に枠部材 55で固定されたレンズ 56と、レンズ 56に一体ィ匕された反射器 58から構成 されている。レンズ 56は光源 51からの光を反射器 58に集光する。  FIG. 12 shows a side view of a modification of the second embodiment of the optical transmitter. In the figure, the optical transmitter includes an electrical / optical interface 50 fixed to the printed circuit board, a light source 51 such as a laser diode that emits light by an electrical signal supplied from the electrical Z optical interface 50, and a frame member 55 on the light source 51. And a reflector 58 integrated with the lens 56. The lens 56 condenses the light from the light source 51 on the reflector 58.
[0034] 反射器 58は、レンズ 56とは屈折率が異なる光透過率の高い材料で略円柱状に形 成され、一端 58aはレンズ 56に合わせた曲面形状の凹部とされ、レンズ 56に当接し て一体化される。反射器 58の他端 58bは円錐状の凹部とされ、アルミ箔等の反射材 料が設けられており、レンズ 56から一端 58aに入射した光信号は他端 58bの反射材 料で反射され光受信部に向けて発信される。  The reflector 58 is formed in a substantially cylindrical shape with a material having a high light transmittance and a refractive index different from that of the lens 56, and one end 58 a is a concave portion having a curved shape matching the lens 56. They are integrated with each other. The other end 58b of the reflector 58 is formed as a conical recess, and is provided with a reflective material such as aluminum foil. The optical signal incident on the one end 58a from the lens 56 is reflected by the reflective material on the other end 58b to be light. It is sent to the receiver.
[0035] 図 13は、光送信部の第 3実施形態の側面図を示す。同図中、光送信部は、プリント 基板に固定された電気 Z光インタフェース 50と、電気 Z光インタフェース 50に支持さ れ電気 Z光インタフェース 50から供給される電気信号で発光するレーザーダイォー ド等の光源 51と、円錐形のプリズム 60と、光源 51とプリズム 60の間に枠部材 55で光 源 51に固定されたレンズ 56から構成され、プリズム 60の底面中心は支柱 57によつ てレンズ 55の中心に固定されている。 FIG. 13 shows a side view of the third embodiment of the optical transmitter. In the figure, the optical transmitter is a light source such as an electric Z optical interface 50 fixed to the printed circuit board and a laser diode that is supported by the electric Z optical interface 50 and emits an electric signal supplied from the electric Z optical interface 50. 51, a conical prism 60, and a lens 56 fixed to the light source 51 by a frame member 55 between the light source 51 and the prism 60. The lens 55 is fixed at the center.
[0036] 光源 51から出力された光信号はレンズ 56で集光されてプリズム 60に照射される。 The optical signal output from the light source 51 is collected by the lens 56 and applied to the prism 60.
円錐形のプリズム 60に照射された光信号はプリズム 60内で屈折または屈折及び反 射されて、その外周面カゝら斜め上方に出射される。反射器 52で反射された光信号は ユニットケース 44の反射ミラー 46に向けて発信される。  The optical signal applied to the conical prism 60 is refracted or refracted and reflected in the prism 60 and is emitted obliquely upward from the outer peripheral surface. The optical signal reflected by the reflector 52 is transmitted toward the reflection mirror 46 of the unit case 44.
[0037] く光受信部〉 [0037] Optical receiver>
図 14は、光受信部の第 1実施形態の側面図を示す。同図中、光受信部は、光信号 を受光して光電変換を行うフォトダイオード等の受光部 70と、プリント基板に固定され 受光部 70を支持する光 Z電気インタフェース 71から構成されて 、る。受光部 70の 受光面は直径 kの円形構造とされて 、る。  FIG. 14 is a side view of the first embodiment of the optical receiver. In the figure, the optical receiving unit is composed of a light receiving unit 70 such as a photodiode that receives an optical signal and performs photoelectric conversion, and an optical Z electrical interface 71 that is fixed to a printed circuit board and supports the light receiving unit 70. . The light receiving surface of the light receiving unit 70 has a circular structure with a diameter k.
[0038] 受光部 70には、光送信部 10または反射ミラー 46等力もの信号光が斜め上方から 入射される。入射光の入射角を 0とすると、受光部 70の受光面で受光できる入射光 の幅は k' sin 0となる。 [0038] To the light receiving unit 70, signal light having the same power as the light transmitting unit 10 or the reflection mirror 46 is incident obliquely from above. When the incident angle of incident light is 0, the width of incident light that can be received by the light receiving surface of the light receiving unit 70 is k ′ sin 0.
[0039] また、入射角 Θが小さい場合には受光部 70の受光量が小さくなるため、図 15に示 すように、受光部 70の受光面に集光レンズ 72を設ける。集光レンズ 72に入射した入 射光は屈折されて受光部 70の受光面に集光されるため、入射光の入射角が Θで図 14と同一であっても、受光部 70の受光面で受光できる入射光の幅は k' sin Θより大 きくなる。  In addition, when the incident angle Θ is small, the amount of light received by the light receiving unit 70 is small. Therefore, as shown in FIG. 15, a condenser lens 72 is provided on the light receiving surface of the light receiving unit 70. Since the incident light incident on the condenser lens 72 is refracted and collected on the light receiving surface of the light receiving unit 70, even if the incident angle of the incident light is the same as FIG. The width of incident light that can be received is larger than k 'sin Θ.
[0040] 更に、受光面での受光量が小さい場合には、図 16に示すように、図 15に示す構造 の 2つの光受信部 80, 81を光送信部から同一距離に隣接して設置し、光受信部 80 , 81の光/電気インタフェース 71から出力される信号を加算する構成としても良い。  [0040] Further, when the amount of light received on the light receiving surface is small, as shown in FIG. 16, two optical receivers 80 and 81 having the structure shown in FIG. 15 are installed adjacent to the same distance from the optical transmitter. However, a configuration may be adopted in which signals output from the optical / electrical interfaces 71 of the optical receivers 80 and 81 are added.

Claims

請求の範囲 The scope of the claims
[1] ユニット内に配置され光信号を全方位に発信する光送信部と、  [1] An optical transmitter disposed in the unit for transmitting optical signals in all directions;
前記光送信部を中心とする円周上に配置され前記光送信部よりの光信号を受信す る複数の光受信部を  A plurality of optical receivers arranged on a circumference centered on the optical transmitter for receiving an optical signal from the optical transmitter;
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[2] 請求項 1記載のユニット内光伝送装置において、  [2] In the intra-unit optical transmission apparatus according to claim 1,
前記複数の光受信部は、前記光送信部を中心とする同心円の円周上に配置され る複数のグループであることを特徴とするユニット内光伝送装置。  The intra-unit optical transmission device, wherein the plurality of optical receivers are a plurality of groups arranged on a concentric circle centered on the optical transmitter.
[3] ユニット内に配置され互いに異なる波長の光信号を全方位に発信する複数の光送 信部と、 [3] A plurality of optical transmitters arranged in the unit for transmitting optical signals of different wavelengths in all directions,
前記複数の光送信部それぞれを中心とする円周上に配置され各光送信部よりの光 信号を受信する光送信部毎に複数の光受信部を  A plurality of optical receivers are arranged for each optical transmitter that is arranged on a circumference centering on each of the plurality of optical transmitters and receives an optical signal from each optical transmitter.
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[4] 請求項 1記載のユニット内光伝送装置において、 [4] The intra-unit optical transmission apparatus according to claim 1,
前記光送信部と前記複数の光受信部は基板上に配設されてユニットケースに覆わ れており、  The optical transmitter and the plurality of optical receivers are disposed on a substrate and covered with a unit case,
前記ユニットケースの内面に設置された反射ミラーを  A reflection mirror installed on the inner surface of the unit case
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[5] 請求項 1記載のユニット内光伝送装置において、 [5] The intra-unit optical transmission apparatus according to claim 1,
前記光送信部と前記複数の光受信部は基板上に配設され、ュ-ットケースに覆わ れており、  The optical transmitter and the plurality of optical receivers are disposed on a substrate and covered with a work case.
前記ユニットケースの内面と前記基板上に設置された反射ミラーを  A reflection mirror installed on the inner surface of the unit case and the substrate;
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[6] 請求項 4記載のユニット内光伝送装置において、 [6] The intra-unit optical transmission apparatus according to claim 4,
前記基板及び前記ユニットケースは低光反射率であることを特徴とするユニット内 光伝送装置。  The intra-unit optical transmission apparatus, wherein the substrate and the unit case have low light reflectance.
[7] 請求項 1記載のユニット内光伝送装置において、  [7] The intra-unit optical transmission device according to claim 1,
前記光送信部は、光源から出力された光信号を反射して全方位に発信する反射器 を The optical transmitter is a reflector that reflects an optical signal output from a light source and transmits it in all directions. The
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[8] 請求項 1記載のユニット内光伝送装置において、  [8] The intra-unit optical transmission device according to claim 1,
前記光送信部は、光源から出力された光信号を屈折して全方位に発信するプリズ ムを  The optical transmission unit includes a prism that refracts an optical signal output from a light source and transmits the optical signal in all directions.
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
[9] 請求項 1記載のユニット内光伝送装置において、 [9] The intra-unit optical transmission device according to claim 1,
前記光受信部は、光信号を集光する集光レンズを  The light receiving unit includes a condenser lens that collects an optical signal.
有することを特徴とするユニット内光伝送装置。  An intra-unit optical transmission device comprising:
PCT/JP2005/019175 2005-10-19 2005-10-19 In-unit optical transmission device WO2007046135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019175 WO2007046135A1 (en) 2005-10-19 2005-10-19 In-unit optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019175 WO2007046135A1 (en) 2005-10-19 2005-10-19 In-unit optical transmission device

Publications (1)

Publication Number Publication Date
WO2007046135A1 true WO2007046135A1 (en) 2007-04-26

Family

ID=37962237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019175 WO2007046135A1 (en) 2005-10-19 2005-10-19 In-unit optical transmission device

Country Status (1)

Country Link
WO (1) WO2007046135A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226728A (en) * 1994-02-15 1995-08-22 Tera Tec:Kk A/d converter
JP2004320666A (en) * 2003-04-21 2004-11-11 Canon Inc Optical transmission device, photoelectric fusion circuit in which electronic circuit and optical circuit are mixed
JP2004336120A (en) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd Infrared communication system, infrared transmitter, and infrared receiver
JP2005510892A (en) * 2001-03-06 2005-04-21 インクコム、インク. Wireless optical system for multidirectional high bandwidth communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226728A (en) * 1994-02-15 1995-08-22 Tera Tec:Kk A/d converter
JP2005510892A (en) * 2001-03-06 2005-04-21 インクコム、インク. Wireless optical system for multidirectional high bandwidth communication
JP2004320666A (en) * 2003-04-21 2004-11-11 Canon Inc Optical transmission device, photoelectric fusion circuit in which electronic circuit and optical circuit are mixed
JP2004336120A (en) * 2003-04-30 2004-11-25 Matsushita Electric Ind Co Ltd Infrared communication system, infrared transmitter, and infrared receiver

Similar Documents

Publication Publication Date Title
KR100480252B1 (en) Bi-directional optical transceiver module with double cap
US8447149B2 (en) Optoelectronic transmission device
US7654750B2 (en) Bidirectional optical fiber link systems component couplers
US8987655B2 (en) Optical module having at least one light receiving element with a wiring part covers a part of a side surface of a mesa part
US7020400B2 (en) Multi-wavelength optical communication system
KR20050081328A (en) Bi-directional optical transceiver module
JP2015096878A (en) Optical reception module and optical transmission module
CN102667560A (en) Fiber optic rotary joints, methods practiced thereby, and fiber optic devices
JP2009503606A (en) Optical rotary joint, mounting method for properly aligning optical rotary joint, and light reflector assembly used for optical rotary joint
US9709759B2 (en) NxN parallel optical transceiver
JP3927883B2 (en) Optical waveguide device and photoelectric fusion substrate using the same
CN110618504A (en) Optical module
US6516115B1 (en) Two-way optical communication device and two-way optical communication apparatus
JP2006523428A (en) Optical communication between facing semiconductor chips
US20020196502A1 (en) Sheet-like electrooptical component, light-guide configuration for serial, bidirectional signal transmission and optical printed circuit board
WO2007046135A1 (en) In-unit optical transmission device
US7099536B1 (en) Single lens system integrating both transmissive and reflective surfaces for light focusing to an optical fiber and light reflection back to a monitor photodetector
JP5867336B2 (en) Optical transceiver and optical transmission system
CN107925478A (en) For performing the system alignd between optical transceiver and reflective optical system, method and apparatus
US20030090161A1 (en) Light communication channel-based electronics power distribution system
TWI572923B (en) Optical communication module
KR100504224B1 (en) Optical transceiver
JP5309186B2 (en) Optical rotary joint, mounting method for properly aligning optical rotary joint, and light reflector assembly used for optical rotary joint
EP1864335A1 (en) Integrated optical detector in semiconductor reflector
KR100606085B1 (en) Free space optical interconnect apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP