WO2007041949A1 - Electrovanne a aimant permanent et systeme de commande de celle-ci - Google Patents

Electrovanne a aimant permanent et systeme de commande de celle-ci Download PDF

Info

Publication number
WO2007041949A1
WO2007041949A1 PCT/CN2006/002648 CN2006002648W WO2007041949A1 WO 2007041949 A1 WO2007041949 A1 WO 2007041949A1 CN 2006002648 W CN2006002648 W CN 2006002648W WO 2007041949 A1 WO2007041949 A1 WO 2007041949A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
winding
iron core
signal
valve
Prior art date
Application number
PCT/CN2006/002648
Other languages
English (en)
French (fr)
Inventor
Lei He
Original Assignee
Lei He
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lei He filed Critical Lei He
Priority to EP06804905A priority Critical patent/EP1947300A4/en
Priority to JP2008534852A priority patent/JP2009512410A/ja
Publication of WO2007041949A1 publication Critical patent/WO2007041949A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/08Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet
    • F16K31/082Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid using a permanent magnet using a electromagnet and a permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2105Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids comprising two or more coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • F01L9/21Valve-gear or valve arrangements actuated non-mechanically by electric means actuated by solenoids
    • F01L2009/2146Latching means
    • F01L2009/2148Latching means using permanent magnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials

Definitions

  • the present invention relates to an engine air distribution device, and more particularly to a permanent magnet electric door in an engine air distribution device and a control system therefor. Background technique
  • the gas distribution mechanism of the existing engine is composed of a valve, a valve spring, a valve guide, a valve guide oil seal, a rocker arm, a valve lash adjuster, a rocker shaft, a cam shaft, a lock block, a spring, a variable valve mechanism, and the like;
  • the transmission mechanism of the air mechanism is composed of an engine crankshaft timing pulley (or chain gear), a timing belt or chain, a pinch roller or chain clamp, a camshaft pulley or a camshaft gear; the valve passes through the valve train
  • the drive system is turned on and off.
  • the existing engine valve transmission mechanism has various components and complicated structures, and the mechanical valve distribution mechanism and the transmission system make the valve lift and the opening angle and the closing angle cannot be adjusted and changed, which directly affects the efficiency of the engine.
  • the valve guide oil seal is prone to wear and aging, causing oil to enter the combustion chamber from between the valve and the conduit.
  • the combustion of the engine oil can cause blue smoke emission, carbon deposit, etc., causing problems such as easy wear and serious pollution of the engine.
  • the electromagnetic valve utilizes two electromagnetic coils and iron core or permanent magnet steel.
  • the principle of attracting the same force as the electromagnetic coil and the iron core, and the electronic switch is used to sequentially control the on and off of the electromagnetic coil.
  • the electromagnetic valve includes a casing, a winding, a permanent magnet steel or a fixed iron core, a valve, a linear bearing, and a sliding iron core, and the permanent magnet steel or the fixed iron core is fixed on the casing, and the valve is fixedly coupled with the sliding iron core, and is slid
  • the iron core is disposed opposite to the permanent magnet steel or the fixed iron core
  • the casing is wound with a sliding iron core winding or a sliding iron core and a fixed iron core winding
  • the valve is slidingly connected with the linear bearing, the linear bearing and the casing are fixed on the engine cylinder head; and the control system passes the signal
  • the device, the sensor, the signal acquisition and processor, the computer, the drive circuit, and the metal oxide semiconductor field effect transistor (MOSFET) or the high power transistor sequentially control the current on and off of the intake and exhaust electromagnetic valve windings of each cylinder.
  • the electromagnetic valve and its control system are simple in structure, sensitive in control, superior in performance, high in reliability, no need to adjust the
  • An object of the present invention is to provide a permanent magnet electric door having a simple structure, a sensitive control, and a faster opening and closing rate, and a control system therefor.
  • a permanent magnet electric door includes: a casing; a valve body disposed at a center position in the casing; an upper fixed iron core fixed to the upper end of the casing and wound thereon a first winding, and a lower end thereof is disposed opposite to a top end of the electric door; a lower fixed iron core having a second winding wound thereon, a certain gap from the upper fixed iron core, and a surrounding air valve body fixed at a lower end of the inner cavity of the casing; a permanent magnet moving block fixed on the valve body between the lower fixed iron core and the upper fixed iron core; wherein a magnetic force generated by a current in the first winding and the second winding generates a suction force and a repulsive force with a magnetic force of the permanent magnet moving block, so that The permanent magnet moving block and the valve body move up and down between the lower fixed iron core and the upper fixed iron core.
  • the permanent magnet moving block comprises a permanent magnet steel and a fixing body for fixing the permanent magnet steel to the valve body.
  • the first winding and the second winding are connected in parallel or in series, and the conduction currents in the first winding and the second winding are positive and negative alternating currents.
  • the lower fixed end of the upper fixed iron core and the permanent magnet moving block are fixedly provided with a buffering device, and the upper fixed end of the lower fixed iron core and the permanent magnet moving block are provided with a buffering device.
  • the buffer device is a buffer spring or a buffer block.
  • the permanent magnet electrical door further includes a linear bearing, and the linear bearing is slidably coupled to the valve body.
  • the invention also provides a control system for a permanent magnet electric door for controlling the winding of the permanent magnet electric door described above; comprising: a signal detecting module, a signal processing module and a single-phase bridge converter driving circuit; the signal detecting module includes setting a signal generating device at a crankshaft end of the engine and a sensor connected to the signal generating device, wherein the sensor is configured to collect a top dead center, a bottom dead center and a motor phase position signal of the piston; and the signal processing module is connected to the signal detecting module.
  • the circuit is respectively connected to the signal processing module and the winding of the permanent magnet electric gate, and is used for triggering the driving signal according to the pulse generated by the signal processing module, and sequentially controlling the alternating current of the current in the permanent magnet electrical door winding of each cylinder. .
  • the single-phase bridge converter driving circuit is composed of a DC battery pack and four power devices constituting a single-phase bridge converter driving circuit.
  • the four power devices are high power transistors or semiconductor field effect transistors (MOSFETs).
  • MOSFETs semiconductor field effect transistors
  • the permanent magnet electric door and the control system thereof provided by the invention are organically combined by the principles of electromagnetic induction and magnetism and linear motor, and the electromagnet core winding is controlled by alternating current energization with an electronic switch to make the core
  • the generated induced magnetic field attracts or repels the permanent magnet of the permanent magnet moving block to realize rapid opening and closing of the engine valve of the automobile.
  • the invention has the advantages of simple structure, sensitive control, high opening and closing rate, superior performance and high reliability.
  • FIG. 1 is a schematic structural view of a permanent magnet electric door in a closed state according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view showing a permanent magnet electric door in an open state according to an embodiment of the present invention
  • FIG. 3 is a permanent magnet electric door control system according to the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS Fig. 4 is a schematic block diagram of a second embodiment of a permanent magnet electrical door control system of the present invention.
  • FIG. 1 is a schematic structural view of a permanent magnet electrical door in a closed state according to an embodiment of the present invention.
  • the permanent magnet electrical door provided by the present invention includes a casing 1 and is placed in a center position of the casing 1.
  • the upper fixed iron core 9 is fixed at the upper end of the casing 1 and the lower end thereof is disposed opposite to the top end of the valve body 7; the lower fixed iron core 8 is spaced apart from the upper fixed iron core 9 by a certain distance, and the surrounding valve body 7 is fixed to the casing 1
  • the lower end of the inner portion; the permanent magnet moving block 3 is disposed on the valve body 7 between the upper fixed iron core 9 and the lower fixed iron core 8, and is disposed opposite to the upper and lower fixed iron cores 8, 9.
  • the permanent magnet block 3 includes a permanent magnet steel 301 and a fixed body 302 for fixing the permanent magnet steel 301 to the valve body 7.
  • an upper buffer block 2 and a lower buffer block 4 are respectively disposed above and below the permanent magnet moving block 3, and the upper buffer block 2 is fixed to the lower end surface of the upper fixed iron core 9.
  • the lower buffer block 4 is fixed to the upper end surface of the lower fixed iron core 8.
  • the rod portion of the valve body 7 is sleeved with a linear rolling bearing 6, and the linear bearing 6 and the valve body 7 are slippery.
  • the housing 1 is fixed to the engine cylinder head through the bolt hole 10, and the linear rolling bearing 6 and the engine cylinder head can be fixed in a tight fit manner.
  • the first winding 5' and the second winding 5" are connected in parallel or in series, and the conduction currents in the first winding 5' and the second winding 5" are positive and negative alternating currents.
  • the first winding 5 and The second winding 5" is connected in series.
  • the permanent magnet moving block 3 has magnetic poles of opposite polarities, and the end faces of the iron core 8 adjacent to the permanent magnet moving block 3 generate magnetic poles having the same magnetic polarity as the permanent magnet moving blocks 3, and the upper fixed iron core 9 and the permanent magnet moving block 3
  • the opposite magnetic poles attract each other, and at the same time, the isotropic magnetic poles between the lower fixed iron core 8 and the permanent magnet moving block 3 repel each other.
  • the permanent magnet moving block 3 and the valve body body are under the suction of the lower fixed iron core 8 and the upper fixed iron core 9, and rapidly Move up to close the valve.
  • FIG. 2 is a schematic structural view of a permanent magnet electrical door in an open state according to an embodiment of the present invention.
  • the end faces of the iron core 9 adjacent to the permanent magnet moving block 3 are generated and the polarity of the permanent magnet moving block 3 is generated.
  • the same magnetic pole, and the end face of the iron core 8 adjacent to the permanent magnet moving block 3 generates a magnetic pole different from the magnetic polarity of the permanent magnet moving block 3, and the isotropic magnetic pole between the upper fixed iron core 9 and the permanent magnet moving block 3 repels
  • the opposite magnetic pole 8 and the permanent magnet moving block 3 are attracted by the opposite magnetic poles.
  • the permanent magnet moving block 3 and the valve body 7 act under the action of the lower fixed iron core 8 suction and the upper fixed iron core 9 to rapidly move downward to open the valve.
  • the windings 5', 5" of the upper and lower fixed iron cores 9, 8 are disconnected, and the upper fixed iron core 9 and the permanent magnet moving block 3 continue to close the valve under the suction force of the permanent magnet and the iron core, the valve In the normally closed state; on the contrary, under the suction force of the permanent magnet and the permanent magnet moving block 3 under the permanent magnet and the iron core, the valve is continuously opened, and the valve maintains the normally open state.
  • a single-valve engine uses one of the above-mentioned permanent magnet electric gates
  • the multi-valve engine uses a plurality of the above-mentioned permanent magnet electric gates, or a plurality of sets of permanent magnet electric gates constitute an integrated permanent magnet electric door group, which can be controlled The system is driven in parallel.
  • FIG. 3 and FIG. 4 are schematic block diagrams of a permanent magnet electrical door control system according to an embodiment of the present invention.
  • Figure 3 differs from Figure 4 in that the single-phase bridge converter drive circuit is used.
  • the power devices are different.
  • high power transistors T1, ⁇ 2, ⁇ 3, and ⁇ 4 are used, and in Fig. 4, MOSFET tubes M1, ⁇ 2, ⁇ 3, and ⁇ 4 are used. The following is described by taking FIG. 3 as an example.
  • the permanent magnet electric door control system is composed of a signal detecting module 21, a signal processing module 22 and a single-phase bridge converter driving circuit Q.
  • the signal detecting module 21 is used to collect the piston top dead center, bottom dead center and the motor. a phase position signal;
  • the signal processing module 22 is connected to the signal detecting module 21 for receiving and processing the signal detected by the signal detecting module 21, and generating a pulse trigger driving signal;
  • the signal processing module 22 and the winding 20 of the permanent magnet electrical door are respectively connected to trigger the driving signal according to the pulse generated by the signal processing module 22, and sequentially control the alternating current in the permanent magnet electrical gate winding 20 of each cylinder. On and off.
  • the signal detecting module 21 includes a signal generating device 11 disposed at the crankshaft end of the engine and a sensor 12 connected to the signal generating device 11 for collecting piston top dead center, bottom dead center and motor phase position signals.
  • the signal processing module 22 includes a signal acquisition and processor 13, a computer 14 and a drive circuit 15.
  • the signal acquisition and processor 13 transmits the piston top dead center, the bottom dead center position and the engine speed signal collected by the sensor 12 to the computer 14, and the computer 14 controls the driving circuit 15 to drive the variable current driving power circuit Q to operate;
  • the phase-bridge converter driving circuit Q is composed of a battery pack ⁇ and high-power transistors T1, ⁇ 2, ⁇ 3, ⁇ 4 constituting a single-phase bridge converter.
  • the battery pack provides DC power to the variable-current drive power circuit Q.
  • the output terminals of the high-power transistors T1, ⁇ 2, ⁇ 3, and ⁇ 4 are connected to the (terminals) of the windings 20, respectively.
  • the engine crankshaft drives the signal generating device 11 to rotate, and the sensor 12 can simultaneously detect the ignition, the piston top dead center, the piston bottom dead center and the motor phase position, and transmit the position signal to the signal acquisition and processor 13, the signal acquisition.
  • the command drive circuit 15 operates to control the single-phase bridge power tube circuit Q in the order of engine operation and ignition, and each When the cylinder intake and exhaust valves are opened and closed, the forward or reverse conduction current is sequentially controlled to control the opening and closing of the permanent magnet electrical door of each cylinder.
  • the control system controls the current cylinder intake valve winding 20 to reverse-pass, that is, the control circuit 15 controls the triggering of the high-power transistor T1 and ⁇ 2 is in the off state, and the high power transistors ⁇ 3 and ⁇ 4 are triggered to be in a conducting state, that is, the current is positively passed through the collector (c pole) and the emitter (e pole) of the high power transistor ⁇ 3, and flows from the output terminal B into the winding 20 D to C, high power at this time
  • the triodes T1 and ⁇ 2 are in a closed state; as a result, under the action of the upper fixed core 9 repelling the same polarity and the opposite pole of the lower fixed core 8, the permanent magnet block 3 and the valve body 7 move rapidly downward and the valve Open.
  • the control system controls the current cylinder intake winding 20 to be forwarded, that is, the control circuit 15 controls the triggering of the high power transistors T1 and ⁇ 2 to conduct.
  • the current flows from the positive pole of the battery, passes through the collector (c pole) and the emitter (e pole) of the power tube high power transistor T1, and flows from the output terminal A into the C terminal to the D terminal of the winding 20, and then the high power transistor The c- and e-pole outputs of T2 return to the negative terminal of the battery.
  • the high-power transistors T3 and ⁇ 4 are in a closed state.
  • the permanent magnet moving block 3 and the valve body 7 move upwards rapidly. And close the valve.
  • each cylinder of the engine enters and exits the exhaust valve, and the opening and closing timings of the intake and exhaust valves of each cylinder are sequentially turned on and off in sequence according to the working sequence.
  • the opening advance angle of the intake valve and the late closing angle of the exhaust valve are automatically changed and adjusted by the computer 14 according to the collected signal closing angle, engine speed, load, temperature and the like.
  • the invention relates to a permanent magnet electric door and a control system thereof in an engine gas distribution device.
  • the permanent magnet electric door and the control system thereof are organically combined by the principles of electromagnetic induction and magnetic mechanics and a linear motor, and are controlled by alternating current energization by an electronic switch.
  • the electromagnet core winding causes the induced magnetic field generated by the iron core to attract or repel the permanent magnet of the permanent magnet moving block, so that the engine valve structure is simple, the control is sensitive, the opening and closing rate and the reliability are high, and the valve opening depth is controllable.
  • the present invention is particularly suitable for the development of electronic and automation of modern automobile engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Valve Device For Special Equipments (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Magnetically Actuated Valves (AREA)

Description

永磁电气门及其控制***
技术领域
本发明涉及一种发动机配气装置, 具体地说, 涉及一种发动机配气装置 中的永磁电气门及其控制***。 背景技术
现有发动机的配气机构都是由气门、 气门弹簧、 气门导管、 气门导管油 封、 摇臂、 气门间隙调节器、 摇臂轴、 凸轮轴、 锁块、 弹簧、 可变气门机构 等构成; 配气机构的传动***是由发动机曲轴时规皮带轮 (或链条齿轮) 、 时规皮带或链条、 压带轮或链条压块、 凸轮轴皮带轮或凸轮轴齿轮来构成并 传动的; 气门通过配气机构的传动***实现开启和关闭。 现有发动机气门传 动机构零部件繁多且结构复杂, 而且这种机械式的配气机构及传动***使得 气门的升程以及开启角和闭合角不能变化调整, 直接影响到发动机的功效。 另外, 气门导管油封易磨损老化, 造成机油从气门与导管间进入燃烧室, 发 动机燃烧机油会造成排放蓝烟、 产生积炭等, 造成发动机易磨损、 污染严重 等问题。
针对上述问题, 本申请人已于 2004年 12月 6日在中国申请了一种 "电 磁气门及其控制***" (申请号: 200410100922.6) , 该电磁气门利用两电 磁线圈及铁芯或永磁钢与电磁线圈及铁心同性相吸的原理, 用电子开关依次 来控制电磁线圈的通断。 具体地说, 电磁气门包括壳体、 绕组、 永磁钢或固 定铁心、 气门、 直线轴承和滑动铁心, 永磁钢或固定铁心固定在壳体上, 气 门与滑动铁芯固定连接在一起, 滑动铁心与永磁钢或固定铁心相对设置, 壳 体绕有滑动铁心绕组或滑动铁心和固定铁心绕组,气门与直线轴承滑动连接, 直线轴承和壳体固定在发动机气缸盖上;其控制***通过信号装置、传感器、 信号采集及处理器、 电脑、 驱动电路以及金属氧化物半导体场效应管 (MOSFET) 或大功率三极管, 依次控制各缸进排气电磁气门绕组的电流通 断。 该电磁气门及其控制***结构简单、 控制灵敏、 性能优越、 可靠性极高, 气门间隙无需调整, 降低了发动机噪声, 极大的提高了发动机工作可靠性和 效率。
然而, 随着对发动机配气装置的开启气门频率的要求越来越高, 如何对 上述的电磁气门及其控制***进一步改进, 从而提高开闭气门的速率, 成为 了急需解决的问题。 发明内容
本发明的目的在于提供一种结构简单、 控制灵敏、 开闭速率更快的永磁 电气门及其控制***。
为实现上述目的, 本发明采取的技术方案为: 一种永磁电气门, 包括: 壳体; 气门体, 置于壳体内的中心位置; 上固定铁心, 固定在壳体内的上端, 其上绕有第一绕组, 且其下端与电气门的顶端相对设置; 下固定铁心, 其上 绕有第二绕组, 与上固定铁心相隔一定的间隙, 且环绕气门体固定在壳体内 腔的下端; 以及永磁动块, 固定在下固定铁心和上固定铁心之间的气门体上; 其中, 第一绕组和第二绕组中的电流所产生的磁力, 与永磁动块的磁力产生 吸力和斥力,使得永磁动块和气门体在下固定铁心和上固定铁心间上下移动。
优选地, 所述的永磁动块包括永磁钢和用以将永磁钢固定在气门体上的 固定体。
优选地, 所述的第一绕组和第二绕组并联或串联, 且第一绕组和第二绕 组中的导通电流为正负极***变电流。
优选地, 所述的上固定铁心与永磁动块相对的下端面处固定设有缓冲装 置, 所述的下固定铁心与永磁动块相对的上端面处设有缓冲装置。
优选地, 所述的缓冲装置为缓冲弹簧或缓冲块。
优选地, 所述的永磁电气门还包括直线轴承, 所述的直线轴承与气门体 滑动连接。
本发明还提供一种永磁电气门的控制***, 用以控制上述的永磁电气门 的绕组; 其包括: 信号检测模块、 信号处理模块和单相桥变流驱动电路; 信 号检测模块包括设置于发动机曲轴端的信号产生装置以及与所述的信号产生 装置相连的传感器, 该传感器用以采集活塞上止点、 下止点以及电机相位位 置信号; 信号处理模块与所述的信号检测模块相连, 用以接收和处理所述的 信号检测模块所检测的信号, 并且产生脉冲触发驱动信号; '单相桥变流驱动 电路与所述的信号处理模块和永磁电气门的绕组分别相连, 用以根据信号处 理模块产生的脉冲触发驱动信号, 依次控制各缸进排气永磁电气门绕组中电 流的交变通断。
优选地, 所述的单相桥变流驱动电路由直流电池组和构成单相桥式变流 驱动电路的四只功率器件组成。
优选地, 所述的四只功率器件为大功率三极管或半导体场效应管 (MOSFET) 。
从以上技术方案可以看出, 本发明提供的永磁电气门及其控制***, 利 用电磁感应和磁力学以及直线电机的原理有机结合, 用电子开关依次交变通 电来控制电磁铁心绕组, 使铁心产生的感应磁场与永磁动块的永磁铁相吸或 相斥, 实现汽车发动机气门的快速开闭。 本发明结构简单、 控制灵敏、 开闭 速率高, 性能优越且可靠性高。 附图说明
图 1为本发明实施例的永磁电气门处于关闭状态的结构示意图; 图 2为本发明实施例的永磁电气门处于开启状态的结构示意图; 图 3为本发明的永磁电气门控制***的第一实施例的原理框图; 图 4为本发明的永磁电气门控制***的第二实施例的原理框图。
其中, 附图标记说明如下- 1 壳体
2 上缓冲块
3 永磁动块;
301 永磁钢
302 永磁钢固定体
4 下缓冲块
5 ' 第一绕组
5" 第二绕组
6 直线滚动轴承
7 气门体
8 下固定铁心 9 上固定铁心
10 壳体安装孔
20 永磁电气门的绕组
21 信号检测模块
11 信号产生装置
12 传感器
22 信号处理模块
13 信号采集及处理器
14 电脑
15 驱动电路
Q 单相桥变流驱动电路
E 直流电池组
Tl、 Τ2、 Τ3、 Τ4 大功率三极管
Ml、 Μ2、 Μ3、 Μ4 半导体场效应管 具体实施方式
请参阅图 1, 图 1为本发明实施例的永磁电气门处于关闭状态的结构示 意图; 如图所示, 本发明提供的永磁电气门包括壳体 1、 置于壳体 1 内中心 位置的气门体 7、 上缓冲块 2、 永磁动块 3、 下缓冲块 4、 直线滚动轴承 6、 其上缠有第一绕组 5 '的上固定铁心 9和其上缠有第二绕组 5" 的下固定铁心 8。
上固定铁心 9固定在壳体 1内的上端处, 且其下端与气门体 7的顶端相 对设置; 下固定铁心 8与上固定铁心 9相隔一定的距离, 且环绕气门体 7固 定在壳体 1 内的下端; 永磁动块 3设置安装在上固定铁心 9与下固定铁心 8 之间的气门体 7上, 并与上下固定铁心 8、 9相对设置。 为了增加永磁动块 3 的强度并与气门体 7的牢固结合, 永磁动块 3包括永磁钢 301和用以将永磁 钢 301固定在气门体 7上的固定体 302。 为了增强永磁动块 3的抗冲击强度, 在上述永磁动块 3的上、 下方分别设置有上缓冲块 2和下缓冲块 4, 且上缓 冲块 2固定在上固定铁心 9的下端面, 下缓冲块 4固定在下固定铁心 8的上 .端面处。 气门体 7的杆部套有直线滚动轴承 6, 且直线轴承 6与气门体 7滑 动连接; 壳体 1通过螺栓孔 10固定在发动机气缸盖上,直线滚动轴承 6与发 动机气缸盖可采取紧配合的方式固定。
第一绕组 5 '和第二绕组 5" 并联或串联, 且第一绕组 5 '和第二绕组 5 〃 中的导通电流为正负交变电流。在本实施例中, 第一绕组 5 和第二绕组 5 " 串联。
再请参阅图 1, 当上下固定铁心 9、 8的第一绕组 5 '和第二绕组 5" .通 正向电流时, 在上固定铁心 9与永磁动块 3相邻的铁心端面产生与永磁动块 3极性相反的磁极, 而下固定铁心 8与永磁动块 3相邻的铁心端面产生与永 磁动块 3磁极性相同的磁极,上固定铁心 9与永磁动块 3之间异性磁极相吸, 同时下固定铁心 8与永磁动块 3之间同性磁极相斥, 此时永磁动块 3与气门 体 Ί在下固定铁心 8推力和上固定铁心 9吸力下, 迅速向上运动关闭气门。
请参阅图 2, 图 2为本发明实施例的永磁电气门处于开启状态的结构示 意图。 当上下固定铁心 9、 8的第一绕组 5 '和第二绕组 5" 通反向电流时, 在上固定铁心 9与永磁动块 3相邻的铁心端面产生与永磁动块 3极性相同的 磁极, 而下固定铁心 8与永磁动块 3相邻的铁心端面产生与永磁动块 3磁极 性相异的磁极, 上固定铁心 9与永磁动块 3之间同性磁极相斥, 同时下固定 铁心 8与永磁动块 3之间异性磁极相吸, 此时永磁动块 3与气门体 7在下固 定铁心 8吸力和上固定铁心 9推力作用下, 迅速向下运动开启气门。 瞬间闭 合或开启后, 上下固定铁心 9、 8的绕组 5 '、 5" 电流断开, 上固定铁心 9 与永磁动块 3在永磁铁与铁心的吸力作用下, 继续使气门关闭, 气门保持常 闭状态; 反之, 在下固定铁心 8与永磁动块 3在永磁铁与铁心的吸力作用下, 继续使气门开启, 气门保持常开状态。
在图 1和图 2所示的实施例中, 上固定铁心 9、 下固定铁心 8的位置只 是相对而言, 并不局限其左、 右分布或位置互换。 凡作如此等同变换, 均属 本发明保护范围。
在实际使用中, 单气门发动机用一只上述永磁电气门, 多气门发动机采 用多只上述永磁电气门, 或将多组永磁电气门构成一体化的永磁电气门组, 可以与控制***并联驱动工作。
如图 3和图 4所示, 图 3和图 4均为本发明实施例的永磁电气门控制系 统原理框图。 图 3与图 4所不同的是, 其中的单相桥变流驱动电路所使用的 功率器件不同, 图 3中使用的是大功率三极管 Tl、 Τ2、 Τ3、 Τ4, 而图 4中 使用的是 MOSFET管 Ml、 Μ2、 Μ3、 Μ4。 下面以图 3为例描述。
如图 3所示,永磁电气门控制***由信号检测模块 21、信号处理模块 22 和单相桥变流驱动电路 Q组成; 信号检测模块 21用以采集活塞上止点、 下 止点以及电机相位位置信号; 信号处理模块 22与所述的信号检测模块 21相 连,用以接收和处理所述的信号检测模块 21检测的信号, 并且产生脉冲触发 驱动信号; 单相桥变流驱动电路 Q与所述的信号处理模块 22和永磁电气门 的绕组 20分别相连, 用以根据信号处理模块 22产生的脉冲触发驱动信号, 依次控制各缸进排气永磁电气门绕组 20中电流的交变通断。
所述的信号检测模块 21包括设置于发动机曲轴端的信号产生装置 11以 及所述的信号产生装置 11相连的传感器 12, 该传感器 12用以采集活塞上止 点、下止点以及电机相位位置信号。信号处理模块 22包括信号采集及处理器 13、 电脑 14 以及驱动电路 15。 信号采集及处理器 13将传感器 12采集到的 活塞上止点、 下止点位置以及发动机转速信号传输给电脑 14, 由电脑 14控 制驱动电路 15驱动变流驱动功率电路 Q工作;所述的单相桥变流驱动电路 Q 由电池组 Ε和构成单相桥式变流驱动电路的大功率三极管 Tl、 Τ2、 Τ3、 Τ4 组成。 电池组 Ε给变流驱动功率电路 Q提供直流电源。 大功率三极管 Tl、 Τ2、 Τ3、 Τ4的输出端八、 Β分别与绕组 20的( 、 D端连接。
当发动机启动时, 发动机曲轴带动信号产生装置 11旋转, 传感器 12可 以同时检测点火、 活塞上止点、 活塞下止点及电机相位位置, 并且将位置信 号传输给信号采集及处理器 13, 信号采集及处理器 13与电脑 14根据活塞位 置信号、 发动机转速、 负载、 温度等信息进行计算处理后, 指令驱动电路 15 工作, 从而控制单相桥功率管电路 Q按发动机工作和点火的顺序, 以及各气 缸进排气门开启闭合时刻, 依次正向或反向导通电流来控制各缸进排气永磁 电气门的启闭。
具体地说, 当传感器 12检测到活塞上下止点之间的气门处于开启位置 时, 控制***控制当前气缸进气门绕组 20 反向导通, 也就是说, 控制电路 15控制触发大功率三极管 T1和 Τ2处于关闭状态, 并且触发大功率三极管 Τ3和 Τ4处于导通状态, 即电流正向通过大功率三极管 Τ3的集电极 (c极) 和发射极 (e极) , 并由输出端 B流入绕组 20的 D端至 C端, 此时大功率 三极管 Tl、 Τ2处于关闭状态; 结果, 在上固定铁心 9同极性磁极相斥和下 固定铁心 8异性磁极相吸的作用下, 永磁动块 3和气门体 7向下迅速运动并 将气门开启。
当传感器 12捡测到活塞上下止点之间的气门处于关闭位置时,控制*** 控制当前气缸进气 Π绕组 20正向导通, 也就是说, 控制电路 15控制触发大 功率三极管 T1和 Τ2导通, 电流从电池的正极流出, 通过功率管大功率三极 管 T1的集电极 (c极) 和发射极(e极) , 由输出端 A流入绕组 20的 C端 至 D端,.再由大功率三极管 T2的 c极和 e极输出, 返回到电池的负极。 此 时, 大功率三极管 T3、 Τ4处于关闭状态, 结果, 在上固定铁心 9异性磁极 相吸和下固定铁心 8同性磁极斥力的作用下, 永磁动块 3和气门体 7向上迅' 速运动并将气门关闭。
依此类推, 发动机的各气缸进排气门, 周而复始地按工作顺序所需各气 缸进排气门的启闭时刻, 依次开启和关闭。 进气门的开启提前角和排气门的 迟后闭合角是由电脑 14根据采集的信号闭合角、发动机转速、负载、温度等 信息处理计算后自动变化调整的。 工业实用性
本发明涉及发动机配气装置中的永磁电气门及其控制***, 该永磁电气 门及其控制***利用电磁感应和磁力学以及直线电机的原理有机结合, 用电 子开关依次交变通电来控制电磁铁心绕组, 使铁心产生的感应磁场与永磁动 块的永磁铁相吸或相斥, 使发动机气门结构简单、 控制灵敏、 开闭速率和可 靠性高, 气门开启深度可控。 本发明特别适合现代汽车发动机的电子化和自 动化的发展方向。

Claims

权利要求
1、 一种永磁电气门, 包括:
壳体 (1) ;
气门体 (7) , 置于壳体 (1) 内的中心位置;
其特征在于, 还包括:
上固定铁心(9), 固定在壳体(1)内的上端,其上绕有第一绕组(5 ' ), 且其下端与气门体 (7) 的顶端相对设置;
下固定铁心 (8) , 其上绕有第二绕组 (5" ) , 与上固定铁心 (9) 相 隔一定的间隙, 固定在壳体 (1) 内的下端; 以及
永磁动块 (3) , 固定在下固定铁心 (8) 和上固定铁心 (9) 之间的气 门体 (7) 上;
其中, 第一绕组 (5 ' )和第二绕组 (5" ) 中的电流所产生的磁力, 与 永磁动块 (3) 的磁力产生吸力和斥力, 使得永磁动块 (3) 和气门体 (7) 在下固定铁心 (8) 和上固定铁心 (9) 间上下移动。
2、 根据权利要求 1 所述的永磁电气门, 其特征在于, 所述的永磁动块
(3) 包括永磁钢 (301) 和用以将永磁钢 (301) 固定在气门体 (7) 上的固 定体 (302) 。
3、 根据权利要求 1 所述的永磁电气门, 其特征在于, 所述的第一绕组 (5 ' ) 和第二绕组 (5" ) 并联或串联, 且第一绕组 (5 ' ) 和第二绕组 (5 " ) 中的导通电流为正负极***变电流。
4、 根据权利要求 1 所述的永磁电气门, 其特征在于, 所述的上固定铁 心 (9) 与永磁动块 (3) 相对的下端面处固定设有缓冲装置 (2) , 所述的 下固定铁心 (8) 与永磁动块 (3) 相对的上端面处设有缓冲装置 (4) 。
5、 根据权利要求 1 所述的永磁电气门, 其特征在于, 所述的缓冲装置 (2、 4) 为缓冲弹簧或缓冲块。
6、 根据权利要求 1 所述的永磁电气门, 其特征在于, 还包括直线轴承 (6) , 所述的直线轴承 (6) 与气门体 (7) 滑动连接。
7、 一种永磁电气门的控制***, 用以控制权利要求 1一 6所述的永磁电 气门的绕组 (20) ; 其特征在于, 包括:
信号检测模块 (21) , 其包括: 信号产生装置 (11 ) , 设置于发动机曲轴端; 以及
传感器 (12) , 与所述的信号产生装置 (11 ) 相连, 用以采集活塞上止 点、 下止点以及电机相位位置信号;
信号处理模块 (22) , 与所述的信号检测模块 (21 ) 相连, 用以接收和 处理所述的信号检测模块 (21 ) 检测的信号, 并且产生脉冲触发驱动信号; 单相桥变流驱动电路 (Q) , 与所述的信号处理模块 (22) 和永磁电气 门的绕组 (20) 分别相连, 用以根据信号处理模块 (22) 产生的脉冲触发驱 动信号, 依次控制各缸进排气永磁电气门绕组 (20) 中电流的交变通断。
8、 根据权利要求 8所述的永磁电气门的控制***, 其特征在于, 所述 的单相桥变流驱动电路(Q) 由直流电池组(E)和构成单相桥式变流驱动电 路的四只功率器件组成。
9、 根据权利要求 8所述的永磁电气门的控制***, 其特征在于, 所述 的四只功率器件为大功率三极管(Tl、 Τ2、 Τ3、 Τ4)或半导体场效应管(Ml、 Μ2、 Μ3、 Μ4)
PCT/CN2006/002648 2005-10-10 2006-10-10 Electrovanne a aimant permanent et systeme de commande de celle-ci WO2007041949A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06804905A EP1947300A4 (en) 2005-10-10 2006-10-10 PERMANENT MAGNET SOLENOID VALVE AND CONTROL SYSTEM THEREOF
JP2008534852A JP2009512410A (ja) 2005-10-10 2006-10-10 永久磁石電気バルブ及びその制御システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005101130605A CN1948722A (zh) 2005-10-10 2005-10-10 永磁电气门及其控制***
CN200510113060.5 2005-10-10

Publications (1)

Publication Number Publication Date
WO2007041949A1 true WO2007041949A1 (fr) 2007-04-19

Family

ID=37942310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002648 WO2007041949A1 (fr) 2005-10-10 2006-10-10 Electrovanne a aimant permanent et systeme de commande de celle-ci

Country Status (5)

Country Link
EP (1) EP1947300A4 (zh)
JP (1) JP2009512410A (zh)
KR (1) KR20080069994A (zh)
CN (1) CN1948722A (zh)
WO (1) WO2007041949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224481B2 (en) 2009-01-19 2012-07-17 Access Business Group International Llc Method and apparatus for dispensing fluid compositions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102536474B (zh) * 2010-12-24 2015-04-29 广西玉柴机器股份有限公司 一种电控气门的控制装置及控制方法
JP6471929B2 (ja) * 2014-07-24 2019-02-20 株式会社福島研究所 直動型モーター
CN107560861A (zh) * 2017-10-20 2018-01-09 安徽工程大学 一种配气机构双摩擦副复合模拟实验***
CN108798820B (zh) * 2018-06-01 2020-08-11 南京理工大学 应用于内燃机的落座缓冲式电磁全可变气门***
CN110700916B (zh) * 2019-11-08 2021-02-05 江苏科技大学 复合式电磁驱动全可变配气机构的控制方法
CN114469414B (zh) * 2021-12-16 2024-04-12 合肥新沪屏蔽泵有限公司 一种微型泵及冲牙器
CN114469415A (zh) * 2021-12-16 2022-05-13 合肥新沪屏蔽泵有限公司 一种用于冲牙器的泵及冲牙器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002712A1 (en) * 1990-07-27 1992-02-20 Keith Leslie Richards A valve control arrangement
US20050211200A1 (en) * 2004-03-25 2005-09-29 Feng Liang Enhanced permanent magnet electromagnetic actuator for an electronic valve actuation system of an engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619806B2 (ja) * 1986-06-13 1994-03-16 日本サ−ボ株式会社 磁気バイアス発生装置
US4794890A (en) * 1987-03-03 1989-01-03 Magnavox Government And Industrial Electronics Company Electromagnetic valve actuator
JP2652802B2 (ja) * 1988-12-28 1997-09-10 株式会社いすゞセラミックス研究所 電磁力バルブ駆動装置
JPH11210430A (ja) * 1998-01-20 1999-08-03 Aisan Ind Co Ltd エンジンバルブ駆動用アクチュエータ
DE10003928A1 (de) * 1999-11-25 2001-06-07 Daimler Chrysler Ag Elektromagnetischer Aktuator
DE10221134A1 (de) * 2002-05-13 2003-11-27 Uwe Bernheiden Elektromagnetischer Aktuator
DE10323172A1 (de) * 2003-05-22 2004-12-09 Ina-Schaeffler Kg Treiberstufe für ein Solenoidventil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992002712A1 (en) * 1990-07-27 1992-02-20 Keith Leslie Richards A valve control arrangement
US20050211200A1 (en) * 2004-03-25 2005-09-29 Feng Liang Enhanced permanent magnet electromagnetic actuator for an electronic valve actuation system of an engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947300A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224481B2 (en) 2009-01-19 2012-07-17 Access Business Group International Llc Method and apparatus for dispensing fluid compositions

Also Published As

Publication number Publication date
JP2009512410A (ja) 2009-03-19
CN1948722A (zh) 2007-04-18
EP1947300A1 (en) 2008-07-23
KR20080069994A (ko) 2008-07-29
EP1947300A4 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2007041949A1 (fr) Electrovanne a aimant permanent et systeme de commande de celle-ci
JP2652802B2 (ja) 電磁力バルブ駆動装置
US8786143B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
KR890013399A (ko) 공기식 전자 밸브 작동기
US20050046531A1 (en) Electromagnetic valve system
JPS63277810A (ja) 内燃機関に使用する電子制御弁機構
US20040113731A1 (en) Electromagnetic valve system
KR100980869B1 (ko) 가변 밸브 타이밍 장치
US7225770B2 (en) Electromagnetic actuator having inherently decelerating actuation between limits
US10900390B2 (en) Harsh condition controls for electrically latched switching roller finger follower
JP2000110593A (ja) 電磁駆動吸排気弁の駆動回路
JP2003056741A (ja) 電子機械式バルブトレイン
JPH02308910A (ja) 電磁力バルブ駆動装置
WO2004033868A2 (en) Electromagnetic valve system
JP2004019533A (ja) 電磁駆動弁
CN1786447A (zh) 电磁气门及其控制***
JPH02291412A (ja) バルブのステッピング駆動装置
JP4157268B2 (ja) バルブ駆動装置
JPH10196328A (ja) 磁力で開閉するエンジンのバルブ
JP2824667B2 (ja) 電磁力バルブ駆動装置
SUZUKI et al. A study on dynamic performance of electromagnetically driven valve: basic consideration on thrust characteristics using electromagnetic field analysis
KR20080020125A (ko) 전자석 피스톤을 이용한 엔진
Giglio et al. Preliminary experiences in the design of an electromechanical valve actuator
JPH064305U (ja) 内燃機関のバルブ開閉装置
JP2759362B2 (ja) 電磁力バルブ駆動装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008534852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006804905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087011279

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006804905

Country of ref document: EP