WO2007041948A2 - Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede - Google Patents

Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede Download PDF

Info

Publication number
WO2007041948A2
WO2007041948A2 PCT/CN2006/002647 CN2006002647W WO2007041948A2 WO 2007041948 A2 WO2007041948 A2 WO 2007041948A2 CN 2006002647 W CN2006002647 W CN 2006002647W WO 2007041948 A2 WO2007041948 A2 WO 2007041948A2
Authority
WO
WIPO (PCT)
Prior art keywords
winding
motor
voltage
electric
phase
Prior art date
Application number
PCT/CN2006/002647
Other languages
English (en)
French (fr)
Other versions
WO2007041948A3 (fr
Inventor
Lei He
Original Assignee
Lei He
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lei He filed Critical Lei He
Priority to EP06804904A priority Critical patent/EP1947759A2/en
Priority to US12/083,370 priority patent/US20090218970A1/en
Priority to JP2008534851A priority patent/JP2009512409A/ja
Publication of WO2007041948A2 publication Critical patent/WO2007041948A2/zh
Publication of WO2007041948A3 publication Critical patent/WO2007041948A3/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • H02P9/307Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage more than one voltage output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/56Structural details of electrical machines with switched windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of electric hybrid vehicles; and more particularly to an electric drive and power generation control technology in the field of electric hybrid vehicles, and more particularly to an electric/power generation multiplexing control technology thereof.
  • Background Art In recent years, in the field of automobiles, in order to alleviate global problems such as energy shortage and deterioration of ecological environment, the development of "energy-saving” and “environmental-friendly” new electric hybrid vehicles has become an inevitable direction for the development of modern automobiles.
  • the so-called electric hybrid is a mixture of electric and other power:
  • the permanent magnet synchronous motor/exciting motor is used as a motor combination to realize the start/electric assist multiplexing function; when the car is decelerating or driving normally Use a permanent magnet synchronous motor/excitation motor as a generator to achieve energy feedback and charge the battery pack.
  • the design theory of permanent magnet motor limits the realization of low-speed starting high torque and high-speed assisting large torque.
  • the permanent magnet motor designed according to the rated speed of 800r/min has a starting torque much larger than that of the permanent magnet motor designed according to the rated speed of 3000r/min, but its maximum speed cannot be limited due to the backlash of the electric winding. When it reaches 3000r/min, high-speed power can not be realized.
  • the permanent magnet motor designed according to the rated speed of 3000r/min can realize the large torque boost in the high-speed zone, but its torque at low-speed starting is very small. That is to say, the permanent magnet motor designed according to the low speed starting performance requirements cannot meet the performance requirements of the high speed zone assisting; The permanent magnet motor cannot meet the requirements of low-speed starting performance; the two are contradictory and cannot be combined. '
  • the existing low-voltage motor/power generation multiplexing control technology uses low-voltage MOSFET power devices or modules to achieve low-voltage permanent magnet brushless motor drive control.
  • the performance of the MOSFET power device is the low operating voltage of the high current tube or module.
  • the operating voltage of the 200A ⁇ 600A power tube or module is usually 150V, but the operating current of the 300V ⁇ 600V power tube or module is only tens of ampere. Therefore, in low-voltage motor/power multiplex control systems, only high-current MOSFETs or modules can be used.
  • 42V means that the generator charging voltage is 42VDC, and the battery operating voltage is 36V; the operating voltage is 36V and the rated speed is 800r/
  • the permanent magnet synchronous motor designed by min has a backlash of electric winding at 800r/min which is close to 36V.
  • the engine speed can reach about 6500r/min, that is, the permanent magnet synchronous motor designed at 800r/min is at 6500r/
  • the back potential at min can reach more than 200 volts. This voltage has far exceeded the normal operating voltage of the MOSFET or module and will directly damage the MOSFET or module. Therefore, at present, many automobile companies at home and abroad have avoided the problems in the above-mentioned permanent magnet automobile 42V electric/power generation multiplexing electrical system. Although the torque and efficiency of the excitation motor are not as high as those of the permanent magnet synchronous motor, it is still adopted. Excitation type 42V electric / power generation and its control system.
  • existing high-voltage or low-voltage electric hybrid systems there are two sets of battery packs and two sets of power generation charging systems; for example, the above 42V system includes 12V, 36V two sets of battery packs and 14V, 42V two sets of power generation.
  • Charging system At present, most automobile companies realize two sets of battery packs and two sets of power generation charging systems: Using a power generation charging system, directly providing a voltage battery pack charging and/or load power; DC-powering the power generation charging system DC boost or buck, providing another type of battery pack charging and / or load power.
  • This conversion method of DC-DC boost or step-down generator output voltage has large loss and low efficiency; especially for high-power, low-voltage DC-DC, The loss is more and the efficiency is lower; and the DC-DC control system is technically difficult, and its design and manufacturing cost is almost close to a brushless permanent magnet motor drive control system.
  • the major automobile companies currently use high-voltage hybrid systems, that is, battery packs with higher voltages, high-voltage IGBT modules with higher tube pressure and high operating current, and motor drive control systems.
  • the permanent magnet synchronous brushless sine wave motor and its weak magnetic drive control system are adopted; the weak magnetic drive control system adopts the weak magnetic mode to realize the high torque of the motor at low speed and realize the high speed electric power of the motor; correspondingly the principle of weak magnetic control
  • the stator winding is in the d-axis, the current is applied to make the stator magnetic field and the permanent magnet of the rotor generate the same polarity magnetic field to weaken the permanent magnet magnetic strength of the rotor, thereby improving the motor speed and controlling the output of the generator.
  • an object of the present invention is to provide a motor power generation multiplexing control system and method which enable a hybrid engine to achieve low speed and large torque starting and high speed and large torque without weak magnetic control. Electric power, at the same time achieve efficient, simple and reliable direct voltage regulation charging system.
  • Another object of the present invention is to provide an electric hybrid vehicle using the above-described motor power generation multiplexing control system and method.
  • a first technical solution of the present invention provides a motor power generation multiplexing control system, the motor power generation multiplexing control system comprising: a motor drive controller, a motor including a start winding and an electric assist winding, And a magnetoelectric switch for performing low speed starting and high speed electric assisted condition conversion;
  • the output windings of the starting winding and the electric assist winding are respectively connected to the upper contact and the lower contact of the magnetic switch;
  • the three-phase AC output of the motor drive controller is respectively connected to the movable contact of the magnetoelectric switch;
  • the starting winding and the electric assist winding may be a star connection or a delta connection; and the design may be designed by a winding of a motor through a tap or an independent arrangement, or may be a winding of two motors. Designed separately;
  • the magnetoelectric switching can be either unidirectional or bidirectional;
  • the motor drive controller, the start winding, and the electric assist winding may have a waveform of a trapezoidal wave or a sine wave.
  • the above-mentioned motor power generation multiplexing control system further comprises a high voltage rectification chopper voltage regulation circuit and a low voltage rectification chopper voltage regulation circuit:
  • the high-voltage rectification chopper voltage regulating circuit has a three-phase input end connected to the three-phase output end of the starting winding, and is configured to convert the three-phase AC voltage outputted by the starting winding into a DC voltage and then supply the high-voltage power supply/battery pack Charging and / or load power, can also be used to convert the three-phase AC voltage output from the starting winding into a DC voltage and then supply the low voltage power / battery pack charging and / or load power;
  • the low-voltage rectifying chopper voltage regulating circuit has a three-phase input end connected to the three-phase output end of the electric assist winding, and is used for converting the three-phase alternating current voltage outputted by the electric power assist winding into a direct current voltage and then supplying the low-voltage power supply/
  • the battery pack is charged and/or charged.
  • the motor power generation multiplexing control system may further include a power generation winding, the power generation winding is connected in phase with the start winding and the electric power assist winding, or is an independent winding in phase with the start winding and the electric power assist winding; And the three-phase output end of the power generating winding is connected to the three-phase input end of the high-voltage rectifying chopper voltage regulating circuit; when the DC voltage output by the high-voltage rectifying chopper voltage regulating circuit is lower than the charging of the high-voltage power supply/battery pack At the time of voltage, the power generating winding is configured to increase a DC voltage output by the high voltage rectifying chopper voltage regulating circuit to a charging voltage of the high voltage power source/battery pack.
  • the present invention also designs a simple and practical housing with better heat dissipation effect for the motor drive controller in the above-described motor-electric power generation multiplexing control system: the housing of the housing is provided with a liquid collecting groove, and the product The liquid groove is filled with a heat of high specific heat, and the package cover plate of the heat dissipation liquid is sealingly connected to the outer casing, and the motor drive controller is fixed on the package cover plate; preferably, the outer casing is provided with a passage for providing a fueling bolt The hole is in communication with the effluent groove; Still preferably, a fin is provided on the outer wall of the outer casing and the inner wall of the sump.
  • the second technical solution of the present invention provides a motor power generation multiplexing control method, which is applied to the motor power generation multiplexing control system provided by the present invention, and includes:
  • the start winding and the motor drive controller are turned on by the magnetoelectric switch, and the motor drive controller operates to drive the start winding to start the engine of the electric hybrid vehicle;
  • the start winding and the motor drive controller are disconnected by the magnetoelectric switch, and the connection between the electric assist winding and the motor drive controller is turned on, and the drive is driven.
  • the electric assist winding is electrically assisted.
  • the motor power generation multiplexing control method further includes:
  • the three-phase output of the starting winding is passed through a high voltage rectifying chopper voltage regulating circuit, and the output DC is supplied to the high voltage power supply/battery pack for charging or / and load power;
  • the three-phase output of the electric assist winding is passed through a low-voltage rectified chopper voltage regulating circuit, and the output DC is supplied to a low-voltage power supply/battery pack for charging or / and load power;
  • the three-phase output of the power generating winding is passed through a high voltage rectifying chopper voltage regulating circuit, and the output DC is supplied to the high voltage power supply/battery pack for charging or / and load power;
  • the three-phase output of the starting winding is passed through a low-voltage rectified chopper voltage regulating circuit, and the output DC is supplied to a low-voltage power supply/battery pack for charging or/and load power;
  • the generating winding is increased; the generating winding is connected in phase with the starting winding and the auxiliary winding. Or a separate winding designed in phase with the starting winding and the boosting winding, and the three-phase output of the generating winding passes through the high voltage rectifying chopper regulating circuit, and the output DC is supplied to the high voltage power supply/battery pack for charging or/and The load is powered.
  • a third aspect of the present invention provides an electric hybrid vehicle using the above-described electric power generation multiplexing control system and method for low-speed starting and high-speed electric assisted vehicle working conditions. Conversion.
  • the car also includes CAN (Controller Area Network, controller area network) and a motor chip having a CAN bus function; the motor chip is connected to the engine ECU (Engine Control Unit) through the CAN bus for processing the motor drive
  • the starting winding/electric power assist winding collected by the controller, the high voltage/low voltage rectifying chopper voltage regulating circuit, and the working state information of the magnetoelectric switching switch, and the method collected by the ECU of the engine Automobile engine and vehicle running state information; and, the motor chip feeds back the electric driving signal, the magnetoelectric switching switch control signal, and the rectifying chopper regulating circuit on/off signal and the engine ECU signal obtained by the motor chip
  • the motor drive controller and the vehicle control signal that needs to be controlled after being sent to the engine ECU to realize hybrid operation such as zero idle start and stop, acceleration electric assist, continuous torque controllable electric assist, deceleration energy feedback, and the like Features;
  • the working state information includes a motor rotor phase, a speed, a voltage, a current, a power generation output voltage, an "A" point sampling voltage, and a "W" end output speed pulse of the starting winding/electric power assist winding, the magnetic The electric switch state and the like;
  • the vehicle running state information includes: the engine speed, the cooling water temperature, the output torque, the throttle position, the vehicle speed, the air conditioning hurricane, and the like.
  • the vehicle controls the start and stop of the start winding/electric power assist winding through an engine throttle position sensor or an electronic throttle.
  • An advantage of the present invention is that: due to the use of the starting and electric assisted double winding and switching control technology, the low speed high torque starting and the high speed and large torque electric assisting condition can be realized without the weak magnetic control, so that the above electric power generation multiplexing control is realized.
  • the system and method are highly efficient, have large torque, and are reasonably designed to be implemented.
  • Another advantage of the present invention is that: due to the use of a magnetoelectric switch technology that enables start-up and electric assisted condition switching, the magnetoelectric switch can automatically switch into a high-speed electric power assister when the engine is started to a rated speed. Moreover, the three-phase output end of the starting winding with high back EMF is in an open state; the above-mentioned motor power generation multiplexing control system and method avoid the existing low-voltage electric/power generation multiplexing control technology, and the engine is running at high speed The back EMF generated by the start winding is prone to damage to the high current MOSFET or module power device.
  • Still another advantage of the present invention is that the two sets of battery packs and the electrical load are ideally solved by connecting the three-phase output terminals of the starter winding and the electric assist winding to two sets of high and low voltage rectified chopper voltage regulating circuits. Power supply problem.
  • FIG. 1 is a block diagram of a motor power generation multiplexing control system of the present invention
  • FIG. 2 is a schematic view showing the connection between the motor-generated power generation multiplexing control system and the automobile engine ECU in the electric hybrid vehicle of the present invention
  • the motor power generation multiplexing control system provided by the present invention includes a motor drive controller (100), a motor (200), and a magnetoelectric switch (300); and a motor drive controller (100) includes a control circuit and a driving circuit (120) and a three-phase power driving circuit (110).
  • the motor (200) includes a starting winding (210) and an electric assist winding (220).
  • the motor drive controller (100) is a trapezoidal wave or sine wave motor drive controller;
  • the motor (200) is a permanent magnet brushless synchronous motor, and
  • the start winding (210) and the electric assist winding (220) are a permanent
  • the windings of the magnetic brushless synchronous motor are designed as taper or sinusoidal starting windings and electric assist windings, which are respectively connected by star or delta, or two independent permanent magnet brushless synchronous motors are respectively designed to start.
  • the output windings of the starting winding (210) and the electric assist winding (220) are respectively connected to the upper and lower contacts of the magnetic switch (300), and the motor drive controller (100)
  • Three-phase AC output is connected to magnetic power switch a moving contact of the switch (300); and a position speed sensor (230) disposed on the motor (200) for supplying a rotor phase position signal and a speed signal of the permanent magnet brushless synchronous motor to the motor drive controller (100) .
  • the method for applying the electric power generation multiplexing control system to the motor power generation multiplexing control is: when the start winding (210) is connected to the motor drive controller (100) by the magnetoelectric switch (300), the motor drive controller (100) The working drive start winding (210) starts the engine; when the engine runs to the rated speed, the low speed and large torque starting condition is completed, and the magnetoelectric switch (300) automatically switches to start the motor (200).
  • the winding (210) is disconnected from the motor drive controller (100), and then the electric assist winding (220) of the motor (200) is connected to the motor drive controller (100), and the electric assist winding (220) is driven to achieve high speed. Torque electric boost.
  • the above double winding and magnetoelectric switching control technology not only solves the problem of low speed and large torque starting and high speed and large torque electric assist, but also solves the problem that the back electromotive force is higher than the normal working voltage of the power device:
  • the motor starting winding with high back EMF is disconnected from the motor drive controller by the above-mentioned magnetoelectric switch, and the electric assist winding with low back EMF is connected to the motor drive controller; thus, the magnetic The electric switch also completes the switching of the back EMF overvoltage protection while completing the switching of the starting and electric assisting conditions.
  • the motor power generation multiplexing control system further includes a high voltage rectification chopper voltage regulation circuit (510), a high voltage power supply or battery pack (520), and a low voltage rectification chopper voltage regulation circuit (410).
  • a high voltage rectification chopper voltage regulation circuit 510
  • a high voltage power supply or battery pack 520
  • a low voltage rectification chopper voltage regulation circuit 410
  • a low voltage power supply or battery pack (420); in an actual circuit implementation, the three-phase input of the high voltage rectified chopper voltage regulator circuit (510) is connected to the start winding (210) or the three-phase output of the generator winding, The three-phase AC voltage outputted by the starting winding (210) is converted into a DC voltage and then supplied to a high voltage power supply or a battery pack (520) for charging; the three-phase input terminal of the low-voltage rectified chopper regulating circuit (410) and the electric assist winding ( 220) or connected to the three-phase output of the start winding (210) for converting the three-phase AC voltage outputted by the electric assist winding (220) into a DC voltage and then supplying it to the low voltage power supply or the battery pack (420) for charging.
  • the electric power generation multiplexing control system in the electric hybrid vehicle of the present invention further has a vehicle control function, that is, a motor chip (130) having a CAN (Controller Area Network) bus function, Motor drive controller (100), high and low voltage rectifier chopper regulator circuit (410, 510), and engine control unit (Engine Control Unit) (600) integrated integrated control;
  • the drive controller (100) is the same as the motor drive controller shown in FIG. 1, and includes a control circuit and a drive circuit (120) and a three-phase power drive circuit (110).
  • the motor drive controller (100) is realized by a motor chip (130) having a CAN (Controller Area Network) bus function, and the motor drive control, power generation voltage regulation, and vehicle control software and The circuit is integrated in the motor drive controller (100) circuit; the motor chip (130) is used as the lower position machine, and is connected to the automobile engine ECU (600) as the upper computer, and the motor drive, power generation, and vehicle operation are realized through the CAN bus. Such as integrated communication control. As shown in FIG.
  • CAN Controller Area Network
  • the first embodiment of the motor-electric power generation multiplexing control system of the present invention adopts: a permanent magnet brushless synchronous motor drive controller, and the permanent magnet brushless synchronous motor drive controller is composed of a control circuit and a drive circuit ( 120), a three-phase power drive circuit (110); a star-connected permanent magnet brushless synchronous motor (200) with a multi-tap winding, the motor (200) including a start winding (210) Ul, VI, W1 And electric power-assisted windings (220) U2, V2, W2; a set of three-phase high-current two-way magnetic switch (300); - 14V low-voltage rectifier chopper voltage regulator circuit (410) and a set of 42V high-voltage rectifier chopping Voltage circuit (510).
  • a permanent magnet brushless synchronous motor drive controller is composed of a control circuit and a drive circuit ( 120), a three-phase power drive circuit (110); a star-connected permanent magnet brushless synchronous motor (200) with a multi-tap winding
  • the specific composition is as follows:
  • the system uses a set of low voltage 12V battery packs (420) and a set of high voltage 36V battery packs (520), which are composed of six-unit power tubes Tl, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 to form a three-phase bridge power MOSFET drive.
  • the module that is, the three-phase power drive circuit (110); the positive electrode of the high voltage battery pack (520) is connected to the positive input terminal of the MOSFET drive module, the high voltage battery pack C520) is connected to the negative input terminal of the MOSFET drive module.
  • the three-phase AC output terminals A, B, C of the three-phase bridge power MOSFET drive module pass the three-phase high-current bidirectional magnetoelectric switch (300), and the starting winding (210) of the permanent magnet brushless synchronous motor (200) , VI, W1 or electric assist winding (220) U2, V2, W2 respectively Switch connections.
  • the position velocity sensor (230) provided on the permanent magnet brushless synchronous motor (200) collects the phase position signal and the rotational speed signal of the permanent magnet rotor (240), and supplies it to the control circuit and the drive circuit (120) to implement the control function.
  • the starting winding (210) of the permanent magnet brushless synchronous motor (200) UK VI, W1 is connected to the three-phase input of the high-voltage rectified chopper regulating circuit (510). If the starting winding (210) is at low engine speed, the starting When the three-phase AC voltage of the winding output does not reach the charging voltage of the high-voltage battery pack (520), the generating winding (250) U, V, W can be redesigned, and the generating winding (250) U, V, W and the starting winding ( 210) UK VI, W1 is connected in series with the high-voltage rectified chopper voltage regulator circuit (510). The output DC is supplied to the high-voltage 36V battery pack (520) for charging and load power.
  • the electric assist winding (220) U2, V2, W2 of the permanent magnet brushless synchronous motor (200) is connected to the three-phase input terminal of the low-voltage rectified chopper voltage regulating circuit (410), and the output DC is supplied to the low-voltage 12V battery pack (420) for charging.
  • the battery pack (420) is charged and charged.
  • the voltage regulator in the rectifying chopper voltage regulating circuit (410, 510) controls the output level state of the charging indicating end "D+” and the neutral end “N” according to the sampling voltage of the "A" point.
  • the speed measuring part circuit rectifies and shapes the stator induced alternating current, and outputs the speed pulse signal from the "W" end.
  • a voltage regulator is used to output a pulse duty cycle regulator (411, 511).
  • the voltage regulator measures the voltage from the "B+” armature, and modulates the pulse with the corresponding duty cycle to control the thyristor. Extreme, thus controlling the proportion of thyristor work on and off time.
  • the regulator reduces the trigger pulse width, and the thyristor turn-off time is extended to lower the output voltage. If the output voltage is low, the regulator emits a pulse to increase the ratio of the thyristor turn-on time. The output voltage then rises.
  • the rectifier chopper regulator circuit (410, 510) is operated in this dynamic balance state to maintain a constant voltage and stable output of 14V and 42V.
  • the vehicle control function can be added, that is, the motor drive controllers (110 and 120), the high and low voltage rectifier chopper voltage regulator circuits (410, 510), the vehicle control and the engine ECU.
  • Integrated integrated control Among them:
  • the motor drive controller (110 and 120) adopts the motor chip with CAN bus function, integrates the motor drive control, power generation voltage regulation and vehicle control software and circuit in the motor drive controller circuit; the motor chip is used as the lower position machine. It is connected to the engine ECU of the host computer, and realizes integrated communication control such as motor drive, power generation, and vehicle operation through the CAN bus.
  • the motor chip also needs to collect the feedback signal of the motor rotor phase, speed, voltage, current and other electric drive; power generation output voltage, "A" point sampling point pressure, “W” end output speed pulse, circuit on/off switch, etc. Signal required; the vehicle collects signals required for vehicle control such as engine speed, engine cooling water temperature, engine throttle position, vehicle speed, and air conditioning heater through the engine ECU.
  • the motor chip passes the signal collected by the above system through calculation, and outputs the control magnetoelectric switch control signal according to the working condition; outputs the electric drive circuit enable, start/stop, torque adjustment change amount and other signals; output power generation voltage regulating circuit Signals such as on/off; output signals such as fuel cut and power off of the engine ECU.
  • the starting, electric assist and dual voltage power output are interlocked.
  • the high and low voltage two sets of rectified chopper regulating circuits (410, 510) are in the state of no output stop ⁇ working.
  • the high and low voltage two sets of rectifying chopper voltage regulating circuits (410, 510) are in the output working state. This interlocking working state mode can greatly improve the power of the automobile engine during starting or acceleration.
  • the motor start and stop is controlled by the car engine throttle position sensor (230) or electronic throttle, which can simultaneously control the engine and motor, such as engine and motor stop, start, accelerate electric power, normal running or decelerating power.
  • the car engine throttle position sensor (230) or electronic throttle can simultaneously control the engine and motor, such as engine and motor stop, start, accelerate electric power, normal running or decelerating power.
  • the second embodiment of the motor-electric power generation multiplexing control system of the present invention adopts: two sets of permanent magnet brushless synchronous motor drive controllers (100), and the two sets of permanent magnet brushless synchronous motor drive controllers are controlled by Circuit and drive circuit (120), three-phase power drive circuit (111, 112) Composition; a triangular-connected permanent magnet brushless synchronous motor (200), which includes both the starting winding (210) Ul, VI, W1 and the electric assist winding (220) U2, V2 , W2; - a three-phase high-current one-way magnetic switch (300), a 14V low-voltage rectifier chopper voltage regulator circuit (410) and a 42V high-voltage rectifier chopper voltage regulator circuit (420).
  • the specific composition is different: two sets of three-phase bridge power MOSFET drive modules of the system, that is, three-phase power drive circuits (111, 112), the positive input terminals of which are connected with the positive pole of the high-voltage battery pack (520), and the negative input thereof The terminal is connected to the negative pole of the high voltage battery pack (520); a set of three-phase bridge power MOSFET drive module, that is, the three-phase AC output terminals A, B, and C of the three-phase power drive circuit (111), through the three-phase high current single
  • the magnetoelectric switch (300) is connected to the starting winding (210) Ul, VI, W1 of the permanent magnet brushless synchronous motor (200); another set of three-phase bridge power MOSFET driving module, that is, a three-phase power driving circuit (112)
  • the three-phase AC output terminals Al, Bl, CI are directly connected to the electric assist windings (220) U2, V2, W2 of the permanent magnet brushless synchronous motor (200).
  • the closing and opening of the three-phase high-current one-way magnetic switch (300) realizes switching control of two sets of three-phase bridge power MOSFET drive modules, that is, three-phase power drive circuits (111, 112), thereby completing the start and electric Helps transform the two conditions.
  • Permanent magnet brushless synchronous motor (200) start winding (210) Ul, VI, W1 is connected to the three-phase input of high-voltage rectifier chopper regulator circuit (510), output DC supply high-voltage 36V battery pack (520) charging and load Power; Electric assist winding (220) U2, V2, W2 are connected to the three-phase input of the low-voltage rectified chopper regulator circuit (410), and the output DC is supplied to the low-voltage 12V battery pack (420) for charging and load.
  • the starting winding (210) when the starting winding (210) is at a low speed of the engine, the three-phase AC voltage outputted by the starting winding (210) does not reach the charging voltage of the high-voltage battery pack (520), and a set of generating windings is added.
  • the generating winding is a delta-connected independent winding, which is connected to a high-voltage rectifying chopper voltage regulating circuit (510), and the output DC is supplied to the high-voltage battery pack (520) for charging and load power.
  • FIG. 5 is a diagram showing the motor drive controller of the motor-generated power generation multiplexing control system of the present invention Schematic diagram of the shell, where: 1 a shell; 2 - effluent groove; 3 - heat sink; 4 a package cover (module fixed bottom plate); 5 - package cover fixing bolt; 6 - 0 seal ring; - Refueling bolts; 8 - Gaskets; 9 - Heat sinks; 10 - Modules; 11 - Module fixing bolts; 12 - Housing fixing holes.
  • the driving controller usually uses air-cooling or water-cooling to dissipate heat from the driving power module.
  • the driving controller In a hybrid electric vehicle with pure electric or long-time electric working conditions, the driving controller is preferably air-cooled or water-cooled, but is short.
  • the start-up acceleration assists the mild hybrid power
  • the air-cooled or water-cooled heat dissipation system has a complicated structure and high cost.
  • the present invention specially designs a heat-dissipating shell with a simple and practical effect, and a heat-dissipating housing (1) is provided with a liquid collecting groove (2) and a liquid collecting groove (2).
  • the heat sink (3) with high specific heat is installed, and the package cover (4) of the heat sink (3) is sealed with the outer casing (1).
  • the package cover (4) is also used as the module fixed base plate, and the module (10) is fixed. On the heat sink package cover (4).
  • a through hole for setting the refueling bolt (7) is opened in the outer casing (1) to communicate with the sump groove (2).
  • a heat sink (9) is provided on the outer wall of the outer casing (1) and the inner wall of the liquid plenum (2).
  • the module (10) is mounted on the heat-dissipating package cover (4), which solves the heat generated by the control system power device when it is started or boosted in a short time. It is first absorbed by the heat sink (3) and then passed through the case.
  • Natural heat dissipation It is to be understood that the above summary of the invention and the specific embodiments thereof are intended to clarify the practical application of the technical solutions provided by the present invention, and should not be construed as limiting the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)

Description

电动发电复用控制***和方法及电动混合动力汽车 技术领域 本发明涉及电动混合动力汽车领域; 尤其涉及电动混合动力汽 车领域的电动驱动和发电控制技术, 特别涉及其中的电动 /发电复用 控制技术。 背景技术 近年来, 在汽车领域, 为缓解能源紧张、 生态环境恶化等全球 性问题, 研制 "节能"、 "环保"新型电动混合动力汽车已成为现代 汽车发展的必然方向。 所谓电动混合动力, 是电动与其他动力的混 合: 在汽车起动 /加速时, 将永磁同步电机 /励磁电机作为电动机复合 使用, 以实现起动 /电动助力复用功能; 在汽车减速或正常行驶时, 将永磁同步电机 /励磁电机作为发电机使用, 以实现能量回馈并对电 池组充电。
上述起动、 电动助力和发电工况的相互转换需要通过一套驱动 控制技术来实现, 并且实现该驱动控制技术的混合动力汽车研制生 产过程中, 面临着许多新问题和技术难题。
比如: 按汽车工况的需要, 在汽车低速起动和高速助力时, 都 需要较大的电动转矩, 但永磁电机的设计理论限定了低速起动大转 矩和高速助力大转矩的同时实现。 如: 在同等条件下, 按额定转速 800r/min设计的永磁电机, 其起动转矩远大于按额定转速 3000r/min 设计的永磁电机, 但其最高转速由于电动绕组反电势的限定而无法 达到 3000r/min, 也就无法实现高速助力; 而按额定转速 3000r/min 设计的永磁电机, 虽能够实现高速区的大转矩助力, 但其在低速起 动时的转矩又非常小。 也就是说, 按低速起动性能要求设计的永磁 电机, 无法满足高速区助力的性能要求; 按高速助力性能要求设计 的永磁电机, 无法满足低速起动性能的要求; 此二者相互矛盾而不 可兼得。 '
再比如: 现有的低压电动 /发电复用控制技术, 几乎都采用管压 降较低的 MOSFET功率器件或模块来实现低电压的永磁无刷电机驱 动控制。 而 MOSFET功率器件, 其性能是大电流管或模块的低工作 电压, 如: 200A〜600A功率管或模块的工作电压通常为 150V, 但 300V〜600V功率管或模块的工作电流却最大只有几十安培。 因此, 在低压电动 /发电复用控制***中,只能采用大电流 MOSFET管或模 块。 于是, 在汽车电动工况结束后, 发动机自然进入发电工况; 且 无论发电输出有无负载, 反电势都会随发动机转速升高而升高, 使 得电动绕组产生较高的反电势, 以至发动机在高速运转时电动绕组 产生的反电势远高于 MOSFET管或模块的正常工作电压。 以目前国 际新发展的汽车 42V电动 /发电复用电器***为例: 42V是指发电机 充电电压为 42VDC, 其采用的电池工作电压为安全电压 36V; 按工 作电压为 36V、 额定转速为 800r/min设计的永磁同步电机, 其在 800r/min时的电动绕组反电势已接近 36V; 然而, 通常汽车发动机 转速可达 6500r/min左右, 即按 800r/min设计的永磁同步电动机在 6500r/min时的反电势可达 200多伏,此电压已远远超过该 MOSFET 管或模块的正常工作电压,将直接损坏该 MOSFET管或模块。因此, 目前国内外许多汽车公司为了避开上述永磁式汽车 42V电动 /发电复 用电器***中存在的问题, 虽然励磁式电机的转矩和效率都不及永 磁式同步电机高,但还是采用励磁式的 42V电动 /发电及其控制***。
而且, 现有汽车无论采用高压或低压电动混合动力***, 都会 存在两组电池组和两套发电充电***; 例如上述 42V***, 就包括 有 12V、 36V两组电池组和 14V、 42V两套发电充电***。 目前大 多汽车公司都如此实现两组电池组和两套发电充电***: 采用一套 发电充电***, 直接提供一种电压的电池组充电和 /或负载用电; 对 该套发电充电***进行 DC-DC升压或降压,提供另一种电压的电池 组充电和 /或负载用电。 这种通过 DC-DC升压或降压发电机输出电 压的转换方式,其损耗大、效率低;尤其对于大功率、低电压 DC- DC, 其损耗更大、 效率更低; 并且, DC-DC控制***的技术难度大, 其 设计制造成本几乎接近于一套无刷永磁电机驱动控制***。
由于上述种种技术难题, 目前各大汽车公司多采用高压混合动 力***, 即采用电压较高的电池组, 釆用管压较高、 工作电流大的 高电压 IGBT模块等实现电机驱动控制***, 并采用永磁同步无刷 正弦波电机及其弱磁驱动控制***; 所述弱磁驱动控制***采用弱 磁方式既实现电机低速起动大转矩, 又实现电机高速电动助力; 相 应地弱磁控制原理是用定子绕组在 d轴时, 加电流使定子磁场与相 对转子永磁产生同极性磁场, 来减弱转子永磁磁力强度, 达到提高 电机转速和控制发电机输出的目的。 但是, 采用弱磁控制易产生电 机转子永磁退磁, 电路设计要求很高, 一旦电路出现故障, 反电势 将会烧毁整个控制***; 并且电机始终存在弱磁大电流输入, 电机 温升高易发热, 既消耗电能, 又存在效率低、 故障多、 输出转矩相 对比无弱磁控制的永磁电机低等诸多缺点。 发明内容 为了克服上述诸多问题和技术难题, 本发明目的是, 提供一种 电动发电复用控制***和方法, 其能够使混合动力发动机无需弱磁 控制就实现低速大转矩起动和高速大转矩电动助力, 同时实现高效 简单可靠的直接调压充电***。
本发明另一目的是, 提供采用上述电动发电复用控制***和方 法的电动混合动力汽车。 为实现上述本发明目的, 本发明第一技术方案是提供一种电动 发电复用控制***, 该电动发电复用控制***包括有: 电机驱动控 制器, 包含有起动绕组和电动助力绕组的电机, 以及用于进行低速 起动和高速电动助力工况转换的磁电切换开关;
所述起动绕组和所述电动助力绕组的各输出接线, 分别接所述 磁电切换开关的上触点和下触点; 所述电机驱动控制器的三相交流输出, 分别接所述磁电切换开 关的动触点;
其中, 所述起动绕组和所述电动助力绕组, 可为星形连接, 也 可为三角形连接; 并且其可由一台电机的绕组通过抽头或独立设置 方式设计而成, 也可由两台电机的绕组分别设计而成;
所述磁电切换幵关, 可为单向的, 也可为双向的;
所述电机驱动控制器、 所述起动绕组、 和所述电动助力绕组, 其波形可为梯形波, 也可为正弦波。
优选地, 上述电动发电复用控制***还包括有高压整流斩波调 压电路和低压整流斩波调压电路:
所述高压整流斩波调压电路, 其三相输入端与所述起动绕组的 三相输出端相连, 用于将该起动绕组输出的三相交流电压转换为直 流电压后供给高压电源 /电池组充电和 /或负载用电,也可用于将该起 动绕组输出的三相交流电压转换为直流电压后供给低压电源 /电池 组充电和 /或负载用电;
所述低压整流斩波调压电路, 其三相输入端与所述电动助力绕 组的三相输出端相连, 用于将该电动助力绕组输出的三相交流电压 转换为直流电压后供给低压电源 /电池组充电和 /或负载用电。
同时, 该电动发电复用控制***还可以包括有发电绕组, 该发 电绕组与所述起动绕组和电动助力绕组同相位串接, 或者为与所述 起动绕组和电动助力绕组同相位的独立绕组; 且该发电绕组的三相 输出端连接至所述高压整流斩波调压电路的三相输入端; 当所述高 压整流斩波调压电路输出的直流电压低于所述高压电源 /电池组的 充电电压时, 该发电绕组用于将所述高压整流斩波调压电路输出的 直流电压提高至所述高压电源 /电池组的充电电压。
此外, 本发明还为上述电动发电复用控制***中的所述电机驱 动控制器设计了一个简单实用且散热效果较好的壳体: 所述壳体的 外壳内设有积液凹槽, 积液凹槽内装有高比热的散热液, 散热液的 封装盖板与外壳密封连接,所述电机驱动控制器固定在封装盖板上; 优选地,所述外壳上开有设置加油螺栓的通孔与积液凹槽相通; 再优选地, 所述外壳的外壁以及积液凹槽的内壁上设有散热片。 为实现上述发明目的, 本发明第二技术方案是提供一种电动发 电复用控制方法, 该电动发电复用控制方法应用于上述本发明提供 的电动发电复用控制***, 包括有:
通过上述磁电切换开关接通所述起动绕组与所述电机驱动控制 器, 该电机驱动控制器工作, 驱动该起动绕组使该电动混合动力汽 车的发动机起动;
所述发动机运转至额定转速后, 通过所述磁电切换开关断开所 述起动绕组与所述电机驱动控制器, 并接通所述电动助力绕组与该 电机驱动控制器之间的连接, 驱动该电动助力绕组进行电动助力。
优选地, 上述电动发电复用控制方法还包括有:
所述起动绕组的三相输出通过高压整流斩波调压电路后, 输出 直流供给高压电源 /电池组充电或 /和负载用电;
所述电动助力绕组的三相输出通过低压整流斩波调压电路后, 输出直流供给低压电源 /电池组充电或 /和负载用电;
所述发电绕组的三相输出通过高压整流斩波调压电路后, 输出 直流供给高压电源 /电池组充电或 /和负载用电;
所述起动绕组的三相输出通过低压整流斩波调压电路后, 输出 直流供给低压电源 /电池组充电或 /和负载用电;
此外, 当所述高压整流斩波调压电路输出的直流电压低于所述 高压电源 /电池组的充电电压时, 增加所述发电绕组; 该发电绕组与 所述起动绕组和助力绕组同相位串接, 或设计为与所述起动绕组和 助力绕组同相位的独立绕组, 且该发电绕组的三相输出通过所述高 压整流斩波调压电路后,输出直流供给高压电源 /电池组充电或 /和负 载用电。
为实现上述本发明另一目的, 本发明第三技术方案是提供一种 电动混合动力汽车, 该电动混合动力汽车采用上述电动发电复用控 制***和方法, 进行低速起动和高速电动助力汽车工况的转换。
对于上述电动混合动力汽车, 该汽车还包括有 CAN (Controller Area Network, 控制器局域网) 总线和具有 CAN总线功能的电机芯 片; 该电机芯片通过所述 CAN总线与该汽车发动机 ECU (Engine Control Unit, 弓 I擎控制单元) 相连, 用于处理所述电机驱动控制器 采集到的所述起动绕组 /电动助力绕组、所述高压 /低压整流斩波调压 电路、 及所述磁电切换开关的工作状态信息, 和所述发动机的 ECU 采集到的应用该方法的汽车发动机及整车运行状态信息; 并且, 该 电机芯片将处理后得到的电动驱动信号、 磁电切换开关控制信号、 和整流斩波调压电路通断信号以及所述发动机 ECU信号反馈至所述 电机驱动控制器, 以及将处理后需要控制的整车控制信号发送至所 述发动机 ECU, 来实现零怠速起停、 加速电动助力、 连续转矩可控 电动助力、 减速能量回馈等混合动力运行功能;
其中, 所述工作状态信息包括有所述起动绕组 /电动助力绕组的 电机转子相位、 速度、 电压、 电流、 发电输出电压、 "A" 点取样电 压、 "W"端输出转速脉冲, 所述磁电切换开关状态等; 所述整车运 行状态信息包括有: 所述发动机的转速、 冷却水温度、 输出转矩、 节气门位置, 车速, 空调暧风等。
对于上述本发明提供的电动混合动力汽车, 该汽车通过发动机 节气门位置传感器或电子节气门, 控制所述起动绕组 /电动助力绕组 的起停。
本发明的一个优点在于: 由于采用了起动和电动助力双绕组及 切换控制技术, 无需弱磁控制就能实现低速大转矩起动和高速大转 矩电动助力工况, 使得上述电动发电复用控制***和方法效率高、 转矩大、 且设计合理易实施。
本发明的另一优点在于: 由于采用了可实现起动和电动助力工 况转换的磁电切换开关技术, 当发动机起动运转至额定转速时, 该 磁电切换开关能自动进行切换进入高速电动助力工况, 并将反电势 高的起动绕组的三相输出端处于断路状态; 使得上述电动发电复用 控制***和方法, 避幵了现有低压电动 /发电复用控制技术中, 发动 机在高速运转时起动绕组产生的反电势, 易造成大电流 MOSFET管 或模块功率器件损坏的问题。 本发明的再一优点在于: 通过将起动绕组和电动助力绕组的三 相输出端与两套高、 低电压的整流斩波调压电路相连, 理想地解决 了两套电池组和用电负载的供电问题。
总之, 本发明提供的上述电动发电复用控制方法及其***, 为 "节能"、 "环保"型电动混合动力汽车走向产业化奠定了可靠的技 术基础。 附图说明 图 1 : 本发明电动发电复用控制***的方框图;
图 2:本发明电动混合动力汽车中,本发明电动发电复用控制系 统与汽车发动机 ECU的连接示意图;
图 3 : 本发明电动发电复用控制***第一实施例的电原理图; 图 4: 本发明电动发电复用控制***第二实施例的电原理图; 图 5:本发明电动发电复用控制***中电机驱动控制器外壳的结 构示意图。 ' 具体实施方式 如图 1所示, 本发明提供的电动发电复用控制***包括有电机 驱动控制器(100), 电机 (200), 和磁电切换幵关 (300) ; 且电机 驱动控制器(100)包括有控制电路与驱动电路 (120) 和三相功率 驱动电路 (110), 电机 (200) 包括有起动绕组 (210) 和电动助力 绕组(220)。 其中, 电机驱动控制器(100)为梯形波或正弦波电机 驱动控制器; 电机(200)为永磁无刷同步电机, 且起动绕组(210) 和电动助力绕组 (220), 是一台永磁无刷同步电机的绕组采用抽头 或独立设置方式分别设计成星形或三角形连接的梯形波或正弦波起 动绕组和电动助力绕组, 或者是两***立的永磁无刷同步电机分别 设计为起动绕组和电动助力绕组; 并且, 起动绕组(210)和电动助 力绕组 (220) 的各输出接线分别接磁电切换开关 (300) 的上触点 和下触点, 电机驱动控制器(100)的三相交流输出分别接磁电切换 开关 (300) 的动触点; 而设置于电机 (200) 上的位置速度传感器 (230), 用于向电机驱动控制器(100)提供永磁无刷同步电机的转 子相位位置信号和转速信号。
应用上述电动发电复用控制***进行电动发电复用控制的方法 是: 通过磁电切换开关 (300) 将起动绕组 (210) 与电机驱动控制 器(100)接通时, 电机驱动控制器(100)工作驱动起动绕组(210) 使发动机起动; 当该发动机运转至额定转速后, 低速大转矩起动工 况完成, 此时磁电切换开关(300) 自动进行切换, 将电机 (200) 的起动绕组 (210) 与电机驱动控制器(100) 断开, 并随即将电机 (200) 的电动助力绕组(220)与电机驱动控制器(100)接通, 驱 动电动助力绕组(220) 实现高速大转矩电动助力。
上述双绕组及磁电切换控制技术, 不仅解决了低速大转矩起动 和高速大转矩电动助力的实现问题, 还解决了反电势高于功率器件 正常工作电压的问题: 在汽车完成起动工况进入正常运行时, 通过 上述磁电切换开关将反电势高的电机起动绕组与电机驱动控制器断 开, 同时又将反电势低的电动助力绕组与电机驱动控制器接通; 这 样, 所述磁电切换开关在完成起动和电动助力工况切换的同时, 也 完成了反电势过压保护的切换。
此外, 如图 1所示, 本发明提供的电动发电复用控制***还包 括有高压整流斩波调压电路(510), 高压电源或电池组 (520), 低 压整流斩波调压电路(410), 及低压电源或电池组 (420); 在实际 电路实施中, 高压整流斩波调压电路(510)的三相输入端与起动绕 组(210)或发电绕组的三相输出端相连, 用于将该起动绕组(210) 输出的三相交流电压转换为直流电压后供给高压电源或电池组 (520) 充电; 低压整流斩波调压电路 (410) 的三相输入端与电动 助力绕组 (220)或起动绕组 (210) 的三相输出端相连, 用于将电 动助力绕组(220)输出的三相交流电压转换为直流电压后供给低压 电源或电池组 (420) 充电。 如图 2所示, 本发明电动混合动力汽车中电动发电复用控制系 统具有如图 1所示的组成结构; 此外, 本发明电动混合动力汽车还 增加有整车控制功能, 即采用具有 CAN (Controller Area Network, 控制器局域网) 总线功能的电机芯片 (130), 将电机驱动控制器 ( 100)、 高低压整流斩波调压电路(410、 510)、及汽车发动机 ECU (Engine Control Unit, 引擎控制单元) (600) 集成一体化控制; 其 中, 图 2所示电机驱动控制器 (100) 同图 1所示电机驱动控制器, 包括有控制电路与驱动电路 (120) 和三相功率驱动电路 (110)。
在实际电路实施中: 采用具有 CAN ( Controller Area Network, 控制器局域网) 总线功能的电机芯片 (130) 实现电机驱动控制器 ( 100), 将电机驱动控制、 发电调压、 及整车控制软件和电路等集 成在该电机驱动控制器 (100) 电路中; 将电机芯片 (130) 作为下 位机, 与作为上位机的汽车发动机 ECU (600)连接, 通过 CAN总 线实现电机驱动、 发电、 整车运行等集成化通讯控制。 如图 3所示,本发明电动发电复用控制***第一实施例采用了: 一套永磁无刷同步电机驱动控制器, 该永磁无刷同步电机驱动控制 器由控制电路与驱动电路 (120)、 三相功率驱动电路 (110) 组成; 一台星形连接有多抽头绕组的永磁无刷同步电机 (200 ), 该电机 (200)包括有起动绕组(210) Ul、 VI、 W1和电动助力绕组(220) U2、 V2、 W2; 一组三相大电流双向磁电切换开关(300); —套 14V 低压整流斩波调压电路 (410) 和一套 42V高压整流斩波调压电路 (510)。
具体组成如下: 该***采用一组低压 12V电池组(420)和一组 高压 36V电池组 (520), 由六单元功率管 Tl、 Τ2、 Τ3、 Τ4、 Τ5、 Τ6构成三相桥功率 M0SFET驱动模块,即三相功率驱动电路(110); 高压电池组 (520) 正极连接 MOSFET驱动模块的正极输入端, 高 压电池组 C520) 负极连 MOSFET驱动模块的负极输入端。 三相桥 功率 MOSFET驱动模块的三相交流输出端 A、 B、 C,通过三相大电 流双向磁电切换开关(300), 与永磁无刷同步电机(200) 的起动绕 组 (210) Ul、 VI、 W1或电动助力绕组 (220) U2、 V2、 W2分别 切换连接。永磁无刷同步电机(200)上设置的位置速度传感器(230) 采集永磁转子(240) 的相位位置信号和转速信号, 并提供给控制电 路与驱动电路 (120) 来实现控制功能。
永磁无刷同步电机 (200) 的起动绕组 (210) UK VI、 W1与 高压整流斩波调压电路 (510) 的三相输入端相连, 如果起动绕组 (210)在发动机低速时, 该起动绕组输出的三相交流电压达不到高 压电池组 (520) 的充电电压时, 可再设计发电绕组 (250) U、 V、 W, 该发电绕组(250) U、 V、 W与起动绕组 (210) UK VI、 W1 同相位串接输出, 与高电压整流斩波调压电路(510)连接, 输出直 流供给高压 36V电池组 (520)充电和负载用电。
永磁无刷同步电机 (200) 的电动助力绕组 (220 ) U2、 V2、 W2与低压整流斩波调压电路(410) 的三相输入端相连, 输出直流 供给低压 12V电池组(420)充电和负载用电; 也可能永磁无刷同步 电机 (200) 的起动绕组 (210) Ul、 VI、 W1与低压整流斩波调压 电路(410)的三相输入端相连,输出直流供给低压 12V电池组(420) 充电和负载用电。
上述整流斩波调压电路(410、 510) 中的稳压器, 根据' "A"点 取样电压大小, 相应控制充电指示端 "D+"和中性线端 "N" 的输 出电平状态, 实现端子功能, 测速部分电路对定子感应交流电进行 整流整形, 从 "W"端输出转速脉冲信号。 采用一个由电压控制脉 冲输出脉冲占空比的调节器(411、 511 ), 稳压器根据从 "B+"电枢 处取样得到电压大小, 调制发出相应占空比的脉冲给可控硅的控制 极, 从而控制可控硅工作通断时间的比例。 如果输出电压偏高, 稳 压器就减少触发脉冲宽度, 可控硅关断时间延长, 使输出电压下降; 如果输出电压偏低, 稳压器则发出脉冲, 增加可控硅幵通时间比例, 输出电压随之升高。 使整流斩波调压电路 (410、 510) 工作在这个 动态平衡状态中, 保持恒压稳定输出 14V和 42V电压。
在上述电动发电复用控制***的基础上,可增加整车控制功能, 即将电机驱动控制器(110和 120)、高低压整流斩波调压电路(410、 510)、 整车控制及发动机 ECU集成一体化控制。 其中: 电机驱动控制器 (110和 120) 采用具有 CAN总线功能 的电机芯片, 将电机驱动控制、 发电调压以及整车控制软件及电路 集成在电机驱动控制器电路中; 将电机芯片作为下位机, 与作为上 位机的汽车发动机 ECU连接,通过 CAN总线实现电机驱动、发电、 整车运行等集成化通讯控制。
电机芯片同时要采集电机转子相位、 速度、 电压、 电流等电动 驱动所需反馈信号; 发电输出电压、 "A"点取样点压、 "W"端输出 转速脉冲、电路通断开关等发电控制所需信号;整车通过发动机 ECU 采集发动机转速、 发动机冷却水温度、 发动机节气门位置、 车速、 空调暖风等整车控制所需信号。 电机芯片将以上***采集到的信号 通过计算处理, 按工况需要输出控制磁电切换开关控制信号; 输出 电动驱动电路使能、 起 /停、 转矩调节变化量等信号; 输出发电调压 电路通 /断等信号; 输出发动机 ECU断油、 断电等信号。
起动、 电动助力与双电压发电输出为互锁工作状态, 起动或电 动助力工况工作时, 高低压两套整流斩波调压电路 (410、 510) 处 于无输出停 ±工作状态。 在汽车发动机无需电动工况时, 如汽车在 正常行驶或减速时, 高低压两套整流斩波调压电路 (410、 510) 处 于输出工作状态。 此互锁工作状态模式, 可以大大提高汽车发动机 在起动或加速时的动力性。
电机起停采用汽车发动机节气门位置传感器(230)或电子节气 门来控制, 可同时实现发动机和电机停止、 起动、 加速电动助力、 正常行驶或减速发电等汽车发动机与电机混合动力运行工况控制, 既简单又可靠, 无需在汽车控制面板上增加新的开关, 同时理想地 实现了电动与燃油双动力混合控制。
从而更为理想地实现汽车起动和电动助力工况转换、 正常行驶 或减速发电、 零怠速、 发电调压等集成化控制。 如图 4所示,本发明电动发电复用控制***第二实施例采用了: 两套永磁无刷同步电机驱动控制器 (100), 该两套永磁无刷同步电 机驱动控制器由控制电路与驱动电路 (120)、 三相功率驱动电路 ( 111、 112) 组成; 一台三角形连接的永磁无刷同步电机 (200), 该电机 (200) 同时包含有起动绕组 (210) Ul、 VI、 W1和电动助 力绕组(220)U2、V2、W2;—组三相大电流单向磁电切换开关(300)、 一套 14V低压整流斩波调压电路 (410) 和一套 42V高压整流斩波 调压电路(420)。
具体组成不同的是:该***的两套三相桥功率 MOSFET驱动模 块, 即三相功率驱动电路(111、 112), 其正极输入端均与高压电池 组 (520) 的正极连接, 其负极输入端均与高压电池组 (520) 的负 极连接; 一套三相桥功率 MOSFET驱动模块, 即三相功率驱动电路 ( 111 )的三相交流输出端 A、 B、 C, 通过三相大电流单向磁电切换 开关 (300) 与永磁无刷同步电机 (200) 的起动绕组 (210) Ul、 VI、 W1连接; 另一套三相桥功率 MOSFET驱动模块, 即三相功率 驱动电路(112) 的三相交流输出端 Al、 Bl、 CI , 直接与永磁无刷 同步电机(200) 的电动助力绕组(220) U2、 V2、 W2连接。 三相 大电流单向磁电切换开关(300)的闭合与断开, 实现两套三相桥功 率 MOSFET驱动模块, 即三相功率驱动电路(111、 112) 的切换控 制, 进而完成起动与电动助力两种工况的转化。
永磁无刷同步电机(200)起动绕组(210) Ul、 VI、 W1与高 压整流斩波调压电路(510) 的三相输入端相连, 输出直流供给高压 36V电池组(520)充电和负载用电; 电动助力绕组(220) U2、 V2、 W2与低压整流斩波调压电路 (410) 的三相输入端相连, 输出直流 供给低压 12V电池组(420) 充电和负载用电。
与图 3同理, 上述起动绕组(210)在发动机低速时, 该起动绕 组 (210) 输出的三相交流电压达不到高压电池组 (520) 的充电电 压时, 增加一组发电绕组,. 发电绕组为三角形接法的独立绕组, 它 与高电压整流斩波调压电路(510)连接, 输出直流供给高压电池组 (520) 充电和负载用电。
其他控制方法及其***与图 3基本相同, 不再赘述。 图 5所示为本发明电动发电复用控制***中电机驱动控制器 壳的结构示意图, 其中: 1一外壳; 2—积液凹槽; 3—散热液; 4一 封装盖板(模块固定底板); 5—封装盖板固定螺栓; 6— 0形密封圈; 7—加油螺栓; 8—密封垫; 9一散热片; 10—模块; 11一模块固定螺 栓; 12—壳体固定孔。
现有技术中, 通常驱动控制器采用风冷或水冷来对驱动功率模 块散热, 在纯电动或长时具有电动工况的混合动力中, 驱动控制器 采用风冷或水冷比较理想,但在短时起动加速助力轻度混合动力中, 采用风冷或水冷散热***结构较复杂且成本高。
为此本发明为驱动控制器模块专门设计了一个具有简单实用且 效果好的散热壳体,该散热壳体的外壳(1 )内设有一积液凹槽(2), 积液凹槽 (2) 内装有高比热的散热液 (3 ), 散热液 (3 ) 的封装盖 板(4) 与外壳 (1 )密封连接, 封装盖板 (4) 同时作为模块固定底 板, 模块 (10) 固定在散热液封装盖板 (4) 上。
为便于加入散热液(3 ), 外壳(1 )上开有一设置加油螺栓(7) 的通孔与积液凹槽 (2) 相通。
为进一步增强散热效果, 外壳 (1 ) 的外壁以及积液凹槽 (2) 的内壁上设有散热片 (9)。 模块 (10) 安装在散热液封装盖板 (4) 上, 这样就解决了控制***功率器件在短时间内起动或电动助力时 产生的热量, 先由散热液 (3 ) 吸收, 然后再通过外壳 (1 ) 自然散 热。 需要声明的是, 上述发明内容及具体实施方式意在证明本发明 所提供技术方案的实际应用,不应解释为对本发明保护范围的限定。 本领域技术人员在本发明的精神和原理内, 当可作各种修改、 等同 变换、 或组合。 本发明的保护范围以所附权利要求书为准。 工业实用性 本发明请求专利保护的主题有电动发电复用控制***和方法, 该***和方法均经多种实验认证是技术可行的, 并已有相关产品投 产; 此外, 本领域技术人员结合其专业常识应该得知, 本发明请求 专利保护另一主题, 采用上述电动发电复用控制***和方法的电动 混合动力汽车, 也是完全可技术实施的。

Claims

权 利 要 求
1. 一种电动发电复用控制***, 其特征在于, 该电动发电 复用控制***包括有: 电机驱动控制器, 包含有起动绕组和电动 助力绕组的电机, 以及用于进行低速起动和高速电动助力工况转 换的磁电切换开关;
所述起动绕组和所述电动助力绕组的各输出接线, 分别接所述 磁电切换开关的上触点和下触点;
所述电机驱动控制器的三相交流输出, 分别接所述磁电切换开 关的动触点。
2, 根据权利要求 1 所述的电动发电复用控制***, 其特征 在于: 所述起动绕组和所述电动助力绕组, 由一台电机的绕组通 过抽头或独立设置方式设计而成, 或者由两台电机的绕组分别设 计而成。
3. 根据权利要求 1 所述的电动发电复用控制***, 其特征 在于, 该***还包括有发电绕组;
该发电绕组与所述起动绕组同相位串接, 或者为与所述起动绕 组同相位的独立绕组。
4. 根据权利要求 1或 3所述的电动发电复用控制***, 其 特征在于, 该***还包括有高压整流斩波调压电路和低压整流斩 波调压电路;
所述高压整流斩波调压电路的三相输入端与所述起动绕组或发 电绕组的三相输出端相连, 用于将该起动绕组输出的三相交流电压 转换为直流电压后供给高压电源 /电池组充电和 /或负载用电;
所述低压整流斩波调压电路的三相输入端与所述电动助力绕组 或起动绕组的三相输出端相连, 用于将该电动助力绕组或起动绕组 输出的三相交流电压转换为直流电压后供给低压电源 /电池组充电 和 /或负载用电。
5. 根据权利要求 1或 2或 3所述的电动发电复用控制***, 其特征在于, 所述电机驱动控制器安置于带有散热液的壳体中: 所述壳体的外壳(1 ) 内设有积液凹槽(2) , 积液凹槽(2) 内装 有高比热的散热液(3 ), 散热液(3 )的封装盖板(4)与外壳(1 ) 密封连接, 所述电机驱动控制器 (10) 固定在封装盖板 (4) 上。
6. 根据权利要求 5所述的电动发电复用控制***, 其特征 在于, 所述外壳 (1 ) 上开有设置加油螺栓 (7) 的通孔与积液凹 槽 (2) 相通。
7. 根据权利要求 5所述的电动发电复用控制***, 其特征 在于, 上述外壳 (1 ) 的外壁以及积液四槽 (2) 的内壁上设有散 热片 (9) 。
8. 一种电动发电复用控制方法, 应用于如权利要求 1 或 3 所述的电动发电复用控制***; 其特征在于, 该电动发电复用控 制方法包括有:
通过所述磁电切换开关接通所述起动绕组与所述电机驱动控制 器, 所述电机驱动控制器工作, 驱动该起动绕组使发动机起动; 所述发动机运转至额定转速后, 通过所述磁电切换开关断开所 述起动绕组与所述电机驱动控制器, 并接通所述电动助力绕组与该 电机驱动控制器, 驱动该电动助力绕组进行电动助力。
9. 根据权利要求 8所述的电动发电复用控制方法, 其特征 在于:
所述起动绕组或发电绕组的三相输出通过高压整流斩波调压电 路后, 输出直流供给高压电源 /电池组充电或 /和负载用电;
所述电动助力绕组或起动绕组的三相输出通过低压整流斩波调 压电路后, 输出直流供给低压电源 /电池组充电或 /和负载用电。
10.根据权利要求 8或 9所述的电动发电复用控制方法, 其 特征在于: 所述起动绕组和所述电动助力绕组, 由一台电机的绕 组通过抽头或独立设置方式设计而成, 或者由两台电机的绕组分 别设计而成。
11. 一种电动混合动力汽车, 其特征在于, 该汽车包括有电 动发电复用控制***, 该电动发电复用控制***用于进行低速起 动和高速电动助力汽车工况的转换;
该电动发电复用控制***包括有: 电机驱动控制器, 包含起动 绕组和电动助力绕组的电机, 及磁电切换开关; 所述起动绕组和所 述电动助力绕组的各输出接线, 分别接所述磁电切换开关的上触点 和下触点; 所述电机驱动控制器的三相交流输出, 分别接所述磁电 切换开关的动触点;
通过所述磁电切换开关, 接通所述起动绕组与所述电机驱动控 制器之间的连接, 该电机驱动控制器工作, 驱动该起动绕组使该电 动混合动力汽车的发动机起动;
该发动机运转至额定转速后, 通过所述磁电切换开关, 断开所 述起动绕组与所述电机驱动控制器之间的连接, 并接通所述电动助 力绕组与该电机驱动控制器之间的连接, 驱动该电动助力绕组进行 电动助力。
12.根据权利要求 11所述的电动混合动力汽车,其特征在于, 该汽车中所述电动发电复用控制***还包括有发电绕组 ·,
该发电绕组与所述起动绕组同相位串接, 或者为与所述起动绕 组同相位的独立绕组。
13.根据权利要求 11或 12所述的电动混合动力汽车, 其特 征在于, 该汽车中所述电动发电复用控制***还包括有高压整流 斩波调压电路和低压整流斩波调压电路;
所述高压整流斩波调压电路的三相输入端与所述起动绕组或发 电绕组的三相输出端相连, 用于将该起动绕组或发电绕组输出的三 相交流电压转换为直流电压后供给高压电源 /电池组充电和 /或负载 用电;
所述低压整流斩波调压电路的三相输入端与所述电动助力绕组 或起动绕组的三相输出端相连, 用于将该电动助力绕组或起动绕组 输出的三相交流电压转换为直流电压后供给低压电源 /电池组充电 和 /或负载用电。
14. 根据权利要求 11或 12所述的电动混合动力汽车, 其特 征在于: 该汽车还包括有具有 CAN 总线功能的电机芯片, 该电 机芯片通过 CAN总线与该汽车的发动机 ECU相连;
该电机芯片用于, 处理所述电机驱动控制器采集到的所述起动 绕组 /电动助力绕组、所述高压 /低压整流斩波调压电路、和所述磁电 切换开关的工作状态信息, 以及所述发动机 ECU采集到的整车运行 状态信息; 并将处理后得到的电动驱动信号、 磁电切换开关控制信 号、 和整流斩波调压电路通断信号反馈至所述电机驱动控制器, 以 及将处理后得到的整车控制信号反馈至所述发送机 ECU。
15. 根据权利要求 14所述的电动混合动力汽车,其特征在于: 所述工作状态信息包括有所述起动绕组 /电动助力绕组的电机 转子相位、 速度、 电压、 电流、 发电输出电压、 "A" 点取样电压、 "W"端输出转速脉冲, 所述磁电切换开关状态;
所述整车运行状态信息包括有: 所述发动机的转速、 冷却水温 度、 节气门位置, 车速, 空调暖风。
16. 根据权利要求 15所述的电动混合动力汽车,其特征在于: 该汽车通过发动机节气门位置传感器或电子节气门, 控制所述起 动绕组 /电动助力绕组的起停。
PCT/CN2006/002647 2005-10-10 2006-10-10 Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede WO2007041948A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06804904A EP1947759A2 (en) 2005-10-10 2006-10-10 An starting and generating multiplying control system, and a method for using the system, and an electromotion mixed dynamic vehicle which uses the system and the method
US12/083,370 US20090218970A1 (en) 2005-10-10 2006-10-10 Starting and Generating Multiplying Cotnrol System,and Method for Using the System, and an Electromotion Mixed Dynamic Vehicle
JP2008534851A JP2009512409A (ja) 2005-10-10 2006-10-10 電動・発電混成制御システム、その方法及びハイブリッドカー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510113059.2 2005-10-10
CN200510113059A CN1949655B (zh) 2005-10-10 2005-10-10 电动-发电复用控制方法及其***

Publications (2)

Publication Number Publication Date
WO2007041948A2 true WO2007041948A2 (fr) 2007-04-19
WO2007041948A3 WO2007041948A3 (fr) 2007-05-24

Family

ID=37943156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002647 WO2007041948A2 (fr) 2005-10-10 2006-10-10 Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede

Country Status (6)

Country Link
US (1) US20090218970A1 (zh)
EP (1) EP1947759A2 (zh)
JP (1) JP2009512409A (zh)
KR (1) KR20080070655A (zh)
CN (1) CN1949655B (zh)
WO (1) WO2007041948A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787066A (zh) * 2017-02-08 2017-05-31 重庆望江摩托车制造有限公司 一种用于摩托车的磁电机以及混合动力***
CN111130271A (zh) * 2020-01-20 2020-05-08 河北工业大学 一种自动循环散热式直线电机运动控制平台及控制方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20071432A1 (it) * 2007-07-17 2009-01-18 Ducati Energia Spa Regolatore di tensione per magnetogeneratori a connessione configurabile degli avvolgimenti di fase
JP4253684B1 (ja) * 2007-12-05 2009-04-15 トヨタ自動車株式会社 車両用駆動装置
CN101564985B (zh) * 2008-06-30 2012-12-19 罗治辉 一种混合动力车发电贮能***
JP4591588B2 (ja) * 2008-09-30 2010-12-01 マツダ株式会社 電動車両のモータ制御方法および電動車両用駆動装置
CN101902088A (zh) * 2009-05-30 2010-12-01 马善振 一种双绕组永磁电机
CN102024349B (zh) * 2010-12-03 2012-03-21 湖北泰戈电动汽车开发有限公司 电动车控制***
DE102011085731A1 (de) * 2011-11-03 2013-05-08 Bayerische Motoren Werke Aktiengesellschaft Elektrisches System
DE102012203528A1 (de) * 2012-03-06 2013-09-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit elektrischer Maschine und Verfahren zum Betreiben dieser
CN102780426A (zh) * 2012-08-20 2012-11-14 天津市松正电动汽车技术股份有限公司 一种双电源电机驱动***
DE112013006447T8 (de) * 2013-01-18 2015-12-03 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Fahrzeugmotor
CN105223500B (zh) * 2014-05-28 2018-04-13 株洲变流技术国家工程研究中心有限公司 多绕组电机温升试验***及其控制方法
CN104767466B (zh) * 2015-04-21 2017-08-18 山东理工大学 一种绕组自动切换的起动发电***
CN106469965B (zh) * 2015-08-05 2019-04-12 江苏金源高端装备股份有限公司 一种风力发电机供电***
CN105398332B (zh) * 2015-12-10 2017-12-19 浙江环电新能源汽车零部件有限公司 电动汽车模块化动力集成***
CN106655644B (zh) * 2016-11-18 2023-04-14 广州市信征汽车零件有限公司 一种基于can总线的电机控制***
CN107313819A (zh) * 2017-05-18 2017-11-03 天津大学 一种集成热泵和发电功能的新型热能利用***
DE102018103709A1 (de) * 2018-02-20 2019-08-22 stoba e-Systems GmbH Antriebsstrang mit zwei unterschiedlich Spannung abgebenden Batterien, Elektro-Antriebs-System mit Niedervoltstäbe umgebende Hochvolt-Wicklungen, Elektromotor mit separatem Hochvolt-Pulswechselrichter und Verfahren zum Betreiben eines Elektromotors
RU2699082C2 (ru) * 2018-02-26 2019-09-03 Публичное Акционерное Общество "Электровыпрямитель" Выпрямитель для возбуждения синхронных электродвигателей
CN108400742B (zh) * 2018-05-14 2024-05-03 西安清泰科新能源技术有限责任公司 一种双绕组三相电机及其控制方法
CN108859768B (zh) * 2018-07-11 2020-08-28 阳光电源股份有限公司 一种电动汽车动力***、控制方法和电动汽车
CN110531708A (zh) * 2019-07-02 2019-12-03 上海大学 一种三自由度压电作动平台的辨识与补偿控制方法
CN113014147B (zh) * 2019-12-19 2022-09-13 新疆金风科技股份有限公司 变流器控制方法及装置
WO2022041099A1 (zh) * 2020-08-28 2022-03-03 威刚科技股份有限公司 高磁阻电机能量回收管理***及方法
CN114123664B (zh) * 2020-08-28 2023-06-02 威刚科技股份有限公司 高磁阻电机能量回收管理***及方法
CN112441239B (zh) * 2020-11-06 2022-04-22 南京航空航天大学 一种用于混合电推进飞行器的高压直流电力***
CN112622867A (zh) * 2020-12-25 2021-04-09 奇瑞汽车股份有限公司 用于混合动力汽车的快速启动***和方法
CN114248898A (zh) * 2021-12-27 2022-03-29 中国船舶重工集团公司第七0五研究所 一种双余度推进装置和水下航行器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847108A (ja) * 1994-08-02 1996-02-16 Meidensha Corp 発電装置
CN1303164A (zh) * 1999-12-31 2001-07-11 梁昌勇 一种车用永磁发电机的发电方法及其装置
CN2458737Y (zh) * 2000-02-29 2001-11-07 陈信光 密闭式蓄电池极板耳部焊接构造的焊接装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69220228T2 (de) * 1991-08-01 1997-09-25 Wavedriver Ltd Batteriegespeistes elektrisches Fahrzeug und elektrisches Versorgungssystem
JPH07193910A (ja) * 1993-04-09 1995-07-28 Hitachi Ltd 電気自動車の制御装置
JPH1127987A (ja) * 1997-06-30 1999-01-29 Fanuc Ltd 誘導電動機
DE19832876C1 (de) * 1998-07-22 1999-10-21 Daimler Chrysler Ag Verfahren zum Steuern einer Reluktanzmaschine
US6493924B2 (en) * 2000-12-02 2002-12-17 Kendro Laboratory Products, Inc. Method for enabling a high torque/high speed brushless DC motor
JP3566252B2 (ja) * 2001-12-12 2004-09-15 本田技研工業株式会社 ハイブリット車両及びその制御方法
US6853107B2 (en) * 2003-03-26 2005-02-08 Wavecrest Laboratories, Llc Multiphase motor having different winding configurations for respective speed ranges
JP4425006B2 (ja) * 2004-01-19 2010-03-03 三菱電機株式会社 車両用回転電機
JP4339757B2 (ja) * 2004-07-12 2009-10-07 株式会社日立製作所 車両用駆動発電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847108A (ja) * 1994-08-02 1996-02-16 Meidensha Corp 発電装置
CN1303164A (zh) * 1999-12-31 2001-07-11 梁昌勇 一种车用永磁发电机的发电方法及其装置
CN2458737Y (zh) * 2000-02-29 2001-11-07 陈信光 密闭式蓄电池极板耳部焊接构造的焊接装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787066A (zh) * 2017-02-08 2017-05-31 重庆望江摩托车制造有限公司 一种用于摩托车的磁电机以及混合动力***
CN106787066B (zh) * 2017-02-08 2023-12-26 重庆望江摩托车制造有限公司 一种用于摩托车的磁电机以及混合动力***
CN111130271A (zh) * 2020-01-20 2020-05-08 河北工业大学 一种自动循环散热式直线电机运动控制平台及控制方法
CN111130271B (zh) * 2020-01-20 2024-03-19 河北工业大学 一种自动循环散热式直线电机运动控制平台及控制方法

Also Published As

Publication number Publication date
CN1949655B (zh) 2010-05-12
KR20080070655A (ko) 2008-07-30
US20090218970A1 (en) 2009-09-03
CN1949655A (zh) 2007-04-18
EP1947759A2 (en) 2008-07-23
JP2009512409A (ja) 2009-03-19
WO2007041948A3 (fr) 2007-05-24

Similar Documents

Publication Publication Date Title
WO2007041948A2 (fr) Systeme de commande multiplicateur de demarrage et de generation et procede d'utilisation de ce systeme et vehicule dynamique hybride a deplacement electrique utilisant ce systeme et ce procede
US8618771B2 (en) Electric powered vehicle, vehicle charge device and vehicle charge system
US8054025B2 (en) Charge control device and electrically driven vehicle
Hu et al. New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs)
US6476571B1 (en) Multiple power source system and apparatus, motor driving apparatus, and hybrid vehicle with multiple power source system mounted thereon
CN101425771B (zh) 直流电动机控制电路、制动方法、发电方法及装置
US8164282B2 (en) Motive power output apparatus and vehicle with the same
JP4770798B2 (ja) 電源装置
US8143824B2 (en) Regenerating braking system including synchronous motor with field excitation and control method thereof
WO2004055963A1 (ja) 自動車用電力装置
EP2031749B1 (en) On-vehicle rotary electric machine operating on two modes of rectification
JP2009142010A (ja) 駆動装置およびこれを備える動力出力装置
CN104993580B (zh) 油电混合直流供电装置
KR20130078106A (ko) 전기자동차 충전장치
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
JP2009153342A (ja) Dc/dcコンバータ装置、車両、燃料電池システム及びdc/dcコンバータ装置の駆動方法
US9127592B2 (en) Range extender, drive and motor vehicle
JP2004336836A (ja) モータ駆動装置
EP2073364A1 (en) DC/DC converter apparatus, vehicle, fuel cell system, method of driving DC/DC converter, and DC/DC converter
KR101361782B1 (ko) 하이브리드 동력 장치
CN2894081Y (zh) 电动-发电复用控制***
Morandin et al. Mild-hybrid traction system based on a bidirectional half-bridge interleaved converter and a three-level active NPC inverter-fed PMSM
JP2001157497A (ja) 同期発電機の発電制御装置
JP2018102038A (ja) 車両用電力供給システム及び電動発電装置
JP2012044765A (ja) バッテリ制御装置及び車両

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008534851

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006804904

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087011450

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06804904

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006804904

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12083370

Country of ref document: US