WO2007040272A1 - D-(4-アミノメチル)フェニルアラニン誘導体の製造法 - Google Patents

D-(4-アミノメチル)フェニルアラニン誘導体の製造法 Download PDF

Info

Publication number
WO2007040272A1
WO2007040272A1 PCT/JP2006/320070 JP2006320070W WO2007040272A1 WO 2007040272 A1 WO2007040272 A1 WO 2007040272A1 JP 2006320070 W JP2006320070 W JP 2006320070W WO 2007040272 A1 WO2007040272 A1 WO 2007040272A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
chemical
same
Prior art date
Application number
PCT/JP2006/320070
Other languages
English (en)
French (fr)
Inventor
Takahiro Ohishi
Yoshinori Hirai
Satohiro Yanagisawa
Makoto Ueda
Nobuo Nagashima
Hirokazu Nanba
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2007040272A1 publication Critical patent/WO2007040272A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring

Definitions

  • the present invention is a method for producing a D- (4 aminomethyl) phenylalanine derivative useful as a pharmaceutical intermediate, and an intermediate of a D- (4 aminomethyl) ferrolanine derivative.
  • the present invention relates to a process for producing 4-aminomethyl) benzyl] hydantoin.
  • Patent Document 1 WO2002076964
  • An object of the present invention is to make it possible to easily and industrially advantageously produce a D- (4aminomethyl) ferrolanine derivative and a synthetic intermediate 5-[(4aminomethyl) benzyl] hydantoin derivative. Is to provide a practical way.
  • R 3 and R 4 are a hydrogen atom, an optionally substituted C1-C20 alkyl group, a substituted group, and a C6-C20 aryl group or It has a substituent! /, May! / Represents a C 7 to C 20 aralkyl group, which may be the same or different from each other, and may be joined together to form a ring
  • R 1 may have a substituent, C1-C20 alkyl group, and has a substituent. Moyo! /, Having a C6-C20 aryl group or substituent! /, May! /, A C7-C20 aralkyl group.
  • R 3 and R 4 are the same as above. It is related with the method characterized by performing hydrolysis of the ester site
  • the present invention provides a method for producing a compound represented by the above formula (3), comprising the general formula (1);
  • the present invention relates to a method comprising reacting a compound represented by the formula: wherein R 2 represents a leaving group, and R 3 and R 4 are the same as above.
  • the present invention provides a compound of the general formula (9);
  • the present invention relates to a method comprising reacting a compound represented by the formula (wherein R 3 and R 4 are the same as described above) and hydantoin.
  • the present invention relates to a method for producing the compound represented by the formula (4), wherein the olefin moiety of the compound represented by the formula (9) is reduced. .
  • the present invention provides a compound of the general formula (10);
  • R 3 and R 4 are the same as described above, R 6 represents a hydrogen atom, an alkali metal or an alkaline earth metal).
  • the present invention relates to a method characterized in that D is stereoselectively hydrolyzed with a hydantoinase.
  • the present invention provides a compound of the general formula (11);
  • R 7 represents a hydrogen atom or a protecting group for an amino group
  • R 7 is a method for producing a D— (4 aminomethyl) ferrolanine derivative represented by the formula (10).
  • the present invention relates to a method characterized by carrying out rubamoi, and protecting an amino group as necessary.
  • the present invention provides a compound represented by the formula (4), the general formula (12);
  • R 3 and R 4 are the same as above.
  • R 8 has a hydrogen atom, an alkali metal, an alkaline earth metal, or a substituent, but may have a C1-C20 alkyl group or a substituent. Or a C6 to C20 aryl group or a C7 to C20 aralkyl group optionally having a substituent), a compound represented by the formula (10) A compound represented by the formula (9), a general formula (13);
  • a D- (4-aminomethyl) phenylalanine derivative useful as a pharmaceutical intermediate can be produced conveniently and industrially advantageously.
  • “may have a substituent” means that it may be substituted by another atom or substituent.
  • the “substituent” of an alkyl group, aryl group, or aralkyl group is not particularly limited as long as it does not adversely affect the reaction. Specifically, a hydroxyl group, an alkyl group, an alkoxy group, an alkylthio group, a nitro group Amino group, cyano group, carboxyl group, halogen atom and the like.
  • a 5 — [(4 aminomethyl) benzyl] hydantoin derivative represented by [0038] is used as an important intermediate to produce a D— (4 aminomethyl) phenylalanine derivative. There are two methods.
  • R 1 may have a substituent, and may have a C1-C20 alkyl group or a substituent! / Alternatively, it may be a C6 to C20 aryl group or a substituent, which may represent a C7 to C20 aralkyl group.
  • the C1-C20 alkyl group which may have a substituent is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, and an n-butyl group. Examples thereof include a til group, isobutyl group, t-butyl group, cyclobutyl group, n pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, n-octyl group, and n-decyl group.
  • the C6 to C20 aryl group is not particularly limited, and examples thereof include a phenyl group, a p-methylphenol group, and a p-methoxyphenol group. Group, p-type phenyl group, naphthyl group and the like.
  • the C7 to C20 aralkyl group is not particularly limited, and examples thereof include a benzyl group, a p-hydroxybenzyl group, a p-methoxybenzyl group, and a p-trobenzyl group.
  • a benzyl group a p-hydroxybenzyl group, a p-methoxybenzyl group, and a p-trobenzyl group.
  • R 1 is preferably a C1-C20 alkyl group, more preferably a C1-C4 alkyl group, more preferably a methyl group or an ethyl group, particularly preferably an ethyl group.
  • Compound (1) is a compound represented by the general formula (5) described in, for example, J. Am. Chem. So, 29, 2003 (1964); [0052] [Chemical 39]
  • R 1 is as described above.
  • Compound (5) may be used by purchasing a commercially available product.
  • compound (5) can be easily obtained by allowing potassium cyanate to act on an aminomalonic acid diester.
  • the cyclization reaction of compound (5) is performed in the presence of a suitable base.
  • a suitable base include organic lithium compounds such as methyllithium, n-butyllithium, t-butyllithium, and ferric lithium; n Grignards such as butylmagnesium chloride, t-butylmagnesium mouthmid, and methylmagnesium bromide.
  • Alkali metal amides such as lithium amide, sodium amide, lithium diisopropylamide, lithium hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide; alkaline earth such as magnesium diisopropylamide Metal amides; sodium methoxide, sodium ethoxide, sodium tert-butoxide, lithium methoxide, lithium ethoxide
  • Alkali metal alkoxides such as lithium tert-butoxide, potassium methoxide, potassium ethoxide and potassium tert-butoxide; Alkali metal hydrides such as lithium hydride, sodium hydride and potassium hydride; Hydrogenation such as calcium hydride Alkaline earth metals; Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide; Alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide and barium hydroxide; Lithium carbonate, Examples include alkali metal carbonates such as potassium carbonate and sodium carbonate; alkali metal hydrogen carbonates such as lithium hydrogen carbonate, potassium hydrogen carbonate and sodium hydrogen carbonate; tertiary amines such as triethylamine and diisopropylethylamine. .
  • an alkali is used in order to allow the reaction to proceed smoothly and from an economical viewpoint.
  • metal alkoxide, alkali metal hydride, alkaline earth metal hydride is preferred, more preferred is alkali metal alkoxide, and particularly preferred is lithium methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide. , Potassium metoxide, and potassium t-butoxide.
  • the amount of the base used is not particularly limited, but is preferably 1 to 5 times the molar amount relative to the compound (5), and more preferably 1 to 1.5 times the molar amount from the economical viewpoint. preferable.
  • reaction solvent examples include chloroalkanes such as dichloromethane, chloroform, and dichloroethane; benzene and substituted benzenes such as toluene; ethers such as jetyl ether, tetrahydrofuran, and 1,4 dioxane; methanol Alcohols such as ethanol, isopropanol, and t-butanol; and aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, and hexamethylphosphoric triamide.
  • chloroalkanes such as dichloromethane, chloroform, and dichloroethane
  • benzene and substituted benzenes such as toluene
  • ethers such as jetyl ether, tetrahydrofuran, and 1,4 dioxane
  • methanol Alcohols such as ethanol, isopropanol, and t-butanol
  • the concentration of the compound (5) is not particularly limited as long as the reaction proceeds smoothly, but is usually about 50 wZv% or less, preferably 20 wZv% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but it is preferably selected from a range of 78 ° C. or higher and lower than the boiling point of the solvent used. ° C.
  • the reaction time is not particularly limited, and it may be carried out until the disappearance of compound (5), which is a raw material, is observed, but the 30 minutes force is usually about 48 hours.
  • the compound (1) may be isolated and subjected to the next step or may be used as it is as a solution of the compound (1) without being isolated.
  • the key-on of the compound (1) is the compound (1) in which the carbon to which —COOR 1 is bonded is a key-on.
  • the compound represented by the above formula (2) (hereinafter referred to as the compound (2)) is, for example, the general formula (6);
  • R 2 and R 5 represent a leaving group and may be the same or different from each other.
  • the leaving group is not particularly limited as long as it can react with the compound represented by the above formula (7) (hereinafter referred to as compound (7)).
  • Halogen atoms such as iodine atoms; acyloxy groups such as acetoxy groups and benzoyloxy groups; substituted sulfo-loxy groups such as methanesulfonyloxy groups and trifluoromethanesulfo-oxyl groups; substituted phosphoryls such as diphenylphosphoryloxy groups
  • An oxy group can be mentioned.
  • a substituted sulfonyloxy group or a halogen atom is more preferably a halogen atom, and further preferably a bromine atom or a chlorine atom.
  • the compound (6) a commercially available product can be preferably used, but it may be newly prepared and used.
  • R 3 and R 4 may have a hydrogen atom or a substituent! /, Or may have a C1-C20 alkyl group or a substituent.
  • R 3 and R 4 joined together to form a ring include, for example, a nitrogen-containing monocycle And those that form a bicyclic heterocyclic group such as azetidinyl group, pyrrolidinyl group, piperidyl group, morpholin-4-yl group, thiomorpholine-4-yl group, piperidyl-1-yl group, piperazine- 1-yl group, 1, 2, 3, 6-tetrahydropyrido- 1-yl group, 2, 3, 4, 5-tetrahydropyridyl-um group, decahydroquinolyl group, decahydroisoquinolyl Group, tetrahydroisoquinolyl group, octahydro-1H—isoindolyl group, cycloalkyl-spiropiperidyl group, 3 azabicyclo [3. 1. 0] hexyl group, 7 azabicyclo [2.2.1] butane 7— And the like.
  • These groups may be unsubstituted or substituted by halogen atoms, C1-C4 alkyl groups, hydroxy groups, C1-C4 alkoxy groups, trifluoromethyl groups, difluoromethyl groups, difluorophenol groups, etc. May be substituted.
  • Preferred are 2,6 cis-dimethyl-1-piperidyl group and 7-azabicyclo [2.2.1] hept-7-yl group, and more preferred are 2,6 cis-dimethyl-1piperidyl group.
  • a commercially available product can be preferably used, but it may be newly prepared and used.
  • R 2 , R 3 and R 4 in the compound (2) are as described in the compounds (6) and (7).
  • R 2 is a halogen atom
  • R 3 and R 4 are combined to form a piperidyl group that is unsubstituted or has a substituent at positions 2 and 6; That is, the general formula (13);
  • the compound represented by formula (1) is a novel compound that has been confirmed by the present inventors to be useful in the production of the compound (4), and thus the D- (4 aminomethyl) ferrolanine derivative.
  • X represents a halogen atom, and specifically represents fluorine, chlorine, bromine or iodine.
  • X is a chlorine atom.
  • R 9 and R 1Q represent a hydrogen atom or a C1-C4 alkyl group, and may be the same or different from each other.
  • R 9 and R 1Q are both methyl groups.
  • the reaction for obtaining the compound (2) from the compound (6) and the compound (7) is carried out in the presence of a suitable base.
  • a suitable base examples include organic lithium compounds, Grignard compounds, alkali metal amides, alkaline earth metal amides, alkali metal alkoxides, alkali metal hydrides, alkaline earth metal hydrides, alkali metal hydroxides, alkalis.
  • An earth metal hydroxide, an alkali metal carbonate, an alkali metal bicarbonate, or a tertiary amine can be used. Specific examples include those described above.
  • alkali metal carbonates or alkali metal hydrogen carbonates are more preferable from the viewpoint of allowing the reaction to proceed smoothly and from an economical viewpoint, and potassium carbonate, sodium carbonate, hydrogen carbonate is more preferable. Potassium and sodium bicarbonate.
  • the amount of the base used is not particularly limited, but is preferably 1 to 5 times the molar amount relative to the compound (8), and more preferably 1 to 1.5 times the molar amount from the economical viewpoint.
  • reaction solvent examples include chloroalkanes, substituted benzenes, ethers, alcohols, aprotic polar solvents, and water. Specific examples include those mentioned above.
  • the above solvents may be used alone or in combination of two or more, and the mixing ratio is not particularly limited. From the viewpoint of the solubility of the base used, a mixed solvent system with water is preferred over an organic solvent alone, and a mixed solvent of toluene and water is particularly preferred.
  • phase transfer catalyst is used in order to facilitate the reaction.
  • the phase transfer catalyst is not particularly limited as long as the reaction proceeds smoothly.
  • quaternary ammonium salts such as tetra-n-butylammonium halide and tetrabenzil ammonia-halide; tetrafluorophospho- Umharide Any quaternary phospho-um salt; crown ethers such as 18-crown 6 and the like, preferably a quaternary ammonium salt.
  • the amount of the phase transfer catalyst to be used is not particularly limited, but is preferably 0.01 to 1 times the molar amount relative to the compound (7), and more preferably from the economic viewpoint. 0. About twice the molar amount.
  • the reaction may not proceed smoothly due to its low leaving ability.
  • iodine ions are generated in the reaction system.
  • the reaction can proceed smoothly by adding the compound to be used and making the leaving group an iodine atom in the system.
  • the iodine ion source is not particularly limited, but alkali metal iodides such as potassium iodide, sodium iodide and lithium iodide; alkaline earth metal iodides such as magnesium iodide and calcium iodide; Ammonium salts such as tetra-n-butylammonium iodide are preferable, and potassium iodide and sodium iodide are preferable.
  • the amount of the compound that generates iodine ions in the system is not particularly limited, but is preferably 0.01 to 1 times the molar amount relative to compound (7), more preferably 0.01 to 0. About twice the molar amount.
  • the concentration of the compound (7) is not particularly limited as long as the reaction proceeds smoothly, but is usually about 50 wZv% or less, preferably 20 wZv% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but it is preferably selected from a range of 78 ° C or higher and lower than the boiling point of the solvent used. ° C.
  • the reaction time is not particularly limited, and it may be carried out until the disappearance of compound (7), which is a raw material, is observed, but the 30 minutes force is usually about 48 hours.
  • the molar ratio of the amounts used of compound (6) and compound (7) is not particularly limited as long as the reaction proceeds smoothly and compound (2) is obtained in good yield.
  • the amount of compound (6) used relative to compound (7) 1. It is preferable that the amount is 5 to 50 times the molar amount, and the economic viewpoint power is more preferably 1.5 to 20 times the molar amount.
  • the pH of the aqueous layer is made acidic and the compound (2) is dissolved in the aqueous layer. Then, excess compound (6) can be removed by washing with an organic solvent such as toluene.
  • the pH of the water layer is generated There is no particular limitation as long as it is a pH at which compound (2) is soluble in the aqueous layer, but it is preferably 0 to 5, particularly preferably about 0 to 2.
  • the washing solvent is not particularly limited as long as it is a solvent in which compound (6) can be dissolved, but is preferably toluene.
  • the pH of the aqueous layer is made alkaline, and then the compound (2) can be extracted from the aqueous layer with an appropriate organic solvent.
  • the pH at this time is not particularly limited as long as it is a pH at which the compound (2) can be extracted, but is preferably 8 to 14, particularly preferably about 10 to 14.
  • the extraction solvent is not particularly limited as long as it is a solvent capable of extracting the compound (2), but is preferably ethyl acetate, methylene chloride, and toluene, and more preferably has an economical viewpoint.
  • the extracted compound (2) may be concentrated as it is and used in the next step without any particular purification, or may be purified by a method such as crystallization.
  • a 5-alkoxycarboru- 5-[(4 aminomethyl) benzyl] hydantoin derivative represented by the following formula can be obtained.
  • R 3 and R 4 are as described above.
  • Compound (3) may be optically active or racemic.
  • the compound (3) is a novel compound that has been confirmed by the present inventors to be useful in the production of the compound (4), and thus the D- (4 aminomethyl) phenolan derivative.
  • the reaction may be carried out using the isolated compound (1) or by cyclization reaction of compound (5).
  • the anion of the compound (1) to be produced can be used as it is without being isolated.
  • the compound (1) may be generated with a base such as hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, tertiary amine. it can.
  • a base such as hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, alkali metal hydrogen carbonate, tertiary amine.
  • the reaction can be carried out by adding the compound (2) to the reaction solution following the cyclization reaction of the compound (5).
  • the cyclization reaction of compound (5) is as already described.
  • the reaction solvent the cyclization reaction solvent of compound (5) may be used as it is, or a solvent may be newly added to form a mixed solvent of two or more.
  • the mole ratio of the charged amount can be defined as the molar ratio of compound (2) and compound (5) to be subjected to the cyclization reaction.
  • compound (5) is 0.5 to LO molar amount relative to compound (2), particularly preferably about 1 to 1.5 molar amount.
  • the concentration of the compound (2) is not particularly limited as long as the reaction proceeds smoothly, but is usually about 50 wZv% or less, preferably 20 wZv% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but it is preferably selected from a range of 78 ° C or higher and lower than the boiling point of the solvent used. ° C.
  • the reaction time is not particularly limited, and it may be carried out until the disappearance of compound (2), which is a raw material, is observed, but the 30 minutes force is usually about 48 hours.
  • the compound represented by [0100] is a novel compound that has been confirmed by the present inventors to be useful as a pharmaceutical intermediate in the production of D- (4 aminomethyl) phenylalanine derivatives.
  • R 4 is the same as hydrogen or R 1 described above, preferably a hydrogen atom or an ethyl group.
  • R 3 and R 4 are as described above.
  • Compound (4) is a novel compound that has been confirmed by the present inventors to be useful in the production of D- (4-aminomethyl) phenolanine derivatives.
  • the ester hydrolysis reaction of the compound (3) will be described.
  • the reaction can be carried out by adding a base and adjusting to an appropriate pH.
  • the compound (3) may be used as a solution of the solvent and water used in the synthesis, or in the case where the reaction does not proceed smoothly after the addition of the base due to the two-phase system, the compound (3 )), Concentrate the solution and remove the solvent to make an aqueous solution.
  • Examples of the base to be used include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and the like, specifically as described above. .
  • Alkali metal hydroxide is preferable. These may be used alone or in combination of two or more. These may be directly added or added as an aqueous solution.
  • the concentration of the aqueous solution is not particularly limited, but if the concentration is too low, a large amount of aqueous solution is required to adjust to the following pH, which is not realistic when considering scale-up.
  • the yield of the compound (4) by crystallization which will be described later, may decrease the crystallization yield, it is preferable to select 10 wt% or more within the saturation concentration range of the base used.
  • the pH of the reaction solution is not particularly limited as long as the reaction proceeds smoothly, but is preferably 8 to 14, particularly preferably 10 to 14.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly. However, it is preferable to select from the range of 78 ° C or higher and lower than the boiling point of the solvent used.
  • the reaction time is not particularly limited and may be carried out until the disappearance of the compound (3) is observed, but is usually about 5 minutes to 24 hours.
  • the compound (15) can be obtained by acidifying the pH of the reaction solution.
  • R 3 and R 4 are as described above.
  • Decarboxylation can be performed by adding an acid to the above reaction solution to adjust to an appropriate pH and then heating, but after making the pH acidic, the resulting carboxylic acid can be isolated and used for strength.
  • the pH of the reaction solution is not particularly limited as long as decarboxylation proceeds, but it is preferably 0 to 6, particularly preferably about 0 to 3.
  • the acid to be used is not particularly limited as long as pH can be adjusted to a suitable range.
  • formic acid, hydrochloric acid, sulfuric acid, acetic acid, nitric acid, methanesulfonic acid, trifluoromethanesulfonic acid examples include p-toluenesulfonic acid, and hydrochloric acid, sulfuric acid, and acetic acid are preferable. These acids may be added as they are without forming an aqueous solution, or may be added as an aqueous solution.
  • the concentration is too low, a large amount of aqueous solution is required, which is not practical when considering scale-up. Further, it is preferable to use the compound as it is because it may cause a decrease in the crystallization yield in the acquisition of the compound (4) by crystallization described later.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but preferably selected from the range of the boiling point of the solvent used from 0 ° C. : LOO ° C.
  • the reaction time is not particularly limited and may be carried out until the disappearance of the compound (15) is observed, but it is usually about 5 minutes to 24 hours.
  • the resulting compound (4) can be isolated and purified by crystallization.
  • a crystallization method in the case where the solvent is removed in advance after the synthesis of the compound (3) and ester hydrolysis and decarboxylation are carried out in an aqueous solvent will be described.
  • Compound (4) can be obtained as crystals by adjusting the pH of the reaction solution to a suitable range by adding an appropriate base after the decarboxylation reaction.
  • the preferred pH range here is not particularly limited as long as it is the pH at which the crystals of compound (4) are deposited, but is preferably 7 to: L 1 and particularly preferably. It is preferably 8-10.
  • Examples of the base to be used include alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and the like, specifically as described above. .
  • Alkali metal hydroxides are preferable, and sodium hydroxide and potassium hydroxide are particularly preferable. These may be used alone or in combination of two or more. These may be added to the reaction solution as they are, or may be added as an aqueous solution. Considering the scale-up, there is a concern that when the base is added as it is, it takes time to dissolve the base, and the pH locally deviates significantly from the above-mentioned suitable range force, or local abnormal heat generation occurs. Therefore, it is preferable to add as an aqueous solution.
  • the concentration of these aqueous base solutions is not particularly limited, but if the concentration is too low, a large amount of aqueous solution is required to adjust to the above-mentioned pH. It ’s not realistic. Further, in obtaining the compound (4), the crystallization yield may be lowered. Therefore, it is preferable to select from the range of 10 wt% or more and the saturation concentration of the base used.
  • the base is added at the reaction temperature at which the decarboxylation is carried out.
  • the compound (4) crystals can be obtained by cooling.
  • the cooling temperature is not particularly limited as long as it is cooled to a temperature at which the crystals of compound (4) can be obtained with good yield, but preferably 5 to 40 ° C, more preferably 0 to 20 ° C.
  • the compound (4) crystals are precipitated by cooling, not only the compound (4) but also impurities are precipitated, and a sufficient purification effect may not be obtained.
  • precipitation of impurities can be suppressed by adding an organic solvent before cooling.
  • the organic solvent to be added is not particularly limited as long as it can be uniformly mixed with water. Examples of the organic solvent include the aforementioned alcohols, dimethylformamide, dimethyl sulfoxide, and the like, preferably methanol, ethanol, and isopropanol. is there.
  • the amount of the organic solvent that can be uniformly mixed with water is not particularly limited as long as it provides a sufficient purification effect and does not cause an extreme decrease in crystallization yield. Although not preferably, it is preferably 5 to: LOOvZv%, particularly preferably 10 to 7 with respect to the reaction solution. OvZv%.
  • compound (8) The compound represented by the above formula (8) (hereinafter referred to as compound (8)) is obtained by reductive amination with a compound (7) of terephthalaldehyde.
  • R 3 and R 4 are as described above.
  • the compound represented by the present invention is a novel compound that has been confirmed by the present inventors to be useful in the production of the compound (4), and in turn, the D- (4 aminomethyl) phenolanine derivative. .
  • R 9 and R 1Q are as described above.
  • reaction proceeds by simply mixing compound (7) and terephthalaldehyde in the presence of an appropriate reducing agent in an organic solvent.
  • the reaction solvent include chloroalkanes, substituted benzenes, ethers, alcohols, aprotic polar solvents, and the like. Specific examples are those mentioned above.
  • the above solvents may be used alone or in combination of two or more, and the mixing ratio is not particularly limited. In the above solvent, tetrahydrofuran, methanol, ethanol and dichloromethane are preferred.
  • the reducing agent to be used is not particularly limited as long as the compound (8) can be obtained in good yield selectively without reduction of the remaining formyl group.
  • sodium triacetoxyhydrogen hydride examples thereof include fluorine compounds such as sodium cyanoborohydride, picoline borane and pyridine borane, and metal catalysts such as palladium carbon, Raney nickel and platinum oxide.
  • the molar ratio of the amount of each reagent used is not particularly limited as long as the compound (8) can be obtained in a high yield, but an excessive amount of the compound (7) with respect to terephthalaldehyde is present. Existence If present, there is a concern that a large amount of the compound into which 2 mol of the compound (7) is introduced is produced as a by-product. Therefore, the amount of the compound (7) used is preferably 0.8 to 1.5 times the molar amount relative to terephthalaldehyde, particularly preferably 0.9 to 1.1 times the molar amount.
  • the amount of the reducing agent used is not particularly limited.
  • sodium triacetoxyborohydride when sodium triacetoxyborohydride is used as the reducing agent, it is 0.8 to 2.0 times that of terephthalaldehyde.
  • the molar amount is particularly preferably 0.9 to 1.5 times the molar amount.
  • Commercially available sodium triacetoxyborohydride can be used, or sodium borohydride and acetic acid can be prepared by the method described above.
  • the concentration of terephthalaldehyde is not particularly limited as long as the reaction proceeds smoothly, but is usually about 50 wZv% or less, and preferably 20 wZv% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but is preferably selected from a range of 78 ° C or higher and lower than the boiling point of the solvent used. 0 to: LOO ° C.
  • the reaction time is not particularly limited, but is usually about 5 to 24 hours until the disappearance of terephthalaldehyde, a raw material, is observed.
  • the compound (8) After completion of the reaction, water is added to stop the reaction, and an appropriate acid is added to make the pH of the aqueous layer acidic, whereby the compound (8) can be dissolved in the aqueous layer.
  • the compound (8) can be extracted with an organic solvent by washing with an appropriate organic solvent to remove impurities insoluble in water and making the pH of the aqueous layer alkaline by adding an appropriate base. .
  • the extracted compound (8) may be used in the next step without being purified, or may be purified by a method such as column chromatography.
  • the acid to be added after the termination of the reaction is not particularly limited, and examples thereof include acetic acid, formic acid, hydrochloric acid, sulfuric acid and the like, preferably hydrochloric acid and sulfuric acid.
  • the pH range is not particularly limited as long as compound (8) can be dissolved in the aqueous layer, but is preferably 0 to 5, particularly preferably 0 to 3.
  • Examples of the organic solvent used for washing include ethyl acetate, toluene, benzene, dichloromethane, jetyl ether, hexane, and the like. Ethyl acetate or toluene is preferable.
  • Examples of the base for making the pH of the layer alkaline include sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate and the like, preferably water Acid sodium or potassium hydroxide.
  • the pH range after the addition of the base is not particularly limited as long as the compound (8) can be extracted into the extraction solvent, but is preferably 7 to 14, particularly preferably 9 to The range is 14.
  • the compound (9) is a novel compound which has been confirmed by the present inventors to be useful in the production of the compound (4), and thus the D- (4 aminomethyl) furanalanine derivative. It is.
  • the reaction proceeds by mixing compound (8) and hydantoin in the presence of a base in an appropriate reaction solvent.
  • the solvent to be used is not particularly limited, and examples thereof include chloroalkanes, substituted benzenes, ethers, alcohols, aprotic polar solvents, and water. Specific examples include those described above.
  • the above solvents may be used alone or in combination of two or more, and the mixing ratio is not particularly limited. Of the above solvents, water and alcohols are preferred as the solvent for allowing the reaction to proceed more smoothly, and water, methanol, and ethanol are particularly preferred.
  • Examples of the base to be used include, for example, the aforementioned alkali metal hydroxides; alkaline earth metal waters Examples include acid salts; alkali metal carbonates; alkali metal hydrogen carbonates; tertiary amines; and amino alcohols such as ethanolamine and isopropanolamine. Of the above-mentioned bases, soprono V-luamine is particularly preferred in order to facilitate the reaction.
  • the amount of the base to be used is not particularly limited, but is preferably 0.01 to 10-fold molar amount, particularly preferably 0.1 to 5-fold molar amount relative to compound (8).
  • the amount of hydantoin used with respect to compound (8) is not particularly limited as long as compound (9) can be obtained in good yield, but is preferably 0.8 relative to compound (8).
  • the molar amount is about 5 times, particularly preferably about 1 to 3 times the molar amount.
  • the concentration of compound (8) is not particularly limited as long as the reaction proceeds smoothly, but is usually about 50 wZv% or less, preferably 20 wZv% or less.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but is preferably selected from the range of 0 ° C or higher and lower than the boiling point of the solvent used. 60-120 ° C.
  • the reaction time is not particularly limited, and may be carried out until the disappearance of the starting compound (8) is observed, but is usually about 5 minutes to 24 hours.
  • Examples of the reducing agent used include metal catalysts such as palladium carbon, Raney nickel, and platinum oxide.
  • metal catalysts such as palladium carbon, Raney nickel, and platinum oxide.
  • both hydrogenation using hydrogen gas or hydrogen transfer type in which a hydrogen source such as formic acid is added to the reaction system can be carried out.
  • a hydrogen source such as formic acid
  • side reactions such as reductive elimination of the amine moiety are likely to occur.
  • acid platinum, ethylenediamine, triethyl Palladium carbon poisoned with amines such as amine is preferred, and platinum oxide is particularly preferred.
  • the amount of the catalyst used is preferably 0.1 to 50 wtZwt%, particularly preferably 0.5 to 20 wtZwt% with respect to compound (9).
  • the reaction is carried out in an appropriate solvent.
  • the solvent used include the aforementioned chloroalkanes, substituted benzenes, ethers, alcohols, aprotic polar solvents, water and the like.
  • the above solvents may be used alone or in combination of two or more, and the mixing ratio is not particularly limited.
  • water, alcohols and ethers are preferred as the solvent for allowing the reaction to proceed more smoothly, and water, methanol, ethanol and tetrahydrofuran are particularly preferred.
  • the catalytic metal is activated by the addition of an acid, and may give good results.
  • the acid to be added include hydrochloric acid, sulfuric acid, acetic acid, formic acid, nitric acid and the like, and hydrochloric acid and sulfuric acid are preferable.
  • the acid concentration is preferably 0.1 to 6 mol%, more preferably about 0.5 to 3 mol%.
  • the reaction temperature is not particularly limited as long as the reaction proceeds smoothly, but is preferably selected from the range of 78 ° C or higher and lower than the boiling point of the solvent used. 0 to 100 ° C.
  • the reaction time is not particularly limited and may be carried out until the disappearance of the starting compound (9) is observed, but it is usually about 5 minutes to 24 hours.
  • Compound (4) can be obtained as crystals by adding an appropriate base and adjusting the pH to a suitable range after completion of the reaction.
  • the crystallization method of compound (4) has already been explained.
  • R 6 is a hydrogen atom, an alkali metal, or an alkaline earth metal, preferably a hydrogen atom, sodium, potassium, or sodium. Is calcium. When hydrolysis is carried out under basic conditions, R 6 becomes an alkali metal or alkaline earth metal.
  • the compound (10) is a novel compound that has been confirmed by the present inventors to be useful in the production of a D- (4 aminomethyl) ferrolanine derivative.
  • Examples of the D-selective hydrolysis method include a hydrolysis method using hydantoinase.
  • the hydantoinase is an enzyme having an activity of hydrolyzing a 5-substituted hydantoin derivative to produce an N-strength rubamoyl amino acid derivative.
  • hydantoinase used in the present invention those derived from animals, plants and microorganisms can be used, but those derived from microorganisms are preferred for industrial use.
  • the microorganism can be used as long as it has the ability to produce the enzyme. For example, the following known microorganisms having the ability to produce the enzyme can be mentioned.
  • Hydantoinases that catalyze D-form selective hydrolysis include bacteria belonging to the genus Acetobacter, Achromobacter, Aerobacter, and Agrobatateru.
  • a hydantoinase derived from a microorganism belonging to the genus Agrobacterium, Bacillus, Pseudomonas or Rhizobium, more preferably Examples include hydantoinases derived from microorganisms belonging to the genus Agrobacterium, Bacillus or Pseudomonas.
  • a transformed microorganism In order to obtain hydantoinase efficiently, a transformed microorganism can be used.
  • a method for producing a transformed microorganism is, for example, as described in WO96Z20275. Strain ability to show lyase activity After cloning the hydantoinase gene, a recombinant plasmid with an appropriate vector is prepared and used to transform an appropriate host fungus.
  • the host and vector the host-vector system described in "Recombinant DNA Experiment Guide” (edited by Science and Technology Agency, Research and Development Bureau, Life Science Division: Revised March 22, 1996) can be used.
  • the hosts include the genus Escherichia, the genus Pseudomonas, the genus Flavobacterium, the genus Bacillus, the Serratia, the genus Corynebacterium, the Brevi The genus Brevibacterium, the genus Agrobacterium, the genus Acetobacter, the genus Gluconobacter, the genus Lactobacillus, the genus Streptococcus or the Streptococcus It is possible to use microorganisms belonging to the genus (Streptomyces).
  • a plasmid, phage or derivative thereof derived from a microorganism capable of autonomous replication in the above host can be used.
  • Escherichia coli as a host microorganism and a vector capable of autonomous replication in the microorganism as a vector.
  • vectors include pUC18, pUC19, pBR322, pACYC184, pSTV28, pSTV29, pSC101, pT7Blue, or pUCNT (described in WO94Z03613), or derivatives thereof.
  • These derivatives are modified promoters, terminators, enhancers, SD sequences, replication start sites (ori), and other genes involved in regulation, for the purpose of increasing enzyme production and stabilizing plasmids. Also refers to drug resistance, modified restriction enzyme sites in the cloning site, etc.
  • the hydantoinase produced by the above-mentioned microorganism can be used as the enzyme itself, and can also be used as a form of a microorganism having the enzyme activity or a processed product thereof.
  • the treated product of microorganisms means, for example, a crude extract, cultured cells, freeze-dried organisms, acetone-dried organisms, or disrupted products of these cells.
  • the hydantoinase or a processed product thereof may be used as the enzyme itself or as a fixed enzyme obtained by fixing with a known means in the form of cells. The fixation may be carried out by a cross-linking method, a covalent bonding method, a physical adsorption method, a comprehensive method, etc., which are well known to those skilled in the art.
  • a D- (4 aminomethyl) ferrolanine derivative can be obtained by using the compound (4) as a substrate and allowing the above-mentioned hydantoinase to act in an aqueous medium and stereoselectively hydrolyzing it. it can.
  • all of compound (4) can be converted to the corresponding compound (10) by the simultaneous stereoselective hydrolysis reaction with hydantoinase and chemical racemization of the substrate.
  • Compound (4) which is a substrate, promotes chemical racemization under high temperature and Z or high PH conditions.
  • the racemization of the substrate is hydantoin racema. It can also be performed using a lyase.
  • the reaction is performed in a dissolved or suspended state at a substrate concentration of preferably 0.1% or more and 90wZv% or less, more preferably 1% or more and 60wZv% or less.
  • the reaction temperature is preferably adjusted to an appropriate temperature of 10 ° C or more and 80 ° C or less, more preferably 30 ° C or more and 70 ° C or less, and the reaction pH is preferably pH 4 or more, 11 or less, More preferably, it may be allowed to stand for a while or stirred while maintaining the pH at 7 or more and 10 or less.
  • the aforementioned alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, and the like can be used.
  • the substrate may be added continuously! /.
  • the reaction is carried out in batch or continuous mode.
  • the reaction of the present invention may be performed using an immobilized enzyme, a membrane reactor, or the like.
  • aqueous medium examples include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, for example, ethyl acetate, butylacetate, toluene,
  • a suitable solvent such as a two-layer system with an aqueous medium containing an organic solvent such as black mouth form and n-xane can be used.
  • antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary.
  • the metal ion is not particularly limited, and examples thereof include ions of manganese, cobalt, nickel, zinc, iron, magnesium, calcium, copper and the like, and preferably ions of manganese or cobalt. These metal ions may be used alone or in combination of two or more kinds of metal ions.
  • compound (10) is converted to compound (10) quantitatively by undergoing chemical racemization at the same time as D form is hydrolyzed by D form selective hydantoinase.
  • the resulting compound (10) can be isolated and purified by a conventional separation method, for example, a separation method such as extraction, concentration, crystallization, or force chromatography, or a combination thereof.
  • R 4 and R 6 are as described above.
  • R 7 represents a hydrogen atom or a protecting group for an amino group.
  • Examples of the protecting group for the amino group include a benzyl group, a trityl group, a formyl group, a acetyl group, a black acetyl group, a trichloroacetyl group, a trifluoroacetyl group, a benzoyl group, a phenylacetoxy group, a methoxycarbo- group.
  • benzyl group, trityl group, formyl group, acetyl group, chloroacetyl group, trichloroacetyl group, trifluoroacetyl group, benzoyl group are preferable in the above group.
  • the weak rubamoylation of compound (10) can be carried out by a known chemical method or an enzymatic method using decarbamoylase.
  • a decarbamoylase is an enzyme having an activity of hydrolyzing an N-strength rubamoyl amino acid derivative to produce an amino acid derivative.
  • the decarbamoylase used in the present invention can be derived from animals, plants, or microorganisms, but those derived from microorganisms are preferred for industrial use.
  • As a microorganism serving as an enzyme source any microorganism that has the ability to produce the enzyme can be used.
  • Achromobacter genus Aerobacter genus, Aeromonas (Aeromonas), Agrobacterium, Alcaligenes, Arthrobacter, Bacillus, B1 astobacter, Bradyrhizobium, Bradyrhizobium Brevibacterium, Comamonas, Flavobacterium, Moraxella, Paracoccus, Pseudomonas, Rhizobium, Rhizobium Examples include a decarbamoylase derived from a microorganism belonging to the genus (Serratia) or the genus Sporosarcina.
  • the genus Agrobacterium the blast pactor (Bla stobactei genus, comomamonas musci, ummonas musci Enzymes derived from microorganisms to which they belong are mentioned.
  • a transformed microorganism In order to efficiently obtain decarbamoylase, a transformed microorganism can be used.
  • a method for producing a transformed microorganism is the same as the above-mentioned hydantoinase, using a recombinant DNA technique known in the art, for example, as described in WO92Z10579. After that, a recombinant plasmid with an appropriate vector is prepared and used to transform an appropriate host fungus.
  • Transformed microorganisms obtained in this manner that produce D-selective decarbamoylase with high production include Agrobata terium sp. KNK712 (FERM BP— 1900 described in WO92Z10579. Decarbamoylase gene derived from Escherichia coli JM109 (pAD108) (FERM BP— 3184), Pseudomonas sp. KNK003A (FERM BP— 31 81) Escherichia coli JM109 (pPD304) (FERM BP—3183) and WO94Z03613-containing Agrobacterium sp.
  • Agrobata terium sp. KNK712 (FERM BP— 1900 described in WO92Z10579. Decarbamoylase gene derived from Escherichia coli JM109 (pAD108) (FERM BP— 3184), Pseudomonas sp. KNK003A (FERM BP—
  • Escherichia coli HB101 pNT4553
  • FERM BP-4368 Escherichia coli HB101 containing a decarbamoylase gene derived from K712 (FERM BP-1900). More preferred is Escherichia coli HB101 (pNT4553) (FERM BP-4368).
  • decarbamoylase by these transformed microorganisms or the production of decarbamoylase by a strain exhibiting the above-mentioned decarbamoylase activity, is carried out using a normal nutrient medium described in, for example, W094 Z03613. If necessary, treatment for inducing the enzyme can be performed.
  • the decarbamoylase produced by the above-mentioned microorganism can be used as the enzyme itself, and can also be used in the form of a microorganism having the enzyme activity or a processed product thereof.
  • the treated product of microorganisms means, for example, a crude extract, cultured cells, freeze-dried organisms, acetone-dried organisms, or disrupted products of these cells.
  • the hydantoinase or a processed product thereof may be used as the enzyme itself or as a fixed enzyme obtained by fixing with a known means as a cell.
  • immobilization use methods known to those skilled in the art, such as cross-linking, covalent bonding, physical adsorption, and entrapment.
  • the enzyme reaction of the present invention can be carried out by the following method.
  • the compound (10) is used as a substrate and the reaction is carried out in an aqueous medium in the presence of the aforementioned decarbamoylase.
  • the reaction is performed in a dissolved or suspended state at a substrate concentration of preferably 0.1% or more and 90wZv% or less, more preferably 1% or more and 60wZv% or less.
  • the reaction temperature is preferably adjusted to an appropriate temperature of 10 ° C or higher and 80 ° C or lower, more preferably 20 ° C or higher and 60 ° C or lower, and the reaction pH is preferably pH 4 or higher, 9 or lower, More preferably, it may be allowed to stand for a while or stirred while maintaining the pH at 5 or more and 8 or less.
  • the substrate may be added continuously.
  • the reaction can be carried out batchwise or continuously.
  • the reaction of the present invention may be performed using an immobilized enzyme, a membrane reactor, or the like.
  • aqueous medium examples include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, such as ethyl acetate, butylacetate, toluene, Two-phase with aqueous medium containing organic solvent such as black mouth form and n-xane Any suitable solvent such as a system can be used. Furthermore, antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary.
  • compound (10) is hydrolyzed only by D-form by D-form selective decarbamoylase, and converted to a compound in which R 7 is a hydrogen atom in compound (11).
  • Isolation of the compound in which R 7 is a hydrogen atom in the obtained compound (11) can be performed by a conventional separation method, for example, a separation method such as extraction, concentration, crystallization, or column chromatography, or a combination thereof. It can be separated and purified by combining.
  • the enzymatic method and the chemical method are optimal for substrates that are not particularly limited as long as the weak rubamoyl reaction proceeds smoothly and gives the compound (11) with high yield. It is sufficient to select the method.
  • R 7 when R 7 is not a hydrogen atom but a protecting group for an amino group, it is necessary to protect the amino group.
  • the method for protecting the amino group is not particularly limited. For example, from the method described in “PROTECTIVE GROUPS in ORGANIC SYNTHESIS” (Theodora W. Greene and Peter GW Wuts, JOHN WILEY & SONS, INC.) may be carried out to select the best way to R 7. for example, in the case of R 7 is tert- butoxycarbonyl group under basic conditions, it may do it by reacting such dicarbonate di tert- butyl.
  • the isolation of the compound in which R 7 is an amino group-protecting group can be performed by a conventional separation method, for example, a separation method such as extraction, concentration, crystallization, or column chromatography, It can be separated and purified by combination.
  • Agrobacterium sp. KNK712 (FERM BP— 1900) was released on May 31, 1988, and Bacillus sp. KNK24 5 (FERM BP— 4863) was On November 2, 1994, Pseudomonas sp. KNK003A (FERM BP— 3181) was released on December 1, 1990, while Rhizobium sp.
  • This aqueous solution was stirred at 60 ° C for 2 hours to decarburize.
  • Cis-2,6 dimethylbiperidine (0.12 g, 1.04 mmol) and sodium triacetoxyborohydride (1.42 g, 6.37 mmol) were added, and the mixture was stirred at room temperature for 22 hours.
  • Water (30 mL) was added to the reaction solution, pH was adjusted to 1.2 using concentrated hydrochloric acid, and the mixture was washed twice with ethyl acetate (30 mL).
  • the organic layer was concentrated under reduced pressure to give a dark green oil (1.71 g).
  • Escherichia coli containing a decarbamoylase gene from Agrobataterium sp. KNK712 (FERM BP— 1900) with improved heat resistance by genetic modification
  • Example 8 D—4 — “(cis-1,2.6 dimethyl-1-piperidyl) methyl ⁇ -ferulanin
  • Escherichia coli HB 101 pAH1043 (FERM BP-4865) containing a hydantoinase gene derived from Agrobacterium sp. KNK712 (FERMBP— 1900) was used in the same manner as in Example 6. Culture was performed by the method.
  • Example 9 D—4 “(cis—2.6 dimethyl-1-piperidyl) methyl ⁇ phenylalanine A plasmid recovered from Escherichia coli HBl 01 pPHD301 (FERM BP-4866) containing a hydantoinase gene derived from Pseudomonas sp. KNK003A (FERM BP—318 1) A DNA primer (Primer—1: SEQ ID NO: 1 in the sequence listing) based on the base sequence of the hydantoinase gene derived from Pseudomonas sp.
  • a DNA primer (Primer-2: SEQ ID NO: 2 in the sequence listing) having a sequence that destroys the Ngl cleavage site located upstream of the Bglll cleavage site in the gene. PCR was performed using primers to obtain 0.4 kb fragment 1. Next, the same plasmid is made into a saddle type, the primer (Primer-3: SEQ ID NO: 3 in the sequence listing) reverse to the previous Bglll cleavage site, the sequence in which the Hindlll cleavage site is bound to the stop codon, and its sequence.
  • a DNA primer (Primer-4: SEQ ID NO: 4 in the sequence listing) with a sequence that destroys the Ndel cleavage site existing in the upstream was synthesized, and PCR was performed using these primers.
  • lkb fragment 2 Got.
  • a large amount of hydantoinase can be obtained by ligating the fragment 1 with Ndel and Bglll, fragment 2 with Bglll and Hindlll, the beta plasmid pUCNT (see WO94Z03613) with Ndel and Hindlll, and T4 DNA ligase.
  • a plasmid designed so that it could be expressed in The resulting plasmid was mixed with Escherichia coli HB101 competent cells and transformed to breed a transformed microorganism having hydantoinase activity.
  • Bacillus sp. KNK245 (FERM BP-4863) is cultured, collected, and then ultrasonically disrupted.
  • Immobilized hydantoinase was obtained by adding the anion-exchange resin, Duolite A-568, which is a carrier for immobilization, to adsorb the enzyme, and then cross-linking with dartalaldehyde.
  • Example 11 D—N—Boc—4 “(cis 1, 2.6 dimethyl 1 piperidyl) methyl ⁇ felurananine
  • DN-force rubermoyl 4 [(cis-2,6-dimethyl-1piperidyl) methyl] phenol (4.73 wt% aqueous solution, 82. 29 g, 11.7 mmol) to concentrated sulfuric acid (2.43 g, 23.5 mmol) was added and cooled in an ice bath. An aqueous sodium nitrite solution (11.7 wt%, 8.41 g, 14.4 mmol) was added dropwise over 1.5 hours under ice cooling, and the mixture was stirred at room temperature for 2.5 hours.
  • Aminomalonic acid jetyl hydrochloride 35. l lg, 0.17 mol is dissolved in water (44. Olg). Cooled to ° C. Potassium cyanate (33.2 wt% aqueous solution, 68.32 g, 0.25 mol) was added dropwise at 5-9 ° C. After stirring for 1 hour, the precipitate was filtered off, washed twice with cold water (40 mL), and dried at 35 ° C. for 18 hours to obtain a slightly brown solid (33. 79 g). The obtained light brown solid was subjected to HPLC analysis under the analysis conditions described in Example 2, and it was found that the title compound was obtained in a yield of 96.9 mol%.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、医薬品中間体として有用なD-(4-アミノメチル)フェニルアラニン誘導体の製法に関する。  本発明では、5-アルコキシカルボニルヒダントイン誘導体と4-アミノメチルベンジルハライド誘導体を反応させ、得られた5-アルコキシカルボニル-5-[(4-アミノメチル)ベンジル]ヒダントイン誘導体のエステル加水分解および生成したカルボン酸の脱炭酸を行う方法、あるいはヒダントインに、4-アミノメチルベンズアルデヒド誘導体を反応させ、得られた5-[(4-アミノメチル)ベンジリデン]ヒダントイン誘導体を還元する方法により、5-[(4-アミノメチル)ベンジル]ヒダントイン誘導体を取得し、さらにヒダントイナーゼによるD立体選択的加水分解を行うことにより、D-(4-アミノメチル)フェニルアラニン誘導体を製造する。本発明によれば、該化合物を簡便かつ工業的規模で製造することができる。                                                                                 

Description

明 細 書
D- (4 _アミノメチル)フエ二ルァラニン誘導体の製造法
技術分野
[0001] 本発明は、医薬品中間体として有用な D— (4 アミノメチル)フエ二ルァラニン誘導 体の製造法、及び D—(4 アミノメチル)フエ-ルァラニン誘導体の中間体である 5 — [ (4—アミノメチル)ベンジル]ヒダントインの製造法に関する。
背景技術
[0002] D— (4 アミノメチル)フエ-ルァラニン誘導体の製造法としては、 4 シァノフエ- ルァラニン誘導体のラセミ体を酵素により分割し、 D— 4—シァノフエ-ルァラニン誘 導体を得た後に、そのシァノ基を還元して生じるホルミル基の還元アミノ化反応により アミノ基を導入する方法が知られて ヽる (特許文献 1)。しかしながら上記方法は分割 法であるがゆえに最高収率は 50%であり、工業的に生産するにあたり実用的かつ経 済的な方法とは言い難い。したがって、医薬品中間体として有用な D—(4 アミノメ チル)フエ二ルァラニン誘導体の実用的かつ経済的な製造法の開発が強く待ち望ま れている。
特許文献 1: WO2002076964
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、 D— (4 アミノメチル)フエ-ルァラニン誘導体およびその合成 中間体である 5— [ (4 アミノメチル)ベンジル]ヒダントイン誘導体を簡便かつ工業的 に有利に製造できる実用的な方法を提供することにある。
課題を解決するための手段
[0004] 本発明者らは上記に鑑み鋭意検討を行った結果、入手容易な 5 アルコキシカル ボニルヒダントイン誘導体と 4 -アミノメチルベンジルハライド誘導体を反応させ、得ら れた 5—アルコキシカルボ-ル 5— [ (4 アミノメチル)ベンジル]ヒダントイン誘導体 のエステル加水分解および生成したカルボン酸の脱炭酸を行うことにより 5— [ (4—ァ ミノメチル)ベンジル]ヒダントイン誘導体が製造できることを見出した。また、入手容易 なヒダントインに、 4ーァミノメチルベンズアルデヒド誘導体を反応させ、得られた 5— [ (4—アミノメチル)ベンジリデン]ヒダントイン誘導体を還元することによつても、 5-[ (4 アミノメチル)ベンジル]ヒダントイン誘導体が製造できることを見出した。さら〖こ 5— [ (4 アミノメチル)ベンジル]ヒダントイン誘導体のヒダントイナーゼによる D立体選択 的加水分解を行うことにより、 D- (4 アミノメチル)フエ-ルァラニン誘導体が製造 できることを見出し、本発明を完成するに至った。
[0005] すなわち本発明は、一般式 (4);
[0006] [化 24]
Figure imgf000003_0001
[0007] (式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有して 、てもよ 、C6〜C20のァリール基または置換基を有して!/、てもよ!/、C 7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれらが 一緒になつて環を形成してもよい。)で表される化合物の製造法であって、一般式(3 )
[0008] [化 25]
R3
Figure imgf000003_0002
[0009] (式中、 R1は置換基を有していてもよい C1〜C20のアルキル基、置換基を有していて もよ!/、C6〜C20のァリール基または置換基を有して!/、てもよ!/、C7〜C20のァラルキ ル基を表す。 R3および R4は前記と同じ。)で表される化合物のエステル部位の加水分 解および生成したカルボン酸の脱炭酸を行うことを特徴とする方法に関する。
[0010] さらに、本発明は、前記式 (3)で表される化合物の製造法であって、一般式(1);
[0011] [化 26]
Figure imgf000004_0001
[0012] (式中、 R1は前記と同じ)で表される化合物またはそのァ-オンと、一般式(2); [0013] [化 27]
Figure imgf000004_0002
[0014] (式中、 R2は脱離基を表す。 R3および R4は前記と同じ)で表される化合物とを反応さ せることを特徴とする方法に関する。
[0015] さらに、本発明は、一般式 (9);
[0016] [化 28]
Figure imgf000004_0003
[0017] (式中、 R3および R4は前記と同じ)で表される化合物の製造法であって、一般式 (8); [0018] [化 29]
3
Figure imgf000005_0001
[0019] (式中、 R3および R4は前記と同じ)で表される化合物とヒダントインを反応させることを 特徴とする方法に関する。
[0020] さらに、本発明は、前記式 (4)で表される化合物の製造法であって、前記式(9)で 表される化合物のォレフィン部位の還元を行うことを特徴とする方法に関する。
[0021] さらに、本発明は、一般式(10);
[0022] [化 30]
Figure imgf000005_0002
[0023] (式中、 R3および R4は前記と同じ。 R6は水素原子、アルカリ金属またはアルカリ土類 金属を表す)で表される化合物の製造法であって、前記式 (4)で表される化合物を、 ヒダントイナーゼにより D立体選択的に加水分解することを特徴とする方法に関する。
[0024] さらに、本発明は、一般式(11);
[0025] [化 31] R3-N R4
[0026] (式中、
Figure imgf000006_0001
R4および R6は、前記と同じ。 R7は水素原子またはァミノ基の保護基を表 す)で表される D—(4 アミノメチル)フエ-ルァラニン誘導体の製造法であって、前 記式(10)で表される化合物の脱力ルバモイルイ匕を行い、必要に応じてァミノ基の保 護を行うことを特徴とする方法に関する。
[0027] さらに、本発明は、前記式 (4)で表される化合物、一般式(12);
[0028] [化 32]
Figure imgf000006_0002
[0029] (R3および R4は前記と同じ。 R8は水素原子、アルカリ金属、アルカリ土類金属、置換 基を有して 、てもよ 、C1〜C20のアルキル基、置換基を有して!/、てもよ 、C6〜C20 のァリール基、または、置換基を有していてもよい C7〜C20のァラルキル基を表す) で表される化合物、前記式(10)で表される化合物、前記式(9)で表される化合物、 一般式 (13) ;
[0030] [化 33]
Figure imgf000007_0001
[0031] (Xはハロゲン原子を表し、 R9および R1Qは、水素原子または C1〜C4のアルキル基を 表し、互いに同じであっても異なっていてもよい)で表される化合物、および、一般式 (14) ;
[0032] [化 34]
Figure imgf000007_0002
[0033] (R9および R1Qは、前記に同じ)で表される化合物に関する。
発明の効果
[0034] 本発明により医薬品中間体として有用な D— (4—アミノメチル)フエ二ルァラニン誘 導体を簡便かつ工業的に有利に製造できる。
発明を実施するための最良の形態
[0035] 以下、本発明を詳細に説明する。なお、本発明において「置換基を有していてもよ い」とは、他の原子あるいは置換基によって置換されていてもよいことを示す。アルキ ル基、ァリール基、ァラルキル基の「置換基」とは、反応に悪影響を与えない限り特に 限定されるものではなぐ具体的には、水酸基、アルキル基、アルコキシ基、アルキル チォ基、ニトロ基、アミノ基、シァノ基、カルボキシル基、ハロゲン原子などが挙げられ る。 [0036] 本発明では、一般式 (4) ;
[0037] [化 35]
Figure imgf000008_0001
[0038] で表される 5— [ (4 アミノメチル)ベンジル]ヒダントイン誘導体を重要中間体として、 D—(4 アミノメチル)フエ二ルァラニン誘導体を製造するが、前記化合物 (4)の製 造法としては 2通りの方法が挙げられる。
[0039] まずは、一般式(1)
[0040] [化 36]
Figure imgf000008_0002
[0041] で表される化合物と、一般式 (2);
[0042] [化 37]
Figure imgf000008_0003
[0043] で表される化合物とを反応させて、一般式 (3);
[0044] [化 38]
Figure imgf000009_0001
[0045] で表される 5 アルコキシカルボ-ルー 5— [ (4 アミノメチル)ベンジル]ヒダントイン 誘導体とし、次いで、該化合物(3)のエステル加水分解および脱炭酸を行って化合 物 (4)とする方法につ!、て説明する。
[0046] 前記式(1)で表される化合物(以下化合物(1) )において、 R1は置換基を有してい てもよ 、C1〜C20のアルキル基、置換基を有して!/、てもよ 、C6〜C20のァリール基、 または、置換基を有して 、てもよ 、C7〜C20のァラルキル基を表す。
[0047] 置換基を有していてもよい C1〜C20のアルキル基としては、特に限定されず、例え ば、メチル基、ェチル基、 n—プロピル基、イソプロピル基、シクロプロピル基、 n—ブ チル基、イソブチル基、 t ブチル基、シクロブチル基、 n ペンチル基、シクロペン チル基、 n—へキシル基、シクロへキシル基、 n—ォクチル基、 n—デシル基などを挙 げることができる。
[0048] 置換基を有して!/、てもよ 、C6〜C20のァリール基としては、特に限定されず、例え ば、フエ-ル基、 p—メチルフエ-ル基、 p—メトキシフエ-ル基、 p クロ口フエ-ル基 、ナフチル基などを挙げることができる。
[0049] 置換基を有して!/、てもよ 、C7〜C20のァラルキル基としては、特に限定されず、例 えばベンジル基、 p ヒドロキシベンジル基、 p—メトキシベンジル基、 p -トロベンジ ル基、 o ヒドロキシベンジル基、 o—メトキシベンジル基、 o -トロベンジル基、 m— ヒドロキシベンジル基、 m—メトキシベンジル基、 m—-トロベンジル基、 1 フエネチ ル基、 2—フエネチル基などを挙げることができる。
[0050] R1としては、上記 C1〜C20のアルキル基が好ましぐ C1〜C4のアルキル基がより好 ましぐメチル基またはェチル基が更に好ましぐ特に好ましくはェチル基である。
[0051] 化合物(1)は例えば J. Am. Chem. So , 29, 2003 (1964)に記載の、一般式(5); [0052] [化 39]
Figure imgf000010_0001
[0053] で表される化合物の環化反応にて調製することができる。前記式(5)にお 、て R1は 既に説明したとおりである。化合物(5)は、市販品を購入して使用してもよいし、例え ばァミノマロン酸ジエステルにシアン酸カリウムを作用させることにより容易に取得す ることがでさる。
[0054] 化合物(5)の環化反応は、適当な塩基の存在下に行われる。使用される塩基とし ては、例えば、メチルリチウム、 n—ブチルリチウム、 tーブチルリチウム、フエ-ルリチ ゥムなどの有機リチウム化合物; n ブチルマグネシウムクロリド、 t ブチルマグネシ ゥムブ口ミド、メチルマグネシウムブロミドなどのグリニャール化合物;リチウムアミド、ナ トリウムアミド、リチウムジイソプロピルアミド、リチウムへキサメチルジシラジド、ナトリウ ムへキサメチルジシラジド、カリウムへキサメチルジシラジドなどのアルカリ金属アミド; マグネシウムジイソプロピルアミドなどのアルカリ土類金属アミド;ナトリウムメトキシド、 ナトリウムエトキシド、ナトリウム—tーブトキシド、リチウムメトキシド、リチウムエトキシド
、リチウム tーブトキシド、カリウムメトキシド、カリウムエトキシド、カリウム tーブトキ シドなどのアルカリ金属アルコキシド;水素化リチウム、水素化ナトリウム、水素化カリ ゥムなどの水素化アルカリ金属;水素化カルシウムなどの水素化アルカリ土類金属; 水酸化ナトリウム、水酸ィ匕カリウム、水酸化セシウムなどのアルカリ金属水酸化物;水 酸化マグネシウム、水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属水酸 化物;炭酸リチウム、炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水 素リチウム、炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;ト リエチルァミン、ジイソプロピルェチルァミンなどの 3級ァミンを挙げることができる。
[0055] 上記の塩基のうち、反応を円滑に進行させるため、また経済的観点から、アルカリ 金属アルコキシド、水素化アルカリ金属、水素化アルカリ土類金属の使用が好ましく 、より好ましくはアルカリ金属アルコキシドであり、とりわけ好ましくはリチウムメトキシド 、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリ ゥムェトキシド、カリウム t ブトキシドである。
[0056] 塩基の使用量は、特に限定されるものではないが、好ましくは化合物(5)に対して 1 〜5倍モル量であり、経済的観点から 1〜1. 5倍モル量がより好ましい。
[0057] また反応溶媒としては、例えば、ジクロロメタン、クロ口ホルム、ジクロロェタンなどの クロロアルカン類;ベンゼンある 、はトルエンなどの置換ベンゼン類;ジェチルエーテ ル、テトラヒドロフラン、 1,4 ジォキサンなどのエーテル類;メタノール、エタノール、ィ ソプロパノール、 tーブタノールなどのアルコール類;ジメチルホルムアミド、 N—メチ ルピロリドンあるいはへキサメチルリン酸トリアミドなどの非プロトン性極性溶媒などが 挙げられる。上記溶媒は、単独で用いてもよいし、 2種類以上を混合して用いてもよく 、その混合割合は特に限定されるものではな 、。
[0058] 化合物(5)の濃度は、反応が円滑に進行する濃度であれば特に限定されるもので はないが、通常、 50wZv%以下程度であり、好ましくは 20wZv%以下である。反応 温度も、反応が円滑に進行する温度であればよぐ特に限定されるものではないが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましくは 0〜1 00°Cである。反応時間は、特に限定されるものではなぐ原料である化合物(5)の消 失が認められるまで行えばよいが、通常 30分力も 48時間程度である。
[0059] 反応終了後は、化合物(1)を単離し、次工程に供しても、単離することなく化合物( 1)のァ-オンの溶液としてそのまま用いてもよい。ここで、化合物(1)のァ-オンとは 、—COOR1が結合している炭素がァ-オンになったィ匕合物(1)である。
[0060] 一方、前記式(2)で表される化合物(以下、化合物(2) )は、例えば、一般式 (6);
[0061] [化 40]
Figure imgf000011_0001
[0062] で表される化合物と、一般式 (7) ;
[0063] [化 41]
Figure imgf000012_0001
[0064] で表される化合物力 調製することができる。
[0065] 前記式 (6)で表される化合物(以下化合物(6) )にお 、て、 R2および R5は脱離基を 表し、互いに同じであっても異なっていてもよい。脱離基としては、前記式(7)で表さ れる化合物(以下化合物(7) )と反応し得るものであれば特に限定されるものではな いが、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;ァ セトキシ基、ベンゾィルォキシ基などのァシロキシ基;メタンスルホニルォキシ基、トリ フルォロメタンスルホ-ルォキシ基などの置換スルホ -ルォキシ基;ジフエ-ルホスホ リルォキシ基などの置換ホスホリルォキシ基を挙げることができる。反応が円滑に進 行することおよび、入手の容易さなどから、置換スルホニルォキシ基またはハロゲン 原子が好ましぐより好ましくはハロゲン原子であり、さらに好ましくは臭素原子および 塩素原子である。
[0066] 化合物(6)は市販品を好適に用いることができるが、新たに調製し使用してもよい。
[0067] 化合物(7)にお 、て、 R3および R4は水素原子、置換基を有して!/、てもよ 、C1〜C2 0のアルキル基、置換基を有していてもよい C6〜C20のァリール基、または、置換基 を有して!/、てもよ 、C7〜C20のァラルキル基を表し、互!、に同じであっても異なって V、てもよく、それらが一緒になつて環を形成してもよ!/、。
[0068] 置換基を有して!/、てもよ 、 〜 C20のアルキル基、置換基を有して!/、てもよ 、C6 〜C20のァリール基、置換基を有して!/、てもよ 、C7〜C20のァラルキル基の具体例と しては前述のものがあげられる。好ましくはェチル基、イソプロピル基、 t ブチル基 及びシクロペンチル基であり、さらに好ましくは、 C1〜C4のアルキル基であり、具体 的にはェチル基、イソプロピル基および t ブチル基である。
[0069] R3および R4が一緒になつて環を形成している例としては、例えば窒素を含む単環 式、 2環式の複素環基を形成するものがあげられ、ァゼチジニル基、ピロリジニル基、 ピペリジル基、モルホリンー4ーィル基、チオモルホリン— 4ーィル基、ピぺリドー 1 ィル基、ピぺラジン— 1—ィル基、 1, 2, 3, 6—テトラヒドロピリド— 1—ィル基、 2, 3, 4, 5—テトラヒドロピリジ -ゥム基、デカヒドロキノリル基、デカヒドロイソキノリル基、テト ラヒドロイソキノリル基、ォクタヒドロー 1H—イソインドリル基、シクロアルキルースピロ ーピペリジル基、 3 ァザビシクロ [3. 1. 0]へキシル基、 7 ァザビシクロ [2. 2. 1]へ ブタン 7—ィル基などを挙げることができる。
[0070] これらの基は無置換であるかあるいはハロゲン原子、 C1〜C4のアルキル基、ヒドロ キシ基、 C1〜C4のアルコキシ基、トリフルォロメチル基、ジフルォロメチル基、ジフル オロフェ-ル基などで置換されていてもよい。好ましくは、 2, 6 シス—ジメチルー 1 ーピペリジル基及び 7 ァザビシクロ [2. 2. 1]ヘプトー 7—ィル基であり、さらに好ま しくは 2, 6 シス一ジメチル 1 ピペリジル基である。
[0071] 化合物(7)は市販品を好適に用いることができるが、新たに調製し使用してもよい。
[0072] 化合物(2)における R2、 R3および R4は、化合物(6)および(7)で説明した通りであ る。なお、化合物(2)において R2がハロゲン原子であり、かつ R3と R4が一緒になつて 、 2, 6位が無置換あるいは置換基を有するピペリジル基を形成したィ匕合物、すなわ ち一般式 (13) ;
[0073] [化 42]
Figure imgf000013_0001
で表される化合物は、本発明者らにより前記化合物 (4)、ひいては D—(4 アミノメ チル)フエ-ルァラニン誘導体の製造における有用性が確認された新規ィ匕合物であ [0075] 前記式(13)で表される化合物(以下化合物(13) )において、 Xはハロゲン原子を 表し、具体的には、フッ素、塩素、臭素、ヨウ素を表す。好ましくは Xが塩素原子であ る。 R9および R1Qは、水素原子または C1〜C4のアルキル基を表し、互いに同じであつ ても異なっていてもよい。具体的にはメチル基、ェチル基、プロピル基、ブチル基、ィ ソプロピル基、 s—ブチル基、 t—ブチル基をあらわし、好ましくは R9および R1Qがともに メチル基である。
[0076] 化合物(6)と化合物(7)より化合物(2)を得る反応は、適当な塩基の存在下に行わ れる。使用される塩基としては、例えば、有機リチウム化合物、グリニャール化合物、 アルカリ金属アミド、アルカリ土類金属アミド、アルカリ金属アルコキシド、水素化アル カリ金属、水素化アルカリ土類金属、アルカリ金属水酸化物、アルカリ土類金属水酸 化物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、または、 3級ァミンなどを挙げ ることができる。具体例としては前述のものがあげられる。
[0077] 上記の塩基のうち、反応を円滑に進行させるため、また経済的観点から、アルカリ 金属炭酸塩、アルカリ金属炭酸水素塩の使用が好ましぐより好ましくは炭酸カリウム 、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムである。塩基の使用量は、特 に限定されるものではないが、好ましくは化合物(8)に対して 1〜5倍モル量であり、 経済的観点から 1〜1. 5倍モル量がより好ましい。
[0078] 反応溶媒としては、クロロアルカン類、置換ベンゼン類、エーテル類、アルコール類 、非プロトン性極性溶媒、または、水などが挙げられる。具体例としては前述のものが あげられる。上記溶媒は、単独で用いてもよいし、 2種類以上を混合して用いてもよく 、その混合割合は特に限定されるものではない。用いる塩基の溶解度の観点から、 有機溶媒単独よりも水との混合溶媒系が好ましぐ特に好ましくはトルエンと水の混合 溶媒である。
[0079] 反応溶媒として水と 1種以上の有機溶媒の混合溶媒を用い、反応混合物が水相と 有機相の二相系となる場合には、反応を円滑に進行させるために相間移動触媒を添 加することができる。相間移動触媒としては、反応が円滑に進行すれば特に限定さ れるものではないが、例えばテトラー n—ブチルアンモ -ゥムハライド、テトラべンジル アンモ-ゥムハライドなどの 4級アンモ-ゥム塩;テトラフヱ-ルホスホ -ゥムハライドな どの 4級ホスホ-ゥム塩 ; 18-クラウン 6などのクラウンエーテル類などが挙げられ、 好ましくは 4級アンモニゥム塩である。相間移動触媒の使用量は、特に限定されるも のではないが、好ましくは化合物(7)に対して 0. 01〜1倍モル量であり、経済的観 点からより好ましくは 0. 01-0. 2倍モル量程度である。
[0080] また化合物(6)における脱離基の種類によっては、その脱離能の低さゆえに反応 が円滑に進行しない場合がある力 このような場合には、反応系中にヨウ素イオンを 生成する化合物を添加し、系中で脱離基をヨウ素原子とすることにより反応を円滑に 進行させることができる。ヨウ素イオン源としては特に限定されるものでないが、ヨウ化 カリウム、ヨウ化ナトリウム、ヨウ化リチウムなどのアルカリ金属ヨウ化物;ヨウ化マグネシ ゥム、ヨウ化カルシウムなどのアルカリ土類金属ヨウ化物;ヨウ化テトラー n—ブチルァ ンモ -ゥムなどのアンモ-ゥム塩が挙げられ、好ましくはヨウ化カリウム及びヨウ化ナト リウムである。これらヨウ素イオンを系中で生成する化合物の使用量は、特に限定さ れるものではないが、化合物(7)に対して 0. 01〜1倍モル量が好ましぐより好ましく は 0. 01〜0. 2倍モル量程度である。
[0081] 化合物(7)の濃度は、反応が円滑に進行する濃度であれば特に限定されるもので はないが、通常、 50wZv%以下程度であり、好ましくは 20wZv%以下である。反応 温度も、反応が円滑に進行する温度であればよぐ特に限定されるものではないが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましくは 0〜1 20°Cである。反応時間は、特に限定されるものではなぐ原料である化合物(7)の消 失が認められるまで行えばよいが、通常 30分力も 48時間程度である。
[0082] 化合物(6)および化合物(7)の使用量のモル比は、反応が円滑に進行し化合物(2 )が収率よく得られるモル比であれば特に限定されるものではないが、 2官能性ィ匕合 物である化合物(6)に化合物(7)が 2分子反応した副生成物の生成を抑制するため には、化合物(6)の使用量が化合物(7)に対して 1. 5〜50倍モル量であることが好 ましぐ経済的観点力もより好ましくは 1. 5〜20倍モル量である。
[0083] 反応終了後、化合物(6)を化合物(7)に対して 1倍モル量より多く用いた場合には 、水層の pHを酸性としィ匕合物(2)を水層に溶解させた後に、トルエン等の有機溶媒 で洗浄することにより過剰の化合物(6)を除去することができる。水層の pHは生成し た化合物(2)が水層に溶解する pHであればよぐ特に限定されるものではないが、 好ましくは 0〜5であり、特に好ましくは 0〜2程度である。洗浄溶媒としては、化合物( 6)が溶解する溶媒であれば特に限定されるものではないが、好ましくはトルエンであ る。
[0084] 過剰の化合物(6)を除去した後に、水層の pHをアルカリ性とした後に、適当な有機 溶媒で水層よりィ匕合物(2)を抽出することができる。このときの pHとしては、化合物(2 )が抽出される pHであれば、特に限定されるものではないが、好ましくは 8〜14であ り、特に好ましくは 10〜 14程度である。抽出溶媒としては、化合物(2)を抽出できる 溶媒であれば特に限定されるものではないが、好ましくは酢酸ェチル、塩化メチレン 、トルエンであり、経済的観点力もより好ましくはトルエンである。抽出された化合物(2 )は、そのまま濃縮し、特に精製することなく次工程に使用してもよいし、晶析等の方 法により精製してもよい。
[0085] 以上のようにして得られる化合物(1)と化合物(2)を反応させることにより一般式(3 );
[0086] [化 43]
Figure imgf000016_0001
[0087] で表される 5 アルコキシカルボ-ルー 5— [ (4 アミノメチル)ベンジル]ヒダントイン 誘導体を得ることができる。前記式(3)で表される化合物(以下化合物(3) )にお 、て 、 R3および R4は既に説明したとおりである。化合物(3)は光学活性体であっても ラセミ体であってもよい。
[0088] また、化合物(3)は、本発明者らにより前記化合物 (4)、ひいては D—(4 アミノメ チル)フエ-ルァラニン誘導体製造における有用性が確認された新規ィ匕合物である。
[0089] 反応は単離したィ匕合物(1)を用いて行ってもよいし、化合物(5)の環化反応により 生成する化合物(1)のァニオンを単離することなぐそのまま用いて行うこともできる。 単離した化合物(1)を用いる場合は、有機リチウム化合物、グリニャール化合物、ァ ルカリ金属アミド、アルカリ土類金属アミド、アルカリ金属アルコキシド、水素化アル力 リ金属、水素化アルカリ土類金属、アルカリ金属水酸化物、アルカリ土類金属水酸ィ匕 物、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩、 3級ァミンなどの塩基でィ匕合物( 1)のァ-オンを発生させてやることができる。ここでは、化合物(1)を単離することなく そのァ-オンの溶液として用いる方法にっ 、て説明する。
[0090] 反応は化合物(5)の環化反応に続き、その反応液に化合物(2)を添加することによ り実施することができる。化合物(5)の環化反応については既に説明したとおりである 。反応溶媒としては、化合物(5)の環化反応溶媒をそのまま用いてもよいし、新たに 溶媒を添加し、 2種以上の混合溶媒としてもよい。
[0091] 化合物(1)を単離することなくそのァ-オンとして用いる場合には、仕込み量のモ ル比は化合物(2)および環化反応に供する化合物(5)のモル比として規定でき、好 ましくは化合物(5)が化合物(2)に対して 0. 5〜: LO倍モル量であり、特に好ましくは 1〜1. 5倍モル量程度である。
[0092] 化合物(2)の濃度は、反応が円滑に進行する濃度であれば特に限定されるもので はないが、通常、 50wZv%以下程度であり、好ましくは 20wZv%以下である。反応 温度も、反応が円滑に進行する温度であればよぐ特に限定されるものではないが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましくは 0〜1 20°Cである。反応時間は、特に限定されるものではなぐ原料である化合物(2)の消 失が認められるまで行えばよいが、通常 30分力も 48時間程度である。
[0093] 次に化合物(3)のエステル基の加水分解を行い、生成した一般式(15);
[0094] [化 44]
Figure imgf000018_0001
R
Figure imgf000018_0002
[0097] で表される 5— [ (4 アミノメチル)ベンジル]ヒダントイン誘導体を得る方法について 説明する。
[0098] ここで、化合物(3)および前記式(15)で表される化合物(以下、化合物(15) )を表 す、一般式 (12) ;
[0099] [化 46]
Figure imgf000018_0003
[0100] で表される化合物は本発明者らにより D— (4 アミノメチル)フエ二ルァラニン誘導体 製造において医薬中間体としての有用性が確認された新規ィ匕合物である。 [0101] 化合物(15)および前記式(12)で表される化合物(以下化合物(12) )において および R4は既に説明した通りである。 R8は水素または前述の R1と同じであり、好ましく は水素原子またはェチル基である。
[0102] 前記式 (4)で表される化合物(以下化合物 (4) )において、 R3および R4は既に説明 したとおりである。
[0103] 化合物 (4)は、本発明者らにより D— (4—アミノメチル)フエ-ルァラニン誘導体製 造における有用性が確認された新規ィ匕合物である。
[0104] エステル基の加水分解反応に供する化合物(3)としては、単離精製したものを用い てもよ!/ヽし、化合物(3)の合成反応液に水を添加して反応を停止させ、化合物(3)を 含む反応液をそのまま用いてもよい。ここでは、単離せずにそのまま化合物(3)を含 む反応液を用いる方法にっ 、て説明する。
[0105] まず化合物(3)のエステル加水分解反応にっ ヽて説明する。反応は塩基を添加し 適当な pHに調整することにより実施できる。このとき化合物(3)は、その合成におい て使用された溶媒と水の溶液として用いてもよいし、二相系となり塩基の添加後に反 応が円滑に進行しない場合には、あらかじめ化合物(3)の溶液を濃縮、溶媒を除去 し水溶液としたものを用いてもょ 、。
[0106] 使用される塩基としては、アルカリ金属水酸化物、アルカリ土類金属水酸化物、ァ ルカリ金属炭酸塩、アルカリ金属炭酸水素塩などが挙げられ、具体的には前述の通 りである。好ましくはアルカリ金属水酸ィ匕物である。これらは 1種または 2種以上を用 いてもよい。これらはそのまま添カロしてもよいし、水溶液として添カロしてもよい。水溶液 の濃度としては、特に限定されるものではないが、あまり低濃度であると下記の pHに 調整するために大量の水溶液が必要となり、スケールアップを考慮した場合に現実 的ではない。また後述する晶析による化合物 (4)の取得において晶析収率の低下を 招く恐れがあるため、 10wt%以上、使用する塩基の飽和濃度の範囲内から選択す ることが好ましい。
[0107] 反応溶液の pHは、反応が円滑に進行する pHであれば特に限定されるものではな いが、好ましくは 8〜14であり、特に好ましくは 10〜14である。
[0108] 反応温度も、反応が円滑に進行する温度であればよぐ特に限定されるものではな いが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましく は 0〜100°Cである。反応時間は、特に限定されるものではなぐ化合物(3)の消失 が認められるまで行えばよいが、通常 5分から 24時間程度である。
上記方法により化合物(3)のエステル加水分解を行った後に、反応液の pHを酸性 にすることでィ匕合物(15)を得ることができる。 R3および R4は既に説明したとおりであ る。
[0109] 次に、上記で生成した化合物(15)の脱炭酸の方法について説明する。脱炭酸は 上記の反応液に酸を添加し適当な pHに調整後、加熱することにより行えるが、 pHを 酸性とした後に、生成したカルボン酸をー且単離して力も行うこともできる。
[0110] 反応液の pHとしては、脱炭酸が進行する pHであれば特に限定されるものではな いが、好ましくは 0〜6であり、特に好ましくは 0〜3程度である。用いる酸としては、 p Hを好適な範囲に調整し得るものであれば、特に制限されるものではないが、例えば ギ酸、塩酸、硫酸、酢酸、硝酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 p— トルエンスルホン酸などが挙げられ、好ましくは塩酸、硫酸、酢酸である。これらの酸 は、水溶液とせずそのまま添加してもよいし、水溶液として添加してもよいが、あまり 低濃度であると大量の水溶液が必要となり、スケールアップを考慮した場合に現実的 ではない。また後述する晶析による化合物 (4)の取得において晶析収率の低下を招 く恐れがあるため、そのまま用いることが好ましい。
[0111] 反応温度は、反応が円滑に進行する温度であればよぐ特に限定されるものではな いが、 0°Cから使用する溶媒の沸点の範囲から選択すればよぐ好ましくは 40〜: LOO °Cである。反応時間は、特に限定されるものではなぐ化合物(15)の消失が認めら れるまで行えばよいが、通常 5分から 24時間程度である。
[0112] 生成した化合物 (4)は、晶析により単離精製することができる。ここでは、化合物(3 )の合成の後に、溶媒をあらかじめ除去し、エステル加水分解及び脱炭酸を、水溶媒 中にて行った場合の晶析法について説明する。化合物 (4)は、脱炭酸反応終了後、 適当な塩基を加えることにより反応液の pHを好適な範囲に調整することで結晶として 取得することができる。ここでいう好適な pHの範囲としては、化合物 (4)の結晶が析 出する pHであれば特に限定されるものではないが、好ましくは 7〜: L 1であり、特に好 ましくは 8〜 10である。
[0113] 使用する塩基としては、例えばアルカリ金属水酸ィ匕物、アルカリ土類金属水酸化物 、アルカリ金属炭酸塩、アルカリ金属炭酸水素塩などが挙げられ、具体的には前述 の通りである。好ましくはアルカリ金属水酸ィ匕物であり、特に好ましくは水酸ィ匕ナトリウ ム、水酸化カリウムである。これらは 1種または 2種以上を用いてもよい。これらはその まま反応溶液に添カ卩してもよいし、水溶液として添カ卩してもよい。スケールアップを考 慮すると、塩基をそのまま添加した場合、塩基の溶解に時間が力かり局所的に pHが 上記の好適な範囲力 著しく逸脱したり、局所的な異常発熱が起こることなどが懸念 されるため、水溶液として添加することが好ましい。
[0114] これらの塩基水溶液の濃度としては、特に限定されるものではないが、あまり低濃 度であると上記の pHに調整するために大量の水溶液が必要となり、スケールアップ を考慮した場合に現実的ではな 、。また化合物 (4)の取得にお 、て晶析収率の低 下を招く恐れがあるため、 10wt%以上、使用する塩基の飽和濃度以下の範囲から 選択することが好ましい。
[0115] 塩基の添加は脱炭酸終了後、脱炭酸を実施した反応温度で行えばよぐ上記 pH に調整した後に冷却することにより化合物 (4)の結晶を取得することができる。冷却 する温度としては、化合物 (4)の結晶を収率よく取得できる温度まで冷却すればよく 、特に限定されるものではないが、好ましくは 5〜40°Cであり、より好ましくは 0〜20 °Cである。
[0116] また冷却によりィ匕合物 (4)の結晶を析出させる場合に、化合物 (4)のみでなく不純 物も析出し、充分な精製効果が得られないことがある。このような場合には、冷却前に 有機溶媒を添加することにより不純物の析出を抑制することができる。添加する有機 溶媒としては、水と均一に混合し得るものであれば特に限定されるものではなぐ例え ば前述のアルコール類、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられ 、好ましくはメタノール、エタノール、イソプロパノールである。
[0117] これらの水と均一に混合し得る有機溶媒の添加量としては、充分な精製効果が得ら れかつ極端な晶析収率の低下を招くことのない量であればよぐ特に限定されるもの ではないが、好ましくは反応液に対して 5〜: LOOvZv%であり、特に好ましくは 10〜7 OvZv%である。
[0118] 次に、前記化合物 (4)の別の製造法、即ち、一般式 (8);
[0119] [化 47]
3
Figure imgf000022_0001
[0120] で表される 4ーァミノメチルベンズアルデヒド誘導体とヒダントインを反応させて、一般 式 (9) ;
[0121] [化 48]
Figure imgf000022_0002
[0122] で表される 5— [ (4—アミノメチル)ベンジリデン]ヒダントインとし、次いで、該化合物 のォレフイン部分を還元することによりィ匕合物 (4)を製造する方法について説明する
[0123] 前記式 (8)で表される化合物(以下、化合物(8) )は、テレフタルアルデヒドの化合 物(7)による還元アミノ化により得られる。
[0124] 化合物(7)および (8)において、 R3および R4は既に説明したとおりである。
[0125] なお、化合物(8)において、 R3と R4が一緒になつて、 2, 6位が無置換あるいは置換 基を有するピペリジル基を形成した化合物、すなわち一般式(14);
[0126] [化 49]
Figure imgf000023_0001
[0127] で表される化合物は、本発明者らにより前記化合物 (4)、ひいては D—(4 アミノメ チル)フエ-ルァラニン誘導体の製造における有用性が確認された新規ィ匕合物であ る。前記式(14) (以下化合物(14) )において、 R9および R1Qは、既に説明した通りで ある。
[0128] 反応は有機溶媒中、適当な還元剤の存在下、化合物(7)とテレフタルアルデヒドを 混合するだけで進行する。反応溶媒としては、例えば、クロロアルカン類、置換ベン ゼン類、エーテル類、アルコール類、非プロトン性極性溶媒などが挙げられる。具体 例としては前述のものがあげられる。上記溶媒は、単独で用いてもよいし、 2種類以 上を混合して用いてもよぐその混合割合は特に限定されるものではない。上記溶媒 において、好ましくはテトラヒドロフラン、メタノール、エタノール、ジクロロメタンである。
[0129] 用いる還元剤としては、残ったホルミル基が還元されることなく選択的に化合物(8) が収率よく得られれば特に限定されるものではないが、例えば水素化トリァセトキシホ ゥ素ナトリウム、水素化シァノホウ素ナトリウム、ピコリンボラン、ピリジンボランなどのホ ゥ素化合物、パラジウム炭素、ラネーニッケル、酸ィ匕白金などの金属触媒などが挙げ られる。
[0130] 金属触媒を用いる場合には、水素ガスを用いた水素化あるいは反応系中にギ酸等 の水素源を添加して行う水素移動型の両方が実施できる。還元剤としては、ホウ素化 合物の使用が好ましぐなかでも水素化ホウ素ナトリウムと酢酸力 容易に調製できる (J. Am. Chem. Soc, 110, 3560 (1968))水素化トリァセトキシホウ素ナトリウムが特に 好ましい。
[0131] 各試剤の使用量のモル比は、収率よく化合物(8)が得られるモル比であれば特に 限定されるものではないが、テレフタルアルデヒドに対して過剰量の化合物(7)が存 在すると、 2モルの化合物(7)が導入された化合物が多く副生することが懸念される。 したがって、化合物(7)の使用量はテレフタルアルデヒドに対し 0. 8〜1. 5倍モル量 であることが好ましぐ特に好ましくは 0. 9〜1. 1倍モル量である。
[0132] また還元剤の使用量も特に限定されるものではないが、例えば還元剤として水素化 トリァセトキシホウ素ナトリウムを用いた場合には、テレフタルアルデヒドに対して 0. 8 〜2. 0倍モル量であることが好ましぐ特に好ましくは 0. 9〜1. 5倍モル量である。水 素化トリァセトキシホウ素ナトリウムは市販のものを用いてもょ 、し、前述の方法にて 水素化ホウ素ナトリウムと酢酸力も調製したものを用いてもょ 、。
[0133] テレフタルアルデヒドの濃度は、反応が円滑に進行する濃度であれば特に限定さ れるものではないが、通常、 50wZv%以下程度であり、好ましくは 20wZv%以下で ある。
[0134] 反応温度は、反応が円滑に進行する温度であればよぐ特に限定されるものではな いが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましく は 0〜: LOO°Cである。反応時間は、特に限定されるものではなぐ原料であるテレフタ ルアルデヒドの消失が認められるまで行えばょ 、が、通常 5分から 24時間程度である
[0135] 反応終了後、水を加えて反応を停止し、適当な酸を加え水層の pHを酸性とするこ とでィ匕合物(8)は水層に溶解させることができる。次に適当な有機溶媒にて洗浄する ことで水に不溶の不純物を除去し、水層の pHを適当な塩基を加えアルカリ性とすれ ば、化合物(8)を有機溶媒にて抽出することができる。抽出された化合物(8)はその まま精製することなく次工程に用いてもよいし、カラムクロマトグラフィーなどの方法に て精製してもよい。
[0136] 反応の停止後に添加する酸としては、特に限定されるものではないが、例えば酢酸 、ギ酸、塩酸、硫酸などが挙げられ、好ましくは塩酸、硫酸である。 pHの範囲としては 、化合物(8)が水層に溶解し得る範囲であれば特に限定されるものではないが、好ま しくは 0〜5であり、特に好ましくは 0〜3の範囲である。洗浄に用いる有機溶媒として は、例えば酢酸ェチル、トルエン、ベンゼン、ジクロロメタン、ジェチルエーテル、へキ サンなどが挙げられる力 好ましくは酢酸ェチルもしくはトルエンである。また再び水 層の pHをアルカリにするための塩基としては、例えば、水酸化ナトリウム、水酸化カリ ゥム、水酸ィ匕カルシウム、水酸化バリウム、炭酸水素ナトリウム、炭酸水素カリウムなど が挙げられ、好ましくは水酸ィ匕ナトリウムまたは水酸ィ匕カリウムである。塩基を加えた 後の pHの範囲としては、化合物(8)が抽出溶媒に抽出され得る pHであれば特に限 定されるものではないが、好ましくは 7〜 14であり、特に好ましくは 9〜 14の範囲であ る。
[0137] 以上のようにして得られたィ匕合物(8)は、ヒダントインとの縮合反応により一般式(9)
[0138] [化 50]
3
Figure imgf000025_0001
[0139] で表される 5— [ (4 アミノメチル)ベンジリデン]ヒダントイン誘導体に変換することが できる。前記式(9)で表される化合物(以下化合物(9) )にお 、て、 R3および R4は既 に説明したとおりである。
[0140] またィ匕合物(9)は、本発明者らにより前記化合物 (4)、ひいては D—(4 アミノメチ ル)フ 二ルァラニン誘導体の製造における有用性が確認された新規ィ匕合物である。
[0141] 反応は適当な反応溶媒中、塩基存在下にて化合物(8)とヒダントインを混合するこ とにより進行する。使用する溶媒としては、特に限定されるものではないが、例えばク ロロアルカン類、置換ベンゼン類、エーテル類、アルコール類、非プロトン性極性溶 媒、水などが挙げられる。具体例としては前述のものがあげられる。上記溶媒は、単 独で用いてもよいし、 2種類以上を混合して用いてもよぐその混合割合は特に限定 されるものではない。上記溶媒において、反応をより円滑に進行させる溶媒としては、 水、アルコール類が好ましぐ特に好ましくは水、メタノール、エタノールである。
[0142] 用いる塩基としては、例えば、前述のアルカリ金属水酸ィ匕物;アルカリ土類金属水 酸ィ匕物;アルカリ金属炭酸塩;アルカリ金属炭酸水素塩; 3級ァミン;エタノールァミン 、イソプロパノールァミンなどのァミノアルコール類を挙げることができる。上記の塩基 のうち、反応を円滑に進行させるためには、ァミノアルコール類の使用が好ましぐィ ソプロノ V—ルァミンが特に好ましい。塩基の使用量は、特に限定されるものではな いが、好ましくは化合物(8)に対して 0. 01〜10倍モル量であり、特に好ましくは 0. 1 〜 5倍モル量である。
[0143] 化合物(8)に対するヒダントインの使用量としては、収率よく化合物(9)が得られる 量であれば特に限定されるものではないが、好ましくは化合物(8)に対して 0. 8〜5 倍モル量であり、特に好ましくは 1〜3倍モル量程度である。
[0144] 化合物(8)の濃度は、反応が円滑に進行する濃度であれば特に限定されるもので はないが、通常、 50wZv%以下程度であり、好ましくは 20wZv%以下である。
[0145] 反応温度は、反応が円滑に進行する温度であればよぐ特に限定されるものではな いが、 0°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましくは 60 〜120°Cである。反応時間は、特に限定されるものではなぐ原料である化合物(8) の消失が認められるまで行えばよいが、通常 5分から 24時間程度である。
[0146] 反応終了後、生成した化合物(9)が冷却することにより反応液から結晶として析出 する場合には、これをろ別することにより単離することができる。化合物(9)が結晶とし て析出しない場合には、溶媒を除去しィ匕合物 (9)を取得してもよい。化合物 (9)は晶 析等の方法により精製して次工程に用いてもよいし、特に精製することなく次工程に 供してちょい。
[0147] 次に、化合物(9)のォレフイン部位を還元して化合物 (4)を得る方法にっ 、て説明 する。
[0148] 用いる還元剤としては、例えばパラジウム炭素、ラネーニッケル、酸化白金などの金 属触媒などが挙げられる。金属触媒を用いる場合には、水素ガスを用いた水素化あ るいは反応系中にギ酸等の水素源を添加して行う水素移動型の両方が実施できる。 化合物(9)のォレフイン部位の還元においては、化合物(9)のァミン部位がベンジル 位に結合しているがゆえに、ァミン部位の還元的脱離といった副反応が起き易い。こ のような副反応を抑制するためには、酸ィ匕白金あるいはエチレンジァミン、トリェチル ァミンなどのアミン類で被毒させたパラジウム炭素の使用が好ましく、特に好ましくは 酸化白金である。触媒の使用量としては、化合物(9)に対し、 0. l〜50wtZwt%が 好ましぐ特に好ましくは 0. 5〜20wtZwt%である。
[0149] 反応は適当な溶媒中で行われる力 使用される溶媒として、前述のクロロアルカン 類、置換ベンゼン類、エーテル類、アルコール類、非プロトン性極性溶媒、水などが 挙げられる。上記溶媒は、単独で用いてもよいし、 2種類以上を混合して用いてもよく 、その混合割合は特に限定されるものではない。上記溶媒において、反応をより円滑 に進行させる溶媒としては、水、アルコール類、エーテル類が好ましぐ特に好ましく は水、メタノール、エタノール、テトラヒドロフランである。
[0150] 本還元反応においては、酸の添カ卩により触媒金属が活性ィ匕され、良好な結果を与 えることがある。添加する酸としては、例えば塩酸、硫酸、酢酸、ギ酸、硝酸などが挙 げられる力 好ましくは塩酸、硫酸である。酸の濃度としては、好ましくは 0. 1〜6モル %であり、より好ましくは 0. 5〜3モル%程度である。
[0151] 反応温度は、反応が円滑に進行する温度であればよぐ特に限定されるものではな いが、 78°C以上、使用する溶媒の沸点以下の範囲から選択すればよぐ好ましく は 0〜100°Cである。反応時間は、特に限定されるものではなぐ原料である化合物( 9)の消失が認められるまで行えばよいが、通常 5分から 24時間程度である。
[0152] 化合物 (4)は、反応終了後、適当な塩基を加え pHを好適な範囲に調整することで 結晶として取得することができる。化合物 (4)の晶析法については既に説明したとお りである。
[0153] 次に化合物 (4)を、ヒダントイナーゼによる D立体選択的に加水分解し、一般式(10 );
[0154] [化 51]
R3 N、R4
[0155] で表される N 力ルバモイルー D—(4 アミノメチル)フエ-ルァラニン誘導体を得る 方法について説明する。
[0156] 前記式(10)で表される化合物 (以下化合物(10) )において、 R6は水素原子、アル カリ金属、アルカリ土類金属であり、好ましくは水素原子、ナトリウム、カリウム、ノ リウ ム、カルシウムである。加水分解を塩基性条件下で実施した場合、 R6はアルカリ金属 、アルカリ土類金属となる。
[0157] またィ匕合物(10)は、本発明者らにより D— (4 アミノメチル)フエ-ルァラニン誘導 体製造における有用性が確認された新規ィ匕合物である。
[0158] 化合物 (4)は前述の方法で晶析により単離精製されたものを用いてもよいし、反応 液をそのまま用いてもよい。
[0159] D立体選択的に加水分解する方法としては、ヒダントイナーゼにより加水分解する 方法があげられる。ここでヒダントイナーゼとは、 5—置換ヒダントイン誘導体を加水分 解して N—力ルバモイルアミノ酸誘導体を生成する活性を有する酵素である。本発明 で用いるヒダントイナーゼとしては、動物、植物、微生物由来のものが使用できるが、 工業的な利用には微生物由来のものが好ましい。微生物としては、当該酵素の生産 能力を有する微生物であればいずれも利用できる力 例えば、以下の公知の、当該 酵素の生産能力を有する微生物を挙げることができる。
[0160] D体選択的な加水分解を触媒するヒダントイナーゼとしては、細菌に属するものとし てァセトパクター属 (Acetobacter)、ァクロモノくクター属 (Achromobacter)、ァェロノくク ター属(Aerobacter)、ァグロバタテリゥム属(Agrobacterium)、アルカリゲネス属(Alcal igenes)、ァルスロパクター属(Arthrobacter)、バチルス属(Bacillus)、ブレビバタテリ ゥム属 (Brevibacterium)、コリネノ クテリゥム属 (Corvnebacterium)、ェンテロノくクタ一 属(Enterobacter)、エルウイ-ァ属(Erwinia)、ェシエリヒア属 (Escherichia)、クレブシ エラ属 (Klebsiella)、ミクロノくクテリゥム属 (Microbacterium)、ミクロコッカス属 (Microco ecus)、プロタミノバクター属 (Protaminobacter)、プロテウス属 (Proteus)、シユードモ ナス属(Pseudomonas)、サノレチナ属(Sartina)、セラチア属(Serratia)、キサントモナス 属 (Xanthomonas)、ァエロモナス属 (Aeromonas)、フラポバクテリゥム属 (Flavobacteri um)、リゾピウム属(Rhizobium)など、放線菌に属するものとしてァクチノミセス属 (Acti nomyces)、ミコノ クテリゥム属 (Mycobacterium)、ノカノレティア属 (Nocardia)、ストレプ トミセス属(Streptomyces)、ァクチノプラネス属 (Actinoplanes)、ロドコッカス属 (Rhodo coccus)など、かびに属するものとしてァスペルギルス属(Aspergillus)、パェシロミセ ス属(Paecilomyces)、ぺ -シリウム属(Penicillium)など、酵母に属するものとしてはキ ヤンディダ属(Candida)、ピヒア属(Phichia)、ロードトルラ属(Rhodotorula)又はトル口 プシス属(Torulopsis)などに属する微生物由来のヒダントイナーゼが挙げられる。
[0161] その中でも好ましくは、ァグロバタテリゥム属(Agrobacterium)、バチルス属(Bacillus )、シユードモナス属(Pseudomonas)又はリゾビゥム属(Rhizobium)に属する微生物由 来のヒダントイナーゼが挙げられ、さらに好ましくはァグロバタテリゥム属(Agrobacteri um)、バチルス属(Bacillus)またはシユードモナス属(Pseudomonas)に属する微生物 由来のヒダントイナーゼが挙げられる。
[0162] 中でも、ァグロバタテリゥム スピーシーズ (Agrobacterium sp.) KNK712 (FERM
BP— 1900)、バチルス スピーシーズ(Bacillus sp.) KNK245 (FERM BP— 48 63)、シユードモナス プチダ(Pseudomonas putida) IF012996、シユードモナス ス ピーシーズ(Pseudomonas sp.) KNK003A (FERM BP— 3181)又はリゾビゥム ス ピーシーズ(Rhizobium sp.) KNK1415 (FERM BP— 4419)由来のヒダントイナー ゼが好ましぐァグロバタテリゥム スピーシーズ (Agrobacterium sp.) KNK712 (FER M BP— 1900)、バチルス スピーシーズ(Bacillus sp.) KNK245 (FERM BP— 4 863)、シユードモナス スピーシーズ(Pseudomonas sp.) KNK003A (FERM BP 3181)由来のヒダントイナーゼがとりわけ好まし!/、。
[0163] ヒダントイナーゼを効率良く得るためには、形質転換微生物を用いることができる。
形質転換微生物の作成方法は、例えば WO96Z20275記載のように、ヒダントイナ ーゼ活性を示す菌株力 ヒダントイナーゼ遺伝子をクローユングした後、適当なベタ ターとの組換えプラスミドを作成して、これを用いて適当な宿主菌を形質転換すること で得られる。
[0164] 宿主、ベクターとしては、「組換え DNA実験指針」(科学技術庁研究開発局ライフ サイエンス課編:平成 8年 3月 22日改定)に記載の宿主一ベクター系を用いることが できる。例えば、宿主としては、ェシエリヒア(Escherichia)属、シユードモナス(Pseudo monas)属、フラボバタテリゥム(Flavobacterium)属、バチノレス(Bacillus)属、セラチア( Serratia)属、コリネバタテリゥム(Corynebacterium)属、ブレビバタテリゥム(Brevibacte rium)属、ァグロノくクテリゥム (Agrobacterium)属、ァセトノ クタ一 (Acetobacter)属、グ ルコノバクタ一(Gluconobacter)属、ラクトバチルス (Lactobacillus)属、ストレプトコッカ ス(Streptococcus)属またはストレプトマイセス(Streptomyces)属に属する微生物を用 いることがでさる。
[0165] ベクターは上記の宿主内で自律複製できる微生物由来のプラスミド、ファージまた はその誘導体が使用できる。なかでも、宿主微生物としてェシエリヒア'コリ(Escherich ia coli)、ベクターとして当該微生物中で自律複製できるベクターを用いるのが好まし い。このようなベクターとしては、例えば、 pUC18、 pUC19、 pBR322、 pACYC18 4、 pSTV28、 pSTV29、 pSC101、 pT7Blue、又は pUCNT (WO94Z03613に 記載)、若しくはそれらの誘導体を挙げることができる。それらの誘導体とは、酵素の 生産量上昇、プラスミド安定化を目的として、プロモーター、ターミネータ一、ェンハン サー、 SD配列、複製開始部位 (ori)、その他の調節などに関わる遺伝子を改質した もの、また、薬剤耐性、クローユング部位の制限酵素サイトを改質したものなどを指す
[0166] なお、組換え DNA技術については当該分野において周知であり、例えば、 Molecu larし loning 2nd Edition (し old Spring Harbor Laboratory Press, 1989)、 し urrent Proto cols in Molecular Biology (Greene Publishing Associates and Wiley- Interscience)に 記載されている。
[0167] このようにして得られた、 D体選択的なヒダントイナーゼを高生産する形質転換微生 物としては WO96Z20275記載の、バチルス'スピーシーズ(Bacillus sp.) KNK245 (FERM BP 4863)由来のヒダントイナーゼ遺伝子を含有するェシエリヒア'コリ(E scherichia coli) HB101 pTH104 (FERM BP— 4864)、ァグロバタテリゥム 'スピ 一シーズ (Agrobacterium sp.)KNK712 (FERM BP— 1900)由来のヒダントイナ ーゼ遺伝子を含有するェシエリヒア'コリ(Escherichia coli) HB101 pAH1043 (FE RM BP— 4865)、又はシユードモナス'スピーシーズ(Pseudomonas sp.)KNK003 A (FERM BP— 3181)由来のヒダントイナーゼ遺伝子を含有するェシエリヒア'コリ (Escherichia coli) HB101 pPHD301 (FERM BP— 4866)を挙げることができる
[0168] これら形質転換微生物によるヒダントイナーゼの生産、あるいは、前述のヒダントイ ナーゼ活性を示す菌株によるヒダントイナーゼの生産は、例えば、 WO96/20275 記載の、通常の栄養培地を用いて培養を行えば良ぐ必用に応じて、酵素誘導のた めの処理を行うこともできる。
[0169] 本発明において、前述の微生物によって生産されたヒダントイナーゼは、酵素自体 として用いることができるほか、本酵素活性を有する微生物もしくはその処理物の形 態としても用いることができる。ここで、微生物の処理物とは、例えば、粗抽出液、培 養菌体、凍結乾燥生物体、アセトン乾燥生物体、またはそれらの菌体の破砕物を意 味する。更にヒダントイナーゼまたはそれらの処理物は、酵素自体、あるいは菌体の まま公知の手段で固定ィ匕して得た固定ィ匕酵素として用いてもよい。固定ィ匕は当業者 に周知の方法である架橋法、共有結合法、物理的吸着法、包括法などで行ってもよ い。
[0170] 次にヒダントイナーゼを使用することによる、効率的な D— (4—アミノメチル)フエ- ルァラニン誘導体の製造方法にっ 、て説明する。
[0171] D—(4 アミノメチル)フエ-ルァラニン誘導体は、基質として化合物 (4)を用い、 前述のヒダントイナーゼを水性媒体中で作用させて、立体選択的に加水分解するこ とにより得ることができる。また、ヒダントイナーゼによる立体選択的加水分解反応と基 質の化学的なラセミ化が同時に進行することにより、化合物 (4)はすべて対応する化 合物(10)に変換されうる。尚、基質である化合物 (4)は、高温および Zまたは高 PH 条件下で化学的なラセミ化が促進される。また、基質のラセミ化は、ヒダントインラセマ ーゼを用いて行うこともできる。
[0172] 基質の仕込み濃度は、好ましくは 0. 1%以上、 90wZv%以下、更に好ましくは 1 %以上、 60wZv%以下で溶解または懸濁した状態で反応を行う。反応温度は、好 ましくは 10°C以上、 80°C以下、更に好ましくは 30°C以上、 70°C以下の適当な温度 で調節し、反応 pHは、好ましくは pH4以上、 11以下、更に好ましくは pH7以上、 10 以下に保ちつつ暫時静置または攪拌すればよい。上記 pHを調製するために、前述 のアルカリ金属水酸ィ匕物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アル力 リ金属炭酸水素塩などを用いることができる。
[0173] また、基質を連続的に添加してもよ!/、。反応は、バッチ法または連続方式で行!、得 る。本発明の反応は、固定化酵素、膜リアクターなどを利用して行ってもよい。
[0174] 水性媒体としては、水、緩衝液、これらにエタノールのような水溶性有機溶媒を含 む水性媒体、あるいは、水に溶解しにくい有機溶媒、たとえば、酢酸ェチル、酢酸ブ チル、トルエン、クロ口ホルム、 n キサンなどの有機溶媒を含む水性媒体との 2層 系などの適当な溶媒を用いることができる。さらに必用に応じて、抗酸化剤、界面活 性剤、補酵素、金属などを添加することもできる。金属イオンとしては、特に限定され ないが、マンガン、コバルト、ニッケル、亜鉛、鉄、マグネシウム、カルシウム、または、 銅等のイオンが挙げられ、好ましくは、マンガン、またはコバルトのイオンが挙げられ る。これらの金属イオンは単独で用いてもよいし、 2種類以上の金属イオンを組み合 わせて用いてもよい。
[0175] 力べして、化合物 (4)は、 D体選択的ヒダントイナーゼにより D体のみが加水分解さ れると同時に化学的なラセミ化が進行し、定量的に化合物(10)に変換される。生成 した化合物(10)の単離は、通常の分離方法、例えば、抽出、濃縮、晶析、または力 ラムクロマトグラフィーなどの分離方法や、それらの組み合わせにより分離、精製する ことができる。
[0176] 次に、得られた化合物(10)の脱力ルバモイルイ匕および必要に応じてァミノ基の保 護を行うことにより一般式(11) ;
[0177] [化 52]
Figure imgf000033_0001
[0178] で表される 4ーァミノメチルフエ二ルァラニン誘導体を得る方法について説明する。前 記式(11)で表される化合物(以下化合物(11) )において、
Figure imgf000033_0002
R4及び R6は既に説 明したとおりである。 R7は水素原子またはァミノ基の保護基を表す。
[0179] ァミノ基の保護基としては、ベンジル基、トリチル基、ホルミル基、ァセチル基、クロ口 ァセチル基、トリクロロアセチル基、トリフルォロアセチル基、ベンゾィル基、フエ-ル ァセトキシ基、メトキシカルボ-ル基、エトキシカルボ-ル基、 9 フルォレ -ルメトキ シカルボニル基、 t—ブトキシカルボニル基などが挙げられる。導入及び脱保護の容 易さの観点から、上記の群の中で好ましくは、ベンジル基、トリチル基、ホルミル基、 ァセチル基、クロロアセチル基、トリクロロアセチル基、トリフルォロアセチル基、ベン ゾィル基、フエ-ルァセトキシ基、 9 フルォレ -ルメトキシカルボ-ル基、 t—ブトキシ カルボ-ル基であり、特に好ましくは t—ブトキシカルボ-ル基である。
[0180] 化合物(10)の脱力ルバモイル化は、公知の化学的方法あるいはデカルバモイラ一 ゼを用いた酵素的方法により、実施することができる。
[0181] まずデカルバモイラーゼを用いた酵素的方法について説明する。
デカルバモイラーゼは、 N—力ルバモイルアミノ酸誘導体を加水分解してアミノ酸誘 導体を生成する活性を有する酵素である。本発明で用いるデカルバモイラーゼとして は、動物、植物、又は微生物由来のいずれでも使用できるが、工業的な利用には微 生物由来のものが好ましい。酵素源となる微生物としては、当該酵素の生産能力を 有する微生物であれば!/、ずれも利用できる。
[0182] 例えば公知の D体選択的デカルバモイラーゼとして、特公昭 57— 18793号、特公 昭 63 - 20520号、特公平 1—48758号および特開平 6 - 233690号に開示された ァクロモノくクタ一 (Achromobacter)属、ァェロノくクタ一 (Aerobacter)属、ァエロモナス (Aeromonas)属、ァグロノくクテリゥム (Agrobacterium)属、ァノレカリゲネス (Alcaligenes )属、ァルスロパクター(Arthrobacter)属、バチノレス(Bacillus)属、ブラストパクター(B1 astobacter)属、ブラディリゾビゥム(Bradyrhizobium)属、ブレビバタテリゥム(Brevibact erium)属、コマモナス (Comamonas)属、フラボノ クテリゥム (Flavobacterium)属、モラ キセラ (Moraxella)属、ノ ラコッカス (Paracoccus)属、シユードモナス (Pseudomonas) 属、リゾビゥム(Rhizobium)属、セラチア(Serratia)属、又はスポロサルシナ(Sporosarc ina)属に属する微生物由来のデカルバモイラーゼが挙げられる。
[0183] その中でも好ましくは、ァグロバタテリゥム(Agrobacterium)属、ブラストパクター(Bla stobactei 属、コマモナス (し omamonasノ為、ンュ ~~ドモナス (Pseudomonasノ J禹、又は リゾビゥム(Rhizobium)属に属する微生物由来の酵素が挙げられる。
[0184] さらに好ましくは、ァグロバタテリゥム スピーシーズ (Agrobacterium sp.) KNK712
(FERM BP— 1900)、リゾビゥム スピーシーズ(Rhizobium sp.) KNK1415 (FER M BP— 4419)、又はシユードモナス スピーシーズ(Pseudomonas sp.) KNK003 A (FERM BP— 3181)由来のデカルバモイラーゼが挙げられる。
[0185] デカルバモイラーゼを効率よく得るためには、形質転換微生物を用いることができ る。形質転換微生物の作成方法は、前述のヒダントイナーゼと同様に当該分野で周 知の組換え DNA技術を用いて、例えば WO92Z10579記載のように、デカルバモ イラーゼ活性を示す菌株カゝらデ力ルバモイラーゼ遺伝子をクローユングした後、適当 なベクターとの組換えプラスミドを作成して、これを用いて適当な宿主菌を形質転換 することで得られる。
[0186] このようにして得られた、 D体選択的なデカルバモイラ一ゼを高生産する形質転換 微生物としては、 WO92Z10579記載のァグロバタテリゥム スピーシーズ (Agrobac terium sp.) KNK712 (FERM BP— 1900)由来のデカルバモイラーゼ遺伝子を含 有するェシエリヒア コリ(Escherichia coli)JM109 (pAD108) (FERM BP— 3184 )、シユードモナス スピーシーズ(Pseudomonas sp.) KNK003A (FERM BP— 31 81)由来のデカルバモイラーゼ遺伝子を含有するェシエリヒア コリ(Escherichia coli) JM109 (pPD304) (FERM BP— 3183)および WO94Z03613記載の遺伝子改 変により而熱性の向上したァグロバタテリゥム スピーシーズ (Agrobacterium sp.) KN K712 (FERM BP— 1900)由来のデカルバモイラーゼ遺伝子を含有するェシエリ ヒア コリ(Escherichia coli) HB101 (pNT4553) (FERM BP— 4368)などを挙げ ることができる。さらに好ましくはェシエリヒア コリ(Escherichia coli) HB101 (pNT45 53) (FERM BP— 4368)である。
[0187] これら形質転換微生物によるデカルバモイラーゼの生産、あるいは、前述のデカル バモイラーゼ活性を示す菌株によるデカルバモイラーゼの生産は、例えば、 W094 Z03613記載の、通常の栄養培地を用いて培養を行えば良ぐ必用に応じて、酵素 誘導のための処理を行うこともできる。
[0188] 本発明において、前述の微生物によって生産されたデカルバモイラーゼは、酵素 自体として用いることができるほか、本酵素活性を有する微生物もしくはその処理物 の形態としても用いることができる。ここで、微生物の処理物とは、例えば、粗抽出液 、培養菌体、凍結乾燥生物体、アセトン乾燥生物体、またはそれらの菌体の破砕物 を意味する。更にヒダントイナーゼまたはそれらの処理物は、酵素自体、あるいは菌 体のまま公知の手段で固定ィ匕して得た固定ィ匕酵素として用いてもよい。固定化は当 業者に周知の方法である架橋法、共有結合法、物理的吸着法、包括法などで行って ちょい。
[0189] 本発明の酵素反応は以下の方法で行うことができる。基質として化合物(10)を用 い、前述のデカルバモイラーゼ存在下、水性媒体中で反応を行う。
[0190] 基質の仕込み濃度は、好ましくは 0. 1%以上、 90wZv%以下、更に好ましくは 1 %以上、 60wZv%以下で溶解または懸濁した状態で反応を行う。反応温度は、好 ましくは 10°C以上、 80°C以下、更に好ましくは 20°C以上、 60°C以下の適当な温度 で調節し、反応 pHは、好ましくは pH4以上、 9以下、更に好ましくは pH5以上、 8以 下に保ちつつ暫時静置または攪拌すればよい。また、基質を連続的に添加してもよ い。反応は、バッチ法または連続方式で行い得る。本発明の反応は、固定化酵素、 膜リアクターなどを利用して行ってもよい。
[0191] 水性媒体としては、水、緩衝液、これらにエタノールのような水溶性有機溶媒を含 む水性媒体、あるいは、水に溶解しにくい有機溶媒、たとえば、酢酸ェチル、酢酸ブ チル、トルエン、クロ口ホルム、 n キサンなどの有機溶媒を含む水性媒体との二相 系などの適当な溶媒を用いることができる。さらに必用に応じて、抗酸化剤、界面活 性剤、補酵素、金属などを添加することもできる。
[0192] 力べして、化合物(10)は、 D体選択的デカルバモイラーゼにより D体のみが加水分 解され、化合物(11)において R7が水素原子である化合物に変換される。得られた化 合物(11)において R7が水素原子である化合物の単離は、通常の分離方法、例えば 、抽出、濃縮、晶析、またはカラムクロマトグラフィーなどの分離方法や、それらの組 み合わせにより分離、精製することができる。
[0193] 一方、公知の化学的方法としては、例えば亜硝酸ナトリウムを用いる方法 (J. Org.
Chem., 58, 7263 (1993))が挙げられる。
[0194] 酵素的方法及び化学的方法の選択は、脱力ルバモイル反応が円滑に進行し、収 率よくィ匕合物(11)を与える方法であれば、特に限定されるものではなぐ基質に最適 の方法を選択すればよい。
[0195] 化合物(11)において R7が水素原子ではなくァミノ基の保護基である化合物を得た い場合には、ァミノ基の保護を行う必要がある。ァミノ基の保護の方法としては特に限 定されるものではなぐ例えば「PROTECTIVE GROUPS in ORGANIC SYNTHESIS] ( Theodora W. Greene and Peter G. W. Wuts, JOHN WILEY & SONS, INC.)に記載 の方法から、保護基 R7に最適の方法を選択して行えばよい。例えば、 R7が tert—ブト キシカルボニル基の場合は塩基性条件下、二炭酸ジー tert—ブチルなどを反応さ せてやればよい。
[0196] 化合物(11)において R7がァミノ基の保護基である化合物の単離は、通常の分離 方法、例えば、抽出、濃縮、晶析、またはカラムクロマトグラフィーなどの分離方法や 、それらの組み合わせにより分離、精製することができる。
[0197] なお、ァグロバタテリゥム スピーシーズ (Agrobacterium sp.)KNK712 (FERM B P— 1900)は昭和 63年 5月 31日に、バチルス スピーシーズ(Bacillus sp.)KNK24 5 (FERM BP— 4863)は平成 6年 11月 2日に、シユードモナス スピーシーズ(Pse udomonas sp.) KNK003A (FERM BP— 3181)は平成 2年 12月 1日に、リゾビゥム スピーシーズ(Rhizobium sp.)KNK1415 (FERM BP— 4419)は平成 5年 9月 22 日に、ェシエリヒア'コリ(Escherichia coli) HB101 pTH104 (FERM BP— 4864) は平成 6年 11月 2日に、ェシエリヒア 'コリ(Escherichia coli) HB101 pAH1043 (F ERM BP— 4865)は平成 6年 11月 2日に、ェシエリヒア'コリ(Escherichia coli) HBl 01 pPHD301 (FERM BP— 4866) ίま平成 6年 11月 2曰に、ェシエリヒア コリ(Es cherichia coli)jM109 (pAD108) (FERM BP— 3184)は平成 2年 12月 1日に、ェ シエリヒア コリ(Escherichia coli)jM109 (pPD304) (FERM BP— 3183)は平成 2 年 12月 1日に、ェシエリヒア コリ(Escherichia coli) HB 101 (pNT4553) (FERM B P-4368)は平成 5年 7月 22日に、それぞれ上記の受託番号で、独立行政法人 産 業技術総合研究所 特許生物寄託センター (IPOD:〒 305— 8566 茨城県つくば 巿東 1 1 1 中央第 6)に寄託されている。
[0198] 以下に実施例を挙げ、本発明をさらに具体的に説明する力 本発明はこれら実施 例に限定されるものではない。
実施例
[0199] (実施例 1) 4 「(シス 2. 6 ジメチルー 1ーピペリジル)メチル Ίベンジルクロリド
α , α,—ジクロロ— ρ キシレン(126. 07g、 0. 72mol)にトルエン(304. 70g)、 水(352. 40g)、炭酸カリウム(20. 82g、 0. 15mol)、ョウイ匕カリウム(2. 48g、 0. 01 5mol)、テトラブチルアンモ-ゥムブロミド(4. 83g、 0. 015mol)をカ卩え、加熱還流 下、シス—2, 6 ジメチルビペリジン(17. 03g、0. 15mol)を 4時間かけて滴下した 。 3時間加熱還流した後に 40°Cまで冷却し、濃塩酸を用いて pH= l . 64とした。反 応液を分層し、水層をトルエン(200mL)で 2回洗浄した。水層を 30wt%水酸ィ匕ナト リウム水溶液を用いて pH= 12. 08とし、トルエン(200mL)で 3回抽出した。有機層 を水(200mL)で洗浄し、無水硫酸ナトリウムにて乾燥後、減圧濃縮する事で淡黄色 油状物(30. 38g)を得た。得られた淡黄色油状物を HPLC分析 (分析条件、カラム: nacalai tesque cosmosil 5C18— AR 250mmx4. 6mmID、カラム温度: 40。C 、検出: UV210nm、溶離液:ァセトニトリル Ζθ. 5wt%KH PO水溶液(pH = 3. 0
2 4
) = 50Z50 (vZv)、流速: 1. OmLZmin)分析する事で、標題化合物が 78. 2mol %で得られて 、る事が判った。
NMR (CDC1、 400MHz) δ 7. 37 (d、 2H、J = 8. 3Hz)、7. 30 (d、 2H、J = 8
3
. 3Hz)、 4. 58 (s、 2H)、 3. 78 (s、 2H)、 2. 50— 2. 46 (m、 2H)、 1. 64—1. 55 ( m、 3H) , 1. 33- 1. 28 (m、 3H) , 1. 04 (d、 6H、J = 6. 3Hz;)。
[0200] (実施例 2) 5 ί 4 「(シス 2. 6 ジメチルー 1 ピペリジル)メチル Ίベンジル }ヒ ダントイン
窒素雰囲気下、 Ν—力ルバモイルァミノマロン酸ジェチル(27. 85g、0. 12mol)と リチウムメトキシド(5. 12g、0. 13mol)【こ t—ブタノーノレ(195mL)をカロえ、 70°Cで 7 時間撹拌した。 5—カルボエトキシヒダントインのァ-オンを含有する反応液に 4一 [ ( シス一 2, 6 ジメチルー 1—ピペリジル)メチル]ベンジルクロリド(47. 55wt%t—ブ タノール溶液、 60. 02g、 0. l lmol)を 66°Cで滴下した。 70°Cで 15時間撹拌後、反 応液を水(150mL)にカロえ、減圧下、 tーブタノールを留去することにより 5 カルボ ェトキシ 5— {4— [ (シス一 2, 6 ジメチノレ 1 ピペリジル)メチル]ベンジル }ヒダ ントイン水溶液を得た。この水溶液に 30wt%水酸ィ匕ナトリウム水溶液(33. 17g、 0. 25mol)を加え、室温で 1時間撹拌した。反応液を濃塩酸で pH = 0. 87とすることに より、 5—カルボキシル 5— {4— [ (シス一 2, 6 ジメチルー 1—ピペリジル)メチル] ベンジル }ヒダントイン水溶液を得た。この水溶液を 60°Cで 2時間撹拌することで脱炭 酸を行った。反応液にエタノール(60mL)をカ卩え、 30wt%水酸ィ匕ナトリウム水溶液 を用いて pH = 9. 03とし、 pH = 9. 00-9. 50を維持しながら 3°Cまで冷却した。 3°C で 1時間撹拌後、析出物をろ別し、冷水 Z冷エタノール = 90ZlO (vZv)を用いて 2 回洗浄し、 5時間真空乾燥することで、白色個体 (26. 8 lg)を得た。得られた白色個 体を HPLC分析(分析条件、カラム: nacalai tesque cosmosil 5C18—AR—II 25 0mmx4. 6mmID、カラム温度: 40°C、検出: UV210nm、溶離液:ァセトニトリル Z 0. 5wt%KH PO水溶液(pH = 2. 0) = 2θΖ80 (νΖν)、流速: 1. OmL/min)す
2 4
る事で、標題ィ匕合物が収率 67. 3mol%で得られている事が判った。
NMR(DMSO、 400MHz) δ 7. 31 (d、 2H、J = 8. 1Ηζ)、7. 10 (d、 2H、J = 8 . lHz)、 6. 14 (s、 1H)、 4. 26 (dd、 1H、J = 9. 3、 4. 1)、 3. 76 (d、 2H、J = 2. 2 Hz) , 3. 24 (dd、 1H、J= 13. 9、 3. 7Hz)、 2. 82 (dd、 1H、J= 13. 9、 9. 0Hz) , 2. 50- 2. 46 (m、 2H)、 1. 65— 1. 36 (m、 3H)、 1. 39— 1. 28 (m、 3H)、 1. 06 (d、 6H、J = 6. 3Hz)。
[0201] (実施例 3) 4 Γ (シス 2, 6 ジメチル 1 ピペリジル)メチル,ベンズアルデヒド 窒素雰囲気下、テレフタルアルデヒド(1. 32g、9. 82mmol)をテトラヒドロフラン(1 4. 50g)に溶解し、シス一 2, 6 ジメチノレピペリジン(1. 14g、 10. 08mmol)とトリア セトキシ水素化ホウ素ナトリウム(2. 91g、 13. 02mmol)を加え、室温にて 14時間撹 拌した。シス—2, 6 ジメチルビペリジン(0. 12g、 1. 04mmol)、トリァセトキシ水素 化ホウ素ナトリウム(1. 42g、 6. 37mmol)を追加し、室温にて 22時間撹拌した。反 応液に水(30mL)を加え、濃塩酸を用いて pH= l. 20とし、酢酸ェチル(30mL)で 2回洗浄した。水層を 30wt%水酸ィ匕ナトリウム水溶液を用いて pH = 9. 18とし、酢酸 ェチル(20mL)で 2回抽出した。有機層を減圧濃縮することで暗緑色の油状物(1. 71g)を得た。得られた油状物を HPLC分析(分析条件、カラム: nacalai tesque co smosil 5C18 -AR-II 250mmx4. 6mmID、カラム温度: 40°C、検出: UV210n m、溶離液:ァセトニトリル ZO. 5wt%KH PO水溶液(pH = 3. 0) = 30/70 (v/v)
2 4
、流速: 1. OmLZmin)する事で標題化合物が収率 54. 9mol%で得られている事 が判った。
JH NMR(CDC1、 400MHz) δ 9. 97 (s、 1Η)、 7. 80 (d、 2H、J = 8. 1Hz) , 7. 5
3
8 (d、 2H、J = 8. lHz)、 3. 80 (s、 2H)、 2. 53— 2. 46 (m、 2H)、 1. 70—1. 29 ( m、 6H)。
(実施例 4) 5 ί 4 「(シス 2. 6 ジメチノレ 1 ピペリジル)メチル Ίベンジリデ ン }ヒダントイン
4— [1— (シス一 2, 6 ジメチルビペリジル)メチル]ベンズアルデヒド(7. 23g、31. 26mmol)【こ水(24. 48g)、ヒダントイン(6. 29g、 62. 9mmol)、イソプロノ ノーノレア ミン(0. 66g、 8. 79mmol)を加え、 25時間カロ熱還流した。エタノール(15mL)をカロ え、 70°Cにて 1時間撹拌し、室温まで冷却後、析出物をろ別した。析出物を水(20m L)で洗浄することで黄色湿結晶(10. 56g)を得た。得られた湿結晶にトルエン(20 mL)をカ卩え、 80°Cにて 1. 5時間撹拌し、室温まで冷却後、固体をろ別し、トルエン( 10mL)で 2回洗浄後、減圧乾燥することで黄色固体 (6. 66g)を得た。得られた黄色 個体を実施例 3に記載の分析条件にて HPLC分析する事で標題化合物が 68. Omo 1%で得られて 、る事が判った。
NMR(DMSO、 400MHz) δ 7. 51 (d、 2H、J = 8. 3Hz)、7. 38 (d、 2H、J = 8 . 1Ηζ)、 6. 37 (s 1H)、 3. 69 (s、 2H)、 2. 45— 2. 41 (m、 2H)、 1. 61— 1. 52 ( m、 3H) , 1. 33 - 1. 16 (m、 3H)、 0. 93 (d、 6H、J = 6. 1Hz;)。
[0203] (実施例 5) 5 ί 4 「(シス 2. 6 ジメチルー 1 ピペリジル)メチル Ίベンジル }ヒ ダントイン
5— {4— [ 1 (シス - 2, 6 -ジメチルビペリジル)メチル]ベンジリデン}ヒダントイン (6. 36g, 20. 29mmol)に 1規定塩酸(150mL)、水(50mL)、酸ィ匕白金(36. 6m g、 0. 16mmol)を加えた。反応系内を水素置換し、室温にて 4時間撹拌した。反応 系内を窒素置換し、酸化白金(89. 3mg、 0. 39mmol)を追加後、再度水素置換し 、室温にて 11時間撹拌した。反応液から酸化白金をろ別し、ろ液を実施例 3に記載 の分析条件にて HPLC分析する事で、標題化合物が 97. 9mol%で得られている事 が判った。
[0204] (実施例 6) D-N -力ルバモイル 4—「(シス 2. 6 ジメチル 1 ピペリジル) メチル Ίフエ二ルァラニン
バチルス'スピーシーズ(Bacillus sp.) KNK245 (FERM BP— 4863)由来のヒダ ントイナーゼ遺伝子を含有するェシエリヒア'コリ(Escherichia coli) HB101 pTHIO 4 (FERM BP— 4864)を、試験管内で滅菌した 5mlの培地(トリプトン 1. 6%、ィー ス卜エキス 1. 0%、塩ィ匕ナ卜リウム 0. 5%、アンピシリン 0. 01 %、滅菌前 pH7. 0、た だしアンピシリンは滅菌後に添加する)に植菌して 37°Cで 9時間、好気的に振とう培 養した。この培養液 0. 5mlを 500mL坂口フラスコ内で滅菌した 50mlの培地(トリプト ン 1. 6%、イーストエキス 1. 0%、塩ィ匕ナトリウム 0. 5%、塩化マンガン四水和物 0. 0 4%、滅菌前 pH7. 0)〖こ植菌して 37°Cで 24時間、好気的に振とう培養した。
[0205] ラセミ体の 5— {4— [ (シス一 2, 6 ジメチルー 1—ピペリジル)メチル]ベンジル }ヒ ダントイン(lOOmg)に、 1. 6mlの 125mM Tris (トリス(ヒドロキシメチル)ァミノメタン )—塩酸緩衝液 (PH8. 4)、 0. 5M硫酸マンガン水溶液 0. 004ml及び上記培養液 3 mlから遠心分離により得られた菌体を 0. 3mlの水に懸濁して添カ卩し、 10N水酸化ナ トリウム水溶液により pHを 8. 4付近に保ちつつ、 53°Cで 23時間攪拌した。反応液を HPLC分析(分析条件、カラム: nacalai tesque cosmosil 5C8— MS 250mmx4 . 6mmID、カラム温度: 45°C、検出: UV210nm、溶離液:ァセトニトリル ZlOmMK H PO水溶液 = 5Z95 (vZv)、流速: 1. OmLZmin)して反応収率を求めた結果、
2 4
ヒダントインの残存率は 6%となり、 N—力ルバモイルー 4— [ (シス一 2, 6 ジメチル - 1 ピペリジル)メチル]フエ-ルァラニンが反応収率 85%で生成した。得られた N —力ルバモイルー 4— [ (シス— 2, 6 ジメチルー 1—ピペリジル)メチル]フエ-ルァ ラニンの光学純度を、以下の方法により確認したところ、 99. 6%eeで D体であった。 JH NMR (D 0、 30wt%NaOD、 400MHz) δ 7. 08 (d、 2H、J = 7. 8Hz)、 6. 95
2
(d、 2H、J = 7. 6Hz)、 4. 06— 3. 94 (m、 1H)、 3. 64 (s、 2H)、 2. 85 (dd、 1H、J = 13. 8、 5. lHz)、 2. 62 (dd、 1H、 13. 8、 8. 3Hz)、 2. 25— 2. 12 (m、 2H)、 1 . 38— 1. 27 (m、 3H)、 1. 06— 0. 88 (m、 3H)、 0. 95 (d、 6H、J = 6. lHz)。
[0206] 光学純度の決定は、反応液中の N—力ルバモイルー 4 [ (シス 2, 6 ジメチル
- 1—ピペリジル)メチル]フエ-ルァラニンを硫酸酸性下、 10wt%亜硝酸ナトリウム 水溶液を 1. 1当量カ卩え、 45°Cで 20分間反応させて、脱力ルバモイルイ匕して 4— [ (シ ス— 2, 6 ジメチルー 1—ピペリジル)メチル]フエ-ルァラニンに誘導して HPLC分 析 (キラルカラム: CROWNPAK CR (—)(ダイセルィ匕学社製)、移動相:過塩素酸 水溶液 (pH = l . 5)、流速: 1. OmlZmin、検出波長: 210nm、カラム温度: 35°C、 保持時間: L体; 11. 0分、 D体; 14. 3分)することで行った。
[0207] (実施例 7) D— 4 「(シス 2. 6 ジメチル 1 ピペリジル)メチル Ίフエ二ルァラ ニン
遺伝子改変により耐熱性の向上したァグロバタテリゥム ·スピーシーズ KNK712 ( FERM BP— 1900)由来のデカルバモイラーゼ遺伝子を含有するェシエリヒア'コリ
HB101 (pNT4553) (FERM BP— 4368)を試験管内で滅菌した 5mlの培地(ト リプトン 1. 6%、イーストエキス 1. 0%、塩ィ匕ナ卜リウム 0. 5%、アンピシリン 0. 01 %、 滅菌前 pH7. 0、ただしアンピシリンは滅菌後に添加する)に植菌して 37°Cで 12時間 、好気的に振とう培養した。この培養液 3. 5mlを 500mL坂口フラスコ内で滅菌した 3 50mlの培地(トリプトン 1. 6%、イーストエキス 1. 0%、塩ィ匕ナトリウム 0. 5%、滅菌前 PH7. 0)に植菌して 37°Cで 30時間、好気的に振とう培養した。
[0208] 実施例 6と同様の方法で得たヒダントイナーゼ反応液 2mlを減圧乾燥した試料に、 1. 9mlの 0. 8M HEPES (2— [4— (2 ヒドロキシェチル) 1—ピペラジ -ル]ェ タンスルホン酸)—NaOH緩衝液 (pH7. 0)及び上記培養液 4mlから遠心分離によ り得られた菌体を 0. 2mlの水に懸濁して添カ卩し、 6N塩酸により pHを 7. 0付近に保 ちつつ、 40°Cで 45時間攪拌した。反応液を、実施例 6に記載の条件で HPLC分析 して反応収率を求めた結果、 4— [ (シス— 2, 6 ジメチルー 1—ピペリジル)メチル] フエ二ルァラニンが反応収率 88%で生成した。その光学純度を、実施例 6に記載の 条件で HPLC分析して求めたところ、 100%eeで D体であった。
JH NMR (D 0、 400MHz) δ 7. 42 (d、 2H、J = 8. 1Ηζ)、 7. 28 (d、 2H、J = 8. 1
2
Hz) , 4. 32 (s、 2H)、 3. 63 (t、 1H、J = 6. lHz)、 3. 24— 3. 14 (m、 2H)、 3. 03 (dd、 1H、J = 13. 9、 6. lHz)、 2. 94 (dd、 1H、J = 13. 9、 7. 3Hz)、 1. 85— 1. 5 0 (m、 6H)、 1. 41 (d、 6H、J = 9. 5Hz)。
[0209] (実施例 8) D— 4—「(シス一 2. 6 ジメチル一 1 ピペリジル)メチル Ίフエ-ルァラ ニン
ァグロバタテリゥム .スピーシーズ (Agrobacterium sp.) KNK712 (FERMBP— 19 00)由来のヒダントイナーゼ遺伝子を含有するェシエリヒア'コリ(Escherichia coli) HB 101 pAH1043 (FERM BP— 4865)を、実施例 6と同様の方法で培養した。
[0210] ラセミ体の 5— {4— [ (シス一 2, 6 ジメチルー 1—ピペリジル)メチル]ベンジル }ヒ ダントイン(20mg)に、 1. 9mlの 105mM炭酸ナトリウム緩衝液(pH8. 7)、0. 5M硫 酸マンガン水溶液 0. 004ml及び上記培養液 2mlから遠心分離により得られた菌体 を 0. 1mlの水に懸濁して添カ卩し、 6N塩酸により pHを 8. 7付近に保ちつつ、 45°Cで 29時間攪拌した。反応液を、実施例 6に記載の条件で HPLC分析して反応収率を 求めた結果、ヒダントインの残存率は 12%となり、 N—力ルバモイルー 4 [ (シスー2 , 6 ジメチル— 1 ピペリジル)メチル]フエ-ルァラニンが反応収率 78%で生成し た。
[0211] この反応液を、実施例 7と同様の方法で脱力ルバモイルイ匕した結果、 D— [4 (シ ス 2, 6 ジメチルー 1 ピペリジル)メチル]フエ-ルァラニンが反応収率 75%で生 成した。
[0212] (実施例 9) D—4 「(シス—2. 6 ジメチルー 1ーピペリジル)メチル Ίフエ二ルァラ ニン シユードモナス'スピーシーズ(Pseudomonas sp.) KNK003A (FERM BP— 318 1)由来のヒダントイナーゼ遺伝子を含有するェシエリヒア'コリ(Escherichia coli) HBl 01 pPHD301 (FERM BP— 4866)から回収したプラスミドを铸型にして、 W096 Z20275記載のシユードモナス 'スピーシーズ(Pseudomonas sp.) KNK003A由来 ヒダントイナーゼ遺伝子の塩基配列を基に、遺伝子の N末端部分に制限酵素 Ndel 切断部位を結合させた DNAプライマー(Primer— 1:配列表の配列番号 1)と、遺伝 子内の Bglll切断部位の配列とその上流部に存在する Ndel切断部位を破壊する配 列をもつ DNAプライマー(Primer— 2:配列表の配列番号 2)を合成して、これらの プライマーを用いて PCRを行ない、 0. 4kbのフラグメント 1を得た。次に、同じプラスミ ドを铸型にして、先の Bglll切断部位で逆向きのプライマー(Primer— 3:配列表の配 列番号 3)と、終止コドンに Hindlll切断部位を結合させた配列とその上流部に存在 する Ndel切断部位を破壊する配列をもつ DNAプライマー(Primer— 4:配列表の 配列番号 4)を合成して、これらのプライマーを用いて PCRを行ない、 1. lkbのフラグ メント 2を得た。フラグメント 1を Ndelと Bglllで、フラグメント 2を Bglllと Hindlllで、ベタ タープラスミド pUCNT(WO94Z03613参照)を Ndelと Hindlllで、それぞれ切断し た断片を T4 DNAリガーゼを用いて結合することで、ヒダントイナーゼを大量に発現 できるように設計されたプラスミドを取得した。得られたプラスミドをェシエリヒア'コリ(E scherichia coli) HB101のコンビテントセルと混合し形質転換を行なうことで、ヒダント イナーゼ活性を有する形質転換微生物を育種した。
[0213] 育種したシユードモナス 'スピーシーズ(Pseudomonas sp.)KNK003A由来のヒダ ントイナーゼ遺伝子を含有する形質転換微生物を、実施例 6と同様の方法で培養し た。
[0214] この培養液を用いて、実施例 8と同様の条件で反応させて得られた反応液を、実施 例 6に記載の条件で HPLC分析して反応収率を求めた結果、ヒダントインの残存率 は 1 %となり、 N 力ルバモイル 4 [ (シス - 2, 6-ジメチル 1 ピペリジル)メチ ル]フエ二ルァラニンが反応収率 90%で生成した。
[0215] この反応液を、実施例 7と同様の方法で脱力ルバモイルイ匕した結果、 D—4 [ (シ ス 2, 6 ジメチル 1 ピペリジル)メチル]フエ-ルァラニンが反応収率 70%で生 成した。
[0216] (実施例 10) D— N 力ルバモイル 4 「(シス 2. 6 ジメチル 1 ピペリジル )メチル Ίフエ-ルァラニン
WO96Z20275記載の培養方法と固定ィ匕酵素の調製方法に従い、バチルス'スピ 一シーズ(Bacillus sp.)KNK245 (FERM BP— 4863)を培養、集菌後、超音波破 砕して得た酵素液に固定ィ匕用担体である陰イオン交換榭脂、 Duolite A— 568を 添加して酵素を吸着させ、さらにダルタルアルデヒドで架橋処理することで固定化ヒ ダントイナーゼを得た。
[0217] ラセミ体の 5— {4— [ (シス一 2, 6 ジメチルー 1—ピペリジル)メチル]ベンジル }ヒ ダン卜イン(lOOmg)に、 1. 6mlの 125mM Tris—塩酸緩衝液(pH8. 7)、0. 5M 硫酸マンガン水溶液 0. 004ml及び上記固定化ヒダントイナーゼを 0. 3g添加し、 10 N水酸ィ匕ナトリウム水溶液により pHを 8. 7付近に保ちつつ、 58°Cで 24時間攪拌した 。反応液を実施例 6に記載の条件で HPLC分析して反応収率を求めた結果、ヒダン トインの残存率は 8%となり、 D—N—力ルバモイルー 4 [ (シス—2, 6—ジメチルー 1 -ピペリジル)メチル]フエ二ルァラニンが反応収率 64%で生成した。
[0218] (実施例 11) D— N— Boc— 4 「(シス一 2. 6 ジメチル 1 ピペリジル)メチル Ί フエ二ルァラニン
D-N-力ルバモイル 4 [ (シス - 2, 6-ジメチル 1 ピペリジル)メチル]フエ -ルァラ-ン(4. 73wt%水溶液、 82. 29g、 11. 7mmol)に濃硫酸(2. 43g、 23. 5 mmol)を加え、氷浴中で冷却した。亜硝酸ナトリウム水溶液(11. 7wt%、 8. 41g、 1 4. lmmol)を氷冷下で 1. 5時間かけて滴下し、室温にて 2. 5時間撹拌した。反応 液を 30wt%水酸化ナトリウム水溶液にて pH = 9. 98とし、二炭酸ジー tert ブチル (Boc O) (3. 43g、 15. 2mmol)を加え、室温にて 13時間撹拌した。反応液を濃塩
2
酸にて pH=4. 35とし、塩化メチレン (40mL)で 3回抽出し、有機層を減圧濃縮する 事で淡黄色の固体(2. 61g)を得た。 NMRにて分析する事で、標題化合物が収率 4 6. 4mol%で得られている事が判った。
[0219] (参考例 1) N—力ルバモイルァミノマロン酸ジェチル
ァミノマロン酸ジェチル塩酸塩(35. l lg、 0. 17mol)を水(44. Olg)に溶解し、 5 °Cまで冷却した。シアン酸カリウム(33. 2wt%水溶液、 68. 32g、 0. 25mol)を 5〜 9°Cで滴下した。 1時間撹拌後、析出物をろ別し、冷水 (40mL)で 2回洗浄後、 35°C で 18時間乾燥することで、微褐色固体(33. 79g)を得た。得られた微褐色固体を実 施例 2記載の分析条件にて HPLC分析する事で、標題ィ匕合物が収率 96. 9mol%で 得られている事が判った。
JH NMR(DMSO、 400ΜΗζ) δ 6. 79 (d、 1H、J = 7. 6Hz)、 5. 88 (s、 2H)、 4. 87 (d、 1H、J = 7. 8Hz)、 4. 21—4. 08 (m、 4H)、 1. 17 (t、 6H、J = 7. 3Hz)

Claims

請求の範囲 [1] 一般式 (4) ;
[化 1]
Figure imgf000046_0001
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有して 、てもよ 、C6〜C20のァリール基または置換基を有して!/、てもよ!/、C 7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれらが 一緒になつて環を形成してもよい。)で表される化合物の製造法であって、一般式(3 ) ;
[化 2]
Figure imgf000046_0002
(式中、 R1は置換基を有していてもよい C1〜C20のアルキル基、置換基を有していて もよ!/、C6〜C20のァリール基または置換基を有して!/、てもよ!/、C7〜C20のァラルキ ル基を表す。 R3および R4は前記と同じ。)で表される化合物のエステル部位の加水分 解および生成したカルボン酸の脱炭酸を行うことを特徴とする方法。
一般式 (3) ;
[化 3]
Figure imgf000047_0001
(式中、 R1は置換基を有していてもよい C1〜C20のアルキル基、置換基を有していて もよ!/、C6〜C20のァリール基または置換基を有して!/、てもよ!/、C7〜C20のァラルキ ル基を表す。 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキ ル基、置換基を有して 、てもよ 、C6〜C20のァリール基または置換基を有して ヽても よい C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれ らが一緒になつて環を形成してもよい。)で表される化合物の製造法であって、一般 式 (1) ;
[化 4]
Figure imgf000047_0002
(式中、 R1は前記と同じ。)で表される化合物またはそのァニオンと、一般式 (2);
[化 5]
Figure imgf000048_0001
(式中、 R2は脱離基を表す。 R3および R4は前記と同じ。)で表される化合物とを反応さ せることを特徴とする方法。
[3] 前記式(1)で表される化合物またはそのァニオンが、一般式(5);
[化 6]
Figure imgf000048_0002
(式中、 R1は前記と同じ。)で表される化合物を塩基の存在下に環化させて調製した ものである請求項 2記載の製造法。
前記式 (2)で表される化合物が、一般式 (6);
[化 7]
Figure imgf000048_0003
(式中、 R2は前記と同じ。 R5は脱離基を表し、 R2と R5は互いに同じであっても異なって いてもよい)で表される化合物と、一般式 (7);
[化 8] R3
Figure imgf000049_0001
(式中、 R3および R4は前記と同じ。)で表される化合物力 調製されたものである請求 項 2または 3に記載の製造法。
[5] 請求項 2〜4の!、ずれかに記載の方法で得られた前記式(3)で表される化合物を用
V、ることを特徴とする請求項 1記載の製造法。
[6] 一般式 (9) ;
[化 9]
Figure imgf000049_0002
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよ い C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれら が一緒になつて環を形成してもよい。)で表される化合物の製造法であって、一般式 ( 8) ;
[化 10]
R3"
Figure imgf000049_0003
(式中、 R3および R4は前記と同じ。)で表される化合物とヒダントインを反応させること を特徴とする方法。
前記式 (8)で表される化合物がテレフタルアルデヒドと、一般式(7);
[化 11]
Figure imgf000050_0001
(式中、 および R4は前記と同じ。)で表される化合物力 調製されたものである請求 項 6記載の製造法。
一般式 (4) ;
[化 12]
Figure imgf000050_0002
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよ い C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれら が一緒になつて環を形成してもよい。)で表される化合物の製造法であって、一般式 ( 9) ;
[化 13]
R3-N R4
(式中、 R3および R4は前記と同じ。)で表される化合物のォレフィン部位の還元を行う ことを特徴とする方法。
[9] 前記式(9)で表される化合物が請求項 6または 7記載の方法で得られたものである請 求項 8記載の製造法。
[10] 一般式 (10) ;
[化 14]
Figure imgf000051_0001
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよ い C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれら が一緒になつて環を形成してもよい。 R6は水素原子、アルカリ金属、アルカリ土類金 属を表す。)で表される化合物の製造法であって、一般式 (4);
[化 15]
Figure imgf000052_0001
(式中、 R3および R4は前記と同じ。)で表される化合物を、ヒダントイナーゼにより D立 体選択的に加水分解することを特徴とする方法。
[11] ヒダントイナーゼによる D立体選択的加水分解を、前記式 (4)で表される化合物のラ セミ化と同時に行う請求項 10記載の製造法。
[12] 一般式 (11) ;
[化 16]
Figure imgf000052_0002
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよ い C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれら が一緒になつて環を形成してもよい。 R6は水素原子、アルカリ金属またはアルカリ土 類金属を表し、 R7は水素原子またはァミノ基の保護基を表す)で表される D—(4ーァ ミノメチル)フエ二ルァラニン誘導体の製造法であって、一般式(10);
[化 17]
Figure imgf000053_0001
(式中、
Figure imgf000053_0002
R4および R6は前記と同じ。)で表される化合物の脱力ルバモイル化を行 い、必要に応じてァミノ基の保護を行うことを特徴とする方法。
[13] 前記式 (4)で表される化合物が請求項 1、 5, 8および 9のいずれかに記載の方法を 用いて製造したものである請求項 10記載の製造法。
[14] 前記式(10)で表される化合物が請求項 10、 11および 13のいずれかに記載の方法 で得られたものである請求項 12記載の製造法。
[15] 一般式 (4) ;
[化 18]
Figure imgf000053_0003
(式中、 R3および R4は水素原子、置換基を有していてもよい C1〜C20のアルキル基、 置換基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよ い C7〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれら が一緒になつて環を形成してもよ 、。 )で表される化合物。
一般式 (12) ;
[化 19]
Figure imgf000054_0001
(R3および R4は水素原子、置換基を有していてもよい CI〜C20のアルキル基、置換 基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよい C7 〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐ一緒になつ て環を形成してもよい。 R8は水素原子、アルカリ金属、アルカリ土類金属、置換基を 有して 、てもよ 、C1〜C20のアルキル基、置換基を有して!/、てもよ 、C6〜C20のァリ ール基、または、置換基を有していてもよい C7〜C20のァラルキル基を表す)で表さ れる化合物。
一般式 (10) ;
[化 20]
Figure imgf000054_0002
(ITおよび R ま水素原子、置換基を有していてもよい C1〜C20のアルキル基、置換 基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよい C7 〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐそれらが一 緒になって環を形成してもよぐ R6は水素原子、アルカリ金属、または、アルカリ土類 金属を表す。)で表される化合物。
一般式 (9) ;
[化 21]
Figure imgf000055_0001
(R3および R4は水素原子、置換基を有していてもよい CI〜C20のアルキル基、置換 基を有していてもよい C6〜C20のァリール基、または、置換基を有していてもよい C7 〜C20のァラルキル基を表し、互いに同じであっても異なっていてもよぐ一緒になつ て環を形成してもよい。)で表される化合物。
一般式 (13) ;
[化 22]
Figure imgf000055_0002
(Xはハロゲン原子を表し、 R9および R1Qは、水素原子または C1〜C4のアルキル基を 表し、互いに同じであっても異なっていてもよい。)で表される化合物。
[20] 一般式 (14) ;
[化 23]
Figure imgf000056_0001
(R9および R1Qは、水素原子または C1〜C4のアルキル基を表し、互いに同じであって も異なっていてもよい。)で表される化合物。
PCT/JP2006/320070 2005-10-06 2006-10-06 D-(4-アミノメチル)フェニルアラニン誘導体の製造法 WO2007040272A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005293372 2005-10-06
JP2005-293372 2005-10-06

Publications (1)

Publication Number Publication Date
WO2007040272A1 true WO2007040272A1 (ja) 2007-04-12

Family

ID=37906314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320070 WO2007040272A1 (ja) 2005-10-06 2006-10-06 D-(4-アミノメチル)フェニルアラニン誘導体の製造法

Country Status (1)

Country Link
WO (1) WO2007040272A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511569A (en) * 1978-05-23 1980-01-26 Snam Progetti Manufacture of ddamino acid
JPS6183150A (ja) * 1984-08-17 1986-04-26 ストウフア− ケミカル カンパニ− 不飽和ヒダントインからのアミノ酸の製造法
JPS6284A (ja) * 1985-04-25 1987-01-06 ブリストル―マイアーズ スクイブ コムパニー イミダゾキノリン抗血栓性強心薬
WO1992010579A1 (en) * 1990-12-07 1992-06-25 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCESS FOR PRODUCING D-α-AMINO ACID
WO1994003613A1 (en) * 1992-08-10 1994-02-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Dna coding for decarbamylase improved in thermostability and use thereof
WO1996020275A1 (fr) * 1994-12-28 1996-07-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCEDE DE FABRICATION DE L'ACIDE D-N-CARBAMYLE-α-AMINE
WO2003033473A1 (fr) * 2001-10-10 2003-04-24 Kaneka Corporation Nouveau derive d'hydantoine a substitution en position 5 et son procede de production
WO2006101266A1 (ja) * 2005-03-23 2006-09-28 Ajinomoto Co., Inc. 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511569A (en) * 1978-05-23 1980-01-26 Snam Progetti Manufacture of ddamino acid
JPS6183150A (ja) * 1984-08-17 1986-04-26 ストウフア− ケミカル カンパニ− 不飽和ヒダントインからのアミノ酸の製造法
JPS6284A (ja) * 1985-04-25 1987-01-06 ブリストル―マイアーズ スクイブ コムパニー イミダゾキノリン抗血栓性強心薬
WO1992010579A1 (en) * 1990-12-07 1992-06-25 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCESS FOR PRODUCING D-α-AMINO ACID
WO1994003613A1 (en) * 1992-08-10 1994-02-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Dna coding for decarbamylase improved in thermostability and use thereof
WO1996020275A1 (fr) * 1994-12-28 1996-07-04 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha PROCEDE DE FABRICATION DE L'ACIDE D-N-CARBAMYLE-α-AMINE
WO2003033473A1 (fr) * 2001-10-10 2003-04-24 Kaneka Corporation Nouveau derive d'hydantoine a substitution en position 5 et son procede de production
WO2006101266A1 (ja) * 2005-03-23 2006-09-28 Ajinomoto Co., Inc. 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAMILTON G.S. ET AL.: "Asymmetric Synthesis of a Potent and Selective Competitive NMDA antagonist", J. ORG. CHEM., vol. 58, 1993, pages 7263 - 7270, XP003011540 *
MEANWELL N. ET AL.: "1,3-Dihydro-2H-imidazo[4,5-b]quinolin-2-ones--inhibitors of blood platelet cAMP phosphodiesterase and induced aggregation", J. MED. CHEM., vol. 34, no. 9, 1991, pages 2906 - 2916 *

Similar Documents

Publication Publication Date Title
JP4670347B2 (ja) 新規アルドラーゼおよび置換α−ケト酸の製造方法
US7316916B2 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
US11499172B2 (en) Use of stereoselective transaminase in asymmetric synthesis of chiral amine
JP4705089B2 (ja) (s)−または(r)−3,3,3−トリフルオロ−2−ヒドロキシ−2−メチルプロピオン酸の製造法
JP4648837B2 (ja) アミントランスアミナーゼ、および該アミントランスアミナーゼを利用した光学活性アミンの製造方法
WO1999007853A1 (fr) Procede de production d'acide l-glutamique par fermentation
WO2012002450A1 (ja) D-サクシニラーゼ、およびこれを用いたd-アミノ酸の製造方法
JP5903298B2 (ja) N−サクシニル−dl−アミノ酸に対する向上されたd体選択性を有する改変型d−サクシニラーゼ
JP4529338B2 (ja) ヒダントイナーゼをコードするdna、n−カルバミル−l−アミノ酸ハイドロラーゼをコードするdna、組み換えdna、形質転換された細胞、タンパク質の製造方法および光学活性アミノ酸の製造方法
JP4561009B2 (ja) D−ヒダントインハイドロラーゼをコードするdna、n−カルバミル−d−アミノ酸ハイドロラーゼをコードするdna、該遺伝子を含む組み換えdna、該組み換えdnaにより形質転換された細胞、該形質転換細胞を用いるタンパク質の製造方法、および、d−アミノ酸の製造方法
WO2011071058A1 (ja) 光学活性2-ヒドロキシシクロアルカンカルボン酸エステルの製造方法
WO2007040272A1 (ja) D-(4-アミノメチル)フェニルアラニン誘導体の製造法
JP5761641B2 (ja) (r)−3−キヌクリジノールの製造方法
EP2128258B1 (en) Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
JP4880859B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
US8192967B2 (en) Reductase, gene thereof and method of using the same
JP4485734B2 (ja) 5置換ヒダントインラセマーゼ、これをコードするdna、組み換えdna、形質転換された細胞および光学活性アミノ酸の製造方法
WO2006008872A1 (ja) L体アミノ酸アミド不斉加水分解酵素及びそれをコードするdna
JP3880072B2 (ja) [s,s]−エチレンジアミン−n,n´−ジコハク酸アルカリ金属塩の製造方法
JP4081124B2 (ja) D−N−カルバモイル−α−アミノ酸の製造法
JP4449406B2 (ja) γ−レゾルシン酸又は2,3−ジヒドロキシ安息香酸の製造方法
JP2007189949A (ja) 新規ヒダントイナーゼ及び光学活性アミノ酸誘導体の製造方法
CN117904086A (zh) 一种高催化活性腈水合酶突变体及其制备方法和应用
WO2006101266A1 (ja) 光学活性なヒドロキシメチル置換フェニルアラニンの製造方法
JPWO2005005648A1 (ja) 新規な光学活性カルボン酸の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP