WO2007039970A1 - 色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換方法 - Google Patents

色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換方法 Download PDF

Info

Publication number
WO2007039970A1
WO2007039970A1 PCT/JP2006/313141 JP2006313141W WO2007039970A1 WO 2007039970 A1 WO2007039970 A1 WO 2007039970A1 JP 2006313141 W JP2006313141 W JP 2006313141W WO 2007039970 A1 WO2007039970 A1 WO 2007039970A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
chromaticity
gradation
conversion
data
Prior art date
Application number
PCT/JP2006/313141
Other languages
English (en)
French (fr)
Inventor
Kazuma Hirao
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/990,910 priority Critical patent/US20090146989A1/en
Publication of WO2007039970A1 publication Critical patent/WO2007039970A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/04Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed using circuits for interfacing with colour displays

Definitions

  • Chromaticity conversion device timing controller, liquid crystal display device, and chromaticity conversion method
  • the present invention relates to chromaticity conversion for three primary color signals composed of first to third color data indicating the gradation of each color.
  • liquid crystal display devices have been used not only for monitors such as personal computers, but also for display on television screens, and CRT (Cathode Ray Tube) display devices with regard to image quality, brightness, and color reproducibility. It was often compared with.
  • a laptop computer equipped with a liquid crystal display device can view a TV screen or a DVD (Digital Versatile Disk) playback screen, a lighter, thinner and higher-brightness liquid crystal display device is required.
  • the chromaticity range (color reproduction range, chromaticity range) is the EBU (European Broadcast Union) (NTSC (National Television Standards Commitee))
  • the liquid crystal display device used in notebook computers has a chromaticity range of 50% or less of the NTSC ratio as a result of thinning the color filter. Is common.
  • Fig. 14 shows the transmittance of each RGB color in a color filter corresponding to EBU and the cold cathode. It is a graph which overlaps and shows the spectral radiance of a pipe.
  • the spectral radiance of a cold cathode tube has peaks at wavelengths corresponding to blue, green and red.
  • the liquid crystal overlapping the RGB color filters is, for example, 64 gradations or 25
  • FIG. 15 is a graph in which the transmittance of each RGB color in a color filter having an NTSC ratio of about 45% and the spectral radiance of a cold cathode tube are superimposed.
  • This color filter increases the transmittance of the color filter and realizes high brightness by thinning the color and widening the transmission region of the wavelength corresponding to each RGB.
  • the transmittance of the blue color filter is relatively high even at the green peak wavelength in the spectral radiance of the cold-cathode tube (the circled line in FIG. 15). This means that the blue color filter transmits green light, that is, the blue color filter does not block green.
  • FIG. 16 shows the chromaticity range 11 in the liquid crystal display device using the color filters shown in FIGS. 14 and 15, respectively, in the xy chromaticity coordinates called CIE (Commission Internationale de 1 Eclairage) 1931 chromaticity diagram. It is the shown chromaticity diagram.
  • CIE Commission Internationale de 1 Eclairage
  • Figure 16 shows that the chromaticity range of the 45% NTSC color filter (solid line in Fig. 16) has a smaller area than the chromaticity range of the EBU color filter (dashed line in Fig. 16). It turns out that the blue coordinates are shifted. That is, NTSC 45% color filter The blue coordinate B 'in the chromaticity range is clearly shifted to the green side (G side) compared to the blue coordinate B in the chromaticity range of the EBU color filter.
  • the liquid crystal layer that overlaps the blue color filter is turned off (shielded) and the liquid crystal layer that overlaps each of the green and red color filters is turned on (transmitted), it is essentially a complementary color of blue due to the mixture of green and red Should be displayed yellow.
  • the blue color filter also transmits green, if the liquid crystal overlapping the blue color filter is turned off to reduce the blue peak wavelength, the green peak wavelength will also decrease. As a result, the actual yellow displayed is not enough green, and its hue shifts to the red side and becomes orange.
  • FIG. 17 is a graph in which the spectral radiance of an RGB single-color LED (Light Emitting Diode) backlight is superimposed on the same EBU color filter as FIG.
  • RGB single-color LED Light Emitting Diode
  • the peak wavelength of RGB single color LED backlights tends to be shorter for blue and green, and longer for red and blue.
  • the green peak wavelength shifts to the short wavelength side (blue side), so the transmittance of the blue color filter is relatively high even at the green peak wavelength.
  • the blue color filter transmits green light, that is, the blue color filter blocks green. means.
  • the same blue color as when the color of the color filter is lightened will shift to the green side, and yellow will also shift to the red side.
  • Patent Documents 1 and 2 are publicly known documents disclosing techniques related to hue conversion.
  • Patent Document 1 aims to provide a new hue conversion that is different from the conventional hue conversion by converting the hue by changing only the color difference signal.
  • the hue conversion direction and the hue change amount are predetermined, the signal is converted by performing a predetermined calculation using the input signal and the predetermined hue conversion direction and the hue change amount. is there.
  • Patent Document 2 has an adjustment amount corresponding to a hue, saturation, and brightness for conversion to a target color gamut, or a hue, saturation, and brightness according to user preference.
  • the calculation speed is improved and a conversion method for maintaining smooth gradation is provided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-111091 (Publication Date: April 11, 2003) (see paragraphs [0002], [0003], [0020] to [0025])
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-244458 (Publication Date: August 29, 2003) (see paragraphs [0007], [0022], [0023])
  • Patent Documents 1 and 2 both take into account the above-described problems, that is, the hue shift when displaying a specific color (for example, blue or yellow). Therefore, it is difficult to accurately eliminate the hue shift by the techniques disclosed in Patent Documents 1 and 2.
  • Patent Document 1 does not clearly indicate the hue conversion direction and the hue change amount.
  • Patent Document 1 does not disclose a hue conversion direction and a hue change amount for eliminating the above-described hue shift.
  • Patent Document 2 is based on the premise of color conversion using adjustment amounts corresponding to hue, saturation, and brightness.
  • Patent Document 2 discloses disclosure relating to the adjustment amount for eliminating the hue shift. Hana les.
  • the present invention has been made in view of the above problems, and an object thereof is to realize chromaticity conversion capable of appropriately correcting a hue shift.
  • a chromaticity conversion device is a chromaticity conversion device that performs chromaticity conversion on three primary color signals composed of first to third color data indicating the gradation of each color, In order to solve the problem, in a predetermined area around the first color in the chromaticity range that can be expressed by the three primary color signals, conversion is performed so as to reduce the gradation of the second color data. In a predetermined area around the complementary color of the first color, conversion is performed so as to increase the gradation of the second color data.
  • the chromaticity conversion method according to the present invention is a chromaticity conversion method for performing chromaticity conversion on three primary color signals composed of first to third color data indicating the gradation of each color.
  • the second chromaticity range is converted to reduce the gradation of the second color data.
  • conversion is performed so that the gradation of the second color data is increased.
  • a display device that displays an image based on three primary color signals such as RGB signals, it corresponds to the three primary color signals due to the characteristics of the color filter used.
  • the first of the primary colors eg blue
  • the light of the second color eg green
  • the first to third colors have a relationship in which the respective wavelengths are arranged in this order (any of short wavelength ⁇ long wavelength and long wavelength ⁇ short wavelength), that is, the wavelength of the second color is first. There is a relationship between the wavelength of the color and the wavelength of the third color.
  • the display should be performed by the three primary color signals.
  • the hue close to the first color shifts to the second color side with respect to the original hue, and the hue close to the complementary color of the first color shifts to the third color side.
  • the chromaticity range is converted so that the gradation of the second color data is reduced in a predetermined region around the first color in the chromaticity range that can be expressed by the three primary color signals.
  • conversion is performed to increase the gradation of the second color data.
  • the "predetermined region around the first color” is a line segment connecting the first color and the second color in the chromaticity range that can be represented by the three primary color signals on the chromaticity diagram ( (Excluding the chromaticity coordinates of the first color) and one end on the line connecting the first and third colors (excluding the chromaticity coordinates of the first color). This means the area on the first color side of the border line.
  • the “predetermined area around the complementary color of the first color” is a line segment connecting the complementary color of the first color and the second color in the chromaticity range that can be expressed by the three primary color signals on the chromaticity diagram.
  • the gradation conversion amount depends on the coordinates of each primary color in the chromaticity range assumed in the three primary color signals (for example, the EBU standard and the NTSC standard). Coordinate power of primary color It is possible to grasp how much the hue shift is and to set it appropriately to reduce the display hue shift caused by the hue shift of the above coordinates.
  • the three primary color signals are not limited to RGB signals, but are signals composed of other color combinations, for example, C It can be MY signal (C: cyan, M: magenta, Y: yellow).
  • the above problem is not limited to the case of displaying blue as described in the Background Art section, but may also occur when displaying other colors. In such a case, the above configuration and method are also included. It is clear that is applicable.
  • the chromaticity conversion device is the chromaticity conversion device according to the above chromaticity conversion device, wherein the region other than the predetermined region around the first color and the predetermined region around the complementary color of the first color in the chromaticity range. In this case, the gradation of the first to third color data may not be converted.
  • the amount of decrease decreases as the chromaticity expressed by the three primary color signals is closer to the first color.
  • conversion may be performed such that the amount of increase increases as the chromaticity expressed by the three primary color signals is closer to the complementary color of the first color. Good.
  • the chromaticity shift due to the hue shift in the display device described above is larger as the chromaticity expressed by the three primary color signals is closer to the first color and closer to the complementary color of the first color. Become.
  • the chromaticity conversion device is the chromaticity conversion device, wherein the predetermined area around the first color is a complementary color of the first color and the second color in the chromaticity range, A region surrounded by the complementary color of the third color and the achromatic color may be used, and a predetermined region around the complementary color of the first color may be a region surrounded by the second color, the third color, and the achromatic color.
  • the chromaticity conversion device converts the gradation of the third color data so as to increase when the gradation of the second color data falls below the lower limit value in the chromaticity conversion device.
  • the second color If the gray level of one data exceeds the upper limit, conversion may be performed so that the gray level of the third color data is reduced.
  • the predetermined area around the first color is defined as a first color, a second color, or a third color in the chromaticity range.
  • An area surrounded by colors and achromatic colors may be used, and a predetermined area around the complementary color of the first color may be an area surrounded by the second color, the third color, and the achromatic color.
  • the chromaticity conversion apparatus when the gradation of the second color data is lower than the lower limit value, the chromaticity conversion apparatus performs conversion so as to increase the gradation of the third color data.
  • the gradation of the second color data exceeds the upper limit value, conversion may be performed so that the gradation of the third color data is reduced.
  • the chromaticity conversion apparatus when the gradation of the third color data is lower than the lower limit value, the chromaticity conversion apparatus performs conversion so as to increase the gradation of the first color data.
  • conversion may be performed so as to decrease the gradation of the first color data.
  • the first to third colors are, for example, blue, green, and red, respectively.
  • a timing controller is a timing controller that controls the timing of signals in an image display device, and includes any of the above-described chromaticity conversion devices.
  • a liquid crystal display device includes any one of the above-described chromaticity conversion devices, It features a liquid crystal panel with color filters corresponding to each of the third colors.
  • a timing controller or a liquid crystal display device that can appropriately correct the above-described hue shift can be realized by the operation of the above-described chromaticity conversion device.
  • a chromaticity conversion device in the timing controller that creates data by timing the data, the chromaticity conversion device can be realized easily and inexpensively.
  • the chromaticity conversion device performs conversion so as to reduce the gradation of the second color data in a predetermined area around the first color in the chromaticity range that can be expressed by the three primary color signals, In a predetermined area around the complementary color of the first color in the chromaticity range, the second color data is converted to increase the gradation.
  • the chromaticity conversion method according to the present invention performs conversion so that the gradation of the second color data is reduced in a predetermined area around the first color in the chromaticity range that can be expressed by the three primary color signals.
  • the conversion is performed so that the gradation of the second color data is increased.
  • the chromaticity range is converted so as to reduce the gradation of the second color data in a predetermined region around the first color among the chromaticity range that can be expressed by the three primary color signals.
  • conversion is performed so that the gradation of the second color data is increased in a predetermined area around the complementary color of the first color.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device according to first and second embodiments of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a liquid crystal display device according to first and second embodiments of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a chromaticity conversion device in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the flow of chromaticity conversion processing in the first embodiment of the present invention.
  • FIG. 5 (a) and FIG. 5 (b) are charts showing specific examples of gradation changes due to chromaticity conversion in the first embodiment of the present invention.
  • FIG. 6 is a chromaticity diagram showing a tendency of chromaticity movement by chromaticity conversion in the first embodiment of the present invention.
  • FIG. 7 is a chromaticity diagram showing a tendency of chromaticity shift by chromaticity conversion as a comparative example.
  • FIG. 8 is a block diagram showing a configuration of a chromaticity conversion apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart showing the flow of chromaticity conversion processing in the second embodiment of the present invention.
  • FIG. 10 (a) and FIG. 10 (b) are charts showing specific examples of gradation changes due to chromaticity conversion in the second embodiment of the present invention.
  • FIG. 12 A chromaticity diagram for explaining a destination of blue data conversion by chromaticity conversion in the first and second embodiments of the present invention.
  • This graph shows the transmittance of a normal color filter and the spectral radiance of a cold cathode tube.
  • This graph shows the transmittance of the color filter with improved transmittance and the spectral radiance of the cold cathode tube.
  • FIG. 16 is a chromaticity diagram showing a chromaticity range of BBU and a chromaticity range of 45% NTSC ratio. 17] This graph shows the transmittance of a normal color filter and the spectral radiance of an LED.
  • the liquid crystal display device has a backlight, is transmissive, and is normally white (transmits light without applying voltage to the liquid crystal).
  • Active matrix liquid crystal display device hereinafter referred to as “liquid crystal display device”.
  • This liquid crystal display device includes the color filter having the chromaticity range of 45% NTSC ratio described in the background section above.
  • this liquid crystal display device performs full-color display by inputting RGB 8-bit (0 to 255 gradation) image signals.
  • the liquid crystal display device 11 includes a timing controller 18, a source driver 24, a gate driver 27, and a liquid crystal panel 28.
  • the liquid crystal display device 11 includes an RGB signal 13 that is an 8-bit image signal, CK14 that is a clock signal, and a data transfer that is ENAB15 from a display signal generator 12 that is external to the liquid crystal display device 11.
  • the horizontal synchronization signal HSYNC16 and the vertical synchronization signal VSYNC17 are input, and these signals are received by the timing controller 18 inside the liquid crystal display device 11.
  • the timing controller 18 internally processes the above signals to generate an RGB signal 19 that is an 8-bit image signal, an SCK20 that is a clock for the source driver 24, a liquid crystal Generates LS21, which determines the timing of signal output to panel 28, REV22, which determines the polarity to be written to liquid crystal panel 28, SSP23, which determines the signal capture timing, GCK25, which is the clock for gate driver 27, and GSP26, which determines the start of the frame.
  • RGB signal 19 that is an 8-bit image signal
  • SCK20 that is a clock for the source driver 24
  • LS21 which determines the timing of signal output to panel 28
  • REV22 which determines the polarity to be written to liquid crystal panel 28
  • SSP23 which determines the signal capture timing
  • GCK25 which is the clock for gate driver 27, and GSP26, which determines the start of the frame.
  • the timing controller 18 outputs the RGB signals 19, SCK 20, LS 21, REV 22 and SSP 23 to the source driver 24, and outputs the GCK 25 and GSP 26 to the gate driver 27.
  • the source driver 24 determines the level for each pixel of the liquid crystal panel 28 based on the received signal.
  • a tone signal is generated and output to a signal line (not shown) of the liquid crystal panel 28.
  • the gate driver 27 generates a scanning signal based on the received signal and outputs it to a scanning line (not shown) of the liquid crystal panel 28.
  • the timing controller 18 incorporates a chromaticity conversion device 30 (see FIG. 2) according to the present invention.
  • the chromaticity conversion device 30 allows the chromaticity range of the color filter included in the liquid crystal panel 28, that is, The RGB signal 13 that is the input signal is converted to the RGB signal 19 that is the output signal so as to conform to the chromaticity range of NTSC ratio 45%.
  • the chromaticity conversion device may not necessarily be incorporated in the timing controller 18, but may be incorporated in the display signal generator 12, or as an independent IC (Integrated Circuit) outside the above-described units. It ’s set up.
  • the chromaticity conversion device 30 includes a hue determination unit 31, a B component calculation unit 32, a G correction amount calculation unit 33, a G data calculation unit 34, an over determination unit 35, and an R data calculation unit 36.
  • data indicating the respective gradations of RGB in the RGB signal 13 are Ri, Gi, and Bi
  • data indicating the respective gradations of RGB in the RGB signal 19 are Ro, Go, and Bo, respectively.
  • the chromaticity conversion device 30 is divided into the six functional blocks shown in FIG. 2, but these may be appropriately combined or separated in designing an actual circuit.
  • the hue determination unit 31 and the B component calculation unit 32 may be realized by a single circuit.
  • the hue determiner 31 determines the magnitude relationship between the input gradations of Ri, Gi, and Bi (step Sl). If the gradation of Bi among the gradations of Ri, Gi, Bi is larger than the other gradations, the chromaticity of Ri, Gi, Bi is in the area A1 in Fig. 3, and the gradation of Bi is If it is smaller than the gradation, the chromaticity is located in the area A2 in FIG.
  • the G correction amount calculator 33 determines the output from the B component calculator 32 in advance. Multiply by the constant ⁇ or ⁇ to obtain the correction amount when correcting Gi.
  • the reason for multiplying the constant ⁇ or ⁇ is as follows.
  • the amount of green transmitted from the blue color filter varies depending on the color filter. Accordingly, the appropriate amount of chromaticity conversion differs for each color filter. Therefore, it is desirable to set how much chromaticity conversion power, that is, how much Gi is to be corrected, according to the color filter. Therefore, the correction level on the blue side is set with a constant value, and the correction level on the yellow side is set with a constant value.
  • a memory is provided inside or outside the chromaticity conversion device 30 and the constants and / 3 corresponding to the color filter to be used are provided in this memory.
  • the value of / 3 is stored in several patterns step by step in the range of about 0 to 0.5, respectively, and it is possible to change the constants and by selecting from them. desirable.
  • the output from the G data calculator 34 (this output is referred to as "Gx") is not less than 0 or greater than 255. (Step S6). If Gx is smaller than 0 or larger than 255, if it is output as it is as it is, the gradation will not be expressed and will be lost.
  • the over discriminator 35 outputs 0 to the R data calculator 36 and outputs Gx as Go as it is (step S7).
  • over-determination unit 35 sets Go to 0 and outputs a value obtained by multiplying Gx by a predetermined constant ⁇ to R data computing unit 36. If Gx is greater than 255, the over discriminator 35 sets Go to 255, and outputs a value obtained by multiplying the value obtained by subtracting 255 from the Gx force and the constant ⁇ to the R data calculator 36.
  • a memory is provided inside or outside the chromaticity conversion device 30 as in the case of the constant ⁇ and the constant, and the constant corresponding to the color filter to be used is provided in this memory. It is desirable to store a number of ⁇ values step by step in the range of about 0.25 to 1, and select the value to change the constant ⁇ . If the constants and j3 can be changed, the constants and j3 can be adjusted, so the constant ⁇ can be fixed to a value in the range of about 0.25 to 1. Yo!
  • the R data calculator 36 calculates the difference between the input Ri and the output from the over determiner 35, and outputs it as Ro (steps S8 and S9).
  • FIG. 6 A change in chromaticity at the xy chromaticity coordinates by the chromaticity conversion described above will be described based on the chromaticity diagram of FIG.
  • the direction of the arrow means the movement direction of the xy chromaticity coordinates (the chromaticity conversion direction), and the length of the arrow means the movement amount of the xy chromaticity coordinates (the chromaticity conversion amount).
  • the amount of chromaticity change is close to B and Y. It can be seen that the amount of color change increases.
  • the hue deviation is corrected by reducing the green light that is contained more than the original and bringing it closer to the original amount.
  • the luminance difference between the blue light showing the maximum luminance and the green light showing the minimum luminance can be brought close to the original size, and the reduction in saturation can be improved.
  • the "predetermined region around B” is a force that is a square region of BMWC in Fig. 6 in this embodiment, and is not limited to this, but on a line segment connecting B and G in Fig. 6 ( However, the chromaticity seat of B A boundary line that has one end on the line connecting B and R (excluding the chromaticity coordinates of B) is determined in advance, and the B side from this boundary line. It suffices if it is an area.
  • the “predetermined region around Y” is the triangular region of the RGW in FIG. 6, but is not limited to this. In FIG.
  • the chromaticity shift due to the hue shift in the liquid crystal display device 11 becomes larger as the chromaticity expressed by Ri, Gi, Bi is closer to B and closer to Y. Therefore, in the chromaticity conversion of the present embodiment, the amount of decrease and increase in the gradation of G data (correction amount) as the chromaticity represented by Ri, Gi, Bi is closer to B and closer to Y. Therefore, it is possible to perform appropriate correction according to the degree of deviation in the liquid crystal display device 11 described above.
  • the overall configuration of the apparatus described in Embodiment 1 with reference to FIG. 1 is premised.
  • the only difference from Embodiment 1 is the configuration of the chromaticity conversion apparatus. It is. Therefore, the configuration of the chromaticity conversion device will be described below.
  • the chromaticity converter 40 includes an RG determiner 41, a B determiner 42, a G correction amount calculator 43, a G data calculator 44, an over determiner 45, an R data calculator 46, an over determiner 47, and a B data.
  • the computer 48 is provided.
  • the chromaticity conversion device 40 is divided into eight functional blocks shown in FIG. 8, but these may be combined or separated as appropriate in designing an actual circuit.
  • the RG determiner 41 and the B determiner 42 may be realized by a single circuit.
  • the output of the G correction amount calculator 43 becomes 0 and the correction amount of Gi becomes 0 on the G—W line and the R—W line in FIG. In other words, chromaticity conversion is not performed in this case.
  • the absolute value of the Gi correction amount increases and the chromaticity conversion amount also increases.
  • a memory is provided inside or outside the chromaticity conversion device 40 as in the case of Embodiment 1, and the color filter to be used is stored in this memory. It is desirable that the constants ⁇ and values corresponding to each are stored in a number of steps in a range of about 0 to 0.5, and the constants ⁇ and can be changed by selecting from them. .
  • the output from the G data computing unit 44 (this output is referred to as "Gx") is not less than 0 or greater than 255. (Step S18). If Gx is smaller than 0 or larger than 255, if it is output as Go as it is, the gradation is not expressed and is actually collapsed. So G If x is less than 0 or greater than 255, the gradation that is lost by G is increased or decreased from the gradation of R by the gradation that is not represented by G (the excess from the gradation that can be expressed). By converting the minutes to R, chromaticity conversion and gradation expression are realized.
  • the over discriminator 45 outputs 0 to the R data calculator 46 and outputs Gx as it is as Go (step S 19).
  • the over discriminator 45 sets Go to 255, and outputs a value obtained by multiplying the value obtained by subtracting the Gx force 255 by the constant ⁇ to the R data calculator 46.
  • the constant ⁇ / has an optimum value depending on the color filter. Therefore, like the constants and j3, a memory is provided inside or outside the chromaticity conversion device 30, and this memory is provided according to the color filter to be used. It is desirable to store a number of constant ⁇ values step by step in the range of about 0.25 to 1, and select the constant ⁇ so that the constant ⁇ can be changed. If the constants ⁇ and can be changed, the constant ⁇ and can be adjusted. Therefore, the constant ⁇ may be fixed to a value in the range of about 0.25 to 1. ,.
  • the R data calculator 46 calculates the difference between the input Ri and the output from the over discriminator 45, and outputs the difference to the over discriminator 47 (this output is referred to as "Rx") (Ste S2 0, S21).
  • the over discriminator 47 determines whether Rx is not smaller than 0 or larger than 255 (steps S 22 and S 23). If Rx is less than 0 or greater than 255, if it is output as Ro as it is, the gradation will not be expressed and it will be crushed.
  • the over discriminator 47 outputs 0 to the B data computing unit 48 and outputs Rx as Ro as it is (steps S24, S25).
  • over discriminator 47 sets Ro to 0, and outputs a value obtained by multiplying Rx by a predetermined constant ⁇ to ⁇ data computing unit 48. Also, if Rx is greater than 255, the over discriminator 47 sets Ro to 255, and multiplies the value obtained by subtracting 255 from Rx by a predetermined constant ⁇ to the ⁇ data calculator 48. Output.
  • a memory is provided inside or outside the chromaticity conversion device 40, and the value of constant 5 corresponding to the color filter to be used is set to 0 in this memory. It is desirable to store several patterns step by step in the range of about 25 to 1 so that the constant ⁇ can be changed by selecting from them. If the constants and ⁇ can be changed, the constants and / 3 can be adjusted, so the constant ⁇ is fixed to a value in the range of about 0.25 to 1. Also good.
  • the B data computing unit 48 computes the difference between the input Bi and the output from the overdetermining unit 47, and outputs it as Bo (steps S26 and S27).
  • FIG. 11 shows that the amount of chromaticity change is small at positions close to the G-W and R-W lines. The closer to C, B, M, and Y, the greater the amount of chromaticity change. .
  • the green tone is reduced, and in some cases, the red tone is increased, and further, the blue tone is reduced, so that the color filter characteristics shift. Can be corrected appropriately.
  • the color filter characteristics can be corrected appropriately. can do.
  • the "predetermined region around B" is a force that is a square region of the BRWG in Fig. 11 in this embodiment, and is not limited to this.
  • a boundary line that has one end on the line connecting B and R (except for the chromaticity coordinate of B) is defined in advance, and the boundary line is defined in advance. If it is on the B side, Similarly, the “predetermined region around Y” is the triangular region of the RGW in FIG. 11 in this embodiment, but is not limited to this, and in FIG. 11, on the line segment connecting ⁇ and G (however ⁇ A boundary line is defined in advance on the line segment connecting ⁇ and R (excluding the chromaticity coordinates of ⁇ ). If it is the area on the heel side.
  • the “predetermined area around the heel” and the “predetermined area around the heel” are set so as not to overlap each other.
  • the chromaticity shift caused by the hue shift in the liquid crystal display device 11 becomes larger as it is closer to ⁇ and closer to ⁇ . Therefore, in the chromaticity conversion according to the present embodiment, the closer the chromaticity expressed by Ri, Gi, Bi to B and the closer to Y, the smaller the amount of G data gradation decrease and increase (correction amount). Conversion is performed so as to increase, and appropriate correction can be performed according to the degree of deviation in the liquid crystal display device 11 described above.
  • hue shifts are often more strange than chroma shifts.
  • chroma shifts For example, when a blue sky is displayed on a color display device, the saturation of the blue color is shifted, and the blue sky may be more vivid than the original, or conversely, the blue sky may be less vivid than the original. But I don't feel uncomfortable. However, when the blue hue is shifted and the blue sky is greener than the original, it often feels strange when the color of the blue sky is strange.
  • the hue shift caused by the characteristics of the color filter has been described as a premise. However, as described in the background section, the same hue shift is also caused by the characteristics of the LED. In this case, the chromaticity conversion of this embodiment is effective.
  • the present invention can be used for chromaticity conversion with respect to three primary color signals such as RGB signals, and can be particularly preferably used for chromaticity conversion in a liquid crystal display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 輝度を上げるために透過率を向上させたカラーフィルターを用いたために、青色のカラーフィルターから緑色の光が漏れることにより生じる色相のずれを適切に補正することができる色度変換装置を実現する。色度変換装置は、RGB信号に対して色度変換を施すものであり、RGB信号によって表現し得る色度範囲のうちB周辺の所定領域A1では、Gデータの階調を減少するように変換し、上記色度範囲のうちBの補色であるY周辺の所定領域A2では、Gデータの階調を増加するように変換する。

Description

明 細 書
色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換 方法
技術分野
[0001] 本発明は、それぞれ各色の階調を示す第 1〜第 3色データからなる 3原色信号に対 する色度変換に関するものである。
背景技術
[0002] 近年、液晶表示装置は、その用途がパソコン等のモニター用にとどまらずテレビ画 面の表示用にも広がるにつれ、画質や輝度、色再現性に関して CRT (Cathode Ra y Tube)の表示装置と比較されることが多くなつた。また、液晶表示装置を搭載した ノートパソコンにおいてテレビ画面や DVD (Digital Versatile Disk)の再生画面 を見られるようになったことから、より軽量薄型で高輝度な液晶表示装置が求められ ている。
[0003] 一般に、液晶表示装置に代表される非発光型のカラー表示装置を高輝度で表示 するには、バックライトを明るくする(例えば冷陰極管の本数を増やす)ことが効果的 である。しかし、ノートパソコン等に使用される軽量薄型の液晶表示装置では、重さや 厚みとの関係上、冷陰極管の本数を増やすことなどによりバックライトを明るくすること が困難である。そこで、バックライトを明るくすることなく輝度の向上を図るために、カラ 一フィルターの色を薄くする、つまりカラーフィルターの透過率を上げるという対策が とられる。
[0004] しかし、カラーフィルターを薄くすると色再現性が悪化する。そのため、テレビ専用 の表示装置では、 CRTや液晶などの表示装置の種類に関わらず、色度範囲(色再 現範囲、色度域)として EBU (European Broadcast Union) (NTSC (National Television Standards Commitee)比 72%相当)が一般的となっているのに対 し、ノートパソコンで用いられる液晶表示装置では、カラーフィルターが薄くされた結 果、色度範囲は NTSC比 50%、もしくはそれ以下というのが一般的である。
[0005] 図 14は、 EBUに対応したカラーフィルターにおける RGB各色の透過率と、冷陰極 管の分光放射輝度とを重ねて示すグラフである。冷陰極管の分光放射輝度には青、 緑、赤それぞれに対応する波長にピークがある。
[0006] このカラーフィルターと冷陰極管とを組み合わせた液晶表示装置では、例えば、青 のカラーフィルターに重なる液晶のみを〇N (透過)にすると、青のカラーフィルタ一は その透過率特性によってほぼ青のピーク波長のみを透過し、残りの緑と赤のピーク波 長は透過しないので、青色が表示されることになる。
[0007] 同様に、緑のカラーフィルターに重なる液晶のみを〇N (透過)にすると緑のピーク 波長のみが、赤のカラーフィルターに重なる液晶のみを〇N (透過)にすると赤のピー ク波長のみが透過し、それぞれ緑色及び赤色が表示されることになる。
[0008] そして、 RGBそれぞれのカラーフィルターに重なる液晶を、例えば 64階調又は 25
6階調に制御することにより、約 26万色又は約 1677万色のフルカラー表示が実現さ れる。
[0009] 図 15は、 NTSC比 45%程度のカラーフィルターにおける RGB各色の透過率と、冷 陰極管の分光放射輝度とを重ねて示すグラフである。このカラーフィルタ一は、その 色を薄くして RGBそれぞれに対応する波長の透過領域を広げることにより、カラーフ ィルターの透過率を上げ、高輝度を実現している。
[0010] しかし、カラーフィルターの透過する波長の領域を広げると、本来透過してはいけな い隣の色まで透過してしまうという弊害が生じる。図 15を見ると、青のカラーフィルタ 一の透過率は、冷陰極管の分光放射輝度における緑のピーク波長においても比較 的高くなつていることがわかる(図 15中波線丸囲み部分)。このことは、青のカラーフィ ルターが緑の光を透過している、つまり青のカラーフィルターが緑色を遮断していな レ、ことを意味している。
[0011] 図 16は、図 14及び図 15それぞれのカラーフィルターを用いた液晶表示装置にお ける色度拿 11囲を CIE (Commission Internationale de 1 Eclairage) 1931色度 図と呼ばれる xy色度座標に示した色度図である。
[0012] 図 16を見ると、 NTSC比 45%のカラーフィルターの色度範囲(図 16中実線)は、 E BUのカラーフィルターの色度範囲(図 16中波線)に比べて面積が小さいだけでなく 、青座標がシフトしていることがわかる。すなわち、 NTSC比 45%のカラーフィルター の色度範囲の青座標 B'は、 EBUのカラーフィルターの色度範囲の青座標 Bに比べ て明らかに緑色側(G側)にシフトしている。
[0013] Bと B'とを白色 (W)から見ると、そこには Θの角度が存在する。この角度は、色相の 差を意味しており、 NTSC比 45%のカラーフィルターを用いて青色を表示しようとす ると Θの角度分だけ青色が緑側にずれて青緑色を表示してしまうことになる。
[0014] また、青のカラーフィルターに重なる液晶を OFF (遮光)にし、緑及び赤のカラーフ ィルターそれぞれに重なる液晶を ON (透過)にすると、本来、緑色と赤色の混色によ り青色の補色である黄色が表示されるべきである。しかし、青のカラーフィルタ一は緑 色も透過しているので、青のカラーフィルターに重なる液晶を OFFにして青色のピー ク波長を削減すると、緑色のピーク波長も減少してしまう。その結果、実際に表示され る黄色は緑色が足りなくなり、その色相は赤色側にシフトして橙色のようになってしま う。
[0015] このことを図 16に基づいて説明すると、次のとおりである。緑色と赤色との混色によ り表示される黄色の色度図上の座標は、 EBUの色度範囲においては、 Gと Rとを結 ぶ直線上、かつ、 Bと Wとを結ぶ直線上である黄座標 Yとなる力 NTSC比 45%の色 度範囲においては、 Bが G側の B'へシフトしていることに起因して、 Yは R側の Y'へ シフトすることになる。そのため、 NTSC比 45%のカラーフィルターを用いて黄色を表 示しようとすると黄色が赤側にずれて橙色を表示してしまうことになるのである。
[0016] このような色相のずれはカラーフィルターの色を薄くしたときに限って発生するもの ではない。色相のずれに関する他の例を図 17に基づいて説明する。
[0017] 図 17は、図 14と同じ EBUのカラーフィルターに RGB単色の LED (Light Emitti ng Diode)バックライトの分光放射輝度を重ねたものである。一般に、 RGB単色の L EDバックライトのピーク波長は、冷陰極管のピーク波長と比べて、青と緑は波長が短 ぐ赤は波長が長くなる傾向がある。
[0018] すなわち、 RGB単色の LEDバックライトでは、緑のピーク波長が短波長側(青側) にシフトするので、青のカラーフィルターの透過率は緑のピーク波長においても比較 的高くなつてしてしまう(図 15中波線丸囲み部分)。このことは、青のカラーフィルター が緑の光を透過してレ、る、つまり青のカラーフィルターが緑色を遮断してレ、なレ、ことを 意味する。その結果、カラーフィルターの色を薄くした場合と同じぐ青色が緑側にシ フトするとともに、黄色も赤色側にシフトすることになる。
[0019] このように、 RGBなどの 3原色の光を混色することによってカラー表示を行う場合に は、 3原色のうちの何れかの光の色が、波長の隣り合う他の原色の光の色側にシフト することによって、色相のずれを招来することがある。
[0020] 上記のような色相のずれを補正するためには、色相変換を行う必要がある。
[0021] ここで、色相変換に関する技術を開示した公知文献としては、例えば特許文献 1及 び 2がある。
[0022] 特許文献 1に開示の技術は、色差信号のみを変更することによって色相を変換して レ、た従来の色相変換とは異なる新規の色相変換を提供することを目的としたもので あり、色相変換方向及び色相変化量があらかじめ定められている場合に、入力信号 と上記あらかじめ定められた色相変換方向及び色相変化量とを用いた所定の演算を 行うことによって信号の変換を行うものである。
[0023] また、特許文献 2に開示の技術は、 目標とする色域に変換するための色相、彩度、 明度に相当する調整量、あるいはユーザの好みに応じた色相、彩度、明度に相当す る調整量である色変換係数を用いた色変換において、演算速度を向上させるととも に、滑らかな階調性を保持するための変換手法を提供するものである。
特許文献 1:特開 2003— 111091号公報 (公開日 2003年 4月 11日)(段落〔0002 〕、〔0003〕、〔0020〕〜〔0025〕参照)
特許文献 2 :特開 2003— 244458号公報 (公開日 2003年 8月 29日)(段落〔0007 〕、〔0022〕、〔0023〕参照)
発明の開示
発明が解決しょうとする課題
[0024] し力しながら、特許文献 1及び 2に開示の技術は何れも、上述した問題点、すなわ ち、特定の色(例えば、青色や黄色)を表示する際の色相のずれを考慮したものでは ないため、特許文献 1及び 2に開示の技術によって上記色相のずれを適確に解消す ることは困難である。
[0025] 具体的には、特許文献 1に開示の技術は、色相変換方向及び色相変化量があらか じめ定められてレ、ることを前提としてレ、るが、特許文献 1には上記色相のずれを解消 するための色相変換方向及び色相変化量に関する開示はない。また、特許文献 2に 開示の技術では、色相、彩度、明度に相当する調整量を用いた色変換を前提として いる力 特許文献 2には上記色相のずれを解消するための調整量に関する開示はな レ、。
[0026] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、色相のずれを 適切に補正することができる色度変換を実現することにある。
課題を解決するための手段
[0027] 本発明に係る色度変換装置は、それぞれ各色の階調を示す第 1〜第 3色データか らなる 3原色信号に対して色度変換を施す色度変換装置であって、上記課題を解決 するために、 3原色信号によって表現し得る色度範囲のうち第 1色周辺の所定領域で は、第 2色データの階調を減少するように変換し、前記色度範囲のうち第 1色の補色 周辺の所定領域では、第 2色データの階調を増加するように変換することを特徴とし ている。
[0028] また、本発明に係る色度変換方法は、それぞれ各色の階調を示す第 1〜第 3色デ ータからなる 3原色信号に対して色度変換を施す色度変換方法であって、上記課題 を解決するために、 3原色信号によって表現し得る色度範囲のうち第 1色周辺の所定 領域では、第 2色データの階調を減少するように変換し、前記色度範囲のうち第 1色 の補色周辺の所定領域では、第 2色データの階調を増加するように変換することを特 徴としている。
[0029] 背景技術欄において説明したように、 RGB信号などの 3原色信号に基づいて画像 を表示する表示装置では、用いるカラーフィルターの特性などに起因して、当該 3原 色信号に対応する 3原色のうちの第 1色(例えば青色)を表示する際に第 2色(例えば 緑色)の光が漏れることがある。
[0030] なお、第 1色〜第 3色は、それぞれの波長がこの順に並ぶ関係(短波長→長波長、 長波長→短波長の何れでも可)、すなわち、第 2色の波長が第 1色の波長と第 3色の 波長との間にある関係、にある。
[0031] このような表示装置において表示を行うと、上記 3原色信号によって表示されるべき 本来の色相に対し、第 1色に近い色相が第 2色側にずれ、第 1色の補色に近い色相 が第 3色側にずれる。
[0032] そこで、上記の構成及び方法では、 3原色信号によって表現し得る色度範囲のうち 第 1色周辺の所定領域では第 2色データの階調を減少するように変換し、上記色度 範囲のうち第 1色の補色周辺の所定領域では第 2色データの階調を増加するように 変換する。
[0033] ここで、「第 1色周辺の所定領域」とは、色度図上において 3原色信号によって表現 し得る色度範囲のうち、第 1色と第 2色とを結ぶ線分上 (但し第 1色の色度座標を除く )に一端を有し、第 1色と第 3色とを結ぶ線分上 (但し第 1色の色度座標を除く)に他 端を有するあらかじめ定めた境界線よりも第 1色側の領域を意味する。同様に、「第 1 色の補色周辺の所定領域」とは、色度図上において 3原色信号によって表現し得る 色度範囲のうち、第 1色の補色と第 2色とを結ぶ線分上(但し第 1色の補色の色度座 標を除く)に一端を有し、第 1色の補色と第 3色とを結ぶ線分上 (但し第 1色の補色の 色度座標を除く)に他端を有するあらかじめ定めた境界線よりも第 1色の補色側の領 域を意味する。なお、「第 1色周辺の所定領域」と「第 1色の補色周辺の所定領域」と は互いに重ならないように設定されるものとする。
[0034] このように、第 1色周辺の所定領域において第 2色データの階調を減少するように 変換することにより、第 1色に近い色相のずれを補正することができ、また、第 1色の 補色周辺の所定領域において第 2色データの階調を増加するように変換することに より、第 1色の補色に近い色相のずれを補正することができる。
[0035] なお、階調の変換量は、 3原色信号において想定されている色度範囲(例えば EB U規格や NTSC規格)における各原色の座標に対して、用いる表示装置の色度範囲 における各原色の座標力 どの程度の色相のずれを有しているのかを把握して、上 記座標の色相のずれにより生じる表示の色相のずれを小さくするように適宜設定する こと力 Sできる。
[0036] その結果、上述した色相のずれを適切に補正することができる色度変換を実現す ること力 Sできるようになる。
[0037] なお、 3原色信号は、 RGB信号に限らず他の色の組合せからなる信号、例えば C MY信号(C :シアン、 M :マゼンタ、 Y:イェロー)などであってもよレヽ。
[0038] また、上記問題は、背景技術欄において説明した、青色を表示する場合に限らず、 他の色を表示する場合にも起こり得る問題であり、そのような場合にも上記構成及び 方法を適用可能であることは明らかである。
[0039] 本発明に係る色度変換装置は、上記色度変換装置において、前記色度範囲のう ち、前記第 1色周辺の所定領域、及び第 1色の補色周辺の所定領域以外の領域で は第 1〜第 3色データの階調を変換しない構成としてもよい。
[0040] 上記構成では、第 1色周辺の所定領域、及び第 1色の補色周辺の所定領域以外の 領域では第 1〜第 3色データの階調を変換しないので、上述した色相のずれの少な レ、領域での不必要な補正を回避することができる。
[0041] 本発明に係る色度変換装置は、上記色度変換装置において、前記第 1色周辺の 所定領域では、 3原色信号によって表現される色度が第 1色に近いほど前記減少の 量が大きくなり、前記第 1色の補色周辺の所定領域では、 3原色信号によって表現さ れる色度が第 1色の補色に近いほど前記増加の量が大きくなるように変換する構成と してもよい。
[0042] 上述した、表示装置における色相のずれに起因する色度のずれは、 3原色信号に よって表現される色度が第 1色に近いほど、及び第 1色の補色に近いほど、大きくな る。
[0043] そこで、上記構成では、 3原色信号によって表現される色度が第 1色に近いほど、 及び第 1色の補色に近いほど、第 2色データの階調の減少及び増加の量 (補正量) が大きくなるように変換するので、上述した表示装置におけるずれの程度に応じた適 切な補正を行うことができるようになる。
[0044] なお、本発明に係る色度変換装置は、上記色度変換装置において、前記第 1色周 辺の所定領域を、前記色度範囲のうち、第 1色、第 2色の補色、第 3色の補色、及び 無彩色によって囲まれる領域とし、前記第 1色の補色周辺の所定領域を、第 2色、第 3色、及び無彩色によって囲まれる領域とすることができる。
[0045] 本発明に係る色度変換装置は、上記色度変換装置において、第 2色データの階調 が下限値を下回る場合には、第 3色データの階調を増加するように変換し、第 2色デ 一タの階調が上限値を上回る場合には、第 3色データの階調を減少するように変換 してもよい。
[0046] 上記の構成では、上記変換により第 2色データの階調が下限値を下回る、又は上 限値を上回る場合に、それぞれ第 3色データの階調を増加又は減少することにより、 表示すべき階調が潰れてしまうことを回避することができる。
[0047] また、本発明に係る色度変換装置は、上記色度変換装置において、前記第 1色周 辺の所定領域を、前記色度範囲のうち、第 1色、第 2色、第 3色、及び無彩色によって 囲まれる領域とし、前記第 1色の補色周辺の所定領域を、第 2色、第 3色、及び無彩 色によって囲まれる領域としてもよい。
[0048] 本発明に係る色度変換装置は、上記色度変換装置において、第 2色データの階調 が下限値を下回る場合には、第 3色データの階調を増加するように変換し、第 2色デ 一タの階調が上限値を上回る場合には、第 3色データの階調を減少するように変換 してもよい。
[0049] 上記の構成では、上記変換により第 2色データの階調が下限値を下回る、又は上 限値を上回る場合に、それぞれ第 3色データの階調を増加又は減少することにより、 表示すべき階調が潰れてしまうことを回避することができる。
[0050] 本発明に係る色度変換装置は、上記色度変換装置において、第 3色データの階調 が下限値を下回る場合には、第 1色データの階調を増加するように変換し、第 3色デ 一タの階調が上限値を上回る場合には、第 1色データの階調を減少するように変換 してもよい。
[0051] 上記の構成では、上記変換により第 3色データの階調が下限値を下回る、又は上 限値を上回る場合に、それぞれ第 1色データの階調を増加又は減少することにより、 表示すべき階調が潰れてしまうことを回避することができる。
[0052] なお、第 1〜第 3色は、例えば、それぞれ青色、緑色、赤色である。
[0053] 本発明に係るタイミングコントローラ一は、画像表示装置における信号のタイミング をコントロールするタイミングコントローラーであって、上述した色度変換装置の何れ 力、を備えることを特徴としてレ、る。
[0054] また、本発明に係る液晶表示装置は、上述した色度変換装置の何れかと、第 1〜 第 3色それぞれに対応するカラーフィルターを有する液晶パネルとを備えることを特 徴としている。
[0055] 上記各構成では、上述した色度変換装置の作用により、上述した色相のずれを適 切に補正することができるタイミングコントローラー又は液晶表示装置を実現すること ができるようになる。なお、もともとデータを力卩ェしタイミング信号を作成するタイミング コントローラーに色度変換装置を搭載することにより、容易かつ安価に色度変換装置 を実現すること力 Sできる。
発明の効果
[0056] 本発明に係る色度変換装置は、 3原色信号によって表現し得る色度範囲のうち第 1 色周辺の所定領域では、第 2色データの階調を減少するように変換し、前記色度範 囲のうち第 1色の補色周辺の所定領域では、第 2色データの階調を増加するように変 換する構成である。
[0057] また、本発明に係る色度変換方法は、 3原色信号によって表現し得る色度範囲のう ち第 1色周辺の所定領域では、第 2色データの階調を減少するように変換し、前記色 度範囲のうち第 1色の補色周辺の所定領域では、第 2色データの階調を増加するよ うに変換する方法である。
[0058] 上記の構成及び方法では、 3原色信号によって表現し得る色度範囲のうち第 1色周 辺の所定領域では第 2色データの階調を減少するように変換し、上記色度範囲のう ち第 1色の補色周辺の所定領域では第 2色データの階調を増加するように変換する
[0059] これにより、第 1色周辺の所定領域において第 2色データの階調を減少するように 変換することにより、第 1色に近い色相のずれを補正することができ、第 1色の補色周 辺の所定領域において第 2色データの階調を増加するように変換することにより、第 1色の補色に近い色相のずれを補正することができる。
[0060] その結果、背景技術欄において説明したような色相のずれを適切に補正することが できる色度変換を実現することができるようになる。
図面の簡単な説明
[0061] [図 1]本発明の第 1及び第 2の実施形態における液晶表示装置の構成を示すブロッ ク図である。
園 2]本発明の第 1の実施形態における色度変換装置の構成を示すブロック図であ る。
園 3]本発明の第 1の実施形態における色度変換を説明するための色度図である。
[図 4]本発明の第 1の実施形態における色度変換の処理の流れを示すフローチャー トである。
[図 5]図 5 (a)及び図 5 (b)は、本発明の第 1の実施形態における色度変換による階調 の変化の具体例を示す図表である。
[図 6]本発明の第 1の実施形態における色度変換による色度の移動の傾向を示す色 度図である。
園 7]比較例としての色度変換による色度の移動の傾向を示す色度図である。
園 8]本発明の第 2の実施形態における色度変換装置の構成を示すブロック図であ る。
園 9]本発明の第 2の実施形態における色度変換の処理の流れを示すフローチヤ一 トである。
園 10]図 10 (a)及び図 10 (b)は、本発明の第 2の実施形態における色度変換による 階調の変化の具体例を示す図表である。
園 11]本発明の第 2の実施形態における色度変換による色度の移動の傾向を示す 色度図である。
園 12]本発明の第 1及び第 2の実施形態における色度変換による青色データの変換 先を説明するための色度図である。
園 13]本発明の第 1及び第 2の実施形態における色度変換による黄色データの変換 先を説明するための色度図である。
園 14]通常のカラーフィルターの透過率と、冷陰極管の分光放射輝度とを重ねて示 すグラフである。
園 15]透過率を向上させたカラーフィルターの透過率と、冷陰極管の分光放射輝度 とを重ねて示すグラフである。
[図 16BBUの色度範囲と、 NTSC比 45%の色度範囲とを示す色度図である。 園 17]通常のカラーフィルターの透過率と、 LEDの分光放射輝度とを重ねて示すグ ラフである。
符号の説明
11 液晶表示装置
12 表示信号発生器
18 タイミングコントローラ
28 夜晶パネノレ
30 色度変換装置
31 色相判定器
32 B成分算出器
33 G補正量算出器
34 Gデータ演算器
35 オーバー判定器
36 Rデータ演算器
40 色度変換装置
41 RG判定器
42 B判定器
43 G補正量算出器
44 Gデータ演算器
45 オーバー判定器
46 Rデータ演算器
47 オーバー判定器
48 Bデータ演算器
発明を実施するための最良の形態
〔実施形態 1〕
本発明の一実施形態について図 1から図 7に基づいて説明する。以下、本実施形 態 1、及び後述する実施形態 2では、本発明に係る液晶表示装置として、バックライト を有し、透過型でノーマリーホワイト(液晶に電圧を印可しない状態で光を透過する) のアクティブマトリクス型液晶表示装置(以下「液晶表示装置」とレ、う。 )を想定する。こ の液晶表示装置は、上記背景技術欄において説明した、 NTSC比 45%の色度範囲 を有するカラーフィルターを備えるものとする。また、この液晶表示装置は、 RGB各 8 ビット(0〜255階調)の画像信号が入力されることによりフルカラー表示を行うものと する。
[0064] まず、図 1のブロック図に基づいて、液晶表示装置 11の構成について説明する。液 晶表示装置 11は、タイミングコントローラー 18、ソースドライバ 24、ゲートドライバ 27、 液晶パネル 28を備えてレ、る。
[0065] 液晶表示装置 11には、液晶表示装置 11の外部にある表示信号発生器 12から、 8 ビットの画像信号である RGB信号 13、クロック信号である CK14、データ転送中を意 味する ENAB15、水平同期信号の HSYNC16、垂直同期信号の VSYNC17が入 力され、これらの信号を液晶表示装置 11の内部にあるタイミングコントローラー 18が 受け取る。
[0066] なお、表示信号発生器 12からタイミングコントローラー 18への信号の伝送方法とし ては、 CMOS (Complementary Metal Oxide Semiconductor)レべノレの信 号による伝送方法を想定する力 他の伝送方法、例えば LVDS (Low Voltage Di fferential Signaling)などであってもよレ、。伝送方法が変わったとしても信号の内 容は変わらず、また、伝送方法そのものは本発明の本質ではない。
[0067] これらの信号をタイミングコントローラー 18が受け取ると、タイミングコントローラー 18 は、内部で上記信号を加工することにより、 8ビットの画像信号である RGB信号 19、 ソースドライバ 24のクロックとなる SCK20、液晶パネル 28への信号出力のタイミング を決める LS21、液晶パネル 28に書き込む極性を決める REV22、信号の取り込みタ イミングを決める SSP23、ゲートドライバ 27のクロックとなる GCK25、フレームの先頭 を決める GSP26を生成する。
[0068] そして、タイミングコントローラー 18は、上記 RGB信号 19、 SCK20、 LS21、 REV2 2及び SSP23をソースドライバ 24に出力し、上記 GCK25及び GSP26をゲートドライ バ 27に出力する。
[0069] ソースドライバ 24は受け取った信号に基づいて液晶パネル 28の各画素に対する階 調信号を生成し、液晶パネル 28の図示しない信号線に出力する。また、ゲートドライ バ 27は受け取った信号に基づいて走査信号を生成し、液晶パネル 28の図示しない 走査線に出力する。
[0070] なお、タイミングコントローラー 18力、らソースドライバ 24への信号の伝送方法につい ても、 CMOSレベルの信号による伝送方法を想定するが、他の伝送方法、例えば R SDS (Reduced Swing Differential Signaling)などであってもよレヽ。伝送方法 が変わったとしても信号の内容は変わらず、また、伝送方法そのものは本発明の本 質ではない。
[0071] タイミングコントローラー 18には、本発明に係る色度変換装置 30 (図 2参照)が内蔵 されており、この色度変換装置 30によって、液晶パネル 28の備えるカラーフィルター の色度範囲、つまり NTSC比 45%の色度範囲に適合するように、入力信号である R GB信号 13が出力信号である RGB信号 19に変換される。
[0072] なお、色度変換装置は必ずしもタイミングコントローラー 18に内蔵されている必要 はなぐ表示信号発生器 12に内蔵されていてもよいし、独立した IC (Integrated Ci rcuit)として上記各部の外部に設けられてレ、てもよレ、。
[0073] 図 2のブロック図に基づいて、本実施形態の色度変換装置 30の構成について説明 する。色度変換装置 30は、色相判定器 31、 B成分算出器 32、 G補正量算出器 33、 Gデータ演算器 34、オーバー判定器 35及び Rデータ演算器 36を備えてレ、る。
[0074] なお、 RGB信号 13における RGBそれぞれの階調を示すデータをそれぞれ Ri, Gi , Biとし、 RGB信号 19における RGBそれぞれの階調を示すデータをそれぞれ Ro, Go, Boとする。
[0075] 本実施形態では、色度変換装置 30を図 2に示した 6つの機能ブロックに分けている が、実際の回路を設計する上では、これらを適宜併合又は分離してもよい。例えば、 色相判定器 31と B成分演算器 32とを 1つの回路で実現するなどしてもよい。
[0076] 本実施形態における色度変換の原理を説明する。上記背景技術欄において説明 したとおり、 NTSC比 45%のカラーフィルターでは、青のカラーフィルターが緑の光 を一部透過することになるので、 Biの階調が大きいほど青のカラーフィルターからより 多くの緑の光が漏れることになる。したがって、 Biの階調に比例して Giの階調を増減 すること力と考えられる。
[0077] しかし、例えば Ri, Gi, Biすべての階調が最大となる白色を表示する場合において 、 Biの階調が大きいから緑色の光も漏れているといって Giの階調を削減してしまうと、 表示する色が白色からずれるだけでなぐ表示する色の輝度まで低下してしまうこと になる。
[0078] そこで、表示すべき色度が青色に近いほど Giの階調の削減量をより大きくし、また、 表示すべき色度が青色の補色である黄色に近いほど Giの階調の増加量をより大きく し、白などの無彩色では Giの階調を補正しないようにすれば、無彩色から青色又は 黄色に近づくにつれて Giの階調の補正量が大きくなり、カラーフィルターの特性にあ つた色度変換が可能となる。
[0079] 図 2のブロック図、図 3の色度図、及び図 4のフローチャートに基づいて、色度変換 装置 30による色度変換の処理を具体例を挙げて説明する。
[0080] まず、色相判定器 31において、入力された Ri, Gi, Biの各階調の大小関係を判定 する(ステップ Sl)。 Ri, Gi, Biの各階調のうち Biの階調が他の階調よりも大きければ 、この Ri, Gi, Biの色度は図 3の A1の領域にあり、 Biの階調が他の階調よりも小さけ れば、上記色度は図 3の A2の領域に位置することになる。
[0081] A1及び A2以外の領域は青色及び黄色から離れた領域であるので、色度変換の 必要性は低い。したがって、色相判定の結果、 Ri, Gi, Biの色度が A1及び A2以外 の領域であった場合には、 Ri, Gi, Biを補正せずにそのまま Ro、 Go、 Boとして出力 する(ステップ S 2)。
[0082] Ri, Gi, Biの色度が A1又は A2の領域であった場合には、以下の処理を実行する
[0083] 色相判定の結果、 Ri, Gi, Biの色度が A1又は A2の領域にあった場合には、 B成 分算出器 32にて、 Ri, Gi, Biの中で 2番目に大きな階調と Biの階調との差を算出し 、 Giを補正する際の補正量の基礎値とする。具体的には、 Ri = 65、 Gi = 20、 Bi= 2 25であった場合、 B成分算出器 32は Ri_Bi= _ 160を出力する。また、 Ri= 220、 Gi = 225、 Bi= 20であった場合、 B成分算出器 32は Ri_Bi= 200を出力する。
[0084] 次に、 G補正量算出器 33にて、 B成分算出器 32からの出力と、あらかじめ定められ た定数 α又は βとを掛け合わせ、 Giを補正する際の補正量とする。なお、定数 αは Β成分算出器 32の出力が負の場合 (Ri, Gi, Biの色度が A1の領域にある場合)に 用いられる定数であり、定数 は B成分算出器 32の出力が正 (Ri, Gi, Biの色度が A2の領域にある場合)の場合に用いられる定数である。具体的には、 Ri = 65、 Gi = 20、 Bi = 225、 ひ =0. 25であった場合、 Gネ甫正量算出器 33fま一160 X ひ = _40 を出力する(ステップ S3)。また、 Ri = 220、 Gi = 225、 Bi= 20、 β =0. 25であった 場合、 G補正量算出器 33は 200 X β = 50を出力する (ステップ S4)。
[0085] このようにすることにより、図 3の C—Wの直線上及び M—Wの直線上はそれぞれ B i = Ri、及び Bi = Giであるため、 B成分算出器 32及び G補正量算出器 33の出力は 何れも 0となるので、 Giの補正量も 0となる。つまり、この場合は色度変換されないこと になる。一方、 C_Wの直線上及び M_Wの直線上から Bに近づくに従レ、、 B成分算 出器 32の出力の絶対値 | Ri— Bi |又は | Gi_Bi | は大きくなり、色度変換量も大 きくなる。
[0086] 同様に、図 3の G— Wの直線上、及び R— Wの直線上はそれぞれ Bi=Ri、及び Bi =Giであるため、 B成分算出器 32及び G補正量算出器 33の出力は何れも 0となって 色度変換されず、 G— Wの直線上、及び R— Wの直線上力 Yに近づくに従い、 B成 分算出器 32の出力の絶対値 | Ri—Bi |又は | Gi—Bi | は大きくなり、色度変換量 ぁ大さくなる。
[0087] なお、上記定数 α又は βを掛け合わせる理由は次のとおりである。カラーフィルタ 一によつて青のカラーフィルターから緑色が透過する量も異なる。従って、カラーフィ ルター毎に適切な色度変換量も異なる。そこで、どれだけ色度変換する力、つまりど れだけ Giを補正するかという補正度合いをカラーフィルターに応じて設定することが 望ましい。そこで、青色側の補正度合いを定数ひによって設定し、黄色側の補正度 合いを定数 によって設定するようにする。
[0088] 定数ひ及び /3はカラーフィルターに応じて最適な値は異なるので、色度変換装置 3 0の内部又は外部にメモリを備え、このメモリに、使用するカラーフィルターに応じた 定数ひ及び /3の値をそれぞれ 0〜0. 5程度の範囲で段階的に数パターン格納して おき、その中から選択することにより定数ひ及び を変更できるようにしておくことが 望ましい。
[0089] G補正量算出器 33によって上述したようにして Giの補正量が決定されると、次に、 Gデータ演算器 34にて、入力された Giと G補正量算出器 33からの出力とを加算する (ステップ S5)。具体白勺 (こ fま、 Ri = 65、 Gi = 20、 Bi= 225、 ひ = 0. 25であった場合 、 Gデータ演算器 34は 20— 40 =— 20を出力する。また、 Ri= 220、 Gi= 225、 Bi = 20、 β = 0. 25であった場合、 Gデータ演算器 34は 225 + 50 = 275を出力する。
[0090] 次に、オーバー判定器 35にて、 Gデータ演算器 34からの出力(この出力を「Gx」と する。)が 0よりも小さくなつていなレ、か、あるいは 255よりも大きくなつていないかを判 定する(ステップ S6)。もし Gxが 0よりも小さい、又は 255よりも大きい場合、そのまま G oとして出力したのでは実際にはその階調が表現されずに潰れてしまう。
[0091] そこで、 Gxが 0よりも小さい、又は 255よりも大きい場合には、 Gによって表現されな レ、階調分 (表現できる階調からのオーバー分)だけ、 Rの階調から増減し、 Gの失わ れた階調分を Rに振り替えることにより色度変換及び階調の表現を実現する。
[0092] 例えば、 Gxが 0以上 255以下であればオーバー判定器 35は、 Rデータ演算器 36 に対して 0を出力するとともに、 Gxをそのまま Goとして出力する(ステップ S7)。
[0093] 一方、 Gxが 0よりも小さければオーバー判定器 35は Goを 0とするとともに、 Gxにあ らかじめ定められた定数 γを掛け合わせた値を Rデータ演算器 36に出力する。また 、 Gxが 255よりも大きければオーバー判定器 35は Goを 255とするとともに、 Gx力ら 2 55を引いた値に上記定数 γを掛け合わせた値を Rデータ演算器 36に出力する。
[0094] 定数 γはカラーフィルターに応じて最適な値は異なるので、定数 α及び と同じく 、色度変換装置 30の内部又は外部にメモリを備え、このメモリに、使用するカラーフィ ルターに応じた定数 γの値を 0. 25〜1程度の範囲で段階的に数パターン格納して おき、その中から選択することにより定数 γを変更できるようにしておくことが望ましい 。なお、定数ひ及び j3を変更できるようにしている場合は、定数ひ及び j3による調整 が可能であるので、定数 γは 0. 25〜1程度の範囲内のある値に固定しておいてもよ レ、。
[0095] 具体白勺 ίこ fま、 Ri = 65、 Gi= 20、 Bi = 225、 ひ = 0. 25、 γ = 0. 5であった場合、 G データ演算器 34は一20を出力しているので(Gx=— 20)、 Goは 0となり Rデータ演 算器 36には一 20 X γ = 10が出力される。また、 Ri = 220、 Gi = 225、 Bi = 20、 β = 0. 25、 y = 0. 5であった場合、 Gデータ演算器 34は 275を出力しているので( Gx = 275)、 Goは 255となり、 Rデータ演算器 36には(275— 255) X y = 10力 S出 力される。
[0096] 次に、 Rデータ演算器 36にて、入力された Riとオーバー判定器 35からの出力との 差を演算し、それを Roとして出力する(ステップ S8 , S 9)。
[0097] 具体白勺 ίこ fま、 Ri = 65、 Gi = 20、 Bi = 225、 ひ = 0. 25、 y = 0. 5であった場合、 オーバー判定器 35から Rデータ演算器 36には— 10が出力されるので、 Roは 65 + 1 0 = 75となり Ro = 75、 Go = 0、 Bo = 225となる。これをまとめると図 5 (a)のようになる
[0098] また、 Ri = 220、 Gi = 225、 Bi = 20、 β = 0. 25、 y = 0. 5であった場合、オーバ 一判定器 35から Rデータ演算器 36には 10が出力されるので、 Roは 220— 10 = 21 0となり Ro = 210、 Go = 255、 Bo = 20となる。これをまとめると図 5 (b)のようになる。
[0099] 図 6の色度図に基づいて、上述した色度変換による xy色度座標での色度の変化に ついて説明する。図 6において、矢印の向きは xy色度座標の移動方向(色度変換方 向)を意味し、矢印の長さは xy色度座標の移動量 (色度変換量)を意味する。図 6より 、 A1及び A2の領域において、 C Wの直線及び M— Wの直線、並びに G— Wの直 線及び R— Wの直線に近い位置では色度変化量が少なぐ B及び Yに近づくほど色 度変化量が大きくなつていることがわかる。
[0100] また、図 6より、上述した色度変換は、例えば図 7のような画一的な色度変換とは異 なり、青のカラーフィルターから緑色の光が透過するという不具合を補正するのに適 した変換であることがわかる。
[0101] つまり、青色成分の多い領域 (A1の領域)では緑色の階調を削減し、緑色の階調 力 SO未満になる場合は赤色の階調を追加することにより、カラーフィルターの特性の ずれを適切に補正することができる。また、青色成分の少ない領域 (A2の領域)では 緑色の階調を増加させ、緑色の階調が 255よりも大きくなる場合は赤色の階調を削 減することにより、カラーフィルターの特性のずれを適切に補正してレ、る。
[0102] なお、本実施形態の色度変換は、図 7の色度変換との比較においては、 BMWの 三角形の領域において、彩度の低下を改善できるという有利な効果が得られる。その 理由は次のとおりである。
[0103] そもそも彩度は、 RGBにおける最大輝度と最小輝度との差が大きくなるほど向上す る特性を有する。そして、 BMWの三角形の領域では、青色の光が最大輝度を示し、 緑色の光が最小輝度を示すことになる。
[0104] ここで、図 7の色度変換によって青色のカラーフィルターから緑色の光が漏れている のを補正しょうとすると、 BMWの三角形の領域において赤色の階調を増加させるこ とによって補正することになる。これによると、緑色の光が漏れている状態(本来含ま れるべき緑色成分よりも実際に含まれる緑色成分が多い状態)を解消するために赤 色成分を増加させることになるが、そうすると、補正の前後において、緑色の光が本 来よりも多く含まれる状態は維持されることになる。その結果、最大輝度を示す青色 の光と、最小輝度を示す緑色の光との輝度差が本来よりも小さくなつてしまっている 状態を修正することができないので、本来よりも彩度が低下した状態は改善されない
[0105] これに対し、本実施形態の色度変換では、本来よりも多く含まれてレ、る緑色の光を 減少させて本来の量に近づけることにより色相のずれを補正しているので、同時に、 最大輝度を示す青色の光と、最小輝度を示す緑色の光との輝度差を本来の大きさに 近づけることもでき、彩度の低下を改善できる。
[0106] 本実施形態の色度変換では、図 6における BMWの三角形の領域においても、青 色のカラーフィルタ一力 緑色の光が漏れてレ、るのを補正するために、漏れてレ、る緑 色の階調を削減することになるので、彩度が低下することを抑制しつつカラーフィル ターの特性のずれを補正することができる。
[0107] 以上のように、本実施形態の色度変換では、図 6に示したように、 RGB信号によつ て表現し得る色度範囲のうち B周辺の所定領域 A1では、 Gデータの階調を減少する ように変換し、上記色度範囲のうち Gの補色である Y周辺の所定領域 A2では、 Gデ 一タの階調を増加するように変換する。
[0108] ここで、「B周辺の所定領域」は、本実施形態では、図 6における BMWCの四角形 の領域とした力 これに限らず、図 6において、 Bと Gとを結ぶ線分上(但し Bの色度座 標を除く)に一端を有し、 Bと Rとを結ぶ線分上 (但し Bの色度座標を除く)に他端を有 する境界線をあらかじめ定めておき、この境界線よりも B側の領域であればよい。同 様に、「Y周辺の所定領域」は、本実施形態では、図 6における RGWの三角形の領 域としたが、これに限らず、図 6において、 Υと Gとを結ぶ線分上(但し Υの色度座標を 除く)に一端を有し、 Υと Rとを結ぶ線分上 (但し Υの色度座標を除く)に他端を有する 境界線をあらかじめ定めておき、この境界線よりも Υ側の領域であればよレ、。なお、「 Β周辺の所定領域」と「Υ周辺の所定領域」とは互いに重ならないように設定されるも のとする。
[0109] これにより、 Β周辺の所定領域において Gデータの階調を減少するように変換する ことにより、 Βに近い色相のずれを補正することができ、 Υ周辺の所定領域において G データの階調を増加するように変換することにより、 Υに近い色相のずれを補正する こと力 Sできる。
[0110] また、液晶表示装置 11における色相のずれに起因する色度のずれは、 Ri, Gi, Bi によって表現される色度が Bに近いほど、及び Yに近いほど、大きくなる。そこで、本 実施形態の色度変換では、 Ri, Gi, Biによって表現される色度が Bに近いほど、及 び Yに近いほど、 Gデータの階調の減少及び増加の量 (補正量)が大きくなるように 変換し、上述した液晶表示装置 11におけるずれの程度に応じた適切な補正を行うこ とができるようになる。
[0111] なお、このように Ri, Gi, Biによって表現される色度に応じた補正量を設定すること が望ましいが、例えば、上記 B周辺の所定領域、及び Y周辺の所定領域における補 正量を、 Ri, Gi, Biによって表現される色度にかかわらずそれぞれ一定に設定したと しても、ある程度の効果は得られる。
[0112] 〔実施形態 2〕
本発明の他の実施形態について図 8から図 13に基づいて説明する。
[0113] 本実施形態においても、実施形態 1において図 1に基づいて説明した装置の全体 構成を前提としており、本実施形態において実施形態 1と異なっているのは色度変 換装置の構成のみである。そこで、以下では、色度変換装置の構成について説明す ることとする。 [0114] 図 8のブロック図に基づいて、本実施形態の色度変換装置 40の構成について説明 する。色度変換装置 40は、 RG判定器 41、 B判定器 42、 G補正量算出器 43、 Gデー タ演算器 44、オーバー判定器 45、 Rデータ演算器 46、オーバー判定器 47及び Bデ ータ演算器 48を備えている。
[0115] 本実施形態では、色度変換装置 40を図 8に示した 8つの機能ブロックに分けている が、実際の回路を設計する上では、これらを適宜併合又は分離してもよい。例えば、 RG判定器 41と B判定器 42とを 1つの回路で実現するなどしてもよい。
[0116] 本実施形態における色度変換の原理を説明する。実施形態 1の色度変換では図 3 の A1及び A2の領域以外は Giの階調を補正してなレ、。しかし、実際には、図 3にお ける GCWの三角形の領域、及び WMRの三角形の領域においても、青色のカラー フィルターから漏れる緑色の光の影響を多少なりとも受けて色相がずれている。
[0117] そこで無彩色(Ri=Gi = Bi、図 3の W)、及び Gi>Ri=Bi (図 3の G_W直線)、 Ri
>Gi=Bi (図 3の G— W直線)の場合のみ補正せず、図 3における GBRWの四角形 の領域では青色に近い領域でより大きく緑色の階調を削減し、また図 3における GW Rの三角形の領域では黄色に近い領域でより大きく緑色の階調を増加することにより 、カラーフィルターの特性により適した色相補正を実現し得る。
[0118] 図 8のブロック図、及び図 9のフローチャートに基づいて、色度変換装置 40による色 度変換の処理を具体例を挙げて説明する。
[0119] まず、 RG判定器 41において、入力された Ri, Gi, Biの各階調の大小関係を判定 し (ステップ Sl l)、Ri, Giのうち階調の小さい方を B判定器 42に出力する。具体的に は、 Ri= 255、 Gi = 0、 Bi= 255であった場合、 1 0判定器41は01=0を8判定器42 に出力する。また、 Ri = 255、 Gi = 255、 Bi = 0であった場合、 RG半 IJ定器 41は 255 を出力する。
[0120] 次に、 B判定器 42にて、 RG判定器 41の出力から Biの階調を引いた値を G補正量 算出器 43に出力する(ステップ S12, S13)。具体的には、 Ri = 255、 Gi = 0、 Bi = 2 55であった場合、 B半 IJ定器 42は 0— 255 =— 255を出力する。また、 Ri= 255、 Gi = 255、 Bi = 0であった場合、 B半 IJ定器 42は 255— 0 = 255を出力する。
[0121] 次に、 G補正量算出器 43にて、 B判定器 42からの出力(この出力を「X」とする。)の 正負を判定し (ステップ S 14)、 Xが負の場合はあら力じめ定められた定数 αを Xにか け合わせ (ステップ S 15)、 Xが正の場合はあら力じめ定められた定数 を Xに掛け合 わせ(ステップ S 16)、 Giを補正する際の補正量とする。具体的には、 Ri= 255、 Gi = 0、 Bi = 255、 a = 0. 25であった場合、 Gネ甫正量算出器 43fま一255 X ひ 一64 を出力する。また、 Ri= 255、 Gi= 255、 Bi = 0、 β = 0. 125であった場合、 G補正 量算出器 43は 255 X β ^ 32を出力する。
[0122] このようにすることにより、図 6における G—Wの直線上及び R—Wの直線上では G 補正量算出器 43の出力は 0となり、 Giの補正量も 0となる。つまり、この場合は色度 変換されないことになる。一方、 G—Wの直線上及び R—Wの直線上から C, B, M, Yに近づくに従い Giの補正量の絶対値は大きくなり、色度変換量も大きくなる。
[0123] なお、上記定数ひ又は /3を掛け合わせる理由は、実施形態 1の場合と同じぐどれ だけ色度変換するか、つまりどれだけ Giを補正するかという補正度合いをカラーフィ ルターに応じて設定するためであり、青色側の補正度合いを定数 αによって設定し、 黄色側の補正度合いを定数 i3によって設定するようにする。
[0124] 定数ひ及び はカラーフィルターに応じて最適な値は異なるので、実施形態 1の場 合と同じぐ色度変換装置 40の内部又は外部にメモリを備え、このメモリに、使用する カラーフィルターに応じた定数 α及び の値をそれぞれ 0〜0. 5程度の範囲で段階 的に数パターン格納しておき、その中から選択することにより定数 α及び を変更で きるようにしておくことが望ましい。
[0125] G補正量算出器 43によって上述したようにして Giの補正量が決定されると、次に G データ演算器 44にて、入力された Giと G補正量算出器 43からの出力とを加算する( ステップ S 17)。具体白勺 (こ fま、 Ri = 255、 Gi = 0、 Bi= 255、 ひ = 0. 25であった場合 、 Gデータ演算器 44は 0— 64=— 64を出力する。また、 Ri= 255、 Gi= 255、 Bi = 0、 β = 0. 125であった場合、 Gデータ演算器 44は 255 + 32 = 287を出力する。
[0126] 次に、オーバー判定器 45にて、 Gデータ演算器 44からの出力(この出力を「Gx」と する。)が 0よりも小さくなつていなレ、か、あるいは 255よりも大きくなつていないかを判 定する(ステップ S 18)。もし Gxが 0よりも小さい、又は 255よりも大きい場合、そのまま Goとして出力したのでは実際にはその階調が表現されずに潰れてしまう。そこで、 G xが 0よりも小さい、又は 255よりも大きい場合には、 Gによって表現されない階調分( 表現できる階調からのオーバー分)だけ、 Rの階調から増減し、 Gの失われた階調分 を Rに振り替えることにより色度変換及び階調の表現を実現する。
[0127] 例えば、 Gxが 0以上 255以下であればオーバー判定器 45は、 Rデータ演算器 46 に対して 0を出力するとともに、 Gxをそのまま Goとして出力する(ステップ S 19)。
[0128] 一方、 Gxが 0よりも小さければオーバー判定器 45は Goを 0とするとともに、 Gxにあ らかじめ定められた定数 γを掛け合わせた値を Rデータ演算器 46に出力する。
[0129] また、 Gxが 255よりも大きければオーバー判定器 45は Goを 255とし、 Gx力 255 を引いた値に上記定数 γを掛け合わせた値を Rデータ演算器 46に出力する。
[0130] 定数 τ /はカラーフィルターに応じて最適な値は異なるので、定数ひ及び j3と同じく 、色度変換装置 30の内部又は外部にメモリを備え、このメモリに、使用するカラーフィ ルターに応じた定数 γの値を 0. 25〜1程度の範囲で段階的に数パターン格納して おき、その中から選択することにより定数 γを変更できるようにしておくことが望ましい 。なお、定数 α及び を変更できるようにしている場合は、定数 α及び による調整 が可能であるので、定数 γは 0. 25〜1程度の範囲内のある値に固定しておいてもよ レ、。
[0131] 具体的には、 Ri= 255、 Gi = 0、 Bi = 255、 a = 0. 25、 y = 0. 5であった場合、 G データ演算器 44は一 64を出力しているので(Gx=— 64)、 Goは 0となり Rデータ演 算器 46には 64 X γ = 32力 S出力される。また、 Ri= 255、 Gi= 255、 Bi= 0、 β = 0. 125、 γ = 0. 5であった場合、 Gデータ演算器 44は 287を出力しているので( Gx = 287)、 Goは 255となり、 Rデータ演算器 46には(287— 255) X γ = 16力 S出 力される。
[0132] そして、 Rデータ演算器 46にて、入力された Riとオーバー判定器 45からの出力と の差を算出し、オーバー判定器 47へ出力する(この出力を「Rx」とする)(ステップ S2 0, S21)。
[0133] 具体的には Ri= 255、 Gi = 0、 Bi = 255、 a = 0. 25、 y = 0. 5であった場合、ォ 一バー判定器 45から Rデータ演算器 46には一 32が出力されているので Rデータ演 算器 46は 255 + 32 = 287を出力する(Rx= 287)。また、 Ri= 255、 Gi= 255、 Bi = 0、 β = 0· 125、 γ = 0. 5だった場合、オーバー判定器 45から Rデータ演算器 4 6には 16が出力されているので Rデータ演算器 46は 255— 16 = 239を出力する(R x= 239)。
[0134] 次に、オーバー判定器 47にて、 Rxが 0よりも小さくなつていなレ、か、あるいは 255よ りも大きくなつていないかを判定する(ステップ S 22, S23)。もし Rxが 0よりも小さレ、、 又は 255よりも大きい場合、そのまま Roとして出力したのでは実際にはその階調が表 現されずに潰れてしまう。
[0135] そこで、 Rxが 0よりも小さい、又は 255よりも大きレ、場合には、 Rによって表現されな い階調分 (表現できる階調からのオーバー分)だけ、 Bの階調から増減し、 Rの失わ れた階調分を Bに振り替えることにより色度変換及び階調の表現を実現する。
[0136] 例えば、 Rxが 0以上 255以下であればオーバー判定器 47は、 Bデータ演算器 48 に対して 0を出力するとともに、 Rxをそのまま Roとして出力する(ステップ S24, S 25)
[0137] 一方、 Rxが 0よりも小さければオーバー判定器 47は、 Roを 0とするとともに、 Rxに あらかじめ定められた定数 δを掛け合わせた値を Βデータ演算器 48に出力する。ま た、 Rxが 255よりも大きければオーバー判定器 47は、 Roを 255とするとともに、 Rxか ら 255を引いた値にあらかじめ定められた定数 δを掛け合わせた値を Βデータ演算 器 48に出力する。
[0138] 定数 δは、カラーフィルターに応じて最適な値は異なるので、色度変換装置 40の 内部又は外部にメモリを備え、このメモリに、使用するカラーフィルターに応じた定数 5の値を 0. 25〜1程度の範囲で段階的に数パターン格納しておき、その中から選 択することにより定数 δを変更できるようにしておくことが望ましい。なお、定数ひ及び βを変更できるようにしている場合は、定数ひ及び /3による調整が可能であるので、 定数 δは 0. 25〜1程度の範囲内のある値に固定しておいてもよい。
[0139] 具体白勺 ίこ fま、 Ri= 255、 Gi = 0、 Bi = 255、 ひ = 0. 25、 γ = 0. 5、 δ = 0. 5であ つた場合、 Rデータ演算器 46は 287を出力しているので(Rx = 287)、 Roは 255とな り Bデータ演算器 48には(287— 255) X δ = 16力 S出力される。また、 Ri= 255、 Gi = 255、 Bi = 0、 β = 0. 125、 γ = 0. 5だった場合、 Rデータ演算器 46は 239を出 力しているので(Rx= 239)、 Roはそのまま 239となり、 Bデータ演算器 48には 0が出 力される。
[0140] 次に、 Bデータ演算器 48にて、入力された Biとオーバー判定器 47からの出力との 差を演算し、それを Boとして出力する(ステップ S26, S27)。
[0141] 具体白勺 ίこ fま、 Ri= 255、 Gi = 0、 Bi = 255、ひ =0. 25、 y =0. 5、 δ =0. 5であ つた場合、オーバー判定器 47から Βデータ演算器 48には 16が出力されるので、 Bo は 255— 16 = 239となり Ro = 255、 Go = 0、 Bo = 239となる。これをまとめると図 10
(a)のようになる。
[0142] また、 Ri = 255、 Gi = 255, Bi = 0、 β =0. 125、 y =0. 5であった場合、オーバ 一判定器 47から Bデータ演算器 48には 0が出力されるので、 Boは 0— 0 = 0となり Ro = 239、 Go = 255、 Bo = 0となる。これをまとめると図 10 (b)のようになる。
[0143] 図 11の色度図に基づいて、上述した色度変換による xy色度座標での色度の変化 について説明する。図 11においても、図 6と同じぐ矢印の向きは xy色度座標の移動 方向(色度変換方向)を意味し、矢印の長さは xy色度座標の移動量 (色度変換量)を 意味する。図 11より、 G— Wの直線及び R— Wの直線に近い位置では色度変化量が 少なぐ C、 B、 M、 Yに近づくほど色度変化量が大きくなつていることがわ力る。
[0144] また、図 11より、上述した色度変換は、図 7のような画一的な色度変換とは異なり、 青のカラーフィルターから緑色の光が透過するという不具合を補正するのに適した変 換であることがわかる。
[0145] つまり、青色成分の多い領域では緑色の階調を削減し、場合によっては赤色の階 調を増加させ、さらには青色の階調を減少させすることにより、カラーフィルターの特 性のずれを適切に補正することができる。また、青色成分の少ない領域では緑色の 階調を増加させ、場合によっては赤色の階調を減少させ、さらには青色の階調を増 カロさせることにより、カラーフィルターの特性のずれを適切に補正することができる。
[0146] 以上のように、本実施形態の色度変換では、図 11に示したように、 RGB信号によつ て表現し得る色度範囲のうち B周辺の所定領域 A3では、 Gデータの階調を減少する ように変換し、上記色度範囲のうち Gの補色である Y周辺の所定領域 A4では、 Gデ 一タの階調を増加するように変換する。 [0147] ここで、 「B周辺の所定領域」は、本実施形態では、図 11における BRWGの四角形 の領域とした力 これに限らず、図 11において、 Bと Gとを結ぶ線分上(但し Bの色度 座標を除く)に一端を有し、 Bと Rとを結ぶ線分上 (但し Bの色度座標を除く)に他端を 有する境界線をあらかじめ定めておき、この境界線よりも B側の領域であればょレ、。 同様に、「Y周辺の所定領域」は、本実施形態では、図 11における RGWの三角形の 領域としたが、これに限らず、図 11において、 Υと Gとを結ぶ線分上(但し Υの色度座 標を除く)に一端を有し、 Υと Rとを結ぶ線分上 (但し Υの色度座標を除く)に他端を有 する境界線をあらかじめ定めておき、この境界線よりも Υ側の領域であればよレ、。な お、「Β周辺の所定領域」と「Υ周辺の所定領域」とは互いに重ならないように設定され るものとする。
[0148] これにより、 Β周辺の所定領域において Gデータの階調を減少するように変換する ことにより、 Βに近い色相のずれを補正することができ、 Υ周辺の所定領域において G データの階調を増加するように変換することにより、 Υに近い色相のずれを補正する こと力 Sできる。
[0149] また、液晶表示装置 11における色相のずれに起因する色度のずれは、 Βに近いほ ど、及び Υに近いほど、大きくなる。そこで、本実施形態の色度変換では、 Ri, Gi, Bi によって表現される色度が Bに近いほど、及び Yに近いほど、 Gデータの階調の減少 及び増加の量 (補正量)が大きくなるように変換し、上述した液晶表示装置 11におけ るずれの程度に応じた適切な補正を行うことができるようになる。
[0150] なお、このように Ri, Gi, Biによって表現される色度に応じた補正量を設定すること が望ましいが、例えば、上記 B周辺の所定領域、及び Y周辺の所定領域における補 正量を、 Ri, Gi, Biによって表現される色度にかかわらずそれぞれ一定に設定したと しても、ある程度の効果は得られる。
[0151] 次に、上記実施形態 1及び 2において説明した定数ひ, β , γ , δの設定方法につ レ、てさらに説明する。
[0152] 人間の目の特性として、彩度のずれよりも色相のずれの方が違和感を覚えることが 多い。例えば、カラー表示装置に青空を表示した場合に、青色の彩度がズレており、 本来よりも鮮やかな青空であったり、逆に本来よりも鮮やかではない青空であったりし ても、違和感を覚えることは少ない。しかし、青色の色相がずれており、本来よりも緑 力 Sかった青空になってしまうと、青空の色がおかしいと違和感を覚えることが多い。
[0153] そこで、実施形態 1及び 2による色度変換においては、彩度よりも色相を合わせるよ うに、定数ひ, β, y , δを設定することが望ましレヽ。
[0154] このことを図 12及び図 13の色度図に基づいて具体的に説明する。
[0155] 本来、図 12の Βの色度座標に表現されなければならない青色は、カラーフィルター の問題により B'の色度座標に表現されてしまう。 Wからみて Βと B'との間には角度 Θ が存在するので、この角度 Θ分だけ色相がずれて見える。
[0156] そこで本来の Βの色相に合わせるために、 Wと Βとを結ぶ直線と、 B'と NTSC比 45
%の1¾を結ぶ直線との交点を Β"とすると、 B'がほぼ Β"に色度変換されるように定数 a , y , δを定めることが望ましレヽ。
[0157] これにより、本来表現されなければならない Βと、色度変換後の Β"とは色相がほぼ 一致するので、彩度は足りなくとも色相のほぼ一致した、違和感を覚えることの少な レ、青色を表現することができるようになる。
[0158] 黄色の場合も同様に、本来、図 13の Υの色度座標に表現されなければならない黄 色は、カラーフィルターの問題により Y'の色度座標に表現されてしまう。 Wからみて Υ と Y'との間には角度 Θが存在するので、この角度 Θ分だけ色相がずれて見える。
[0159] そこで本来の Υの色相に合わせるために、 Wと Υとを結ぶ直線と、 NTSC比 45%の
Rと Gとを結ぶ直線の交点を Υ"とすると、 Y'がほぼ Υ"に色度変換されるように定数 β , y , δを定めることが望ましレ、。
[0160] これにより、本来表現されなければならない Υと、色度変換後の Υ"とは色相がほぼ 一致するので、彩度は足りなくとも色相のほぼ一致した、違和感を覚えることの少な い黄色が表現することができるようになる。
[0161] なお、この色度変換ではカラーフィルターによる色度再現範囲の三角形を狭めるこ となぐ再現可能な三角形の範囲を有効に利用することが可能である。
[0162] これらひ, β , γ , δの最適値は、カラーフィルターに応じて異なるとともに、人間の 感覚の影響も受けるため、これらひ, /3 , Ύ , δを設定する際は、カラーフィルターご とに、表示状態を観察しつつ各値を調整して最適値を求めるといった実験を行えば よレ、。なお、実験の結果では、 NTSC比 45%のカラーフィルターでは、実施形態 1及 び 2の何れにおレヽても、 a =0. 5、 β =0. 125、 γ =0. 5、 δ =0. 5力 S最適な値で あった。
[0163] なお、実施形態 1及び 2では、カラーフィルターの特性に起因した色相のずれを前 提として説明したが、背景技術欄において説明したように、 LEDの特性によっても同 様の色相のずれは発生し、これに対しても本実施形態の色度変換は有効である。
[0164] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性
[0165] 本発明は、 RGB信号などの 3原色信号に対する色度変換に利用可能であり、液晶 表示装置における色度変換に特に好適に利用可能である。

Claims

請求の範囲
[1] それぞれ各色の階調を示す第 1〜第 3色データからなる 3原色信号に対して色度 変換を施す色度変換装置において、
3原色信号によって表現し得る色度範囲のうち第 1色周辺の所定領域では、第 2色 データの階調を減少するように変換し、
前記色度範囲のうち第 1色の補色周辺の所定領域では、第 2色データの階調を増 カロするように変換することを特徴とする色度変換装置。
[2] 前記色度範囲のうち、前記第 1色周辺の所定領域、及び第 1色の補色周辺の所定 領域以外の領域では第 1〜第 3色データの階調を変換しないことを特徴とする請求 項 1に記載の色度変換装置。
[3] 前記第 1色周辺の所定領域では、 3原色信号によって表現される色度が第 1色に 近いほど前記減少の量が大きくなり、
前記第 1色の補色周辺の所定領域では、 3原色信号によって表現される色度が第
1色の補色に近いほど前記増加の量が大きくなるように変換することを特徴とする請 求項 1又は 2に記載の色度変換装置。
[4] 前記第 1色周辺の所定領域は、前記色度範囲のうち、第 1色、第 2色の補色、第 3 色の補色、及び無彩色によって囲まれる領域であり、
前記第 1色の補色周辺の所定領域は、第 2色、第 3色、及び無彩色によって囲まれ る領域であることを特徴とする請求項 1から 3の何れか 1項に記載の色度変換装置。
[5] 第 2色データの階調が下限値を下回る場合には、第 3色データの階調を増加する ように変換し、
2色データの階調が上限値を上回る場合には、第 3色データの階調を減少する ように変換することを特徴とする請求項 4に記載の色度変換装置。
[6] 前記第 1色周辺の所定領域は、前記色度範囲のうち、第 1色、第 2色、第 3色、及び 無彩色によって囲まれる領域であり、
前記第 1色の補色周辺の所定領域は、第 2色、第 3色、及び無彩色によって囲まれ る領域であることを特徴とする請求項 1から 3の何れか 1項に記載の色度変換装置。
[7] 第 2色データの階調が下限値を下回る場合には、第 3色データの階調を増加する ように変換し、
第 2色データの階調が上限値を上回る場合には、第 3色データの階調を減少する ように変換することを特徴とする請求項 6に記載の色度変換装置。
[8] 第 3色データの階調が下限値を下回る場合には、第 1色データの階調を増加する ように変換し、
第 3色データの階調が上限値を上回る場合には、第 1色データの階調を減少する ように変換することを特徴とする請求項 7に記載の色度変換装置。
[9] 第 1〜第 3色はそれぞれ青色、緑色、赤色であることを特徴とする請求項 1から 8の 何れか 1項に記載の色度変換装置。
[10] 画像表示装置における信号のタイミングをコントロールするタイミングコントローラー において、
請求項 1から 9の何れか 1項に記載の色度変換装置を備えることを特徴とするタイミ ングコントローラー。
[11] 請求項 1から 9の何れか 1項に記載の色度変換装置と、
第 1〜第 3色それぞれに対応するカラーフィルターを有する液晶パネルとを備えるこ とを特徴とする液晶表示装置。
[12] それぞれ各色の階調を示す第 1〜第 3色データからなる 3原色信号に対して色度 変換を施す色度変換方法において、
3原色信号によって表現し得る色度範囲のうち第 1色周辺の所定領域では、第 2色 データの階調を減少するように変換し、
前記色度範囲のうち第 1色の補色周辺の所定領域では、第 2色データの階調を増 カロするように変換することを特徴とする色度変換方法。
PCT/JP2006/313141 2005-09-30 2006-06-30 色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換方法 WO2007039970A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/990,910 US20090146989A1 (en) 2005-09-30 2006-06-30 Chromaticity converting device, timing controller, liquid crystal display apparatus, and chromaticity converting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005289426 2005-09-30
JP2005-289426 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007039970A1 true WO2007039970A1 (ja) 2007-04-12

Family

ID=37906016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313141 WO2007039970A1 (ja) 2005-09-30 2006-06-30 色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換方法

Country Status (2)

Country Link
US (1) US20090146989A1 (ja)
WO (1) WO2007039970A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080025593A (ko) * 2006-09-18 2008-03-21 삼성전기주식회사 디스플레이 영상의 색 보정을 위한 장치 및 방법
JP5536888B2 (ja) * 2010-07-09 2014-07-02 シャープ株式会社 液晶表示装置
CN103745688B (zh) * 2014-01-02 2016-01-27 青岛海信电器股份有限公司 一种有机电致发光显示器及其显示方法
US10482843B2 (en) 2016-11-07 2019-11-19 Qualcomm Incorporated Selective reduction of blue light in a display frame
KR102649444B1 (ko) * 2019-01-21 2024-03-22 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN113395503B (zh) * 2020-03-11 2023-02-28 浙江宇视科技有限公司 图像的白平衡校正方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052050A (ja) * 2001-05-30 2003-02-21 Sharp Corp カラー表示装置
JP2003111091A (ja) * 2001-09-27 2003-04-11 Sanyo Electric Co Ltd 色相変換装置
WO2004070699A1 (ja) * 2003-02-07 2004-08-19 Sanyo Electric Co., Ltd. 表示装置における色空間補正回路
JP2005134866A (ja) * 2003-04-18 2005-05-26 Sharp Corp カラー表示装置、色補正方法および色補正プログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3778229B2 (ja) * 1996-05-13 2006-05-24 富士ゼロックス株式会社 画像処理装置、画像処理方法、および画像処理システム
JP4158332B2 (ja) * 2000-02-03 2008-10-01 コニカミノルタビジネステクノロジーズ株式会社 カラー画像処理装置
US7956823B2 (en) * 2001-05-30 2011-06-07 Sharp Kabushiki Kaisha Color display device, color compensation method, color compensation program, and storage medium readable by computer
JP4143569B2 (ja) * 2004-05-14 2008-09-03 キヤノン株式会社 カラー表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052050A (ja) * 2001-05-30 2003-02-21 Sharp Corp カラー表示装置
JP2003111091A (ja) * 2001-09-27 2003-04-11 Sanyo Electric Co Ltd 色相変換装置
WO2004070699A1 (ja) * 2003-02-07 2004-08-19 Sanyo Electric Co., Ltd. 表示装置における色空間補正回路
JP2005134866A (ja) * 2003-04-18 2005-05-26 Sharp Corp カラー表示装置、色補正方法および色補正プログラム

Also Published As

Publication number Publication date
US20090146989A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4871526B2 (ja) カラー表示素子及びカラー表示素子の駆動方法
JP4805339B2 (ja) 液晶表示装置
JP5301681B2 (ja) 液晶表示装置
US7956823B2 (en) Color display device, color compensation method, color compensation program, and storage medium readable by computer
US7911541B2 (en) Liquid crystal display device
JP5593920B2 (ja) 液晶表示装置
US8390656B2 (en) Image display device and image display method
TWI388220B (zh) 可降低色偏之影像處理方法
US20140267470A1 (en) Color adjustment device, method for adjusting color, and display
WO2005111980A1 (ja) 表示装置
US9270958B2 (en) Liquid crystal display apparatus for generating an output video signal based on an input video signal and a lighting signal
TWI802628B (zh) 圖像處理裝置、顯示裝置、圖像處理方法
TWI278825B (en) Color display device, color compensation method, color compensation program, and storage medium readable by computer
WO2007039970A1 (ja) 色度変換装置、タイミングコントローラー、液晶表示装置、及び色度変換方法
KR20210138372A (ko) 디스플레이 구동장치 및 구동방법
CN106898320A (zh) 一种显示设备色域和视角的调节方法和***
TWI425495B (zh) 色溫補償方法及其應用
JP6616628B2 (ja) 画像表示装置および画像表示方法
WO2017051768A1 (ja) 表示装置および色空間の拡張方法
TWI671725B (zh) 一種顯示裝置及其顯示方法
JP2011221172A (ja) 表示装置
JP2010128040A (ja) 表示装置
TWI556224B (zh) 場序型顯示方法及場序型顯示裝置
JP2020034876A (ja) 表示装置およびテレビジョン受像機
KR20190066110A (ko) 영상 처리부, 그것을 포함하는 표시 장치, 및 영상 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11990910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP