WO2007037329A1 - 電磁波シールドフィルタ - Google Patents

電磁波シールドフィルタ Download PDF

Info

Publication number
WO2007037329A1
WO2007037329A1 PCT/JP2006/319306 JP2006319306W WO2007037329A1 WO 2007037329 A1 WO2007037329 A1 WO 2007037329A1 JP 2006319306 W JP2006319306 W JP 2006319306W WO 2007037329 A1 WO2007037329 A1 WO 2007037329A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mesh
electromagnetic wave
blackened
black
Prior art date
Application number
PCT/JP2006/319306
Other languages
English (en)
French (fr)
Inventor
Tetsuya Ojiri
Yukihiro Kyouden
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to JP2007537677A priority Critical patent/JP4849069B2/ja
Publication of WO2007037329A1 publication Critical patent/WO2007037329A1/ja
Priority to KR1020087009900A priority patent/KR101263054B1/ko

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties

Definitions

  • the present invention relates to an electromagnetic wave shielding filter having light transmissivity, which shields (shields) electromagnetic waves generated from display cameras such as CRT and PDP.
  • Electromagnetic waves are also generated on displays such as
  • an electromagnetic wave shielding filter disposed on the front surface of the display is known.
  • the mesh layer has a blackened surface that has a black appearance such as a structure in which the surface is covered with a black-colored layer to prevent light reflection (Patent Document 1, Patent Document 2). ).
  • the surface roughness of the blackened surface should be specified in terms of the high blackening degree and the improved light reflection preventing performance.
  • the surface roughness Ra is defined as 0.1 to 10: L 00 m force.
  • Patent Document 2 defines the arithmetic average roughness Ra defined in JIS B0601 within the range of 0.02-1.00 m.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-286594
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-318596
  • An electromagnetic shielding filter rarely has a structure in which a mesh layer is directly exposed to air.
  • a transparent resin layer is often provided to cover the mesh layer in order to protect the mesh layer and add an optical filter function. Therefore, the blackened surface of the mesh layer on the side of the transparent resin layer is in a state where the transparent resin layer is closely adhered and wetted by the transparent resin layer. For this reason, the blackened surface has an appearance different from that when exposed to air (this is referred to as “wet color” following the color when the surface is wet with liquid).
  • wet color an appearance different from that when exposed to air
  • the appearance of the black wrinkled surface is directly affected by this wet color, and if the arithmetic surface roughness Ra is specified as in the prior art, the blackened surface is In some cases, it was not possible to get enough blackness.
  • the present invention has been made to solve the above problems, and even when used in a configuration that exhibits a wet color, the blackness is sufficient and the light reflection preventing effect is excellent.
  • An object of the present invention is to provide an electromagnetic wave shielding filter having a black surface.
  • An electromagnetic wave shielding filter according to the present invention that solves the above problems is an electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, and at least the front and back surfaces of the conductive mesh layer. Any one or more of the above surfaces are blackened, and the total light reflectance (R) measured in accordance with JIS Z8722 of the blackened surface is 14% or less.
  • SCI SCE SCI is not less than 0.8.
  • the electromagnetic wave shielding filter according to the present invention has the above-mentioned specific range for the total reflectance and the ratio of the diffuse reflectance to the total reflectance for the blackened surface of the conductive mesh layer that has been blackened. Even when it is used in a configuration that exhibits a wet color, it can have a blackened surface with sufficient blackness and excellent anti-reflection effect, and display image visibility is good Can be.
  • the roughness curve is sufficiently The point average roughness R3 ⁇ 4 [IS (JIS B0601 (1994))] In view of being able to have a blackened surface having an excellent light reflection preventing effect and improving visibility, it is preferable.
  • the electromagnetic shielding filter according to the present invention has a configuration in which a transparent resin layer is laminated on the blackened surface of the conductive mesh layer having the blackened surface. It ’s okay.
  • the blackened surface under the transparent resin layer can be protected from corrosion and scratches by the transparent resin layer.
  • the blackened surface of the mesh layer under the transparent resin layer becomes wet when contacted with the transparent resin layer.
  • light is also applied to the blackened surface that has become wet. This is because it is excellent in terms of antireflection.
  • the electromagnetic wave shielding filter according to the present invention has the total reflectance and the ratio of the diffuse reflectance to the total reflectance on the blackened surface of the blackened conductive mesh layer within the specific range. As a result, even when used in a configuration exhibiting a wet color, it is possible to have a blackened surface with sufficient blackness and an excellent antireflection effect. As a result, according to the electromagnetic wave shielding filter according to the present invention, the reflection of light is reduced, and the visibility of the image on the display can be improved by giving a contrast feeling.
  • FIG. 1 is a cross-sectional view showing an example of an electromagnetic wave shielding filter according to the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a combination of blackened surfaces in a mesh layer of an electromagnetic wave shielding filter according to the present invention.
  • FIG. 3 (A) is the contour curve (roughness curve R), (B) is the probability density function ADF and load curve BAC, and (C) is (B) so that the probability density is positive on the vertical axis.
  • FIG.4 Probability density function ADF is shown by smoothing (probability density) curve Adc.
  • An example of an upwardly convex curve shape suitable for the present invention is (A), and an example of a downwardly convex curve shape is (B ).
  • An electromagnetic wave shielding filter according to the present invention that solves the above problems is an electromagnetic wave shielding filter having at least a conductive mesh layer on a transparent substrate, and at least the front and back surfaces of the conductive mesh layer. Any one or more of the above surfaces are blackened, and the total light reflectance (R) measured in accordance with JIS Z8722 of the blackened surface is 14% or less.
  • SCE SCI is 0.8 or more.
  • the black wrinkle-treated surface is provided at least on the side where the observer views the electromagnetic wave shielding filter in the form in which the electromagnetic wave shielding filter is used for a display.
  • the total light reflectance (R) measured in accordance with JIS Z8722 of the blackened surface in the present invention is a spectrocolorimeter (for example, co-camino) in accordance with JIS Z8722.
  • the light source is the standard light D65, and the field of view is 2 °, and the detector is used for both diffuse reflection and specular reflection.
  • the Y value (tristimulus value ⁇ ⁇ ) was measured in the SCI (Specular Compenent Include) mode that measures the (integral) intensity of the total reflected light.
  • the diffused light reflectance (R) measured in accordance with JIS 228722 on the blackened surface is the same.
  • the light source and field of view are the same as described above, and the detector measures the (integrated) intensity of only the diffuse reflected light of the reflected light. This is a measurement of the Y value (tristimulus value ⁇ ⁇ ) set to elude) mode.
  • the electromagnetic wave shielding filter according to the present invention optimizes the blackened surface so as to have the specific reflection characteristics as described above, so that it looks black even in wet color and becomes blackish. Further, the black level of the fluoroscopic image is prevented from being reduced by reflection of external light on the surface of the conductive mesh layer, and the black level can be improved. Therefore, when the electromagnetic wave shielding filter according to the present invention is provided, the visibility of the image on the display can be improved by providing a bright room contrast feeling of the fluoroscopic image.
  • FIG. 1 is a cross-sectional view illustrating a basic form of an electromagnetic wave shielding filter 10 according to the present invention.
  • FIG. 1 ( ⁇ ) shows a configuration in which a conductive mesh layer 2 (hereinafter also simply referred to as “mesh layer”) is laminated on a transparent substrate 1.
  • FIG. 1 (1) shows a configuration in which a conductive mesh layer 2 is laminated on the transparent substrate 1, and a transparent resin layer 3 is laminated on the conductive mesh layer 2.
  • the adherend layer 4 may be laminated on the transparent resin layer 3 as shown in FIG. 1 (C), or the transparent substrate 1 side may be attached as shown in FIG. 1 (D).
  • the body layer 4 may be laminated. Further, in FIG.
  • the conductive mesh layer 2 is composed of a mesh-like conductor layer 21 and a blackish black layer 22, and the blackened surface of the mesh layer is black formed on the surface of the mesh-like conductor layer. It is formed as the surface of the chemical layer 22.
  • FIG. 1 is an explanatory diagram in which the blackened surface is formed on the surface (upper side of the drawing) and both side surfaces of the line portion (line portion) of the conductor mesh layer 2. The blackened surface is provided on at least one of the front and back surfaces of the conductive mesh layer, and there are various combinations of treated surfaces as described later in FIG.
  • the adherend layer 4 is, for example, a sheet-like, plate-like, or coating-like, various optical filters such as an antireflection filter and a near infrared absorption filter, a protective film, or a configuration of the display itself.
  • This is a layer that has any function, such as the front substrate, which is a component.
  • the surface on the observer side may be a back surface that is not the surface defined in the present invention.
  • the electromagnetic wave shielding filter of the present invention will be described in order from the transparent substrate for each layer.
  • the transparent substrate 1 is a layer for reinforcing a copper mesh layer having a low mechanical strength. Therefore, as long as it has light transmittance as well as mechanical strength, it may be selected and used depending on the application, taking into account heat resistance, insulation, etc. as appropriate.
  • Specific examples of the transparent substrate include, for example, a plate and sheet (or a film, the same applies hereinafter) having an organic material strength such as transparent resin, and a plate having an inorganic material strength such as glass.
  • Examples of the transparent resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, terephthalic acid-isophthalic acid-ethylene glycol copolymer, terephthalic acid-cyclohexane dimethanol, ethylene glycol copolymer, and the like.
  • Polyester resin such as nylon 6, polyamide resin such as nylon 6, polyolefin resin such as polypropylene and polymethylpentene, acrylic resin such as polymethyl methacrylate, styrene such as polystyrene and styrene-acrylonitrile copolymer
  • acrylic resin such as polymethyl methacrylate
  • styrene such as polystyrene and styrene-acrylonitrile copolymer
  • cellulosic resin cellulose-based resin such as triacetyl cellulose, imide-based resin, and polycarbonate resin.
  • these fats may be used alone or in combination with a plurality of types of mixed fats (polymers). In addition, it is used as a single layer or a laminate of two or more layers. In the case of a resin sheet, a uniaxially stretched or biaxially stretched sheet is more preferable in terms of mechanical strength.
  • additives such as ultraviolet absorbers, fillers, plasticizers, and antistatic agents may be appropriately added to these resins as needed.
  • the glass examples include quartz glass, borosilicate glass, and soda lime glass. More preferably, the glass has a low thermal expansion coefficient, excellent dimensional stability and workability in high-temperature heat treatment, and an alkali component in the glass. Non-alkali glass that does not contain any of them, and can also be used as an electrode substrate for a display front substrate or the like.
  • the thickness of the transparent substrate may be determined according to the application, and when it is made of a transparent resin with no particular limitation, it is usually 12 to: a force of about LOOO ⁇ m, preferably 50 to 500 ⁇ m. On the other hand, when the transparent substrate is a glass plate, usually about 1 to 5 mm is suitable. In any material, if the thickness is less than the above, the mechanical strength is insufficient and warping, sagging, breakage, etc. occur. If the thickness exceeds the above, the cost becomes high due to excessive performance, and it is difficult to reduce the thickness.
  • the transparent base material may be used also as a front substrate which is a constituent element of the display main body V.
  • the transparent base material is thin. The sheet is superior to the plate in terms of lightness, and the resin sheet is superior to the glass plate in terms of not being broken.
  • a resin sheet is preferred as the transparent substrate, and the material is a material, but among the resin sheets, polyester-based resin sheets such as polyethylene terephthalate and polyethylene naphthalate are particularly preferable.
  • a biaxially stretched polyethylene terephthalate sheet is most preferable from the viewpoint of transparency, heat resistance, cost, and the like. The higher the transparency of the transparent substrate, the better.
  • the light transmittance is preferably 80% or more in terms of visible light transmittance.
  • a transparent substrate such as a resin sheet is appropriately coated on its surface with corona discharge treatment, plasma treatment, ozone treatment, flame treatment, primer treatment, pre-heat treatment, dust removal treatment, vapor deposition treatment, alkali treatment, You may perform well-known easy-adhesion processing, such as.
  • the transparent substrate may be colored with a pigment or the like. Near infrared absorption, neon light by coloring Absorption, color adjustment, prevention of external light reflection, etc. can be achieved.
  • various conventionally known dyes such as a near-infrared absorber, a neon light absorber, a color adjusting dye, and an external light antireflection dye may be added!
  • the conductive mesh layer 2 is a layer responsible for an electromagnetic wave shielding function, and is itself opaque, but by providing an opening in a mesh shape, both electromagnetic wave shielding performance and light transmittance are achieved. Is a layer.
  • the conductive mesh layer in the present invention has at least one of the front and back surfaces as a blackened surface by blackening treatment, and the total light reflection measured in accordance with JIS Z 8722 of the blackened surface. Rate (R) is 14% or less, more preferably 12% or less
  • a necessary surface of the conductive mesh-like conductor layer 21 usually formed from a metal foil or the like as the main body of the conductive mesh layer.
  • the blackening layer 22 is formed by the blackening treatment, and the exposed surface of the blackening layer is used as the blackening treatment surface.
  • other layers such as a fender layer described later may be provided as a constituent layer of the conductive mesh layer as appropriate in that the mesh shape, which is a geometric feature of the mesh layer, is maintained. .
  • an electromagnetic wave shielding filter When an electromagnetic wave shielding filter is used in a display, when other layers such as the anti-glare layer are formed on the outermost surface on the side where the observer views the electromagnetic wave shielding filter, the outermost layer Should be the blackened surface and have the above specific reflection characteristics.
  • the mesh-like conductor layer 21 is typically formed by etching a metal foil, but other layers are also significant in electromagnetic shielding performance. Therefore, in the present invention, the material and forming method of the mesh-like conductor layer are not particularly limited, and various mesh-like conductor layers in a conventionally known light-transmitting electromagnetic wave shielding filter are appropriately adopted. It can be done. For example, a mesh-like conductor layer is formed from the beginning on a transparent substrate using a printing method or a mating method, or the entire surface is initially formed on a transparent substrate by a plating method. After forming the conductor layer, it may be a mesh-like conductor layer formed by etching or the like to form a mesh-like conductor layer.
  • the mesh shape of the mesh-like conductor layer when it is formed by etching, it can be formed by patterning the metal layer laminated on the transparent base material by etching to form an opening and forming a mesh shape.
  • the metal layer prepared as a metal foil is laminated to the transparent substrate with an adhesive, or the metal layer is deposited, sputtered, plated, etc. without using an adhesive for laminating. It can also be laminated on a transparent substrate using one or more physical or chemical forming methods.
  • the mesh-like conductor layer by etching can be formed into a mesh-like mesh-like conductor layer by patterning a metal foil alone before being laminated on a transparent substrate by etching.
  • This single-layer mesh conductor layer is laminated on a transparent substrate with an adhesive or the like.
  • the metal foil is transparent with an adhesive because the mesh conductor layer with weak mechanical strength is easy to handle and excellent in productivity, and a commercially available metal foil can be used.
  • a mesh-like conductor layer that is formed into a mesh-like shape by etching after being laminated on a material and laminated on a transparent substrate via an adhesive is typical.
  • the adhesive in this case, a known adhesive such as a non-sticky adhesive or an adhesive (adhesive layer) may be employed.
  • the mesh-like conductor layer is not particularly limited as long as it is a substance having sufficient conductivity to exhibit electromagnetic wave shielding performance, but usually a metal layer is preferable because of its good conductivity.
  • the metal layer can be formed by vapor deposition, plating, metal foil lamination, or the like.
  • the metal material of the metal layer or the metal foil include gold, silver, copper, iron, nickel, and chromium.
  • the metal of the metal layer may be an alloy, and the metal layer may be a single layer or multiple layers.
  • low carbon rimmed steel is preferably low carbon steel such as low carbon aluminum killed steel, Ni—Fe alloy, Invar alloy, and the like.
  • the metal is copper
  • the metal material is copper or copper alloy
  • the thickness of the mesh-like conductor layer made of the metal layer is about 1 to about LOO / zm, preferably 2 to 20 ⁇ m. If the thickness is too thin, it will be difficult to obtain sufficient electromagnetic shielding performance due to an increase in electrical resistance, and if the thickness is too thick, it will be difficult to obtain a high-definition mesh shape and the mesh shape will be less uniform. .
  • the front and back surfaces of the metal layer serving as the mesh-like conductor layer are bonded and laminated to the transparent substrate.
  • the surface is preferably a rough surface.
  • the surface of the metal layer that becomes the mesh-like conductor layer may have the desired micro unevenness and low reflection characteristics even when the blackening layer is thinner when a blackened layer is additionally formed on the surface.
  • the surface roughness is the ten-point average roughness R3 ⁇ 4 [IS CiIS B060K 1994 It is preferable that the year version)) is as described above.
  • Blackening treatment is for preventing light reflection on the surface of the conductive mesh layer.
  • the blackening treatment surface formed by the blackening treatment causes the black of the fluoroscopic image due to reflection of external light on the surface of the conductive mesh layer.
  • the black level is improved, and the visibility of the image on the display is improved by giving a bright room contrast feeling of the fluoroscopic image.
  • at least one of the front and back surfaces is at least one surface and the black surface processing surface. To do.
  • the side having the blackened surface is installed on the front surface of the display as the side on which the observer sees.
  • the blackened surface may be the surface of a single conductive mesh layer.
  • the conductive mesh layer is a single layer and the surface of the single layer has the above-mentioned specific reflection characteristics, the surface does not require additional blackening treatment.
  • the resulting surface has the same physical properties. Is included in the present invention.
  • a conductive layer such as a metal layer is employed for the conductive mesh layer in terms of conductivity necessary for the electromagnetic wave shielding function, and such a conductive layer usually has a surface color. Is often a metal color or the like, which is not a black surface in the present invention, which is not black. Therefore, in such a case, a blackening treatment such as forming a blackening layer to be described later is performed on the surface, and a blackened surface is realized on the surface of the formed blackening layer. To do. Also, providing a black layer on the surface means that the layer (mesh-like conductor layer, etc.) constituting the surface has a mesh.
  • the conductor mesh layer 2 is usually composed of a mesh-like conductor layer 21 having an electromagnetic wave shielding function due to conductivity, and a layer provided with a black layer 22 on at least one of the front and back surfaces. (See Figure 2).
  • the target surface of the blackened surface having specific reflection characteristics according to the present invention is exemplified by the surface on which the blackened layer 22 is formed, both front and back surfaces of the line portion of the conductive mesh layer 2 (FIG. 2).
  • A) front side only
  • Fig. 2 (B) back side only
  • Fig. 2 (C) front side and side (both sides or one side) only
  • back side and side both sides or one side
  • entire surface front and back side (Both sides)
  • Fig. 2 (D) entire surface
  • the blackish-treated surface having the specific reflection characteristics is shown for the blackish-treated surface having the specific reflection characteristics.
  • the blackish-treated surface is usually included in the category of the blackened-treated surface. It may have a blackened surface that does not have the reflection characteristics. For example, the entire surface normally falls within the category of a blackened surface, but only the surface is a blackened surface having a desired reflection characteristic defined in the present invention.
  • the blackish blue-treated surface of the conductive mesh layer in the present invention exhibits black or a color close to black (brown, dark blue, dark green, etc., including black) and conforms to JIS Z8722.
  • the total light reflectance (R) measured by the method is 14% or less, preferably 12% or less, and the total light reflection is
  • SCE SCI has an optical property of 0.8 or more.
  • the black wrinkle-treated surface so as to have the specific reflection characteristics as described above, external light on the surface of the conductive mesh layer that looks black even in wet color and does not shine black
  • the black level of the fluoroscopic image is prevented from being reduced due to reflection, and the black level can be improved. These can be achieved even in a wet color in which a transparent resin layer is further laminated on the blackish treated surface.
  • the electromagnetic wave shielding filter according to the present invention is provided, the image of the display is obtained by providing a bright room contrast feeling of a fluoroscopic image. Visibility can be improved.
  • the total light reflectance of the black wrinkle-treated surface in the present invention is a force of 14% or less, preferably 12% or less, and more preferably 8% or less.
  • the total reflectance of the blackened surface is usually 0.1% or more.
  • the ratio (R / R) of the ratio (R) is 0.8 or more, preferably 0.9 or more, more preferably
  • the blackened surface As an aspect for setting the reflection characteristics of the blackened surface according to the present invention to the above-mentioned specific reflective characteristics, it is preferable that the blackened surface has fine irregularities in order to increase the diffuse reflection component.
  • the specific reflection characteristics depend on various characteristics of the micro unevenness on the blackened surface.
  • the contour curve is used as the contour curve of the blackened surface.
  • a cross-sectional curve, a roughness curve, and a waviness curve as the contour curve of the black wrinkle treatment surface.
  • a roughness curve R obtained by subtracting the waviness curve and the cross-sectional curve force is adopted.
  • the black wrinkle-treated surface has a 10-point average roughness R3 ⁇ 4 [IS QIS B0601 (1994 version)) of 2 m or more, as described above, the specific reflection characteristics are likely to be obtained.
  • the ten-point average roughness R3 ⁇ 4 [IS CiIS B0601 (1994 version)) of the contour curve is more preferably 2 to 5 / ⁇ ⁇ . From the viewpoint of ensuring the strength of the conductive mesh layer and the electromagnetic wave shielding property, it is preferable that the value of R3 ⁇ 4 [IS is about half or less the thickness of the conductive mesh layer.
  • the probability density function CFIS of the contour curve when a roughness curve is adopted as the contour curve of the minute irregularity B0601 (2001 edition) regulation] the shape near the peak of probability density Force When the probability density is plotted on the vertical axis and taken upward (the horizontal axis is the amplitude value of the unevenness of the roughness curve), the curve becomes a convex curve.
  • the upwardly convex “up” is the top when the probability density is taken on the vertical axis and the upward direction is a positive value of the probability density.
  • FIG. 3 (A) shows a roughness curve R as a contour curve, and in the figure, the symbol ML is an average line.
  • the roughness curve R which subtracted the waviness curve from the cross-sectional curve force is adopted in the present invention.
  • Fig. 3 (B) shows the probability density function ADF of the roughness curve and the load curve BAC (cumulative curve) of the roughness curve, in which the contour curve force of the roughness curve R of Fig. 3 (A) is also calculated. .
  • Fig. 3 (C) is a graph obtained by rotating Fig. 3 (B) 90 degrees in the counterclockwise direction so that the probability density becomes the vertical axis in the positive direction on the upper side of the drawing.
  • the horizontal axis between Rp and Rv and the vertical axis of probability density are true scales and not logarithmic scales.
  • the shape shown by the probability density function ADF is fine and uneven as shown in Fig. 3 (C), so the probability density curve A dc is a smooth curve as shown in Fig. 4 (A). .
  • the probability density function ADF obtained by measuring the surface becomes a jagged graph such as a bar graph as shown in Fig. 3 (B) and (C), and this is converted into a sliding force probability density curve by the least square method. , Capture the features of micro unevenness on the measurement surface.
  • a smooth curve of the probability density function means that if the surface measurement is repeated an infinite number of times, the jagged graph will be averaged and eventually the probability density function will approach a smooth curve. This corresponds to approximating the resultant force of a curve once or a small number of measurements. Then, like the probability density curve Adc shown in Fig.
  • the blackened surface with a convex curve shape force on the shape force near the peak of the probability density curve is as shown in Fig. 4 (B).
  • the curve shape of the probability density function as described above is often obtained when, for example, the fine unevenness is rough and fine unevenness is superimposed on the unevenness.
  • the conditions of the blackening process when forming such a blackened layer are adjusted as appropriate, or the fine unevenness of the surface of the target surface to be blackened, that is, the surface of the black ground surface is adjusted.
  • the base surface has a minute uneven surface rather than a mirror surface
  • a blackened layer is additionally formed, it is easier to have the desired minute unevenness and reflection characteristics even if it is thinner. Yes.
  • a preferable shape as the minute unevenness of the lower ground is as described above.
  • the preferable conditions for the blackening process when forming the blackened layer will be described later.
  • the preferable black density of the blackened surface is 0.6 or more.
  • the black density measurement method was set to the density standard A NSIT as an observation viewing angle of 10 degrees, observation light source D50, and illumination type using GRETAG SPM100-11 (trade name, manufactured by Kimoto) of COLOR CONTROL SYSTEM. After the white calibration, the test piece is measured.
  • the black wrinkle layer 22 is a layer provided to give the black wrinkle treatment surface described above, and any known black may be used as long as it exhibits a dark color such as black and satisfies basic physical properties such as adhesion. ⁇ ⁇ ⁇ ⁇ can be adopted as appropriate.
  • an inorganic material such as a metal or an organic material such as a black colored resin can be used for the blackening layer.
  • the inorganic material includes a metal such as a metal, an alloy, a metal oxide, or a metal sulfide. It is formed as a metal-based layer such as a compound.
  • a method for forming the metal-based layer various conventionally known black spot treatment methods can be appropriately employed. Of these, blackening treatment by plating is preferable in terms of adhesion, uniformity, and ease.
  • a material for the plating method for example, a metal such as copper, cobalt, nickel, zinc, molybdenum, tin, or chromium, or a metal compound is used. These are superior to the case of cadmium or the like in terms of adhesion and blackness.
  • a preferable plating method for the blackening treatment for forming the blackened layer includes a mesh-like conductor layer made of copper (mesh-like conductor layer).
  • Cathodic electrodeposition method in which the conductive layer in front of the cathode layer is subjected to cathodic electrolysis in an electrolyte composed of sulfuric acid, copper sulfate, cobalt sulfate, etc. There is. According to this method, the rough surface can be obtained simultaneously with the black color by the adhesion of the cationic particles. Copper particles and copper alloy particles can be adopted as the cationic particles.
  • the copper alloy particles are preferably copper-cobalt alloy particles, and the average particle size is preferably 0.001 to 1 / ⁇ ⁇ . Yes.
  • the copper-cobalt alloy particles can provide a black-coal layer that has a copper-cobalt alloy particle force.
  • the cathodic electrodeposition method is also preferable in that the average particle diameter of the cationic particles to be adhered is adjusted to 0.001-1 m. When the average particle diameter is beyond the above range, the density of the adhered particles is reduced, blackness is reduced and unevenness occurs, and the particles are likely to fall off (powder falling). On the other hand, even if the average particle diameter is less than the above range, the blackness is lowered. In the cathodic electrodeposition method, when the treatment is performed at a high current density, the treated surface becomes cathodic and activated by the generation of reducing hydrogen, and the adhesion between the copper surface and the cationic particles is remarkably improved.
  • black chrome, black nickel, nickel alloy and the like are also preferred as the blackening layer.
  • the nickel alloy include nickel-zinc alloy, nickel-tin alloy, and nickel-tin-copper alloy.
  • the nickel alloy has a good degree of blackness and conductivity, and can also provide a blackening layer with a fouling function (becomes a black and white layer), and the fouling layer can be omitted.
  • the particles in the black glazing layer are usually needle-like, and the external appearance is likely to change due to external force.
  • the appearance of the black glazing layer made of nickel alloy is difficult to deform in the post-processing process. There are also advantages that are difficult to achieve.
  • the nickel alloy may be formed after nickel plating is performed by a known electrolytic or electroless plating method.
  • the mesh-like conductor layer is copper
  • a method of immersing a copper mesh layer in a mixed solution of a copper pyrophosphate aqueous solution, a potassium pyrophosphate aqueous solution, and an ammonia aqueous solution can be used.
  • a method for forming the blackened layer is appropriately selected depending on the surface state of the mesh-like conductor layer. To do. For example, when the surface roughness of the mesh-like conductor layer made of copper is relatively large, R3 ⁇ 4 [IS is 1 ⁇ m or more, it is preferable to form a blackish silver layer by black nickel plating.
  • the shape of the mesh layer 2 as a mesh shape is not particularly limited, but a square shape is typical as the shape of the mesh opening.
  • the shape of the opening in plan view is, for example, a triangle such as a regular triangle, a square such as a square, a rectangle, a rhombus or a trapezoid, a polygon such as a hexagon, a circle or an ellipse.
  • the mesh has a plurality of opening portions that also have these shape forces, and the openings are usually line-shaped line portions having a uniform width. Usually, the opening portions and the line portions have the same shape and the same size on the entire surface.
  • the width of the line portion between the openings is preferably 5 to 25 ⁇ m from the viewpoint of the aperture ratio and the invisibility of the mesh.
  • the size of the opening is [line interval or line pitch]-[line width]. In terms of [line interval or line pitch], the opening size is 150 m to 500 m, and the opening ratio (the surface of the opening).
  • the total product (total area of the Z mesh part) is preferably 80 to 95% in terms of compatibility between light transmittance and electromagnetic wave shielding! /.
  • the bias angle (the angle formed between the mesh line portion and the outer periphery of the electromagnetic wave shielding filter) may be appropriately set to an angle at which moire is difficult to occur in consideration of the pixel pitch of the display and the light emission characteristics.
  • the mesh layer 2 may have a mesh shape over the entire surface of the electromagnetic wave shielding filter.
  • the portion that requires light transmission is defined as a mesh-shaped mesh portion, and other portions (for example, all four sides are frame-shaped).
  • a non-mesh part is a portion other than the mesh portion, and is a region where light transmittance is not required as a surface.
  • a non-mesh part is provided on the outer periphery of the mesh part. Non-mesh parts are usually used for grounding. The non-mesh part used for grounding is usually framed around all four sides.
  • the frame-like non-mesh portion enhances the appearance of the image seen through the mesh portion such as a display image by surrounding the image with a frame shape (for example, as a black frame) to enhance the image. It can also be used as an outer frame.
  • a frame shape for example, as a black frame
  • the non-mesh portion is grounded, it is preferable to expose the conductor layer at least at a part thereof.
  • the specific size of the non-mesh part depends on how it is used, but when the frame is grounded or framed, the frame width should be about 15 ⁇ : LOOmm, especially 30 ⁇ 40mm. Is.
  • the mesh layer 2 As the mesh layer 2, other layers may be appropriately formed or treated as necessary. For example, when durability against rust is insufficient, a fender layer may be provided.
  • the protective layer is also the blackened layer described above. However, as long as it maintains the mesh shape, which is a geometric feature of the mesh layer, the protective layer is used as a constituent layer of the mesh layer in the present invention. Catch.
  • the surface of the mesh layer may be easily applied to the surface of the mesh layer, but if it is applied on the blackened surface, the blackened surface after application (actually the surface of the protective layer)
  • at least one of the front and back surfaces is a surface having desired reflection characteristics.
  • the covering surface of the mesh layer by the fender layer is only the front surface, only the back surface, both front and back surfaces, only the side surface (both sides or one side), the front surface and both side surfaces, the back surface and both side surfaces, the front and back both surfaces and both side surfaces, and the like.
  • the anti-corrosion layer is not particularly limited as compared with the mesh-like conductor layer covered with the anti-corrosion layer, and as long as it is an inorganic material such as a metal, an organic material such as a resin, or a combination of these, It is not a thing.
  • the black layer is also covered with a protective layer, so that the blackened layer can be prevented from falling off and deformed, and the black layer can be increased in blackness.
  • the mesh-like conductor layer is formed of a metal foil
  • the blackened layer is provided on the metal foil on the transparent substrate by the blackening treatment, the blackened layer is prevented from falling off or being altered. In this sense, it is preferably provided before the transparent substrate and the metal foil are stacked.
  • a conventionally known one may be used as appropriate, for example, a metal or alloy such as chromium, zinc, nickel, tin, copper, or a metal compound layer of metal oxide. is there. These can be formed by a known plating method or the like.
  • a chromium compound layer obtained by chromate treatment after zinc plating can be mentioned.
  • chromate treatment is performed by bringing the chromate treatment solution into contact with the treated surface.
  • the chromate treatment is preferable from the viewpoint of adhesion to zinc and the anti-mold effect before the treatment.
  • a key compound such as a silane coupling agent may be contained in the fender layer for improving acid resistance during etching or acid cleaning.
  • the thickness of the fender layer is usually about 0.001 to 2111, preferably 0.01 to 1111.
  • the transparent resin layer 3 is covered on the mesh layer side by filling the surface unevenness by the conductive mesh layer 2 and flattening the surface on the mesh layer side. This is a layer provided as necessary to prevent air entrapment and to protect the mesh layer from external forces when laminating the adherend and adhesive. In terms of protection, the transparent resin layer is also a surface protective layer.
  • the transparent resin layer 3 can be used as an adhesive layer that is interposed between the adherend 4 and the conductive mesh layer 2 and adheres both.
  • Such a transparent resin layer 3 can be formed by applying a liquid composition containing a resin to the uneven surface of the conductive mesh layer 2 laminated on the transparent substrate 1 by coating or the like.
  • the liquid composition is not particularly limited as long as it contains a transparent resin, and a known resin may be used as appropriate.
  • thermoplastic resin, thermosetting resin, ionizing radiation curable resin, and the like examples include acrylic resin, polyester resin, thermoplastic urethane resin, and acetic acid resin resin
  • thermosetting resins include thermosetting urethane resin, epoxy resin, and the like.
  • the resin include thermosetting acrylic resin and ionizing radiation-curable resin. Of these, ionizing radiation curable resin, which can be formed in a solvent-free or nearly solvent-free state, is preferred because it can easily fill the unevenness caused by the mesh layer.
  • the transparent resin layer is sufficient to fill only the opening of the conductive mesh layer, as shown in Fig. 1 (B), including the portion directly above the line portion of the mesh layer. May be.
  • a transparent resin layer is provided including directly above the line part, when the surface of the mesh layer in contact with the transparent resin layer is a blackened surface, the transparent resin layer gives a wet color.
  • the configuration in which the transparent resin layer including the line portion is formed is one of the preferable configurations.
  • the adherend is, for example, an optical filter layer (film, sheet, plate), a surface protective layer (film, sheet, plate) or the like.
  • the optical filter function of the optical filter layer includes near infrared absorption, antireflection (including antiglare), color tone adjustment (neon light absorption, improved color reproducibility), and external light antireflection.
  • the functions of the surface protective layer are contamination prevention, scratch resistance, and the like. These may be appropriately selected from conventionally known ones.
  • the optical filter layer and the surface protective layer should be formed on the mesh layer, the transparent resin layer, or in the case of the optical filter layer on another optical filter layer by coating, etc., as an adherend of the transparent resin layer. You can also.
  • the adherend 4 may be laminated on the transparent substrate 1 side as shown in Fig. 1 (D), contrary to Fig. 1 (C).
  • a transparent adhesive layer interposed therebetween.
  • a known adhesive such as a non-sticky adhesive or a pressure-sensitive adhesive (pressure-sensitive adhesive layer) may be employed.
  • the transparent adhesive layer can be said to be one form of a transparent resin layer.
  • the adherend may be laminated on both the front and back surfaces of the electromagnetic wave shielding filter for display. In that case, the type (function) of the adherend can be used properly on the front and back.
  • the resin constituting the electromagnetic shielding filter such as a transparent substrate, a transparent resin layer, a transparent adhesive layer, and an adherend, an external light reflection preventing dye, a neon light absorber, and a color adjusting dye.
  • a known pigment may be added as appropriate.
  • Fig. 1 for explaining the details of the mesh layer and Fig. 2 for explaining the blackened surface are examples, and do not limit the form of the electromagnetic wave shielding filter of the present invention. Any device having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect can be included in the technical scope of the present invention.
  • an electrolytic copper foil with a thickness of 10 m is applied to the front side of a continuous belt-like uncolored transparent biaxially stretched polyethylene terephthalate film (thickness 100 m). Dry lamination was performed using a urethane-resin adhesive to produce a continuous belt-like copper-clad laminate sheet.
  • the copper foil of the copper-clad laminate sheet was etched into a mesh shape by etching using a photolithography method, and the mesh-shaped conductor layer 21 was formed on the transparent substrate 1.
  • a mesh laminated sheet was prepared.
  • the surface of the conductive mesh layer 2 (the surface of the conductive mesh layer 2 is subjected to a black color treatment for forming a black color layer 22 by black-packet plating on the surface of the mesh laminate sheet of the mesh laminated sheet.
  • an electromagnetic wave shielding filter 10 as shown in FIG. 1 (A) having a blackened surface having the reflection characteristics shown in Table 1 on both sides was prepared.
  • the formed mesh has a square opening, a line width of 25 m, and a line pitch of 150 m.
  • the entire circumference of the four sides of the mesh part was a frame-like non-mesh part.
  • the non-mesh portion of the acrylic resin coating liquid is partially exposed as a transparent resin layer 3 that also serves as an adhesive layer on the surface of the electromagnetic wave shielding filter 10 on the mesh layer side.
  • intermittent coating was performed on the mesh layer by an intermittent die coating method including a part of the inner periphery.
  • an 80 m-thick triacetyl cellulose film is used as the substrate for the coating after the solvent of the coating solution is dried, and a fluorine-based low refractive index layer is used as an antireflection layer on the surface.
  • the antireflection film is laminated so that it faces the base layer side cache layer (the antireflection layer is exposed on the outermost surface), and a desired electromagnetic wave shielding filter with antireflection function is formed. Produced.
  • Example 1 Except for changing each of the electrolytic copper foils in Example 1, the electromagnetic shielding filter 10 as shown in FIG. did. Next, an electromagnetic wave shielding filter with an antireflection function was produced in the same manner as in Example 1.
  • Example 1 Instead of changing the electrolytic copper foil in Example 1 and forming the black plating layer 22 by black nickel plating, the copper particles with an average particle diameter of lnm are attached and blackened by the cathodic electrodeposition method. Except that the layer 22 was formed, an electromagnetic wave shielding filter 10 as shown in FIG. 1 (A) having a blackened surface having the reflection characteristics shown in Table 1 was produced in the same manner as in Example 1. Next, in the same manner as in Example 1, an electromagnetic wave shielding filter with an antireflection function was produced.
  • Example 1 the electrolytic copper foil was changed, and further, a black plating layer 22 by black nickel plating was added. Instead of forming, black cathodic layer 22 was formed by adhering copper-cobalt alloy particles having an average particle size of 0.1 ⁇ m by the cathodic electrodeposition method, as in Example 1. Thus, an electromagnetic wave shielding filter 10 as shown in FIG. 1 (A) having a blackened surface with reflection characteristics shown in Table 1 was produced. Next, in the same manner as in Example 1, an electromagnetic wave shield filter with an antireflection function was produced.
  • Example 1 Instead of changing the electrolytic copper foil in Example 1 and forming the black plating layer 22 by black nickel plating, the copper-cobalt alloy particles having an average particle diameter of 0 are attached by the cathodic electrodeposition method.
  • an electromagnetic shielding filter 10 as shown in Fig. 1 (A) having a blackened surface having the reflection characteristics shown in Table 1 was manufactured. did.
  • an electromagnetic wave shield filter with an antireflection function was produced.
  • Example 1 instead of changing the electrolytic copper foil in Example 1 and forming the black plating layer 22 by black nickel plating, copper particles having an average particle diameter of 1 ⁇ m were deposited by the cathodic electrodeposition method, and then Further, the electromagnetic shielding filter as shown in FIG. 1 (A) having the blackened surface having the reflection characteristics shown in Table 1 was used in the same manner as in Example 1 except that the black plating layer 22 was formed by performing cobalt plating. 10 was produced. Next, in the same manner as in Example 1, an electromagnetic wave shield filter with an antireflection function was produced.
  • a continuous strip-shaped uncolored transparent biaxially stretched polyethylene terephthalate film having a thickness of 100 m and having a polyester resin-based primer layer formed on one side was prepared.
  • a nickel-chromium alloy layer having a thickness of 0.1 ⁇ m and a copper layer having a thickness of 0.2 m were sequentially provided by sputtering to form a conductive treatment layer.
  • a copper plating layer having a thickness of 2.0 m is provided by an electrolytic plating method using a copper sulfate bath, and the conductive layer composed of the conductive treatment layer and the copper plating layer is formed on the transparent substrate.
  • a copper-clad laminate sheet was produced which was directly formed without an adhesive layer in between.
  • the copper foil of the copper-clad laminate sheet is subjected to etching using a photolithographic method to give a mesh shape.
  • a mesh laminated sheet in which the mesh-like conductor layer 21 was formed on the transparent substrate 1 was prepared.
  • an average particle diameter of 0 .: L m is applied to the surface of the mesh laminated sheet on the mesh-like conductor layer side by an acid solution using a mixed solution of copper pyrophosphate aqueous solution, potassium pyrophosphate aqueous solution, and aqueous ammonia.
  • the surface of the conductive mesh layer 2 (and both sides) has a blackened surface with the reflection characteristics shown in Table 1 and deposited on the surface of the conductive mesh layer 2 as shown in 01 (A).
  • An electromagnetic wave shielding filter 10 was produced.
  • an electromagnetic wave shielding filter with an antireflection function was produced in the same manner as in Example 1.
  • An electromagnetic wave shield filter was produced in the same manner as in Example 1 except that the electrolytic copper foil was changed in Example 1.
  • Table 1 shows the characteristics of the blackened surface and the performance evaluation results for the electromagnetic wave shielding filters of Examples and Comparative Examples.
  • the reflection characteristics and minute irregularities of the blackened surface were evaluated on the blackened surface of the mesh layer surface of the non-mesh part on the outer periphery of the mesh part of the mesh layer.
  • the anti-reflection performance can also eliminate the influence of the opening of the mesh part, so that the non-mesh part (however, the inner peripheral part where the anti-reflection film is laminated through the transparent resin layer and becomes a wet color) went.
  • the total light reflectance (%) measured in accordance with JIS Z8722 on the blackened surface is determined by setting the spectrophotometer (for example, CM-3600d, manufactured by Co-Camino Norta Sensing Co., Ltd.) to the reflection mode. Uses standard light D65, 2 ° field of view, and puts the detector into SCI mode that measures the (integrated) intensity of the total reflected light, which is the sum of both diffuse and specular reflected light. Set and measure the Y value (Y of tristimulus values XYZ).
  • the diffused light reflectance (%) according to JIS Z8722 on the blackened surface is similarly measured by using a spectrocolorimeter, with the same light source and field of view, and absorbing and blocking the specular reflected light with an optical trap.
  • the detector was set to SCE mode in which the (integral) intensity of only the diffuse reflected light out of the reflected light was set, and the Y value (Y of tristimulus values XYZ) was measured.
  • the evaluation of the antireflection performance of the electromagnetic wave shielding filter is based on the total light reflectivity (%) on the blackened surface side in the state of wet color after laminating the transparent resin layer and the antireflection film. Anti-reflection fill side force was also measured (“AR” in the table).
  • the total light reflectance measurement method was the same as the total light reflectance measurement method in (1). When the total light reflectance (AR) in the wet color state is smaller, the total light reflectance is less than 5%.
  • the micro unevenness of the blackened surface is determined by the ten-point average roughness R3 ⁇ 4 [IS QIS B0601 (1994 version), unit ⁇ m) of the contour curve when the roughness curve is adopted as the contour curve of the micro unevenness. evaluated. Further, as a reference value, the center line average roughness Ra QIS B0601 of the fine irregularities and the unit was ⁇ m) were also measured.
  • the shape of the vicinity is a curve with a smoothed probability density function and the probability density is taken on the vertical axis and taken upward (the horizontal axis is the amplitude value of the unevenness of the roughness curve)
  • the horizontal axis is the amplitude value of the unevenness of the roughness curve
  • the total light reflectance (R) measured in accordance with JIS Z8722 on the blackened surface is 14% or less
  • the diffused light reflectance (R) relative to the total light reflectance (R) is ratio
  • the total light reflectance (AR) in the wet color state was small, and a superior antireflection performance was obtained.
  • the arithmetic average roughness Ra of the surface is within the range of 0.2 to 1. O / zm, and the range that has been considered good in the past. However, it was found that there was a difference in performance depending on the reflection characteristics.
  • Examples 8 to 10 reveal that good antireflection performance can be obtained even outside the range of the arithmetic average roughness Ra, which has been considered to be good in the past.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、濡れ色を呈するような構成で用いられる場合であっても黒化度が充分で、光反射防止効果に優れた黒化処理面を有する電磁波シールドフィルタを提供することを主目的とする。  本発明は、透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおいて、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒化処理され、当該黒化処理面のJIS Z8722に準拠して測定した全光線反射率(RSCI)が12%以下で、且つ全光線反射率(RSCI)に対する拡散光線反射率(RSCE)の比(RSCE/RSCI)が0.8以上であることを特徴とする電磁波シールドフィルタにより、上記課題を解決した。

Description

明 細 書
電磁波シールドフィルタ
技術分野
[0001] 本発明は、 CRT, PDPなどのディスプレイカゝら発生する電磁波を遮蔽 (シールド) する、光透過性を有する電磁波シールドフィルタに関する。
背景技術
[0002] 近年、電気電子機器の機能高度化と増加利用に伴 ヽ、電磁気的なノイズ妨害 (Ele ctro Magnetic Interference ; EMI)が増え、陰極線管(CRTという)、プラズマディ スプレイパネル(PDPと!、う)などのディスプレイでも電磁波が発生する。この電磁波 をシールドするために、ディスプレイ前面に配置する電磁波シールドフィルタが知ら れている。このような用途に用いる電磁波シールドフィルタでは、電磁波シールド性 能と共に光透過性も要求される。そこで、基材に榭脂フィルムやガラス板等の透明基 材を用い、この透明基材上に、金属箔のエッチングや金属メツキにより、導電性を備 えたメッシュ層を形成した電磁波遮蔽シールドフィルタが知られている。
[0003] 以上のように、メッシュ層を銅箔ゃ銅メツキ層等を利用して形成した場合、外光等の 不要光をメッシュ層が反射し、反射する金属光沢が透視画像の明室コントラストを低 下させる。従って、通常、上記メッシュ層はその表面を黒ィ匕層で被覆する構成とする など、外観が黒い黒化処理面が施されて、光反射を防止している (特許文献 1、特許 文献 2)。その際、黒化処理面は黒化度が高ぐ光反射防止性能がよくなる点で、そ の表面粗さを規定するのが良いとされている。例えば、特許文献 1には、表面粗さ Ra を 0. 10〜: L 00 m力規定されている。また、特許文献 2には、 JIS B0601に定め る算術平均粗さ Raを 0. 02-1. 00 mの範囲が規定されている。
[0004] 特許文献 1:特開 2000— 286594号公報
特許文献 2:特開 2003— 318596号公報
発明の開示
発明が解決しょうとする課題
[0005] 電磁波シールドフィルタは、メッシュ層が空気に直接露出した構造とすることは稀で あり、通常、メッシュ層の保護や光学フィルタ機能の付加のために、メッシュ層を被覆 するように透明榭脂層を設けることが多い。そのため、メッシュ層の透明榭脂層側の 黒化処理面は、透明榭脂層が密着積層し、該透明樹脂層で言わば濡れた状態とな る。このため、その黒化処理面は、空気に露出された時とは異なる概観 (これを表面 が液体で濡れたときの色にならって「濡れ色」と称する)を呈する。また、この濡れ色に 見える現象は、透明基材上に、該透明基材側を黒化処理面とするメッシュ層を積層 した構成でも同様である。
従って、通常使用される構成においては、黒ィ匕処理面の外観は、この濡れ色が直 接的に影響し、従来技術のように算術表面粗さ Raを規定しただけでは、黒化処理面 の黒ィヒ度を充分に出せないことがあった。
[0006] 本発明は上記問題点を解消するためになされたものであり、濡れ色を呈するような 構成で用いられる場合であっても黒ィ匕度が充分で、光反射防止効果に優れた黒ィ匕 処理面を有する電磁波シールドフィルタを提供することを目的とする。
課題を解決するための手段
[0007] 上記課題を解決すベぐ本発明に係る電磁波シールドフィルタは、透明基材上に、 導電性メッシュ層を少なくとも有する電磁波シールドフィルタにお ヽて、当該導電性メ ッシュ層の少なくとも表裏面の何れか一面以上の面が黒ィヒ処理され、当該黒化処理 面の JIS Z8722に準拠して測定した全光線反射率 (R )が 14%以下で、且つ全
SCI
光線反射率 (R )に対する拡散光線反射率 (R )の
SCE 比 (R /R )
SCI SCE SCIが 0. 8以上 であることを特徴とする。
本発明に係る電磁波シールドフィルタは、黒化処理された導電性メッシュ層の黒ィ匕 処理面について、全反射率と、全反射率に対する拡散反射率の比を上記特定の範 囲とすることにより、濡れ色を呈するような構成で用いられる場合であっても、黒ィ匕度 が充分で、光反射防止効果に優れた黒化処理面を有することができ、ディスプレイの 画像の視認性を良好にすることができる。
[0008] 本発明に係る電磁波シールドフィルタにお 、ては、前記黒化処理面が微小凹凸を 有し、該微小凹凸の輪郭曲線に粗さ曲線を採用したときに、当該粗さ曲線の十点平 均粗さ R¾[IS (JIS B0601 (1994年版))が 以上であることが、黒化度が充分 で光反射防止効果に優れた黒化処理面を有することができ、視認性を良好にするこ とができる点から、好まし ヽー態様として挙げられる。
[0009] 本発明に係る電磁波シールドフィルタにお!/、ては、前記黒化処理面を有する導電 性メッシュ層の当該黒化処理面上に、透明榭脂層が積層されて ヽる構成であつても 良い。このような構成を有する場合には、透明榭脂層下の黒ィ匕処理面を該透明榭脂 層で腐食や傷つきなどから保護できる。更に、透明榭脂層下のメッシュ層の黒化処 理面は、該透明樹脂層の接触で濡れ色となるが、本発明によれば、濡れ色となった 黒ィ匕処理面においても光反射防止の点で優れたものとなるからである。
発明の効果
[0010] 本発明に係る電磁波シールドフィルタは、黒化処理された導電性メッシュ層の黒化 処理面について、全反射率と、全反射率に対する拡散反射率の比を上記特定の範 囲とすることにより、濡れ色を呈するような構成で用いられる場合であっても、黒ィ匕度 が充分で、光反射防止効果に優れた黒化処理面を有することができる。その結果、 本発明に係る電磁波シールドフィルタによれば、光の反射が低減され、コントラスト感 を出すことによりディスプレイの画像の視認性を向上することができる。
図面の簡単な説明
[0011] [図 1]本発明に係る電磁波シールドフィルタの例を示す断面図である。
[図 2]本発明に係る電磁波シールドフィルタのメッシュ層に於ける黒化処理面の組合 せ例を示す断面図である。
[図 3] (A)は輪郭曲線 (粗さ曲線 R)、 (B)は確率密度関数 ADFと負荷曲線 BACで、 (C)は (B)を確率密度が縦軸で上側正となる様に回転したグラフを示す図である。
[図 4]確率密度関数 ADFを滑らかにした (確率密度)曲線 adcを示し、本発明におい て好適な上に凸の曲線形状例が (A)で、下に凸の曲線形状例が(B)である。
符号の説明
[0012] 1 透明基材
2 メッシュ層
21 メッシュ状導電体層
22 黒化層 3 透明榭脂層
4 被着体
10 電磁波シールドフィルタ
ADF 確率密度関数
Adc 確率密度曲線
BAC 負荷曲線
ML 平均線
R 粗さ曲線
Rp (粗さ曲線の)最大山高さ
Rv (粗さ曲線の)最大谷深さ
発明を実施するための最良の形態
[0013] 上記課題を解決すベぐ本発明に係る電磁波シールドフィルタは、透明基材上に、 導電性メッシュ層を少なくとも有する電磁波シールドフィルタにお ヽて、当該導電性メ ッシュ層の少なくとも表裏面の何れか一面以上の面が黒ィヒ処理され、当該黒化処理 面の JIS Z8722に準拠して測定した全光線反射率 (R )が 14%以下で、且つ全
SCI
光線反射率 (R )
SCI に対する拡散光線反射率 (R )の
SCE 比 (R /R )
SCE SCIが 0. 8以上 であることを特徴とする。
[0014] 本発明における黒ィ匕処理面は、電磁波シールドフィルタがディスプレイに用いられ る形態において観察者が当該電磁波シールドフィルタを見る側に、少なくとも設けら れるものである。また、本発明における黒化処理面の JIS Z8722に準拠して測定し た全光線反射率 (R )は、 JIS Z8722に準拠して、分光測色計 (例えば、コ-カミノ
SCI
ルタセンシング株式会社製、 CM— 3600d)を反射モードに設定し、光源は標準の 光 D65、視野 2° を用いて、検出器を、反射光のうち拡散反射光と鏡面反射光の両 方を総合した全反射光の(積分)強度を測定するような SCI (Specular Compenen t Include)モードに設定して、 Y値(3刺激値 ΧΥΖの Υ)を測定したものである。また 、黒化処理面の JIS Ζ8722に準拠して測定した拡散光線反射率 (R )は、同様に
SCE
分光測色計を用いて、光源及び視野は上記と同じにして、検出器を、反射光のうち 拡散反射光のみの(積分)強度を測定するような SCE (Specular Compenent Ex elude)モードに設定して、 Y値(3刺激値 ΧΥΖの Υ)を測定したものである。
[0015] 本発明に係る電磁波シールドフィルタは、黒化処理面を上記のような特定の反射特 性を有するように最適化することにより、濡れ色においてもより黒く見え、且つ、黒光り をすることなぐ導電性メッシュ層面での外光反射による透視画像の黒レベルの低下 が防止され、その黒レベルを向上させることができる。従って、本発明に係る電磁波 シールドフィルタを備えると、透視画像の明室コントラスト感を出すことによりディスプ レイの画像の視認性を向上することができる。
[0016] 〔層構成〕
先ず、図 1は本発明による電磁波シールドフィルタ 10について、基本的な形態を例 示する断面図である。
図 1 (Α)は、透明基材 1上に導電性メッシュ層 2 (以下単に「メッシュ層」とも略称する )が積層されている構成である。また、図 1 (Β)は、透明基材 1上に導電性メッシュ層 2 が積層され、更に導電性メッシュ層 2上に透明榭脂層 3が積層された構成である。ま た、図 1 (C)のように、透明榭脂層 3上に被着体層 4が積層されていても良いし、図 1 ( D)のように、透明基材 1側に被着体層 4が積層されていても良い。また、これら図 1で は、導電性メッシュ層 2は、メッシュ状導電体層 21と黒ィ匕層 22とからなり、メッシュ層の 黒化処理面はメッシュ状導電体層の面に形成した黒化層 22の面として形成されてい る。なお、図 1は、黒ィ匕処理面は導電体メッシュ層 2の線条部分 (ライン部)の表面(図 面上方)及び両側面に形成した形態での説明図である。黒ィ匕処理面は、導電性メッ シュ層の表裏面のうち少なくとも 1面以上に設け、処理面の組み合わせは図 2で後述 するよう〖こ各種ある。なお、上記被着体層 4とは、例えば、シート状や板状或いは塗 膜状の、反射防止フィルタ、近赤外吸収フィルタ等の各種光学フィルタ、保護フィル ム、或 、はディスプレイ自体の構成部品となる前面基板等の任意の機能を有する層 である。
[0017] なお、電磁波シールドフィルタとして、その他の層を必要に応じて適宜、設けても良 い。例えば、導電性メッシュ層の鲭が懸念される場合に防鲭層で被覆するなど、従来 公知の電磁波シールドフィルタにおける各種の層や処理は、本発明の目的及び効 果を逸脱しな 、範囲で追加しても良 、。 [0018] ここで、本発明にお 、て「表側」「表面」とは、透明基材に対して導電性メッシュ層が 形成された側を「表側」(図面上方を向く側でもある)、導電性メッシュ層が形成された 側と同じ向きとなる面(図面の上方の面でもある)を「表面」という。「裏側」「裏面」は、 各々上記「表側」「表面」とは逆となる側(図面下方を向く側でもある)乃至面(図面の 下方の面でもある)をいう。
[0019] また、ディスプレイ用途等に適用した場合にお!、て、観察者側の面は、本発明で定 義する表面ではなぐ裏面であっても良い。
以上の例示は、本発明の電磁波シールドフィルタの態様を限定するものではな!/、。 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、 同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包 含される。
[0020] 以下、本発明の電磁波シールドフィルタについて、透明基材から、各層毎に順に説 明する。
[透明基材]
透明基材 1は、機械的強度が弱い銅メッシュ層を補強するための層である。従って 、機械的強度と共に光透過性を有すれば、その他、耐熱性、絶縁性等も適宜勘案し た上で、用途に応じたものを選択使用すれば良い。透明基材の具体例としては、例 えば、透明榭脂等の有機材料力もなる板及びシート(乃至フィルム。以下同様。)等、 並びに、ガラス等の無機材料力もなる板等である。
[0021] 上記透明榭脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタ レート、ポリエチレンナフタレート、テレフタル酸一イソフタル酸一エチレングリコール 共重合体、テレフタル酸ーシクロへキサンジメタノール エチレングリコール共重合 体などのポリエステル系榭脂、ナイロン 6などのポリアミド系榭脂、ポリプロピレン、ポリ メチルペンテンなどのポリオレフイン系榭脂、ポリメチルメタタリレートなどのアクリル系 榭脂、ポリスチレン、スチレン一アクリロニトリル共重合体などのスチレン系榭脂、トリア セチルセルロースなどのセルロース系榭脂、イミド系榭脂、ポリカーボネート榭脂等が 挙げられる。
[0022] なお、これら榭脂は、榭脂材料的には、単独、又は複数種類の混合榭脂 (ポリマー ァロイを含む)として用いられ、また層的には、単層、又は 2層以上の積層体として用 いられる。また、榭脂シートの場合、 1軸延伸や 2軸延伸した延伸シートが機械的強 度の点でより好ましい。
また、これら榭脂中には、必要に応じて適宜、紫外線吸収剤、充填剤、可塑剤、帯 電防止剤などの添加剤を加えても良!、。
[0023] また、ガラスとしては、石英ガラス、ホウケィ酸ガラス、ソーダライムガラスなどがあり、 より好ましくは熱膨脹率が小さく寸法安定性および高温加熱処理における作業性に 優れ、また、ガラス中にアルカリ成分を含まない無アルカリガラス等が挙げられ、ディ スプレイの前面基板等とする電極基板と兼用することもできる。
[0024] なお、透明基材の厚さは、用途に応じたものとすれば良く特に制限は無ぐ透明榭 脂から成る場合は、通常 12〜: LOOO μ m程度である力 好ましくは 50〜500 μ mで ある。一方、透明基材がガラス板である場合には、通常 l〜5mm程度が好適である。 いずれの材料においても、上記未満の厚さとなると機械的強度が不足して反りや弛 み、破断などが起こり、上記を超える厚さとなると過剰性能でコスト高となる上、薄型 化が難しくなる。
[0025] また、透明基材は、ディスプレイ本体の一構成要素である前面基板と兼用しても良 V、が、前面基板の前に配置する前面フィルタとして電磁波シールドフィルタを用いる 形態では、薄さ、軽さの点で、板よりもシートが優れており、また割れない等の点でも 、ガラス板よりも榭脂シートが優れている。
[0026] この様な点で、透明基材としては榭脂シートが好ま 、材料であるが、榭脂シートの なかでも、特に、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステ ル系榭脂シートが、透明性、耐熱性、コスト等の点で好ましぐより好ましくは 2軸延伸 ポリエチレンテレフタレートシートが最適である。なお、透明基材の透明性は高いほど よいが、好ましくは可視光線透過率で 80%以上となる光透過性が良い。
[0027] なお、榭脂シート等の透明基材は、適宜その表面に、コロナ放電処理、プラズマ処 理、オゾン処理、フレーム処理、プライマー処理、予熱処理、除塵埃処理、蒸着処理 、アルカリ処理、などの公知の易接着処理を行ってもよい。
また、透明基材は色素等で着色しても良い。着色により、近赤外線吸収、ネオン光 吸収、色調整、外光反射防止等が図れる。例えば、榭脂の透明基材に対しては、近 赤外線吸収剤、ネオン光吸収剤、色調整用色素、外光反射防止用色素等の従来公 知の各種色素を添加すればよ!、。
[0028] [導電性メッシュ層]
導電性メッシュ層 2は、電磁波遮蔽機能を担う層であり、またそれ自体は不透明性 であるが、メッシュ状の形状で開口部を設けることで、電磁波遮蔽性能と光透過性を 両立させている層である。本発明における導電性メッシュ層は、表面及び裏面のうち 少なくとも 1面以上を黒ィ匕処理による黒ィ匕処理面とし、且つ当該黒化処理面の JIS Z 8722に準拠して測定した全光線反射率 (R )が 14%以下、より好ましくは 12%以
SCI
下で、且つ全光線反射率 (R )に対する拡散光線反射率 (R )の比 (R /R )
SCI SCE SCE SCI
が 0. 8以上のものである。本発明においては、黒化処理面に上記特定の反射特性 を付与するために、通常、導電性メッシュ層の本体とする金属箔等から形成した導電 性のメッシュ状導電体層 21の必要な面に、黒化処理によって黒化層 22を形成し、該 黒ィ匕層の露出面を黒ィ匕処理面とする。なお、黒化層以外にメッシュ層の形状的特徴 であるメッシュ形状が維持される点で、適宜、後述する防鲭層等のその他の層を導電 性メッシュ層の構成層として設けても良 、。電磁波シールドフィルタがディスプレイに 用 ヽられる形態にお 、て観察者が当該電磁波シールドフィルタを見る側の最表面に 当該防鲭層等のその他の層が形成される場合には、当該最表面の層が黒化処理面 となり、上記特定の反射特性を有する必要がある。
[0029] (メッシュ状導電体層)
メッシュ状導電体層 21は、一般的には金属箔のエッチングで形成した物が代表的 であるが、これ以外のものでも、電磁波シールド性能に於いては意義を有する。従つ て、本発明では、メッシュ状導電体層の材料及び形成方法は特に限定されるもので は無ぐ従来公知の光透過性の電磁波シールドフィルタに於ける各種メッシュ状導電 体層を適宜採用できるものである。例えば、印刷法やめつき法等を利用して透明基 材上に最初からメッシュ状の形状でメッシュ状導電体層を形成したもの、或いは、最 初は透明基材上に全面に、めっき法で導電体層を形成後、エッチング等でメッシュ 状の形状にしてメッシュ状導電体層としたもの等でも構わない。 [0030] 例えば、メッシュ状導電体層のメッシュ形状をエッチングで形成する場合は、透明 基材に積層した金属層をエッチングでパターンユングして開口部を空けてメッシュ状 にすることで形成できる。透明基材に金属層を積層するには、金属箔として用意した 金属層を接着剤で透明基材にラミネートしたり、或いはラミネート用接着剤は用いず に、金属層を蒸着、スパッタ、めっき等の 1或いは 2以上の物理的或いは化学的形成 手法を用いて透明基材上に積層したりすることもできる。なお、エッチングによるメッ シュ状導電体層は、透明基材に積層前の金属箔単体をエッチングでパター-ングし てメッシュ状のメッシュ状導電体層とすることも可能である。この層単体のメッシュ状導 電体層は、接着剤等で透明基材に積層する。これらのなかでも、機械的強度が弱い メッシュ状導電体層の取扱が容易で且つ生産性にも優れ、また、市販の金属箔を利 用できる等の点で、金属箔を接着剤で透明基材に積層した後、エッチングでメッシュ 状に加工して、透明基材上に接着剤を介して積層された形態となる、メッシュ状導電 体層は代表的である。この場合の接着剤としては、粘着性の無い接着剤、或いは粘 着剤 (粘着剤層)等の公知の接着剤を採用すれば良 、。
[0031] メッシュ状導電体層は、電磁波シールド性能を発現するに足る導電性を有する物 質であれば、特に制限は無いが、通常は、導電性が良い点で金属層が好ましぐ金 属層は上記のように、蒸着、めっき、金属箔ラミネート等により形成することができる。 金属層乃至は金属箔の金属材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム 等が挙げられる。また金属層の金属は合金でも良ぐ金属層は単層でも多層でも良 い。例えば、鉄の場合には、低炭素リムド鋼ゃ低炭素アルミキルド鋼などの低炭素鋼 、 Ni— Fe合金、インバー合金、等が好ましい。一方、金属が銅の場合は、金属材料 は銅や銅合金となり、銅箔としては圧延銅箔や電解銅箔があるが、薄さ及びその均 一性、黒化層との密着性等の点からは、電解銅箔が好ましい。
[0032] なお、金属層によるメッシュ状導電体層の厚さは、 1〜: LOO /z m程度、好ましくは 2 〜20 μ mである。厚さがこれより薄くなり過ぎると電気抵抗上昇により十分な電磁波 シールド性能を得難くなり、厚さがこれより厚くなり過ぎると高精細なメッシュ形状が得 難くなり、メッシュ形状の均一性が低下する。
[0033] また、メッシュ状導電体層となる金属層の表裏面は、透明基材と接着積層させる為 の透明接着剤層等の隣接層との密着性向上が必要な場合は当該面を粗面とすると 良い。
また、メッシュ状導電体層となる金属層の表面は、当該面に黒ィ匕層を追加的に形成 する場合、黒化層がより薄くても所望の微小凹凸や低反射特性を有することが容易と なりやすい点から、表面粗さは、メッシュ状導電体層となる金属層の表面の輪郭曲線 として粗さ曲線を採用した時に、当該輪郭曲線の十点平均粗さ R¾[IS CiIS B060K 1994年版))が 以上であることが好ましい。
[0034] (黒化処理)
黒ィ匕処理は上記導電性メッシュ層の面の光反射を防ぐためのものであり、黒化処理 で形成された黒化処理面により、導電性メッシュ層面での外光反射による透視画像 の黒レベルの低下を防いで、その黒レベルを向上させ、また、透視画像の明室コント ラスト感を出すことによりディスプレイの画像の視認性を向上するものである。黒ィ匕処 理面は、導電性メッシュ層のライン部 (線条部分)の全ての面に設けることが好ましい 1S 本発明では表裏両面のうち少なくとも何れ力 1面以上は黒ィ匕処理面とする。本発 明に係る電磁波シールドフィルタは、当該黒化処理面を有する側を、観察者が見る 側としてのディスプレイの前面に設置される。
[0035] なお、黒ィ匕処理面は、単層の導電性メッシュ層の面自体であっても良い。つまり、導 電性メッシュ層が単層で、該単層の表面が上記特定の反射特性を有するものであれ ば、その表面は付カ卩的な黒ィ匕処理は不要である。本発明においては、このような付 加的な黒化処理なしでも、表面が上記特定の反射特性を有するものであれば、結果 として同じ表面物性を有するから、その面も「黒ィ匕処理面」として本発明に含めること にする。
[0036] 但し、通常は、電磁波シールド機能に必要な導電性の点で、導電性メッシュ層には 金属層等の導電体層が採用され、またこのような導電体層は、通常その表面色は金 属色等であって黒色ではなぐ上記本発明における黒ィヒ処理面にならないことが多 い。従って、このような場合には、その表面に後述する黒ィ匕層を形成するなどの黒ィ匕 処理を施して、該形成された黒化層の表面で黒化処理面を実現した構成とする。ま た、表面に黒ィ匕層を設けるとは、該表面を構成する層 (メッシュ状導電体層等)にメッ キ等で付加的に設ける他、エッチング等で表面から内部に向かって該表面を構成す る層自体を黒ィ匕層に変化させても良い。従って、通常、導電体メッシュ層 2は、導電 性により電磁波シールド機能を担うメッシュ状導電体層 21とその少なくとも表裏面のう ち 1面以上の面には黒ィ匕層 22を設けた層とする(図 2参照)。
[0037] 従って、前記本発明に係る特定の反射特性を有する黒化処理面の対象面を黒ィ匕 層 22の形成面で例示すると、導電性メッシュ層 2のライン部の表裏両面(図 2 (A) )、 表面だけ (図 2 (B) )、裏面だけ (図 2 (C) )、表面と側面 (両側或いは片側)だけ、裏面 と側面(両側或いは片側)だけ、全面 (表裏両面と両側面)(図 2 (D) )等である。但し 、これは前記特定の反射特性を有する黒ィ匕処理面について示したのであって、上記 示した黒ィ匕処理面以外に、通常では黒ィ匕処理された面の範疇に入るが前記所望の 反射特性を有しない黒化処理された面を有していても良い。例えば、全面が通常で は黒ィ匕処理された面の範疇に入るが、表面だけが本発明で規定する所望の反射特 性を有する黒ィ匕処理面である等である。
[0038] (黒化処理面)
本発明における導電性メッシュ層の黒ィ匕処理面は、黒乃至は黒に近い色 (褐色、 紺色、深緑色等。これも含めて黒ということにする。)を呈し、 JIS Z8722に準拠して 測定した全光線反射率 (R )が 14%以下、好ましくは 12%以下で、且つ全光線反
SCI
射率 (R ) の
SCI に対する拡散光線反射率 (R )
SCE 比 (R /R
SCE SCI )が 0. 8以上であると いう光学特性を有する。
[0039] 黒ィ匕処理面を上記のような特定の反射特性を有するように最適化することにより、 濡れ色においてもより黒く見え、且つ、黒光りをすることなぐ導電性メッシュ層面での 外光反射による透視画像の黒レベルの低下が防止され、その黒レベルを向上させる ことができる。これらは黒ィ匕処理面に透明榭脂層が更に積層された濡れ色において も達成でき、本発明に係る電磁波シールドフィルタを備えると、透視画像の明室コント ラスト感を出すことによりディスプレイの画像の視認性を向上することができる。
[0040] 本発明における黒ィ匕処理面の上記全光線反射率は、 14%以下である力 好ましく は 12%以下、更に好ましくは 8%以下である。上記全反射率は低いほど、濡れ色に おいてもより黒くみえることが可能な点力 好ましい。技術的に達成が困難な点から 黒化処理面の上記全反射率は通常 0. 1%以上である。
また、本発明における黒化処理面の全光線反射率 (R )に対する拡散光線反射
SCI
率 (R )の比 (R /R )は、0. 8以上である力 好ましくは、 0. 9以上、更に好ま
SCE SCE SCI
しくは 0. 95以上である。全光線反射率 (R )に対する拡散光線反射率 (R )の比
SCI SCE
(R /R )
SCE SCI は、 1に近いほど全反射における拡散反射の成分が多くなり、鏡面反 射の成分が少なくなる点から、所謂黒光りをすることなぐ黒レベルを向上させること ができる。
[0041] 本発明に係る黒化処理面の反射特性を上記特定の反射特性とするためには、黒 化処理の条件を適宜調整して黒化の色及び微小凹凸の形状を調整することが好ま しい。
本発明に係る黒化処理面の反射特性を上記特定の反射特性とするための一態様 として、黒化処理面の形状は、微小凹凸を有することが、拡散反射成分を増やす点 力 好ましい。上記特定の反射特性は、黒ィ匕処理面の微小凹凸の様々な特性に依 存するものである。
[0042] 当該微小凹凸のうち、上記特定の反射特性を得るための好ましい形状の一形態と しては、黒ィ匕処理面の表面の輪郭曲線として粗さ曲線を採用した時に、当該輪郭曲 線の十点平均粗さ R¾[IS (JIS B0601 (1994年版))力 Sl /z m以上、更に 2 m以上 であることが好ましい。ここで黒ィ匕処理面の輪郭曲線としては、断面曲線、粗さ曲線、 うねり曲線があるが、本発明においては、うねり曲線を断面曲線力も差し引いた粗さ 曲線 Rを採用する。黒ィ匕処理面が上記のように輪郭曲線の十点平均粗さ R¾[IS QIS B0601 (1994年版))が特に 2 m以上である場合には、上記特定の反射特性を 有しやすい。当該輪郭曲線の十点平均粗さ R¾[IS CiIS B0601 (1994年版))は、 更に好ましくは 2〜5 /ζ πιである。なお、導電性メッシュ層の強度、及び電磁波遮蔽性 の確保の点から、 R¾[ISの値は導電性メッシュ層の厚みの半分程度以下の値とする ことが好ましい。
[0043] また、当該微小凹凸のうち、上記特定の反射特性を得るための好ましい形状の一 形態としては、微小凹凸の輪郭曲線に粗さ曲線を採用したときの該輪郭曲線の確率 密度関数 CFIS B0601 (2001年版)規定〕において、確率密度のピーク付近の形状 力 該確率密度関数を滑らかにした曲線にて、確率密度を縦軸にとり且つ上方向に とったときに (横軸は粗さ曲線の凹凸の振幅値)、上に凸の曲線形状となる場合が挙 げられる。なお、上に凸の「上」とは、前記確率密度を縦軸にとり且つ上方向を確率 密度の正の値にとった時の上である。
図 3で説明すれば、図 3 (A)が輪郭曲線としての粗さ曲線 Rを示し、図中、符号 ML は平均線である。なお、輪郭曲線としては、断面曲線、粗さ曲線、うねり曲線があるが 、うねり曲線を断面曲線力も差し引いた粗さ曲線 Rを本発明では採用する。そして、 図 3 (B)が図 3 (A)の粗さ曲線 Rの輪郭曲線力も算出された、粗さ曲線の確率密度関 数 ADFと、粗さ曲線の負荷曲線 BAC (累積曲線)である。図中、 Rpは粗さ曲線の最 大山高さ、 Rvは粗さ曲線の最大谷深さを示す。そして、図 3 (C)が、図 3 (B)を確率 密度が図面上側正方向の縦軸となる様に時計回り逆方向に 90度回転させたグラフ である。なお、図 3 (C)中、水平軸の Rpと Rv間、確率密度の縦軸は、真数目盛りであ り対数目盛りではない。確率密度関数 ADFが示す形状は、図 3 (C)の様に細かく凸 凹する形状なので、図 4 (A)の様に、これを滑らかな曲線ィ匕したのが確率密度曲線 A dcである。表面を測定して得られる確率密度関数 ADFは、図 3 (B)及び (C)の如ぐ 棒グラフの様なギザギサなグラフとなるので、これを最小二乗法等によって滑ら力確 率密度曲線として、測定表面の微小凹凸の特徴を捉える。なお、確率密度関数を滑 らかな曲線ィ匕するとは、表面の測定を無限回数繰り返せば、ギザギザしたグラフは平 均化し、最終的には確率密度関数は滑らかな曲線に近づき、この最終的な曲線を 1 回乃至は少ない測定回数の結果力も近似的に求めることに該当する。そして、図 4 ( A)で示す確率密度曲線 Adcの様に、その確率密度曲線のピーク付近の形状力 上 に凸の曲線形状力 なる黒ィ匕処理面が、図 4 (B)の様なピーク付近の形状が尖った 形状で尖点を有し、ピークの頂点を通り縦軸に平行な直線に対して左右に位置する 曲線がいずれも下に凸の曲線形状からなっている黒化処理面よりも、より優れた反射 防止性能を与える。
上記のような確率密度関数の曲線形状は、多くは、例えば、当該微小凹凸が粗い 凹凸に細かい凹凸が重畳した場合に得られる。
黒ィ匕処理面の微小凹凸を上述のような特定の微小凹凸とするためには、後述する ような黒化層を形成する際の黒化処理の条件を適宜調整するか、或いは黒化処理 する対象面、すなわち黒ィ匕処理面の下地面の表面の微小凹凸具合を調整する。な お、下地面は鏡面よりも微小凹凸面を有する場合の方が、黒化層を追加的に形成す る場合では、より薄くても所望の微小凹凸や反射特性を有することが容易となりやす い。下地面の微小凹凸として好ましい形状は、上記記載したとおりである。黒化層を 形成する際の黒ィ匕処理の好ましい条件としては後述する。
[0045] また、該黒ィ匕処理面の好ましい黒濃度は 0. 6以上である。なお、黒濃度の測定方 法は、 COLOR CONTROL SYSTEMの GRETAG SPM100— 11 (キモト社製、 商品名)を用いて、観察視野角 10度、観察光源 D50、照明タイプとして濃度標準 A NSITに設定し、白色キヤリブレイシヨン後に、試験片を測定する。
[0046] (黒化層)
黒ィ匕層 22は前述した黒ィ匕処理面を付与する為に設ける層であり、黒等の暗色を呈 し、密着性等の基本的物性を満足するものであれば良ぐ公知の黒ィ匕層を適宜採用 し得る。
従って、黒化層としては、金属等の無機材料、黒着色榭脂等の有機材料等を用い ることができ、例えば無機材料としては、金属、合金、金属酸化物、金属硫化物の金 属化合物等の金属系の層として形成する。金属系の層の形成法としては、従来公知 の各種黒ィ匕処理法を適宜採用できる。なかでも、めっき法による黒ィ匕処理は密着性、 均一性、容易性等で好ましい。めっき法の材料は、例えば、銅、コバルト、ニッケル、 亜鉛、モリブデン、スズ、クロム等の金属や金属化合物等を用いる。これらは、密着性 、黒さ等の点でカドミウム等による場合よりも優れている。
[0047] なお、メッシュ状導電体層が銅箔等、銅による場合、黒化層形成の為の黒化処理と して好ましいめっき法には、銅からなるメッシュ状導電体層(メッシュ状とする前に行う のであればその前の導電体層)を、硫酸、硫酸銅及び硫酸コバルト等からなる電解 液中で、陰極電解処理を行 ヽカチオン性粒子を付着させるカソーディック電着めつき 法がある。この方法によれば、カチオン性粒子の付着で黒色と同時に粗面も得られる 。カチオン性粒子としては、銅粒子、銅合金粒子を採用できる。銅合金粒子としては 、銅—コバルト合金粒子が好ましぐ更にその平均粒子径は 0. 001〜1 /ζ πιが好まし い。銅一コバルト合金粒子により、銅一コバルト合金粒子層力 なる黒ィ匕層が得られ る。カソーディック電着法では、付着させるカチオン性粒子の平均粒子径 0. 001-1 mに揃えられる点でも好ましい。平均粒子径が上記範囲超過では、付着粒子の緻 密さが低下し黒さの低下やムラが起こり、粒子脱落 (粉落ち)が発生し易くなる。一方 、平均粒子径が上記範囲未満でも、黒さが低下する。なお、カソーディック電着法は 処理を高電流密度で行うことで、処理面がカソーディックとなり、還元性水素発生で 活性化し、銅面とカチオン性粒子との密着性が著しく向上する。
[0048] また、黒化層として、黒色クロム、黒色ニッケル、ニッケル合金等も好ましぐ該ニッ ケル合金としては、ニッケル—亜鉛合金、ニッケル—スズ合金、ニッケル—スズ—銅 合金である。特に、ニッケル合金は黒色度合いと導電性が良い上、黒ィ匕層に防鲭機 能も付与でき (黒ィ匕層兼防鲭層となる)、防鲭層を省略することもできる。しかも、通常 、黒ィ匕層の粒子は針状のために、外力で変形して外観が変化しやすいが、ニッケル 合金による黒ィ匕層では粒子が変形し難ぐ後加工工程で外観が変化し難くい利点も 得られる。なお、黒ィ匕層として、ニッケル合金の形成方法は、公知の電解または無電 解メツキ法でよぐニッケルメツキを行った後に、ニッケル合金を形成してもよい。
[0049] 或 ヽは、メッシュ状導電体層が銅の場合、これをアルカリ性溶液と反応させて酸ィ匕 させ、酸化銅微粒子を表面易析出させる方法も有る。例えば、特開 2002— 9484号 公報記載のように、銅のメッシュ層を、ピロリン酸銅水溶液、ピロリン酸カリウム水溶液 、及びアンモニア水溶液との混合液に浸漬する方法等が挙げられる。
[0050] 本発明にお 、て、黒化処理面が特に上記反射特性を有するようにするためには、メ ッシュ状導電体層の表面の状態により黒ィ匕層の形成方法を適宜選択して行なう。 例えば、銅力 なるメッシュ状導電体層の表面の粗さが比較的大きく R¾[ISが 1 μ m 以上であるときは、黒色ニッケルめっきにより黒ィ匕層を形成することが好ましい。また、 メッシュ状導電体層の表面の粗さが比較的小さく R¾[ISが 1 m未満であるときは、平 均粒子径 lnm〜l μ m程度の銅粒子や銅 コバルト合金粒子を用いた力ソーデイツ ク電着法、或いは、アルカリ性溶液による平均粒子径 lnm程度の酸化銅微粒子形成 により黒ィ匕層を形成することが好ましい。
[0051] (メッシュ形状) なお、メッシュ層 2のメッシュ状としての形状は、任意で特に限定されないが、そのメ ッシュの開口部の形状として、正方形が代表的である。開口部の平面視形状は、例 えば、正三角形等の三角形、正方形、長方形、菱形、台形等の四角形、六角形、等 の多角形、或いは、円形、楕円形などである。メッシュはこれら形状力もなる複数の開 口部を有し、開口部間は通常幅均一のライン状のライン部となり、通常は、開口部及 びライン部は全面で同一形状同一サイズである。具体的サイズを例示すれば、開口 率及びメッシュの非視認性の点で、開口部間のライン部の幅は 5〜25 μ mが良い。 また、開口部サイズは〔ライン間隔或 、はラインピッチ〕 -〔ライン幅〕であるが、この〔ラ イン間隔或いはラインピッチ〕で言うと 150 m〜 500 m、且つ開口率(開口部の面 積の合計 Zメッシュ部の全面積)を 80〜95%とするのが、光透過性と電磁波遮蔽性 との両立性の点で好まし!/、。
なお、バイアス角度 (メッシュのライン部と電磁波シールドフィルタの外周辺との成す 角度)は、ディスプレイの画素ピッチや発光特性を考慮して、モアレが出難い角度に 適宜設定すれば良い。
[0052] なお、メッシュ層 2は電磁波シールドフィルタの全面に亘つてメッシュ状としても良い 力 光透過性が必要な部分をメッシュ状のメッシュ部として、その他の部分 (例えば 4 辺全周囲を額縁状に囲う様な)非メッシュ部としても良い。非メッシュ部は、前記メッシ ュ部以外の部分であり、光透過性が面として必要でない領域となる。通常、メッシュ部 の外周部に非メッシュ部を設ける。また、非メッシュ部は通常アースを取るのに利用さ れる。アースに利用する非メッシュ部は通常、四辺全周囲に額縁状とする。また、額 縁状の非メッシュ部は、ディスプレイ画像等のメッシュ部を透して見る画像に対して、 その周囲を (例えば黒枠等として)額縁状に囲って該画像を引き立たせ見栄えを良く する外枠としても利用できる。なお、非メッシュ部は、アースを取る場合は少なくともそ の一部において導体層を露出させるのが好ましい。
なお、非メッシュ部の具体的大きさは使われ方によるが、額縁状でアース部や外枠 とする場合、額縁の幅は 15〜: LOOmm程度で、なかでも 30〜40mmとするのが一般 的である。
[0053] (防鲭層) メッシュ層 2としては、必要に応じ適宜その他の層の形成、乃至は処理を施しても良 い。例えば、鲭びに対する耐久性が不十分な場合は、防鲭層を設けると良い。防鲭 層は、また前述した黒化層もそうであったが、それがメッシュ層の形状的特徴であるメ ッシュ形状を維持する限り、メッシュ層に含まれるメッシュ層の構成層として本発明で は捉える。
防鲭層はメッシュ層の表面の鲭び易 、面に施せば良いが、黒化処理面上に更に 施す場合は、施された後の黒ィ匕処理面 (実際は防鲭層面であるが)でも、本発明で は表裏両面のうち少なくとも 1面以上は、所望の反射特性を有する面とする。防鲭層 によるメッシュ層の被覆面は、表面だけ、裏面だけ、表裏両面、側面(両側或いは片 側)だけ、表面と両側面、裏面と両側面、表裏両面と両側面等である。
[0054] 防鲭層は、それで被覆するメッシュ状導電体層よりも鲭び難 、ものであれば、金属 等の無機材料、榭脂等の有機材料、或いはこれらの組合せ等、特に限定されるもの ではない。また場合によっては、黒ィ匕層をも防鲭層で被覆することで、黒化層の粒子 の脱落や変形を防止し、黒ィ匕層の黒さを高めることもできる。この点では、メッシュ状 導電体層を金属箔で形成する場合、透明基材上の金属箔に黒化処理で黒化層を設 けておく場合には、該黒化層の脱落や変質防止の意味で、透明基材と金属箔との積 層前に設けておくのが好ましい。
[0055] 防鲭層は、従来公知のものを適宜採用すれば良ぐ例えば、クロム、亜鉛、ニッケル 、スズ、銅等の金属乃至は合金、或いは金属酸ィ匕物の金属化合物の層等である。こ れらは、公知のめっき法等で形成できる。ここで、防鲭効果及び密着性等の点で好ま しい防鲭層の一例を示せば、亜鉛めつきした後、クロメート処理して得られるクロムィ匕 合物層が、挙げられる。
[0056] なお、クロムの場合はクロメート (クロム酸塩)処理等でもよ!/、。なお、クロメート処理 は、処理面にクロメート処理液を接触させて行う。
また、クロメート処理は、該処理前に亜鉛めつきするの力 密着性、防鲭効果の点で 好ましい。また、防鲭層中には、エッチングや酸洗浄時の耐酸性向上の為に、シラン カップリング剤等のケィ素化合物を含有させることもできる。
なお、防鲭層の厚さは通常 0. 001〜2 111程度、好ましくは0. 01〜1 111である。 [0057] 〔透明榭脂層〕
透明榭脂層 3は、図 1 (B)の断面図で例示のように、導電性メッシュ層 2による表面 凹凸を埋めてメッシュ層側の表面を平坦ィ匕することにより、メッシュ層側で被着体と接 着剤等で積層する場合に気泡抱き込み等を防いだり、メッシュ層を外力から保護した りする為に、必要に応じて設ける層である。なお、該保護の点では、この透明榭脂層 は表面保護層でもある。また、図 1 (C)のように、透明榭脂層 3は、被着体 4と導電性 メッシュ層 2との間に介在し、両者を接着させる接着剤層として用いることもできる。こ の様な透明榭脂層 3は、透明基材 1上に積層した導電性メッシュ層 2による凹凸表面 に対して、榭脂を含む液状組成物を塗布等で施すことで形成できる。該液状組成物 としては、透明な榭脂を含むものであれば特に限定は無ぐ公知の榭脂を適宜採用 すれば良い。例えば、熱可塑性榭脂、熱硬化性榭脂、電離放射線硬化性榭脂等で ある。例えば、熱可塑性榭脂としては、アクリル系榭脂、ポリエステル榭脂、熱可塑性 ウレタン榭脂、酢酸ビュル系榭脂等であり、熱硬化性榭脂としては、熱硬化性ウレタ ン榭脂、エポキシ榭脂、熱硬化性アクリル榭脂等であり、電離放射線硬化性榭脂とし ては紫外線や電子線で硬化するアタリレート系榭脂等である。なかでも、メッシュ層に よる凹凸を埋め易い点では、無溶剤或いは無溶剤に近い状態で塗工形成したりでき る、電離放射線硬化性榭脂は好まし ヽ榭脂である。
[0058] なお、透明榭脂層は平坦化目的の点では、導電性メッシュ層の開口部のみを埋め れば足りる力 図 1 (B)のようにメッシュ層のライン部直上も含めて形成しても良い。ラ イン部直上も含めて透明榭脂層を設けた場合、透明榭脂層に接するメッシュ層の面 が黒化処理面の場合、透明榭脂層によって濡れ色となる。特に、本発明ではこの濡 れ色の場合でも、光反射防止効果が高いので、ライン部直上も含めて透明榭脂層を 形成した構成は、好適な構成の一つである。
[0059] 〔その他の層:被着体、光学フィルタ層、表面保護層、透明接着剤層等〕
なお、上記被着体とは、例えば光学フィルタ層(フィルム、シート、板)、表面保護層 (フィルム、シート、板)等である。光学フィルタ層の光学フィルタ機能としては、近赤 外線吸収、反射防止 (含む防眩)、色調調整 (ネオン光吸収、色再現性向上)、外光 反射防止等である。また、表面保護層の機能としては、防汚染、耐擦傷性等である。 これらは、従来公知のものを適宜採用すれば良い。また、光学フィルタ層、表面保護 層は透明榭脂層の被着体としてではなぐ塗布等によってメッシュ層上、透明榭脂層 上、光学フィルタ層の場合は別の光学フィルタ層上に形成することもできる。
[0060] また、被着体 4は、図 1 (C)とは逆に、図 1 (D)のように透明基材 1側に積層されてい ても良い。透明基材と被着体間は、これら同士に接着性がない場合には適宜透明な 透明接着剤層を間に介して積層する。透明接着剤層としては、粘着性の無い接着剤 、或いは粘着剤 (粘着剤層)等の公知の接着剤を採用すれば良い。該透明接着剤層 は、透明榭脂層の 1形態といえる。また、被着体はディスプレイ用電磁波シールドフィ ルタの表裏両面に積層しても良い。その場合、表裏で被着体の種類 (機能)を使い分 けることができる。
[0061] 〔その他〕
なお、透明基材、透明榭脂層、透明接着剤層、被着体等の電磁波シールドフィル タを構成する榭脂中には、外光反射防止用色素、ネオン光吸収剤、色調整用色素、 等の電磁波シールドフィルタに於 、て公知の色素を適宜添加しても良 、。
[0062] また、メッシュ層の詳細を説明する図 1、黒ィ匕処理面を説明する図 2は、例示であり 、本発明の電磁波シールドフィルタの形態を限定するものではない。本発明の特許 請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効 果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 実施例
[0063] 以下、本発明について実施例を示して具体的に説明する。これらの記載により本発 明を制限するものではない。尚、実施例中、部は特に特定しない限り重量部を表す。 <実施例 1 >
まず、透明基材 1として、連続帯状で無着色透明な 2軸延伸ポリエチレンテレフタレ 一トフイルム(厚さ 100 m)の表側とする面に、厚さ 10 mの電解銅箔を、 2液硬化 型ウレタン榭脂系接着剤を用いてドライラミネートして、連続帯状の銅貼積層シートを 作製した。
次いで、上記銅貼積層シートの銅箔に対して、フォトリソグラフィ一法を利用したエツ チングで、メッシュ状にカ卩ェし、透明基材 1上にメッシュ状導電体層 21が形成された メッシュ積層シートを作成した。
次いで、このメッシュ積層シートのメッシュ状導電体層側の面に対して、黒色-ッケ ルめっきによる黒ィ匕層 22を形成する黒ィ匕処理を施して、導電性メッシュ層 2の表面( 及び両側面)に表 1に示す反射特性の黒化処理面を有する、図 1 (A)の様な電磁波 シールドフィルタ 10を作製した。なお、形成したメッシュの形状は、その開口部が正 方形でライン部のライン幅 25 m、ラインピッチ 150 mである。また、メッシュ部の四 辺全周は額縁状の非メッシュ部とした。
[0064] 更に、上記電磁波シールドフィルタ 10のメッシュ層側の面に対して、接着剤層を兼 用する透明榭脂層 3として、アクリル榭脂系塗液を非メッシュ部は部分的に露出させ る様にその内周一部も含めて間欠ダイコート法でメッシュ層上に間欠塗工した。次い で、塗液の溶剤乾燥後の塗膜に、被着体として厚さ 80 mのトリアセチルセルロース フィルムを基材とし其の表面に弗素榭脂系の低屈折率層を反射防止層として形成し てなる反射防止フィルムを、其の基材側カ^ッシュ層側を向く(反射防止層が最表面 に露出する)様にしてラミネートし、反射防止機能付きの所望の電磁波シールドフィ ルタを作製した。
[0065] <実施例 2〜5 >
実施例 1において電解銅箔を各々変更した他は、実施例 1と同様にして、表 1に示 す反射特性の黒化処理面を有する図 1 (A)の様な電磁波シールドフィルタ 10を作製 した。次いで、実施例 1と同様にして、反射防止機能付きの電磁波シールドフィルタ を作製した。
[0066] <実施例 6 >
実施例 1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒ィ匕層 22を 形成する代わりに、カソーディック電着めつき法により平均粒子径 lnmの銅粒子を付 着して黒化層 22を形成した他は、実施例 1と同様にして、表 1に示す反射特性の黒 化処理面を有する図 1 (A)の様な電磁波シールドフィルタ 10を作製した。次いで、実 施例 1と同様にして、反射防止機能付きの電磁波シールドフィルタを作製した。
[0067] <実施例 7 >
実施例 1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒ィ匕層 22を 形成する代わりに、カソーディック電着めつき法により平均粒子径 0. 1 μ mの銅ーコ バルト合金粒子を付着して黒ィ匕層 22を形成した他は、実施例 1と同様にして、表 1〖こ 示す反射特性の黒化処理面を有する図 1 (A)の様な電磁波シールドフィルタ 10を作 製した。次いで、実施例 1と同様にして、反射防止機能付きの電磁波シールドフィル タを作製した。
[0068] <実施例 8 >
実施例 1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒ィ匕層 22を 形成する代わりに、カソーディック電着めつき法により平均粒子径 0. の銅—コ バルト合金粒子を付着して黒ィ匕層 22を形成した他は、実施例 1と同様にして、表 1〖こ 示す反射特性の黒化処理面を有する図 1 (A)の様な電磁波シールドフィルタ 10を作 製した。次いで、実施例 1と同様にして、反射防止機能付きの電磁波シールドフィル タを作製した。
[0069] <実施例 9 >
実施例 1において電解銅箔を変更し、更に、黒色ニッケルめっきによる黒ィ匕層 22を 形成する代わりに、カソーディック電着めつき法により平均粒子径 1 μ mの銅粒子を 付着し、その後更にコバルトめっきを行なって黒ィ匕層 22を形成した他は、実施例 1と 同様にして、表 1に示す反射特性の黒化処理面を有する図 1 (A)の様な電磁波シー ルドフィルタ 10を作製した。次いで、実施例 1と同様にして、反射防止機能付きの電 磁波シールドフィルタを作製した。
[0070] <実施例 10 >
まず、透明基材 1として、厚さ 100 mで片面にポリエステル榭脂系プライマー層を 形成した、連続帯状の無着色透明な 2軸延伸ポリエチレンテレフタレートフィルムを用 意した。この透明基材のプライマー層上に、スパッタ法で、順次、厚さが 0. 1 μ mの- ッケルークロム合金層及び厚さが 0. 2 mの銅層を設けて導電処理層とした。該導 電処理層面に、硫酸銅浴を用いた電解メツキ法で厚さが 2. 0 mの銅メツキ層を設 け、導電処理層及び銅メツキ層からなる導電体層が透明基材上に接着剤層を間に 介さずに直接形成された、銅貼積層シートを作製した。次いで、上記銅貼積層シート の銅箔に対して、フォトリソグラフィ一法を利用したエッチングで、メッシュ状に力卩ェし 、透明基材 1上にメッシュ状導電体層 21が形成されたメッシュ積層シートを作成した 。次いで、このメッシュ積層シートのメッシュ状導電体層側の面に対して、ピロ燐酸銅 水溶液、ピロ燐酸カリウム水溶液、及びアンモニア水の混合溶液を用いた酸ィ匕により 平均粒子径 0.: L mの酸化銅微粒子を析出させる黒ィ匕処理を施して、導電性メッシ ュ層 2の表面 (及び両側面)に表 1に示す反射特性の黒化処理面を有する、 01 (A) の様な電磁波シールドフィルタ 10を作製した。その他は、実施例 1と同様にして、反 射防止機能付きの電磁波シールドフィルタを作製した。
[0071] <比較例 1、比較例 2>
実施例 1において電解銅箔を各々変更した他は、実施例 1と同様にして、電磁波シ 一ルドフィルタを作製した。
[0072] 〔性能評価〕
先ず、実施例及び比較例の電磁波シールドフィルタについて、黒化処理面の特性 と、性能評価結果を、表 1に示す。
なお、黒化処理面の反射特性及び微小凹凸は、メッシュ層のメッシュ部の外周に在 る非メッシュ部のメッシュ層表面の黒ィ匕処理面で評価した。また、光反射防止性能も メッシュ部の開口部の影響を削除できる点で、非メッシュ部の部分 (但し、透明榭脂 層を介して反射防止フィルムが積層され濡れ色となる内周部分)で行った。
[0073] (1)黒化処理面の反射特性
黒化処理面の JIS Z8722に準拠して測定した全光線反射率(%)は、分光測色計 (例えば、コ-カミノルタセンシング株式会社製、 CM— 3600d)を反射モードに設定 し、光源は標準の光 D65、視野 2° を用いて、検出器を、反射光のうち、拡散反射光 と鏡面反射光の両方を総合した全反射光の (積分)強度を測定するような SCIモード に設定して、 Y値(3刺激値 XYZの Y)を測定した。また、黒化処理面の JIS Z8722 による拡散光線反射率 (%)は、同様に分光測色計を用いて、光源及び視野は同じく して、鏡面反射光を光トラップで吸収遮断することによって、検出器が反射光のうち 拡散反射光のみの (積分)強度を測定するような SCEモードに設定して、 Y値 (3刺激 値 XYZの Y)を測定した。
[0074] (2)光反射防止性能 電磁波シールドフィルタの光反射防止性能の評価は、透明榭脂層及び光反射防 止フィルムを積層した後の濡れ色となった状態で、黒化処理面側の全光線反射率( %)を、反射防止フィル側力も測定した (表中「AR」)。全光線反射率の測定方法は、 (1)における全光線反射率の測定方法と同様に行なった。濡れ色となった状態での 全光線反射率 (AR)は小さい方が好ましぐ全光線反射率が 5%未満である場合力 光反射防止性能として許容範囲である。
[0075] (3)黒ィ匕処理面の十点平均粗さ R¾[IS、 Ra
黒化処理面の微小凹凸は、微小凹凸の輪郭曲線に粗さ曲線を採用したときの、当 該輪郭曲線の十点平均粗さ R¾[IS QIS B0601 (1994年版)、単位は μ m)により 評価した。また、参考値として、該微細凹凸の中心線平均粗さ Ra QIS B0601、単 位は μ m)も合わせて測定した。
[0076] (4)確率密度曲線
黒ィ匕処理面の微小凹凸に関し、微小凹凸の輪郭曲線に粗さ曲線を採用したときの 、当該輪郭曲線の確率密度関数 CFIS B0601 (2001年版)規定〕において、確率密 度のピーク (頂上部)付近の形状が、該確率密度関数を滑らかにした曲線にて、確率 密度を縦軸にとり且つ上方向にとったときに (横軸は粗さ曲線の凹凸の振幅値)、上 に凸の曲線力も成る形状となるか否かをみた。そして、図 4 (A)のように、ピーク付近 の形状が上に凸の曲線力もなる場合を「上に凸」、また図 4 (B)のように、ピーク付近 の形状が尖った形状で尖点を有し、ピークの頂点を通り縦軸に平行な直線に対して 左右に位置する曲線が 、ずれも下に凸の曲線形状力 なって 、る場合を「下に凸」と
Β§ίί己しに。
[0077] [表 1] 表 1 ·
Figure imgf000026_0001
-;測定未実施
<結果のまとめ >
表 1に示すように、黒化処理面の JIS Z8722に準拠して測定した全光線反射率 (R )が 14%以下で、且つ全光線反射率 (R )に対する拡散光線反射率 (R )の比
SCI SCI SCE
(R /R )が 0. 8以上である各実施例はいずれも、これらの反射特性を満たさな
SCE SCI
い各比較例に比べて、濡れ色となった状態での全光線反射率 (AR)が小さぐより優 れた光反射防止性能が得られた。実施例 8〜10以外の実施例及び比較例は、表面 の算術平均粗さ Raでは、 0. 2〜1. O /z mの範囲内で、従来ならばいずれも良好とさ れて来た範囲であるが、反射特性によって、性能差がある事が判明した。また、実施 例 8〜10により、従来ならば良好とされてきた表面の算術平均粗さ Raの範囲外であ つても、良好な光反射防止性能が得られることが明らかになった。

Claims

請求の範囲
透明基材上に、導電性メッシュ層を少なくとも有する電磁波シールドフィルタにおい て、当該導電性メッシュ層の少なくとも表裏面の何れか一面以上の面が黒ィヒ処理さ れ、当該黒化処理面の JIS Z8722に準拠して測定した全光線反射率 (R )が 14
SCI
%以下で、且つ全光線反射率 (R
SCI )に対する拡散光線反射率 (R
SCE )の比 (R /
SCE
R )が 0. 8以上であることを特徴とする電磁波シールドフィルタ。
SCI
前記黒ィ匕処理面が微小凹凸を有し、該微小凹凸の輪郭曲線に粗さ曲線を採用し たときに、当該粗さ曲線の十点平均粗さ R¾[IS (JIS B0601 (1994年版))が 以上であることを特徴とする、請求の範囲第 1項に記載の電磁波シールドフィルタ。 前記黒化処理面を有する導電性メッシュ層の当該黒化処理面上に、透明榭脂層が 積層されていることを特徴とする、請求の範囲第 1項又は第 2項に記載の電磁波シー ルドフィルタ。
PCT/JP2006/319306 2005-09-28 2006-09-28 電磁波シールドフィルタ WO2007037329A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007537677A JP4849069B2 (ja) 2005-09-28 2006-09-28 電磁波シールドフィルタ
KR1020087009900A KR101263054B1 (ko) 2005-09-28 2008-04-25 전자기파 실드 필터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005282754 2005-09-28
JP2005-282754 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037329A1 true WO2007037329A1 (ja) 2007-04-05

Family

ID=37899753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319306 WO2007037329A1 (ja) 2005-09-28 2006-09-28 電磁波シールドフィルタ

Country Status (3)

Country Link
JP (1) JP4849069B2 (ja)
KR (1) KR101263054B1 (ja)
WO (1) WO2007037329A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133949A (ja) * 2007-11-29 2009-06-18 Dainippon Printing Co Ltd プラズマディスプレイ用前面フィルターおよびこれを用いたプラズマディスプレイ
JP2009135361A (ja) * 2007-12-03 2009-06-18 Toray Ind Inc ディスプレイ用フィルター及びその製造方法
JP2010021480A (ja) * 2008-07-14 2010-01-28 Bridgestone Corp ディスプレイ用光学フィルタ、及びこれを用いたディスプレイ
JP2011066692A (ja) * 2009-09-17 2011-03-31 Dainippon Printing Co Ltd 透明アンテナ及び該透明アンテナの製造方法
JP2015125628A (ja) * 2013-12-26 2015-07-06 大日本印刷株式会社 フィルムセンサ、タッチ位置検出機能付き表示装置、およびフィルムセンサを作製するための積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140041138A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전극 부재 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311843A (ja) * 2001-04-17 2002-10-25 Dainippon Printing Co Ltd 電磁波遮蔽用部材及びディスプレイ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294917A (ja) * 2002-04-08 2003-10-15 Teijin Dupont Films Japan Ltd 半透過反射フィルム積層体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311843A (ja) * 2001-04-17 2002-10-25 Dainippon Printing Co Ltd 電磁波遮蔽用部材及びディスプレイ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133949A (ja) * 2007-11-29 2009-06-18 Dainippon Printing Co Ltd プラズマディスプレイ用前面フィルターおよびこれを用いたプラズマディスプレイ
JP2009135361A (ja) * 2007-12-03 2009-06-18 Toray Ind Inc ディスプレイ用フィルター及びその製造方法
JP2010021480A (ja) * 2008-07-14 2010-01-28 Bridgestone Corp ディスプレイ用光学フィルタ、及びこれを用いたディスプレイ
JP2011066692A (ja) * 2009-09-17 2011-03-31 Dainippon Printing Co Ltd 透明アンテナ及び該透明アンテナの製造方法
JP2015125628A (ja) * 2013-12-26 2015-07-06 大日本印刷株式会社 フィルムセンサ、タッチ位置検出機能付き表示装置、およびフィルムセンサを作製するための積層体

Also Published As

Publication number Publication date
JPWO2007037329A1 (ja) 2009-04-09
KR20080054408A (ko) 2008-06-17
KR101263054B1 (ko) 2013-05-09
JP4849069B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4783721B2 (ja) 金属黒化処理方法、電磁波遮蔽フィルタ及び複合フィルタ、並びにディスプレイ
US7859179B2 (en) Electromagnetic wave shielding material and display using the same
US7982380B2 (en) Front filter for plasma display and plasma display
US7754981B2 (en) Electromagnetic shielding sheet, front sheet for display and electromagnetic shielding sheet manufacturing method
US20060154092A1 (en) Front plante for plasma dispay and plasma display
TW200536956A (en) Electromagnetic shielding film and method for producing the same
KR20030007056A (ko) 전자파 차폐용 부재 및 그 제조방법
US20060194020A1 (en) Electromagnetic shielding film for plasma display
JP2007101639A (ja) 画像表示装置用フィルタおよびその製造方法
JP4849069B2 (ja) 電磁波シールドフィルタ
JP2008047777A (ja) 電磁波遮蔽フィルタ、複合フィルタ、及びディスプレイ
JP2007096111A (ja) ディスプレイ用複合フィルタ、及びディスプレイ用複合フィルタの製造方法
JP2008311565A (ja) ディスプレイ用複合フィルタ
JP2012116940A (ja) 粘着剤組成物およびプラズマディスプレイ用複合フィルタ
JP4560084B2 (ja) 電磁波シールドフィルタ
JP2007266239A (ja) プラズマディスプレイ用シート状複合フィルタの製造方法、及びプラズマディスプレイ用シート状複合フィルタ
JP2004241761A (ja) 電磁波遮蔽用シート、及びその製造方法
JP2006210763A (ja) ディスプレイ用電磁波シールドフィルタ
JP2008300393A (ja) ディスプレイ用電磁波遮蔽フィルタ、複合フィルタ、及びその製造方法
JP2008209486A (ja) ディスプレイ用複合フィルタ
JP2000077888A (ja) プラズマディスプレイ用フィルター及びパネル
JP2002050892A (ja) 網目構造物、電磁波シールドフィルタ及びその製法
JP2007227532A (ja) 電磁波遮蔽シート
JP2008292745A (ja) プラズマディスプレイ用前面ガラスフィルタ、及びその製造方法
JP2007264578A (ja) ディスプレイ用光学フィルタ及びプラズマディスプレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009900

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06810753

Country of ref document: EP

Kind code of ref document: A1