WO2007034753A1 - コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤 - Google Patents

コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤 Download PDF

Info

Publication number
WO2007034753A1
WO2007034753A1 PCT/JP2006/318406 JP2006318406W WO2007034753A1 WO 2007034753 A1 WO2007034753 A1 WO 2007034753A1 JP 2006318406 W JP2006318406 W JP 2006318406W WO 2007034753 A1 WO2007034753 A1 WO 2007034753A1
Authority
WO
WIPO (PCT)
Prior art keywords
chondromodulin
protein
angiogenesis
gene
valve
Prior art date
Application number
PCT/JP2006/318406
Other languages
English (en)
French (fr)
Inventor
Keiichi Fukuda
Yuji Hiraki
Original Assignee
Keiichi Fukuda
Yuji Hiraki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keiichi Fukuda, Yuji Hiraki filed Critical Keiichi Fukuda
Priority to JP2007536473A priority Critical patent/JPWO2007034753A1/ja
Priority to US12/067,593 priority patent/US20100145441A1/en
Priority to EP06810198A priority patent/EP1946765A4/en
Publication of WO2007034753A1 publication Critical patent/WO2007034753A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/51Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders

Definitions

  • Therapeutic agents for angiogenesis-related diseases containing chondromodulin-1 as an active ingredient
  • the present invention relates to a therapeutic agent for angiogenesis-related diseases using chondromodulin-1 as an active ingredient, and a screening method for the therapeutic agent for angiogenesis-related diseases using the expression of chondromodulin-1 as an index. About.
  • the balance between angiogenesis and anti-angiogenic factors is important for the normal development and homeostasis of tissues and organs.
  • the heart is an organ rich in blood vessels and produces many angiogenic factors, but the heart valve is avascular and oxygen is supplied by diffusion of blood flow force (see Non-Patent Document 1).
  • pathological conditions such as atherosclerosis, rheumatic valvular heart disease, or infective endocarditis, the heart valve expresses an angiogenic factor and angiogenesis occurs (2) 3).
  • anti-angiogenic factors angiogenesis-inhibiting factors
  • Cartilage is a typical avascular tissue having characteristics similar to cardiac valvular tissue.
  • chondrocytes including cartilage, mesenchymal cells of heart valvular tissue, known as valve stromal cells (VICs), are sparsely distributed in the incomplete basal layer and are extracellular matrix below the endothelial cell layer. It is in direct and extensive contact with collagen fibers, elastin fibrils, and proteodaricans (see Non-Patent Documents 4 to 6).
  • Sox9 (see non-patent document 9), NATc (see non-patent document 10), Runx2 (as Cbfal), which only needs growth factors such as BMP2 (see non-patent document 7) and TGF ⁇ 2 (see non-patent document 8)
  • growth factors such as BMP2 (see non-patent document 7) and TGF ⁇ 2 (see non-patent document 8)
  • transcription factors essential for cartilage formation during endochondral ossification such as MSX2 (see Non-Patent Document 12) are also expressed in the cardiac valve membrane.
  • Sox9, together with Sox5 and Sox6, induces the expression of genes specific for cartilage including chondromodulin-1 (Chm-I) even in non-chondrogenic cells (see Non-Patent Document 13). It has been reported that these are essential for the development of the heart valve (see Non-Patent Document 7).
  • Patent Document 1 Patent No. 3585180
  • Patent Document 2 JP-A-9-299088
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-123722
  • Patent Document 4 JP-A-5-178896
  • Non-Patent Literature l Hammon, JW, Jr., O 'Sullivan, MJ, Oury, J. & Fosburg, RG Allogr aft cardiac valves. A view through the scanning electron microscope. J Thorac Cardi ovasc Surg 68, 352—60 ( 1974).
  • Non-Patent Document 2 Soini, Y., Salo, T. & Satta, J. Angiogenesis is involved in the pathoge nesis of nonrheumatic aortic valve stenosis.Hum Pathol 34, 756-63 (2003).
  • Non-Patent Document 3 Yamauchi, R. et al. Upregulation of SR-PSOX / CXCL16 and recruitment of CD8 + T cells in cardiac valves during inflammatory valvular heart disease. Art erioscler Thromb Vase Biol 24, 282—7 (2004).
  • Non-Patent Document 4 Filip, D.A., Radu, A. & Simionescu, M. Interstitial cells of the heart v alves possess characteristics similar to smooth muscle cells. And ire Res 59, 310-20 (1 986).
  • Patent Document 5 Lester W, R.A., Granton B, et al. Porcine mitral valve interstitial cell s in culture.Lab Invest, 710-719 (1988).
  • Patent Document 6 Gotlieb, A.I., Rosenthal, A. & Kazemian, P. Fibroblast growth factor 2 regulation of mitral valve interstitial cell repair in vitro.J Thorac Cardiovasc Surg 124, 591-7 (2002).
  • Non-Patent Document 7 Sugi, Y., Yamamura, H., Okagawa, H. & Markwald, RR Bone morph ogenetic protein— 2 can mediate myocardial regulation of atrioventricular cushion me senchymal cell formation in mice.Dev Biol 269, 505-18 (2004).
  • Non-Patent Document 8 Camenisch, TD et al. Temporal and distinct TGFbeta ligand require ments during mouse and avian endocardial cushion morphogenesis. Dev Biol 248, 17 0-81 (2002).
  • Non-Patent Document 9 Akiyama, H. et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa.Proc Natl Acad Sci U S A 101, 6502-7 (2004).
  • Non-Special Reference 10 Ranger, A.M. et al.
  • the transcription factor NF- ATc is essential for cardiac valve formation. Nature 392, 186—90 (1998).
  • Non-Special Publication 11 Rajamarman, N.M. et al. Human aortic valve calcification is associate d with an osteoblast phenotype. Circulation 107, 2181-4 (2003).
  • Non-Patent Document 12 Chan-Thomas, P.S., Thompson, R.P., Robert, B., Yacoub, M.H. &
  • Non-Patent Document 13 Ikeda, T. et al. The combination of SOX5, SOX6, and SOX9 (the SO
  • Non-special literature IV Hiraki, Y. et al. Molecular cloning of a new class of cartilage-specifi c matrix, chondromodulin—I, which stimulates growth of cultured chondrocytes. Bioc hem Biophys Res Commun 175, 971-977 (1991) .
  • Non-Special Review 17 Hiraki, Y. et al. Identification of chondromodulin I as a novel endoth elial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272, 32419—26 (1997) .
  • An object of the present invention is to analyze the action of anti-angiogenic factors in the heart valve membrane and the like, and to clarify the onset mechanism of diseases caused by angiogenesis. More specifically, it is an object to provide a therapeutic agent for a disease caused by angiogenesis such as valvular heart disease and a method for efficiently screening the therapeutic agent. Furthermore, an object of the present invention is to provide an artificial heart valve having a function of suppressing angiogenesis in the valve tissue.
  • the present inventors have conducted intensive research to solve the above problems.
  • the power of the heart valve is a well-known avascular tissue.
  • Several avalvular heart diseases (VHD) have lost their avascularity.
  • the present inventors have analyzed the expression of chondromodulin-I (ChM-I) in the heart valve retina or retina to elucidate the avascular molecular mechanism of the valve.
  • ChM-I chondromodulin-I
  • Chondromodulin-1 is a glycosylated amino acid residue consisting of 335 amino acid residues predominantly in avascular thread and tissue of the eye and cartilage. It is a protein (see Non-Patent Documents 14 and 15). After translation, the ChM-I precursor is cleaved by furin protease at the RERR-ELVR site (see Non-Patent Document 16), and secreted ChM-I is known to accumulate in the interregional space of the cartilage matrix. (See Non-Patent Document 17).
  • Chondromodulin-1 an anti-angiogenic factor isolated from cartilage, was detected in the left ventricle, outflow tract, and valve primordia at E9.5, but in late embryonic and adult stages It was detected only in the heart valve. Chondromodulin-1 is a force that has been observed to be significantly expressed in mouse and human normal heart valves ApoE-/-mice, as well as infective endocarditis, rheumatic heart disease, and atherosclerotic arteries In human VHD, including sclerosis, all decreased significantly.
  • VEGF-A expression, angiogenesis, and calcification were particularly noted where chondromodulin-1 was down-regulated.
  • Cultured valve stromal cell force The resulting culture supernatant strongly inhibited endothelial cell tube formation and mobilization, which was partially inhibited by chondromodulin-1 siRNA.
  • Saraco, targeting chondromodulin-1 gene Results in increased VEGF-A expression, angiogenesis and changes in valvular thickening in the heart valve, which, as determined by echocardiography, can cause aortic valve thickening and blood flow disturbance However, it was divided.
  • chondromodulin-1 plays an important role in maintaining the normal function of the valve leaflets by preventing angiogenesis, thickening and calcification leading to VHD. I succeeded in showing the evidence for the first time!
  • chondromodulin-1 protein itself or a substance that activates the expression or function of the protein is expected to have an effective therapeutic effect on angiogenesis-related diseases such as valvular heart disease. .
  • chondromodulin-1 expression is decreased in the heart valve membrane in patients with angiogenesis-related diseases such as heart valve disease. That is, by using the expression level or activity of chondromodulin-1 as an index, it is possible to screen for therapeutic agents (candidate compounds) for angiogenesis-related diseases.
  • the present invention relates to a therapeutic agent for diseases caused by angiogenesis such as valvular heart disease, and a method for efficiently screening the therapeutic agent, more specifically, (1) An angiogenesis inhibitor containing any of the following forces (a) to (c) as an active ingredient:
  • a protein functionally equivalent to chondromodulin- ⁇ protein including an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence of chondromodulin-1 protein
  • An angiogenesis-related disease therapeutic agent comprising any of the following (a) to (c) as an active ingredient:
  • a protein functionally equivalent to chondromodulin- ⁇ protein including an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence of chondromodulin-1 protein
  • An angiogenesis-related disease therapeutic agent comprising an active substance or chondromodulin-1 protein expression active substance or functional active substance
  • the angiogenesis-related disease is a disease caused by angiogenesis of the heart valve membrane, [4] or [5]
  • the angiogenesis-related disease is a disease caused by retinal angiogenesis, [4] or [5]
  • the angiogenesis-related disease is a disease selected from the group consisting of valvular heart disease, infective endocarditis, rheumatic heart disease, atherosclerosis, and retinopathy, [4] Or an angiogenesis-related disease therapeutic agent according to [5],
  • Chondromodulin-1 protein strength The drug according to any one of [1] to [8], which is a protein having the amino acid sequence strength described in SEQ ID NO: 2.
  • a screening method for a therapeutic agent for angiogenesis-related diseases comprising selecting a compound that activates the expression or function of chondromodulin-1 protein,
  • a screening method for an angiogenesis-related disease therapeutic agent comprising the following steps (a) to (c):
  • a screening method for an angiogenesis-related disease therapeutic agent comprising the following steps (a) to (c):
  • (c) a step of selecting a compound that increases the expression level as compared with the case where it is measured in the absence of the test compound.
  • a screening method for an angiogenesis-related disease therapeutic agent comprising the following steps (a) to (c):
  • a screening method for a therapeutic agent for angiogenesis-related diseases comprising the following steps (a) to (c):
  • a screening method for a therapeutic agent for angiogenesis-related disease comprising the following steps (a) to (c):
  • the angiogenesis-related disease is valvular heart disease, infective endocarditis, rheumatic heart disease, atherosclerosis, or retinopathy, according to any of [13] to [19] Screening method,
  • An artificial heart valve comprising the following (a) and (b) as main components:
  • the present invention also provides an angiogenesis inhibitor or an angiogenesis-related disease therapeutic agent comprising a step of mixing any of the following (a) to (c) with a pharmaceutically acceptable carrier or medium. Relates to the manufacturing method.
  • Chondromodulin-I protein for example, human chondromodulin-1 protein represented by the amino acid sequence set forth in SEQ ID NO: 2
  • the present invention relates to a method for preventing or treating an angiogenesis-related disease, comprising the step of administering any of the above (a) to (c) to an individual.
  • the present invention also relates to a method for treating angiogenesis-related diseases, comprising the step of using the artificial heart valve according to [21] or [22].
  • the present invention provides the use of any of the substances (a) to (c) in the manufacture of an angiogenesis inhibitor or an angiogenesis-related disease therapeutic agent.
  • FIG. 1 is a photograph and a diagram showing the temporal and spatial expression of ChM-I in rodents and human hearts.
  • A Photograph showing the results of chm-I RT-PCR using total RNA from various rat tissues. A positive signal (310 bp) was shown in cartilage, eye and heart.
  • C A photograph showing the temporal expression of chm-I in the rat heart. RT PCR was performed on embryos and adult hearts. Positive signal in embryonic heart after E9.5 Admitted.
  • FIG. 2 is a photograph showing the results of immunohistochemistry and immunofluorescence staining of ChM-I protein in the developing and adult mouse heart.
  • ChM-I was expressed in all four valves in adults. Positive signals are shown in brown.
  • LV left ventricle; MV, mitral valve; PV, pulmonary valve; PA, pulmonary artery; IVS, ventricular septum.
  • Ep ChM-I and VEGF-A immunofluorescent staining is shown in serial sections in adult (e-i) and developmental (m-p) mouse hearts.
  • A atrium
  • LA left atrium
  • TV tricuspid valve
  • RV right ventricle
  • VIC ventricular stromal cells
  • EC endothelial cells
  • AVC atrioventricular protuberance
  • the bar is 1 ⁇ , 200 / ⁇ ⁇ (&, b, d, f, and ! ⁇ n), 100 m (c and o), and 20 ⁇ m (g).
  • FIG. 3 A photograph showing the results of immunohistochemistry, immunofluorescence staining, and in situ, and hybridization of ChM-I and VEGF-A in sclerotic lesions of the aging ApoE- ⁇ mouse heart.
  • A Immunohistochemistry of Ch MI and VEGF-A in sclerotic lesions (arrowheads) of ApoE — / _ mouse heart mitral valve (MV). Enlarge the part enclosed in the square in b).
  • MV ApoE — / _ mouse heart mitral valve
  • MV ApoE — / _ mouse heart mitral valve
  • ApoE Immunofluorescent staining for ChM-1 and VEGF-A in (fi) and age-matched ApoE + / + mice (j-m). Note that VEGF-A was down-regulated in ApoE — / _ mice and was significantly up-regulated in the sclerosis membrane region! Bars represent 100 m (ac) and 20 m (c! -M) [4] Photographs showing the results of valvular histology and immunohistochemistry of human autopsy and surgical samples. (A ⁇ f) such have valvular heart disease ⁇ (No-VHD) samples from autopsy. HE, Hematoxylin eosin staining; Azan, Azan staining.
  • ChM-1 was strongly expressed, VEGF-A was not expressed.
  • Gr Representative photomicrographs of immunohistochemistry for various cardiac valvular disease surgical samples. Significant angiogenesis was observed in infective endocarditis (IE, g-j), rheumatic heart disease (RHD, k-n), and atherosclerotic heart valve disease (or) . ChM-I was significantly reduced in large areas where VEGF-A was strongly expressed and new blood vessel formation was observed. AV, aortic valve; MV, mitral valve. The bar represents 200 m.
  • FIG. 5 A photograph and a figure showing the expression of ChM-I in valve stromal cells (VICs) and their effects on tube formation, migration, and apoptosis in vitro in human coronary artery endothelial cells (HCAECs).
  • VICs valve stromal cells
  • HCAECs human coronary artery endothelial cells
  • HCAECs are shown as a positive control (inset).
  • E, f Immunofluorescence staining of ChM-I in VICs (c) and NIH3T3 cells (f). The nuclei of both cells were stained with Toto-3. ChM-I was stained as a granular pattern in the cytoplasm.
  • G-k VICs conditioned media inhibited endothelial cell tube formation on Matrigel in vitro.
  • G Representative picture of tube formation of HCA ECs on Matrigel.
  • CM conditioned medium.
  • H NIH3T3-CM exerted no influence on HCAECs lumen formation.
  • I VICs-CM significantly suppressed the formation of HCAECs in 6 hours.
  • HCAECs were inhibited from migrating to the lower surface of the membrane as compared to when they did not contain any cells (1) or when cocultured with NIH3T3 cells (n) .
  • (0) siR specific for chm-I NA decreased the inhibition of chemical migration of HCAECs by VICs-CM.
  • P For each experiment, the results were expressed as the number of cells counted in 5 randomly selected high power fields from 3 experiments. The number of migrating cells is shown in the chart.
  • Q Induction of apoptosis by VICs-CM.
  • HCAECs cultured with NIH3T3-CM (q, r) or VICs-CM (s, t) were treated with an annexin V-FITC conjugate.
  • the present inventors detected annexin V-positive fluorescent cells when HCAECs were cultured with VICs-CM for 6 hours.
  • TOTO-3 positive cells and vWF positive cells in the three lobes of the (m, n) aortic valve were counted every 20 m section stained for immunofluorescence with at least a single valve visible.
  • FIG. 7 is a photograph showing the result of echocardiography of chm-r / _ mouse heart.
  • 2D mode echocardiography revealed an unusually bright echogenic mass in the aortic valve, which was detected in the chm-1 + / + mouse heart
  • I helped.
  • B The Doppler color test showed strong mosaic-like turbulence that was not detected even in the aortic valve region of the chm-I + / + mouse heart.
  • the inset shows the AV level short axis diagram of each major axis diagram.
  • FIG. 8 is a photograph showing the results of in situ hybridization of chm-I in the mouse heart.
  • (a, c) The presence of chm-I mRNA was confirmed in 4 valves of adult mouse heart.
  • D, e Whole mount in situ hybridization (WISH method) of E10.5 mouse embryonic heart is weak against positive signals in the outflow tract and left ventricle, and right ventricular and atrial external curvature Signaled ( ⁇ and g). E12.5 showed the same signal transmission pattern.
  • the heart was the strongest organ that was confirmed to be positive for chm-I-specific probes under a stereomicroscope (f). Other tissues were removed and the heart was isolated (g).
  • FIG. 10 shows the nucleotide sequence of human chondromodulin-1 gene and the amino acid sequence of human chondromodulin-1 protein.
  • the amino acid sequence is that of human chondromodulin-1 precursor protein determined from the nucleotide sequence in cDNA, and its C-terminal part 120
  • the amino acid residue part (underlined) is the amino acid sequence of the (mature) human chondromodulin-1 protein.
  • chondromodulin-1 protein itself or a substance that activates the expression or function of the protein is expected to have an effective therapeutic effect on angiogenesis-related diseases such as valvular heart disease. .
  • the present inventor first provides a therapeutic agent for angiogenesis-related diseases containing chondromodulin-1 protein as an active ingredient.
  • the chondromodulin-I (ChM-1) protein of the present invention is preferably human chondromodulin-1 protein, but the biological species from which it is derived is not particularly limited, and other than humans. Proteins equivalent to chondromodulin-1 in living organisms (such as human chondromodulin-1 homologs and orthologs) are also included in the “chondromodulin-1 protein” in the present invention.
  • the present invention can be carried out as long as it has a tissue such as a heart and blood vessels and has an equivalent protein to human chondromodulin-1.
  • amino acid sequence of human chondromodulin-1 protein is shown in SEQ ID NO: 2
  • base sequence of DNA encoding the amino acid sequence (chondromodulin-1 gene) is shown in SEQ ID NO: 1.
  • Examples of organisms other than humans (accession number AB 006000) having a protein corresponding to chondromodulin-1 include, for example, mice (accession number U43509), rats, rabbits, rushes ( Examples include the following: Session number M65081), Nestry (session number AF027380.1), Zebrafish, Africa Megal (session number BC043890) and Medaka.
  • proteins other than those described above are highly homologous to, for example, the sequences described in the sequence listing of the present application (usually 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95%
  • the protein having sex and the like is included in chondromodulin-1 of the present invention.
  • the protein is, for example, a protein comprising an amino acid sequence in which one or more amino acids are appended, deleted, substituted, or inserted in the amino acid sequence set forth in SEQ ID NO: 2, and the number of amino acids that usually change Is within 30 amino acids, preferably within 10 amino acids, more preferably within 5 amino acids, and most preferably within 3 amino acids.
  • the "chondromodulin-1 gene” in the present invention includes, for example, an endogenous gene (for example, human chondromodulin in other organisms) corresponding to the DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1. -1 gene homologue).
  • endogenous DNA of other organisms corresponding to the DNA consisting of the base sequence described in SEQ ID NO: 1 generally has high homology with the DNA described in SEQ ID NO: 1.
  • High homology means 50% or more, preferably 70% or more, more preferably 80% or more, more preferably 90% or more (e.g., 95% or more, further 96%, 97%, 98% or 99% or more).
  • This homology is determined by the mBLAST algorithm (Altschul et al. (1990) Proc. Natl. Ac ad. Sci. USA 87: 2264-8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873- 7) can be determined by.
  • the DNA when the DNA is isolated from a living body, it is considered that the DNA is neutralized under stringent conditions with the DNA of SEQ ID NO: 1.
  • stringent conditions for example, “2 X SSC, 0.1% SDS, 50 ° C”, “2 X SSC, 0.1% SDS, 42 ° C”, “1 X SSC, 0.1% SDS, 37 ⁇ ° C '', more stringent conditions: ⁇ 2 X SSC% 0.1% SDS ⁇ 65 ° C '', ⁇ 0.5 X SSC, 0.1% SDS ⁇ 42 ° C '' and ⁇ 0.2 X SSC, 0.1% SDS, 65 ° C ”can be mentioned.
  • chondromodulin-1 protein (gene) in organisms other than humans or a protein (gene) functionally equivalent to chondromodulin-1 described above is used. May be simply referred to as “chondromodulin-1 protein (gene)” or “ChM-I”.
  • the "chondromodulin-1 protein” of the present invention can be prepared as a recombinant protein utilizing a natural protein recombination technique. Natural protein The quality is prepared, for example, by a method using affinity chromatography using an antibody against chondromodulin-1 protein to an extract of cells (tissues) that are thought to express chondromodulin-1 protein. Is possible.
  • recombinant proteins can be prepared by culturing cells transformed with DNA encoding chondromodulin-1 protein.
  • the “chondromodulin-1 protein” of the present invention is suitably used, for example, as a control protein in the screening method described below, for example.
  • “expression” includes “transcription” from a gene or “translation” into a polypeptide and “degradation inhibition” of a protein.
  • “Expression of chondromodulin-1 protein” means that transcription and translational force S of a gene encoding chondromodulin-1 protein is generated or chondromodulin-1 protein is produced by transcription and translation of these genes. Means.
  • “the function of chondromodulin-1 protein” refers to, for example, the function of suppressing angiogenesis, the function of promoting DNA synthesis in the chondrocyte culture system (Y. Hiraki, et al. (1991) Biochem. Biophys.
  • Inhibitory activity against rheumatoid arthritis T cell immune response and inhibitory function on proliferation of cultured synovial cells (K. Setoguchi, et al. (2004) Arthritis Rheumatism, 50: 828-839.
  • the angiogenesis inhibitory activity of chondromodulin-1 protein is not particularly limited, but (1) evaluation of migration activity of vascular endothelial cells, (2) evaluation of apoptosis induction of vascular endothelial cells, (3) By appropriately evaluating the vascular morphogenesis reaction (tube formation) of vascular endothelial cells, it is possible to determine “willow”.
  • the present invention relates to a human chondromodulin-1 protein, or a variant of the protein (modified, homologue of other organisms, etc.), which is functionally equivalent to chondromodulin-1
  • An angiogenesis-related disease therapeutic agent comprising as an active ingredient is provided.
  • a preferred embodiment of the present invention relates to a therapeutic agent for angiogenesis-related diseases, which contains any of the following substances (a) or (b) as an active ingredient.
  • a protein functionally equivalent to chondromodulin-I protein comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of chondromodulin-1 protein (SEQ ID NO: 2)
  • the "chondromodulin-1 protein” that is a component of the drug of the present invention can be prepared not only as a natural protein but also as a recombinant protein using a gene recombination technique.
  • a natural protein is a method that uses affinity chromatography using an antibody against chondromodulin-1 protein to an extract of cells (tissue) that is thought to express chondromodulin-1 protein.
  • recombinant protein can be prepared by culturing cells transformed with DNA encoding chondromodulin-1 protein.
  • DNA encoding chondromodulin-1 protein which is a component of the drug of the present invention, is also included. Moreover, it is included in the present invention.
  • the DNA encoding the chondromodulin-1 protein of the present invention may be chromosomal DNA or cDNA.
  • the chromosomal DNA that codes for chondromodulin-1 protein can be obtained, for example, by preparing a cell isochromosomal chromosomal DNA library and using a probe that hybridizes to the DNA encoding chondromodulin-1 protein. It can be obtained by screening.
  • the cDNA encoding chondromodulin-1 protein also extracts chondromodulin-1 protein by extracting the RNA sample from the cell (tissue) force that is thought to express chondromodulin-1 protein!
  • the gene can be obtained by gene amplification techniques such as RT-PCR using primers that allow the DNA to be hybridized or hybridized.
  • the chondromodulin-1 protein of the present invention or the DNA encoding the protein is functionally equivalent to the chondromodulin-1 protein, its nucleotide sequence and amino acid sequence are modified. Also good. Such mutants may be natural or artificial. Methods for artificially preparing mutants are known to those skilled in the art. For example, the K unkel method (Kunkel, TA et al., Methods Enzymol. 154, 367-382 (1987)), the double primer method (Zoller, MJ and Smith, M., Methods Enzymol.
  • the agent of the present invention may comprise DNA encoding the protein described in (a) or (b) above, or a vector expressing the protein as a component. That is, the present invention relates to an angiogenesis-related disease therapeutic agent comprising the following (c) as an active ingredient.
  • the DNA is preferably functionally linked to a promoter for efficient expression.
  • the promoter used in the present invention the original chondromodulin-1 gene promoter can be used, but besides this, various known promoters such as the CMV promoter can be used. Moreover, those skilled in the art can easily prepare a vector for expressing the protein of the present invention using various known expression vectors.
  • the vector of the present invention can also be used for gene therapy. Gene therapy refers to administration or treatment or prevention of a vector containing a DNA encoding a functional protein to a patient.
  • vectors examples include, but are not limited to, adenoviral vectors (eg, pAdexlcw) and retroviral vectors (eg, pZ IPneo).
  • adenoviral vectors eg, pAdexlcw
  • retroviral vectors eg, pZ IPneo
  • General genetic manipulations such as insertion of DNA encoding the protein of the present invention into a vector can be performed according to a conventional method. In vivo administration may be performed ex vivo, but in vivo is preferred.
  • angiogenesis is suppressed, and as a result, a therapeutic effect on diseases associated with angiogenesis is expected.
  • the present invention provides a therapeutic agent for angiogenesis-related diseases comprising a chondromodulin-1 protein expression active substance or a functional activator as an active ingredient.
  • angiogenesis-related disease refers to a disease caused by angiogenesis, and in particular, a disease caused by angiogenesis in the heart valve membrane or retina is preferred.
  • angiogenesis-related diseases of the present invention include valvular heart disease, infective endocarditis, rheumatic heart disease, atherosclerosis, retinopathy, angiogenesis from the periphery to the corneal surface, cancer Examples thereof include angiogenesis, arthritis such as chronic indirect rheumatism, and the like.
  • the “protein expression activator” in the present invention is a substance that significantly activates (increases) protein expression.
  • the above “expression activation” of the present invention includes transcriptional activation of a gene encoding the protein, and translational activation from Z or a transcription product of the gene.
  • the chondromodulin-1 protein expression active substance of the present invention is, for example, bound to the transcriptional regulatory region (eg, promoter region) of the chondromodulin-1 gene and transcribed of the gene. Substances that promote the transcription (such as transcriptional activity factors).
  • chondromodulin-1 protein expression activity can be easily measured by those skilled in the art by methods well known, for example, Northern blotting, Western blotting, and the like.
  • the function-activating substance of chondromodulin-1 protein is a substance that significantly activates the function of chondromodulin-1 protein.
  • the inventors of the present invention have shown that chondromodulin-1 protein has a function of suppressing angiogenesis in, for example, the heart valve membrane.
  • examples of the functionally active substance of the present invention include substances that enhance the angiogenesis inhibitory action of chondromodulin-1 protein in the heart valve membrane.
  • chondromodulin-1 protein or a substance that activates the expression or function of the protein has an action of suppressing angiogenesis (for example, angiogenesis in the heart valve membrane). Therefore, the present invention provides an angiogenesis inhibitor (inhibitor) containing any of the above-mentioned forces (a) to (c) as an active ingredient.
  • the angiogenesis inhibitor of the present invention is preferably characterized by having an angiogenesis-inhibiting action in heart valve membrane, retina, cornea, articular cartilage, or tumor tissue.
  • the “therapeutic agent” of the present invention can be expressed as “medicine”, “pharmaceutical composition”, “therapeutic drug”, and the like.
  • the "treatment” in the present invention includes a preventive effect that can suppress the occurrence of a disease in advance.
  • the present invention is not necessarily limited to the case of having a complete therapeutic effect, and the case of having a partial effect, the case where symptoms are improved, and the like are also included in the meaning of the “treatment” of the present invention.
  • the agent of the present invention is mixed with a physiologically acceptable carrier, excipient, diluent or the like, and orally as a pharmaceutical composition. Or it can be administered parenterally.
  • a physiologically acceptable carrier such as granules, powders, tablets, capsules, solvents, emulsions or suspensions
  • parenteral preparation a dosage form such as an injection, an infusion, an external preparation, or a suppository can be selected. Examples of the injection include subcutaneous injection, intramuscular injection, intraperitoneal injection and the like. Examples of the medicine for external use include nasal administration agents and ointments.
  • the preparation technique of the above-mentioned dosage form so as to include the drug of the present invention as the main component is known.
  • a tablet for oral administration can be produced by adding an excipient, a disintegrant, a binder, a lubricant, and the like to the drug of the present invention, and mixing and compression-molding the tablet.
  • an excipient lactose, starch, mannitol or the like is generally used.
  • a disintegrant Calcium carbonate and carboxymethyl cellulose calcium are generally used.
  • the binder gum arabic, carboxymethylcellulose, or polyvinylpyrrolidone is used.
  • talc magnesium stearate and the like are known.
  • the tablet containing the drug of the present invention can be subjected to a known coating for masking or enteric preparation.
  • a coating agent ethyl cellulose, polyoxyethylene glycol or the like can be used.
  • the injection can be obtained by dissolving the agent of the present invention, which is the main component, together with an appropriate dispersant, or dissolving or dispersing in a dispersion medium.
  • aqueous solvent distilled water, physiological saline, Ringer's solution, or the like is used as a dispersion medium.
  • oil-based solvents various vegetable oils such as propylene glycol are used as dispersion media.
  • a preservative such as paraben can be added as necessary.
  • a known isotonic agent such as sodium chloride or glucose can be added.
  • a soothing agent such as salt benzalcoum can be added.
  • an external preparation can be obtained by making the agent of the present invention into a solid, liquid, or semi-solid composition.
  • a solid or liquid composition it can be set as an external preparation by setting it as the composition similar to what was described previously.
  • a semi-solid composition can be prepared by adding a thickener to an appropriate solvent as required.
  • the solvent water, ethyl alcohol, polyethylene glycol, or the like can be used.
  • the thickener bentonite, polybutyl alcohol, acrylic acid, methacrylic acid, polyvinylpyrrolidone, or the like is generally used.
  • a preservative such as salt benzalkonium.
  • a suppository can also be obtained by combining an oily base material such as cacao butter or an aqueous gel base material such as cellulose derivative as a carrier.
  • the agent of the present invention is used as a gene therapy agent, in addition to the method of directly administering the agent of the present invention by injection, a method of administering a vector incorporating a nucleic acid can be mentioned.
  • a method of administering a vector incorporating a nucleic acid examples include adenovirus vectors, adeno-associated virus vectors, herpes vinores vectors, vaccinia winores betaters, retro winores betaters, and lentivirus vectors. Throw well Can be given.
  • the drug of the present invention into a phospholipid vesicle such as a ribosome and administer the vesicle. That is, the endoplasmic reticulum holding the drug of the present invention is introduced into a predetermined cell by the lipofusion method. The resulting cells are then administered systemically, for example, intravenously or intraarterially. It can also be administered locally to the heart valve membrane, retina and the like.
  • the necessary amount (effective amount) of the drug of the present invention is administered to animals including humans within the safe dose range.
  • the dosage of the drug of the present invention can be appropriately determined finally based on the judgment of a doctor or veterinarian in consideration of the type of dosage form, administration method, patient age and weight, patient symptoms, and the like.
  • the present invention provides a chondromodulin-1 gene knockout non-human animal (in the present specification, characterized in that the expression of the chondromodulin-1 gene of the present invention is artificially suppressed).
  • a chondromodulin-1 gene knockout non-human animal in the present specification, characterized in that the expression of the chondromodulin-1 gene of the present invention is artificially suppressed.
  • the gene knockout non-human animal of the present invention can be used, for example, for screening a drug for treating angiogenesis-related diseases. It is also very useful as a disease state model animal for studying the mechanism of the disease.
  • the knockout animal in the present invention includes so-called “knockdown animals” in which gene expression is suppressed by the action of antisense RNA or siRNA.
  • the "suppression" in the present invention includes the case where chondromodulin-1 gene expression is completely suppressed, and the expression level of chondromodulin-1 in the animal of the present invention is the chondromodulin-1 expression level in the wild type animal. When the expression level of modulin-1 gene is significantly decreased, it is included. [0060]
  • the above (1) includes the case where the expression of only one gene of the gene pair of chondromodulin-1 gene is suppressed (hetero knockout animal). It is preferable that the expression of one gene is suppressed ⁇ ⁇ (homo knockout animal).
  • the site where the gene mutation is present in the present invention is not particularly limited as long as the expression of the gene is suppressed, and examples thereof include an exon site, a promoter site, and the like.
  • the gene knockout animal of the present invention can be produced by those skilled in the art using generally known genetic engineering techniques.
  • a gene knockout mouse can be prepared as follows. First, a mouse force is isolated from a DNA containing the exon portion of the chondromodulin-1 gene of the present invention, and an appropriate marker gene is inserted into this DNA fragment to construct a targeting vector. This targeting vector is introduced into a mouse ES cell line by an electrovolution method or the like, and a cell line that has undergone homologous recombination is selected.
  • the marker gene to be inserted is preferably an antibiotic resistance gene such as a neomycin resistance gene.
  • cell lines that have undergone homologous recombination can be selected simply by culturing in a medium containing the antibiotic.
  • homologous recombinants can be assayed by PCR and Southern blotting to efficiently obtain a cell line in which one of the gene pairs of the gene of the present invention is inactivated.
  • the obtained ES cell line can be injected into mouse blastodermis to obtain a chimeric mouse.
  • a mouse in which one of the gene pairs of the chondromodulin-1 gene of the present invention is inactivated can be obtained.
  • a mouse in which both gene pairs of the gene of the present invention are inactivated can be obtained.
  • genetic modification can be performed by the same technique.
  • the above knockout animal of the present invention is preferably chondromodulin by introducing a nucleic acid (antisense RNA, siRNA, shRNA, etc.) having an effect of suppressing the expression of chondromodulin-1 gene into a non-human animal. It is a knockout animal, characterized in that -I gene expression is suppressed!
  • the knockdown animal can also be produced by introducing a vector having a structure capable of expressing the nucleic acid of the present invention (antisense RNA, siRNA, shRNA, etc.) into a non-human animal.
  • a vector having a structure capable of expressing the nucleic acid of the present invention antisense RNA, siRNA, shRNA, etc.
  • the kind of the knockout animal of the present invention is not particularly limited as long as it is a non-human animal, but is usually a higher animal, preferably a mammal, more preferably a primate. More specifically, the animal of the present invention is preferably a rodent such as a mouse, rat, hamster (murine), or a monkey, and more preferably a mouse.
  • a preferred embodiment of the gene knockout (knockdown) non-human animal of the present invention is an animal characterized by an abnormality in a heart valve.
  • this “abnormality” refers to thickening of the heart valve membrane, calcification, decreased mobility, invasion of blood vessels or invasion of vascular endothelial cells and macrophages, turbulence phenomenon of aortic blood flow, aorta This refers to the pressure difference of the left ventricle.
  • the non-human animal of the present invention can be used, for example, in the method for screening a drug of the present invention. That is, the present inventors have found that the above-mentioned non-human animals can be suitably used, for example, for screening for therapeutic agents for angiogenesis-related diseases (new uses). Accordingly, a preferred embodiment of the non-human animal of the present invention is an animal for screening methods described later.
  • the present invention also provides a screening method for the agent (angiogenesis inhibitor or angiogenesis-related disease therapeutic agent) of the present invention using the expression level of chondromodulin-1 gene as an index.
  • a substance that increases (enhances) the expression level of chondromodulin-1 gene is expected to be a drug of the present invention.
  • a candidate compound for an angiogenesis inhibitor or an angiogenesis-related disease therapeutic agent can be efficiently obtained.
  • a preferred embodiment of the method of the present invention is a screening method for the drug (angiogenesis inhibitor or angiogenesis-related disease therapeutic agent) of the present invention, comprising the following steps (a) to (c).
  • a test compound is brought into contact with a cell expressing chondromodulin-1 protein (gene).
  • the "cell” used in the present method is not particularly limited, but is preferably a human-derived cell.
  • a cell expressing chondromodulin-1 protein refers to a cell that expresses endogenous chondromodulin-I protein or an exogenous chondromodulin-1 gene that is expressed. Cells can be used.
  • a cell in which an exogenous chondromodulin-1 gene is expressed can usually be prepared by introducing a expression vector into which a chondromodulin-1 gene is inserted into a host cell.
  • the expression vector can be produced by a general genetic engineering technique.
  • test compound to be used in the screening method of the present invention is not particularly limited.
  • natural compounds, organic compounds, inorganic compounds, proteins, peptides, and other single compounds as well as compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermented microorganism products, marine Examples include biological extracts and plant extracts, but are not limited thereto.
  • test compounds can be appropriately labeled and used as necessary.
  • the label include a radiolabel and a fluorescent label.
  • Contact of a test compound to cells expressing chondromodulin-1 protein usually involves adding the test compound to the culture medium of cells expressing chondromodulin-1 protein. However, it is not limited to this method.
  • the test compound is a protein or the like, “contact” can be performed by introducing a DNA vector expressing the protein into the cell.
  • the expression level of the chondromodulin-1 protein is measured.
  • protein expression includes both transcription and translation.
  • the expression level can be measured by methods known to those skilled in the art.
  • cellular mRNA that expresses chondromodulin-1 protein is extracted according to a conventional method, and Northern hybridization method, RT-PCR method, DNA array method, etc. using this mRNA as a cage are performed. Thus, the amount of transcription of the gene can be measured. Also,
  • cell fractions that express chondromodulin-1 protein are also collected, and the amount of gene translation is measured by detecting the expression of chondromodulin-1 protein by electrophoresis such as SDS-PAGE. You can also.
  • the amount of translation of a gene can be measured by performing Western blotting using an antibody against chondromodulin-1 protein and detecting the expression of the protein.
  • the antibody used for detection of chondromodulin-I protein is not particularly limited as long as it is a detectable antibody. For example, both monoclonal antibodies and polyclonal antibodies can be used.
  • Antibodies that bind to chondromodulin-1 protein can be prepared by methods known to those skilled in the art.
  • a polyclonal antibody can be obtained, for example, as follows. Immunize small animals such as Rabbits with the recombinant (recombinant) chondromodulin-I protein expressed in microorganisms such as Escherichia coli as a fusion protein with natural chondromodulin-1 protein or GST. obtain. This is prepared by, for example, purification using ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatography, a protein column coupled with chondromodulin-1 protein or a synthetic peptide, or the like.
  • chondromodulin-1 protein or a partial peptide thereof is immunized to a small animal such as a mouse, the spleen is removed from the mouse, and the spleen is ground to separate the cells.
  • a mouse myeloma cell is fused with a reagent such as polyethylene glycol, and a clone producing an antibody that binds to chondromodulin-1 protein is selected from the resulting fused cells (Neubridobroma).
  • the obtained hyperidoma was transplanted into the abdominal cavity of the mouse, and ascites was collected from the mouse, and the obtained monoclonal antibody was obtained by, for example, ammonium sulfate precipitation, protein A, protein G column, DEAE ion exchange chromatograph.
  • B, chondromodulin-1 protein or synthetic peptide can be prepared by purification using a affinity column coupled with it.
  • chondromodulin-1 is compared with the case where the test compound is not contacted! /, Compared with the case (measured in the absence of the test compound).
  • Select compounds that increase protein expression It is also possible to select (c) above by comparing with a control.
  • the compound isolated by this method has an action of suppressing angiogenesis (eg, angiogenesis in the heart valve membrane or retina) and is expected to be a therapeutic agent for diseases associated with angiogenesis.
  • angiogenesis eg, angiogenesis in the heart valve membrane or retina
  • Another embodiment of the screening method of the present invention is a method using the activity (function) of chondromodulin-1 protein as an index.
  • the above method is a method for screening a drug of the present invention, which includes the following steps (a) to (c), for example.
  • (c) a step of selecting a compound that increases the activity of the protein as compared to the measurement in the absence of the test compound.
  • chondromodulin-1 protein or a cell expressing the protein or a cell extract is contacted with a test compound.
  • the activity of chondromodulin-1 protein is measured.
  • Examples of the activity of chondromodulin-1 protein include the various activities (functions) described above. The activity can be appropriately evaluated by those skilled in the art using a known method or referring to various documents cited in the present specification.
  • a compound that increases (enhances) the activity of the protein is selected as compared with the case where the test compound is not contacted (control).
  • Another embodiment of the screening method of the present invention is a method of selecting a compound that increases the expression level of the chondromodulin-1 protein (gene) of the present invention using the expression of a reporter gene as an index.
  • a preferred embodiment of the above method of the present invention is a method for screening a pharmaceutical agent of the present invention, comprising the following steps (a) to (c).
  • (c) a step of selecting a compound that increases the expression level as compared with the case where it is measured in the absence of the test compound.
  • a test compound is brought into contact with a cell or cell extract containing DNA having a structure in which a transcriptional regulatory region of chondromodulin-1 gene and a reporter gene are functionally linked.
  • functionally linked means that the transcription factor of chondromodulin-1 gene is induced so that expression of the reporter gene is induced by binding of a transcription factor to the transcriptional regulatory region of chondromodulin-1 gene. It means that the regulatory region and the reporter gene are bound. Therefore, even when the reporter gene is bound to another gene and forms a fusion protein with another gene product, the transcription factor binds to the transcriptional regulatory region of chondromodulin-1 gene.
  • the reporter gene used in the present method is not particularly limited as long as its expression can be detected, for example, CAT gene, lacZ gene, luciferase gene, GFP gene and the like.
  • Examples of “cells containing DNA having a structure in which the transcriptional regulatory region of the chondromodulin-1 gene and the reporter gene are functionally linked” include cells into which a vector into which such a structure has been inserted has been introduced. It is done. Such vectors can be prepared by methods well known to those skilled in the art. Introduction of the vector into the cells can be carried out by a common method such as calcium phosphate precipitation, electric pulse perforation, ribofusion method, microinjection method and the like.
  • Chondromodulin-1 gene “Cells containing DNA having a structure in which the transcriptional regulatory region and reporter gene are functionally linked” also includes cells in which the structure is inserted into the chromosome.
  • the DNA structure can be inserted into the chromosome by a method commonly used by those skilled in the art, for example, a gene introduction method using homologous recombination.
  • a cell extract containing DNA having a structure in which a transcriptional regulatory region of chondromodulin-1 gene and a reporter gene are functionally linked includes, for example, a commercially available in vitro transcription translation kit. And a cell extract obtained by adding DNA having a structure in which a transcriptional regulatory region of chondromodulin-1 gene and a reporter gene are functionally linked to each other.
  • contact refers to a test compound in a culture solution of "cells containing DNA having a structure in which a transcriptional regulatory region of chondromodulin-1 gene and a reporter gene are functionally linked". Or a test compound is added to the above-mentioned commercially available cell extract containing the DNA.
  • the test compound is a protein, for example, it can be carried out by introducing a DNA vector expressing the protein into the cell.
  • the expression level of the reporter gene is then measured as follows.
  • the expression level of the reporter gene can be measured by methods known to those skilled in the art depending on the type of the reporter gene.
  • the reporter gene is a CAT gene
  • the expression level of the reporter gene can be measured by detecting the chloramfecole acetylene by the gene product.
  • the reporter gene is the lac Z gene
  • the expression level of the reporter gene can be measured by detecting the fluorescence of the GFP protein.
  • the present invention also relates to a screening method for the drug of the present invention (therapeutic agent for angiogenesis-related disease or angiogenesis inhibitor, etc.) using the animal of the present invention.
  • the method of the present invention is, for example, a method for screening a drug of the present invention comprising the following steps (a) to (c).
  • a test compound is administered to the gene knockout non-human animal described above.
  • the test compound can be administered either orally or parenterally.
  • the test compound is administered parenterally.
  • the test compound is injected, nasally administered, pulmonary administered, transdermally. Examples include dosage forms.
  • the injection form can be administered systemically or locally (for example, heart valve membrane, retina, etc.) by intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • test compound is DNA
  • a viral vector such as a retrovirus, adenovirus, or Sendai virus
  • a non-viral vector such as a ribosome
  • administration methods include in vivo methods and ex vivo methods.
  • the expression level or activity of chondromodulin-1 protein in the gene knockout animal is then measured. More specifically, the expression level or activity of chondromodulin-1 protein is measured for the tissues, organs, cells, etc. (preferably heart valve membrane, intraocular, retina, etc.) of the animal. The expression level or activity can be measured by the method described above.
  • a compound that increases the expression level or activity of chondromodulin-1 protein is selected as compared with the case (control) when the test compound is not administered.
  • the screening of the present invention can also be performed by using the gene knockout animal of the present invention and using the morphological change of the heart valve membrane or retina in the animal as an index. is there.
  • a preferred embodiment of the present invention is a method for screening a pharmaceutical agent of the present invention, comprising the following steps (a) to (c).
  • a morphological change depending on the phenotype exhibited by a non-human animal knocked out by chondromodulin-1 gene is observed. That is, by selecting a substance that normalizes an abnormal heart valve or retina in the knockout animal, a candidate compound of the drug of the present invention can be obtained. For example, a compound that normalizes thickening, calcification, etc. in the heart valve membrane in the knockout non-human animal is selected.
  • the present invention also provides a kit containing various drugs, reagents and the like used for carrying out the screening method of the present invention.
  • the kit of the present invention can be appropriately selected from, for example, the above-described various reagents of the present invention according to the screening method to be performed.
  • the kit of the present invention can be used for detection of chondromodulin-1 protein, such as a probe for chondromodulin-1 gene or an oligonucleotide such as a primer for amplifying any region of the gene, or chondromodulin.
  • An antibody that recognizes modulin-1 protein (anti-chondromodulin-I protein antibody) and the like are included as components.
  • the oligonucleotide specifically hybridizes, for example, to the DNA of the chondromodulin-1 gene of the present invention.
  • specifically hybridizes '' means normal hybridization conditions, preferably stringent and hybridization conditions (e.g., Sambnorec et al., Molecular Cloning, Cold Spring Harbor Laboratory Press.New (Conditions described in York, USA, 2nd edition 1989) means that no significant cross-hybridization occurs with DNA encoding other proteins. If specific hybridization is possible, the oligonucleotide need not be completely complementary to the base sequence of chondromodulin-1 gene.
  • hybridization conditions include, for example, “2 X SSC, 0.1% SDS, 50.C”, “2 X SSC, 0.1% SDS, 42.C”, “1 X SSC”. , 0.1% SDS, 37 ° C '' and more stringent conditions as ⁇ 2 X SSC, 0.1% SDS, 65 ° C '', ⁇ 0.5 X SSC, 0.1% SDS, 42 ° C '' and ⁇ 0.2 X SSC, 0.1 % SDS, 65 ° C. ”.
  • Rapid-hyb buffer Amersham Life Science
  • a probe after pre-hybridization at 68 ° C for 30 minutes or more, add a probe and keep at 68 ° C for 1 hour or more to hybridize. And then washed 3 times for 20 minutes at room temperature in 2 X SSC, 0.1% SDS, followed by 3 times 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS. Can be washed twice in 1 X SSC, 0.1% SDS at 50 ° C for 20 minutes.
  • Prehybrid Hybrid Solution (CLONTECH)
  • prehybridization at 55 ° C for 30 minutes or more, add labeled probe, and incubate at 37-55 ° C for 1 hour or more. It is also possible to wash 3 times for 20 minutes at room temperature in 2 X SSC, 0.1% SDS, and once for 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS.
  • the temperature at the time of pre-hybridization, hybridization, or the second washing to be higher, more stringent conditions can be obtained.
  • the temperature of the prehybridization and the hybridization can be set to 60 ° C
  • the stringent condition can be set to 68 ° C.
  • the conditions such as the salt concentration and temperature of the buffer, as well as other conditions such as the probe concentration, probe length, probe base sequence composition, and reaction time. Can be set.
  • the oligonucleotide can be used as a probe or primer in the above-described screening kit of the present invention.
  • the length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of the DNA of the chondromodulin-1 gene of the present invention.
  • the kit of the present invention may further contain various reagents, containers and the like used in the method of the present invention.
  • various reaction reagents, cells, culture solution, control sample, buffer solution, instructions describing how to use and the like can be appropriately included.
  • the present invention provides a human, characterized in that the following (a) and (b) are the main constituent components: Provide a heart valve.
  • the artificial heart valve of the present invention is a hybrid type artificial heart valve having the above (a) and (b) as main components, and may be described as a “hybrid type regenerative valve”, for example.
  • the present invention also provides an artificial heart valve manufactured by the following steps (a) to (c).
  • cells expressing the chondromodulin-1 gene are cultured.
  • a part of a subject or a (heart) valve tissue other than the subject e.g. heart annulus tissue or tricuspid valve
  • the obtained cells are cultured in an explant and grown to a sufficient volume.
  • Ethas plant culture conditions are those generally known to those skilled in the art, such as papers (Lester W, Rosenthal A, Granton B, uotneb AI.Porcine mitral valve interstitial cells in culture.Lab. Invest. 59, 710-719. , (1988)) can be used.
  • the cells are seeded on the surface of a biodegradable valve or a biologically soluble polymer compound. It is preferable to use a biogenic valve or a biosoluble polymer compound having a gap, that is, a porous compound.
  • the cells seeded on the surface are cultured until they infiltrate into the gaps (pores) of the ex-vivo valve or in-vivo soluble polymer compound and fill the gaps.
  • the culture conditions are those already described in the paper (Lester W, Rosenthal A, uranton B, Gotlieb AI.Porcine mitral valve interstitial cells in culture.Lab. Invest. 59, 710-719, (1988)). Use Can do.
  • the devitalized valve or in vivo soluble polymer compound having the cells is converted into a serum-free culture solution.
  • the prosthetic heart valve of the present invention thus manufactured is further washed with physiological saline to remove serum components, and then subjected to replacement surgery for a patient who needs valve replacement with advanced destruction. Do what you do.
  • the "cell expressing the chondromodulin-1 gene” is preferably a valve stromal cell derived from a subject or a subject other than the subject. That is, autologous valve stromal cells or other (third party) valve stromal cells can be used.
  • the above “decellular valve” refers to a biological valve that has been decellularized (cell components have been removed). Decellularization can be performed by techniques known to those skilled in the art. As described above, the decellularization valve of the present invention is preferably porous.
  • biological valve for example, a porcine biological valve can be used.
  • examples of the "in vivo-soluble polymer compound" in the present invention include polylactic acid and the like. As described above, the in vivo soluble polymer compound of the present invention is preferably porous.
  • the present inventors also found that the vascular stromal cells secreted chondromodulin-1 which is an angiogenesis inhibitor, so that the new blood vessels did not infiltrate into the valve stromal tissue. It was clarified that the valve tissue was protected by the invasion of inflammatory cells and the destructive power by the activity of MMP. So far, in the regenerative valves of pigs and in vivo dissolved polymers (polylactic acid etc.) supplemented with bone marrow cells, etc. It was impossible to maintain the function during the period.
  • the present inventors used autologous valve stromal cells or other family (third party) valve stromal cells as porcine biological valves (decellularized valves) or in vivo soluble polymer compounds (such as polylactic acid)
  • porcine biological valves decellularized valves
  • in vivo soluble polymer compounds such as polylactic acid
  • the present invention provides an artificial heart valve having a function of suppressing angiogenesis in a valve tissue.
  • the present invention also relates to any of the following (a) to (c) and a pharmaceutically acceptable carrier or medium.
  • the present invention relates to a method for producing an angiogenesis inhibitor or an angiogenesis-related disease therapeutic agent comprising a step of mixing (combining) with a body.
  • Chondromodulin-I protein for example, human chondromodulin-1 protein represented by the amino acid sequence set forth in SEQ ID NO: 2
  • “Pharmaceutically acceptable carrier or vehicle” refers to a material that can be administered together with any of the above (a) to (c) and does not significantly inhibit the action of inhibiting angiogenesis. It is.
  • a carrier or medium include deionized water, sterilized water, sodium chloride solution, dextrose solution, dextrose and sodium chloride, Ringer's solution containing lactate, culture solution, serum, and phosphate buffered saline ( PBS) and the like, and combining these with any of the above (a) to (c) as appropriate is considered. If necessary, it may be concentrated by centrifugation or the like and resuspended in a physiological solution such as physiological saline. It may also contain liposomal membrane stabilizers (eg sterols such as cholesterol).
  • liposomal membrane stabilizers eg sterols such as cholesterol
  • composition of the present invention may be in the form of an aqueous solution, capsule, suspension, syrup and the like.
  • the present invention relates to a method for preventing or treating an angiogenesis-related disease, comprising the step of administering any of the above (a) to (c) to an individual (eg, a patient).
  • the individual in the method of preventing or treating according to the present invention is preferably a human, but is not particularly limited and may be a non-human animal.
  • the dose of any of the above (a) to (c) of the present invention varies depending on the disease, the patient's weight, age, sex, symptom, administration purpose, form of administration composition, administration method, etc. It is possible to determine appropriately.
  • the route of administration can be selected as appropriate, for example, transcutaneous, intranasal, transbronchial, intramuscular, intraperitoneal, intravenous, It can be performed intranodally or subcutaneously.
  • Administration can be local or systemic.
  • an amount obtained by converting the human dose by the body weight ratio between the target animal and human or the volume ratio (for example, average value) of the administration target site can be administered.
  • the present invention also relates to a method for treating an angiogenesis-related disease, comprising the step of using the artificial heart valve of the present invention.
  • the present invention provides use of any of the substances (a) to (c) in the manufacture of an angiogenesis inhibitor or an angiogenesis-related disease therapeutic agent.
  • aortic valves and 11 mitral valves were collected from patients who underwent valve replacement surgery for valve stenosis or regurgitation. Immediately after extraction, the sample was fixed in formaldehyde and embedded in paraffin. As controls, three necropsy patients (mean age, 44.3 ⁇ 9.7 years) obtained 3 smooth and flexible aortic and mitral valves that were microscopically and macroscopically normal and not calcified.
  • mice Purchase 7 wild type ICR mice and Wistar rats from CLEA Japan (Tokyo, Japan).
  • ⁇ mice Plump, AS et al. Severe hypercholesterolemia and atheroscleros is in apolipoprotein E—deficient mice created by homologous recomoination in ES eel Is.Cell 71, 343-53 (1992)
  • VICs adult rat aortic valve stromal cells
  • the heart was removed from anesthetized 5 week old Wistar rats. Rapid aortic leaflet And then chopped under a stereomicroscope and in a known manner (Lester W, RA, Granton B, et al. Porcine mitral valve interstitial cells in culture. Lab Invest, 710—719 (1988)) Used for plant culture.
  • a 5 x 5 mm piece is tissue-forced and placed on a 12-well collagen-coated dish (Iwaki, Tokyo, Japan) and M199 (Sigma-Aldrich, Tokyo, containing 10% urushi fetal serum (FBS). (Japan).
  • Conditioned medium (CM) was also obtained for confluent valve stromal cell strength 3 days after medium change and used for further analysis.
  • NIH3T3 cells were maintained in a known manner (Hisaka, Y et al. Powerful and controllable angiogenesis by using gene-modified cells expressing human hepatocyte growth factor and thy midine kinase. J Am Coll Cardiol 43, 1915-22 (2004)) .
  • Human coronary vascular endothelial cells (HCAECs) were purchased from Tacarano Technology (Tokyo, Japan) and used in a known manner (Hamilton, KL, Mbai, FN, Gupta, 3 ⁇ 4. & Knowlton, AA Estrogen, heat shock proteins , and NFkappaB in human vascular endothelium. Arterioscler Thromb Vase Bio 24, 1628-33 (2004)) cells were used in this study with 3-5 passages
  • Mouse chm-1 (Genbank TM accession number NM_010701 No.): (Forward) 5'- CTTAAGCCCATGTATCCAAA-3'Z SEQ ID NO: 3, (Reverse) 3'- CCA GTGGTTCACAGATCTTC-5'Z sequence Number: 4; gapdh (forward) 5'-TTCAACGGCA CAGTCAAGG-3'Z SEQ ID NO: 5, (reverse) 3'-CATGGACTGTGGTCATGAG-5 'Z SEQ ID NO: 6.
  • RT-PCR for chm-I was performed in various organs. Cartilage and eyes were used as positive controls. chm-I was not detected in organs other than the heart (Fig. la). Chm-I expression is Strong in the heart valve, but not in the atria and ventricles ( Figure lb). During rat embryogenesis, chm-I expression first appeared in the heart at E9.5 and persisted until adulthood (Fig. Lc).
  • the relative amount of rat chm-I mRNA in the rat heart was determined by a known method (Aoyama, T. et al. Expression of the chondromoaulin—I gene in chondrosarcomas. Ancer Lett 204, 61-8 (2004)). Evaluated by Taqman real-time PCR with a 7700 sequence detection system (PE Applied Biosystems).
  • chm- 1 c DNA (Genbank TM accession number NM_030854) +411 (exon 4) to +48 5 (exon 5) fragment of 75 bp, specific primer (sense, 5'-GAAGGCTCGTA TTCCTGAGGTG -3'Z SEQ ID NO: 7; amplified using antisense 5'- TGGCATGATCTTGCCTTCC AGT-3'Z SEQ ID NO: 8) and Taqman probe (5'-FAM-CGTGACC AAACAGAGCATCTCCTCCA-3'-TAMRAZ SEQ ID NO: Labeled by 9). All reactions were performed 3 times per sample using GAP DH mRNA as an internal control.
  • the chm-1 / GAPDH ratio in each sample was calculated, and the chm-I gene expression level was determined as a relative value using the chm-I / GAPDH ratio (1.0) in all eyes of the rat as the standard substance.
  • the same analysis is performed in triplicate and values are expressed as% mRNA level compared to the rat whole eye mRNA level normalized to GAPDH level.
  • Dissolving buffer [20 mM Tris (pH 7.4), 1 mM EDTA, 1 mM EGTA, complete mini (registered trademark) (Roche, Germany) tablets in Wistar rats and autopsy human tissues (atrium, ventricle, heart valve and cartilage) / Buffer 10 ml].
  • Western blot analysis (Funaki, H. et al. Expression and localization of angiogenic inhioitory factor, chondromodulin—I, in adult rat eye.Invest Ophthalmol Vis Sci 42, 1193-200 (2001 )).
  • the loading amount of each sample was changed.
  • Membrane with Usagi anti-ChM-I polyclonal antibody at 4 ° C overnight Incubated.
  • HRP horse radish peroxidase
  • PIERCE SuperSignal West Pico
  • the ⁇ type DNA was 879-bp cDNA encoding mouse chm-I cloned in pCR ⁇ - ⁇ vector.
  • mice embryos 9.0, 9.5, 10.0, and 12.5 day mouse embryos (pupae) were collected and used in a known manner (Dietz, UH, Ziegelmeier, G "Bittner, K., Bruckner, P. & Balling, R. Spatio-temporal dist ribution of chondromodulin— I mRNA in the chicken embryo: expression during cartila ge development and formation of the heart and eye.Dev Dyn 21b, 233-43 (1999)) D IG labeled RNA probe, Whole mount in situ hybridization was performed.
  • Pregnant or non-pregnant adult mouse hearts are perfused with PBS and fixed with 4% paraformaldehyde (PFA) / PBS, and this is detected in a known manner (Funaki, H. et al. Exp ression and localization of angiogenic inhibitory factor, chondromodulin— I, in adult ra t eye. Invest Ophthalmol Vis Sci 42, 1193-200 (2001)) Used for immunostaining. Specifically, pregnant or non-pregnant adult mouse hearts were dissected and immersed in 4% PFA overnight at 4 ° C, and then embedded in paraffin.
  • PFA paraformaldehyde
  • the sections Prior to applying the primary antibody, the sections were deparaffinized in xylene and heated in a microwave oven for 3 minutes in 10 mmol citrate monohydrate (DAK0, Glostrup, Denmark) at pH 6.0. After rinsing them in PBS, sections were washed with 5% normal rabbit sera, affinity purified rabbit rabbit anti-polyclonal anti-mouse ChM-1, rabbit rabbit polyclonal anti-VEGF-A (200-fold diluted; sc-507; Santa Cruz Bio Technology (Santa Cruz Biotecunology, California), anti-von Willebrand factor (200-fold dilution; vWF; RB-281-A0; Lab vision Corporation, Westinghouse Drive Fremont, California), or Incubated overnight at 4 ° C.
  • the signal was detected by applying ma-Aldrich), Tokyo, Japan. Sections were counterstained with hematoxylin, dehydrated in graded ethanol and ST (Person (Fisher Scientific, Pittsburgh, PA)) ST (Hiraki, Y et al. Molecular cloning of numan chondromodulin-I, a cartilage-derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur J Biochem 260, 869-78 (1999)).
  • ChM-I is present in all four heart valves in the adult mouse heart. found. Serial sections revealed that ChM-I expression could be detected reciprocally with VEGF-A expression. ChM-I protein was detected in valve stromal cells (VICs) and in the entire extracellular matrix, but not in the endothelial cell layer outside the heart valve membrane.
  • VIPs valve stromal cells
  • valvular progenitor cells from the atrioventricular ridge (AVC) and outflow tract (OFT) express chm-I transcripts and ChM-1 protein beginning at E9.5. The start of this expression is consistent with the RT-PCR results.
  • ChM-I is expressed in cardiac jelly that covers the left ventricular (LV) cartilage-forming cardiomyocytes, right ventricular (RV) outer curvature and cardiac outflow tract.
  • ChM-I expression in the ventricles gradually decreased as development progressed, and chm-I transcripts and proteins disappeared by the middle stage of embryogenesis. Differences in the location of ChM-I and VEGF-A were evident at all stages of development. VEGF-A expression was restricted to cardiomyocytes and endothelial cells facing the ventricular cavity, whereas ChM-I expression was restricted to valvular lobule primordia.
  • Anti-angiogenic ChM-I and angiogenic VEGF-A expression is an aging ⁇ - ⁇ mouse (9 0.5 ⁇ 3.7), a model of atherosclerosis with abnormal lipid deposition and calcification in the heart valve Examination was performed on the heart valvule. ChM-I expression had newly infiltrated VEGF-A positive cells (Fig. 3glkm) and was not present in the calcified region in both the aortic and mitral valves (Fig. 3abl). Age-matched wild-type mice (88.5 ⁇ 4.4 weeks of age) showed the expected physiological ChM-1 positive and VEGF-A negative expression patterns, and did not show hardening or calcification.
  • ChM-I was significantly down-regulated in a new angiogenic region that strongly expressed VEGF-A. This expression profile was not observed in the heart valve of patients with aortic vasodilatation and mitral tendon rupture (Table 1).
  • Example 11 Analysis of valve stromal cell-derived ChM-I in vivo inhibition of human coronary artery endothelial cell lumen formation and migration and apoptosis induction
  • ChM-I The ability of ChM-I to be produced by valve stromal cells and whether VIC-derived ChM-I can influence the proliferation and lumen morphogenesis of human coronary artery endothelial cells (HCAECs) in vitro Examined.
  • Valve stromal cells or human coronary vascular endothelial cells were treated with 10 ⁇ g / ml acetylated apoprotein (Ac-LDL) labeled with Dil (Molecular Probes, Eugene) for 1 hour at 37 ° C . Fluorescent cells were observed under a Nikon Diaphot microscope (excitation 554 nm, emission 571 nm).
  • the cells were found to be negative for the acetyl DLDL-Dil conjugate, consistent with a valvular stromal heart valve that has an endodermal cell layer on the outer surface. Immunostaining showed that ChM-I was expressed in the cytoplasm of valve stromal cells, and that ChM-I was not present in the negative control NIH3T3 cells.
  • Matrigel (0.4 ml; Becton Dickin son Labware, Bedford, Mass.) Supplemented with growth factors in a 24-well culture plate (Costar, Corning, NY) And incubated at 37 ° C for 30 minutes. Human coronary vascular endothelial cells starved for 4 hours were treated with trypsin-EDTA and suspended in culture medium for 20 minutes. Cells, valve stromal cells or Were seeded at a density of 10,000 Z-wells in polymerized Matrigel in the presence or absence of CM in NIH3T3 cells, as previously described (Oshima, Y et al. Expression and localization of tenomodulin, Invest Ophthalmol Vis Sci 44, 1814-23 (2003)) Tubular formation was performed.
  • RNA duplexes were transfected into valve stromal cells grown to 90% confluence using oligofactamine (Invitrogen). Three days after transfection, conditioned media from cells was used for the experiments.
  • NIH3T3 or valve stromal cells (1 ⁇ 10 5 cells / well) were added to the lower chamber and 48 hours later, human coronary artery endothelial cells (5 ⁇ 10 4 cells / well) were seeded in the upper chamber. After 16 hours of incubation, the cells that remained attached to the upper surface of the filter were collected with the tip of a cotton swab, and the cells present on the lower surface of the filter were counted using an optical microscope. Atsy was performed 5 times and the results were averaged.
  • ChM-I also inhibits the ability of human coronary artery endothelial cells to migrate by using a modified void chamber.
  • Human coronary vascular endothelial cells co-cultured with valve stromal cells lost the ability to migrate to the lower surface of the membrane compared to NIH3T3 cells ( Figure 51m).
  • Treatment of valve stromal cells with siRNA specific for chm-I partially restored the ability of human coronary vascular endothelial cells to migrate (Figure 5o).
  • Values are expressed as mean valet SEM. When comparing two means, statistical significance was assessed using the unpaired, student t-test. A comparison of more than three, more than one group, was made using ANOVA. A value of p ⁇ 0.05 was considered significant.
  • Example 12 Induction of VEGF-A expression, angiogenesis, thickening, and calcification in the heart valve membrane by disruption of the chm-I gene
  • HE staining and immunostaining for VEGF-A and v-WF showed very few blood vessels in the heart-valve of age-matched chm-I + / + mice.
  • Example 13 Early phase aortic stenosis in chm-r / _ mice detected by echocardiography Transthoracic echocardiography was performed with a Sonos 1000 echocardiograph (Hewlett-Packard) equipped with a 10-MHz linear array transducer. The heart was imaged in two-dimensional (2D) and color Doppler modes in the major and minor fields of view at the aortic valve level.
  • Sonos 1000 echocardiograph Hewlett-Packard
  • Echocardiography revealed a bright echogenic aortic valve that oscillated with a weak acoustic shadow, suggesting thickening or calcification in the heart valve (Figure 7).
  • the color Doppler test showed a mosaic turbulent jet distal to the AV.
  • no echogenic object or turbulent jet was observed.
  • chm-I + / + and chm-r mice there was a significant difference in left ventricular diameter, left ventricular wall thickness, mitral valve (MV) brightness, or MV region turbulence.
  • MV mitral valve
  • ChM-I an anti-angiogenic factor having a function of preventing valvular heart disease by maintaining avascularity in the heart valve.
  • ChM-I is tissue-specifically expressed in the interatrioventricular ridge and cardiac outflow tract at E9.5, ventricular muscle at E10.0, and late embryogenesis in the heart valve up to adulthood;
  • ChM-I secreted by VICs has an important role in inhibiting angiogenesis by human coronary vascular endothelial cells in vitro;
  • ChM-1 is human (Hiraki, Y. et al. Eur J Biochem 260, 869-78 1999), Usagi (Shukun ami, C. & Hiraki, Y. Biochem Biophys Res Commun 249, 885-90 1998) .), Mice (Sh ukunami, C. et al. Int J Dev Biol 43, 39-49 1999), and ⁇ ⁇ (Shukunami, C. et al. FE BS Lett 456, 165-70 1999. Dietz, UH et al. Dev. Dyn. 216, 233-43 1999), Ushi (Hiraki, Y. et al.
  • ChM-I has an important role in maintaining heart valve function.
  • Fariba reported that the expression of endostatin, an anti-angiogenic factor derived from an internal fragment of collagen type XVIII, is enhanced in the aortic valve in pathological conditions but not in normal conditions (Chalajour , F. et al. Exp. Cell Res. 298, 455-64 2004). This is the first report on anti-angiogenic factors expressed in the heart valve membrane at physiological conditions that inhibit angiogenesis. Because the heart valve membrane is a flow-regulating tissue in a dynamic chamber pump, they are subject to mechanical stress and damage to the endothelial cell layer that exists in the outer layer of the valve membrane.
  • ChM-I ChM-I-binding protein
  • VEGF-A vascular endothelial growth factor
  • upstream signals are associated with genes between angiogenic and anti-angiogenic factors. There is a possibility to control the switch.
  • Cbfal an important transcription factor that mediates endochondral ossification in cartilage, stimulates angiogenesis (upregulation of VEGF-A) and angiogenesis in soft cells. It was shown that expression changes are induced in a coordinated manner during suppression of ChM-I (ChM-I down-regulation) (Takeda, S. et al. Genes Dev. 15, 467-81 2001).
  • valve stromal cells suppressed the migration and luminal morphogenesis of human coronary vascular endothelial cells in vitro and induced apoptosis of these cells.
  • Culture of valve stromal cells Anti-angiogenic activity of supernatant Suppressed by SChm-I-specific siRNA suggests that ChM-I is an important anti-angiogenic factor in the heart valve . This incomplete suppression of anti-angiogenic activity suggests that valve stromal cells may secrete other anti-angiogenic factors similar to those identified in the eye.
  • the eye expresses anti-angiogenic factors endostatin and PEDF (pigment epithelium-derived factor). (Dawson, DW et al. Science 285, 245-8 1999).
  • the avascularity observed in the heart valve of young adult knockout mice is not the result of the development of damaged blood vessels in the aging chm-r / _ mice, but rather the age- and inflammation-induced valve This suggests that it is due to a regression change.
  • VHD valvular heart disease
  • the prosthetic heart valve provided by the present inventors is considered to suppress angiogenesis in the valve tissue and contribute to long-term functional maintenance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

 本発明は、心臓弁膜等における抗血管新生因子の働きを解析し、血管新生に起因する疾患の発症のメカニズムを明らかにすることを目的とする。より具体的には、心臓弁膜症等の血管新生に起因する疾患のための治療薬の提供、並びに、該治療薬を効率的にスクリーニングする方法の提供を課題とする。  本発明者らによって、コンドロモジュリン-Iは、心臓弁膜に顕著に発現しており、心臓弁膜症に至る血管新生、肥厚および石灰化を予防することによって、弁膜の正常な機能を維持するために重要な役割を果たしていることが見出された。コンドロモジュリン-Iタンパク質、または該タンパク質の発現もしくは機能を活性化させる物質は、血管新生に起因する疾患に対して治療効果を有することが期待される。

Description

明 細 書
コンドロモジュリン- 1を有効成分とする血管新生関連疾患治療剤 技術分野
[0001] 本発明は、コンドロモジュリン- 1を有効成分とする血管新生関連疾患治療剤、およ び、コンドロモジュリン- 1の発現を指標とする血管新生関連疾患治療剤のスクリーニン グ方法に関する。
背景技術
[0002] 血管新生と抗血管新生因子のバランスは、組織および臓器の正常な発達および恒 常性にとって重要である。心臓は、血管に富む臓器であり、多くの血管新生因子を産 生するが、心臓弁膜は無血管であり、酸素は血流力 の拡散によって供給されてい る (非特許文献 1参照)。ァテローム性動脈硬化症、リウマチ性心臓弁膜症、または感 染性心内膜炎のような病的な状態では、心臓弁膜は血管新生因子を発現して、血管 新生が起こる (非特許文献 2および 3参照)。心臓弁膜における無血管性の維持に対 する抗血管新生因子 (血管新生阻害因子)の関与については不明である。
[0003] 軟骨は、心臓弁膜組織と類似の特徴を有する代表的な無血管組織である。軟骨を 含む軟骨細胞と同様に、弁間質細胞 (VICs)として知られる心臓弁膜組織の間葉細 胞は、不完全な基底層にまばらに分布して、内皮細胞層の下の細胞外マトリックスの コラーゲン線維、エラスチン微小線維、およびプロテオダリカンと直接、広範に接する (非特許文献 4〜6参照)。 BMP2 (非特許文献 7参照)、および TGF β 2 (非特許文献 8参照)のような増殖因子だけでなぐ Sox9 (非特許文献 9参照)、 NATc (非特許文献 10参照)、 Runx2 (Cbfalとしても知られる)(非特許文献 11参照)、 MSX2 (非特許文献 12参照)のような軟骨内骨化の際の軟骨形成にとって必須の転写因子も同様に、心 臓弁膜において発現している。 Sox9は Sox5および Sox6と共に、非軟骨形成細胞にお Vヽても(非特許文献 13参照)、コンドロモジュリン- 1 (Chm-I)を含む軟骨に特異的な遺 伝子の発現を誘導することができ、これらは心臓弁膜の発達にとっても必須であるこ とが報告されて ヽる (非特許文献 7参照)。
[0004] し力しながら、心臓弁膜における抗血管新生因子の作用については不明な点が多 ぐ心臓弁膜症等の血管新生に起因する疾患についての発症メカニズムは明らかと なっていない。
なお、本願発明の関連文献として以下の特許文献もしくは非特許文献が報告され ている。
特許文献 1:特許第 3585180号
特許文献 2:特開平 9-299088号
特許文献 3:特開 2004-123722号
特許文献 4 :特開平 5-178896号
非特許文献 l : Hammon, J.W., Jr., O' Sullivan, M.J., Oury, J. & Fosburg, R.G. Allogr aft cardiac valves. A view through the scanning electron microscope. J Thorac Cardi ovasc Surg 68, 352—60 (1974).
非特許文献 2 : Soini, Y., Salo, T. & Satta, J. Angiogenesis is involved in the pathoge nesis of nonrheumatic aortic valve stenosis. Hum Pathol 34, 756-63 (2003).
非特許文献 3 :Yamauchi, R. et al. Upregulation of SR- PSOX/CXCL16 and recruitm ent of CD8+ T cells in cardiac valves during inflammatory valvular heart disease. Art erioscler Thromb Vase Biol 24, 282—7 (2004).
非特許文献 4 : Filip, D.A., Radu, A. & Simionescu, M. Interstitial cells of the heart v alves possess characteristics similar to smooth muscle cells.し ire Res 59, 310—20 (1 986).
特許文献 5 : Lester W, R.A., Granton B, et al. Porcine mitral valve interstitial cell s in culture. Lab Invest, 710-719 (1988).
特許文献 6 : Gotlieb, A.I., Rosenthal, A. & Kazemian, P. Fibroblast growth factor 2 regulation of mitral valve interstitial cell repair in vitro. J Thorac Cardiovasc Surg 124, 591-7 (2002).
非特許文献 7 : Sugi, Y., Yamamura, H., Okagawa, H. & Markwald, R.R. Bone morph ogenetic protein— 2 can mediate myocardial regulation of atrioventricular cushion me senchymal cell formation in mice. Dev Biol 269, 505-18 (2004).
非特許文献 8 : Camenisch, T.D. et al. Temporal and distinct TGFbeta ligand require ments during mouse and avian endocardial cushion morphogenesis. Dev Biol 248, 17 0-81 (2002).
非特許文献 9 :Akiyama, H. et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proc Natl Acad Sci U S A 101, 6502-7 (2004 ).
非特言午文献 10 : Ranger, A.M. et al. The transcription factor NF- ATc is essential for cardiac valve formation. Nature 392, 186—90 (1998).
非特言午文献 11 : Rajamarman, N.M. et al. Human aortic valve calcification is associate d with an osteoblast phenotype. Circulation 107, 2181-4 (2003).
非特許文献 12 : Chan- Thomas, P.S., Thompson, R.P., Robert, B., Yacoub, M.H. &
Barton, P.J. Expression of homeobox genes Msx- 1 (Hox- 7) and Msx- 2 (Hox- 8) duri ng cardiac development in the chick. Dev Dyn 197, 203-16 (1993).
非特許文献 13 : Ikeda, T. et al. The combination of SOX5, SOX6, and SOX9 (the SO
X trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rhe um 50, 3561-73 (2004).
非特言午文献 l4 : Hiraki, Y. et al. Molecular cloning of a new class of cartilage- specifi c matrix, chondromodulin— I, which stimulates growth of cultured chondrocytes. Bioc hem Biophys Res Commun 175, 971-977 (1991).
特言午文献 15 : Funaki, H. et al. Expression and localization of angiogenic inhibitory factor, chondromodulin— I, in adult rat eye. Invest Ophthalmol Vis Sci 42, 1193—200 (2001).
特言午文献 lb : Azizan, A., Holaday, N. & Neame, P.J. Post— translational processing of bovine chondromodulin- 1. J Biol Chem 276, 23632-8 (2001).
非特言午文献 17 : Hiraki, Y. et al. Identification of chondromodulin I as a novel endoth elial cell growth inhibitor. Purification and its localization in the avascular zone of ep iphyseal cartilage. J Biol Chem 272, 32419—26 (1997).
発明の開示
発明が解決しょうとする課題 [0006] 本発明は、心臓弁膜等における抗血管新生因子の働きを解析し、血管新生に起因 する疾患の発症のメカニズムを明らかにすることを目的とする。より具体的には、心臓 弁膜症等の血管新生に起因する疾患のための治療薬の提供、並びに、該治療薬を 効率的にスクリーニングする方法の提供を課題とする。さらに本発明は、弁組織中へ の血管新生を抑制する機能を有する人工心臓弁の提供を課題とする。
課題を解決するための手段
[0007] 本発明者らは上記課題を解決するため鋭意研究を行った。心臓弁膜はよく知られ た無血管組織である力 いくつかの心臓弁膜症(Valvular Heart Diseases; VHD)で はその無血管性が失われている。本発明者らは、弁膜の無血管性の分子メカニズム を解明すベぐ心臓弁膜あるいは網膜等におけるコンドロモジュリン- I(ChM-I)の発現 解析を行った。さらに、無血管性に関与するものと考えられる ChM-Iについて、その 遺伝子を標的とした遺伝子ノックアウト技術を用いて VHDの誘発にっ ヽて検討を行つ た。
[0008] コンドロモジュリン- 1 (ChM-I)は、眼および軟骨の無血管糸且織に主に存在するァミノ 酸残基 335個の II型膜貫通前駆体力ものアミノ酸残基 121個の糖タンパク質である(非 特許文献 14および 15参照)。翻訳後、 ChM-I前駆体は、 RERR-ELVR部位でフリン プロテアーゼによって切断され (非特許文献 16参照)、分泌された ChM-Iは、軟骨マ トリックスの領域間空間に蓄積することが知られている (非特許文献 17参照)。
[0009] また、軟骨から単離された抗血管新生因子であるコンドロモジュリン- 1は、 E9.5で左 心室、流出路、および弁原基において検出されたが、後期胚および成体段階では心 臓弁膜にのみ検出された。コンドロモジュリン- 1は、マウスおよびヒトの正常な心臓弁 膜においては、顕著な発現が観察された力 ApoE-/-マウス、ならびに感染性心内 膜炎、リウマチ性心疾患、およびァテローム性動脈硬化症を含むヒト VHDではいずれ も顕著に減少した。
[0010] また、 VEGF-Aの発現、血管新生、および石灰化は、コンドロモジュリン- 1がダウンレ ギュレートされている場所で特に認められた。培養弁間質細胞力 得られた培養上 清は、内皮細胞の管形成および動員を強く阻害したが、これはコンドロモジュリン- 1の siRNAによって部分的に阻害された。さら〖こ、コンドロモジュリン- 1の遺伝子を標的と することによって、心臓弁膜において VEGF-A発現の増強、血管新生および弁膜の 肥厚の変化が起こり、心エコー法によって決定したところ、これによつて大動脈弁の 肥厚および血流の乱れが引き起こされることが分力つた。
[0011] 上述の如く本発明者らは、コンドロモジュリン- 1が、 VHDに至る血管新生、肥厚およ び石灰化を予防することによって、弁膜の正常な機能を維持するために重要な役割 を果たして!/、ると!/、う証拠を初めて示すことに成功した。
[0012] 即ち、コンドロモジュリン- 1の発現もしくは機能が阻害されることにより、心臓弁膜等 に異常が生じ、その結果、心臓弁膜等の血管新生に関連する疾患が引き起こされる ものと考えられる。従って、コンドロモジュリン- 1タンパク質自体、あるいは、該タンパク 質の発現もしくは機能を活性化させる物質は、心臓弁膜症等の血管新生関連疾患 に対して、有効な治療効果を奏することが期待される。
[0013] また、本発明者らによって、心臓弁膜症等の血管新生関連疾患の患者において、 心臓弁膜におけるコンドロモジュリン- 1の発現減少が見出された。即ち、コンドロモジ ュリン- 1の発現量もしくは活性を指標とすることにより、血管新生関連疾患の治療薬( 候補ィ匕合物)のスクリーニングを行うことが可能である。
[0014] また、本発明によって得られた種々の知見は、心臓弁膜における無血管の維持、 および血管新生に起因する疾患の発症のメカニズムに対して、新し 、洞察を提供す るものである。これらのメカニズムを理解することは、心臓弁膜症等に関する新しい治 療手段を開発する上で非常に重要となるものであり、本発明は、学術的な観点からも 大きく寄与するものである。
[0015] さらに、これまでブタ生体弁や生体内溶解型高分子化合物 (ポリ乳酸等)に骨髄細 胞等を添加して作成されたハイブリッド型の人工心臓弁は、弁間質組織中に新生血 管が浸潤し、これに伴った炎症細胞の浸潤や、 MMP (マトリックスメタ口プロテアーゼ) の活性ィ匕による破壊が生じ、長期間の機能維持は不可能であった。しかし本発明に よって提供される人工心臓弁は、弁組織中への血管新生が抑制されることから、従来 の人工心臓弁と比較して長期間の機能維持に寄与するものと考えられる。
[0016] 即ち本発明は、心臓弁膜症等の血管新生に起因する疾患のための治療薬、並び に、該治療薬を効率的にスクリーニングする方法に関し、より具体的には、 〔1〕 以下の (a)〜(c)のいずれ力を有効成分として含有する、血管新生抑制剤、
(a)コンドロモジュリン- 1タンパク質
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列において 1若しくは複数のアミノ酸 が欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン-〖タンパク質と 機能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
〔2〕 心臓弁膜において血管新生抑制作用を有することを特徴とする、〔1〕に記載の 血管新生抑制剤、
〔3〕 網膜において血管新生抑制作用を有することを特徴とする、〔1〕に記載の血管 新生抑制剤、
〔4〕 以下の (a)〜 (c)の 、ずれかを有効成分として含有する、血管新生関連疾患治 療剤、
(a)コンドロモジュリン- 1タンパク質
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列において 1若しくは複数のアミノ酸 が欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン-〖タンパク質と 機能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
〔5〕 コンドロモジュリン- 1タンパク質の発現活性ィ匕物質もしくは機能活性ィ匕物質を有 効成分として含有する、血管新生関連疾患治療剤、
〔6〕 血管新生関連疾患が、心臓弁膜の血管新生に起因する疾患である、〔4〕また は〔5〕に記載の血管新生関連疾患治療剤、
〔7〕 血管新生関連疾患が、網膜の血管新生に起因する疾患である、〔4〕または〔5〕 に記載の血管新生関連疾患治療剤、
〔8〕 血管新生関連疾患が、心臓弁膜症、感染性心内膜炎、リウマチ性心疾患、ァ テローム性動脈硬化症、および網膜症力もなる群より選択される疾患である、〔4〕ま たは〔5〕に記載の血管新生関連疾患治療剤、
〔9〕 コンドロモジュリン- 1タンパク質力 配列番号: 2に記載のアミノ酸配列力 なるタ ンパク質である、〔1〕〜〔8〕の 、ずれかに記載の薬剤、 〔10〕 コンドロモジュリン- 1遺伝子の発現が人為的に抑制されていることを特徴とす る、遺伝子ノックアウト非ヒト動物、
〔11〕 心臓の弁に異常を有することを特徴とする、〔10〕に記載の遺伝子ノックアウト 非ヒト動物、
〔12〕 血管新生関連疾患治療剤のスクリーニング用である、〔10〕または〔11〕に記 載の遺伝子ノックアウト非ヒト動物、
〔13〕 コンドロモジュリン- 1タンパク質の発現もしくは機能を活性化させる化合物を選 択することを特徴とする、血管新生関連疾患治療剤のスクリーニング方法、
〔14〕 以下の工程 (a)〜(c)を含む、血管新生関連疾患治療剤のスクリーニング方 法、
(a)コンドロモジュリン- 1タンパク質を発現する細胞に、被検化合物を接触させる工程
(b)前記細胞におけるコンドロモジュリン- 1タンパク質の発現量を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、発現量を上昇させる 化合物を選択する工程
〔15〕 以下の工程 (a)〜(c)を含む、血管新生関連疾患治療剤のスクリーニング方 法、
(a)コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝子とが機能的に結 合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
〔16〕 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング 方法、
(a)コンドロモジュリン- 1タンパク質、または該タンパク質を発現する細胞もしくは細胞 抽出液と、被検化合物を接触させる工程
(b)前記タンパク質の活性を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、前記タンパク質の活 性を上昇させる化合物を選択する工程
〔17〕 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング 方法、
(a)〔10〕〜〔12〕のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記遺伝子ノックアウト非ヒト動物におけるコンドロモジュリン- 1タンパク質の発現 量もしくは活性を測定する工程
(c)被検化合物を投与しな 、場合と比較して、コンドロモジュリン- 1タンパク質の発現 量もしくは活性を上昇させる化合物を選択する工程
〔18〕 前記非ヒト動物の心臓弁膜または眼内における前記タンパク質の発現量もしく は活性を測定することを特徴とする、〔17〕に記載のスクリーニング方法、
〔19〕 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング 方法、
(a)〔10〕〜〔12〕のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物を 投与する工程
(b)前記遺伝子ノックアウト非ヒト動物における心臓弁膜もしくは網膜を観察する工程
(c)被検化合物を投与しな!ヽ場合と比較して、心臓弁膜もしくは網膜を正常化させる 化合物を選択する工程
〔20〕 血管新生関連疾患が、心臓弁膜症、感染性心内膜炎、リウマチ性心疾患、ァ テローム性動脈硬化症、または網膜症である、〔13〕〜〔19〕のいずれかに記載のス クリーニング方法、
〔21〕 以下の (a)および (b)を主要な構成成分とすることを特徴とする、人工心臓弁
(a)コンドロモジュリン- 1遺伝子を発現する細胞
(b)脱細胞弁あるいは生体内溶解型高分子化合物
[22] 以下の工程 (a)〜(c)によって製造される、人工心臓弁、
(a)コンドロモジュリン- 1遺伝子を発現する細胞を培養および増殖させる工程
(b)前記 (a)の細胞を、脱細胞弁あるいは生体内溶解型高分子化合物の表面に播 種する工程
(c)コンドロモジュリン- 1遺伝子を発現する細胞が、前記 (b)の脱細胞弁あるいは生体 内溶解型高分子化合物の有する間隙を満たすまで培養する工程
を提供するものである。
[0017] また本発明は、以下の(a)〜(c)のいずれかと、薬学的に許容される担体または媒 体とを混合する工程を含む、血管新生抑制剤または血管新生関連疾患治療剤の製 造方法に関する。
(a)コンドロモジユリン -Iタンパク質 (例えば配列番号: 2に記載のアミノ酸配列によつ て示されるヒトコンドロモジュリン- 1タンパク質など)
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列(例えば配列番号: 2に記載のヒトコ ンドロモジュリン- 1タンパク質のアミノ酸配列など)において 1若しくは複数のアミノ酸が 欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン- 1タンパク質と機 能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
さらに本発明は、前記 (a)〜(c)のいずれかを個体へ投与する工程を含む、血管新 生関連疾患を予防もしくは治療する方法に関する。また本発明は、〔21〕または〔22〕 に記載の人工心臓弁を用いる工程を含む、血管新生関連疾患を治療する方法に関 する。
あるいは本発明は、前記 (a)〜(c)の 、ずれかの物質の血管新生抑制剤または血 管新生関連疾患治療剤の製造における使用を提供するものである。
図面の簡単な説明
[0018] [図 1]齧歯類およびヒト心臓における ChM-Iの時間的および空間的発現を示す写真 および図である。(a)様々なラット組織からの総 RNAを用いた chm-Iの RT-PCRの結果 を示す写真である。軟骨、眼、および心臓において陽性シグナル (310 bp)を示した。 (b)ラット心臓における chm-Iの空間的発現を示す写真である。心臓弁膜に陽性シグ ナルを認めたが、心房または心室には認められな力 た。成体ラット眼を陽性対照と して用いた。(c)ラット心臓における chm-Iの時間的発現を示す写真である。 RT PCR を胚および成体心臓にぉ 、て行った。 E9.5期以降の胚心臓にぉ 、て陽性シグナル を認めた。成体ラット眼および肝臓を陽性および陰性対照として用いた。(d) chm-Iの 定量的 PCRを成体ラット心臓にぉ 、て行った結果を示すグラフである。 Chm-Iは心臓 弁膜にお 、て心房の場合より 30.3倍高 、レベルで、心室の場合より 72.1倍高 、レべ ルで発現された。 * P< 0.01。 (e,f)抗 ChM-I抗体を用いたラット(e)およびヒト (f)心臓 に関するウェスタンプロット分析の結果を示す写真である。軟骨および肝臓を陽性お よび陰性対照として用いた。
[図 2]発達途中および成体マウス心臓における ChM-Iタンパク質の免疫組織ィ匕学お よび免疫蛍光染色の結果を示す写真である。(a〜d) ChM-Iは、成体における四つ全 ての弁において発現された。陽性シグナルを茶色で示す。 a,b)短軸方向の視野。 c,d )長軸方向の視野。 AV、大動脈弁; LV、左心室; MV、僧帽弁; PV、肺動脈弁; PA、肺 動脈; IVS、心室中隔。(e〜p) ChM-IぉょびVEGF-Aの免疫蛍光染色を、成体(e〜i) および発達段階 (m〜p)のマウス心臓における連続切片において示す。 A、心房; LA 、左心房; TV、三尖弁; RV、右心室; VIC、心室間質細胞; EC、内皮細胞; AVC、房 室***; OFT、流出路。バーは、 1 πιπι
Figure imgf000012_0001
、 200 /ζ πι (&、 b、 d、 f、および!!〜 n) 、 100 m (cおよび o)、および 20 μ m (g)を表す。
[図 3]加齢 ApoE— Λマウス心臓の硬化病変における ChM-Iおよび VEGF-Aの免疫組織 化学、免疫蛍光染色、およびインサイチューノ、イブリダィゼーシヨンの結果を示す写 真である。(a) ApoE— /_マウス心臓の僧帽弁 (MV)の硬化病変(矢印の先)における Ch M-Iおよび VEGF-Aの免疫組織ィ匕学。四角で囲った部分を b)において拡大する。 c) b)の連続切片を、 VEGF-A抗体を用いて免疫染色した。 (d,e) ApoE— /_および年齢を マッチさせた ApoE+/+マウス大動脈弁(AV)における ChM-Iのインサイチューハイブリ ダイゼーシヨン。(f〜m) ApoE— (f〜i)および年齢をマッチさせた ApoE+/+マウス(j〜m) における ChM- 1および VEGF- Aの免疫蛍光染色。 VEGF- Aは、 ChM- 1が ApoE— /_マウ スにお 、てダウンレギュレートされて 、る硬化弁膜領域にお!、て顕著にアップレギュ レートされたことに注意されたい。バーは 100 m (a〜c)および 20 m (c!〜 m)を表す 圆 4]ヒト剖検および外科試料力もの心臓弁膜の組織学および免疫組織ィ匕学の結果 を示す写真である。(a〜f)心臓弁膜症を有しな ヽ (No-VHD)剖検からの試料。 HE、 へマトキシリンェォジン染色; Azan、ァザン染色。 ChM- 1は強く発現された力 VEGF- Aは発現されな力つたことに注意された 、。(g〜r)様々な心臓弁膜症の外科試料に 関する免疫組織化学の代表的な顕微鏡写真。感染性心内膜炎 (IE、 g〜j)、リウマチ 性心疾患 (RHD、 k〜n)、およびァテローム性動脈硬化症心臓弁膜症 (o〜r)におい て、顕著な血管新生を認めた。 ChM-Iは、 VEGF-Aが強く発現されて、新しい血管形 成が認められた大きい領域において顕著に減少した。 AV、大動脈弁; MV、僧帽弁。 バーは 200 mを表す。
[図 5]弁間質細胞 (VICs)における ChM-Iの発現とヒト冠動脈内皮細胞 (HCAECs)に おけるインビトロでの管形成、遊走、およびアポトーシスに及ぼすその効果を示す写 真および図である。(a)外植体培養の 3日後でのラット VICsの単層培養の位相差顕微 鏡写真。(b)外植体培養 7日後。 VICsは、丸石様 (Cb)または紡錘様 (Sp)外観の細胞 を示した。(c) VICsは、外植体培養 14日後にコンフルェント密度で線維芽細胞様外 観を示した。(d)図 5bに示す VICsは、ァセチル -LDL-Dil染色に関して陰性であった 。 HCAECsは陽性対照として示す (挿入図)。(e,f)VICs (c)および NIH3T3細胞 (f)に おける ChM-Iの免疫蛍光染色。双方の細胞の核を Toto-3によって染色した。 ChM-I は、細胞質における顆粒状のパターンとして染色された。(g〜k) VICs条件培地は、 インビトロでマトリゲル上での内皮細胞管形成を阻害した。(g)マトリゲル上での HCA ECsの管形成の代表的な写真。 CM、条件培地。(h) NIH3T3-CMは、 HCAECsの管 腔形成に影響を及ぼさな力つた。(i)VICs-CMは、 6時間で HCAECsの管腔形成を有 意に抑制した。(j) VICsを、 chm-Iに対して特異的な siRNAによって 3日間処置した。 si RNA処置 VICs-CMは、 HCAECs上での管腔形成の抑制能を部分的に喪失した。(k) Scion画像ソフトウェアを用いて (g)〜 (j)の定量的に分析したデータを示す。細胞の 管の長さを 3回の実験から 0.25 mm2の異なる領域 5個において測定して、長さを方法 において記述したように mm/mm2として表記した。(l〜p)VICsは、インビトロで HCAEC sの化学遊走性を阻害した。 VICsと同時培養した上室に適用した HCAECsは、ボイデ ンチャンバ一の下室(m)に落下する。インキュベーション(3時間、 37°C)後、 HCAECs は、如何なる細胞も含まない場合 (1)、または NIH3T3細胞と同時培養した場合 (n)と 比較して、メンブレンの下面への遊走が阻害された。(0) chm-Iに対して特異的な siR NAは、 VICs-CMによる HCAECsの化学遊走の抑制を減少した。(p)各実験に関して 、結果を 3実験からの無作為に選択した高倍率視野 5個において計数した細胞数とし て表記した。遊走細胞数をチャートに示す。(q〜u) VICs-CMによるアポトーシスの誘 導。 NIH3T3- CM (q,r)または VICs- CM (s,t)と共に培養した HCAECsを、ァネキシン V -FITC結合体によって処置した。本発明者らは、 HCAECsを VICs-CMと共に 6時間培 養した場合に、ァネキシン V陽性蛍光細胞を検出した。(u) 3実験力 の無作為に選 択した視野 5個力 のァネキシン V-FITC陽性細胞数によるアポトーシス細胞の定量。 ノ一は、 50 m (e,f)、 100 m (a〜d、 l〜o、および q〜t)、および 200 μ m (g〜j)を表 す。 *: P< 0.05、 **: P< 0.01。
圆 6]加齢 chm-r/_マウスの心臓弁膜における異常な血管新生、炎症細胞浸潤、およ び無機質ィ匕を示す写真および図である。(a)加齢 chm- Γ/_マウスの HE染色によって、 低倍率で、肥厚した弁が示された。(b) chm-r/_マウスは、 ChM-I免疫染色に関して 陰性であることを確認した。 (c) VEGF-A染色を chm-r/_マウスの弁膜に対して行った ところ、強い陽性シグナルを大動脈弁に認めた。(d)加齢 chm-r/_マウスにおいて (e) の連続切片において HE染色および陽性 vWF染色によって、毛細管様構造が高倍率 で明ら力となった。もう一つの連続切片は、 MAC-1免疫蛍光 (1)に関する陽性染色を 示した。 chm-r/_マウスと比較すると、対照としての年齢をマッチさせた chm-I+/+マウス は ChM-I (h)に関して陽性であり、 VEGF-A陽性細胞 (i)、毛細管様構造 (j)、 vWF (k )、および MAC-1 (1)に関して陰性であった。(m,n)大動脈弁の三つの小葉における T OTO-3陽性細胞および vWF陽性細胞を、少なくとも唯一の弁が目に見える免疫蛍光 に関して染色した 20 m切片毎に計数した。チャートを chm-I—z— (n=7)および chm-I+/+ (n=5)について作製した。バーは 50 /ζ πι (&、ί·、 g、および 1)、および 20 /z m (その他)を 表す。 *: P< 0.01。
[図 7]chm-r/_マウス心臓の心エコー法の結果を示す写真である。 (a)二次元(2D)モ ード心エコー法は、大動脈弁において異常に明るいエコー源性の塊を明らかにした が、これは chm- 1+/+マウス心臓 (c)においては検出されな力つた。(b)ドップラーカラー 試験により、 chm-I+/+マウス心臓の大動脈弁領域においても検出されな力つたモザィ ク状の乱流が示された。(d)挿入図は、それぞれの長軸の図の AVレベル短軸図を示 す。 AV、大動脈弁; RV、右心室; LV、左心室; LA左心室; LA、左心房; Ao、大動脈; I VS、心室中隔; PW、後壁。
[図 8]マウス心臓における chm-Iのインサイチューハイブリダィゼーシヨンの結果を示 す写真である。 (a,c) chm-I mRNAの存在を、成体マウス心臓の弁 4個において確認し た。(d,e) E10.5マウス胚心臓のホールマウントインサイチューハイブリダィゼーシヨン( WISH法)は、流出路および左心室において陽性シグナル、ならびに右心室および心 房の外彎曲にぉ 、て弱 、シグナルを示した (ίおよび g)。 E12.5では同じシグナル伝 達パターンを認めた。これらの胚の段階で、心臓は、立体顕微鏡下で chm-I特異的 プローブに関して陽性であることが確認された最も強 、臓器であった (f)。他の組織 を摘出して、心臓を単離した (g)。(1!〜 k)発達途中、 chm-I mRNAの発現は、心臓弁 膜の原基および心外膜に局在するようになった。(j,k)胚形成の後期では、 LVの心筋 細胞においてシグナルを認めることができず、房室管***および流出路におけるァ ポトーシスに起因する薄い弁膜は、 chm-I mRNAに関する茶色の陽性シグナルを示 した。 TV、三尖弁; MV、僧帽弁; PV、肺動脈弁; AV大動脈弁; RV右心室; LV、左心 室; A、心房; OFT、流出路; AVC、房室***
圆 9]中期および後期胚マウス心臓における chm-Iの免疫蛍光染色の結果を示す写 真および図である。(a〜c) E16.5マウス胚心臓を抗 ChM- 1および抗 VEGF- Aによって 免疫染色した。心臓弁膜の原基は、 ChM-Iに関して陽性シグナルを示した。 AVおよ び PVの領域を (b)および(c)において拡大した。 VEGF-Aの発現は、 ChM-I発現とは 対照的に心筋細胞および内皮細胞において認められた。 (d,e)出生直前の E18.5マ ウス胚心臓。心臓弁膜はほぼ形成され、 ChM-腸性であり、 VEGF-A陰性である。 (f) Ell.5、 E14.5、および E18.5胚の心臓抽出物において、 QT-PCRを chm-Iに関して実 施した。初期発達段階の胚の左心室において認識された chm-Iの発現は、発達の中 期までに急速に減少した。バーは 200 m (a、 d、および e)、 50 m (bおよび c)を示す
[図 10]ヒトコンドロモジュリン- 1遺伝子の塩基配列、およびヒトコンドロモジュリン- 1タン パク質のアミノ酸配列を示す図である。アミノ酸配列は、 cDNAにおける塩基配列から 決定されたヒトコンドロモジュリン- 1前駆体タンパク質のもので、その C-末端部分 120 アミノ酸残基の部分(下線)が (成熟型)ヒトコンドロモジュリン- 1タンパク質のアミノ酸配 列である。
発明を実施するための最良の形態
[0019] 以下、本発明を詳細に説明する。
本発明者らによって、コンドロモジュリン- 1の発現もしくは機能が阻害されることによ り、心臓弁膜等に異常が生じ、その結果、心臓弁膜等の血管新生に関連する疾患が 引き起こされることが示された。従って、コンドロモジュリン- 1タンパク質自体、あるいは 、該タンパク質の発現もしくは機能を活性化させる物質は、心臓弁膜症等の血管新 生関連疾患に対して、有効な治療効果を奏することが期待される。
[0020] 本発明者はまず、コンドロモジュリン- 1タンパク質を有効成分として含有する、血管 新生関連疾患治療剤を提供する。
[0021] 本発明のコンドロモジュリン- I(ChM- 1)タンパク質は、ヒトのコンドロモジュリン- 1タンパ ク質であることが好ましいが、その由来する生物種は特に制限されず、ヒト以外の生 物におけるコンドロモジュリン- 1と同等なタンパク質(ヒトコンドロモジュリン- 1のホモログ .ォルソログ等)も本発明における「コンドロモジュリン- 1タンパク質」に含まれる。例え ば、心臓、血管等の組織を有し、かつ、ヒトのコンドロモジュリン- 1と同等なタンパク質 を有する生物であれば、本発明を実施することは可能である。
[0022] 例えば、ヒトコンドロモジュリン- 1タンパク質のアミノ酸配列を配列番号: 2に、該ァミノ 酸配列をコードする DNA (コンドロモジュリン- 1遺伝子)の塩基配列を配列番号: 1に 示す。
[0023] また、コンドロモジュリン- 1に相当するタンパク質を有するヒト(ァクセッション番号 AB 006000)以外の生物としては、例えば、マウス(ァクセッション番号 U43509)、ラット、ゥ サギ、ゥシ(ァクセッション番号 M65081)、二ヮトリ(ァクセッション番号 AF027380.1)、 ゼブラフィッシュ、アフリカッメガエル(ァクセッション番号 BC043890)、メダカ等が挙げ られる。
[0024] 上記以外のタンパク質であっても、例えば本願配列表に記載された配列と高い相 同性 (通常 70%以上、好ましくは 80%以上、より好ましくは 90%以上、最も好ましくは 9 5%以上)を有し、かつ、コンドロモジュリン- 1が有する機能 (例えば、血管新生阻害活 性等)を持つタンパク質は、本発明のコンドロモジュリン- 1に含まれる。上記タンパク質 とは、例えば、配列番号: 2に記載のアミノ酸配列において、 1以上のアミノ酸が付カロ 、欠失、置換、挿入されたアミノ酸配列からなるタンパク質であって、通常変化するァ ミノ酸数が 30アミノ酸以内、好ましくは 10アミノ酸以内、より好ましくは 5アミノ酸以内、 最も好ましくは 3アミノ酸以内である。
[0025] 本発明における「コンドロモジュリン- 1遺伝子」には、例えば、配列番号: 1に記載の 塩基配列からなる DNAに対応する他の生物における内在性の遺伝子 (例えば、ヒト のコンドロモジュリン- 1遺伝子のホモログ等)が含まれる。
[0026] また、配列番号: 1に記載の塩基配列からなる DNAに対応する他の生物の内在性 の DNAは、一般的に、配列番号: 1に記載の DNAと高い相同性を有する。高い相同 性とは、 50%以上、好ましくは 70%以上、さらに好ましくは 80%以上、より好ましくは 90 %以上 (例えば、 95%以上、さらには 96%、 97%、 98%または 99%以上)の相同性を 意味する。この相同性は、 mBLASTアルゴリズム (Altschul et al. (1990) Proc. Natl. Ac ad. Sci. USA 87: 2264—8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7)によって決定することができる。また、該 DNAは、生体内から単離した場合、 配列番号: 1に記載の DNAとストリンジヱントな条件下でノヽイブリダィズすると考えられ る。ここで「ストリンジェントな条件」としては、例えば「2 X SSC、 0.1%SDS、 50°C」、「2 X SSC、 0.1%SDS、 42°C」、「1 X SSC、 0.1%SDS、 37°C」、よりストリンジェントな条件とし て「2 X SSCゝ 0.1%SDSゝ 65°C」、「0.5 X SSC、 0.1%SDSゝ 42°C」および「0.2 X SSC、 0.1 %SDS、 65°C」の条件を挙げることができる。当業者においては、他の生物におけるコ ンドロモジュリン- 1遺伝子に相当する内在性の遺伝子を、コンドロモジュリン- 1遺伝子 の塩基配列を基に適宜取得することが可能である。なお、本明細書においては、ヒト 以外の生物におけるコンドロモジュリン- 1タンパク質 (遺伝子)に相当するタンパク質( 遺伝子)、あるいは、上述のコンドロモジュリン- 1と機能的に同等なタンパク質 (遺伝子 )を、単に「コンドロモジュリン- 1タンパク質 (遺伝子)」もしくは「ChM-I」と記載する場合 がある。
[0027] 本発明の「コンドロモジュリン- 1タンパク質」は、天然のタンパク質のほ力 遺伝子組 み換え技術を利用した組換えタンパク質として調製することができる。天然のタンパク 質は、例えばコンドロモジュリン- 1タンパク質が発現していると考えられる細胞 (組織) の抽出液に対し、コンドロモジュリン- 1タンパク質に対する抗体を用いたァフィ-ティ 一クロマトグラフィーを用いる方法により調製することが可能である。一方、組換えタン ノ ク質は、コンドロモジュリン- 1タンパク質をコードする DNAで形質転換した細胞を培 養することにより調製することが可能である。本発明の「コンドロモジュリン- 1タンパク質 」は、例えば、後述のスクリーニング方法において、例えば対照タンパク質として好適 に用いられる。
本発明にお 、て「発現」とは遺伝子からの「転写」あるいはポリペプチドへの「翻訳」 及びタンパク質の「分解抑制」によるものが含まれる。「コンドロモジュリン- 1タンパク質 の発現」とは、コンドロモジュリン- 1タンパク質をコードする遺伝子の転写および翻訳 力 S生じること、またはこれらの転写'翻訳によりコンドロモジュリン- 1タンパク質が生成さ れることを意味する。また、「コンドロモジュリン- 1タンパク質の機能」とは、例えば、血 管新生を抑制する機能、肋軟骨細胞培養系の DNA合成促進機能 (Y. Hiraki, et al. ( 1991) Biochem. Biophys. Res. Commun., 175:971- 977.)、肋軟骨細胞培養系のプロ テオグリカン合成促進機能(H. Inoue, et al. (1997) Biochem. Biophys. Res. Commun ., 241:395-400., Y. Hiraki, et al. (1997) J. Biol. Chem., 272:32419- 32426.)、肋軟 骨細胞培養系のコロニー形成促進機能(H. Inoue, et al. (1997) Biochem. Biophys. Res. Commun., 241:395-400.)、動脈血管内皮細胞培養系の DNA合成ならびに細 胞増殖阻害機能(Y. Hiraki, et al. (1997) J. Biol. Chem., 272:32419- 32426.)、動脈 血管内皮細胞培養系の管腔形成阻害機能 (Y. Hiraki, et al. (1997) J. Biol. Chem., 272:32419-32426., Y. Hiraki, et al. (1999) Eur. J. Biochem., 260:869— 878.)、鶏胚 尿漿膜血管新生の阻害機能(Y. Hiraki, et al. (1999) Eur. J. Biochem., 260:869-878 .)、移植ヒト腫瘍に対する腫瘍増生ならびに腫瘍血管増生の抑制機能 (T. Hayami, e t al. (1999) FEBS Lett., 458:436—440., Y. Oshima, et al. (2004) J. Cell Sci" 117:27 31-2744.)、培養ヒト網膜血管内皮細胞の DNA合成ならびに管腔形成抑制機能 (H. Funaki, et al. (2001) Invest. Ophthalmol. Vis. Sci., 42:1193—1200., Y. Oshima, et al . (2003) Invest. Ophthalmol. Vis. Sci., 44:1814-1823.)、培養ヒト臍帯静脈内皮細胞 の DNA合成、細胞遊走、管腔形成に対する阻害機能 (Y. Oshima, et al. (2003) Inves t. Ophthalmol. Vis. Sci., 44: 1814-1823., Y. Oshima, et al. (2004) J. Cell Sci., 117:2
731-2744.)、関節リウマチに対する抑制活性: T細胞免疫応答と培養滑膜細胞の増 殖に対する阻害機能(K. Setoguchi, et al. (2004) Arthritis Rheumatism, 50:828-839.
)等を挙げることがでさる。
上述の各種機能は、当業者においては、一般的な技術を用いて、適宜、評価 (測 定)することが可能である。具体的には、上述の各種機能に関して記載された文献等 を参照して実施することができる。
[0029] 例えば、コンドロモジュリン- 1タンパク質の有する血管新生抑制活性は、特に制限さ れるものではないが、(1)血管内皮細胞の遊走活性、(2)血管内皮細胞のアポトーシス 誘導の評価、(3)血管内皮細胞の血管形態形成反応 (tube formation)等、を適宜評 価すること〖こよって柳』定することができる。
[0030] 本発明は、ヒトコンドロモジュリン- 1タンパク質、または、該タンパク質の変異体 (改変 体、他の生物のホモログ等)であって、コンドロモジュリン- 1と機能的に同等なタンパク 質を有効成分とする、血管新生関連疾患治療剤を提供する。
[0031] 即ち本発明の好まし 、態様としては、以下の(a)または(b)の 、ずれかの物質を有 効成分として含有する、血管新生関連疾患治療剤に関する。
(a)コンドロモジュリン- 1タンパク質
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列(配列番号:2)において 1若しくは 複数のアミノ酸が欠失、置換または付加されたアミノ酸配列を含む、コンドロモジユリ ン -Iタンパク質と機能的に同等なタンパク質
[0032] 本発明の薬剤の成分である「コンドロモジュリン- 1タンパク質」は、天然のタンパク質 の他、遺伝子組換え技術を利用した組換えタンパク質として調製することができる。 天然のタンパク質は、例えばコンドロモジュリン- 1タンパク質が発現していると考えら れる細胞 (組織)の抽出液に対し、コンドロモジュリン- 1タンパク質に対する抗体を用 いたァフィ二ティークロマトグラフィーを用いる方法により調製することが可能である。 一方、組換えタンパク質は、コンドロモジュリン- 1タンパク質をコードする DNAで形質 転換した細胞を培養することにより調製することが可能である。
[0033] また、本発明の薬剤の成分であるコンドロモジュリン- 1タンパク質をコードする DNAも また、本発明に含まれる。本発明のコンドロモジュリン- 1タンパク質をコードする DNA は、染色体 DNAであっても、 cDNAであってもよい。コンドロモジュリン- 1タンパク質をコ ードする染色体 DNAは、例えば、細胞等力 染色体 DNAのライブラリーを調製し、コ ンドロモジュリン- 1タンパク質をコードする DNAにハイブリダィズするプローブを用いた 、該ライブラリーのスクリーニングにより取得することができる。またコンドロモジュリン- 1 タンパク質をコードする cDNAは、コンドロモジュリン- 1タンパク質が発現して!/、ると考 えられる細胞 (組織)力も RNA試料を抽出し、コンドロモジュリン- 1タンパク質をコード する DNAにノ、イブリダィズするプライマーを用いた RT-PCR法等の遺伝子増幅技術 により取得することができる。
[0034] 本発明のコンドロモジュリン- 1タンパク質または該タンパク質をコードする DNAは、コ ンドロモジュリン- 1タンパク質と機能的に同等であれば、その塩基配列ゃァミノ配列が 改変された変異体であってもよい。このような変異体は、天然のものでも人工のもの でもよい。人工的に変異体を調製するための方法は当業者に公知である。例えば、 K unkel法(Kunkel, T. A. et al., Methods Enzymol. 154, 367-382 (1987))、ダブルプラ イマ一法(Zoller, M. J. and Smith, M., Methods Enzymol. 154, 329-350 (1987))、力 セット変異法 (Wells, et al., Gene 34, 315-23 (1985))、メガプライマー法(Sarkar, G. and Sommer, S. S., Biotechniques 8, 404-407 (1990))などが知られている。
[0035] 本発明の薬剤は、上述の(a)または (b)に記載のタンパク質をコードする DNA、また は該タンパク質を発現するベクターを成分とするものであってもよ 、。即ち本発明は、 以下の (c)を有効成分とする、血管新生関連疾患治療剤に関する。
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA、もしくは該 DNAを発現 し得るベクター
[0036] 上記 DNAは、効率的な発現のために機能的にプロモーターと結合していることが好 ましい。本発明に用いられるプロモーターとしては、本来のコンドロモジュリン- 1遺伝 子プロモーターを利用することができるが、これ以外にも、公知の種々のプロモータ 一、例えば CMVプロモーター等を用いることができる。また、当業者であれば、公知 の種々の発現ベクターを用いて、容易に本発明のタンパク質を発現するベクターを 作製することができる。 [0037] 本発明の上記ベクターは、遺伝子治療用に使用することも可能である。遺伝子治 療とは、機能を有するタンパク質をコードする DNAを含むベクターを患者に投与し、 治療または予防することをいう。遺伝子治療に使用することができるベクターには、例 えば、アデノウイルスベクター(例えば pAdexlcw)やレトロウイルスベクター(例えば pZ IPneo)等が挙げられる力 これらに制限されない。ベクターへの本発明のタンパク質 をコードする DNAの挿入などの一般的な遺伝子操作は、常法に従って行うことができ る。生体内への投与は ex vivo法でもよいが、 in vivo法が好ましい。
[0038] また、本発明のコンドロモジュリン- 1タンパク質の発現もしくは機能を活性ィ匕すること によって、血管新生が抑制され、結果として血管新生に関連する疾患に対する治療 効果が期待される。
従って本発明は、コンドロモジュリン- 1タンパク質の発現活性ィ匕物質または機能活 性化物質を有効成分として含む、血管新生関連疾患治療剤を提供する。
[0039] 本発明にお 、て「血管新生関連疾患」とは、血管新生に起因する疾患を指すが、 特に、心臓弁膜あるいは網膜における血管新生に起因する疾患であることが好まし い。本発明の血管新生関連疾患としては、例えば、心臓弁膜症、感染性心内膜炎、 リウマチ性心疾患、ァテローム性動脈硬化症、網膜症、角膜表面への周囲からの血 管新生、癌の血管新生、または慢性間接リウマチ等の関節炎等を例示することがで きる。
[0040] 本発明における「タンパク質の発現活性化物質」は、タンパク質の発現を有意に活 性化 (上昇)させる物質である。本発明の上記「発現活性化」には、該タンパク質をコ ードする遺伝子の転写活性化、および Zまたは該遺伝子の転写産物からの翻訳活 性化が含まれる。
[0041] 本発明のコンドロモジュリン- 1タンパク質の発現活性ィ匕物質としては、例えば、コンド 口モジュリン- 1遺伝子の転写調節領域 (例えば、プロモーター領域)に結合して、該遺 伝子の転写を促進する物質 (転写活性ィ匕因子等)を挙げることができる。
[0042] また、本発明においてコンドロモジュリン- 1タンパク質の発現活性の測定は、当業者 においては周知の方法、例えば、ノーザンブロット法、ウェスタンブロット法等により、 容易に実施することができる。 [0043] またコンドロモジュリン- 1タンパク質の機能活性化物質とは、コンドロモジュリン- 1タン ノ ク質の機能を有意に活性化させる物質である。本発明者らによって、コンドロモジ ュリン- 1タンパク質は、例えば、心臓弁膜における血管新生を抑制する機能を有する ことが示された。従って、本発明の機能活性ィ匕物質としては、例えば、コンドロモジュ リン- 1タンパク質の心臓弁膜における血管新生抑制作用を増強させる物質を挙げる ことができる。
[0044] また、コンドロモジュリン- 1タンパク質、または該タンパク質の発現もしくは機能を活 性化させる物質は、血管新生 (例えば、心臓弁膜における血管新生)を抑制させる作 用を有する。従って本発明は、上述の (a)〜(c)のいずれ力を有効成分として含有す る、血管新生抑制剤 (阻害剤)を提供する。
[0045] 本発明の上記血管新生抑制剤は、好ましくは、心臓弁膜、網膜、角膜、関節軟骨、 または腫瘍組織において血管新生抑制作用を有することを特徴とする。
[0046] また、本発明の「治療剤」は、「医薬品」、「医薬組成物」、「治療用医薬」等と表現す ることちでさる。
[0047] なお、本発明における「治療」には、疾患の発生を予め抑制し得る予防的な効果も 含まれる。また、必ずしも、完全な治療効果を有する場合に限定されず、部分的な効 果を有する場合、症状が改善する場合等も、本発明の「治療」の意味に含まれる。
[0048] 本発明の薬剤 (血管新生抑制剤、血管新生関連疾患治療剤等)は、生理学的に許 容される担体、賦形剤、あるいは希釈剤等と混合し、医薬組成物として経口、あるい は非経口的に投与することができる。経口剤としては、顆粒剤、散剤、錠剤、カプセ ル剤、溶剤、乳剤、あるいは懸濁剤等の剤型とすることができる。非経口剤としては、 注射剤、点滴剤、外用薬剤、あるいは座剤等の剤型を選択することができる。注射剤 には、皮下注射剤、筋肉注射剤、あるいは腹腔内注射剤等を示すことができる。外用 薬剤には、経鼻投与剤、あるいは軟膏剤等を示すことができる。主成分である本発明 の薬剤を含むように、上記の剤型とする製剤技術は公知である。
[0049] 例えば、経口投与用の錠剤は、本発明の薬剤に賦形剤、崩壊剤、結合剤、および 滑沢剤等を加えて混合し、圧縮整形することにより製造することができる。賦形剤に は、乳糖、デンプン、あるいはマン-トール等が一般に用いられる。崩壊剤としては、 炭酸カルシウムやカルボキシメチルセルロースカルシウム等が一般に用いられる。結 合剤には、アラビアゴム、カルボキシメチルセルロース、あるいはポリビニルピロリドン が用いられる。滑沢剤としては、タルクゃステアリン酸マグネシウム等が公知である。
[0050] 本発明の薬剤を含む錠剤は、マスキングや、腸溶性製剤とするために、公知のコー ティングを施すことができる。コーティング剤には、ェチルセルロースやポリオキシェ チレングリコール等を用いることができる。
[0051] また注射剤は、主成分である本発明の薬剤を適当な分散剤とともに溶解、分散媒 に溶解、あるいは分散させること〖こより得ることができる。分散媒の選択により、水性溶 剤と油性溶剤のいずれの剤型とすることもできる。水性溶剤とするには、蒸留水、生 理食塩水、あるいはリンゲル液等を分散媒とする。油性溶剤では、各種植物油ゃプ ロピレングリコール等を分散媒に利用する。このとき、必要に応じてパラベン等の保存 剤を添加することもできる。また注射剤中には、塩ィ匕ナトリウムゃブドウ糖等の公知の 等張化剤をカ卩えることができる。更に、塩ィ匕ベンザルコ-ゥムゃ塩酸プロ力インのよう な無痛化剤を添加することができる。
[0052] また、本発明の薬剤を固形、液状、あるいは半固形状の組成物とすることにより外 用剤とすることができる。固形、あるいは液状の組成物については、先に述べたもの と同様の組成物とすることで外用剤とすることができる。半固形状の組成物は、適当 な溶剤に必要に応じて増粘剤を加えて調製することができる。溶剤には、水、ェチル アルコール、あるいはポリエチレングリコール等を用いることができる。増粘剤には、 一般にベントナイト、ポリビュルアルコール、アクリル酸、メタクリル酸、あるいはポリビ -ルピロリドン等が用いられる。この組成物には、塩ィ匕ベンザルコ -ゥム等の保存剤 を加えることができる。また、担体としてカカオ脂のような油性基材、あるいはセルロー ス誘導体のような水性ゲル基材を組み合わせることにより、座剤とすることもできる。
[0053] 本発明の薬剤を遺伝子治療剤として使用する場合は、本発明の薬剤を注射により 直接投与する方法のほか、核酸が組込まれたベクターを投与する方法が挙げられる 。上記ベクターとしては、アデノウイルスベクター、アデノ随伴ウィルスベクター、ヘル ぺスゥイノレスベクター、ワクシニアウイノレスベタター、レトロウイノレスベタター、レンチウ ィルスべクタ一等が挙げられ、これらのウィルスベクターを用いることにより効率よく投 与することができる。
[0054] また、本発明の薬剤をリボソームなどのリン脂質小胞体に導入し、その小胞体を投 与することも可能である。即ち、本発明の薬剤を保持させた小胞体をリポフエクシヨン 法により所定の細胞に導入する。そして、得られる細胞を例えば静脈内、動脈内等に 全身投与する。心臓弁膜、網膜等に局所的に投与することもできる。
[0055] 本発明の薬剤は、安全とされている投与量の範囲内において、ヒトを含む動物に対 して、必要量 (有効量)が投与される。本発明の薬剤の投与量は、剤型の種類、投与 方法、患者の年齢や体重、患者の症状等を考慮して、最終的には医師または獣医 師の判断により適宜決定することができる。
[0056] さらに本発明は、本発明のコンドロモジュリン- 1遺伝子の発現が人為的に抑制され ていることを特徴とする、コンドロモジュリン- 1遺伝子ノックアウト非ヒト動物 (本明細書 においては、「ノックアウト非ヒト動物」、あるいは、単に「動物」と記載する場合あり)を 提供する。
[0057] 本発明の遺伝子ノックアウト非ヒト動物は、例えば、血管新生関連疾患治療のため の薬剤のスクリーニングに用いることが可能である。また、該疾患のメカニズム解明の 研究のための病態モデル動物として、非常に有用である。
本発明におけるノックアウト動物には、アンチセンス RNAもしくは siRNAの作用により 遺伝子の発現が抑制された所謂「ノックダウン動物」も含まれる。
[0058] 本発明において「コンドロモジュリン- 1遺伝子の発現が人為的に抑制されている」に は、例えば、(1)コンドロモジュリン- 1遺伝子の遺伝子対の一方または双方に、ヌクレ ォチドの挿入、欠失、置換等の遺伝子変異を有することにより該遺伝子の発現が抑 制されて ヽる状態、(2)コンドロモジュリン- 1遺伝子の発現抑制効果を有する核酸 (例 えば、アンチセンス RNAまたは siRNA等)の作用により遺伝子発現が抑制されて!、る 状態、等を挙げることができる。
[0059] 本発明における「抑制」には、コンドロモジュリン- 1遺伝子の発現が完全に抑制され ている場合、および、本発明の動物におけるコンドロモジュリン- 1の発現量が野生型 動物におけるコンドロモジュリン- 1遺伝子の発現量と比較して有意に低下している場 合、が含まれる。 [0060] 上記(1)には、コンドロモジュリン- 1遺伝子の遺伝子対の一方の遺伝子の発現のみ が抑制されている場合 (ヘテロノックアウト動物)も含まれるが、遺伝子対の双方のコ ンドロモジュリン- 1遺伝子の発現が抑制されて 、ることが好まし ヽ (ホモノックアウト動 物)。
[0061] 本発明における遺伝子変異の存在する部位は、該遺伝子の発現が抑制されるよう な部位であれば特に制限されず、例えばェクソン部位、プロモーター部位等を挙げ ることがでさる。
[0062] 本発明の遺伝子ノックアウト動物は、当業者においては一般的に公知の遺伝子ェ 学技術により作製することができる。例えば、以下のようにして遺伝子ノックアウトマウ スを作製することができる。まず、マウス力も本発明のコンドロモジュリン- 1遺伝子のェ クソン部分を含む DNAを単離し、この DNA断片に適当なマーカー遺伝子を挿入し、 ターゲッティングベクターを構築する。このターゲッティングベクターをエレクトロボレ ーシヨン法などによりマウスの ES細胞株に導入し、相同組み換えを生じた細胞株を選 抜する。挿入するマーカー遺伝子としては、ネオマイシン耐性遺伝子などの抗生物 質耐性遺伝子が好ましい。抗生物質耐性遺伝子を挿入した場合には、抗生物質を 含む培地で培養するだけで相同組み換えを生じた細胞株を選抜することができる。 また、より効率的な選抜を行うためには、ターゲッティングベクターにチミジンキナー ゼ遺伝子などを結合させておくことも可能である。これにより、非相同組み換えを起こ した細胞株を排除することができる。また、 PCRおよびサザンブロットにより相同組み 換え体の検定を行 ヽ、本発明の遺伝子の遺伝子対の一方が不活性化された細胞株 を効率よく得ることちできる。
[0063] 相同組み換えを生じた細胞株を選抜する場合、相同組み換え箇所以外にも、遺伝 子挿入による未知の遺伝子破壊の恐れがあることから、複数のクローンを用いてキメ ラ作製を行うことが好まし ヽ。得られた ES細胞株をマウス胚盤葉にインジェクションし、 キメラマウスを得ることがでさる。このキメラマウスを交酉己させることで、本発明のコンド 口モジュリン- 1遺伝子の遺伝子対の一方を不活性ィ匕したマウスを得ることができる。さ らに、このマウスを交配させることで、本発明の遺伝子の遺伝子対の双方を不活性ィ匕 したマウスを取得することができる。マウス以外の ES細胞が榭立された動物にお 、て も、同様の手法により、遺伝子改変を行うことができる。
[0064] 本発明の上記ノックアウト動物は、好ましくは、コンドロモジュリン- 1遺伝子の発現抑 制効果を有する核酸 (アンチセンス RNA、 siRNA、 shRNA等)を非ヒト動物へ導入する ことによってコンドロモジユリン -I遺伝子の発現が抑制されて!、ることを特徴とする、ノ ックアウト(ノックダウン)動物である。
[0065] 上記ノックダウン動物は、本発明の核酸(アンチセンス RNA、 siRNA、 shRNA等)を発 現し得る構造のベクターを、非ヒト動物へ導入することによつても作製することができ る。
[0066] 本発明のノックアウト動物の種類は、非ヒト動物であれば特に制限されないが、通常 、高等動物であり、好ましくは哺乳類であり、より好ましくは霊長類である。より具体的 には、本発明の動物として、好ましくはマウス、ラット、ハムスター等のげつ歯類 (ネズミ 目)、またはサルであり、より好ましくは、マウスである。
[0067] 本発明の遺伝子ノックアウト (ノックダウン)非ヒト動物の好ましい態様としては、心臓 の弁に異常を呈することを特徴とする動物である。この「異常」とは、具体的には、心 臓弁膜の肥厚、石灰化、可動性低下、弁膜組織中への血管侵入あるいは血管内皮 細胞やマクロファージの侵入、大動脈血流の乱流現象、大動脈 左心室の圧較差 等を指す。
[0068] また、本発明の上記非ヒト動物は、例えば、本発明の薬剤のスクリーニング方法に 利用することができる。即ち、本発明者らによって上記非ヒト動物が、例えば、血管新 生関連疾患治療剤のスクリーニングに好適に利用可能であること (新規用途)が見出 された。従って本発明の非ヒト動物の好ましい態様としては、後述のスクリーニング方 法用動物である。
[0069] また本発明は、コンドロモジュリン- 1遺伝子の発現量を指標とする、本発明の薬剤 ( 血管新生抑制剤もしくは血管新生関連疾患治療剤)のスクリーニング方法を提供す る。
コンドロモジュリン- 1遺伝子の発現量を上昇 (亢進)させる物質は、本発明の薬剤と なることが期待される。本発明のスクリーニング方法によって、血管新生抑制剤もしく は血管新生関連疾患治療剤のための候補ィ匕合物を効率的に取得することができる。 [0070] 本発明の方法の好ましい態様は、以下の(a)〜(c)の工程を含む、本発明の薬剤 ( 血管新生抑制剤もしくは血管新生関連疾患治療剤)のスクリーニング方法である。
(a)コンドロモジュリン- 1タンパク質を発現する細胞に、被検化合物を接触させる工程
(b)前記細胞におけるコンドロモジュリン- 1タンパク質の発現量を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、発現量を上昇させる 化合物を選択する工程
[0071] 本発明の上記方法においては、まず、コンドロモジュリン- 1タンパク質 (遺伝子)を発 現する細胞に被検化合物を接触させる。
[0072] 本方法に用いる「細胞」は、特に制限されないが、好ましくはヒト由来の細胞である。
「コンドロモジュリン- 1タンパク質を発現する細胞」としては、内在性のコンドロモジユリ ン -Iタンパク質を発現して 、る細胞、または外来性のコンドロモジュリン- 1遺伝子が導 入され、該遺伝子が発現している細胞を利用することができる。外来性のコンドロモジ ュリン- 1遺伝子が発現した細胞は、通常、コンドロモジュリン- 1遺伝子が挿入された発 現ベクターを宿主細胞へ導入することにより作製することができる。該発現べクタ一は 、一般的な遺伝子工学技術によって作製することができる。
[0073] 本発明のスクリーニング方法に供する被検化合物としては、特に制限はない。例え ば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合 物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞 培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が挙げられるが、こ れらに限定されない。
[0074] また、これらの被検化合物は必要に応じて適宜標識して用いることができる。標識と しては、例えば、放射標識、蛍光標識等を挙げることができる。
[0075] コンドロモジュリン- 1タンパク質 (遺伝子)を発現する細胞への被検化合物の「接触」 は、通常、コンドロモジュリン- 1タンパク質を発現する細胞の培養液に被検化合物を 添加することによって行うが、この方法に限定されない。被検化合物がタンパク質等 の場合には、該タンパク質を発現する DNAベクターを、該細胞へ導入することにより、 「接触」を行うことができる。
[0076] 本方法においては次いで、該コンドロモジュリン- 1タンパク質の発現量を測定する。 ここで「タンパク質の発現」には、転写および翻訳の双方が含まれる。発現量の測定 は、当業者に公知の方法によって行うことができる。
[0077] 例えば、コンドロモジュリン- 1タンパク質を発現する細胞力 mRNAを定法に従って 抽出し、この mRNAを铸型としたノーザンハイブリダィゼーシヨン法、 RT- PCR法、 DNA アレイ法等を実施することによって該遺伝子の転写量の測定を行うことができる。また
、コンドロモジュリン- 1タンパク質を発現する細胞力もタンパク質画分を回収し、コンド 口モジュリン- 1タンパク質の発現を SDS-PAGE等の電気泳動法で検出することにより、 遺伝子の翻訳量の測定を行うこともできる。さらに、コンドロモジュリン- 1タンパク質に 対する抗体を用いて、ウェスタンブロッテイング法を実施し、該タンパク質の発現を検 出することにより、遺伝子の翻訳量の測定を行うことも可能である。コンドロモジュリン- Iタンパク質の検出に用いる抗体としては、検出可能な抗体であれば特に制限はない 力 例えばモノクローナル抗体、またはポリクローナル抗体の双方を利用することがで きる。
[0078] コンドロモジュリン- 1タンパク質に結合する抗体は、当業者に公知の方法により調製 することが可能である。ポリクローナル抗体であれば、例えば、次のようにして得ること ができる。天然のコンドロモジュリン- 1タンパク質、あるいは GSTとの融合タンパク質と して大腸菌等の微生物において発現させたリコンビナント (組み換え)コンドロモジユリ ン -Iタンパク質、またはその部分ペプチドをゥサギ等の小動物に免疫し血清を得る。 これを、例えば、硫安沈殿、プロテイン A、プロテイン Gカラム、 DEAEイオン交換クロマ トグラフィー、コンドロモジュリン- 1タンパク質や合成ペプチドをカップリングしたァフィ ユティーカラム等により精製することにより調製する。また、モノクローナル抗体であれ ば、例えばコンドロモジュリン- 1タンパク質もしくはその部分ペプチドをマウスなどの小 動物に免疫を行い、同マウスより脾臓を摘出し、これをすりつぶして細胞を分離し、該 細胞とマウスミエローマ細胞とをポリエチレングリコール等の試薬を用いて融合させ、 これによりできた融合細胞 (ノヽイブリドーマ)の中から、コンドロモジュリン- 1タンパク質 に結合する抗体を産生するクローンを選択する。次いで、得られたハイプリドーマを マウス腹腔内に移植し、同マウスより腹水を回収し、得られたモノクローナル抗体を、 例えば、硫安沈殿、プロテイン A、プロテイン Gカラム、 DEAEイオン交換クロマトグラフ ィー、コンドロモジュリン- 1タンパク質や合成ペプチドをカップリングしたァフィユティー カラム等により精製することで、調製することが可能である。
[0079] 本方法にお!ヽては、次 ヽで、被検化合物を接触させな!/、場合 (被検化合物の非存 在下において測定した場合)と比較して、コンドロモジュリン- 1タンパク質の発現量を 上昇させる化合物を選択する。また、対照と比較することにより上記 (c)の選択を行う ことも可能である。
[0080] 本方法により単離される化合物は、血管新生 (例えば、心臓弁膜もしくは網膜等に おける血管新生)を抑制する作用を有し、血管新生に関連する疾患の治療剤となる ことが期待される。
[0081] また本発明のスクリーニング方法の他の態様は、コンドロモジュリン- 1タンパク質の 活性 (機能)を指標とする方法である。上記方法は、例えば以下の (a)〜(c)の工程 を含む、本発明の薬剤のスクリーニング方法である。
(a)コンドロモジュリン- 1タンパク質、または該タンパク質を発現する細胞もしくは細胞 抽出液と、被検化合物を接触させる工程
(b)前記タンパク質の活性を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、前記タンパク質の活 性を上昇させる化合物を選択する工程
[0082] 本方法においてはまず、コンドロモジュリン- 1タンパク質または該タンパク質を発現 する細胞もしくは細胞抽出液と被検化合物を接触させる。
[0083] 次いで、コンドロモジュリン- 1タンパク質の活性を測定する。コンドロモジュリン- 1タン ノ^質の活性としては、例えば、上述の各種活性 (機能)を挙げることができる。該活 性の測定は当業者においては公知の手法を用いて、あるいは、本明細書において 引用された各種文献を参照して、適宜評価することができる。
[0084] さらに被検化合物を接触させない場合 (対照)と比較して、該タンパク質の活性を上 昇 (亢進)させる化合物を選択する。
[0085] 本発明のスクリーニング方法の他の態様は、本発明のコンドロモジュリン- 1タンパク 質 (遺伝子)の発現レベルを上昇させる化合物をレポーター遺伝子の発現を指標とし て選択する方法である。 [0086] 本発明の上記方法の好ましい態様は以下の(a)〜(c)の工程を含む、本発明の薬 剤のスクリーニング方法である。
(a)コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝子とが機能的に結 合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[0087] 本方法においてはまず、コンドロモジュリン- 1遺伝子の転写調節領域とレポーター 遺伝子とが機能的に結合した構造を有する DNAを含む細胞または細胞抽出液と、被 検化合物を接触させる。ここで「機能的に結合した」とは、コンドロモジュリン- 1遺伝子 の転写調節領域に転写因子が結合することにより、レポーター遺伝子の発現が誘導 されるように、コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝子とが結 合していることをいう。従って、レポーター遺伝子が他の遺伝子と結合しており、他の 遺伝子産物との融合タンパク質を形成する場合であっても、コンドロモジュリン- 1遺伝 子の転写調節領域に転写因子が結合することによって、該融合タンパク質の発現が 誘導されるものであれば、上記「機能的に結合した」の意に含まれる。コンドロモジユリ ン -I遺伝子の cDNA塩基配列に基づいて、当業者においては、ゲノム中に存在する コンドロモジュリン- 1遺伝子の転写調節領域を周知の方法により取得することが可能 である。
[0088] 本方法に用いるレポーター遺伝子としては、その発現が検出可能であれば特に制 限はなぐ例えば、 CAT遺伝子、 lacZ遺伝子、ルシフェラーゼ遺伝子、および GFP遺 伝子等が挙げられる。「コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝 子とが機能的に結合した構造を有する DNAを含む細胞」として、例えば、このような構 造が挿入されたベクターを導入した細胞が挙げられる。このようなベクターは、当業 者に周知の方法により作製することができる。ベクターの細胞への導入は、一般的な 方法、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法、リボフヱクシヨン法、マイ クロインジェクション法等によって実施することができる。「コンドロモジュリン- 1遺伝子 の転写調節領域とレポーター遺伝子とが機能的に結合した構造を有する DNAを含 む細胞」には、染色体に該構造が挿入された細胞も含まれる。染色体への DNA構造 の挿入は、当業者に一般的に用いられる方法、例えば、相同組み換えを利用した遺 伝子導入法により行うことができる。
[0089] 「コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝子とが機能的に結 合した構造を有する DNAを含む細胞抽出液」とは、例えば、市販の試験管内転写翻 訳キットに含まれる細胞抽出液に、コンドロモジュリン- 1遺伝子の転写調節領域とレポ 一ター遺伝子とが機能的に結合した構造を有する DNAを添加したものを挙げること ができる。
[0090] 本方法における「接触」は、「コンドロモジュリン- 1遺伝子の転写調節領域とレポータ 一遺伝子とが機能的に結合した構造を有する DNAを含む細胞」の培養液に被検化 合物を添加する、または該 DNAを含む上記の市販された細胞抽出液に被検化合物 を添加することにより行うことができる。被検化合物がタンパク質の場合には、例えば 、該タンパク質を発現する DNAベクターを、該細胞へ導入することにより行うことも可 能である。
[0091] 本方法にお!、ては、次 、で、該レポーター遺伝子の発現レベルを測定する。レポ 一ター遺伝子の発現レベルは、該レポーター遺伝子の種類に応じて、当業者に公知 の方法により測定することができる。例えば、レポーター遺伝子が CAT遺伝子である 場合には、該遺伝子産物によるクロラムフエ-コールのァセチルイ匕を検出することに よって、レポーター遺伝子の発現量を測定することができる。レポーター遺伝子が lac Z遺伝子である場合には、該遺伝子発現産物の触媒作用による色素化合物の発色 を検出することにより、また、ルシフェラーゼ遺伝子である場合には、該遺伝子発現 産物の触媒作用による蛍光化合物の蛍光を検出することにより、さらに、 GFP遺伝子 である場合には、 GFPタンパク質による蛍光を検出することにより、レポーター遺伝子 の発現量を測定することができる。
[0092] 本方法においては、次いで測定したレポーター遺伝子の発現レベルを被検化合物 の非存在下にお 、て測定した場合 (対照)と比較して、上昇 (亢進)させる化合物を選 択する。 [0093] また本発明は、本発明の上記動物を利用した本発明の薬剤 (血管新生関連疾患 治療剤もしくは血管新生抑制剤等)のスクリーニング方法に関する。
[0094] 本発明の方法は、例えば、以下の(a)〜(c)の工程を含む、本発明の薬剤のスクリ 一二ング方法である。
(a)本発明の遺伝子ノックアウト非ヒト動物に被検化合物を投与する工程
(b)前記遺伝子ノックアウト非ヒト動物におけるコンドロモジュリン- 1タンパク質の発現 量もしくは活性を測定する工程
(c)被検化合物を投与しな 、場合と比較して、コンドロモジュリン- 1タンパク質の発現 量もしくは活性を上昇させる化合物を選択する工程
[0095] まず、上記した遺伝子ノックアウト非ヒト動物に被検化合物を投与する。被検化合物 の投与は、経口、非経口投与のいずれでも可能である力 好ましくは非経口投与で あり、具体的には、注射剤型、経鼻投与剤型、経肺投与剤型、経皮投与型等が挙げ られる。注射剤型の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮 下注射などにより全身または局所的 (例えば、心臓弁膜、網膜等)に投与することが できる。
[0096] 被検化合物が DNAである場合、生体内に投与する場合には、レトロウイルス、アデ ノウィルス、センダイウィルスなどのウィルスベクターやリボソームなどの非ウィルスべ クタ一を利用することができる。投与方法としては、 in vivo法および ex vivo法を例示 することができる。
[0097] 本方法においては次いで、該遺伝子ノックアウト動物におけるコンドロモジュリン- 1タ ンパク質の発現量もしくは活性を測定する。より具体的には、該動物の組織、器官、 細胞等 (好ましくは、心臓弁膜、眼内、網膜等)について、コンドロモジュリン- 1タンパ ク質の発現量もしくは活性の測定を行う。発現量もしくは活性の測定は上述の方法に よって行うことができる。
[0098] 本方法にお!、ては、次 、で、被検化合物を投与しな 、場合 (対照)と比較して、コン ドロモジュリン- 1タンパク質の発現量もしくは活性を上昇させる化合物を選択する。
[0099] また、本発明の遺伝子ノックアウト動物を利用し、該動物における心臓弁膜もしくは 網膜の形態変化を指標とすることにより、本発明のスクリーニングを行うことも可能で ある。
[0100] 本発明の好ましい態様においては、以下の(a)〜(c)の工程を含む、本発明の薬 剤のスクリーニング方法である。
(a)本発明の遺伝子ノックアウト非ヒト動物に被検化合物を投与する工程
(b)前記遺伝子ノックアウト非ヒト動物における心臓弁膜もしくは網膜を観察する工程
(c)被検化合物を投与しない場合 (対照)と比較して、心臓弁膜もしくは網膜を正常 ィ匕させる化合物を選択する工程
[0101] 本方法においては次いで、コンドロモジュリン- 1遺伝子をノックアウトした非ヒト動物 の呈する表現型に依存する形態上の変化を観察する。即ち、該ノックアウト動物にお ける異常な心臓弁膜もしくは網膜を、正常化させる物質を選択することにより、本発明 の薬剤の候補ィ匕合物を取得することができる。例えば、前記ノックアウト非ヒト動物に おける心臓弁膜内の肥厚、石灰化等を正常化させる化合物を選択する。
[0102] また本発明は、本発明のスクリーニング方法を実施するために用いられる、各種薬 剤 ·試薬等を含むキットを提供する。
本発明のキットは、例えば本発明の上述の各種試薬の中から、実施するスクリー- ング方法にあわせて適宜選択することができる。例えば本発明のキットは、コンドロモ ジユリン -Iタンパク質の検出の際に利用可能な、コンドロモジュリン- 1遺伝子に対する プローブもしくは該遺伝子の任意の領域を増幅するためのプライマー等のオリゴヌク レオチド、または、コンドロモジュリン- 1タンパク質を認識する抗体 (抗コンドロモジユリ ン -Iタンパク質抗体)等を構成要素として含む。
[0103] 上記オリゴヌクレオチドは、例えば、本発明のコンドロモジュリン- 1遺伝子の DNAに 特異的にハイブリダィズするものである。ここで「特異的にハイブリダィズする」とは、 通常のハイブリダィゼーシヨン条件下、好ましくはストリンジェントなノ、イブリダィゼーシ ヨン条件下 (例えば、サムブノレックら, Molecular Cloning, Cold Spring Harbour Laborat ory Press.New York,USA,第 2版 1989に記載の条件)において、他のタンパク質をコ ードする DNAとクロスハイブリダィゼーシヨンを有意に生じな 、ことを意味する。特異 的なノ、イブリダィズが可能であれば、該オリゴヌクレオチドは、コンドロモジュリン- 1遺 伝子の塩基配列に対し、完全に相補的である必要はな 、。 [0104] 本発明においてハイブリダィゼーシヨンの条件としては、例えば「2 X SSC、 0.1 %SD S、 50。C」、「2 X SSC、 0.1%SDS、 42。C」、「1 X SSC、 0.1%SDS、 37°C」、よりストリンジェ ントな条件として「2 X SSC、 0.1%SDS、 65°C」、「0.5 X SSC、 0.1%SDS、 42°C」および「 0.2 X SSC、 0.1%SDS、 65°C」等の条件を挙げることができる。より詳細には、 Rapid- hy b buffer (Amersham Life Science)を用いた方法として、 68°Cで 30分間以上プレハイブ リダィゼーシヨンを行った後、プローブを添加して 1時間以上 68°Cに保ってハイブリツ ド形成させ、その後 2 X SSC、 0.1%SDS中、室温で 20分間の洗浄を 3回行い、続いて 1 X SSC、 0.1%SDS中、 37°Cで 20分間の洗浄を 3回行い、最後に 1 X SSC、 0.1%SDS中 、 50°Cで 20分間の洗浄を 2回行うことができる。その他、例えば Expresshyb Hybridizat ion Solution (CLONTECH)中、 55°Cで 30分間以上プレハイブリダィゼーシヨンを行つ た後、標識プローブを添カ卩して 37〜55°Cで 1時間以上インキュベートし、 2 X SSC、 0.1 %SDS中、室温で 20分間の洗浄を 3回、 1 X SSC、 0.1%SDS中、 37°Cで 20分間の洗浄 を 1回行うこともできる。ここで、例えば、プレハイブリダィゼーシヨン、ハイブリダィゼー シヨンや 2度目の洗浄の際の温度をより高く設定することにより、よりストリンジェントな 条件とすることができる。例えば、プレハイブリダィゼーシヨンおよびハイブリダィゼー シヨンの温度を 60°C、さらにストリンジヱントな条件としては 68°Cとすることができる。当 業者であれば、このようなバッファーの塩濃度、温度等の条件に加えて、プローブ濃 度、プローブの長さ、プローブの塩基配列構成、反応時間等のその他の条件を加味 し、条件を設定することができる。
[0105] 該オリゴヌクレオチドは、上記本発明のスクリーニング用キットにおけるプローブや プライマーとして用いることができる。該オリゴヌクレオチドをプライマーとして用いる場 合、その長さは、通常 15bp〜100bpであり、好ましくは 17bp〜30bpである。プライマー は、本発明のコンドロモジュリン- 1遺伝子の DNAの少なくとも一部を増幅しうるもので あれば、特に制限されない。
[0106] 本発明のキットには、さらに、本発明の方法において使用される各種試薬、容器等 を含めることができる。例えば、各種反応試薬、細胞、培養液、対照サンプル、緩衝 液、使用方法を記載した指示書等を適宜含めることができる。
[0107] また本発明は、以下の (a)および (b)を主要な構成成分とすることを特徴とする、人 ェ心臓弁を提供する。
(a)コンドロモジュリン- 1遺伝子を発現する細胞
(b)脱細胞弁あるいは生体内溶解型高分子化合物
本発明の人工心臓弁は、上記 (a)および (b)を主要な構成成分とする、ハイブリッド 型の人工心臓弁であって、例えば「ハイブリッド型再生弁」と記載する場合もある。
[0108] また本発明は、以下の工程 (a)〜(c)によって製造される、人工心臓弁を提供する
(a)コンドロモジュリン- 1遺伝子を発現する細胞を培養および増殖させる工程
(b)前記 (a)の細胞を、脱細胞弁あるいは生体内溶解型高分子化合物の表面に播 種する工程
(c)コンドロモジュリン- 1遺伝子を発現する細胞が、前記 (b)の脱細胞弁あるいは生体 内溶解型高分子化合物の有する間隙を満たすまで培養する工程
[0109] 本製造工程においては、まずコンドロモジュリン- 1遺伝子を発現する細胞を培養す る。コンドロモジュリン- 1遺伝子を発現している細胞を得るためには、例えば被検者ま たは被検者以外の (心臓)弁組織の一部 (例えば心臓弁輪組織または三尖弁等)を バイオプシー等で切除した上で、表面の内皮細胞を除去することにより得ることがで きる。得られた細胞をェクスプラント培養し、充分量になるまで増殖させる。エタスプラ ント培養条件は、当業者に一般に知られている培養条件、例えば、論文 (Lester W, Rosenthal A, Granton B, uotneb AI. Porcine mitral valve interstitial cells in culture. Lab. Invest. 59, 710-719, (1988))の細胞培養の項目に記載の培養条件を利用する ことができる。
[0110] 次いで、該細胞を、脱生体弁あるいは生体内溶解型高分子化合物の表面に播種 する。脱生体弁あるいは生体内溶解型高分子化合物は、間隙を有するもの、即ち多 孔性のものを用いることが好ま 、。
[0111] 次いで表面に播種した細胞が、脱生体弁あるいは生体内溶解型高分子化合物の 有する間隙 (孔)に浸潤し間隙を満たすまで培養を行う。培養条件は例えば既に論 文 (Lester W, Rosenthal A, uranton B, Gotlieb AI. Porcine mitral valve interstitial c ells in culture. Lab. Invest. 59, 710-719, (1988))に記載してある条件を利用すること ができる。
[0112] 該細胞が上記間隙 (孔)を充分に満たしたところで、該細胞を有する脱生体弁ある いは生体内溶解型高分子化合物を無血清培養液に転換する。
[0113] なおこのようにして製造された本発明の人工心臓弁は、さらに生理食塩水にて洗浄 し血清成分を除去した後に、破壊の進んだ弁置換が必要な患者の弁と置換手術を 行うことちでさる。
[0114] 本発明における、上記「コンドロモジュリン- 1遺伝子を発現する細胞」とは、好ましく は被検者由来あるいは被検者以外由来の弁間質細胞である。即ち自己弁間質細胞 あるいは他家 (第三者)の弁間質細胞を用いることができる。
[0115] 本発明における、上記「脱細胞弁」とは、脱細胞化を行った (細胞成分を除去した) 生体弁を指す。脱細胞化は、当業者に公知の手法をもって実施することが可能であ る。また上記のように、本発明の脱細胞弁は、多孔性のものが好ましい。
[0116] また本発明における「生体弁」とは、例えばブタの生体弁を利用することができる。
[0117] また本発明における「生体内溶解型高分子化合物」として例えば、ポリ乳酸等が挙 げられる。また上記のように本発明の生体内溶解型高分子化合物は、多孔性のもの が好ましい。
[0118] また本発明者らは、弁の間質細胞が血管新生抑制因子であるコンドロモジュリン- 1 を分泌することにより、新生血管が弁間質組織中に浸潤せず、これに伴った炎症細 胞の浸潤や MMPの活性ィ匕による破壊力ゝら弁組織を保護していることを明らかにした。 これまでブタ生体弁や生体内溶解型高分子化合物 (ポリ乳酸等)に骨髄細胞等を添 カロしたノ、イブリツド型再生弁では弁組織中に血管侵入や、炎症細胞の浸潤に伴 、、 長期間の機能維持は不可能であった。そこで本発明者らは自己弁間質細胞あるい は他家 (第三者)の弁間質細胞をブタ生体弁 (脱細胞弁)や生体内溶解型高分子化 合物 (ポリ乳酸等)に播種し、本来の弁組織の構造類似の組織を保持したハイブリツ ド型再生弁の作成を試み、これを臨床応用しょうと 、うものである。
即ち本発明は、弁組織における血管新生を抑制する機能を有することを特徴とする 人工心臓弁を提供する。
[0119] また本発明は、以下の(a)〜(c)のいずれかと、薬学的に許容される担体または媒 体とを混合する (組み合わせる)工程を含む、血管新生抑制剤または血管新生関連 疾患治療剤の製造方法に関する。
(a)コンドロモジユリン -Iタンパク質 (例えば配列番号: 2に記載のアミノ酸配列によつ て示されるヒトコンドロモジュリン- 1タンパク質など)
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列(例えば配列番号: 2に記載のヒトコ ンドロモジュリン- 1タンパク質のアミノ酸配列など)において 1若しくは複数のアミノ酸が 欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン- 1タンパク質と機 能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
[0120] 「薬学的に許容される担体または媒体」とは、前記 (a)〜 (c)の 、ずれかと共に投与 することが可能であり、血管新生を抑制する作用を有意に阻害しない材料である。こ のような担体または媒体としては、例えば脱イオン水、滅菌水、塩化ナトリウム溶液、 デキストロース溶液、デキストロースおよび塩ィ匕ナトリウム、乳酸含有リンゲル溶液、培 養液、血清、リン酸緩衝生理食塩水 (PBS)などが挙げられ、これらと前記 (a)〜(c)の いずれかを適宜組み合わせて製剤化することが考えられる。また、必要に応じて遠心 などにより濃縮され、生理食塩水などの生理的溶液中に再懸濁されてよい。また、リ ポソ一ムの膜安定化剤(例えばコレステロール等のステロール類)を含んで 、てもよ
V、。また、抗酸化剤(例えばトコフエロールまたはビタミン Eなど)を含んで 、てもよ 、。 さらに、その他にも、植物油、懸濁剤、界面活性剤、安定剤、殺生物剤等が含有され ていてもよい。また保存剤やその他の添加剤を添加することができる。本発明の組成 物は、水溶液、カプセル、懸濁液、シロップなどの形態であり得る。
[0121] さらに本発明は、前記 (a)〜(c)のいずれかを個体 (例えば患者等)へ投与するェ 程を含む、血管新生関連疾患を予防もしくは治療する方法に関する。本発明の予防 もしくは治療する方法における個体とは、好ましくはヒトであるが、特に制限されず非ヒ ト動物であってもよい。本発明の前記 (a)〜(c)のいずれかの投与量は、疾患、患者 の体重、年齢、性別、症状、投与目的、投与組成物の形態、投与方法等により異なる 力 当業者であれば適宜決定することが可能である。投与経路は適宜選択すること ができるが、例えば経皮的、鼻腔内的、経気管支的、筋内的、腹腔内、静脈内、関 節内、または皮下等に行われうる。投与は局所あるいは全身であってよい。ヒト以外 の動物について投与する場合、例えば目的の動物とヒトとの体重比または投与標的 部位の容積比 (例えば平均値)でヒトの投与量を換算した量を投与することができる。
[0122] また本発明は、上記本発明の人工心臓弁を用いる工程を含む、血管新生関連疾 患を治療する方法に関する。
[0123] あるいは本発明は、前記 (a)〜(c)のいずれかの物質の血管新生抑制剤または血 管新生関連疾患治療剤の製造における使用を提供するものである。
[0124] なお本明細書において引用されたすベての先行技術文献は、参照として本明細書 に組み入れられる。
実施例
[0125] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例により制 限されるものではない。
〔実施例 1〕 ヒト試料の調製
大動脈弁 18例および僧帽弁 11例 (男性 29人から;平均年齢 60.3 ± 17.7歳)を弁狭 窄または逆流のために弁置換手術を受けた患者力 採取した。試料を摘出後直ちに ホルムアルデヒドにおいて固定して、パラフィンに包埋した。対照に関して、顕微鏡的 および肉眼的に正常で石灰化していない滑らかで柔軟な大動脈弁および僧帽弁 3 個を剖検患者 (平均年齢、 44.3 ±9.7歳) 3人力 得た。
[0126] 〔実施例 2〕 マウス及びラットの調製
野生型 ICR系マウスおよびウィスター系ラットを日本クレア (東京、 日本)から購入し 7こ。 ΑροΕ マウス (Plump, A.S. et al. Severe hypercholesterolemia and atheroscleros is in apolipoprotein E— deficient mice created by homologous recomoination in ES eel Is. Cell 71, 343-53 (1992))は、ジャクソン研究所力も購入して、十分に老齢となるま で (n=5、 90.5 ±3.7週齢)通常食を与えた。 Chm- ΓΛ系統は、既知の方法で作製し( Nakamicni, Y et ai.し honaromodulin I is a bone remodeling factor. Moi Cell Bioi 23, 636-44 (2003))、 90.2 ± 7.4週齢(n= 7)となるまで維持した。
[0127] 〔実施例 3〕 成体ラット大動脈弁間質細胞 (VICs)の単離
心臓を、麻酔した 5週齢のウィスター系ラットから摘出した。大動脈弁の小葉を迅速 に採取して、実体顕微鏡下で細切して、既知の方法で(Lester W, R.A., Granton B, et al. Porcine mitral valve interstitial cells in culture. Lab Invest, 710—719 (1988))ェ タスプラント培養のために用いた。 5 X 5 mmの小片を組織力 切断して、 12ゥエルコラ 一ゲンコーティング皿 (イワキ、東京、 日本)に載せて、 10%ゥシ胎児血清 (FBS)を含 む M199 (シグマ-アルドリッチ、東京、 日本)にお 、て増殖させた。条件培地 (CM)を 培地交換の 3日後のコンフルェント弁間質細胞力も得て、さらなる分析に用いた。
[0128] 〔実施例 4〕 細胞培養の調製
NIH3T3細胞は既知の方法で(Hisaka, Y et al. Powerful and controllable angiogene sis by using gene-modified cells expressing human hepatocyte growth factor and thy midine kinase. J Am Coll Cardiol 43, 1915-22 (2004))維持した。ヒト冠動脈血管内皮 細胞 (HCAECs)をタカラノィォテクノロジー (東京、 日本)から購入して、既知の方法 で (Hamilton, K.L., Mbai, F.N., Gupta, ¾. & Knowlton, A.A. Estrogen, heat shock p roteins, and NFkappaB in human vascular endothelium. Arterioscler Thromb Vase Bi ol 24, 1628-33 (2004))維持して、継代回数 3〜5回の細胞を本試験において用いた
[0129] 〔実施例 5〕 逆転写 PCR (RT- PCR)による解析
トリゾル試薬(ギブコ- BRL (Gibco-BRL) )を用いて総 RNAを単離し、 DNァーゼ I (口 シュ(Roche) )によって処置した。 RT-PCRは、以下のプライマーを用いて既知の方法 で (Enomoto, H. et al. Vascular endothelial growth factor isoforms and their recepto rs are expressed in human osteoarthritic cartilage. Am J Pathol 162, 171-81 (2003)) 実施した。
マウス chm- 1 (ジヱンバンク(Genbank) (商標)ァクセッション番号 NM_010701号):(フ ォワード) 5'- CTTAAGCCCATGTATCCAAA- 3'Z配列番号: 3、 (リバース) 3'- CCA GTGGTTCACAGATCTTC- 5'Z配列番号: 4; gapdh (フォワード) 5'- TTCAACGGCA CAGTCAAGG- 3'Z配列番号: 5、 (リバース) 3'- CATGGACTGTGGTCATGAG- 5' Z配列番号: 6。
[0130] chm-Iに関する RT-PCRを様々な臓器において行った。軟骨および眼は陽性対照と して用いた。 chm-Iは、心臓以外の臓器では検出されな力つた(図 la)。 Chm-I発現は 心臓弁膜において強力つたが、心房および心室には存在しな力つた(図 lb)。ラット の胚形成の際、 chm-Iの発現は E9.5で心臓に初めて出現して、成体まで持続した(図 lc)。
[0131] 〔実施例 6〕 リアルタイム定量的 RT- PCR(QT- PCR)による解析
ラット心臓におけるラット chm-I mRNAの相対量を、既知の方法により(Aoyama, T. e t al. Expression of the chondromoaulin— I gene in chondrosarcomas. し ancer Lett 204 , 61-8 (2004))、 ABI PRISM 7700配列検出システム(PEアプライドバイオシステムズ( PE Applied Biosystems) )によるタックマンリアルタイム PCRによって評価した。 chm- 1 c DNA (ジヱンバンク(商標)ァクセッション番号 NM_030854)の +411 (ェキソン 4)から +48 5 (ェキソン 5)までの 75 bpの断片を、特異的プライマー(センス、 5'-GAAGGCTCGTA TTCCTGAGGTG- 3'Z配列番号: 7;アンチセンス 5'- TGGCATGATCTTGCCTTCC AGT- 3'Z配列番号: 8)を用いて増幅して、タックマンプローブ(5'-FAM-CGTGACC AAACAGAGCATCTCCTCCA- 3'- TAMRAZ配列番号: 9)によって標識した。 GAP DH mRNAを内部対照として用いて、全ての反応を 1試料あたり 3回ずつ行った。各試 料における chm- 1/ GAPDHの比を計算して、 chm-I遺伝子の発現レベルを標準物質 としてラットの全眼における chm-I/ GAPDH比 (1.0)を用いて相対値として決定した。 同じ分析を 3回行って、値を GAPDHレベルに対して標準化したラット全眼の mRNAレ ベルと比較した%mRNAレベルとして表記する。
[0132] 定量的 PCRにより、 chm-I発現が、心房または心室と比較して心臓弁膜では 800倍 高力つたことが判明した(図 Id)。
[0133] 〔実施例 7〕 ウェスタンブロッテイングによる解析
ウィスター系ラットおよび剖検ヒト組織 (心房、心室、心臓弁膜および軟骨)を溶解緩 衝液 [20 mMトリス(pH 7.4)、 1 mM EDTA、 1 mM EGTA、 complete mini (登録商標)( ロシュ、ドイツ)錠/緩衝液 10 ml]においてホモジナイズした。ウェスタンブロット分析 【ま、既知の力法で 施した (Funaki, H. et al. Expression and localization of angioge nic inhioitory factor, chondromodulin— I, in adult rat eye. Invest Ophthalmol Vis Sci 42, 1193-200 (2001))。 ChM- 1タンパク質を可視化するために、各試料のローデイン グ量を変化させた。メンブレンをゥサギ抗 ChM-Iポリクローナル抗体と共に 4°Cで一晩 インキュベートした。メンブレンを西洋ヮサビペルォキシダーゼ(HRP) -結合抗ゥサギ I gG抗体(アマシャムフアルマシアバイオテック、ビスカタウェイ、ニュージャージー州)と 共にインキュベートして、供給元の説明書に従ってシグナルを SuperSignal West Pico (PIERCE)によって可視化した。
[0134] ウェスタンプロット分析から、ラットおよびヒト心臓弁膜に ChM-Iが存在することが示さ れた(図 lef)。心臓弁膜において認められる 25 kDa ChM- 1タンパク質は、軟骨抽出 物においても同様に検出される成熟グリコシルイ匕型であると推定された。心房および 心室抽出物は ChM-Iが存在するシグナルを示さなかった。
[0135] 〔実施例 8〕 インサイチューハイブリダィゼーシヨンと免疫組織ィ匕学による解析
(インサイチューハイブリダィゼーシヨン)
パラフィン抱埋切片をプロテナーゼ Kによって処理して、既知の方法でインサイチュ ~~ノヽイブリダイセ ~~ンヨンを行つ 7こ (Enomoto, H. et al. Vascular endothelial growth fa ctor isoforms and their receptors are expressed in human osteoarthritic cartilage. A m J Pathol 162, 171-81 (2003))。铸型 DNAは、 pCR Π-ΤΟΡΟベクターにクローニン グされたマウス chm-Iをコードする 879-bp cDNAであった。 0.003%過酸化水素を含む 50 mmol/Lトリス-塩酸 pH 7.6における 0.2 mg/ml 3,3'-ジァミノべンジジン四塩酸の溶 液によって発色させて、切片をへマトキシリンによって対比染色して、顕微鏡下で観
¾πίした。
[0136] また、 9.0、 9.5、 10.0、および 12.5日のマウス胚(Ε)を採取して、既知の方法で(Dietz , U.H., Ziegelmeier, G" Bittner, K., Bruckner, P. & Balling, R. Spatio-temporal dist ribution of chondromodulin— I mRNA in the chicken embryo: expression during cartila ge development and formation of the heart and eye. Dev Dyn 21b, 233-43 (1999)) D IG標識 RNAプローブを用いて、ホールマウントインサイチューハイブリダィゼーシヨン を行った。
[0137] (免疫組織化学および免疫蛍光染色)
妊娠または非妊娠成体マウス心臓を PBSによって心尖力 還流して、 4%パラホル ムアルデヒド(PFA) /PBSによって固定し、これを既知の方法で(Funaki, H. et al. Exp ression and localization of angiogenic inhibitory factor, chondromodulin— I, in adult ra t eye. Invest Ophthalmol Vis Sci 42, 1193-200 (2001))免疫染色のために用いた。 すなわち、妊娠または非妊娠成体マウス心臓を解剖して 4%PFAにお ヽて 4°Cで一晩 液浸固定した後、パラフィンに抱埋した。一次抗体を適用する前に、切片をキシレン においてパラフィン除去して、 pH 6.0の 10 mmolクェン酸一水和物(DAK0、グロスト ルップ、デンマーク)中でマイクロ波オーブンにおいて 3分間加熱した。それらを PBS においてすすいだ後、切片を 5%正常ゥサギ血清、ァフィ-ティ精製ゥサギ抗ポリクロ 一ナル抗マウス ChM- 1、ゥサギポリクローナル抗 VEGF-A (200倍希釈; sc-507;サンタ クルズバイオテクノロジー (Santa Cruz Biotecunology)、カリフォルニア州)、抗フォン ウィルブランド因子(200倍希釈; vWF; RB-281-A0;ラブビジョンコーポレーション(Lab vision Corporation) ,ウェスティングハウスドライブフレモント、カリフォルニア州)、ま たは抗 MAC- 1 (200倍希釈; 557394 ; BDファーミンゲンインク(BD PharMingen, Inc.) , サンジエゴ、カリフォルニア州)と共に 4°Cで一晩インキュベートした。免疫組織化学反 応を観察するために、色素産生基質として 0.05 Mトリス緩衝生理食塩液 (pH 7.6)中 に 0.01%H 0を含む 0.05%3,3'-ジァミノべンジジン四塩酸(シグマ-アルドリッチ(Sig
2 2
ma-Aldrich)、東京、 日本)を適用することによって、シグナルを検出した。切片をへマ トキシリンによって対比染色して、段階的エタノールにおいて脱水し、 Permount (フィ ッシヤーサイエンティフィック(Fisher Scientific)、ピッツバーグ、ペンシルバニア州)に ST人した (Hiraki, Y et al. Molecular cloning of numan chondromodulin-I , a cartilage- derived growth modulating factor, and its expression in Chinese hamster ovary cells. Eur J Biochem 260, 869-78 (1999))。
免疫蛍光試験に関して、切片をアレクサ 488または 594 (モレキュラープローブス (Mo lecular Probes)、ユージーン、オレゴン州)に結合させた二次抗体と共にインキュべ ートした。核を TOTO- 3 (モレキュラープローブス、ユージーン、オレゴン州)によって 染色した。スライドガラスを共焦点レーザー走査顕微鏡 (LSM 510 META ;カールッァ イス(Carl Zeiss)、イェーナ、ドイツ)下で観察した。光学切片を 1024 X 1024ピクセル の解像度で得て、 LSMソフトウェア(カールツァイス、イェーナ、ドイツ)を用いて分析し た。本発明者らは、各免疫染色実験の陰性対照として一次抗体のために非免疫ゥサ ギ血清を用いて行った。 [0139] インサイチューハイブリダィゼーシヨン(図 8)および免疫組織ィ匕学(図 2、図 9)によ つて、成体マウス心臓における四つ全ての心臓弁膜に ChM-Iが存在することが判明 した。連続切片により、 ChM-Iの発現は、 VEGF-A発現とは相反的に検出されうること が判明した。 ChM-Iタンパク質は、弁間質細胞 (VICs)および細胞外マトリックス全体 に検出された力 心臓弁膜の外側の内皮細胞層には検出されな力つた。
[0140] 発達の際に、房室管*** (AVC)および流出路 (OFT)からの心臓弁膜前駆細胞は 、 E9.5に始まる chm-I転写物および ChM- 1タンパク質を発現する。この発現の開始は 、 RT-PCRの結果と一致する。 10.0期の胚において、 ChM-Iは、左心室(LV)の肉柱 形成心筋細胞を覆う心ゼリー、右心室 (RV)の外彎曲および心流出路において発現 される。心室における ChM-I発現は、発達が進行すると徐々に減少して、胚形成の中 期までに chm-I転写物およびタンパク質は消失した。 ChM-Iおよび VEGF-Aの位置が 異なることは、発達の全ての段階で明白であった。 VEGF-Aの発現は、心筋細胞およ び心室腔に面する内皮細胞に限定されたが、 ChM-I発現は、弁膜小葉の原基に限 定された。
[0141] 〔実施例 9〕 加齢 ApoE— /_マウスにおける弁膜硬化症での ChM-Iと VEGF-Aの発現の 解析
抗血管新生 ChM-Iおよび血管新生 VEGF-Aの発現を、心臓弁膜に異常な脂質沈 着と石灰化とを有するァテローム性動脈硬化症のモデルである加齢 ΑροΕ—Λマウス(9 0.5±3.7週齢)の心臓弁膜において調べた。 ChM-Iの発現は、新たに浸潤した VEGF -A陽性細胞を有する(図 3glkm)大動脈弁および僧帽弁の双方にお!ヽて石灰化領域 には存在しなかった(図 3abl )。年齢をマッチさせた野生型マウス(88.5 ±4.4週齢) は、予想される生理的 ChM- 1陽性および VEGF- A陰性発現パターンを示し、硬化ま たは石灰化を示さな力つた。 chm-Iに関するインサイチューハイブリダィゼーシヨンで は、 ApoE_/—マウスにおける硬変大動脈弁の小葉にシグナルを認めな力つた(図 3d) 1S 年齢をマッチさせた野生型マウスは陽性シグナルを示した(図 3e)。
[0142] 〔実施例 10〕 ヒト心臓弁膜の病的な血管新生における、 ChM-Iと VEGF-Aの発現の 解析
剖検または外科標本の免疫染色を、へマトキシリン-ェォジン (HE)染色およびァザ ン染色と共に用いて、心臓弁膜症 (VHD)患者の心臓弁膜における ChM-Iおよび VE GF-Aの発現プロフィールを決定した(図 4)。 VHDを有しな 、患者の心臓弁膜には血 管は存在しな力つた。正常な弁膜において、 ChM-Iは、線維層、海綿層、心室層に 検出されて、内皮層には存在しなカゝつた力 VEGF-Aは、全ての細胞層に存在しな かった。比較すると、感染性心内膜炎(IE)、リウマチ性心疾患 (RHD)、およびァテロ ーム性動脈硬化症患者の心臓弁膜には、多数の血管が認められた。 ApoE— /_マウス 力 の知見と一致して、 ChM-Iは、 VEGF-Aを強く発現した新しい血管形成領域にお いて顕著にダウンレギュレートされた。この発現プロフィールは、大動脈弁輪拡張症 患者、僧帽弁腱策破裂患者の心臓弁膜では認められな力つた (表 1)。
[0143] [表 1]
No 年齢 性 心臓弁膜症 病因 血管新生 VEGF ChM-I 石灰化
1 56 M 大動脈弁狭窄 ァ亍ローム性動脈硬化症 + + + + + + + + + +
2 54 M 大動脈弁狭窄 ァテロ一ム性動脈硬化症 + + + + + 土 + +
3 74 M 大動脈弁狭窄 ァテローム性動脈硬化症 + + + + + + + + +
4 76 F 大動脈弁狭窄 ァテローム性動脈硬化症 + + + + + + 土 + + +
5 51 M 大動脈弁逆流 ァテローム性動脈硬化症 + + + + + + + + +
6 69 F 大動脈弁逆流 ァ亍ローム性動脈硬化症 + + + + + + +
7 76 M 大動脈弁逆流 二尖弁 + + + + + + + +
8 77 M 大動脈弁狭窄 二尖弁 + + + + + + + + +
9 58 M 大動脈弁狭窄 二尖弁 + + + + + + + +
10 72 F 大動脈弁狭窄 二尖弁 + + + + + 土 + + +
1 1 71 M 大動脈弁狭窄 二尖弁 + + + + + + + +
12 76 F 大動脈弁狭窄 二尖弁 + + + + + +
13 68 F 大動脈弁逆流 二尖弁 + + + + + + + + + +
14 73 M 大動脈弁逆流 二尖弁 + + + + + + +
15 55 M 大動脈弁逆流 リウマチ性心疾患 + + + + + + + + +
16 58 F 大動脈弁逆流 リウマチ性心疾患 + + + + + + + + +
17 71 F 大動脈弁逆流 リウマチ性心疾患 + + + 土 + + +
18 73 M 僧帽弁狭窄 リウマチ性心疾患 + + + + + + 土 + + +
19 35 M 大動脈弁逆流 感染性心内膜炎 + + + + + + 土 ―
20 37 F 僧帽弁逆流 感染性心内膜炎 + + + + + 土 ―
21 60 F 僧帽弁逆流 感染性心内膜炎 + + + + + + +
22 48 M 僧帽弁逆流 感染性心内膜炎 + + + + + 土 ―
23 24 M 大動脈弁逆流 マルファン症候群 ― ― + + + ―
24 45 F 大動脈弁逆流 大動脈弁輪拡張症 ― ― + + + ―
25 60 M 大動脈弁逆流 大動脈弁輪拡張症 + + + + + ―
26 72 M 大動脈弁逆流 無冠尖逸脱症 + + + + + + +
27 40 M 僧帽弁逆流 僧帽弁逸脱症 ― ― + + + ―
28 70 F 僧帽弁逆流 僧帽弁腱策破裂 + + + + + +
29 72 M 僧帽弁逆流 僧帽弁腱策破裂 ― ― + + + ―
30 34 M 心臓弁膜症なし (ゲルストマン症候群) ― ― + + + ―
31 50 M 心臓弁膜症なし (クモ膜下出血) ― ― + + + ―
32 49 F 心臓弁膜症なし (モャモャ病) ― ― + + + ―
[0144] これらの知見は、疾患を有する心臓弁膜における血管新生の発生および硬変変化 力 ChM-Iの発現に直接関連することを明らかに示している。
[0145] 〔実施例 11〕 弁間質細胞由来 ChM-Iの、インビボでヒト冠動脈内皮細胞の管腔形成 および遊走の抑制及びアポトーシス誘導の解析
(ァセチル -LDL処置)
ChM-Iが弁間質細胞によって産生されるか否力、および VIC-由来 ChM-Iがインビト 口でヒト冠動脈内皮細胞 (HCAECs)の増殖および管腔形態形成に影響を及ぼしうる か否かを調べた。
ラット初代培養心臓弁膜および弁間質細胞の外植片培養物を作製した。弁間質細 胞またはヒト冠動脈血管内皮細胞を、 Dil (モレキュラープローブス、ユージーン)によ つて標識した 10 μ g/mlァセチル化アポタンパク質 (Ac-LDL)によって 37°Cで 1時間処 置した。ニコン Diaphot顕微鏡 (励起 554 nm、放射 571 nm)の下で蛍光細胞を観察し た。
[0146] 結果を図 5a〜fに示す。外植片細胞は、 3日後の弁間質細胞の特徴である丸石およ び紡錘型の細胞の不均一な集団であった(Zacks, S. et al. Characterization of Cobb lestone mitral valve interstitial cells. Arch Pathol Lab Med 115, 774—9 (1991))。 7日 後、双方の細胞タイプはより線維芽細胞様となり、より伸長した形となり、既知のとおり にコンフルエンス後に直交する過増殖パターンを形成する(Lester W, R.A., Granton B, et al. Porcine mitral valve interstitial cells in culture. Lab Invest, 710—719 (1988 ))。細胞は、ァセチル LDL-Dil結合体に関して陰性であることが判明し、外表面に内 皮細胞層を有する弁間質細胞力 なる心臓弁膜と一致した。免疫染色により、弁間 質細胞の細胞質にぉ 、て ChM-Iが発現されて 、ること、および陰性対照 NIH3T3細 胞には ChM-Iが存在しないことが示された。
[0147] (管腔形成アツセィ)
24ゥエル培養プレート(コスター(Costar)、コ一-ング(Corning)、ニューヨーク)を増 殖因子を添カ卩したマトリゲル(0.4 ml ;ベタトンディッキンソンラブウェア(Becton Dickin son Labware)、ベッドフォード、マサチューセッツ州)によってコーティングして、 37°C で 30分間インキュベートした。 4時間飢餓状態のヒト冠動脈血管内皮細胞をトリプシン -EDTAによって処理して、培養培地に 20分間浮遊させた。細胞を、弁間質細胞また は NIH3T3細胞の CMの存在下または非存在下において、重合化マトリゲルにおいて 10000個 Zゥエルの密度で播種して、既に記述されているように(Oshima, Y et al. Ex pression and localization of tenomodulin, a transmembrane type chondromodulin— i—r elated angiogenesis inhioitor, in mouse eyes. Invest Ophthalmol Vis Sci 44, 1814—23 (2003))管腔形成アツセィを行った。 37°Cで 6時間インキュベートした後、位相差光学 顕微鏡 (カールツァイス)において写真を撮影した。ヒト冠動脈血管内皮細胞の毛細 管様形態形成を定量的に評価するために、画像処理および分析ソフトウェア (シオン 画像コンピュータープログラム、メリ一ランド州ベセスダの米国国立衛生研究所の公 式ドメインにおいて入手可能)を用いて、視野あたりの管様構造の全長を測定した。 各実験を 5回行った。
[0148] その結果、ヒト冠動脈血管内皮細胞は、既に報告されているように(Oshima, Y et al . Expression and localization of tenomodulin, a transmembrane type chondromodulin —I— related angiogenesis inhibitor, in mouse eyes. Invest Ophthalmol Vis Sci 44, 1814 -23 (2003))、 6時間後にマトリゲル上で毛細管様の管構造を形成した(図 5g)。毛細 管様の構造は、弁間質細胞条件培地 (CM) (05i)によってヒト冠動脈血管内皮細胞 を処置した後では、対照細胞(図 5g)または CM処置 NIH3T3細胞(図 5h)と比較して 顕著ではなくなつた。
[0149] (RNA干渉)
ラット chm- 1 (chm- 1- siRNA、 5'- AACCUCCUGGCAGUAGAUGUA- 3'Z配列番号: 10)または GL3ルシフェラーゼ(GL3- luc- siRNA、 5し CUUACGCUGAGUACUUCGA -3'Z配列番号: 11)に対する小さい干渉 RNA (siRNA)二本鎖を、オリゴフ クタミン( インビトロジェン(Invitrogen) )を用いて 90%コンフルエンスまで増殖させた弁間質細 胞にトランスフエタトした。トランスフエクシヨンの 3日後、細胞からの条件培地を実験に 用いた。
[0150] 弁間質細胞を chm-I特異的な siRNAによって処置すると、 chm-I転写物のレベルは 有意に減少した (データ示さず)。 siRNA処置弁間質細胞力 の CMと共に培養したヒ ト冠動脈血管内皮細胞は、毛細管様構造の形成能を再度獲得した (図 5j)。毛細管 様構造の全長は、 scion画像コンピュータープログラムを用いて評価した(図 5k)。 [0151] (遊走アツセィ)
浸潤アツセィは、既知の方法で(Porter, K.E. et al. Simvastatin inhibits human sap henous vein neointima formation via inhibition of smooth muscle cell proliferation an d migration. J Vase Surg 36, 150-7 (2002))、 24ゥエルプレートに孔径 8 μ mのフィルタ ー揷入物を有する改変ボイデンチヤンバー(ベタトンディッキンソンラブウェア、フラン クリンレークス、ニュージャージー州)において行った。すなわち、 rhVEGF- Aを EBM2 に 20 ng/mlで溶解して、ボイデン装置の下室に入れた。 NIH3T3または弁間質細胞( 1 X 105個/ゥエル)を下室に加えて 48時間後にヒト冠動脈血管内皮細胞 (5 X 104個/ゥ エル)を上室に播種した。 16時間インキュベートした後、フィルターの上面に結合した まま残って 、る細胞を綿棒の先端で採取して、フィルターの下面に存在する細胞を 光学顕微鏡を用いて計数した。アツセィを 5回行い、結果を平均した。
[0152] その結果、改変ボイデンチヤンバーを用いることによって、 ChM-Iがヒト冠動脈血管 内皮細胞の遊走能も阻害することが明らかとなった。弁間質細胞と同時培養したヒト 冠動脈血管内皮細胞は、 NIH3T3細胞と比較して膜の下面への移動能を喪失した( 図 51m)。弁間質細胞を chm-Iに特異的な siRNAによって処置すると、ヒト冠動脈血管 内皮細胞の遊走能は部分的に回復した(図 5o)。これらの結果は、 ChM-Iが心臓弁 膜における化学遊走物質阻害剤として重要な役割を有することを示唆している。
[0153] (ァネキシン V- FITCZヨウ化プロビジゥムアツセィ)
弁間質細胞培養上清で処置後のヒト冠動脈血管内皮細胞の形態変化は、一部ァ ポトーシスが関与していることを示唆している。 ChM-Iがアポトーシスを誘導する可能 性を調べるために、ァネキシン VZヨウ化プロビジゥムアツセィ (バイオビジョンインク、 マウンテンビュー、カリフォルニア州)を用いてヒト冠動脈血管内皮細胞におけるアポ トーシスに及ぼす弁間質細胞力 の CMの影響を決定した。処置後、細胞をァネキシ ン V-FITCによって標識して、無作為に選択した視野 6個を、ニコン Diaphot顕微鏡( 励起 488 應、放射 530 應)を用いて蛍光細胞に関して計数した。
[0154] 結果、ァネキシン V-FITCに関する染色が陽性であれば、アポトーシスの誘導を示 し(図 5rt)、蛍光細胞はヨウ化プロビジゥム陽性 (初期アポトーシス標識パターン)およ び陰性 (後期アポトーシス標識パターン)の双方であった。 NIH3T3細胞力もの CMに よって処置したヒト冠動脈血管内皮細胞は、ァネキシン V-FITC陰性であった(図 5qr ) oァネキシン V-FITC陽性蛍光細胞を高倍率で計数した(図 5u)。これらの知見は、 VICs-由来 ChM-Iが内皮の浸潤および血管の形成力 心臓弁膜を保護することを示 唆している。
[0155] (統計分析)
値は平均値士 SEMで表す。二つの平均値を比較する場合、統計学的有意性は、 対応のな!、スチューデント t-検定を用いて評価した。三つより多 、群のあ 、だの多数 の比較は、 ANOVAを用いて行った。 p< 0.05の値は有意であると見なされた。
[0156] 〔実施例 12〕 chm-I遺伝子の破壊による心臓弁膜における VEGF-A発現、血管新生 、肥厚、および石灰化の誘導
インビボでの ChM-Iの機能を解明するために、 chm-r/_マウスの心臓弁膜を調べた 。 8週齢では、 chm-r/_と野生型マウスとのあいだに組織学的な差を認めな力 た。老 齢になると(90.2±7.4週齢)、(;1^1-1+/+マゥスの心臓弁膜は、年齢をマッチさせた野生 型マウスの場合より有意に肥厚し、弁間質細胞の密度はよりまばらであった(図 6)。 c hm- Γ/_マウスの心臓弁膜は、病的状態 (ChM- 1陰性および VEGF- Α陽性)に一致す る ChM- 1および VEGF- A発現パターンを示し、新規の毛細管様構造が存在した。毛 細管様構造を形成する細胞は、それらが抗 vWF抗体陽性であったことから内皮細胞 であった。 chm-r/_マウスの心臓弁膜におけるカルシウム沈着は、フォンコッサ染色( データ示さず)によって検出し、炎症細胞の存在は、 MAC-1陽性染色によって確認 した。新しい血管形成および炎症細胞の浸潤は、加齢 chm-r/_マウスの心臓弁膜に おける硬化プロセスを示して 、る。年齢をマッチさせた野生型マウスはこれらの特徴 を示さなカゝつた。 HE染色ならびに VEGF-Aおよび v-WFに関する免疫染色から、年齢 をマッチさせた chm-I+/+マウスの心臓弁膜では血管が非常に少ないことが示された。 大動脈弁の三つの小葉における毛細管構造を、 HE染色後 20 m毎の切片に関して 計数した。 chm- 1チマウス(n=7)における毛細管の数は、 chm- 1+/+マウス(n=7)より 16 .7倍多力つた。
[0157] 〔実施例 13〕 心エコー法によって検出された chm-r/_マウスにおける初期相大動脈 狭窄の発生 経胸部心エコー法を、 10- MHz直線アレイ変換器を備えた Sonos 1000心エコー装 置(ヒューレットパッカード(Hewlett-Packard) )によって実施した。心臓は、大動脈弁 レベルでの長軸および短軸方向の視野において二次元(2D)およびカラードップラ 一モードで撮像した。
[0158] 心エコー法により、わず力な音響陰影と共に振幅する明るいエコー源性大動脈弁 が明らかとなり、心臓弁膜内の肥厚または石灰化を示唆した(図 7)。カラードップラー 試験は、 AVに対して遠位のモザイク状の乱れた噴流を示した。 chm-I+/+マウスの心臓 には、エコー源性の物体または乱れた噴流を認めな力つた。 chm-I+/+および chm-r マウスのあいだでは、左心室の直径、左心室壁の厚み、僧帽弁 (MV)の明度、または MV領域の乱流に有意差を認めな力つた。
産業上の利用可能性
[0159] 心疾患の臨床での重要性およびこの分野における集中的な病理分析にも関わら ず、心臓弁膜の変性の基礎となるメカニズムに関してはこれまでのところほとんど分か つていなかった。本発明者らは、心臓弁膜における無血管性の維持により心臓弁膜 症を防ぐ働きを有する抗血管新生因子の ChM-Iについて、その作用機序を証明する ことに成功した。
[0160] 具体的には、本発明者らによって以下の知見が示された。
(i) ChM-Iは、 E9.5での房室間***および心臓流出路、 E10.0での心室筋、および後 期胚形成力も成体までの心臓弁膜において、組織特異的に発現する;
(ii) ApoE— /_マウス、ならびに感染性心膜炎、リウマチ性心臓弁膜症、およびァテロー ム性動脈硬化症患者では、 ChM-I発現は顕著に減少した力 VEGF-A発現は増強 する;
(iii) VICsによって分泌された ChM-Iは、インビトロでのヒト冠動脈血管内皮細胞による 血管新生の抑制に重要な役割を有する;
(iv)心臓弁膜症を示す毛細管様構造および炎症細胞の数は、加齢 chm-r/_マウスで 増強する;
(V)加齢 chm-r/_マウスの経胸部領域の心エコー分析によって、大動脈弁の肥厚およ び石灰化ならびに大動脈弁からの乱流が示され、大動脈弁狭窄における初期変化 が示唆される、等。
[0161] ChM- 1は、ヒト (Hiraki, Y. et al. Eur J Biochem 260, 869-78 1999)、ゥサギ (Shukun ami, C. & Hiraki, Y. Biochem Biophys Res Commun 249, 885—90 1998.)、マウス(Sh ukunami, C. et al. Int J Dev Biol 43, 39—49 1999)、 -ヮトリ(Shukunami, C. et al. FE BS Lett 456, 165-70 1999. Dietz, U.H. et al. Dev. Dyn. 216, 233-43 1999)、ゥシ( Hiraki, Y. et al. Biochem Biophys Res Commun 175, 971—977 1991)、およびゼブラ フィッシュ(Sachdev, S.W. et al. Mech Dev 105, 157-62 2001)を含む様々な種の軟 骨、眼、および胸腺にて発現している。本願によって、正常および病的状態の心臓弁 膜における ChM-Iの発現にっ 、て調べ、それによつて正常な心臓弁膜では一生を通 して ChM-I発現が持続するが、疾患を有する心臓弁膜では発現が持続しな!ヽこと力 S 判明した。この知見は、 ChM-Iが心臓弁膜機能の維持に重要な役割を有することを 強く示唆するものである。
[0162] Faribaは、コラーゲン XVIII型の内部断片に由来する抗血管新生因子であるエンド スタチンの発現が、病的状態では大動脈弁において増強されるが正常な状態では 増強されないことを報告した(Chalajour, F. et al. Exp. Cell Res. 298, 455-64 2004) 。本願は、血管新生を抑制する生理的条件で心臓弁膜において発現された抗血管 新生因子に関する最初の報告である。心臓弁膜は、動的な小室ポンプにおける流動 調節組織であることから、それらは機械的ストレスおよび弁膜の外層に存在する内皮 細胞層の損傷を受ける。
[0163] 本発明者らによって、 ChM-Iが機械的損傷に起因する炎症および脈管形成から心 臓弁膜を保護する因子として同定されたことは、非常に有益なことである。 ChM-Iが 心臓弁膜症に対する保護因子として機能するという仮説を確認するために、本発明 者らは、疾患状態、インビトロモデル、およびインビボ心臓弁膜症モデルとしての dim -Γ/_マウスの心臓弁膜における ChM-I発現プロフィールの分析を行った。本発明者ら は、 ChM-I発現が疾患弁膜では劇的にダウンレギュレートした力 これと対照的に VE GF- Aは顕著にアップレギュレートすることを示した。 ChM- 1および VEGF- Aに関する この発現パターンは、いくつかのメカニズムによって説明することができる。
[0164] 第一に、上流のシグナルは血管新生および抗血管新生因子のあいだの遺伝子ス イッチを制御する可能性がある。このメカニズムを支持して、 Takedaは、 cbfal マウス について、軟骨における軟骨内骨化を媒介する重要な転写因子である Cbfalが、軟 骨細胞における血管新生刺激 (VEGF-Aのアップレギュレーション)と血管新生の抑 制(ChM-Iのダウンレギュレーション)のあいだで協調して発現変化が誘導されること を示した(Takeda, S. et al. Genes Dev. 15, 467-81 2001)。 Cbfal発現は、 Rajamanna nによって、ァテローム性動脈硬化症の大動脈弁においてアップレギュレートされるこ とが示された(Akiyama, H. et al. Proc Natl Acad Sci U S A 101, 6502-7 2004) 0疾 患を有する弁でアップレギュレートした Cbfalが、 ChM- 1および VEGF- Aの発現を誘導 する可能性はある。
[0165] 第二に、リウマチ熱または感染性心内膜炎における心臓弁膜の急性炎症、高血圧 症における二尖大動脈弁のような弁膜に対する過度の機械的ストレス、およびァテロ ーム性動脈硬化症にお 、て認められる慢性炎症は、弁間質細胞の喪失を誘導する 可能性がある。弁間質細胞の減少によって、疾患を有する弁膜によって産生される C hM-Iレベルが減少する可能性があり、次いで、 VEGF-A発現細胞の浸潤を引き起こ す可能性がある。同様に、上記の二つのメカニズムの組み合わせは、 ChM-Iのダウン レギュレーションおよび VEGF-A発現のアップレギュレーションを説明できる可能性が ある。
[0166] 心臓弁膜のウェスタンブロット分析によって 25 kDaタンパク質が同定され、 ChM-Iの 成熟したグリコシルイ匕分泌型が軟骨にぉ 、て認められた。インビトロ免疫染色実験は 、心臓弁膜によって発現された ChM-Iが弁間質細胞においてマトリックスタンパク質 に結合したタンパク質の成熟分泌型であることを強く示唆する。
[0167] 弁間質細胞の培養上清は、インビトロでヒト冠動脈血管内皮細胞の遊走および管 腔形態形成を抑制して、これらの細胞のアポトーシスを誘発した。弁間質細胞の培養 上清の抗血管新生活性力 SChm-I特異的 siRNAによって抑制されることは、 ChM-Iが 心臓弁膜における重要な抗血管新生因子であることを示唆して 、る。この抗血管新 生活性の不完全な抑制は、弁間質細胞が、眼において同定された因子と類似の他 の抗血管新生因子を分泌している可能性を示唆している。眼では、 ChM-Iの他にも、 抗血管新生因子であるエンドスタチンおよび PEDF (色素上皮由来因子)が発現され ている(Dawson, D.W. et al. Science 285, 245-8 1999)。
[0168] 血管新生および炎症細胞の浸潤が、加齢 chm-r/_マウスの心臓弁膜で認められた 。心エコー法を用いることによって、これらのマウスに石灰化および肥厚した大動脈 弁が存在することが証明された。大動脈弁に対して遠位のモザイク状の乱れた乱流 が検出されたことと共に、これらの知見は、 chm-r/_マウスが大動脈弁狭窄に関連した 初期変化を示すという証拠を提供する。マクロファージの浸潤、 VEGF-A陽性細胞お よび石灰化を含むァテローム性動脈硬化症に関連した活性の病的変化は、抗血管 新生因子の保護作用が存在しない場合の通常の機械的ストレスに起因する心臓弁 膜の変化を示している。
[0169] Nakamichiは、 chm-Iチマウスが 12週齢で骨塩密度の有意な増強を有することを発 見し、また、本発明によって、加齢 chm-r/_マウスにおける大動脈弁の顕著な血管新 生が確認された。 Dochevaは、最近、 chm-Iとその相同体であるテノモジュリンの双方 を欠損するマウスが、酸素誘導網膜症後の血管新生に変化を示さな力つたことを報 告した(Docheva, D. et al. Mol Cell Biol 25, 699-705 2005)。心臓弁膜と網膜とのこ の違いは、心臓弁膜には存在しない網膜における抗血管新生因子の存在によって 説明される可能性がある。若い成体ノックアウトマウスの心臓弁膜において認められ た無血管性は、加齢 chm-r/_マウスにおける血管新生力 心臓において損傷した血 管が発達した結果ではなくて、年齢および炎症によって誘導された弁膜における退 縮性変化によることを示唆している。
[0170] これまでの研究から、 (i)血管新生因子の発現および脈管新生が心臓弁膜症 (VH D)において起こること(Soini, Y. et al. Hum Pathol 34, 756-63 2003, Chalajour, F. e t al. Exp Cell Res 298, 455—64 2004, Shworak, N.W. Curr Opin Cardiol 19, 140—6 2 004, Mohler, E.R., 3rd et al. Circulation 103, 1522-8 2001, Mazzone, A. et al. J A m Coll Cardiol 43, 1670-6 2004)、(ii)ァテローム斑の進行が血管新生に関連するこ と(O'Brien, K.D. et al. Circulation 93, 672-82 1996,Moulton, K.S. et al. Proc Natl Acad Sci U S A 100, 4736-41 2003)、(iii)変性心臓弁膜症の初期病変力 ァテロー ム性動脈硬化症と何らかの類似性を有する活動型炎症プロセスであること (Mohler, E.R., 3rd et al. Circulation 103, 1522—8 2001, Otto, CM. et al. Circulation 90, 844 -53 1994, O'Brien, K.D. et al. Circulation 92, 2163-8 1995, Agmon, Y. et al. J Am Coll Cardiol 38, 827-34 2001, O'Brien, K.D. et al. Circulation 106, 2224-30 2002, Pohle, K. et al. Mayo Clin Proc 79, 1242-6 2004)、および(iv)心臓弁膜症における 内皮細胞が血管新生能の有意な増加を示すこと(Chalajour, F. et al. Exp Cell Res 2 98, 455-64 2004)が示された。これらの知見は、心臓弁膜症における心臓弁膜の血 管新生によって、硬変原性の変化が進行することを示唆している。
[0171] 併せて考慮すると、本願によって得られた知見は、抗血管新生因子が、血管新生 および異栄養変化の発生力 心臓弁膜を保護するという機序を強くサポートするもの と言える。
[0172] さらに本発明者らによって提供される人工心臓弁は、弁組織中への血管新生が抑 制され、長期間の機能維持に寄与するものと考えられる。

Claims

請求の範囲
[1] 以下の (a)〜 (c)の 、ずれかを有効成分として含有する、血管新生抑制剤。
(a)コンドロモジュリン- 1タンパク質
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列において 1若しくは複数のアミノ酸 が欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン-〖タンパク質と 機能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
[2] 心臓弁膜において血管新生抑制作用を有することを特徴とする、請求項 1に記載 の血管新生抑制剤。
[3] 網膜において血管新生抑制作用を有することを特徴とする、請求項 1に記載の血 管新生抑制剤。
[4] 以下の (a)〜 (c)の 、ずれかを有効成分として含有する、血管新生関連疾患治療 剤。
(a)コンドロモジュリン- 1タンパク質
(b)コンドロモジュリン- 1タンパク質のアミノ酸配列において 1若しくは複数のアミノ酸 が欠失、置換または付加されたアミノ酸配列を含む、コンドロモジュリン-〖タンパク質と 機能的に同等なタンパク質
(c)前記 (a)または (b)に記載のタンパク質をコードする DNA
[5] コンドロモジュリン- 1タンパク質の発現活性ィ匕物質もしくは機能活性ィ匕物質を有効 成分として含有する、血管新生関連疾患治療剤。
[6] 血管新生関連疾患が、心臓弁膜の血管新生に起因する疾患である、請求項 4また は 5に記載の血管新生関連疾患治療剤。
[7] 血管新生関連疾患が、網膜の血管新生に起因する疾患である、請求項 4または 5 に記載の血管新生関連疾患治療剤。
[8] 血管新生関連疾患が、心臓弁膜症、感染性心内膜炎、リウマチ性心疾患、ァテロ ーム性動脈硬化症、および網膜症力もなる群より選択される疾患である、請求項 4ま たは 5に記載の血管新生関連疾患治療剤。
[9] コンドロモジュリン- 1タンパク質力 配列番号: 2に記載のアミノ酸配列力もなるタンパ ク質である、請求項 1〜8のいずれかに記載の薬剤。
[10] コンドロモジュリン- 1遺伝子の発現が人為的に抑制されていることを特徴とする、遺 伝子ノックアウト非ヒト動物。
[11] 心臓の弁に異常を有することを特徴とする、請求項 10に記載の遺伝子ノックアウト 非ヒト動物。
[12] 血管新生関連疾患治療剤のスクリーニング用である、請求項 10または 11に記載の 遺伝子ノックアウト非ヒト動物。
[13] コンドロモジュリン- 1タンパク質の発現もしくは機能を活性化させる化合物を選択す ることを特徴とする、血管新生関連疾患治療剤のスクリーニング方法。
[14] 以下の工程 (a)〜 (c)を含む、血管新生関連疾患治療剤のスクリーニング方法。
(a)コンドロモジュリン- 1タンパク質を発現する細胞に、被検化合物を接触させる工程
(b)前記細胞におけるコンドロモジュリン- 1タンパク質の発現量を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、発現量を上昇させる 化合物を選択する工程
[15] 以下の工程 (a)〜 (c)を含む、血管新生関連疾患治療剤のスクリーニング方法。
(a)コンドロモジュリン- 1遺伝子の転写調節領域とレポーター遺伝子とが機能的に結 合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触させる 工程
(b)該レポーター遺伝子の発現レベルを測定する工程
(c)被検化合物の非存在下にお ヽて測定した場合と比較して、該発現レベルを上昇 させる化合物を選択する工程
[16] 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング方法。
(a)コンドロモジュリン- 1タンパク質、または該タンパク質を発現する細胞もしくは細胞 抽出液と、被検化合物を接触させる工程
(b)前記タンパク質の活性を測定する工程
(c)被検化合物の非存在下において測定した場合と比較して、前記タンパク質の活 性を上昇させる化合物を選択する工程
[17] 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング方法。 (a)請求項 10〜 12のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物 を投与する工程
(b)前記遺伝子ノックアウト非ヒト動物におけるコンドロモジュリン- 1タンパク質の発現 量もしくは活性を測定する工程
(c)被検化合物を投与しな 、場合と比較して、コンドロモジュリン- 1タンパク質の発現 量もしくは活性を上昇させる化合物を選択する工程
[18] 前記非ヒト動物の心臓弁膜または眼内における前記タンパク質の発現量もしくは活 性を測定することを特徴とする、請求項 17に記載のスクリーニング方法。
[19] 以下の (a)〜 (c)の工程を含む、血管新生関連疾患治療剤のスクリーニング方法。
(a)請求項 10〜 12のいずれかに記載の遺伝子ノックアウト非ヒト動物に被検化合物 を投与する工程
(b)前記遺伝子ノックアウト非ヒト動物における心臓弁膜もしくは網膜を観察する工程
(c)被検化合物を投与しな!ヽ場合と比較して、心臓弁膜もしくは網膜を正常化させる 化合物を選択する工程
[20] 血管新生関連疾患が、心臓弁膜症、感染性心内膜炎、リウマチ性心疾患、ァテロ ーム性動脈硬化症、または網膜症である、請求項 13〜19のいずれかに記載のスクリ 一ユング方法。
[21] 以下の (a)および (b)を主要な構成成分とすることを特徴とする、人工心臓弁。
(a)コンドロモジュリン- 1遺伝子を発現する細胞
(b)脱細胞弁あるいは生体内溶解型高分子化合物
[22] 以下の工程 (a)〜(c)によって製造される、人工心臓弁。
(a)コンドロモジュリン- 1遺伝子を発現する細胞を培養および増殖させる工程
(b)前記 (a)の細胞を、脱細胞弁あるいは生体内溶解型高分子化合物の表面に播 種する工程
(c)コンドロモジュリン- 1遺伝子を発現する細胞が、前記 (b)の脱細胞弁あるいは生体 内溶解型高分子化合物の有する間隙を満たすまで培養する工程
PCT/JP2006/318406 2005-09-22 2006-09-15 コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤 WO2007034753A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007536473A JPWO2007034753A1 (ja) 2005-09-22 2006-09-15 コンドロモジュリン−iを有効成分とする血管新生関連疾患治療剤
US12/067,593 US20100145441A1 (en) 2005-09-22 2006-09-15 Therapeutic agents for angiogenesis-related diseases comprising chondromodulin-i as active ingredient
EP06810198A EP1946765A4 (en) 2005-09-22 2006-09-15 MEANS FOR THE TREATMENT OF ANGIOGENESIS-RELATED DISEASES WITH CHROMDROMODULIN-I AS AN ACTIVE AGENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005275479 2005-09-22
JP2005-275479 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034753A1 true WO2007034753A1 (ja) 2007-03-29

Family

ID=37888798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318406 WO2007034753A1 (ja) 2005-09-22 2006-09-15 コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤

Country Status (4)

Country Link
US (1) US20100145441A1 (ja)
EP (1) EP1946765A4 (ja)
JP (1) JPWO2007034753A1 (ja)
WO (1) WO2007034753A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126169A1 (ja) * 2009-04-30 2010-11-04 協和発酵キリン株式会社 Alk1阻害剤を有効成分とする血管障害を抑制するための医薬組成物
US10047155B2 (en) 2015-06-05 2018-08-14 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (BMP9) and methods therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023557A1 (fr) * 1999-09-29 2001-04-05 Teijin Limited Polypeptides et genes les codant
JP2001299363A (ja) * 1999-12-27 2001-10-30 Takeda Chem Ind Ltd 新規タンパク質およびそのdna
JP2004123722A (ja) * 2002-08-16 2004-04-22 Anges Mg Inc コンドロモジュリン−i遺伝子からなる医薬

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444157A (en) * 1990-08-23 1995-08-22 Mitsubishi Kasei Corporation Chondromodulin-I protein
JP3585180B2 (ja) * 1993-05-11 2004-11-04 三菱化学株式会社 新規なヒトタンパク質およびそれをコードする遺伝子
AU2225401A (en) * 1999-12-27 2001-07-09 Takeda Chemical Industries Ltd. Novel protein and dna thereof
ATE535541T1 (de) * 2003-10-21 2011-12-15 Teijin Pharma Ltd Angiogenese-inhibitor, herstellungsverfahren und verwendung davon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023557A1 (fr) * 1999-09-29 2001-04-05 Teijin Limited Polypeptides et genes les codant
JP2001299363A (ja) * 1999-12-27 2001-10-30 Takeda Chem Ind Ltd 新規タンパク質およびそのdna
JP2004123722A (ja) * 2002-08-16 2004-04-22 Anges Mg Inc コンドロモジュリン−i遺伝子からなる医薬

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HIRAKI Y. ET AL.: "Kekkan Shinnyu Shoheki to shiteno Chondromodulin-I", IGAKU NO AYUMI, vol. 194, no. 10, 2000, pages 775 - 780, XP003010834 *
NAKAMICHI Y. ET AL.: "Chondromodulin I is a bone remodeling factor", MOLECULAR AND CELLULAR BIOLOGY, vol. 23, no. 2, 2003, pages 636 - 644, XP002411353 *
OSHIMA Y. ET AL.: "Expression and localization of tenomodulin, a transmembrane type chondromodulin-I-related angiogenesis inhibitor, in mouse eyes", INVESTIGATIVE OPHTHALMOLOGY & VIRUSAL SCIENCE, vol. 44, no. 5, 2003, pages 1814 - 1823, XP001181222 *
See also references of EP1946765A4 *
SOINI Y. ET AL.: "Angiogenesis is involved in the pathogenesis of nonrheumatic aortic valve stenosis", HUMAN PATHOLOGY, vol. 34, no. 8, 2003, pages 756 - 763, XP003010835 *
YOSHIOKA M. ET AL.: "Kekkan Shisei Yokusei Inshi Chondromodulin-I no Shinzo ni Okeru Hatsugen", THE JOURNAL OF JAPANESE COLLEGE OF ANGIOLOGY, vol. 44, no. 9, 2004, pages 442, XP003010833 *
YOSHIOKA M.: "Chondromodulin-I no Hito Shinzoben ni Okeru Hatsugen", ENSHO SAISEI, vol. 25, no. 4, July 2005 (2005-07-01), pages 332, XP003010832 *
YOSHIOKA M.: "Shinzoben ni Oite Chondromoduin-I ha Kekkan Shinsei o Sogai shi Benkino o Tamotsu", ENSHO SAISEI, vol. 25, no. 4, July 2005 (2005-07-01), pages 331, XP003010831 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126169A1 (ja) * 2009-04-30 2010-11-04 協和発酵キリン株式会社 Alk1阻害剤を有効成分とする血管障害を抑制するための医薬組成物
US10047155B2 (en) 2015-06-05 2018-08-14 Novartis Ag Antibodies targeting bone morphogenetic protein 9 (BMP9) and methods therefor

Also Published As

Publication number Publication date
EP1946765A4 (en) 2009-10-21
US20100145441A1 (en) 2010-06-10
JPWO2007034753A1 (ja) 2009-03-26
EP1946765A1 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
Sen et al. Periostin is induced in glomerular injury and expressed de novo in interstitial renal fibrosis
Kovacic-Milivojevic et al. Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy
JP2013121357A (ja) タンパク質、それをコードする核酸および関連する使用方法
KR20100099249A (ko) 세포막 재봉합을 조절하기 위한 조성물 및 방법
KR100553300B1 (ko) 혈관신생 및 심혈관형성의 촉진 또는 억제 방법
Sasse et al. Perlecan is critical for heart stability
US20200345851A1 (en) Epicardial-derived paracrine factors for repairing cardiac tissue
JP4411280B2 (ja) 骨及び/又は関節疾患関連遺伝子
JP4792582B2 (ja) 心肥大及びそれに起因する心疾患を予防または治療するための医薬組成物
US20130011373A1 (en) Side population cells in cardiac repair
EP1693451B1 (en) Method of growing myocardial cells
WO2007034753A1 (ja) コンドロモジュリン-iを有効成分とする血管新生関連疾患治療剤
Chen et al. Myocardin marks the earliest cardiac gene expression and plays an important role in heart development
JP2004534742A (ja) Unc−51様キナーゼ、roma1、または2tmタンパク質による細胞小器官代謝の修飾
JP2013530683A (ja) 血管新生能力の評価方法
JPWO2009044787A1 (ja) テノモジュリンを有効成分とする腱断裂性疾患治療剤
JP4375960B2 (ja) 生体代謝の修飾
WO2003025579A2 (en) Use of heart fatty acid binding protein
KR100678523B1 (ko) Pro840 폴리펩티드 아고니스트 또는 길항제의 확인 방법
Lemanski et al. Cellular, molecular, and developmental studies on heart development in normal and cardiac mutant axolotls, Ambystoma mexicanum
JP2009242388A (ja) 心臓特異的キナーゼの心不全診断および治療への応用
JPWO2005082412A1 (ja) 癌の治療および予防薬
Sharma Characterization of novel extracellular matrix (ECM) proteins (MGP and Lumican) and their implications in vascular development, angiogenesis, and cancer
JP2004147642A (ja) 新規タンパク質およびその用途
JP2002355065A (ja) 心臓および骨格筋で高発現する新規遺伝子およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536473

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12067593

Country of ref document: US