WO2007032191A1 - 作業機械用ブレード装置およびこれが搭載された作業機械 - Google Patents

作業機械用ブレード装置およびこれが搭載された作業機械 Download PDF

Info

Publication number
WO2007032191A1
WO2007032191A1 PCT/JP2006/316627 JP2006316627W WO2007032191A1 WO 2007032191 A1 WO2007032191 A1 WO 2007032191A1 JP 2006316627 W JP2006316627 W JP 2006316627W WO 2007032191 A1 WO2007032191 A1 WO 2007032191A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
front surface
surface portion
cutting edge
central
Prior art date
Application number
PCT/JP2006/316627
Other languages
English (en)
French (fr)
Inventor
Norihisa Matsumoto
Tatsuo Wada
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005267098A external-priority patent/JP2007077681A/ja
Priority claimed from JP2005268443A external-priority patent/JP2007077707A/ja
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to CN2006800324413A priority Critical patent/CN101258290B/zh
Priority to EP06796740A priority patent/EP1925752A4/en
Priority to US12/065,959 priority patent/US7654336B2/en
Priority to BRPI0615725-4A priority patent/BRPI0615725A2/pt
Publication of WO2007032191A1 publication Critical patent/WO2007032191A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/80Component parts
    • E02F3/815Blades; Levelling or scarifying tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/76Graders, bulldozers, or the like with scraper plates or ploughshare-like elements; Levelling scarifying devices
    • E02F3/7609Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers
    • E02F3/7618Scraper blade mounted forwardly of the tractor on a pair of pivoting arms which are linked to the sides of the tractor, e.g. bulldozers with the scraper blade adjustable relative to the pivoting arms about a horizontal axis

Definitions

  • Blade device for work machine and work machine equipped with the same
  • the present invention relates to a blade mounted on various work vehicles such as a bulldozer and a wheel dozer, and is particularly suitable for work such as excavation, earthing, and leveling, and has excellent work efficiency and fuel efficiency.
  • the present invention relates to a blade device for a work machine that realizes improvements in economy and economy, and a work machine equipped with the blade device.
  • Patent Document 1 As an example of a blade device for increasing the amount of work of this type of work vehicle, for example, the present applicant has previously proposed a completely new blade structure that has not existed in the past by WO2004Z044337A1 (Patent Document 1). .
  • the blade disclosed in Patent Document 1 has a central front surface portion, a connecting front surface portion that is bent and expanded from the left and right end portions while expanding backward, and is bent from the connecting front surface portion and extends while expanding forward. And an end front surface portion.
  • the central front surface portion has a required blade width that extends to the left and right perpendicular to the excavation direction, and has a first cutting edge at the lower end, and the connection front surface portion and the end front surface portion also It has second and third cutting edges at its lower end. Further, the crossing line of the connecting front surface portion and the front surface portion of the end portion and the intersection of the blade edges of the second cutting blade and the third cutting blade are in a retracted position from the cutting edge of the first cutting blade in a top view. is there.
  • the front surfaces of the central front surface portion, the connecting front surface portion, and the end front surface portion have a special shape formed into a concave curved surface that continues from the upper end to the lower end.
  • Examples of work machines to which the blades of Patent Document 1 are applied include construction / civil engineering machines, and typical construction's civil engineering machines include work machines such as bulldozers, wheel dozers, and motor graders. Can be mentioned.
  • the “front view”, “top view”, and “side view” of the blade according to the present invention used in this specification are the front view when the blade is grounded to the ground surface at a cutting edge angle with high excavation efficiency. This refers to a top view and a side view.
  • the blade has a central front surface portion that constitutes a part of the front surface of the blade, and left and right front end portions that project to expand forward at both left and right end portions of the blade.
  • This is the same as the conventional blade.
  • a connecting front part is disposed between the central front part and the front end part of the end, and the left and right connecting front parts are extended and extended rearward at the left and right end parts of the central front part.
  • the left and right end front portions are greatly different from the conventional blades in that they extend from the rear end edge of the connecting front portion further forward.
  • Patent Document 2 a blade device having a shape very similar to the blade shape of the present invention is disclosed in WO 93 Z22512 (Patent Document 2).
  • the blade device described in Patent Document 2 is applied to a compression work vehicle for landfill that compresses while spreading garbage in a garbage disposal site or the like.
  • the blade like the conventional U-shaped blade, is a single piece that connects between the left and right end blades and the left and right end blades that project from the left and right ends of the blade in the direction of the vehicle.
  • steel wheels are employed in the traveling device of the compression work vehicle, and dust and the like are compressed by the wheels.
  • the posture when the lower edge of the end blade portion and the central blade portion of the blade device are aligned with the running surface of the wheel in a straight line is the first position, and the posture when the blade is raised and tilted forward
  • the position is in the second position, when the vehicle is in the first position, the dirt is spread horizontally by running the compaction vehicle.
  • the amount of dust sent to the space between the left and right wheels of the vehicle is controlled by the protruding part at the center of the blade, that is, the height of the dust sent to the space is limited.
  • the amount of dust and soil is controlled by sending the wheel to the compression area through the gap between the lower edge of the end blade portion and the central blade portion and the running surface.
  • the blade device disclosed in Patent Document 2 is formed between the left and right wheels, which are compression members, while controlling the function of diffusing dust and the like and the amount of processing for compressing the dust and the like.
  • the function to limit the amount of dust that is sent into the space so that an excessive amount of dust enters the space and does not damage the lower surface of the car body. Is. Therefore, when comparing the blade shape of the present invention, which is functionally different from the blade shape disclosed in this publication, it can be understood that the following points are greatly different.
  • the blade proposed in Patent Document 1 has a force that substantially matches the first cutting edge of the central front portion and the tip of the third cutting edge of the front end portion of the end, and the third cutting blade is slightly retracted. I try to do that.
  • the first cutting edge excavates the earth and sand prior to the third cutting edge arranged at the lower end of the end front part, the excavation force by the connecting front part and the end front part is reduced and excavation is easy.
  • the tip of the third cutting edge may slightly protrude in front of the first cutting edge. In this case, the tip of the third cutting edge is excavated prior to the first cutting edge, but the amount of protrusion is very small. Since the excavation force is extremely small compared to the excavation force of the first cutting edge, it is not affected by the protrusion.
  • the traction force acting on the third cutting blade is greatly reduced as compared with the conventional blade, and the resistance force such as excavation resistance and soil transport resistance is reduced.
  • the cutting edge acts substantially uniformly over the third cutting edge, and the traction force effectively acts on both the first cutting edge and the third cutting edge.
  • the cut soil and the soil excavated by the first cutting edge smoothly join through the second cutting edge.
  • the intersecting region sandwiched between the connecting front surface portion and the front surface portion of the end portion becomes a soil accumulation portion, it is possible to efficiently carry a large amount of soil.
  • These synergistic effects can reduce the resistance force and greatly increase the amount of soil per traction force.
  • the horsepower consumed during excavation can be significantly reduced, and the maximum excavation / carrying capacity can be obtained with a minimum amount of energy in a short time, thus improving the fuel efficiency of the work machine.
  • the cost per earthwork can be reduced significantly.
  • the blade is less in number but less in excavation efficiency than the conventional semi-U type blade with the same blade capacity. May appear. Furthermore, especially when turning and turning during soiling, the soil loaded on the blade in a short time during turning travels down from the central front part to the outer connecting front part, and from the front part of the end. When everything fell off in an instant, a situation occurred.
  • Patent Literature l Publication of WO 2004Z044337 A1
  • Patent Document 2 Publication of WO 93Z22512
  • the present invention has been made in view of such circumstances, specifically, the reduction of the resistance force of the above-mentioned Patent Document 1, a significant increase in the amount of soil per traction force, Assuming that the maximum excavation and the maximum amount of soil can be obtained with a minimum amount of energy in a short period of time while consuming a significant reduction in horsepower, the conventional semi-U
  • the main purpose is to provide a blade device for a work machine that can reliably obtain excavation efficiency exceeding the type blade, and that does not fall over when turning and turning during soil transfer. With a purpose.
  • Other objects will be clarified by the best embodiments of the invention described below.
  • the above object is a blade device mounted on various work machines, which is the basic configuration of the present invention, and the blade is bent and connected to the central front surface portion and the left and right end portions thereof.
  • a front end portion that is further connected via a front face portion, and the central front portion has a blade width W1 with a lower end extending right and left perpendicular to the excavation direction and a first end at the lower end.
  • the connecting front part and the end front part have second and third cutting edges at the lower ends thereof, and a cross line between the connecting front part and the end front part;
  • the intersections of the cutting edges of the second and third cutting edges are in a rearward position with respect to the cutting edge of the first cutting edge in a top view, and the front surfaces of the central front surface portion, the connection front surface portion, and the end front surface portion.
  • the upper end force is applied to the lower end to form a continuous concave curved surface with a radius R2, and each cutting edge comes into contact with the lower end of each front surface portion.
  • the blade device may have a retaining plate made of a sheet metal material extending in a tangential direction from the upper end of the central front surface portion.
  • the height H is the soil from the cutting edge of the first cutting blade. It becomes the height to the upper end of the stop plate.
  • the blade width of the central front surface portion determined by the blade capacity is W1
  • the cutting edges of the second and third cutting edges parallel to the extension line of the first cutting edge are parallel to each other.
  • Wt and Wl may be actual values (mm) or respective reference values (no unit).
  • the crossing angle 0 at which the center front part and the end front part cross each other on the extension line of each cutting edge is set to 0 ° ⁇ 25 °.
  • the left and right connecting front portions are arranged so as to extend rearwardly within the range of the rear bending angle ⁇ continuously from the central front portion in a top view, and
  • the front end portion of the end portion is also preferably arranged so as to expand forward with the crossing angle ⁇ toward the front continuously from the connecting front surface portion in a top view. That is, the connecting front surface portion and the end front surface portion are continuous in a V-shape or U-shape, and further, the second cutting blade and the third cutting blade are V-shaped or U-shaped. It's all together.
  • At least the first cutting edge of the central front portion is substantially equal to the blade width W1 at the lower end of the central front portion, and the central front portion is directed from the lower end to the upper end. It is preferable that the curved surface is recessed rearward and gradually widened.
  • the blade width W1 at the lower end of the central front portion is larger than the inner width between the left and right traveling devices, and the blade width W1 at the lower end of the central front portion is a distance between the centers of the left and right traveling devices. It should be approximately equal to the width.
  • the second cutting edge is disposed slightly inclined left and right with respect to the first cutting edge, and the third cutting edge is slightly above right and left with respect to the second cutting edge. It is preferable to be inclined. It is desirable that the blade front surfaces of the connection front surface portion and the end front surface portion have the same curved surface as the central front surface portion.
  • the blade device for a work machine of the present invention includes a central front surface portion, left and right connection front surface portions, and left and right end surface front portions.
  • the central front surface portion has a blade width W1 having a lower end extending right and left perpendicular to the excavation direction, and further includes a first cutting edge extending from the lower end along the tangential direction of the arc surface.
  • the connecting front portion is bent and connected to the left and right end portions of the central front portion, and has a second cutting edge extending from the lower end thereof along the tangential direction of the arc surface.
  • the left and right end front parts are further provided on the left and right sides via a connecting front part, and have a third cutting edge extending from the lower end along the tangential direction of the arc surface.
  • the blade device for a work machine of the present invention includes a central front surface portion, left and right connection front surface portions, and left and right end surface front portions.
  • the central front surface portion has a blade width W1 having a lower end extending right and left perpendicular to the excavation direction, and further includes a first cutting edge extending from the lower end along the tangential direction of the arc surface.
  • the connecting front portion is bent and connected to the left and right end portions of the central front portion, and has a second cutting edge extending from the lower end thereof along the tangential direction of the arc surface.
  • the left and right end front parts are further provided on the left and right sides via a connecting front part, and have a third cutting edge extending from the lower end along the tangential direction of the arc surface.
  • each front surface of the central front surface portion, the connection front surface portion, and the end front surface portion has a circular arc surface having a radius R2 from the upper end to the lower end.
  • at least the upper end force of the central front part has a sheet metal material extending in a substantially tangential direction, and when the cutting edge force of the first cutting edge is set to H, the radius to R2 Satisfies the following formula (I).
  • the external shape of the soil on the blade in the present invention is the same as that of the blade disclosed in Patent Document 1, the upper end force of the central front portion, and the forward end of the central portion beyond the angle of repose. The shape is greatly raised.
  • the appearance shape of the soil is a straight flat surface with an inclination angle approximately equal to the angle of repose from the upper end force to the lower end of the blade. That is, the present invention can also obtain the maximum amount of excavated soil with the minimum amount of energy in a short time, as in Patent Document 1, and the fuel efficiency of the work machine is remarkably improved and the amount per earthwork is increased. Cost reduction is realized.
  • the front surfaces of the blades of the central front surface portion, the connection front surface portion, and the end front surface portion are inclined rearward as in the prior art.
  • the soil is stuck on the blade and slides down. This is due to the special blade shape of the present invention.
  • the cutting edge angle ⁇ of the cutting edge is set to the same cutting edge angle as that in Patent Document 1, and the receding angle ⁇ is set to 0 °.
  • the blade edge angle ⁇ is set in the range of 40 ° to 55 ° as in the conventional patent document 1 where the force of 50 ° or more is smaller than that of the conventional one, and at the same time, the backward tilting posture of the entire blade is maintained. If the cutting edge angle OC is made smaller than this, the excavation efficiency will be greatly reduced. However, simply by reducing the cutting edge angle ⁇ , the soil accumulated on the blade is moved upward by the newly excavated soil. The force that pushes up was weakened, and especially during excavation, it was found that the soil stuck to the blade, and the soil could not be removed immediately and the resistance of the soil increased and the desired load could not be obtained.
  • the blade edge angle ⁇ is set to 40 ° to 55 °
  • the radius of curvature of the arc surface is the above-mentioned arc on the front surface of the conventional blade having the same blade capacity. It was much longer than the radius of the surface. That is, this radius of curvature is normally a force that is set to a length that is at least 0.5 times the blade height ⁇ ⁇ ⁇ calculated as blade capacity force and shorter than 0.7 times.
  • the backward receding angle 0 is desirably in the range of 0 ° to 15 °.
  • the excavation efficiency is determined by the blade width Wl at the center front face, the cutting edge at the connecting front face, and the cutting edge at the end front face.
  • the distance between the crossing point and the extension line of the first cutting edge of the central front part (hereinafter referred to as the retraction amount).
  • the rear bending angle ⁇ also has an upper limit value and a lower limit value, and the lower limit value defines the lower limit value (%) of the excavation efficiency.
  • the lower limit value for reliably exceeding the excavation efficiency of the semi-U blade Is the value of
  • the upper limit value of the rear bending angle ⁇ is an upper limit value for reliably preventing the falling of the soil due to the turning and turning during the carrying.
  • the optimum value of the rear bending angle ⁇ corresponding to the blade capacity may be selected from the above numerical range. it can.
  • the blade width W1 of the central front portion is preferably set to be approximately equal to the distance (gauge width) between the center lines of the left and right traveling devices of the work vehicle.
  • the total width W of the blade is determined by the blade capacity, and the blade width W1 of the central front portion equal to the gauge width WG is determined in the same manner.
  • the entire blade width, gauge width WG, blade width W1 Is also the length changed by the blade capacity.
  • the actual total blade width of the central front portion when it is smaller than 45 m3 is shorter than the blade width W, and when it is larger than 45 m3, The actual blade width is longer than the blade width W.
  • the value Wt of the relative retraction amount to the intersection of the cutting edges of the connecting front face and the end front face with respect to the cutting edge of the central front face is the actual blade obtained as described above. It is determined by multiplying the width W1 by the constant obtained by the test, 0.665Z10.
  • the full width W of the blade is determined by selecting the rear bending angle ⁇ that has the best excavation efficiency and can withstand pushing from the rear bending angle ⁇ . Therefore, the dimension W4 between the lower end bending point of the center front surface portion and the connecting front surface portion and the outer end surface of the end front surface portion is inevitably determined in top view.
  • the crossing angle ⁇ between the extension line of the cutting edge at the center front surface portion and the extended portion of the blade edge at the end front surface portion is not yet determined.
  • This crossing angle ⁇ has a very important meaning together with the rear bending angle ⁇ because it forms a soil reservoir formed on the front surface of the bent portion between the connecting front surface portion and the end portion front surface portion. In addition, it affects the magnitude of the excavation force at the front end, which varies with the soil quality at the work site.
  • the crossing angle between the connecting front surface portion and the end front surface portion in the earth accumulation portion can be calculated by 180 ° ⁇ ( ⁇ + ⁇ ). In order to maintain this soil holding, ⁇ should be as large as possible.
  • 0 is infinitely close to 0 °.
  • this crossing angle ⁇ force is exceeded, the load concentrates on the edge of the third cutting edge on the front face of the end, and an excessive load is applied during excavation, and the load is not evenly applied to the entire cutting edge and the cutting edge breaks. It may be accompanied by.
  • the blade device of the present invention often has a leveling function. At that point, the crossing angle 0 approaches 0 ° infinitely. It may be necessary to Taking these into account, it is desirable that the crossing angle ⁇ is greater than 0 ° and not more than 25 °.
  • the blade width at the lower end of the central front surface portion is set to be larger than the inner width between the left and right traveling devices when the leveling work by forward traveling is performed. This is the minimum necessary width that requires smooth ground leveling.
  • the width of the blade center front at the lower end of the center front is equal to the gauge width, which is the distance between the centers of the left and right traveling devices, the best balance can be obtained in terms of digging IJ 'Soil' leveling function.
  • the main work of the above-mentioned work machines includes work such as excavation, soil transfer, and leveling, and it is important to equip these machines with blades having functions that enable different work. It is.
  • the blade of the present invention has a leveling function together with excavation 'soil.
  • this type of leveling work requires two points: leveling the ground while excavating the ground and carrying it forward, filling the hole in the middle, and leveling the ground levelly.
  • leveling function increases.
  • the central front surface portion when viewed from above, the central front surface portion often projects forward from the left and right connecting front surface portions and end front surface portions.
  • connection front part and the end front part in the present invention also have a leveling function, most of the functions largely depend on the central front part. Therefore, even in the present invention, it is possible to increase the blade width in the central front surface portion.
  • the tip of the third cutting edge on the front surface of the end portion does not necessarily exist behind the extension line of the first cutting edge of the central front surface portion, and is ahead of the extension line. It also includes overhanging. That is, the force that the tip of the third cutting edge of the front surface of the end portion is arranged in the vicinity of the extended line of the cutting edge of the first cutting edge, and the first cutting edge is the third like the blade of Patent Document 1. Soil is excavated at almost the same time as the cutting edge, and the soil excavated by the cutting blade on the front face of the end and the soil excavated by the first cutting edge on the central front face are smoothly joined via the connecting front face. As a result, the amount of soil transport can be greatly increased. Also in the present invention, the center front The wider the blade width of the surface portion, the smaller the width occupied by the connecting front surface portion and the front surface portion of the end portion as viewed from above.
  • an effective excavation per blade width of the first cutting edge of the central front portion is set by setting the blade width of the central front portion substantially equal to the gauge width that is the distance between the centers of the left and right traveling devices. Increased force will enable efficient excavation and soiling, as well as leveling of the ground.
  • the left and right connecting front surface portions are continuously and rearwardly extended at a predetermined angle with respect to the central front surface portion, and are arranged at the lower end. It has 2 cutting edges, and the left and right end front parts are connected to the connecting front part in front. A third cutting edge is provided at the lower end. Even in this respect, V is different from the blade disclosed in Patent Document 2 above.
  • the posture when maximizing the excavation performance of the blade usually in the front view when the blade is grounded to the ground with the edge angle, the central front portion and the left and right connecting front portions
  • the amount of soil accumulated between the connecting front surface portions and the front surfaces of the end portions arranged on the left and right sides is reduced. It can only be confirmed.
  • the amount of soil deposited on the center front surface increases the amount of soil deposited on the center front surface by adding the amount of soil deposited between the connecting front surface portion and the end front surface portion as described above. . Therefore, when the operator can confirm the diagonally upward force of the sediment deposited between the connecting front surface and the front surface of the end, the amount of soil deposited on the central front surface exceeds a predetermined amount. This increases the complexity of blade operation.
  • the blade when the blade exhibits the maximum excavation performance, normally, when viewed from the front when the blade contacts the ground with a blade edge angle, 2
  • the cutting edge is arranged with a slight downward inclination with respect to the central first cutting edge
  • the third cutting edge is arranged with a slight upward inclination with respect to the second cutting edge.
  • the central front surface portion, the connecting front surface portion, and the end front surface portion can be formed independently, and the front surface portions can be continuously formed by welding. By appropriately setting the size, thickness, etc., it is possible to replace a part with a forged product.
  • the width of the cutting edge at the lower end of the front surface of the end portion is relatively determined with respect to the width of the cutting blade of the connecting front surface portion, it is difficult to uniformly determine the width of the cutting edge at the lower end of the central front surface portion. It is preferable to set the width substantially equal to the width of the cutting blade at the lower end of the connecting front surface portion, which is smaller than the width of the blade.
  • an intersecting angle at which the center front surface portion and the end front surface portion intersect with each other on an extension line of each cutting edge is set to 0 ° to 25 °.
  • this crossing angle is 0 force 18 ° to 25 °, it is possible to secure an optimum amount of soil to be loaded on the blade front surface of the connecting front surface portion and the end front surface portion.
  • the resistance of the soil moving from the front part to the connecting front part can be reduced, and if it is smaller than 18 °, the side cut function is lost.
  • the function of the front part of the end is not limited to the side cut function.
  • the crossing angle ⁇ is set to 0 ° as much as possible. It may be close to.
  • the present invention provides the minimum digging energy 1 and the maximum amount of soil when the cutting edge angle between the front and the ground when the cutting edge of each cutting edge is on the ground is 40 ° to 55 °. Is effectively obtained.
  • the guard member according to the first invention is a guard member provided at an upper end portion of a work machine blade mounted on the work machine, and is for the work machine at the upper end portion of the work machine blade in a side view.
  • a ground contact surface that slopes forward with respect to the extension line on the front of the blade It is.
  • a guard member provided at the upper end portion of a work machine blade mounted on the front side of a work machine such as a bulldozer, the attachment angle of the earth contact surface in a side view is determined by the blade for the work machine. It is attached so as to incline forward from the extension line of the front surface of the work machine blade at the upper end.
  • the guard member is a member that is attached to the upper end of the blade for the work machine for the purpose of increasing the amount of soil, and includes, for example, a plate material and a plurality of ribs attached to the back side thereof. It is constituted by.
  • the earth contact surface of the guard member means a surface that comes into contact with the earth and sand in order to push the earth and sand forward during soil carrying work.
  • the earth contact surface is on the extension line of the front surface of the work machine blade at the upper end of the work machine blade to which the guard member is attached in a side view. It is attached so that it inclines along or behind the extension line. For this reason, when the earth and sand collected in front of the work machine blade during the soil carrying work reaches the position of the guard member at the upper end portion of the work machine blade, there is a risk of spilling over the guard member. In particular, when soil is carried out with the blade angle of the work machine inclined backward, the angle of the earthing surface of the guard member is further inclined backward, which increases the amount of soil spillage in the rear. Resulting in.
  • the guard member attached to the upper end portion of the work machine blade is an extension of the front surface of the work machine blade at the upper end portion of the work machine blade in a side view. It is attached so as to incline forward from the line.
  • a guard member according to a second invention is the guard member according to the first invention, and is a guard part.
  • the forward tilt angle of the material with respect to the extension line on the front surface of the work machine blade is greater than 0 degrees and less than 50 degrees.
  • the guard member is attached to the work machine blade so that the forward tilt angle of the earth contact surface of the guard member at the upper end of the work machine blade is within the predetermined range.
  • the earthing surface of the guard member can be tilted slightly forward with respect to the extension line at the upper end of the front surface of the work machine blade. It was set to reduce the amount of spillage of soil in the rear during soil transfer work.
  • the upper limit value of 50 degrees is set because the forward tilt angle becomes too large, preventing the flow of pushing the earth and sand in front of the work machine blades forward during soil carrying work. Is.
  • the inclination angle of the guard member with respect to the work machine blade described above is effective in that the flow of pushing back forward is effectively reduced while effectively reducing the amount of spillage of soil at the upper part of the work machine blade. 5-30 degrees is more preferable
  • a guard member according to a third aspect of the present invention is the guard member according to the first or second aspect of the present invention, wherein openings for visually recognizing forward are formed at both ends of the soil contact surface.
  • an opening for visually confirming the front of the work machine blade of the work machine is provided.
  • an operator visually recognizes the state of earth and sand in front of a work machine blade, it is known that the operator sees the vicinity of both ends of the work machine blade.
  • a work machine blade according to a fourth invention is a guard member according to any one of the first to third inventions, a mounting portion attached to the work machine, and a contact of the guard member. And a front portion having a continuous surface with the soil surface.
  • the invention is specified as a blade for a work machine in which the above-described guard member is provided at the upper end.
  • the guard member may be attached to the upper end portion of the working machine blade by welding, or may be formed by extending the upper end portion of the working machine blade.
  • a work machine blade according to a fifth invention is the work machine blade according to the fourth invention, wherein recesses are formed at both ends of the front portion.
  • the concave portions are provided on both sides of the front portion of the work machine blade.
  • the area of the ground contact portion at the tip of the work machine blade can be reduced, and work can be performed efficiently with a low ground resistance.
  • the earth and sand can be stored in the recessed portion, the amount of soil can be increased as compared with the conventional blade for work machines.
  • FIG. 1 is a front perspective view showing an overall schematic configuration of a typical blade device applied to the present invention.
  • FIG. 2 is a front view of the blade device.
  • FIG. 3 is a rear view of the blade device.
  • FIG. 4 is a side view showing the entire work machine for explaining the raising and lowering operation of the blade of the blade device.
  • FIG. 5 is a top view showing a configuration example of a main part of the work machine.
  • FIG. 6 is an explanatory diagram showing the relationship of the crossing angle between the curved surface and the cutting edge on the front surface of the blade portion.
  • ⁇ 7 Vertical sectional view showing the backward tilting posture of the blade when a small-diameter arc surface is formed at the same height and the same excavation angle (cutting edge angle).
  • ⁇ 8 A longitudinal sectional view showing the backward tilting posture of the blade when a large-diameter arc surface is formed at the same height and the same excavation angle (cutting edge angle).
  • FIG. 10 Side view of the blade during excavation and the soil before the blade.
  • FIG. 12 A correlation diagram showing the excavation efficiency of the blade with respect to the blade width of the central front portion based on the retreat amount of the intersection and the backward bending angle.
  • FIG. 13] (a) to (c) are explanatory views showing the relationship between the blade widths of the connecting front face and the front face of the end accompanying changes in the rear bending angle and the crossing angle.
  • FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI in FIG.
  • FIG. 17 A perspective view of the left integrated forged portion of the blade device as viewed from the left side of the back surface.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX in FIG.
  • FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG.
  • FIG. 24 is a perspective view of a part of the back support member of the sheet metal part as viewed from the left front side.
  • FIG. 26 A perspective view of a part of still another back support member of the sheet metal part, in which a front force is also seen.
  • FIG. 27 A perspective view showing a blade to which a guard member according to another embodiment of the present invention is attached.
  • FIG. 28 is a front view showing the blade of FIG.
  • FIG. 29 is a plan view showing the blade of FIG. 27.
  • FIG. 30 is a side view of the blade of FIG.
  • FIG. 31 is a cross-sectional view taken along line A—A in FIG.
  • FIG.32 A cross-sectional view taken along line D-D in Fig. 28
  • the blade device of the present invention can be used as a work attachment equipped in various work machines.
  • Examples of the working machine applied to the present invention include a construction / civil engineering machine.
  • a force described by taking a bulldozer (not shown) as an example of a construction / civil engineering machine.
  • the present invention is not limited to this and includes, for example, work machines such as a wheel dozer and a motor grader.
  • a blade device 10 As shown in FIGS. 1 to 5, a blade device 10 according to a typical structural example of the present invention includes a blade 11 having a curved shape that is curved in a concave shape up and down.
  • a part is provided with an integrated forging structure and the other part is a sheet metal structure.
  • the present invention naturally includes the case where the entire blade proposed in Patent Document 1 is made of sheet metal.
  • the front portion of the blade device 10 of the present invention is based on the basic shape of the front portion of the blade device disclosed in Patent Document 1.
  • the specific operational effects based on the basic shape are equivalent to the operational effects described in Document 1 as described above. Accordingly, the description of these functions and effects will be limited to a simple description, and a detailed description will be given focusing on the specific structure provided by the present invention and the corresponding specific functions and effects.
  • the blade 11 of the blade device 10 according to the present invention has the basic structure shown in FIG. That is, the blade 11 has a curved surface whose front surface is curved concavely up and down.
  • the blade 11 is configured to include a central front surface portion 12, a pair of left and right connection front surface portions 13, and a pair of left and right end front surface portions 14.
  • the central front surface portion 12 has a linear first cutting edge 15 at the lower end.
  • the pair of left and right connecting front surface portions 13 have a second cutting edge 16 that extends from the first cutting edge 15 and extends in the rearward direction with a predetermined backward bending angle ⁇ .
  • the pair of left and right end front parts 14 are the second cutting edge 16
  • the third cutting edge 17 is linearly connected to the outer end of the first cutting edge 15 and extends in the forward direction while expanding with an extension line of the first cutting edge 15 and a predetermined crossing angle ⁇ .
  • the top end of the third cutting edge 17 of the end portion front surface portion 14 is connected to the side edge of the central front surface portion 12 and the first cutting edge as viewed from above.
  • the blade 15 is arranged almost on the extended line.
  • the tip of the third cutting edge 17 may be retracted from the extension line, or may slightly protrude forward from the extension line.
  • the connecting front part 13 is bent and extended while expanding the rear side of the central front part 12 continuously to the left and right edges, and the side edge forces on the outer sides of the left and right connecting front parts 13 are also forward. It only needs to be bent and connected continuously while expanding.
  • intersection line of the connecting front surface portion 13 and the end front surface portion 14 and the intersection C of the second cutting edge 16 and the third cutting edge 17 are more than the left and right side edges of the central front surface portion 12 and the first cutting edge 15. Must be in the rear position.
  • the present embodiment is different from Patent Document 1 in that the present embodiment is such that the left and right end regions B of the central front portion 12, the connecting front portion 13 and the end front portion 14 are different. It is the point that it is manufactured integrally including each back part.
  • the central main area A of the central front surface portion 12 is configured such that a front plate 106 and a back support member 107 described later are formed separately and are integrally formed by welding.
  • at least the central main region A of the front plate 106 of the central front surface portion 12 according to the present embodiment is made of a sheet metal having a rolled steel force, and a part of the back support member 107 corresponding to the front plate 106 has a part. Sheet metal is used.
  • a specially manufactured forged back support member that is manufactured separately from the other integrally formed parts is used.
  • the trapezoidal sheet metal member 18 including the forged portion is centered in the side view by welding or the like along the upper edge of the central front portion. It is extended as a retaining plate in the tangential direction of the front surface.
  • the rectangular portion at the center of the sheet metal member 18 has a flat earth contact portion, and the left and right triangular portions are lattice portions having a plurality of lattices 18a. This lattice portion is provided for the operator to visually recognize the amount of soil in front of the left and right ends of the blade device when working on the work machine.
  • the sheet metal member 18 is attached in the tangential direction of the center front portion in a side view, but may be inclined forward or backward from the tangential direction in the same side view.
  • the height H of the blade device is the sheet metal material 1 When 8 is installed in the tangential direction of the center front part in the side view or tilted forward from the tangential direction, the sheet metal material 18 The height of is not included.
  • the central front surface portion 12 having a substantially inverted trapezoidal overall shape in front view is divided into a rectangular divided central portion 12a of the central main region A and its left and right sides. It is divided into three parts, ie, a substantially inverted triangular divided end portion 12b which is an end region B.
  • a connecting front surface portion 13 is connected to the divided end portion 12b with a required rear bending angle ⁇ , which will be described later, and expanded in a V-shape or U-shape, and is further connected to the connecting front surface portion 13.
  • the split end portion 12b, the connecting front surface portion 13 and the end front surface portion of the central front surface portion 12 having left and right bent surfaces and upper and lower curved surfaces on the front surface. 14 is integrally formed including the back support member 107 to form the integrally formed portion 101.
  • the rectangular divided central portion 12a of the central front surface portion 12 is constituted by a sheet metal portion 105 having a sheet metal force as a front plate 106 which is a main component.
  • the rectangular divided central portion 12a includes the front plate 106 and a back support member 107 described later.
  • the front plate 106 is made of a sheet metal having a horizontally long rectangular shape when viewed from the front shown in FIG. 2, and has a substantially inverted trapezoidal shape as described above. This is a plate material that constitutes the front surface of the central rectangular portion when cut vertically to the front, that is, the rectangular divided central portion 12a.
  • the left and right inverted triangular portions, which are the remaining cut portions, are integrally formed together with the connecting front surface portion 13 and the end front surface portion 14 including the back surface supporting portions to constitute the divided end portion 12b. .
  • a region including the front plate 106 in the central front portion 12 made of sheet metal, the sheet metal member 18 extended to the upper end edge thereof, and the back support member 107 is referred to as a sheet metal portion 105.
  • An area of the other blade parts excluding the sheet metal part 105 including the back face part 103 to be described later is called an integrally forged part 101.
  • the central front surface portion 12 is divided into the rectangular division central portion 12a. If the triangulation end 12b is divided into three on the vertical line, the front surface of the rectangular division center 12a and the triangulation end 12b is formed into a smoothly continuous curved surface, and at the same time, the connecting line is viewed from the front. The vertical straight line along the curved surface in FIG. For this reason, it is possible to employ automatic welding using a welding robot that does not rely on manpower during the assembly process.
  • the blade device 10 is disposed at the front of the bulldozer 1, and the front ends of a pair of lift frame 3, tilt cylinder 4, lift cylinder 6, and strut arm 7 are pivotally attached.
  • the pair of lift frames 3 are pivotally supported at the center of the crawler type traveling device 2 and extend forward.
  • the tilt cylinder 4 is pivotally supported at the center of the lift frame 3 and extends forward.
  • the lift cylinder 6 has one end of the cylinder body pivoted on the side wall of the engine room 5 arranged in the front of the cab!
  • the base end of the strut arm 7 is pivotally supported by the lift frame 3 and extends obliquely toward the center of the rear surface of the blade 11 when viewed from above.
  • a bracket for supporting a lift frame or the like is usually provided on the rear support member of the blade so as to protrude rearward by welding.
  • the outer lower end corner force of the back surface portion 103 is also applied rearward to the lift frame.
  • the left and right first brackets 25a for supporting the front end of 3 are integrally formed and protruded.
  • a second bracket 25b for supporting the front end portion of the (hydraulic) tilt cylinder 4 is formed in a body and protrudes rearward from the upper portion of the bracket 25a of the back surface portion 103.
  • the front surface of the connecting front surface portion 13 has a substantially triangular or trapezoidal shape that is gradually widened from the upper end toward the lower direction, contrary to the central front surface portion 12.
  • one side edge thereof is integrated with the connection side edge of the central front surface portion 12 and is bent in the vertical direction.
  • the front surface of the end front portion 14 has the same width from the top to the bottom in a front view, and is a vertically long, substantially curved curved shape having the same curvature as the central front portion 12 and the connecting front portion 13. It is formed in a rectangular shape.
  • the extended line at the lower end of the central front surface portion 12 substantially coincides with the tip position of the end front surface portion 14.
  • the overall shape of the blade 11 is a rectangular shape with a long left and right width when viewed from the front. As shown in FIG. 1, these front portions 12, 13, and 14 are connected in a V shape in which the connecting front portion 13 is widened in the rearward direction at both ends of the central front portion 12, and the left and right end front portions 14 are connected.
  • the outer end force of each connecting front part 13 is also widened in the same V shape toward the front.
  • a force indicating a V-shape is not necessarily limited to this shape.
  • a U-shape having a wide open end may be used.
  • the front view means that the cutting edge angle oc with respect to the ground as shown in FIG. 4 (in this embodiment, the excavation angle ⁇ is LV, etc.) has the highest excavation efficiency! When looking at the front.
  • the first cutting edge 15, the second cutting edge 16, and the third cutting edge 17 are also made of a strong material such as boron steel that has excellent wear resistance and is not easily damaged.
  • the arrangement of the first cutting edge 15, the second cutting edge 16, and the third cutting edge 17 as described above is preferred.
  • the first cutting edge 15 precedes the second and third cutting edges 16, 17. And then drilled. Since the excavation by the first cutting edge 15 digs up the surrounding ground in advance, the substantial excavation force required for the second and third cutting edges 16, 17 is obtained by the excavation force of the first cutting edge 15. Can be smaller than the first cutting edge 15 at the same time.
  • the portion corresponding to the first to third cutting edges 15 to 17 of the lower end plate portion of the blade 11 includes a plurality of vertical plate ribs 26, which reinforce the cutting edges 15 to 17, as shown in FIG. ⁇ ⁇ ⁇ ⁇ 26 extends in the front-rear direction.
  • the front ends of the vertical plate ribs 26,..., And the rear surfaces of the first to third cutting blades 15 to 17 are screwed together.
  • the receding angle ⁇ which is the difference between the extension line of the front surface of the lower end of the blade and the ground (excavation angle) ⁇ , is set to 10 ° as in Patent Document 1 above, and the curvature radius R1 of the blade front surface was also the same as in Reference 1.
  • the blade angle ex of the blade described in Patent Document 1 is 46 °
  • the excavation angle j8 is 36 °
  • the receding angle ⁇ is 10 °.
  • the excavation angle of a semi-U blade is 52 °.
  • the radius of curvature R1 is set to (0.5 to 0.7) X blade height ⁇ as in the conventional blade of this type. In this way, when the same numerical value as the conventional one is adopted, the soil on the blade during the excavation is broken due to the complicated blade shape unique to the present invention. There is a risk that the excavation efficiency and the amount of soil will be significantly reduced.
  • the receding angle ⁇ was set to 0 ° without changing the blade edge angle a and the curvature radius R1 of the blade front surface. That is, the excavation angle described in Patent Document 1 is adjusted to the cutting edge angle, and the blade height and the radius of curvature of the entire blade surface are not changed, and are fixed to the lower ends of the central front surface portion 12, the connecting front surface portion 13, and the end front surface portion 14.
  • the tips of the first to third cutting blades 15 to 17 provided are projected along the extended surfaces of the front portions 12 to 14 without causing the front portions 12 to 14 to retreat.
  • the rearward inclination of the entire blade decreases, the front part rises, and the soil does not move up the blade front during excavation, greatly reducing the amount of soil carried.
  • FIG. 7 shows that the first cutting edge 15 is extended in the tangential direction of the lower end of the front circular arc surface of the central front surface portion 12 having the same radius of curvature R1 as before, with the receding angle ⁇ being 0 ° as described above.
  • FIG. 8 shows a backward tilting posture of the blade 11 according to the present embodiment, and the front surface portions 12 to 14 are set so that the receding angle ⁇ of the first to third cutting edges 15 to 17 is 0 ° as in FIG.
  • the lower end force is also extended forward.
  • the curvature radius R2 of the front circular arc surface of each of the front surface portions 12 to 14 is set to R2 larger than the curvature radius R1 of the circular arc surface shown in FIG. 7 to 1.0) Set based on XH.
  • the cutting edge force of the first cutting edge 15 is also assumed to have the same height H to the blade upper end.
  • the blade with the smaller radius of curvature shown in Fig. 7 is equivalent to the increase in the radius of curvature R2 of the arc surface. Rather, the inclination of the blade 11 according to the present embodiment increases thereafter.
  • the amount of soil carried on the blade is greatly increased over the conventional blade having a general shape, and the soil is smoothly dropped from the front surface of the blade during soil removal, and the soil is stuck to the front surface of the blade. None remains, and excavation efficiency has improved.
  • the blade height ⁇ is determined by the blade capacity Q.
  • j is a coefficient based on the arc surface
  • H is the blade height
  • W is the full blade width
  • W1 is the center front blade width
  • W2 is the connecting front blade width
  • W3 is the end front blade width
  • Wt is the distance to the back intersection of the connecting front part and the front part of the end
  • is the bending angle of the connecting front part with respect to the central front part
  • is the extension line of the cutting edge of the central front part and the cutting edge of the front part of the end Is the crossing angle.
  • FIG. 9 and 10 are explanatory diagrams showing the calculation principle of the blade capacity Q of the blade device 10 according to the present invention.
  • FIG. 9 is a projection view of the blade 11 of the present invention and the soil carried forward of the blade
  • FIG. 10 is a side view of the blade 11 of the present invention and the soil carried forward of the blade.
  • the inclination angle (repose angle) of the soil surface is around 30 °.
  • SAE standard J1265MAR88 uses 26.5 ° (the tangent of the repose angle is 0.5). It stipulates.
  • the blade capacity Q takes into account the volume Q1 obtained by multiplying the projected area of the blade 11 by the blade height, and the amount of soil flowing in the left and right direction as well as the blade front end force.
  • the volume is the sum of the projected area of the obtained soil and the volume Q2 multiplied by the blade height ⁇ .
  • the first half of the above formula (IV) is the volume Q1 deposited on the blade, and the second half is the volume Q2 of the soil in front of the blade. From this formula (I V), if the blade capacity is determined, the blade height ⁇ ⁇ ⁇ is also determined.
  • FIG. 11 is an explanatory diagram schematically showing a change in slip resistance between the soil deposited on the ground surface in front of the blade based on the blade posture.
  • a solid line indicates the blade device 10 according to the present invention
  • a virtual line indicates a conventional blade.
  • the radius of curvature of the front curved surfaces of both blades is Rl for the conventional blade
  • R2 for the blade of the present invention is greater than R1
  • the front surface of the soil deposited on the surface has a certain inclination angle according to the soil quality.
  • the blade edge angle ⁇ and the receding angle ⁇ (0 ° in Fig. 11) are kept constant, and the curvature radius of the blade front surface is increased to increase the amount of soil carried on the blade. It is possible to reduce the contact area between the soil and the ground surface.
  • the amount of soil deposited on the blade means the amount of soil existing on the surface side of the blade in the vertical plane force including the contact line between the blade and the ground surface.
  • the contact length L1 of the sedimentary soil of the blade device 10 in the present embodiment is reduced by about 10% with respect to the contact length L2 of the normal sedimentary soil deposited on the surface in front of the blade edge at this time.
  • the amount of soil deposited on the surface is greatly reduced.
  • the sediment in front of the blade parts 12 to 14 can be loaded in large quantities on the front surface of each blade, and the so-called holding amount increases.
  • the soil resistance and the like can be greatly reduced, so that the horsepower consumed per traction force can be greatly reduced, and good fuel efficiency can be obtained.
  • the receding angle ⁇ is set to 0 °, which is the smallest, it is easy to attach the cutting blade.
  • the curved surface is the same as the conventional one and the cutting edge angle ⁇ is not changed, the rising of the blade 11 becomes too large, and the amount of soil carried down becomes violent. Therefore, as described above, the radius of curvature of the arc surface of the blade front surface is changed from normal R1 to R2 larger than that. As a result, it is possible to increase the backward tilting posture of the blade, and at the same time, it is possible to reduce the soil carrying resistance and to make the excavation amount and the soil carrying amount equal to or more than usual.
  • the end force of the arc surface at the upper end of 11 is also upwardly attached with a trapezoidal sheet metal material 18 tilted forward in the range of more than 0 and 50 degrees or less, and a large number of lattices 18a aligned in the left and right direction at both ends Is formed.
  • a trapezoidal sheet metal material 18 tilted forward in the range of more than 0 and 50 degrees or less, and a large number of lattices 18a aligned in the left and right direction at both ends Is formed.
  • the excavated soil is not pressed against the blade front surface, so that the soil is easily removed during the soil removal, and the soil removal performance is improved.
  • the cutting edge angle ⁇ formed by the front surface and the ground when the cutting edges of the cutting blades 15 to 17 are on the ground is approximately 40 ° to 55 °.
  • the excavation efficiency varies depending on the cutting edge angle oc.
  • the lower end blade width Wl of the central front surface portion 12 and the second cutting edge 16 with respect to the first cutting edge 15 are the same.
  • the rear bending angle ⁇ and the distance between the cutting edge C of the connecting front part 13 and the end front part 14 that intersects the extension line of the first cutting edge 15 and the extension line (hereinafter referred to as the retraction amount) ) Wt has a big influence on it.
  • FIG. 12 shows the results of the test.
  • the excavation efficiency corresponding to the change in the blade width W1 at the lower end of the central front surface portion 12 is the rear bending angle ⁇ that bends behind the second cutting edge 16 with respect to the first cutting edge 15, and the It can be seen that this is determined by the correlation between the extension line of the first cutting edge 15 and the retraction amount Wt between the intersections C of the cutting edges (16, 17) of the second and third cutting edges.
  • the force based on the semi-U type blade having the shape closest to the blade device of the present invention can be said to have a similar correlation in effect for other models.
  • the horizontal axis in the figure shows the blade width W1 as the gage width of the vehicle body (for bulldozers, and the length between crawler centers) of 10 (no unit), and the change in length with reference to this Is shown.
  • the vertical axis of the figure shows the change in excavation efficiency.
  • the excavation efficiency of the semi-U type blade attached to the standard gauge width is assumed to be 100%.
  • 6 shows the change in excavation efficiency (%) by the blade of the present invention when the overall width is equal.
  • a group of curves indicated by a one-dot chain line shows a change in excavation efficiency according to a change in blade capacity when the rear bending angle ⁇ is changed.
  • the straight line group indicated by the broken line is obtained when the retraction amount Wt between the extension line of the first cutting edge 15 and the intersection C between the cutting edges of the second and third cutting edges 16, 17 is changed. Shows the change in excavation efficiency as the blade width W1 changes.
  • Wt is a unitless coefficient
  • a value obtained by multiplying this by a conversion coefficient is an actual value.
  • the conversion factor may be a value determined by the body side or blade device force other than the gauge width.
  • the blade device 10 of the present invention having the blade width W1 of the central front surface portion 12 determined by the desired blade capacity, a group of dashed lines and a group of dashed lines on the vertical line passing through the blade width W1. If the backward bending angle ⁇ and the retraction amount Wt corresponding to each straight line when the crossing is adopted, a desired excavation efficiency can be obtained. Based on this figure, when the blade width W1 of the central front face 12 is 10 (the center of the horizontal axis), for example, excavation efficiency exceeding the semi-U type blade with the same full blade width is realized. If the above-mentioned backward bending angle ⁇ is approximately 16.2 ° and the retraction amount Wt is 0.65, excavation efficiency equivalent to that of a semi-U type blade can be obtained.
  • the blade shape is the most efficient and has less soil fall when pushed. can get.
  • when the blade width Wl is set to the reference value of 10, if the backward bending angle ⁇ is set to 20 ° and the retraction amount Wt is set to 0.8, the excavation efficiency is 122% and the width is large. To increase.
  • the upper limit of the rear bending angle ⁇ and the retraction amount Wt cannot be determined only by the correlation diagram of FIG.
  • the soil loaded on the front surface of the blade 11 within several tens of seconds depends on the turning radius. It flows down from part 14 and the soil is instantly zero.
  • the backward bending angle ⁇ is one of the major causes. In other words, if the backward bending angle ⁇ is set to 30 ° or more, the soil will slip.
  • the value of the retraction amount Wt is larger than the value obtained by multiplying the blade width W1 at the lower end of the central front surface portion 12 predetermined by the blade capacity by 0.65Z10 and 16 °.
  • the rear bending angle ⁇ which gives the highest excavation efficiency within the range of 30 ° or less and above, is determined from the correlation diagram prepared in advance.
  • the overall blade width W and the blade width W1 of the central front surface portion 12 are determined by the blade capacity and the size of the vehicle. For this reason, the linear distance connecting the front end of the connecting front surface portion 13 and the front end of the end front surface portion 14 that intersects and moves backward is inevitably determined. However, although the linear distance connecting the front end of the connecting front part 13 and the front end of the end front part 14 is determined, any of the blade widths W2, W3 at the lower end of the connecting front part 13 and the end front part 14 is determined. It is not possible to decide uniformly whether to make it longer.
  • the length ratios of the respective blade widths W2, W3 at the lower ends of the connecting front surface portion 13 and the end front surface portion 14 cannot be defined.
  • the length force in the blade width direction of the third cutting edge 17 of the end front part 14 is longer than that of the second cutting edge 16 of the connecting front part 13.
  • the side cut amount is large and the amount of soil flowing out from the end front part 14 to the side is reduced, contrary to the case of the semi-U type blade. The amount of soil carried by the front part increases.
  • the ideal mode is a state where the amount of soil at the center front is balanced with the amount of soil at the front of the end and the front of the connection, as shown in the figure (b) as an example. This is when the lower end blade widths W2 and W3 of the front face 13 and the end front face 14 are equal.
  • the entire front surface of the blade 11 is formed in a curved surface that is recessed rearward between the upper and lower sides inclined backward with the lower end edge of the central front surface portion 12 as the center line. .
  • the blade width of the front surface of the central front surface portion 12 is gradually widened from the lower edge to the upper edge in the order of W1-1, W1-2, and W1-3.
  • the blade width is gradually increased with the central front surface portion 12 facing upward, the first to third cutting blades 15 to 15 of the central front surface portion 12, the left and right connecting front surface portions 13, and the left and right end front surface portions 14 are formed.
  • the soil excavated by 17 pushes the center front surface part 12 upward sequentially through each curved surface and bending line.
  • the center front surface portion 12 gradually increases in width as it goes upward, so that it is possible to receive a lot of soil, and it is a curved surface compared to a simple rectangular front surface portion. A large amount of soil can be maintained.
  • FIGS. 17 and 18 show the overall shape of the pair of left and right integrated forged portions 101.
  • the integrated forged portion 101 is formed in a shape in which the left and right sides are symmetrical.
  • the integrally forged portion 101 according to the present embodiment has the front plate portion 102 on the front side and the back portion 103 and the first and second brackets 25a and 25b on the back side.
  • the front plate portion 102 is formed to have the same thickness throughout. The However, in this front plate portion 102, only the upper edge of each bent joint portion of the end triangular portion 12b of the central front surface portion 12, the connecting front surface portion 13, and the end front surface portion 14 is different from the other portions.
  • the plate thickness is also increased to increase rigidity and strength (see Fig. 17 to Fig. 21).
  • the back support part 105 of the integrated forging part 101 has a rectangular tube-like first shape that is long to the left and right in the rear view, at the center and lower end of the upper part.
  • the first and second back support portions 103a and 103b protrude rearward.
  • the space between these back support parts 103a and 103b is reinforced by reinforcing columns, and the inside is a hollow part that communicates with the left and right for light weight.
  • the vertical cross-sectional shape of the hollow portion is changed in accordance with the bent joint portion of the front plate portion 102, and the cross-section of the hollow portion is minimized in order to ensure rigidity and strength, particularly in the forged position of the first bracket 25a. And then.
  • FIG. 19 is a cross-sectional view taken along the line XIX-XIX in FIG. 2.
  • This cross-sectional view shows the bent line in each front plate portion 102 of the connecting front face portion 13 and the end front face portion 14.
  • a cross section of the cavity is shown.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX in FIG. 3, and is along a vertical line passing through the middle part of the pair of left and right first brackets 25a formed at the right end in front view.
  • a cross section is shown.
  • FIG. 21 is a cross-sectional view taken along the line XXI-XXI in FIG. 3 and shows a cross section of the forged portion close to the boundary line between the integrally forged portion 101 and the sheet metal portion 105.
  • the hollow portion is a boundary portion between the connecting front surface portion 13 and the end front surface portion 14 and between the lower end portions of the front plate portion 102 and the rear support portions 103a and 103b.
  • the space between the front plate 102 and the bottom support portion 103a, 103b is divided into the left and right split ends 12b and 12b of the central front portion 12 where the lower end of the front plate 102 projects most forward.
  • the distance between the bottom ends of the two is the widest.
  • the outer end surfaces of the left and right integrated forging portions 101 are arranged on the outer sides as shown in FIG. 22 in order to ensure the rigidity and strength of the end portions of the cylindrical rear support portions 103a and 103b.
  • Shaft hole 25a 'of bracket 25a, "reversely slanted L" shaped opening 103b' and rectangular opening 103a ' are formed above it, and all other parts are closed with the required thickness. Yes.
  • the sheet metal part 105 includes a rectangular divided central part 12a of the central front part 12, and as shown in FIGS. 2 and 3, and FIGS. And the same A back support member 107 made of a sheet metal and a forged product integrally formed on the back surface of the front plate 106 by welding.
  • the back support member 107 includes a first back support member 107a, a second back support member 107b, a third back support member 107c, and a fourth back support member 107d.
  • the first back support member 107a is a cylindrical first back support portion 103a formed on the upper portion of the integrated forging portion 101 from the upper end edge of the blade device 10 in the rear view of the blade device 10 shown in FIG.
  • the second back support member 107b connects the cylindrical upper back support portions 103a of the pair of left and right integrated forging portions 101 by welding with the central rectangular portion of the central front surface portion 12 interposed therebetween.
  • the third back support member 107c is welded across the left and right ends of the blade 11 at the space between the first back support portion 103a and the second back support portion 103b disposed below the first back support portion 103a. It is comprised by the sheet metal obstruct
  • the fourth back support member 107d connects the left and right tubular second back support portions 103b by welding.
  • first and third back support members 107a and 107c are made of sheet metal, and a plurality of unillustrated portions are provided between the first and third back support members 107a and 107c and the front plate 106. Reinforcing ribs are installed.
  • the second back support member 107b is a single forged product having a U-shaped cross section that is elongated in the left and right directions
  • the fourth back support member 107d is a left split member 107d— as shown in FIGS. 2. It consists of a forged product divided into three parts, a central divided member 107d-1 and a right divided member 107d-3.
  • the central dividing member 107d-1 is a block body having a U-shaped cross section, and as shown in FIGS. 17 and 18, a fourth bracket 25d for supporting one end of the strut arm 7 is projected rearward in the central portion.
  • the end divided members 107d-2 and 107d-3 arranged on the left and right are also cross sections having a plurality of reinforcing ribs 107d-2 'and 107d-3' between the inner wall surfaces. It consists of a U-shaped block.
  • the blade device 10 of the present embodiment which is also the above-described component member, is assembled by the following procedure.
  • the inner end face of the front plate part of the pair of left and right integrated forged parts 101, 101 and the center front face The left and right end faces of the rectangular front plate 106 of the part 12 are brought into contact with each other, and the three parties are integrated by welding.
  • the weld line at this time is on a vertical line in front view. For this reason, once each member is positioned, it can be easily welded by the welding robot.
  • side plates 108 having front and rear widths extending forward from the curved front end edge of the outer end surface are attached and attached to the outer end surface of the one-piece forged portion 101, respectively.
  • the side plate 108 has a function of holding the soil and preventing falling from the side of the blade and reinforcing the front surface 14 of the end.
  • Various back support members 107 are sequentially assembled integrally with the back surface of the blade 11 thus manufactured by welding. After this assembly is completed, the left and right split members 107d-l and 107d-3 of the third back support member 107c and the fourth back support member 107d straddle the left and right shown in FIG. 3 and FIG.
  • a crescent-shaped third bracket 25c for supporting the piston rod end of the pair of (hydraulic) lift cylinders 6 is fixed by welding.
  • the first to third cutting edges 15 to 17 are provided along the lower ends of the central front face 12, the connecting front face 13 and the end front face 14 of the blade 11 according to the present embodiment assembled as described above.
  • the blade device 10 of the present invention is completed by being fixed.
  • the first cutting edge 15 has a flat linear shape along the lower end of the central front surface portion 12. Therefore, it can be used effectively for excavation 'soil work' and leveling work without exchanging the blade 11 for each work of digging ij, earthing and leveling, and each work can be performed smoothly and efficiently. Can be done.
  • the blade device 10 thus completed has a rectangular division of the central front surface portion 12 into the integral forging portion 101 obtained by integrally forging the triangular front end portion 12b of the central front surface portion 12, the connecting front surface portion 13 and the end front surface portion 14.
  • the front plate 106 of the central front portion 12 and the triangular portion at the end of the central front portion 12 can be obtained simply by welding them to the left and right ends of the front plate 106 of the sheet metal portion 105, which is also the central portion 12a.
  • the connecting front surface portion 13 and the end front surface portion 14 are assembled at a stretch.
  • the triangular division end portion 12b, the connecting front surface portion 13 and the end front surface portion 14 are formed by the cylindrical first and second rear support portions 103a and 103b and the first and second brackets 25a and 25b. It is forged together. This eliminates the need for another special force assembly, which, combined with the use of a welding robot, improves the assembly performance of the entire blade and greatly reduces the assembly time.
  • the front plate portion 102 and the rear portion 103 are closest to each other.
  • the bend boundary between the connecting front face 13 and the end front face 14 is brought close to the minimum necessary.
  • the front plate portion 102 and the second rear support portion 103b have a continuous solid structure.
  • a hollow structure is formed between the front plate portion 102 and the back surface portions 103a and 103b in the other rear region.
  • the first and second brackets 25a, 25b are forged and integrated with the first and second rear support portions 103a, 103b, so that the base end portion can be drawn into the rear portion 103. , It can be designed to reduce the amount of rearward protrusion. For this reason, the maximum dimension of the front and rear depth of the blade 11 can be further reduced.
  • the back support member 107 of the sheet metal part 105 of the central front surface part 12 also adopts a hollow structure using sheet metal in an area where high rigidity and strength are not required, and an area where high rigidity and strength are required.
  • a hollow structure having reinforcing ribs 107d-1 ', 107d-2', 107d-3 'made of forged products is adopted. Therefore, the rigidity and strength required for the entire blade can be ensured in each region, and a large size and light weight can be achieved. As described above, an improvement in assembly and a small and light weight can be achieved, so that an increase in manufacturing cost can be avoided.
  • the blade device 10 of the present invention has the same blade front surface shape as that of Patent Document 1 described above.
  • the front surface of the connecting front surface portion 13 smoothly joins the soil moving from the front surfaces of both the central front surface portion 12 and the end front surface portion 14 during excavation and soiling. It has a function.
  • the end front part 14 has a function of securely holding the soil in the excavated IJ 'carrying so as not to spill outside the blade side force.
  • the connecting front surface portion 13 and the end front surface portion 14 swell and hold soil along the front surface of each blade, so that the loss of soil volume is reduced and the front surface portion 14 flows toward the central front surface portion 12.
  • the amount of soil deposited on the blade front surface of the central front surface portion 12 can be greatly increased by reducing the resistance of the soil.
  • the traction force and the amount of soil per traction force by the blade of the present invention are increased as compared to the conventional blade.
  • the blade of the present invention has a lower excavation resistance than conventional blades and a reduced soil resistance. Accordingly, the horsepower consumed during the excavation 1 ”and the earthing of the blade of the present invention is lower than the horsepower consumed during the excavation and excavation of the conventional blade. From the above points The bright blade can efficiently achieve a desired dozer operation in a shorter time than the conventional operation time and with a small traction force and excavation force as compared with the conventional blade.
  • the blade of the blade device according to the present invention can easily determine the shape with the highest excavation efficiency in the design, and at the same time, when turning and turning, the blade The upper force also prevents the soil from flowing down.
  • the blade structure is simplified, the assembly is easy, the welding workability is improved, and the weight is reduced.
  • the resistance force to the traction force is naturally reduced as in the blade device described in the Patent Document 6, and the per-traction force is reduced. It is natural to increase the amount of soil significantly.
  • the power consumption during excavation can be significantly reduced, and the maximum excavation can be obtained with a minimum amount of energy in a short time. As a result, the cost can be reduced significantly.
  • a blade (working machine blade) 50 to which a guard (guard member) 70 according to another embodiment of the present invention is attached will be described below with reference to FIGS.
  • the forward direction of the bulldozer is “front” and the backward direction is “rear”.
  • the blade 50 is a work earthwork plate that is attached to the front of the bulldozer, not shown, and has a curved shape that curves in a concave and downward shape as shown in FIGS. 27 to 30.
  • Part (front face part) 51 and a guard 70 attached to the upper end part of the blade front face part 51.
  • the blade 50 has a plurality of mounting flange portions (mounting portions) for mounting to the front portion of the bulldozer via a lift frame, a strut arm, a tilt cylinder and a lift cylinder. , ..., 65 is projected backwards.
  • the blade 50 is tilted forward by about 30 to 60 degrees with respect to the excavation posture by controlling a tilt cylinder, a lift cylinder, a hydraulic pump, etc. (not shown) when performing the earthing work.
  • a tilt cylinder When carrying out soiling work, it is controlled so that it is tilted backward by about 10 to 30 degrees with respect to the excavation position.
  • the earth removal performance can be improved by tilting the blade 50 forward more than before.
  • the amount of soil carried by the blade 50 can be increased during the soil carrying work.
  • the blade front portion 51 is formed of a horizontally long and highly rigid steel material, and includes a central front portion 52, a pair of left and right connecting front portions 53 disposed on both sides of the central front portion 52, and a connecting front portion 53. It has a pair of left and right end front portions 54 arranged on both sides.
  • the center front surface portion 52 is a curved surface having a constant curvature when viewed from the side, and has a linear first cutting edge 55 at the lower end.
  • the center front surface portion 52 protrudes forward from the connecting front surface portion 53 and the end front surface portion 54.
  • the central front part 52 has a blade width having a digging function, a soil carrying function and a leveling function at the lower end part.
  • the first cutting edge 55 is a flat linear plate member attached along the lower end portion of the central front surface portion 52.
  • the connecting front surface portion 53 has a second cutting edge 56 that extends continuously from the first cutting edge 55 of the central front surface portion 52 in a backward direction with a predetermined angle.
  • one end of the connecting front portion 53 extends in the same direction as the side edge of the central front portion 52, and as shown in FIG. 28, the upper end force is also directed toward the lower end in the front view. It is formed so as to gradually widen, and has a function of smoothly joining the earth and sand moving from both the central front face 52 and the end front face 54 during excavation and soil carrying work.
  • the end front part 54 has a linear third cutting edge (end blade) 57 extending continuously from the second cutting edge 56 of the connecting front part 53 with a predetermined angle in the forward direction. Have.
  • the end front surface portion 54 has the same width from the upper end side toward the lower end side. Is formed.
  • the front end portion 54 has a function of securely holding the earth and sand in the excavation's unloading so as not to spill outside from the blade side!
  • the connecting front portion 53 and the end front portion 54 are connected to each other in a plan view, and the connecting portion between the central front portion 52 and the connecting front portion 53 and It is in a position recessed rearward from the outer edge of the front surface 54 of the edge, and is joined to each other so as to be substantially V-shaped spreading in a direction perpendicular to the front-rear direction.
  • the outer end of the front end 54 may be in the same position as the joint between the central front 52 and the connecting front 53 in the front-rear direction in plan view.
  • the central front part 52 and the connecting front part 53 may be arranged behind the junction.
  • concave portions 61 are formed by the connecting front surface portion 53 and the end front surface portion 54, respectively.
  • the connecting front surface portion 53 and the end front surface portion 54 hold the earth and sand raised along each of the front surface portions 52, 53, and 54 in front of and between the concave portions 61 on both sides during the operation. Can reduce the loss of quantity.
  • the joint portion of the connecting front face portion 53 and the end front face portion 54 is the joint portion between the central front face portion 52 and the connecting front face portion 53 and the outer end portion of the end front face portion 54.
  • the connecting front surface portion 53 and the end front surface portion 54 are described with reference to an example in which they are arranged so as to form a substantially V shape in plan view. For example, it may be arranged so as to form a substantially U shape.
  • the first cutting edge 55, the second cutting edge 56, and the third cutting edge 57 are made of a tough material (eg, boron steel) that has excellent wear resistance and is not easily damaged. Since the first cutting edge 55, the second cutting edge 56, and the third cutting edge 57 have the arrangement form as described above, the first cutting edge 55 is the second cutting edge 56 and the third cutting edge 57. Will be excavated ahead of time.
  • the first cutting edge 55 breaks the surrounding ground ahead of the other cutting edges 56, 57, so that the substantial excavating force required for the second cutting edge 56 and the third cutting edge 57 is reached. Can be made smaller than the excavating force of the first cutting edge 55.
  • the amount of excavation at the second cutting edge 56 and the third cutting edge 57 is smaller than that of the first cutting edge 55.
  • the front surfaces of the central front surface portion 52, the connecting front surface portion 53, and the end front surface portion 54 are concave curved surfaces having the same curvature that are continuous in the vertical direction in a side view.
  • the front surface of each of the front surface portions 52 to 54 has a curved surface having the same curvature that is concave in the vertical direction. It is possible to avoid limiting the amount of entrainment and the height of raising.
  • the guard 70 is attached to the upper end portion of the blade front portion 51 by welding as shown in FIGS. Further, the guard 70 has a main body 71 and an opening (opening holes 72, 72 for visual recognition on the front side).
  • the main body 71 includes a ground contact surface 71a that forms a flow that makes contact with the earth and sand accumulated on the front surface of the blade 50 and pushes it back forward during soil carrying work, and the other side of the main body 71 opposite to the soil contact surface 71a.
  • the earth contact surface 71a is inclined about 30 degrees forward in the side view with respect to the extension line (tangential direction) at the center front surface 52 of the blade 50 at the upper end of the front surface. It is a straight (flat) surface attached.
  • the guard 70 is attached in such a posture that the front surface (the earth contact surface 71a) of the guard 70 is inclined forward with respect to the extension line at the upper end portion of the front surface of the blade 50 with respect to the upper end portion of the blade 50.
  • the earth and sand flow is formed in the direction of pushing back forward by the earth contact surface 71a inclined forward with respect to the extension line at the upper end of the blade front surface of the blade 50.
  • the ribs 71b are a plurality of plate-like members erected substantially perpendicularly to the back surface of the main body 71, and support a load applied to the earth contact surface 71a by a backward force.
  • the openings 72 and 72 are holes formed to allow the operator of the bulldozer to which the blade 50 is mounted to visually recognize the amount of sediment accumulated in front of the blade 50 from the driver's seat.
  • a guard 70 is installed at the upper end of the blade 50 to block the front view of the blade 50 from the operator. Even in the case of a loss, it is possible to avoid reducing the visibility of the operator during work.
  • a guard 70 is attached along the upper end portion thereof. As shown in FIG. 33, the guard 70 is arranged at the upper end of the blade 50 so that the earth contact surface 71a is inclined forward with respect to the extension line at the upper end of the central front surface 52 of the blade 50 in a side view. It is attached.
  • the guard 70 of the present invention is attached such that the earth contact surface 71a of the guard 70 is inclined forward with respect to the extension line at the upper end portion of the central front surface portion 52 of the blade 50.
  • the front surface of the blade 50 is curved, and the upper end of the blade 50 is inclined forward from the vertical direction. Therefore, if the guard 70 is attached so that the earth contact surface 71a of the guard 70 is tilted forward with reference to the extension line of the upper end of the blade, the blade 50 A soil flow that pushes back forward is formed by the earth contact surface 71a of the upper guard 70.
  • the guard 70 has a soil contact surface 71a inclined forward by about 30 degrees with respect to an extension line at the upper end of the central front surface 52 of the blade 50 in a side view. Is attached to the upper end of the blade 50.
  • openings 72, 72 for visually confirming the front of the blade 50 with the operator's power at the driver's seat are provided at both ends of the guard 70.
  • the blade 50 of the present embodiment is a recess formed by arranging the connecting front surface portion 53 and the end front surface portion 54 in a substantially V shape in plan view. 61 is provided at both ends.
  • the contact portion at the lower end of the blade 50 during excavation or the like is centered on the portion of the first cutting edge 55 attached to the lower end of the central front portion 52, and the connecting front surface portion 53 and the end
  • the part of the second cutting edge 56 and the third cutting edge 57 attached to the lower end of the front part 54 has little resistance, so the contact resistance at the lower end of the blade 50 during drilling with the blade 50 is greatly increased.
  • a large amount of earth and sand excavated by the first cutting edge 55 at the lower end of the central front surface portion 52 is accumulated in the concave portions 61 provided on both sides, thereby increasing the amount of soil per cycle. Can do.
  • a guard member is provided at the upper end portion of the work machine blade mounted on the work machine, and the guard member is connected to the extension line of the front surface of the work machine blade at the upper end portion of the work machine blade.
  • Control of the blade of the work machine that controls the amount of earth and sand that spills rearward of the blade for the work machine by adjusting the angle tilted forward with respect to the extension line of the guard member.
  • the present invention may be specified.
  • the work machine blade control method of the present invention is a work machine blade control method that is mounted on the front side of a work machine such as a bulldozer and is provided with a guard member at the upper end thereof.
  • the member is mounted so that the attachment angle of the earth contact surface in the side view is inclined forward from the extension line of the front surface of the work machine blade at the upper end of the work machine blade.
  • the amount of earth and sand spilling behind the working machine blade is controlled by adjusting the.
  • the guard member is a member that is attached to the upper end of the blade for work machine for the purpose of increasing the amount of soil carried.
  • the guard member includes a plate member and a plurality of ribs attached to the back side thereof. It is constituted by.
  • the earth contact surface of the guard member means a surface that comes into contact with the earth and sand in order to push the earth and sand forward during soil carrying work.
  • the earth contact surface is on the extension line of the front surface of the work machine blade at the upper end of the work machine blade to which the guard member is attached in a side view. It is attached so that it inclines along or behind the extension line. For this reason, the earth and sand accumulated in the front of the work machine blade during the soil carrying work is located at the position of the guard member at the upper end of the work machine blade. If it reaches the maximum, it may get over the guard member and spill back. In particular, when soil is carried out with the blade angle of the work machine inclined backward, the angle of the earthing surface of the guard member is further inclined backward, which increases the amount of soil spillage in the rear. Resulting in.
  • the guard member attached to the upper end portion of the working machine blade has a ground contact surface at the upper end portion of the working machine blade in a side view. It is installed so that it tilts forward from the front extension line. By adjusting the forward tilt angle of this guard member, the amount of spillage of soil behind the work machine blade is adjusted.
  • the guard 70 having a ground contact surface inclined forward 30 degrees with respect to the extension line at the upper end portion of the central front surface portion 52 is attached to the upper portion of the blade 50 has been described.
  • the present invention is not limited to this.
  • the forward tilt angle of the earth contact surface 71a of the guard 70 with respect to the extension line at the upper end portion of the central front surface portion 52 of the blade 50 may be in the range of more than 0 degree and 50 degrees or less.
  • the forward inclination angle of the earth contact surface of the guard 70 with respect to the extension line is set to 30 degrees as in the above embodiment, the flow of pushing back the sediment accumulated in front of the blade 50 is effective. It is more preferable to set the forward tilt angle to around 30 degrees as in the above-described embodiment.
  • the guard 70 having the earth contact surface 71a inclined forward with respect to the extension line at the upper end portion of the blade 50 has been described as an example.
  • the present invention is not limited to this. Is not something
  • the present invention may be specified as a guard that is attached so that the earth contact surface tilts forward with respect to the vertical direction in the state of inclination of the blade during soil carrying work.
  • the guard has a soil contact surface that is inclined forward with respect to the extension line at the upper end of the central front portion of the blade, and that is inclined forward with respect to the vertical direction in the posture of the blade during soil carrying work. Even so.
  • the earth contact surface 71a of the guard 70 is described as an example of a straight flat plate in a side view.
  • the present invention is not limited to this.
  • the earth contact surface may be a surface that curves forward in a side view, or is disposed along an extension line at the upper end of the center front surface of the guard (with a forward tilt angle of 0 degree).
  • the upper end of the earth contact surface may tilt forward and be a guard!
  • the present invention is not limited to this.
  • an opening for visually recognizing forward may be provided only on one side of both ends, or an opening for visually recognizing forward may be provided! /, Even a guard! / ,.
  • the openings 72 are formed in both ends of the guard 70 and the openings 72 are formed in a lattice pattern.
  • the present invention is not limited to this.
  • the opening may be a hole formed in a flat plate like punching metal.
  • the central front surface portion 52 of the blade 50 is described as an example in which the entire surface is a curved surface having a constant curvature in a side view.
  • the present invention is not limited to this.
  • it may be a working machine blade in which the central portion of the central front surface portion is curved and at least one of the upper end portion and the lower end portion is linear in a side view. .
  • the central front surface portion, the connecting front surface portion, and the end front surface portion constituting the blade front surface portion may be arranged in a straight line.
  • connection front surface portion 53 and the end front surface portion 54 are disposed so that the substantially V-shaped concave portions 61 are formed at both ends of the blade 50. It is more preferable because it can reduce resistance and improve work efficiency.
  • the front parts 52 to 54 are formed independently, and the left and right end parts of the front parts 52 to 54 are joined together by welding to form a continuous surface in the left and right direction. I gave it as an explanation. However, the present invention is not limited to this.
  • the front part of the blade is formed by integrally molding each front part by forging etc. May be a blade on which is formed.
  • the number of production steps can be reduced compared to the case where the front portions are joined to each other by welding after the forming by integrally changing the settings according to the size and thickness of the blade front portion. Therefore, the production efficiency of the blade can be significantly increased.
  • the blade mounted on the bulldozer as the work machine has been described as an example.
  • the present invention is not limited to this.
  • blades can be installed in front of work machines, such as wheel loaders, dozer excavators, motor graders, etc. It may be another work machine (earthwork machine) equipped with an earthwork board that performs the above.
  • work machines such as wheel loaders, dozer excavators, motor graders, etc. It may be another work machine (earthwork machine) equipped with an earthwork board that performs the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Soil Working Implements (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 全ブレード幅がWであって、下端に直線状の第1切刃(15)を有する所定のブレード幅W1をもつ中央前面部(12)を備えるとともに、第1切刃(15)に連続して後方向に所定の角度δ屈曲して延びる第2切刃(16)を有する連結前面部(13)と、第2切刃(16)に連続して第1切刃(15)の延長線との角度θをもって延びる第3切刃(17)を有する端部前面部(14)とを備えている。前記各切刃(15 ~17) が各前面部(12 ~14) の下端から接線方向に延び、各切刃(15 ~17) の刃先角α が40°~55°の掘削姿勢にあって、側面視で第1切刃(15)の刃先から土止め板の上端までの高さをHとしたとき、前記半径R2が次式(I)を満足する。     R2=(0.7~1.0)×H ……(I)

Description

明 細 書
作業機械用ブレード装置およびこれが搭載された作業機械
技術分野
[0001] 本発明は、ブルドーザやホイールドーザなどの各種の作業用車両に装備されるブ レードに関し、特に、掘削、運土、整地などの作業に好適であって、作業能率に優れ 、燃費効率や経済性などの向上を実現する作業機械のブレード装置およびこれを備 えた作業機械に関する。
背景技術
[0002] 建設工事や土木工事等の各種の作業現場では、例えばブルドーザやホイールド 一ザなどの各種の作業車両が多用されている。この種の作業車両には作業用ァタツ チメントであるブレードが装備されている。このブレードは掘肖 ij、運土、盛土、締固め、 整地などのドーザ作業に広く使用されている。
この作業車両において最大の作業能率を発揮させるためには、 1サイクル当たりの 運土量 (ブレード容量)をできるだけ増大させること、掘肖! 運土中の抵抗をできるだ け小さくすること、各種の異なった土質に適合して掘削時にブレード上に土がへばり つかないことなどの様々な条件を満足することが肝要である。また、同時に盛土、締 固め、整地をも同時になし得ることは、更に作業効率の著しい向上につながるため好 ましい。これらの条件を満足する最適なブレードの構造、形状、幅、高さ、切刃(カツ ティングエッジ)の位置や掘削角度などを見出すことが、作業機械の作業能率を向上 させ、燃料消費量を減少させ、全体工期を短縮させることなどの利点につながる。ま た、ブルドーザの作業能力を最大限に発揮させるための、ブルドーザの運土作業に おける力のバランスは、運土抵抗よりも牽引力が大きぐ牽引力よりも車両の駆動力 が大きくなければならない。
[0003] ところで、ブルドーザにおいて掘肖 IJ '運土作業を行うに際して必要とするエンジン出 力の大部分は、車両の駆動力や掘肖 1』·運土時の牽引力などにより消費される。従つ て、動力伝達中のエネルギー量の損失を低減させ、燃費効率を向上させることが重 要である。また、掘肖 運土中の抵抗を低減することなども強く要求される。一般に、 中型や小型ブルドーザは、大型ブルドーザと比較すると運土距離が短い。前述の要 求に応えられれば、従来と同様の容量を有するブレードや牽引力であっても、掘削- 運土中のエンジン出力を有効に使うことができるようになる。
[0004] この種の作業車両の作業量を増大させるためのブレード装置の一例として、例えば 本出願人は WO2004Z044337A1 (特許文献 1)により、従来にない全く新しいブ レード構造を先に提案している。
この特許文献 1に開示されたブレードは、中央前面部と、その左右端部から後方に 屈曲して拡開しながら延びる連結前面部と、連結前面部から屈曲して前方に拡開し ながら延びる端部前面部とを有している。そして、前記中央前面部は、下端が掘削方 向に直交して左右に延びる所要のブレード幅を有するとともに、その下端に第 1切刃 を有し、前記連結前面部及び端部前面部も、その下端に第 2及び第 3切刃を有して いる。さらに、前記連結前面部及び端部前面部の交差線と、前記第 2切刃と第 3切刃 との刃先同士の交点とが、上面視で前記第 1切刃の刃先よりも後退位置にある。そし て、前記中央前面部、前記連結前面部及び前記端部前面部の各前面が、上端から 下端にかけて連続する凹み状の湾曲面に形成された特殊な形状をしている。
[0005] この特許文献 1のブレードが適用される作業機械としては、例えば建設 ·土木機械 が含まれ、その代表的な建設'土木機械として、ブルドーザ、ホイールドーザ、モータ グレーダなどの作業機械などが挙げられる。なお、本明細書において使用される本 発明に係るブレードの「正面視」、「上面視」及び「側面視」とは、ブレードを掘削効率 の高い刃先角にて地表に接地したときの正面視、上面視及び側面視をいう。
[0006] 前記ブレードは、ブレード前面の一部を構成する中央前面部を有するとともに、ブ レードの左右両側端部にお 、て前方に拡開するように張り出す左右の端部前面部を 有する点では従来のブレードと同様である。しかし、前記中央前面部と前記端部前 面部との間に連結前面部が配されるとともに、左右の前記連結前面部が中央前面部 の左右端部にて後方に拡開して延設され、左右の前記端部前面部が同連結前面部 の後端縁から前方へと更に拡開しながら延設されている点で、従来のブレードとは大 きく異なっている。
[0007] 一方、このように掘削、運土、整地など各種作業に適用されるブレード装置とは異 なるものの、本発明のブレード形状によく似た形状を備えたブレード装置が WO 93 Z22512号公開公報 (特許文献 2)に開示されている。この特許文献 2に記載された ブレード装置は、ゴミ廃棄場などにおいてゴミを広げながら圧縮する埋立て用の圧縮 作業車両に適用される。そのブレードは、従来の U型ブレードと同様に左右端部に 車両の走行方向に両翼状に拡開して突出する端部ブレード部と、左右の端部ブレー ド部間を連結する一枚の平板状の中央ブレード部と、その中央ブレード部の中央部 にあって上下方向の途中から下傾斜させて車両走行方向に突設された矩形状の突 設部と、を備えている。前記突設部の下面を車両走行面に沿って置いたとき、前記端 部ブレード部及び中央ブレード部の下端縁は、同じく車両走行面に沿って置かれる
[0008] また、前記圧縮作業車両の走行装置には鋼鉄製の車輪が採用されており、この車 輪にてごみなどを圧縮処理する。前記ブレード装置の上記端部ブレード部及び中央 ブレード部の下端縁を前記車輪の走行面と直線上に一致させたときの姿勢を第 1ポ ジシヨンとし、ブレードを上げて前傾させたときの姿勢を第 2ポジションとすると、第 1ポ ジシヨンにあるときは、圧縮作業用車両の走行によりゴミゃ土を水平に拡散させる。一 方、第 2ポジションにあるときは、ブレード中央の上記突設部により車両の左右車輪 間の空間に送られるゴミゃ土の量を制御し、すなわち前記空間に送られるゴミの高さ を制限する。さらに、第 2ポジションでは、上記端部ブレード部及び中央ブレード部の 下端縁と上記走行面との間の間隙を通して車輪による圧縮領域へと送り込んでゴミ や土の量を制御する。
[0009] このように、特許文献 2により開示されたブレード装置は、ごみなどを拡散させる機 能と、ごみなどを圧縮する処理量を制御すると同時に圧縮部材である左右の車輪間 に形成されている空間部に過大な量のゴミなどが入り込んで、車体の下面に損傷を 与えることのないように、前記空間部に送り込むゴミの量を制限するための機能と、を 重視して開発されたものである。そのため、そもそも機能的に異なる本発明のブレー ド形状とこの公報に開示されているブレードとを比較すると、次の点で大きく異なって 、ることが理解できる。
[0010] すなわち、(1)上記特許文献 1に記載されたブレードにおける中央前面部が掘削さ れた土砂を大量に堆積保持するため、ブレード中央の上端力 下端にかけて連続さ せている。これに対して、この中央前面部に対応する前記特許文献 2のブレードにお ける中央突設部は、余分なごみの排除が主目的としているところから、その中央ブレ ード部の上下端間の途中から下端にかけて突出させている点、(2)特許文献 1にお ける左右一対の各連結前面部及び端部前面部の交点が、上面視で中央前面部より も後方位置にあるのと同時に、端部前面部の先端が中央前面部の下端縁の延長線 の近傍まで延びている。これに対して、特許文献 2では文章上での説明はないが、そ のいずれの図面を見ても中央ブレード部から前方に突出する左右一対の端部ブレ ードの先端位置を、中央突設部の突出下端縁の位置よりも更に前方に配している点 である。
[0011] これらの相違点は、既述したとおり、本発明のブレード装置と公報に開示されている ブレード装置では、本来の機能が異なることによる。
特許文献 1により提案された上記ブレードは、中央前面部の第 1切刃と前記端部前 面部の第 3切刃の先端とをほぼ一致させる力、第 3切刃が僅かに後退する位置にあ るようにしている。その結果、前記第 1切刃が端部前面部の下端に配される第 3切刃 に先行して土砂を掘削するため、連結前面部及び端部前面部による掘削力が低減 され掘削を容易にする。し力し実施に際しては、前記第 3切刃の先端を第 1切刃の前 方に僅かに突出する場合もある。この場合、第 3切刃の先端が第 1切刃に先行して掘 削することになるが、その突出量は極めて少なぐ前記端部前面部の第 3切刃全体と しての実質的な掘削力は前記第 1切刃の掘削力と比較すると極めて小さいため、そ の突出による影響はない。
[0012] 従って、上記特許文献 1に記載されたブレードによれば、従来と比較すると前記第 3切刃に作用する牽引力が大きく緩和され、掘削抵抗や運土抵抗などの抵抗力が前 記第 1切刃と前記第 3切刃とにわたりほぼ均一に作用する、そして、前記第 1切刃と 前記第 3切刃との双方に牽引力が有効に作用することとなり、前記第 3切刃により掘 削された土と前記第 1切刃により掘削された土とが第 2切刃を介して円滑に合流する 。また、連結前面部と端部前面部とにより挟まれた交差領域が土溜部となるため、効 率的で且つ大量の運土を抱え込むことができるようになる。 [0013] これらの相乗的な作用効果によって、前記抵抗力が軽減され、牽引力あたりの土量 を大幅に増大することができるようになる。しかも、掘削'運土中の消費馬力を大幅に 低減することができ、短時間に最少のエネルギー量で最大の掘削 ·運土量を得ること ができるようになり、前記作業機械の燃費効率が著しく向上して土工量当りのコストの 低減を実現することができる。
[0014] ところで、この種のブレードの前面の大半は、上下にわたって連続する所定の曲率 半径をもって後方に凹んだ円弧面に形成されている。上記特許文献 1に記載された ブレードは、その特殊な構造によって従来のブレードには到底期待することができな V、極めて優れた作用効果を奏するが、この特許文献 1に開示されたブレードの前面 形状を採用して、従来のセミ U型ブレードと同様の半径を有し、後退角を 10° 程度 にとつて掘削角が掘削姿勢にあるときのブレードの下端に固設される切刃の下端か らブレードの上端までの高さの 0. 5〜0. 7倍に設定すると、掘削時にブレード前面に 土がへばりついて落ちない。このため、このような構成では、掘削効率を大幅に低下 させることが判明した。また更に、その中央前面部、連結前面部及び端部前面部の 設計如何によつては、同じブレード容量の従来のセミ U型ブレードと比較して、数は 少ないものの掘削効率の点で下回るブレードが出現することがある。更に、特に運土 時の旋回押し回しのとき、旋回走行中の僅かな時間でブレード上に積載された土が 、中央前面部から外側の連結前面部へと滑り落ちて、端部前面部から瞬時にして全 てが流れ落ちてしまうと 、う事態も発生した。
特許文献 l :WO 2004Z044337 A1号公開公報
特許文献 2 :WO 93Z22512号公開公報
発明の開示
[0015] 本発明は、こうした事態を踏まえてなされたものであり、具体的には上記特許文献 1 がもつ前記抵抗力の軽減、牽引力あたりの土量の大幅な増大、掘削'運土中の消費 馬力の大幅な低減、及び短時間に最少のエネルギー量で最大の掘削'運土量が得 られることを前提としながら、掘削時にあってブレード上からの土離れがよぐ同時に 従来のセミ U型ブレードを確実に越える掘削効率を得ることができ、更には運土中の 旋回押し回しにあたって落土のない作業機械用のブレード装置を提供することを主 な目的としている。その他の目的は、以降に述べる発明の最良の実施形態により明ら 力にされる。
[0016] 以上の目的は、本発明の基本構成である、各種の作業機械に装着されるブレード 装置であって、ブレードは、中央前面部と、その左右端部に屈曲して連設される連結 前面部を介して更に連設される端部前面部と、を有し、前記中央前面部は、下端が 掘削方向に直交して左右に延びるブレード幅 W1を有するとともに、その下端に第 1 切刃を有し、前記連結前面部及び前記端部前面部は、その下端に第 2及び第 3の切 刃を有してなり、前記連結前面部及び端部前面部の交差線と、前記第 2及び第 3切 刃の刃先の交点とが、上面視で前記第 1切刃の刃先よりも後方位置にあり、前記中 央前面部、前記連結前面部及び前記端部前面部の各前面が上端力 下端にかけ て半径 R2の連続する凹み状の湾曲面とされ、前記各切刃が各前面部の下端から接 線方向に延び、各切刃の刃先角 α力 0° 〜55° の掘削姿勢にあって、側面視で 第 1切刃の刃先力 前記中央前面部の上端までの高さを Ηとしたとき、前記半径 R2 が (I)式: R2= (0. 7〜1. 0) X Hを満足する作業機械用ブレード装置によって効果 的に達成される。なお、ブレード装置は、その中央前面部の上端から接線方向に延 びる板金材よりなる土止め板を有しても良いが、その場合の高さ Hは、第 1切刃の刃 先から土止め板の上端までの高さとなる。
[0017] 好ましい態様によれば、ブレード容量により決まる前記中央前面部のブレード幅を W1、前記第 1切刃の延長線と同延長線に平行な前記第 2及び第 3切刃の刃先同士 の前記交点を通過する直線との間の間隔を Wt、前記第 1切刃の刃先と前記第 2切 刃のとの間の後方屈曲角を δとしたとき、前記間隔 Wtと後方屈曲角 δ と力次式 (II) 及び (III)を同時に満足するブレード装置により効果的に達成される。
[0018] Wt>0. 65 X (W1/10) (Π)
14。 < δ < 30。 (Ill)
ここで、 Wt及び Wlは実際の値 (mm)であっても、それぞれの基準値 (無単位)で あってもよい。
更に好ましくは、前記中央前面部と前記端部前面部との各切刃の延長線上で交差 する交差角 0 を 0° < Θ≤25° に設定するとよい。 [0019] このように、左右の前記連結前面部は、上面視で前記中央前面部に連続して後方 向に上記後方屈曲角 δの範囲内で拡開して配されるとともに、左右の前記端部前面 部を、同じく上面視で前記連結前面部に連続して前方に向けて上記交差角 Θをもつ て拡開して配するようにするとよい。すなわち、前記連結前面部と前記端部前面部と が V字状又は U字状を呈して連なり、更には前記第 2切刃と前記第 3切刃とが V字状 又は U字状を呈して連なって 、る。
[0020] 更に本発明にあっては、少なくとも前記中央前面部の第 1切刃は、同中央前面部 下端のブレード幅 W1に略等しぐ且つ前記中央前面部は、その下端から上端に向 けて後方に凹む湾曲面とされるとともに漸次幅広に形成するのが好ましい。また、前 記中央前面部下端のブレード幅 W1は、左右の走行装置間の内幅より大きくするとよ ぐ更には前記中央前面部下端のブレード幅 W1を左右の走行装置の中心間距離で あるゲージ幅に略等しくするとよ 、。
[0021] また、前記第 2切刃は第 1切刃に対して左右に僅かに下傾斜して配されるとともに、 前記第 3切刃は前記第 2切刃に対して左右に僅かに上傾斜して配されていることが 好ましい。前記連結前面部及び前記端部前面部の各ブレード前面が前記中央前面 部と同一曲面を有することが望ましい。
本発明の作業機械用ブレード装置は、中央前面部と、左右の連結前面部と、左右 の端部前面部と、を備えている。中央前面部は、下端が掘削方向に直交して左右に 延びるブレード幅 W1を有し、さらにその下端から円弧面の接線方向に沿って延びる 第 1切刃を有する。連結前面部は、中央前面部の左右端部に屈曲して連設され、そ の下端から円弧面の接線方向に沿って延びる第 2の切刃を有する。左右の端部前面 部は、連結前面部を介してさらに左右に連設され、その下端から円弧面の接線方向 に沿って延びる第 3の切刃を有する。そして、連結前面部および端部前面部の交差 線と、第 2·第 3切刃の刃先の交点とが、上面視において第 1切刃の刃先よりも後方に 配置されている。さらに、中央前面部、連結前面部および端部前面部の各前面が、 上端から下端にかけて半径 R2の連続する円弧面を有している。さらには、掘削姿勢 における側面視において、第 1切刃の刃先から中央前面部の上端までの高さを Ηと すると、半径 R2が次式 (I)を満たす。 [0022] R2= (0. 7〜: L 0) X H……(I)
本発明の作業機械用ブレード装置は、中央前面部と、左右の連結前面部と、左右 の端部前面部と、を備えている。中央前面部は、下端が掘削方向に直交して左右に 延びるブレード幅 W1を有し、さらにその下端から円弧面の接線方向に沿って延びる 第 1切刃を有する。連結前面部は、中央前面部の左右端部に屈曲して連設され、そ の下端から円弧面の接線方向に沿って延びる第 2の切刃を有する。左右の端部前面 部は、連結前面部を介してさらに左右に連設され、その下端から円弧面の接線方向 に沿って延びる第 3の切刃を有する。そして、連結前面部および端部前面部の交差 線と、第 2·第 3切刃の刃先の交点とが、上面視において第 1切刃の刃先よりも後方に 配置されている。さらに、中央前面部、連結前面部および端部前面部の各前面が、 上端から下端にかけて半径 R2の連続する円弧面を有している。さらには、少なくとも 中央前面部の上端力 略接線方向に延びる板金材を有し、掘削姿勢における側面 視において、第 1切刃の刃先力も板金材の上端までの高さを Hとすると、半径 R2が 次式 (I)を満たす。
[0023] R2= (0. 7~1. 0) X H……(I)
作用効果
[0024] 本発明におけるブレード上の積土の外観形状は、特許文献 1に開示されたブレー ドと同様、前記中央前面部の上端力 下端にかけて、その中央部にて安息角を越え て前方へと大きく盛り上がった形状となる。一方、従来のブレードでは運土の外観形 状は、ブレードの上端力 下端にかけて略安息角に等しい傾斜角をもつ直線的な平 面形状となる。すなわち、本発明もまた前記特許文献 1と同様に、短時間に最少のェ ネルギー量で最大の掘肖 運土量を得ることができ、作業機械の燃費効率が著しく 向上して土工量当りのコストの低減が実現される。
[0025] ところで、特許文献 1に開示されたブレードの提案を行ったのち、引き続き多様な試 験運転を重ねているうちに、既述したような課題のあることが分力つた。そこで、更に 多様な試験と設計とを繰り返した結果、上述のような掘削時におけるブレード上の土 離れの悪さや、掘削効率のばらつき、旋回押し回し時のブレードからの落土の原因 は、本発明に特有の複雑なブレード形状に基づくものであり、具体的にはブレードの 前面湾曲面及びブレード全体の後傾姿勢を、従来の例えばセミ U型ブレードと同様 に形成していること、及びブレード容量に応じた中央前面部、連結前面部及び端部 前面部の最適な形状や各前面部のブレード幅の相対的な割合などを客観的に決定 するための指標が確立されていないことに依ることを知った。
[0026] 本発明にあっては、前記中央前面部、前記連結前面部及び前記端部前面部の各 ブレードの前面を、従来と同様に、後傾斜させることが好ましいが、あまり後退させ過 ぎると、排土作業時にブレード上に運土がへばりついて滑落しに《なる。これは、本 発明の特殊なブレード形状による。これを避けるため、刃先角を従来と同じく設定す るとともに、各切刃の前面をブレード下端の前面の延長上に延出することが考えられ る。そして、ブレードの全体を後傾させることは、ブレードにより抱え込まれる堆積土の 表面における傾斜角度、すなわち安息角を一定と考えたとき、地面上に堆積される 土の地面に対する接地長さを減少させることができ、逆にブレード上に大きな土量を 積載することができるようになる。そこで、各ブレード下端の前面の延長上に各切刃 の前面を設ける場合にも、ブレード自体の湾曲面全体を後傾させる工夫が要る。これ が達成できれば、従来の掘削能力を確保した上で、運土量の増大と運土抵抗などの 大幅な低減が実現し、牽引力あたりの消費馬力を大幅に低減することができ、良好 な低燃費性能が得られる。
[0027] 上述のような特殊な全体形状を有する本発明に係るブレード装置では、切刃の刃 先角 αを上記特許文献 1と同一の刃先角とするとともに、後退角 γ を 0° として、所 定の曲率半径をもつ円弧面とされたブレード前面の下端に同切刃の上端を前記円 弧面の接線方向に固設した。試験の結果によれば、ブレード前面を特許文献 1と同 様の曲率半径( =〇. 50. 7 Χ Η、ここで、 Ηは地表からブレード上端までの高さで ある。)をもつ円弧面の下端に、その接線方向に延出するように切刃を固設すると、ブ レードの後傾姿勢が立つようになり、積載土量が低下する。そこで、刃先角 αを従来 一般的な 50° 以上力もそれより小さい特許文献 1と同様に 40° 〜55° の範囲に設 定して、同時にブレード全体の後傾姿勢を維持させようとした。これ以上、刃先角 OC を小さくすると掘削効率が大幅に低下してしまう。ところが、単に刃先角 αを小さくす るだけでは、ブレード上に堆積された土を新たに掘削した土によりブレードの上方へ と押し上げる力が弱くなり、特に掘削時においてブレードに土がへばりつきやすぐ土 離れが悪く土の抵抗が増カロして所望の積載量が得られないことを知った。
[0028] そこで、本発明では掘削力の低下を回避するため、ブレードの刃先角 αを 40° 〜 55° に設定するとともに、円弧面の曲率半径を同一ブレード容量の従来のブレード 前面の上記円弧面の半径よりも大幅に長くした。すなわち、通常、この曲率半径はブ レード容量力 演算されるブレード高さ Ηの 0. 5倍以上で 0. 7倍よりも短い長さに設 定されている力 本発明ではブレード高さ Ηの 0. 7以上 1. 0倍以下にしている。この ように円弧面の半径を長くすると、掘削によりブレード上に積載される土がブレード前 面にへばりつくことがなくなり、土の抵抗が少なくなり上方へと円滑に押し上げるように なるため、所望の運土量が得られる。そして、刃先角 OCと掘削角 βの差である後退角 7 があっても、単に掘削角 β を掘削した場合と異なり、土離れが改善した。なお、後 退角 0は、望ましくは 0° 〜15° の範囲である。
[0029] また、上述のように特有のブレード形状をもつ本発明のブレード装置にあっては、 その掘削効率は、中央前面部のブレード幅 Wl、連結前面部の刃先と端部前面部の 刃先との交点と中央前面部の第 1刃先の延長線との間の間隔 (以下、後退量という。
)Wt、中央前面部の第 1切刃の刃先に対する連結前面部の第 2切刃の刃先の後方 に屈曲する屈曲角 δの 3つのパラメータにより決定されることが分力つた。上記式 (II) 及び (III)は、それらの 3つのパラメータの相関式である。し力も、前記後方屈曲角 δ には上限値及び下限値があり、その下限値は前記掘削効率の下限値 (%)を規定し 、例えばセミ U型ブレードの掘削効率を確実に上回るための下限の値である。一方、 後方屈曲角 δの上限値は運土中における旋回押し回しによる落土を確実に防止す るための上限の値である。
[0030] 設計の段階で、ブレード容量に見合った上記後退量 Wtの値が決まると、そのブレ ード容量に見合った最適な後方屈曲角 δ の値を上記数値範囲の中から選び出すこ とができる。一般に、中央前面部のブレード幅 W1は、作業用車両の左右走行装置 の各中心線間の距離 (ゲージ幅)に略等しく設定するとよい。また、ブレードの全幅 W はブレード容量によって決まり、ゲージ幅 WGに等しい中央前面部のブレード幅 W1 も同様にして決まる。し力し、前記全体のブレード幅やゲージ幅 WG、ブレード幅 W1 はブレード容量によって変更される長さでもある。いま、例えば 45m3のブレード容量 をもつ全ブレード幅 Wを基準とすると、 45m3より小さいときの中央前面部の実際の 全ブレード幅は前記ブレード幅 Wより短くなり、 45m3より大きいときは中央前面部の 実際のブレード幅は前記ブレード幅 Wよりも長くなる。
[0031] 本発明における前記中央前面部の刃先に対する連結前面部及び端部前面部の刃 先同士の交点までの相対的な後退量の値 Wtは、前述のようにして得られた実際の ブレード幅 W1に試験により得られた定数である 0. 65Z10を掛けることにより決まる 。この後退量 Wtが決まると、上記後方屈曲角 δ のうちから、相関図により最も掘削 効率に優れ且つ押し回しにも耐えられる後方屈曲角 δ を選ぶと、ブレードの全幅 W が決まっていることから、上面視で中央前面部と連結前面部との下端屈曲点と、端部 前面部の外側端面との間の寸法 W4が必然的に決まることになる。
[0032] し力しながら、ここでは未だ中央前面部の刃先の延長線と端部前面部の刃先の延 長部との間の交差角 Θは決まっていない。この交差角 Θは、前記連結前面部と端部 前面部との屈曲部の前面に形成される土溜部を形成するため、上記後方屈曲角 δ とともに極めて重要な意義をもつ。しかも、作業現場の土質によって変化する端部前 面部の掘削力の大きさにも影響する。前記土溜部における前記連結前面部と端部 前面部との交差角は、 180° - ( δ + Θ )により計算できる。この土の抱え込みを維 持するには、可能な限り Θは大きい方がよい。しかし、本発明より単純な形状を持つ セミ U型ブレードの場合、例えば現場の土質が柔らかく整地機能だけの機能でよいと いう場合には、 0は限りなく 0° に近づける。
[0033] 一方、土質が硬ぐサイドカット機能が必要なときは、 Θ の値をある程度大きくする 必要がある。従って、この Θの値は一律には決め難いが、その端部前面部に要求さ れる機能に応じて上記後方屈曲角 δを勘案して決めることができる。しかしながら、 サイドカット機能を確保するには最大で 25° 程度であると言われている。
この交差角 Θ力 を越えると、端部前面部の第 3切刃の刃先に負荷が集中して 、掘削時に過大な負荷がかかり、切刃全体に均等に負荷がかからず刃先の折損など を伴うことにもなりかねない。一方、既述したとおり、本発明のブレード装置は整地機 能も兼ね備えている場合が多い。その点では、前記交差角 0 を 0° に無限に近づけ ることが必要な場合もある。これらを総合的に勘案すると、交差角 Θは 0° より大きく 2 5° 以下であることが望ましい。ところで、これらの後方屈曲角 δ 及び交差角 Θ の決 め方によっては、トータル長さが決まっている前記連結前面部及び端部前面部の各 ブレード幅の長さの割合も必然的に変化する。従って、この連結前面部及び端部前 面部の各ブレード幅の長さの割合もまた一律には決めることができない。
[0034] また本発明にあって、前記中央前面部下端のブレード幅を左右の走行装置間の内 幅より大きく設定するのは、前進走行による整地作業を行う場合に、走行装置の走行 跡の無い地面の整地が求められる最小限必要な幅だ力 である。特に、中央前面部 下端のブレード中央前面幅を左右の走行装置の中心間距離であるゲージ幅に等し くすると掘肖 IJ '運土 '整地機能上、最も優れたバランスが得られる。
[0035] 一般に、上述の作業機械の主な作業としては掘削、運土、整地などの作業があり、 これらの機械には、異なる作業が行えるような機能をもつブレードを装備することが肝 要である。本発明のブレードは、掘削 '運土とともに整地機能を有している。
通常、この種の整地作業には、地盤を掘削しながら地面を均すと同時に前方へと 運び、その途中にて穴地を埋めることと、均整に地均しすることの 2点が要求される。 本発明にあって、前記中央前面部のブレード幅を広くすると、いわゆる地均し機能は 増大する。一方、本発明にあっては、上面視で前記中央前面部が左右の上記連結 前面部及び端部前面部よりも前方に張り出して 、ることが多!、。本発明における前記 連結前面部及び端部前面部も整地機能を備えてはいるものの、その機能の大半は 前記中央前面部に依存するところが大きい。そこで、本発明にあっても前記中央前 面部におけるブレード幅を拡げることは可能である。
[0036] ところで、本発明にあっては端部前面部の第 3切刃の先端は中央前面部の第 1切 刃の延長線よりも後方に存在するとは限らず、同延長線よりも前方に張り出すことも含 んでいる。すなわち、前記端部前面部の第 3切刃の先端が前記第 1切刃の刃先の延 長線上の近傍に配する力ぎり、特許文献 1のブレードと同様に、第 1切刃が第 3切刃 とほぼ同時に土砂を掘削して、前記端部前面部の切刃によって掘削される土と前記 中央前面部の第 1切刃により掘削される土とを連結前面部を介して円滑に合流させ て、運土量を大幅に増大させることができるようになる。また本発明にあって、中央前 面部のブレード幅を拡げれば拡げるほど、上面視で連結前面部及び端部前面部の 占める幅を狭くしなければならなくなる。
[0037] この連結前面部及び端部前面部の占める幅を狭くし、且つ掘削抵抗や運土抵抗な どの抵抗力を小さくして運土量を大幅に増大させようとするには、連結前面部及び端 部前面部の下端に沿った長さを一定とすることが好ましい。すなわち、中央前面部の ブレード幅を広くするとともに、連結前面部及び端部前面部の下端に沿った長さを所 要長確保するには、上面視で連結前面部と端部前面部との交差する角度を小さくし なければならなくなる。その結果、必然的に中央前面部の切刃位置とブレードを支持 するストレートフレームの支持点との間の距離を広げなければならなくなる。
[0038] このように中央前面部の切刃位置とブレードを支持するストレートフレームの支持点 との間の距離が増大すると、掘削時における地表の凹凸面の影響を大きく受けて、 車両が前後でピッチング動作を起こしやすぐ結果的にブレードが上下に大きく揺動 し、中央前面部による安定した掘削ができなくなり、掘削面が凹凸面となりやすぐ均 整に均すことができなくなる。これらを考慮するとき、上述のように上面視で前記中央 前面部のブレード幅は連結前面部及び端部前面部のブレード幅を考慮して決める 必要がでてくる。本発明では、前記中央前面部のブレード幅を左右の走行装置の中 心間の距離であるゲージ幅に略等しく設定することにより、前記中央前面部の第 1切 刃の刃幅あたりの実効掘削力が増大して効率的な掘削と運土が可能になると同時に 均整な地均しを可能にする。
[0039] 一方、上記国際公開された特許文献 2のブレードについて見ると、この点でも本発 明とその構成が大きく異なっていることが理解できる。すなわち、上記公報により開示 されているブレードにあっては、上記中央突設部における有効幅を圧縮装置である 左右の車輪間距離、換言すると左右の車輪の対向面間の距離に略等しいとされてい る。これは、この中央突設部の機能が左右の車輪間に形成される空間部に大量のゴ ミが入り込まないようにするがため、当然の構造である。
[0040] さて、本発明のブレードにおける好適な一態様としては、左右の前記連結前面部が 、前記中央前面部に連続して後方向に所定の角度をもって拡開して配され、下端に 第 2切刃を有しており、左右の前記端部前面部が、前記連結前面部に連続して前方 向に所定の角度をもって拡開して配され、下端に第 3切刃を有している。この点にお Vヽても上記特許文献 2に開示されたブレードと異なって 、る。
[0041] ところで、この種の自走式作業機械は車体の前部中央部にエンジンルームが配さ れていることが多ぐオペレータは同エンジンルームの後方にて各種の操作杆を操作 する。そのため、オペレータの視界はエンジンルームにより遮られて、中央前面部に 堆積された掘削土量を目視にて直接確認することができな!/ヽ。
一方で本発明にあっても、前記ブレードを最大の掘削性能を発揮するときの姿勢、 通常はブレードを刃先角をもって地表に接地したときの正面視で、中央前面部、左 右の連結前面部及び左右の端部前面部の切刃の刃先を同一直線上となるように配 した場合には、左右に配された前記連結前面部と端部前面部との間に堆積される土 量を確認することができるに過ぎない。ところが、中央前面部に堆積される土量は、 上述のように連結前面部及び端部前面部との間に堆積される土量も加わって中央前 面部に堆積される土量の増加をもたらす。従って、オペレータにより連結前面部と端 部前面部との間に堆積される堆積土が斜め上方力 確認できるようになった時点で は、中央前面部に堆積される土量は所定量を越えていることが多くなり、ブレード操 作の煩雑性を増カロさせる。
[0042] そこで本発明の好適な実施態様によれば、前記ブレードが最大の掘削性能を発揮 するときの姿勢、通常はブレードを刃先角をもって地表に接地したときの正面視で、 左右の前記第 2切刃を中央の第 1切刃に対してそれぞれ僅かに下傾斜させて配すと ともに、前記第 3切刃を前記第 2切刃に対して僅かに上傾斜して配するようにする。 このような構成を採用することにより、第 2切刃と第 3切刃との切り換え部分が通常姿 勢にて地中へと入り込むことになり、掘削時には第 2切刃と第 3切刃との間で従来以 上の掘削量が得られる。これにより、連結前面部と端部前面部との間に堆積される土 量が増加して、中央前面部における土の堆積量に追随するようになる。その結果、仮 にオペレータには中央前面部に堆積された土量が目視で確認することができない場 合であっても、左右の連結前面部及び端部前面部との間に堆積される土量を目視で 確認することにより、中央前面部における適正な堆積土量を把握することができ、円 滑なブレード操作を行うことができるようになる。 [0043] 本発明のブレードは、前記中央前面部、前記連結前面部、前記端部前面部を独立 して形成し、各前面部同士を溶接により連続して形成することもできるが、ブレードの 大きさや厚みなどを適当に設定することにより、一部を铸造品に代替えすることがで きる。
さらに本発明は、前記端部前面部下端の切刃の幅は、連結前面部の切刃の幅との 間で相対的に決まるため一律には決めがたいが、前記中央前面部下端の切刃の幅 よりも小さぐ前記連結前面部下端の切刃の幅とほぼ等しく設定することが好ましい。 各前面部の幅を前記寸法関係に設定すると、前記連結前面部及び前記端部前面部 の各ブレード前面に沿って盛り上げて抱え込む土量を最適にすることができ、前記中 央前面部に対する土の抵抗を小さくすることができるため好ましい。しかし掘削効率 を考慮すると、既述したとおり、連結前面部の第 2切刃と端部前面部の第 3切刃との 交点までの後退量 Wt及び中央前面部の第 1切刃と連結前面部の第 2切刃との間の 後方への屈曲角 δの制約を受けるため、連結前面部及び端部前面部の各ブレード 幅に差を設けざるを得な 、場合が多 、。
[0044] 本発明は、前記中央前面部と前記端部前面部との各切刃の延長線上で交差する 交差角が 0° 〜25° に設定される。特にサイドカット機能を重視する場合には、 18 ° 〜25° の範囲内に設定されることが望ましい。この交差角 0力 18° 〜25° であ れば、前記連結前面部及び前記端部前面部との各ブレード前面上に積載されるの に最適な土量を確保することができ、前記端部前面部から前記連結前面部に向けて 移動する土の抵抗を小さくすることができ、 18° より小さいとサイドカット機能が失わ れる。しかし端部前面部の機能は、既述したとおり、単にサイドカット機能に限らず、 例えば端部前面部の第 3切刃に整地機能が欲しい場合には、前記交差角 Θ を限り なく 0° に近づけてもよい。さらに本発明は、各切刃の刃先が地面上にあるときの前 面と地面との間の刃先角を 40° 〜55° にすると、最少の掘肖 1 運土エネルギー量や 最大の土量が効果的に得られる。
[0045] 第 1の発明に係るガード部材は、作業機械に装着される作業機械用ブレードの上 端部に設けられるガード部材であって、側面視において、作業機械用ブレード上端 部における作業機械用ブレード前面の延長線に対して前方に傾斜する接土面を備 えている。
ここでは、例えば、ブルドーザ等の作業機械の前方側に装着される作業機械用ブ レードの上端部に設けられるガード部材であって、側面視における接土面の取付角 度が、作業機械用ブレード上端部における作業機械用ブレード前面の延長線よりも 前方へ傾斜するように取り付けられて 、る。
[0046] ここで、ガード部材は、運土量を増大させる目的で作業機械用ブレード上端部に取 り付けられる部材であって、例えば、板材と、その裏面側に取り付けられた複数のリブ とによって構成されている。また、ガード部材の接土面とは、運土作業時等において 土砂を前方へ押すために土砂と接触する面を意味している。
通常、作業機械用ブレードに対してガード部材が取り付けられる際には、その接土 面が、側面視において、ガード部材が取り付けられる作業機械用ブレードの上端部 における作業機械用ブレード前面の延長線上に沿って、あるいは上記延長線よりも 後方側に傾斜するように取付けが行われる。このため、運土作業時に作業機械用ブ レードの前方へ溜まってきた土砂が作業機械用ブレード上端部のガード部材の位置 まで達すると、ガード部材を乗り越えて後方へこぼれてしまうおそれがある。特に、作 業機械用ブレードの角度を後方へ傾斜させて運土を行う場合には、ガード部材の接 土面の角度はさらに後方へ傾斜してしまうため、後方への土砂のこぼれ量が増大し てしまう。
[0047] そこで、本発明のガード部材では、作業機械用ブレード上端部に取り付けられるガ 一ド部材を、側面視においてその接土面が作業機械用ブレード上端部における作 業機械用ブレード前面の延長線よりも前方傾斜するように取り付けている。
これにより、運土作業時において、作業機械用ブレードの前方へ溜まってきた土砂 が作業機械用ブレード上端部のガード部材の位置まで達した場合でも、ガード部材 の接土面によって土砂を前方へと押し戻す流れを形成できるため、運土作業時にお ける後方への土砂のこぼれ量を大幅に減少させることができる。この結果、作業機械 用ブレード上部に取り付けられるガード部材の取付け角度を調整するだけの簡易な 構成により、効率よく運土作業を実施することができる。
[0048] 第 2の発明に係るガード部材は、第 1の発明に係るガード部材であって、ガード部 材の作業機械用ブレード前面の延長線に対する前傾角度は、 0度より大きく 50度以 下である。
ここでは、作業機械用ブレード上端部におけるガード部材の接土面の前傾角度が 上記所定範囲内になるように、作業機械用ブレードに対してガード部材を取り付けて いる。
[0049] これにより、運土作業時においてガード部材付近まで溜まった土砂を前方へと移動 させる流れを形成することで、従来のガード部材が取り付けられた作業機械用ブレー ドよりも、後方への土砂のこぼれ量を効果的に低減することができる。
なお、上記数値範囲のうち、下限値である 0度より大きい角度については、ガード部 材の接土面を作業機械用ブレードの前面上端部における延長線に対して少しでも 前傾させることで、運土作業時における後方への土砂のこぼれ量を低減するために 設定されたものである。一方、上限値である 50度については、上記前傾角度が大き くなり過ぎると、運土作業時において作業機械用ブレードの前方における土砂を前 方へ押し戻す流れを妨げてしまうことから設定されたものである。
このため、作業機械用ブレードの上部における土砂のこぼれ量を効果的に低減し つつ、前方へ押し戻す流れを効果的に形成するという点では、上述した作業機械用 ブレードに対するガード部材の傾斜角度としては、 5〜30度とすることがより好ましい
[0050] 第 3の発明に係るガード部材は、第 1または第 2の発明に係るガード部材であって、 接土面の両端には、前方視認用の開口部が形成されている。
[0051] ここでは、作業機械用ブレードの上端部に設けられたガード部材の両端部分に、作 業機械のオペレータ力 作業機械用ブレード前方を視認するための開口部を設けて いる。通常、オペレータが作業機械用ブレードの前方の土砂の状態を視認する際に は、作業機械用ブレードの両端部付近を見ることが知られている。
これにより、その作業機械用ブレードの前方を視認する際にオペレータが目線をや る作業機械用ブレードの上端部に、オペレータの視界を遮るガード部材を取り付けた 場合でも、ガード部材の両端に視認用の開口を設けているため、オペレータによる作 業機械用ブレードの前方視認性を悪化させることを回避することができる。この結果、 土砂が後方へこぼれる量を低減しつつ、かつオペレータによる作業機械用ブレード 前方の視認性を確保することができる。
[0052] 第 4の発明に係る作業機械用ブレードは、第 1から第 3の発明のいずれ力 1つに係 るガード部材と、作業機械に対して装着される取付け部と、ガード部材の接土面と連 続的な面を有する前面部と、を備えている。
ここでは、上述したガード部材が上端部に設けられた作業機械用ブレードとして発 明を特定している。
[0053] これにより、作業機械用ブレードの上端部に設けられたガード部材によって後方へ 土砂がこぼれる量を低減できる。
なお、ガード部材は作業機械用ブレードの上端部に対して溶接によって取り付けら れて 、てもよ 、し、作業機械用ブレードの上端部を延長して形成されて 、てもよ 、。
[0054] 第 5の発明に係る作業機械用ブレードは、第 4の発明に係る作業機械用ブレードで あって、前面部の両端には、凹部が形成されている。
ここでは、掘削時における作業機械用ブレード先端部分の接地面積を少なくするた めに、作業機械用ブレードの前面部における両側の部分に凹部を設けている。 これにより、作業機械用ブレードの先端部分における接地部分の面積を減らして接 地抵抗が少ない状態で効率よく作業を行うことができる。さらに、凹部の部分に土砂 を溜め込むことができるため、従来の作業機械用ブレードよりも運土量を増大させる ことができる。
図面の簡単な説明
[0055] [図 1]本発明に適用される代表的なブレード装置の全体的な概略構成を示す前方か ら見た斜視図。
[図 2]前記ブレード装置の正面図。
[図 3]前記ブレード装置の背面図。
[図 4]前記ブレード装置のブレードの昇降動作を説明する作業機械の全体を示す側 面図。
[図 5]前記作業機械の要部の構成例を示す上面図。
[図 6]ブレード部の前面における湾曲面と切刃との交差角の関係を示す説明図。 圆 7]同一高さ同一掘削角(刃先角)で小径の円弧面を形成したときのブレードの後 傾姿勢を示す縦断面図。
圆 8]同一高さ同一掘削角(刃先角)で大径の円弧面を形成したときのブレードの後 傾姿勢を示す縦断面図。
[図 9]掘肖 ij ·運土時のブレード及びブレード前方の運土の投影図。
[図 10]掘削'運土時のブレード及びブレード前方の運土の側面図。
圆 11]掘肖 IJ '運土時のブレードの通常姿勢と後傾姿勢とによるブレードの前方に堆積 した堆積土の関係を示す説明図。
[図 12]交点の後退量及び後方屈曲角に基づく中央前面部のブレード幅に対する前 記ブレードの掘削効率を示す相関図。
[図 13] (a)〜 (c)は、後方屈曲角と交差角の変動に伴う連結前面部及び端部前面部 の各ブレード幅の関係を示す説明図。
[図 14]図 1における XIV-XIV線に沿った矢視断面図。
[図 15]図 1における XV-XV線に沿った矢視断面図。
[図 16]図 1における XVI-XVI線に沿った矢視断面図。
圆 17]前記ブレード装置における左側の一体铸造部を背面の左側から見た斜視図。 圆 18]前記ブレード装置における右側の一体铸造部を背面の右側から見た斜視図。
[図 19]図 2の XIX-XIX線に沿った矢視断面図。
[図 20]図 3の XX-XX線に沿った矢視断面図。
[図 21]図 3の XXI-XXI線に沿った矢視断面図。
圆 22]右側の一体铸造部を右斜め前方力も見た斜視図。
圆 23]前記ブレード装置を背面側の斜め後方力 見た全体の斜視図。
[図 24]板金部の背面支持部材の一部を左斜め前方から見た斜視図。
圆 25]前記板金部の他の背面支持部材の一部を前方力も見た斜視図。
圆 26]前記板金部の更に他の背面支持部材の一部を前方力も見た斜視図。
圆 27]本発明の他の実施形態に係るガード部材を取り付けたブレードを示す斜視図
[図 28]図 27のブレードを示す正面図。 [図 29]図 27のブレードを示す平面図。
[図 30]図 27のブレードの側面図。
[図 31]図 28における A— A線矢視断面図。
[図 32]図 28における D— D線矢視断面図
[図 33]図 31のブレード上部における部分拡大図 c 符号の説明
1 ブルドーザ
2 履帯式走行装置
3 リフトフレーム
4 (油圧)チルトシリンダ
5 エンジンノレーム
6 (油圧)リフトシリンダ
7 ストラットアーム
10 ブレード装置
11 ブレード
12 中央前面部
12a (矩形)分割中央部
12b (三角形)分割端部
13 連結前面部
14 端部前面部
15〜17 第 1〜第 3切刃
18 板金材
18a 格子
25a〜25d 第 1〜第 4ブラケット
26 垂直板リブ
50 ブレード
51 ブレード前面部 (前面部)
52 中央前面部 3 連結前面部
4 端部前面部
5 第 1切刃
6 第 2切刃
7 第 3切刃
1 凹部
5 取付けフランジ部(取付け部)0 ガード (ガード部材)
1 本体部
1a 接土面
1b リブ
2 開口部 (前方視認用の開口1 一体铸造部
2 前面板部
3 背面部
3a, 103b 第 1及び第 2の背面支持部5 板金部
6 前面板
7 背面支持部材
7a〜107d 第 1〜第 4の背面支持部材7d— l〜107d— 3 分割部材
7d— l '〜107d— 3 ' 補強ジブ
刃先角
β 掘削角
Ύ 後退角
δ 後方屈曲角
Θ 交差角
W ブレード全幅 Wl 中央前面部のブレード幅(=ゲージ幅 WG)
Wt 後退量
H ブレード高さ
Rl, R2 ブレード前面の曲率半径
発明を実施するための最良の形態
[0057] [実施形態 1]
以下、本発明の好適な実施の形態を添付図面に基づいて具体的に説明する。本 発明のブレード装置は、各種の作業機械に装備される作業用アタッチメントとして使 用できる。本発明に適用される作業機械として、例えば建設 ·土木機械が挙げられる 。本実施形態では、建設 ·土木機械として図示せぬブルドーザを例に挙げて説明す る力 本発明はこれに限定されるものではなぐ例えばホイールドーザ、モータグレー ダなどの作業機械などが含まれる。
[0058] 本発明の代表的な構造例によるブレード装置 10は、図 1〜図 5に示すように、上下 に凹み状に湾曲する湾曲形状とされたブレード 11を備えている。本実施形態では、 好ましい態様の一つでもある、一部に一体铸造構造を備え、他の部分に板金構造を 採用している。なお、本発明は、上記特許文献 1により提案されたブレード全体が板 金製の場合をも当然に含むものである。
[0059] 本発明のブレード装置 10の前面部は、上記特許文献 1に開示されたブレード装置 前面部の基本形状に基づいている。このため、その基本形状に基づく具体的な作用 効果は、既述したとおり、同文献 1に記載された作用効果と同等である。従って、それ らの作用効果についての説明は簡単な説明に止め、本発明が備える特有な構造と それに対応する特有の作用効果を中心に詳しく説明する。本発明に係るブレード装 置 10のブレード 11は、図 1に示す基本構造を備えている。すなわち、同ブレード 11 は、前面が上下に凹状に湾曲する湾曲面とされている。同ブレード 11は、中央前面 部 12と、左右一対の連結前面部 13と、左右一対の端部前面部 14と、を含むように構 成されている。中央前面部 12は、下端に直線状の第 1切刃 15を有する。左右一対の 連結前面部 13は、同第 1切刃 15に連続して後方向に所定の後方屈曲角 δをもって 拡開して延びる第 2切刃 16を有する。左右一対の端部前面部 14は、同第 2切刃 16 の外側端に連続して結合され、第 1切刃 15の延長線と所定の交差角 Θ をもって拡 開しながら前方向に延びる直線状の第 3切刃 17を有する。
[0060] 本発明のブレード装置 10にあって、図 5に示すように、上面視において前記端部 前面部 14の第 3切刃 17の先端を、中央前面部 12の側縁及び第 1切刃 15のほぼ延 長線上に配している。しかし、第 3切刃 17の先端は、同延長線より後退させても、或 いは前記延長線より前方に僅かに張り出すようにしてもよい。要は、中央前面部 12の 左右側縁に連続して連結前面部 13を後方に拡開しながら屈曲して延設するとともに 、左右の連結前面部 13の各外側の側縁部力も前方に拡開しながら屈曲して連設さ れていればよい。ただし、前記連結前面部 13及び端部前面部 14の交差線と第 2切 刃 16及び第 3切刃 17の交点 Cとは、中央前面部 12の左右側縁及び第 1切刃 15より も後方位置になければならな 、。
[0061] ここで、本実施形態にあって前記特許文献 1と異なる点は、本実施形態が前記中 央前面部 12の左右両端領域 B、前記連結前面部 13及び前記端部前面部 14が各 背面部をも含めて铸造一体ィ匕されている点である。そして、また前記中央前面部 12 の中央主要領域 Aは前面板 106と後述する背面支持部材 107とが別個に形成され、 これを溶接により一体ィ匕して構成している点である。ここで、本実施形態による中央 前面部 12の前記前面板 106の少なくとも中央主要領域 Aは、圧延鋼力もなる板金製 であって、この前面板 106に対応する背面支持部材 107には、一部に板金が使われ る。そして、強度が必要な部分には、他の一体铸造された部分とは別に铸造される背 面支持部材専用の铸造品が使われる。
[0062] また、本実施形態では、より多くの土を運ぶために、その铸造部分をも含めて前記 中央前面部の上端縁に沿って台形状の板金材 18が溶接等により側面視で中央前 面部の接線方向に土止め板として延設されている。この板金材 18の中央の矩形部 分は、その接土部が平面状であって、左右三角部分は複数本の格子 18aをもつ格 子部とされている。この格子部は、作業機械の作業時にオペレータがブレード装置の 左右端前方にある土量を視認するために設けられている。本実施形態では、板金材 18は、側面視で中央前面部の接線方向に取り付けられているが、同じく側面視で接 線方向より前傾あるいは後傾させても良い。なお、ブレード装置の高さ Hは、板金材 1 8が側面視で中央前面部の接線方向あるいは接線方向より前傾して設けられた場合 には、その板金材 18の高さも含まれる力 後傾して設けられた場合には、板金材 18 の高さは含まれない。
[0063] 本実施形態では、正面視で略逆台形の全体形状をもつ中央前面部 12を、図 1及 び図 2に示すように、中央主要領域 Aの矩形分割中央部 12aと、その左右両端領域 Bである略逆三角形の分割端部 12bとに 3分割している。この分割端部 12bには、後 述するような所要の後方屈曲角 δ をもって後方に V字状又は U字状に拡開させて連 結前面部 13が連結され、更に同連結前面部 13には中央前面部 12の下端刃先の延 長線と所要の交差角 Θ をもって前方に V字状又は U字状に拡開させて端部前面部 14が連結されている。このとき、前記中央前面部 12、連結前面部 13及び端部前面 部 14の前面は、その全面又は一部全面が上下方向に同じ曲率をもって凹み状に湾 曲している。
[0064] また、本実施形態では、既述したとおり、前面に左右の屈曲面と上下の湾曲面とを 有する、中央前面部 12の前記分割端部 12b、連結前面部 13及び端部前面部 14を 、背面支持部材 107をも含めて一体铸造して一体铸造部 101を構成している。一方 、上記中央前面部 12の矩形分割中央部 12aを、その主要構成部材である前面板 10 6を板金力 なる板金部 105によって構成する。
[0065] 前記矩形分割中央部 12aは、前記前面板 106と、後述する背面支持部材 107とを 備えている。前面板 106は、図 2に示す正面視において、横長の矩形状を呈した板 金からなり、上述のように略逆台形の形状を有する中央前面部 12の上底部の両端部 力 下底部に向けて垂直に切断したときの中央矩形部分、すなわち矩形分割中央 部 12aの前面を構成する板材である。その切断された残りの部分である両端逆三角 形部分が、上記連結前面部 13及び端部前面部 14とともに、それらの背面支持部を も含めて一体に铸造されて分割端部 12bを構成する。本明細書では、板金で構成さ れる前記中央前面部 12における前記前面板 106、その上端縁に延設された上記板 金材 18及びその背面支持部材 107を含む領域を板金部 105と呼ぶ。そして、同板 金部 105を除く他のブレード部の後述する背面部 103をも含めた一体铸造される領 域を一体铸造部 101と呼ぶ。前述のように、中央前面部 12を矩形分割中央部 12aと 三角形分割端部 12bとに垂直線上で三分割すると、矩形分割中央部 12aと三角形 分割端部 12bとの前面は滑らかに連続する湾曲面に形成されることとなり、同時にそ の結合線は正面視において湾曲面に沿った垂直な直線状となる。このため、組立ェ 程にぉ 、て、人手に頼らな 、溶接ロボットを使った自動溶接を採用することが可能と なる。
[0066] 図 4及び図 5は、本実施形態による前記ブレード装置 10をブルドーザ 1に装備した ときの概略構成を示している。ブレード装置 10は、ブルドーザ 1の前部に配され、一 対のリフトフレーム 3、チルトシリンダー 4、リフトシリンダー 6、およびストラットアーム 7 の各前端部が枢着される。一対のリフトフレーム 3は、基端が履帯式走行装置 2の中 央部に枢支され前方に延出する。(油圧)チルトシリンダー 4は、基端が同リフトフレー ム 3の中央部に枢支され前方に延出する。(油圧)リフトシリンダー 6は、運転室前部 に配されるエンジンルーム 5の側壁部にシリンダー本体の一端が枢支されて!、る。ス トラットアーム 7は、前記リフトフレーム 3に基端が枢支され、上面視において前記ブレ ード 11の背面中央部へと斜めに延伸する。そのため、通常は、ブレードの背面支持 部材にはリフトフレーム等を支承するためのブラケットが溶接により後方に突設されて いる。
[0067] 本実施形態にあっては、図 17及び図 18に示すように前記ブレード 11の左右一対 の一体铸造部 101にあって、その背面部 103の外側下端隅部力も後方に前記リフト フレーム 3の前端部を支承する左右の第 1ブラケット 25aがそれぞれ一体に铸造され て突出している。また、前記背面部 103の前記ブラケット 25aの上方部位には、上記( 油圧)チルトシリンダー 4の前端部を支承する第 2のブラケット 25bがー体に铸造され て後方に突出している。
[0068] 本実施形態における前記連結前面部 13の前面は、中央前面部 12とは逆に上端か ら下方向に向けて漸次幅広に形成された略三角形状又は台形形状を呈しており、前 述のごとく図 2に示す正面視において、その一側縁に前記中央前面部 12の連結側 端縁と一体ィ匕して上下方向に湾曲している。また、前記端部前面部 14の前面は、正 面視で上端から下方に向けて同一幅であり、中央前面部 12及び連結前面部 13と同 じ曲率をもつ凹み状に湾曲した縦長の略矩形状に形成されている。 [0069] ここで、本実施形態にあっては、前記中央前面部 12の下端の延長線は、端部前面 部 14の先端位置とほぼ一致している。ブレード 11の全体形状は、正面視で左右幅 の長い矩形状を呈する。これらの前面部 12, 13, 14は、図 1に示すように、連結前面 部 13が中央前面部 12の両端力も後方に大きく広がる V字状に結合されており、左右 の端部前面部 14は各連結前面部 13の外側端力も前方に向けて同じく V字状に大き く広がっている。なお、図示した例では V字状を示している力 この形状に必ずしも限 定されるものではなぐ例えば、開口端が大きく開いた U字状としてもよい。ここで、正 面視とは、図 4に示すような地面に対する刃先角 oc (本実施形態では掘削角 βに等 LV、)を掘削効率の最も高!、角度にて切刃を接地させたときの正面視を 、う。
[0070] 第 1切刃 15、第 2切刃 16及び第 3切刃 17は、耐磨耗性に優れ、破損しにくい強靱 な材料、例えば、ボロン鋼など力も構成されている。上述のような第 1切刃 15、第 2切 刃 16及び第 3切刃 17の配置形態の好ま 、形態では、前記第 1切刃 15が第 2及び 第 3切刃 16, 17よりも先行して掘削するようになっている。この第 1切刃 15による掘削 は、その周辺の地面を先行して掘り崩すため、前記第 2及び第 3切刃 16, 17に必要 な実質的な掘削力を第 1切刃 15の掘削力よりも小さくでき、同時に第 1切刃 15よりも 少量の掘削となる。ブレード 11の下端板部の前記第 1〜第 3切刃 15〜17に対応す る部位には、図 3に示すように、各切刃 15〜 17を補強する複数個の垂直板リブ 26, · · ·, 26が前後方向に延設されている。そして、各垂直板リブ 26, · · ·, 26の前端と第 1 〜第 3切刃 15〜 17の後面とは、螺着されている。
[0071] 本発明に係るブレード 10の各前面部 12〜14において、図 6に示すように、前記第 1切刃 15の前面と地面とのなす角度 (刃先角) αと前記中央前面部 12の下端部前 面の延長線と地面とのなす角度 (掘削角) βとの差である後退角 γを、上記特許文 献 1と同様に 10° に設定するとともに、ブレード前面の曲率半径 R1も同文献 1と同じ にした。因みに、特許文献 1に記載されたブレードにおける刃先角 ex は 46° 、掘削 角 j8は 36° 、後退角 γ は 10° である。例えば、セミ U型ブレードの掘削角は 52° である。このときの、曲率半径 R1は、従来のこの種のブレードと同様に、(0. 5〜0. 7 ) Xブレード高さ Ηとしている。このように従来と同様の数値を採用すると、本発明に 特有でかつ複雑なブレード形状のため、掘削時におけるブレード上の積土がブレー ド前面にへばりついて滑落せず、掘削効率が及び積土量が大幅に低下するおそれ がある。
[0072] そこで、刃先角 a及びブレード前面の曲率半径 R1を変えずに前記後退角 γを 0° としてみた。すなわち、特許文献 1に記載された掘削角を刃先角に合せ、ブレード高 さ及びブレード全面の曲率半径を変更せず、中央前面部 12、連結前面部 13及び端 部前面部 14の下端に固設される第 1〜第 3切刃 15〜17の先端を各前面部 12〜14 力も後退させることなぐ各前面部 12〜14の延長面に沿って突出するようにした。そ の結果、図 7に示すようにブレード全体の後傾度が少なくなり、前面部が立ち上がつ てしまい、掘削時に土がブレード前面を上方へと移動せず、運土量が大幅に減少す ることが分かった。
[0073] 図 7は、前述のとおり後退角 γを 0° として、第 1切刃 15を従来と同じ曲率半径 R1 をもつ中央前面部 12の前面円弧面の下端の接線方向に延設させたときのブレード 1 1の後傾姿勢を示している。一方、図 8は、本実施形態によるブレード 11の後傾姿勢 を示しており、図 7と同様に第 1〜第 3切刃 15〜17の後退角 γ を 0° として各前面部 12〜14の下端力も前方に延設させている。このとき本実施形態では、その各前面部 12〜14の前面円弧面の曲率半径 R2が、図 8に示す円弧面の曲率半径 R1よりも大 きな R2として(I)式: R2= (0. 7〜1. 0) X Hに基づいて設定されている。なお、両図 にお 、て第 1切刃 15の刃先力もブレード上端までの高さ Hを同一高さとして 、る。こ れらの図力 理解できるように、刃先角 αが同一であっても、図 8に示すように円弧面 の曲率半径 R2が大きくなつた分だけ、図 7に示す曲率半径の小さいブレード 11より も、本実施形態によるブレード 11の方がその後傾度を増している。その結果、従来の 一般的な形状をもつブレード以上に、ブレード上の運土量が大幅に増加するとともに 、排土時にもブレードの前面から円滑に土が落下し、ブレード前面に土がへばりつい て残るようなことがなくなり、掘削効率も向上した。
[0074] ここで、上記ブレード高さ Ηは、ブレード容量 Qによって決められる。ブレード容量と は、ブレードで土砂等を押す場合の標準的な一回当たりの作業量で、規格等で定め られた計算式に基づく計算値である。すなわち、ブレード容量 Qは車格により設定さ れ、同ブレード容量 Qとブレード高さ Ηとの間には、最も単純な形状をもつ (概略とし て、横長の長方形)ストレートブレードの場合、 Q=WX H2 (ただし、 Wはブレード全 幅である)の関係が成り立つ。従って、ブレード高さ Hは、ブレード容量 Q及びブレー ド全幅 Wが決まると自ずと決めることができる。また、前記ブレード容量 Qと、本発明 の特殊形状をもつブレードの各部の寸法との間には、ほぼ次の関係式 (IV)が成り立 つ。
[0075] Q = j X { Wt (Wl + W2 - cos δ +W3 -cos θ ) X H + 2 X (1. 4W— 0. 3W) X
H2 /2} (IV)
ここで、 jは円弧面に基づく係数、 Hはブレード高さ、 Wはブレード全幅、 W1は中央 前面部のブレード幅、 W2は連結前面部のブレード幅、 W3は端部前面部のブレード 幅、 Wtは連結前面部及び端部前面部の後方交点までの距離、 δは連結前面部の 中央前面部に対する後方への屈曲角、 Θは中央前面部の刃先の延長線と端部前面 部の刃先との交差角である。
[0076] 図 9及び図 10は、本発明に係るブレード装置 10のブレード容量 Qの計算原理を示 す説明図である。図 9は本発明のブレード 11及び同ブレード前方に運ばれる土の投 影図であり、図 10は本発明によるブレード 11及び同ブレード前方に運ばれる土の側 面図である。一般に土表面の傾斜角(安息角)は 30° 前後であると言われており、ブ レード容量を計算する場合は、 SAE規格 J1265MAR88では、 26. 5° (安息角の 正接を 0. 5)と定めている。そこで、ブレード容量 Qは、この安息角を考慮にいれて、 ブレード 11の投影面積にブレード高さを掛けた容積 Q1と、ブレード前端力 前方へ と流れるとともに左右方向に流れる土量を考慮して得られる土の投影面積にブレード 高さ Ηを掛けた容積 Q2とを加算した容量となる。上記式 (IV)の前半の式がブレード に堆積される容積 Q1であり、後半がブレード前方の運土の容積 Q2である。この式 (I V)から、ブレード容量が決まれば自ずとブレード高さ Ηも決まる。
[0077] 上述のごとぐ運土作業時のブレード前方の地表に堆積される土と地面との間の滑 り抵抗を小さくしょうとするには、地表と接触する土の量を少なくすればよい。図 11に 実線と仮想線で示すように、ブレード装置で運ばれるときの堆積土の前面の傾斜角( 安息角)は一定である。地表と接触する土の量を少なくするには、刃先と地表に接触 する土の先端部との間の距離を L2から L1となるように、土の先端部を可能な限りブ レード装置 10の刃先へと近づけ、同図に実線と仮想線で示す左下がりの傾斜線によ るハッチ領域を S2から S 1へと移行させるようにするとよい。図 11は、ブレード姿勢に 基づくブレード前方の地表に堆積される土と地面との間の滑り抵抗の変化を模式的 に示す説明図である。同図において、実線は本発明によるブレード装置 10を示し、 仮想線は従来のブレードを示している。ここで、両ブレードの前面湾曲面の曲率半径 は従来のブレードを Rl、本発明のブレードを R1より大きな R2とし、その刃先角 ex ( = β )は一定とする。
[0078] 前述した通り、地表に堆積される土の前面はその土質に応じて一定の傾斜角をな す。これにより、刃先角 αと後退角 γ (図 11では 0° )を一定として、ブレード前面の 曲率半径を大きくすることにより、ブレード上に堆積する土の抱え込み量を多ぐブレ ード前面に堆積する土と地表との接触面積を小さくすることができる。ここで、ブレー ド上に堆積する土の抱え込み量とは、ブレードと地表との接触線を含む鉛直方向の 平面力もブレードの表面側に存在する土の量を意味する。
[0079] このときの刃先の前方の地表に堆積される通常の堆積土の接地長さ L2に対して、 本実施形態におけるブレード装置 10の堆積土の接地長さ L1は、約 10%程度減少 し、地表の堆積土量が大幅に減少する。一方で、掘削'運土中に前記ブレード部 12 〜14の前方の堆積土は各ブレード前面上に大量に積載できるようになり、いわゆる 抱え込み量は増加する。その結果、運土抵抗などを大幅に低減することができるた め、牽引力あたりの消費馬力を大幅に低減することができ、良好な低燃費性能が得 られる。
[0080] 因みに、本実施形態にあっては前記後退角 γ を最も小さな 0° としているため、切 刃の取付作業が容易となる。しかし、従来と同様の湾曲面で且つ刃先角 αを変更し ないときには、ブレード 11の立ち上がりが大きくなり過ぎて運土量の滑落が激しくなる 。そこで、上述のごとくブレード前面の円弧面の曲率半径を通常の R1から、それより も大きな R2とする。これにより、ブレードの後傾姿勢を大きくすることができ、同時に 運土抵抗を少なくするとともに掘削量及び運土量を通常と同量以上とすることができ る。
[0081] また、前述のように前記ブレード 11の前面上に土を大量に堆積させることができる ため、車体前後における接地圧のバランスが良好に得られ、シユースリップなどのパ ヮーロスが少なくなり、高い牽引力が得られる。また本実施形態にあっては、ブレード
11の上端部の円弧面の終端力も上方に台形の板金材 18を、 0よりも大きく 50度以下 の範囲で前傾させて付設しており、その両端部に左右方向に並ぶ多数の格子 18aを 形成している。これにより、ブレード前面上に堆積した土のうち余部の土は前記板金 材 18の左右に形成された格子 18aの間の隙間から左右へとこぼれ落ち、各ブレード 部 12〜14の上端を越えて後方にこぼれ出ることが防止されると同時に、ブレード上 端部の積土量を適正量に維持できる。
[0082] また、掘削土がブレード前面に圧接されることなく排土時の土離れも良くなり、排土 性が向上する。なお、前記各切刃 15〜17の刃先が地面上にあるときの前面と地面と がなす刃先角 αを 40° 〜55° 程度とすることが好ましい。これにより、最少の掘削 · 運土工ネルギー量や最大の土量が効果的に得られる。
前記掘削効率は、前述のごとく刃先角 oc によっても変わってくるが、本発明者の試 験によると、中央前面部 12の下端ブレード幅 Wl、上記第 1切刃 15に対する第 2切 刃 16の後方屈曲角 δ、及び第 1切刃 15の延長線と同延長線の後方で交差する連 結前面部 13と端部前面部 14の各刃先の交点 Cとの間の間隔 (以下、後退量という。 ) Wtが大きく影響することが分力つている。
[0083] 図 12は、その試験による結果を示している。これによれば、前記中央前面部 12の 下端のブレード幅 W1の変化に対応する掘削効率は、前記第 1切刃 15に対する前記 第 2切刃 16の後方に屈曲する後方屈曲角 δ と、前記第 1切刃 15の延長線と前記第 2及び第 3切刃の刃先 (16, 17)同士の前記交点 Cとの間の後退量 Wtとの相関で決ま つてくることが分かる。ただし、この図 12は、本発明のブレード装置に最も近い形状を もつセミ U型ブレードを基準としている力 他の機種についても実効上は同様の相関 があるといえる。
[0084] 同図の横軸は、前記ブレード幅 W1を車体のゲージ幅(ブルドーザにぉ 、ては、履 帯中心間長)を 10 (無単位)とし、これを基準としてその長さの変化を示している。また 、同図の縦軸は掘削効率の変化を示しており、標準的なゲージ幅に装着されるセミ U型ブレードの掘削効率を 100%として、本発明によるブレード全幅とセミ U型ブレー ド全幅が等しいとした場合の本発明のブレードによる掘削効率(%)の変化を示して いる。同図において、一点鎖線で示す曲線群は、上記後方屈曲角 δ を変更させた ときのブレード容量の変化に応じた掘削効率の変化を示している。一方、破線で示 す直線群は、上記第 1切刃 15の延長線と前記第 2及び第 3切刃 16, 17の刃先同士 の前記交点 Cとの間の後退量 Wtを変更したときのブレード幅 W1の変化に応じた掘 削効率の変化を示して 、る。
[0085] ここで、 Wtは無単位の係数であり、これに換算係数を掛けた値が実値となる。なお 、ゲージ幅以外の車体側又はブレード装置力 決まる数値を換算係数とすることは、 一向に差しつかえない。
従って、所望のブレード容量により決まる中央前面部 12のブレード幅 W1をもつ本 発明のブレード装置 10を設計する際には、ブレード幅 W1を通る縦軸線上において 一点鎖線の直線群と破線の直線群とが交わるときの各直線に対応する後方屈曲角 δ 及び後退量 Wtを採用すれば、所望の掘削効率が得られる。これを同図に基づい て、中央前面部 12のブレード幅 W1を 10 (横軸の中央部)としたときの、例えば同一 のブレード全幅をもつセミ U型ブレードを越える掘削効率が実現されるためには、上 記後方屈曲角 δ をほぼ 16. 2° とし、上記後退量 Wtを 0. 65とすると、セミ U型ブレ ードと同等の掘削効率が得られる。
[0086] すなわち、中央前面部 12のブレード幅 W1が 10であるときには、後方屈曲角 δ を 16° 、後退量 Wtを 0. 65とすれば、同一ブレード容量のセミ U型ブレードと同等の 掘削効率が確保される。この後方屈曲角 δを 16° より大きぐ後退量 Wtを 0. 65より も大きく設定するとともに、この後方屈曲角 δ力 16° 以上の各一点鎖線と、後退量 W tが 6. 5以上の各破線とが、ブレード幅 W1を通る縦軸線上で交差する点の後方屈曲 角 δ及び後退量 Wtとして設定すると、前記一点鎖線と破線との交点 Cに見合ったセ ミ U型ブレードを越える掘削効率が実現できる。つまり、既述した以下の式 (Π)及び( III)
Wt>0. 65 X (W1/10) (Π)
14。 < δ < 30。 (Ill)
を同時に満足すれば、最も効率的で且つ押し回し時の落土が少ないブレード形状が 得られる。因みに、図示例(♦)にあってはブレード幅 Wlを基準値の 10としたとき、 後方屈曲角 δ を 20° 、後退量 Wtを 0. 8に設定すると、掘削効率は 122%となり大 幅に増加する。
[0087] し力しながら、この図 12の相関図だけでは、後方屈曲角 δ 及び後退量 Wtの上限 を確定できない。ところで、他の試験によると、旋回走行による押し回しを行うと旋回 半径にもよるが数十秒のうちにブレード 11の前面に積載された運土が連結前面部 1 3を介して端部前面部 14から流れ落ち、瞬時にして積土が零になる。その原因を追 求したところ、上記後方屈曲角 δが大きな原因の一つであることが判明した。すなわ ち、この後方屈曲角 δを 30° 以上に設定すると、運土の滑落が発生する。
[0088] そこで、本発明にあっては、前記後退量 Wtの値をブレード容量によって予め決まる 中央前面部 12の下端のブレード幅 W1に 0. 65Z10を掛けた値よりも大きぐ且つ 1 6° 以上 30° 以下の範囲内にて掘削効率が最も高くなる上記後方屈曲角 δを、予 め作成された相関図から求める。
一方、本発明に係るブレード装置 10にあって、全体ブレード幅 W及び中央前面部 12のブレード幅 W1はブレード容量及び車両の大きさにより決まる。このため、交差し て後退位置にある上記連結前面部 13の前端と端部前面部 14の前端とを結ぶ直線 距離も必然的に決まってくる。然るに、上記連結前面部 13の前端と端部前面部 14の 前端とを結ぶ直線距離は決まるものの、前記連結前面部 13及び端部前面部 14の下 端の各ブレード幅 W2, W3のいずれを長くするかを一律に決めることはできない。図 13 (a)〜図 13 (c)に、例えば、中央前面部 12の刃先の延長線と、連結前面部 13及 び端部前面部 14の刃先同士の交点 Cとの間隔、即ち後退量 Wtと、連結前面部 13 の前端と端部前面部 14の前端とを結ぶ直線距離 W4とを一定としたとき、最も掘削効 率が高く且つ旋回押し回し時の落土量を少なくできる上記後方屈曲角 δ 及び交差 角 Θを変更したときの連結前面部 13及び端部前面部 14の下端における各ブレード 幅 W2及び W3の長さ割合の変化を示して 、る。
[0089] この図からも理解できるように、連結前面部 13及び端部前面部 14の下端の各ブレ ード幅 W2, W3の長さ割合を規定することはできない。しかし、端部前面部 14の第 3 切刃 17のブレード幅方向の長さ力 連結前面部 13の第 2切刃 16のそれよりも長い 場合(同図(c) )には、セミ U型ブレードの場合とは逆にサイドカット量が大きぐ且つ 端部前面部 14から側方へ流れ出る土量も少なくなり、連結前面部及び端部前面部 による運土の抱え込み量が増加する。また、反対に、端部前面部 14の第 3切刃 17の ブレード幅方向の長さが、連結前面部 13の第 2切刃 16のそれよりも短い場合(同図( a) )には、サイドカット量が少なくなり、端部前面部 14から側方へと排出される土量も 大きくなる。理想的な態様は、中央前面部での運土量と、端部前面部及び連結前面 部での運土量とが均衡を保つ状態で、一例として同図 (b)に示すように、連結前面部 13及び端部前面部 14の下端ブレード幅 W2, W3の値が等しいときである。このよう に、連結前面部 13及び端部前面部 14の下端ブレード幅 W2, W3の長さのいずれを 長くすればよいとの制約は、上記後退量 Wt、後方屈曲角 δ 及び交差角 Θの 3パラ メータに基づき、端部前面部 14に要求される機能と運土の抱え込み機能とのバラン スを考慮して決める必要がある。
[0090] 図 14〜図 16は、上記ブレード 11の図 1における XIV- XIV線〜 XV卜 XVI線に沿つ た矢視断面図である。これらの図からも理解できるとおり、本実施形態によるブレード 11の前面は、全体が中央前面部 12の下端縁を中心線として後傾した上下の間で後 方に凹む湾曲面に形成されている。さらに、同時にその中央前面部 12の前面のブレ ード幅は、 W1— 1、 W1— 2、 W1— 3の順に下端縁から上端縁にかけて徐々に拡幅 されている。このように、中央前面部 12を上方に向けてブレード幅を漸次増大させる と、中央前面部 12、左右の連結前面部 13及び左右の端部前面部 14の第 1〜第 3切 刃 15〜17により掘削された土は、各湾曲面及び屈曲線を通って中央前面部 12を上 方へと順次押し上げる。このとき、中央前面部 12は上方に行くに従い、その懐ろが徐 々に広くなつているため、運土を多く受け入れることが可能となり、単なる矩形状の前 面部と比較すると湾曲面であることも手伝って大量の運土が保持できるようになる。
[0091] 図 17及び図 18は、左右一対の前記一体铸造部 101の全体形状を示している。同 図からも理解できるように、前記一体铸造部 101は左右が面対称となる形状に形成さ れている。本実施形態による一体铸造部 101は、前面側に上記前面板部 102を有 するとともに、その背面側に背面部 103と上記第 1及び第 2のブラケット 25a, 25bとを 有している。前記前面板部 102は全体にわたって同一の板厚に形成されている。た だし、この前面板部 102にあって、中央前面部 12の端部三角形部分 12bと、連結前 面部 13と、端部前面部 14との各屈曲結合部分の上端縁部だけは他の部分よりも板 厚を厚くして剛性と強度を増している(図 17〜図 21参照)。
[0092] 一方、前記一体铸造部 101の前記背面支持部 105には、図 17及び図 18に示すよ うに、上部の中央寄りと下端部に、背面視でそれぞれ左右に長い矩形筒状の第 1及 び第 2の背面支持部 103a, 103bを後方に向けて突出させている。これらの背面支 持部 103a, 103bの間は補強柱などにより補強され、その内部は軽量ィ匕のため左右 に連通する空洞部とされている。その空洞部の縦断面形状は、前記前面板部 102の 屈曲結合部に合わせて変化させており、特に上記第 1ブラケット 25aの铸造位置では 剛性と強度を確保するため同空洞部断面を最も小さくして 、る。
[0093] すなわち、図 19は図 2の XIX-XIX線に沿った矢視断面図であるが、この断面図は 上記連結前面部 13及び端部前面部 14の各前面板部 102における屈曲線に沿った 空洞部断面を示している。また、図 20は図 3の XX-XX線に沿った矢視断面図であつ て、正面視で右側端部に形成された左右一対の第 1ブラケット 25aの中間部を通る垂 直線に沿った断面を示している。図 21は、同じく図 3の XXI-XXI線に沿った矢視断 面図であり、一体铸造部 101と板金部 105との境界線に近い铸造部断面を示してい る。
[0094] これらの図からも理解できるように、前記空洞部は、連結前面部 13と端部前面部 14 との境界部分で、前面板部 102と背面支持部 103a, 103bとの下端部間の間隔が最 も狭くなり、前記前面板部 102の下端部が最も前方へと張り出している中央前面部 1 2の左右分割端部 12b, 12bの各前面板部 102と背面支持部 103a, 103bとの下端 部間の間隔が最も広くなつている。また、左右の前記一体铸造部 101の各外側端面 は、筒状の背面支持部 103a, 103bの端部の剛性と強度を確保するため、図 22に 示すように、外側に配される第 1ブラケット 25aの軸孔 25a'と、 "逆斜め L"字状の開 口 103b'と、その上方に矩形状の開口 103a'を形成して、他の部分を全て所要の肉 厚をもって閉塞させている。
[0095] 一方、上記板金部 105は中央前面部 12の矩形分割中央部 12aからなり、図 2及び 図 3、並びに図 23〜図 26に示すように、一枚の板金力も得られる前面板 106と、同 前面板 106の背面に溶接により一体ィ匕される板金及び铸造品からなる背面支持部 材 107と、を備えている。この背面支持部材 107は、第 1背面支持部材 107aと、第 2 背面支持部材 107bと、第 3背面支持部材 107cと、第 4背面支持部材 107dとによつ て構成される。第 1背面支持部材 107aは、図 3に示すブレード装置 10の背面視にお いて、同ブレード装置 10の上端縁から上記一体铸造部 101の上部に形成された筒 状の第 1背面支持部 103aの上端縁まで、傾斜して溶接される偏平な台形状の板金 によって構成される。第 2背面支持部材 107bは、左右一対の前記一体铸造部 101 の筒状の各上部背面支持部 103aの間を前記中央前面部 12の中央矩形部分を挟 んで溶接により連結する。第 3背面支持部材 107cは、前記第 1背面支持部 103aと 同第 1背面支持部 103aの下方に配される第 2背面支持部 103bとの間の空間部をブ レード 11の左右端にわたって溶接により閉塞する板金によって構成される。第 4背面 支持部材 107dは、左右の前記筒状の各第 2背面支持部 103bとの間を溶接により連 結する。
[0096] ここで、前記第 1及び第 3の背面支持部材 107a, 107cが板金製であり、第 1及び 第 3背面支持部材 107a, 107cと前面板 106との間には、図示せぬ複数の補強リブ が介装されている。前記第 2背面支持部材 107bは、左右に細長い断面がコ字状の 単一の铸造品からなり、前記第 4背面支持部材 107dは、図 23〜図 26に示すように 、左側分割部材 107d— 2、中央分割部材 107d— 1、右側分割部材 107d— 3に三 分割された铸造品からなる。前記中央分割部材 107d— 1は、断面コ字状のブロック 体からなり、図 17及び図 18に示すように、中央部に上記ストラットアーム 7の一端を 支承する第 4のブラケット 25dを後方に突出させて一体に铸造しており、その内壁面 間には複数個の補強リブ 107d—l 'が同時に铸造されている。前記左右に配される 端部分割部材 107d— 2, 107d— 3も、前記中央分割部材 107d— 1と同様に、内壁 面間に複数の補強リブ 107d— 2' , 107d— 3 'を有する断面コ字状のブロック体から なる。
[0097] さて、以上の構成部材カもなる本実施形態のブレード装置 10は、以下のような手順 によって組み立てられる。
先ず、上記左右一対の一体铸造部 101, 101の前面板部の内側端面と、中央前面 部 12の矩形状前面板 106の左右両端面とを突き合わせて、溶接により 3者を一体化 する。このときの溶接線は、正面視で垂直線上にある。このため、各部材の位置決め がなされると、溶接ロボットにより容易に溶接が可能である。この溶接の前に、前記一 体铸造部 101の外側端面には、同外側端面の湾曲する前端縁よりも前方に延在す る前後幅をもつ側板 108がそれぞれ添着一体ィ匕されている。この側板 108は、運土 を抱え込んでブレード側部からの落下を防ぐとともに、端部前面部 14を補強する機 能をも有している。
[0098] こうして製作されたブレード 11の背面に各種の上記背面支持部材 107が順次溶接 により一体に組み立てられる。この組立が終了したのち、上記第 3背面支持部材 107 cと第 4背面支持部材 107dの上記左右の分割部材 107d—l, 107d—3とに跨がつ て、図 3及び図 4に示す左右一対二組の(油圧)リフトシリンダー 6のピストンロッド端を 支承するための三日月状の第 3ブラケット 25cが溶接によって固設される。こうして組 み立てられた本実施形態によるブレード 11の中央前面部 12,連結前面部 13及び端 部前面部 14の各下端に沿って、第 1〜第 3切刃 15〜17が従来と同様に固設されて 、本発明のブレード装置 10が完成する。ここで、前記第 1切刃 15は、中央前面部 12 の下端に沿って平らな直線形状をなしている。そのため、掘肖 ij、運土及び整地の各 作業ごとにブレード 11を交換することなぐ掘削'運土作業'地均し作業に効果的に 使用することができ、各作業を円滑に且つ能率的に行うことができる。
[0099] こうして完成したブレード装置 10は、中央前面部 12の三角形分割端部 12b、連結 前面部 13及び端部前面部 14を一体に铸造した一体铸造部 101を、中央前面部 12 の矩形分割中央部 12aでもある板金部 105の前面板 106の左右端部に溶接によつ て一体ィ匕するだけで、中央前面部 12の前面板 106と、同中央前面部 12の端部三角 形部分、連結前面部 13及び端部前面部 14とが一気に組み立てられる。このとき、前 記三角形分割端部 12b、連結前面部 13及び端部前面部 14は、筒状の第 1及び第 2 背面支持部 103a, 103bと第 1及び第 2のブラケット 25a, 25bとが一体に铸造されて いる。このため、他の格別な力卩ェゃ組立が不要となり、溶接ロボットの採用と相まって ブレード全体の組立性が向上し、その組立時間も大幅に短縮される。
[0100] また、この一体铸造部 101にあっては、前面板部 102と背面部 103とが最も接近す る連結前面部 13と端部前面部 14との屈曲境界部を必要最小限まで接近させる。そ して、剛性と強度が要求される部位、特にリフトフレーム 3を枢支する第 1ブラケット 25 aの铸造領域では、前面板部 102と第 2背面支持部 103bとを連続する中実構造とし て铸造し、他の背面領域の前面板部 102と背面部 103a, 103bとの間を中空構造と する。これにより、ブレード装置 10の前後幅を必要最小限に抑えることができるだけ でなぐ重量の低減も実現できる。特に、第 1及び第 2ブラケット 25a, 25bが第 1及び 第 2背面支持部 103a, 103bに铸造一体化されることにより、その基端部を背面部 1 03内へと引き込ませるととも〖こ、後方への突出量を少なく設計できる。このため、ブレ ード 11の前後奥行きの最大寸法を更に小さくできる。一方、中央前面部 12の板金部 105の背面支持部材 107にも、高い剛性と強度を要求されない領域には板金を使つ た中空構造を採用するとともに、高い剛性及び強度が要求される領域を铸造品から なる補強リブ 107d— 1 ' , 107d- 2' , 107d— 3 'を有する中空構造を採用している。 このため、ブレード全体に要求される剛性と強度を各領域において確保するとともに 大幅な小型軽量ィ匕が達成できる。以上のとおり、組立性の向上と小型軽量ィ匕が達成 されるため、製造コストの増加を回避できる。
[0101] 更に本発明のブレード装置 10によれば、既述したように上記特許文献 1と同様のブ レード前面形状を有している。これにより、本実施形態にあっても前記連結前面部 13 の前面は、掘削'運土時に中央前面部 12及び端部前面部 14の双方の前面から移 動してくる土を円滑に合流させる機能を有している。また、前記端部前面部 14は、掘 肖 IJ '運土中の土壌をブレード側方力 外部にこぼれ出ないように確実に保持する機 能を有している。前記連結前面部 13と端部前面部 14は、各ブレード前面に沿って土 を盛り上げて抱え込むため、土量の損失を減らすとともに、端部前面部 14から中央 前面部 12に向けて流れ込もうとする土の抵抗を小さくして中央前面部 12のブレード 前面に堆積される土量を大幅に増大することができる。
[0102] また、本発明のブレードによる牽引力や牽引力あたりの土量は、従来のブレードより も増加する。本発明のブレードは、掘削抵抗が従来のブレードに対して低減し、運土 抵抗も減少する。従って、本発明のブレードにおける掘肖 1』·運土時の消費馬力は、従 来のブレードにおける掘肖 1 運土時の消費馬力よりも低減する。以上の点から、本発 明のブレードは、従来のブレードと比較して、如何に従来の作業時間よりも短い時間 で且つ小さな牽引力と掘削力とをもって所望のドーザ作業を効率よく実現させること ができる。
[0103] 以上の説明から明らかなように、特に本発明に係るブレード装置のブレードは、設 計上で最も掘削効率が高い形状を容易に確定することができるとともに、同時に旋回 押し回しにあたっても、ブレード上力も積土が流れ落ちることがなくなる。また、铸造 体と板金とを効果的に組み合わせて構成する場合には、ブレード構造の簡略化、組 立の容易性及び溶接作業性の向上、軽量小型化が達成される。また、上述のごとく 上記特許文献 1に記載されて 、るブレード構造を備えるため、当然に同特許文献 6 に記載されているブレード装置と同様に、牽引力に対する抵抗力が軽減され、牽引 力あたりの土量を大幅に増大することも当然である。また、同時に、掘削'運土中の消 費馬力を大幅に低減することができるとともに、短時間に最少のエネルギー量で最大 の掘削'運土量を得ることができ、前記作業機械の燃費効率が著しく向上して低コス ト化が実現できる。
[0104] [実施形態 2]
本発明の他の実施形態に係るガード (ガード部材) 70が取り付けられたブレード (作 業機械用ブレード) 50について、図 27〜図 33を用いて説明すれば以下の通りであ る。
なお、以下の説明において用いる「前後」方向については、ブルドーザの前進方向 を「前」、後進方向を「後」とする。
[0105] [ブレード 50全体の構成]
本実施形態に係るブレード 50は、図示しな 、ブルドーザの前方に取り付けられる 作業用の土工板であって、図 27〜図 30に示すように、上下に凹状に湾曲する湾曲 形状を有するブレード前面部 (前面部) 51と、ブレード前面部 51の上端部に取り付け られたガード 70とを備えている。また、ブレード 50は、図 30および図 31に示すように 、ブルドーザの前部にリフトフレーム、ストラット 'アーム、チルトシリンダやリフトシリンダ を介して取り付けるための複数個の取付けフランジ部(取付け部) 65, · ··, 65が後方 に向けて突設されている。 [0106] さらに、ブレード 50は、図示しないチルトシリンダやリフトシリンダ、油圧ポンプ等を 制御することにより、排土作業を行う際には掘削姿勢に対して 30〜60度程度前傾さ せた姿勢になるように制御され、運土作業を行う際には掘削姿勢に対して 10〜30度 程度後傾させた姿勢になるように制御される。これにより、排土作業においては、従 来よりも大きくブレード 50を前傾させることで排土性を向上させることができる。一方、 運土作業にぉ 、ては、ブレード 50による運土量を増大させることができる。
[0107] (ブレード前面部 51の構成)
ブレード前面部 51は、横長の高剛性の鋼鉄材によって形成されており、中央前面 部 52と、中央前面部 52の両側にそれぞれ配置された左右一対の連結前面部 53と、 連結前面部 53の両側にそれぞれ配置された左右一対の端部前面部 54とを有して いる。
中央前面部 52は、図 31に示すように、側面視において曲率が一定の湾曲面であ つて、下端に直線状の第 1切刃 55を有している。中央前面部 52は、図 29のブレード 平面図に示すように、連結前面部 53や端部前面部 54よりも前方に張り出して 、る。 また、中央前面部 52は、掘削機能、運土機能および整地機能を備えたブレード幅を 下端部に有している。第 1切刃 55は、この中央前面部 52の下端部に沿って取り付け られた、平らな直線状の板材である。これらの構成により、掘肖 ij、運土および整地の 各作業ごとにブレード 50を交換することなぐ掘肖 IJ '運土作業'地ならし作業を効果的 に行うことができ、各作業を円滑、かつ能率的に行うことができる。
[0108] 連結前面部 53は、中央前面部 52の第 1切刃 55から連続的に後方向に所定の角 度をもって拡開して延びる第 2切刃 56を有している。また、連結前面部 53は、その一 側縁が中央前面部 52の側縁と同一方向に傾斜して延びており、図 28に示すように、 正面視において、上端側力も下端側に向力つて次第に幅が広くなるように形成され ており、掘削 ·運土作業時に中央前面部 52および端部前面部 54の双方から移動し てくる土砂を円滑に合流させる機能を有している。
[0109] 端部前面部 54は、連結前面部 53の第 2切刃 56から連続的に前方向に所定の角 度をもって拡開して延びる直線状の第 3切刃(端刃) 57を有している。また、端部前 面部 54は、図 28に示すように、上端側から下端側に向力つて同一の幅になるように 形成されている。さらに、端部前面部 54は、掘削'運土中の土砂をブレード側方から 外部にこぼれ出な 、ように確実に保持する機能を有して!/、る。
[0110] これらの連結前面部 53および端部前面部 54は、図 29および図 32に示すように、 平面視において互いの接合部分が、中央前面部 52と連結前面部 53との接合部分 および端部前面部 54の外側の端部よりも後方へ凹んだ位置にあり、前後方向に直 交する方向に広がる略 V字形になるように互いに接合されている。なお、端部前面部 54の外側の端部にっ 、ては、平面視における前後方向にぉ 、て中央前面部 52と 連結前面部 53との接合部分と同じ位置にあってもよいし、中央前面部 52と連結前面 部 53との接合部分よりも後方側に配置されていてもよい。これにより、ブレード 50の 両端部には、それぞれ連結前面部 53と端部前面部 54とによって凹部 61が形成され る。そして、連結前面部 53および端部前面部 54は、作業時において各前面部 52, 5 3, 54に沿って盛り上げられた土砂を両側の凹部 61の前方およびその間に抱え込 むことで、土量の損失を減らすことができる。さらに、上述のように、平面視において 連結前面部 53および端部前面部 54の接合部分が、中央前面部 52と連結前面部 5 3との接合部分および端部前面部 54の外側の端部よりも後方へ凹んだ位置に配置 されていることで、掘削時における土砂の抵抗を小さくして、中央前面部 52の前方に 堆積される土量を大幅に増大させることができる。
[0111] なお、本実施形態では、連結前面部 53および端部前面部 54が、平面視において 略 V字形を形成するように配置されている例を挙げて説明している力 この形状に限 定されるものではなぐ例えば、略 U字状を形成するように配置されていてもよい。 第 1切刃 55、第 2切刃 56および第 3切刃 57は、耐磨耗性に優れ、破損しにくい強 靭な材料 (例えば、ボロン鋼等)によって形成されている。そして、第 1切刃 55、第 2 切刃 56および第 3切刃 57は、上述したような配置形態をとつているため、第 1切刃 55 が第 2切刃 56および第 3切刃 57よりも先行して掘削することになる。よって、第 1切刃 55がその周辺の地面を他の切刃 56, 57よりも先行して崩すことで、第 2切刃 56およ び第 3切刃 57において必要な実質的な掘削力を第 1切刃 55の掘削力よりも小さくす ることができる。そして、第 2切刃 56および第 3切刃 57における掘削量としては、第 1 切刃 55よりも少量となる。 [0112] 本実施形態では、中央前面部 52、連結前面部 53および端部前面部 54の各前面 は、側面視において、上下方向において連続する凹状の同一曲率の湾曲面となって いる。このように、各前面部 52〜54の前面が上下方向において凹状の同一曲率を 持つ湾曲面を有していることで、ブレード 50の前面における土砂の前方への流れを スムーズにして、土砂の抱え込み量や盛り上げ高さが制限されてしまうことを回避す ることがでさる。
[0113] (ガード 70の構成)
ガード 70は、図 27〜図 30に示すように、ブレード前面部 51の上端部に対して溶接 によって取り付けられている。また、ガード 70は、本体部 71と開口部(前方視認用の 開口咅 72, 72とを有して ヽる。
本体部 71は、運土作業時等においてブレード 50の前面に堆積した土砂に接触し て前方へと押し戻す流れを形成する接土面 71aと、本体部 71における接土面 71aと は反対側の面 (後側の面)に立設された複数のリブ 71bと、を備えている。
[0114] 接土面 71aは、図 33に示すように、側面視において、ブレード 50の中央前面部 52 前面の上端部における延長線 (接線方向)に対して前方へ約 30度傾いた状態で取り 付けられた直線状の(平らな)面である。このように、ブレード 50の上端部に対してガ ード 70の前面 (接土面 71a)をブレード 50の前面の上端部における延長線に対して 前傾するような姿勢でガード 70を取り付けた場合には、ブレード 50のブレード前面の 上端部における延長線に対して前傾した接土面 71aによって前方へ押し返す方向に 土砂の流れが形成される。このため、例えば、運土作業時において、ブレード 50全 体を約 20度程度後方へ傾けた状態で作業を行った場合でも、ブレード 50の前方へ 堆積された土砂がブレード 50の後方へこぼれ落ちる量を大幅に低減できる。
[0115] リブ 71bは、本体部 71の裏面に対して略垂直に立設された複数の板状部材であつ て、接土面 71aに対して力かる荷重を後方力 支持する。
開口部 72, 72は、ブレード 50が装着されたブルドーザのオペレータ力 作業中に 運転席からブレード 50の前方に堆積した土砂の量等を視認するために形成された 穴であって、ガード 70の本体部 71の左右両側に設けられている。これにより、ブレー ド 50の上端部にオペレータからのブレード 50の前方の視界を遮るガード 70を取り付 けた場合でも、作業時におけるオペレータの視認性を低下させることを回避すること ができる。
[0116] [本ブレード 50の特徴]
(1)
本実施形態のブレード 50では、図 27等に示すように、その上端部に沿ってガード 7 0が取り付けられている。ガード 70は、図 33に示すように、接土面 71aが側面視にお いてブレード 50の中央前面部 52の上端部における延長線に対して前方へ傾斜する ように、ブレード 50の上端部に取り付けられて 、る。
[0117] 通常、ブルドーザのブレードによって掘削等された大量の土砂の運土作業時にお いて、ブレードの前方へ堆積した大量の土砂がブレード 50の上端部に取り付けられ たガード付近まで到達すると、その土砂の移動方向は、ブレード上端部におけるガ ード (接土面)の傾きに依存して決定される。例えば、ガード (接土面)が鉛直方向より も後方へ傾斜して 、る場合には、ブルドーザが前進するとガード付近の土砂が大量 にガードの上部ある 、は左右両端力 ブレードの後方へこぼれ落ちてしまう。一方、 ガード (接土面)が鉛直方向よりも前方へ傾斜している場合には、ブルドーザが前進 するとブレード上部のガードの前面 (接土面)によって前方へと押し戻す土砂の流れ が形成される。特に、ブレードの下端部における抵抗を低減するために、ブレード自 体を後方へ傾けて運土を行う場合には、ブレード上方に設けられたガードの角度も 後方側へ傾くため、後方への土砂のこぼれ量が増大しやすい。
[0118] 本発明のガード 70は、ガード 70の接土面 71aがブレード 50の中央前面部 52の上 端部における延長線に対して前傾するように取り付けられている。
一般的に、ブレード 50の前面は湾曲状になっており、その上端部は鉛直方向よりも 前方側へ傾斜している。このため、このブレード上端部の延長線を基準にしてガード 70の接土面 71aを前傾させるようにガード 70を取り付けることで、運土作業時におい てブルドーザが前進した場合には、ブレード 50上部のガード 70の接土面 71aによつ て前方へと押し戻す土砂の流れが形成される。
[0119] これにより、ブレード 50の上部に取り付けるガード 70の取付け角度を調整するだけ の簡易な構成により、運土作業時におけるブレード 50後方への土砂のこぼれ量を大 幅に低減して、運土作業時における作業効率を向上させることができる。
(2)
本実施形態のブレード 50では、ガード 70は、図 33に示すように、接土面 71aが側 面視においてブレード 50の中央前面部 52の上端部における延長線に対して前方へ 約 30度傾斜するように、ブレード 50の上端部に取り付けられている。
[0120] このように、 30度前後前傾するようにガード 70を取り付けることで、ブレード 50前面 における土砂の流れを妨げることなぐブレード 50後方への土砂のこぼれ量を大幅 に低減することができる。
(3)
本実施形態のブレード 50では、図 27〜図 29に示すように、ガード 70の両端に、運 転席のオペレータ力ものブレード 50の前方視認用の開口部 72, 72を設けている。
[0121] これにより、ブレード 50の高さを上方へと延ばすガード 70を取り付けた場合でも、ォ ペレータによってブレード前方の土砂の状態や土砂の量を開口部 72, 72から確認 することができる。この結果、ガード 70を取り付けてもブレード 50前方の視認性を低 下させることを回避することができる。
(4)
本実施形態のブレード 50は、図 27および図 29、図 32に示すように、平面視にお いて、連結前面部 53および端部前面部 54を略 V字形に配置することによって形成さ れる凹部 61を両端に設けている。
[0122] これにより、掘削等の作業時におけるブレード 50の下端部における接触部分が、 中央前面部 52の下端部に取り付けられた第 1切刃 55の部分が中心となり、連結前 面部 53および端部前面部 54の下端部に取り付けられた第 2切刃 56および第 3切刃 57の部分はほとんど抵抗とはならないため、ブレード 50による掘削時等におけるブ レード 50の下端部における接触抵抗を大幅に低減して作業性の向上が図れる。また 、中央前面部 52の下端部の第 1切刃 55によって掘削等された大量の土砂を、両側 に設けられた凹部 61において堆積させることで、 1サイクル当たりの運土量を増大さ せることができる。
[0123] [他の実施形態] 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定 されるものではなぐ発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態 2では、ガード 70およびブレード 50に対して本発明を適用した例を 挙げて説明した。しかし、本発明はこれに限定されるものではない。
[0124] 例えば、作業機械に装着された作業機械用ブレードの上端部にガード部材を設け 、前記ガード部材を前記作業機械用ブレードの上端部における前記作業機械用ブ レード前面の延長線に対して前方へ傾斜させ、前記ガード部材の前記延長線に対し て前方へ傾斜させた角度を調整することにより、前記作業機械用ブレードの後方へこ ぼれ落ちる土砂の量を制御する作業機械のブレードの制御方法として、本発明を特 定してちよい。
[0125] このような作業機械用ブレードの制御方法として本発明を特定した場合でも、以下 に示すような効果を得ることができる。
すなわち、本発明の作業機械用ブレードの制御方法では、例えば、ブルドーザ等 の作業機械の前方側に装着され、その上端部にガード部材を設けた作業機械用ブ レードの制御方法であって、ガード部材が、側面視における接土面の取付角度が作 業機械用ブレード上端部における作業機械用ブレード前面の延長線よりも前方へ傾 斜するように取り付けられており、このガード部材の前傾角度を調整することで作業 機械用ブレード後方への土砂のこぼれ量を制御する。
[0126] ここで、ガード部材は、運土量を増大させる目的で作業機械用ブレード上端部に取 り付けられる部材であって、例えば、板材と、その裏面側に取り付けられた複数のリブ とによって構成されている。また、ガード部材の接土面とは、運土作業時等において 土砂を前方へ押すために土砂と接触する面を意味している。
通常、作業機械用ブレードに対してガード部材が取り付けられる際には、その接土 面が、側面視において、ガード部材が取り付けられる作業機械用ブレードの上端部 における作業機械用ブレード前面の延長線上に沿って、あるいは上記延長線よりも 後方側に傾斜するように取付けが行われる。このため、運土作業時に作業機械用ブ レードの前方へ溜まってきた土砂が作業機械用ブレード上端部のガード部材の位置 まで達すると、ガード部材を乗り越えて後方へこぼれてしまうおそれがある。特に、作 業機械用ブレードの角度を後方へ傾斜させて運土を行う場合には、ガード部材の接 土面の角度はさらに後方へ傾斜してしまうため、後方への土砂のこぼれ量が増大し てしまう。
[0127] そこで、本発明の作業機械用ブレードの制御方法では、作業機械用ブレード上端 部に取り付けられるガード部材を、側面視においてその接土面が作業機械用ブレー ド上端部における作業機械用ブレード前面の延長線よりも前方傾斜するように取り付 けており、このガード部材の前傾角度を調整することで、作業機械用ブレードの後方 への土砂のこぼれ量を調整する。
[0128] これにより、運土作業時において、作業機械用ブレードの前方へ溜まってきた土砂 が作業機械用ブレード上端部のガード部材の位置まで達した場合でも、ガード部材 の接土面によって土砂を前方へと押し戻す流れを形成できるため、運土作業時にお ける後方への土砂のこぼれ量を大幅に減少させることができる。
(B)
上記実施形態 2では、中央前面部 52の上端部における延長線に対して 30度前傾 した接土面を有するガード 70をブレード 50の上部に取り付けた例を挙げて説明した 。しかし、本発明はこれに限定されるものではない。
[0129] 例えば、ブレード 50の中央前面部 52の上端部における延長線に対するガード 70 の接土面 71aの前傾角度としては、 0度より大きく 50度以下の範囲内であればよい。 前傾角度をこの範囲内になるようにガード 70を取り付けることで、上記実施形態に係 るブレード 50によって得られた効果と同様の効果を得ることができる。
ただし、上記実施形態のように、上記延長線に対するガード 70の接土面の前傾角 度を 30度とした場合には、ブレード 50の前方に溜まった土砂を前方へと押し戻す流 れを効果的に形成することができるという点で、上記実施形態のように前傾角度を 30 度前後に設定することがより好ましい。
[0130] (C)
上記実施形態 2では、ブレード 50の上端部における延長線に対して前傾する接土 面 71aを有するガード 70を例として挙げて説明した。しかし、本発明はこれに限定さ れるものではない。
例えば、運土作業時のブレードの傾斜状態における鉛直方向を基準にして、接土 面が前傾するように取り付けられたガードとして本発明を特定してもよ 、。
[0131] この場合には、運土作業時においてブレードを後方へ傾斜させた場合でも、その 状態において鉛直方向に対して接土面が前傾するようにガードを取り付けることで、 運土作業時におけるブレードの姿勢に関わらず確実に後方への土砂のこぼれ量を 低減することが可能になる。
さらに、側面視において、ブレードの中央前面部の上端部における延長線に対して 前傾しており、かつ運土作業時におけるブレードの姿勢において鉛直方向に対して 前傾する接土面を有するガードであってもよ 、。
[0132] このように、 2つの条件の双方を満たすように接土面の取付け角度を設定することで
、より確実に運土作業時におけるブレード後方への土砂のこぼれ量を低減することが できる。
(D)
上記実施形態 2では、図 31に示すように、ガード 70の接土面 71aが側面視におい て直線状の平板である例を挙げて説明した。しかし、本発明はこれに限定されるもの ではない。
[0133] 例えば、接土面が側面視において前方側へ湾曲する面であってもよいし、ガードの 中央前面部の上端部における延長線に沿って配置された (前傾角度 0度の)接土面 の上端部が前方へ傾斜して 、るガードであってもよ!/、。
(E)
上記実施形態 2では、ガード 70の両端に前方視認用の開口部 72を設けた例を挙 げて説明した。しかし、本発明はこれに限定されるものではない。
[0134] 例えば、両端の一方の側にのみ前方視認用の開口部が設けられていてもよいし、 前方視認用の開口部が設けられて!/、な 、ガードであってもよ!/、。
また、上記実施形態では、ガード 70の両端に形成された前方視認用の開口部 72 力 格子状の開口である例を挙げて説明した。しかし、本発明はこれに限定されるも のではない。 [0135] 例えば、開口部としては、パンチングメタルのように平板に形成した穴であってもよ い。
(F)
上記実施形態 2では、ブレード 50の中央前面部 52が側面視において全体に渡つ て曲率が一定の湾曲面である例を挙げて説明した。しかし、本発明はこれに限定さ れるものではない。
[0136] 例えば、側面視において、中央前面部における中央部分が湾曲しており、上端部 および下端部における少なくともいずれか一方の部分が直線状になっている作業機 械用ブレードであってもよい。
この場合でも、上端部の直線状の部分の延長線を基準にして、ガードの接土面が 前傾するようにガードをブレードの上端部に取り付けることで、上記実施形態と同様 の効果を得ることができる。
[0137] (G)
上記実施形態 2では、左右の連結前面部 53および端部前面部 54の配置形態とし て、図 27および図 29等に示すように、中央前面部 52よりも後方へ凹ませた略 V字を 形成するように配置した例を挙げて説明した。しかし、本発明はこれに限定されるも のではない。
[0138] 例えば、平面視において、ブレード前面部を構成する中央前面部、連結前面部、 端部前面部が一直線上に配置されるような配置形態であってもよい。
ただし、上記実施形態のように、ブレード 50の両端に略 V字の凹部 61が形成され るように、連結前面部 53および端部前面部 54を配置することは、ブレード 50の下端 部における掘削抵抗を低減して、作業効率を向上させることができる点でより好まし い。
[0139] (H)
上記実施形態 2では、各前面部 52〜54が独立して形成されており、各前面部 52 〜54の左右端部同士を溶接によって接合して左右方向に連続的な面を形成した例 を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、铸造などにより各前面部同士が一体成形されることによりブレード前面部 が形成されたブレードであってもよい。このように、ブレード前面部の大きさや厚み等 に応じて適宜設定を変更して一体形成することにより、各前面部を成形後に互いに 溶接によって接合する場合と比較して生産工程の数を減らせることから、ブレードの 生産効率を大幅に上昇させることができる。
(I)
上記実施形態 2では、作業機械としてのブルドーザに装着されるブレードを例とし て挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、ブレードが装着される対象としてはブルドーザ以外にも、ホイールローダや ドーザショベル、モータグレーダ等のように、作業機械の前方に取り付けられて掘肖 ij、 整地、切土、押土等の作業を行う土工板を装着する他の作業機械 (土工機械)であ つてもよい。

Claims

請求の範囲
[1] 各種の作業機械に装着されるブレード装置であって、
ブレード (11)は、中央前面部 (12)と、その左右端部に屈曲して連設された連結前面 部 (13)を介して更に連設される左右の端部前面部 (14)を有し、
前記中央前面部 (12)は、下端が掘削方向に直交して左右に延びるブレード幅 W1 を有するとともに、更にその下端に第 1切刃 (15)を有し、
前記連結前面部 (13)及び前記端部前面部 (14)は、その下端に第 2及び第 3の切刃 ( 16,17)を有してなり、
前記連結前面部 (13)及び前記端部前面部 (14)の交差線と、前記第 2及び第 3切刃 の刃先 (16,17)の交点 Cとが、上面視で前記第 1切刃 (15)の刃先よりも後方位置にあ り、
前記中央前面部 (12)、前記連結前面部 (13)及び前記端部前面部 (14)の各前面が 上端から下端にかけて半径 R2の連続する円弧面に形成され、
前記各切刃 (15〜17)が各前面部 (12〜14)の下端力も接線方向に延び、 各切刃 (15〜17)の刃先角 αが 40° 〜55° の掘削姿勢にあって、側面視において 前記第 1切刃 (15)の刃先力も前記中央前面部の上端までの高さを Ηとしたとき、前記 半径 R2が次式 (I)を満足する作業機械用ブレード装置。
R2= (0. 7〜1. 0) X H…… (I)
[2] 少なくとも前記中央前面部 (12)の前面は、下端のブレード幅 W1が前記第 1切刃 (15 )の刃先幅に略等しぐ且つその下端から上端に向けて漸次幅広に形成されている、 請求項 1に記載のブレード装置。
[3] 請求項 1または 2に記載のブレード装置 (10)が搭載されている作業機械。
[4] 各種の作業機械に装着されるブレード装置であって、
ブレード (11)は、中央前面部 (12)と、その左右端部に屈曲して連設された連結前面 部 (13)を介して更に連設される左右の端部前面部 (14)を有し、
前記中央前面部 (12)は、下端が掘削方向に直交して左右に延びるブレード幅 W1 を有するとともに、更にその下端に第 1切刃 (15)を有し、
前記連結前面部 (13)及び前記端部前面部 (14)は、その下端に第 2及び第 3の切刃 ( 16,17)を有してなり、
前記連結前面部 (13)及び前記端部前面部 (14)の交差線と、前記第 2及び第 3切刃 の刃先 (16,17)の交点 Cとが、上面視で前記第 1切刃 (15)の刃先よりも後方位置にあ り、
前記中央前面部 (12)、前記連結前面部 (13)及び前記端部前面部 (14)の各前面が 上端から下端にかけて半径 R2の連続する円弧面に形成され、
その少なくとも前記中央前面部 (12)の上端力 略接線方向に延びる板金材 (18)を 有し、
各切刃 (15〜17)の刃先角 αが 40° 〜55° の掘削姿勢にあって、側面視において 前記第 1切刃 (15)の刃先力 前記板金材 (18)の上端までの高さを Ηとしたとき、前記 半径 R2が次式 (I)を満足する作業機械用ブレード装置。
R2= (0. 7〜1. 0) X H…… (I)
各種の作業機械に装着されるブレード装置であって、
ブレード (11)は、中央前面部 (12)と、その左右端部に屈曲して連設された連結前面 部 (13)を介して更に連設される左右の端部前面部 (14)を有し、
前記中央前面部 (12)は、下端が掘削方向に直交して左右に延びるブレード幅 W1 を有するとともに、更にその下端に第 1切刃 (15)を有し、
前記連結前面部 (13)及び前記端部前面部 (14)は、その下端に第 2及び第 3の切刃 ( 16,17)を有してなり、
前記連結前面部 (13)及び端部前面部 (14)の交差線と、前記第 2及び第 3切刃の刃 先 (16,17)の交点 Cとが、上面視で前記第 1切刃 (15)の刃先よりも後方位置にあり、 前記中央前面部 (12)、前記連結前面部 (13)及び前記端部前面部 (14)の各前面が 上端から下端にかけて半径 R2の連続する円弧面に形成され、
側面視において、その少なくとも前記中央前面部 (12)の上端における前記中央前 面部 (12)の延長線に対して前方に傾斜する接土面を含む板金材 (18)を有し、各切刃 (15〜17)の刃先角 αが 40° 〜55° の掘削姿勢にあって、側面視で第 1切刃 (15)の 刃先力 前記板金材 (18)の上端までの高さを Ηとしたとき、前記半径 R2が次式 (I)を 満足する作業機械用ブレード装置。 R2= (0. 7〜1. 0) X H…… (I)
[6] 前記板金材 (18)の前記中央前面部 (12)の延長線に対する前傾角度は、 0度よりも大 きく 50度以下である、
請求項 5に記載の作業機械用ブレード装置。
[7] 下端が掘削方向に直交して左右に延びるブレード幅 W1を有し、さらにその下端か ら円弧面の接線方向に沿って延びる第 1切刃 (15)を有する中央前面部 (12)と、 前記中央前面部 (12)の左右端部に屈曲して連設され、その下端力も円弧面の接線 方向に沿って延びる第 2の切刃 (16)を有する連結前面部 (13)と、
前記連結前面部 (13)を介してさらに左右に連設され、その下端から円弧面の接線 方向に沿って延びる第 3の切刃 (17)を有する左右の端部前面部 (14)と、
を備え、
前記連結前面部 (13)および端部前面部 (14)の交差線と、前記第 2·第 3切刃の刃先 (16,17)の交点とが、上面視において前記第 1切刃 (15)の刃先よりも後方に配置され ており、
前記中央前面部 (12)、前記連結前面部 (13)および前記端部前面部 (14)の各前面が 、上端力 下端にかけて半径 R2の連続する円弧面を有しており、
掘削姿勢における側面視において、第 1切刃 (15)の刃先力も前記中央前面部 (12) の上端までの高さを Hとすると、前記半径 R2が次式 (I)を満たす、
作業機械用ブレード装置。
R2= (0. 7〜1. 0) X H…… (I)
[8] 下端が掘削方向に直交して左右に延びるブレード幅 W1を有するとともに、更にそ の下端に第 1切刃 (15)を有する中央前面部 (12)と、
前記中央前面部 (12)の左右端部に屈曲して連設され、その下端力も円弧面の接線 方向に沿って第 2の切刃 (16)を有する連結前面部 (13)と、
前記連結前面部 (13)を介してさらに左右に連設され、その下端から円弧面の接線 方向に沿って第 3の切刃 (17)を有する左右の端部前面部 (14)と、
を備え、
前記連結前面部 (13)および端部前面部 (14)の交差線と、前記第 2·第 3切刃の刃先 (16,17)の交点 Cとが、上面視において前記第 1切刃 (15)の刃先よりも後方に配置さ れており、
前記中央前面部 (12)、前記連結前面部 (13)および前記端部前面部 (14)の各前面が 、上端力 下端にかけて半径 R2の連続する円弧面を有しており、
少なくとも前記中央前面部 (12)の上端から略接線方向に延びる板金材 (18)を有し、 掘削姿勢における側面視において、第 1切刃 (15)の刃先力 前記板金材 (18)の上端 までの高さを Hとすると、前記半径 R2が次式 (I)を満たす、
作業機械用ブレード装置。
R2= (0. 7〜1. 0) X H…… (I)
PCT/JP2006/316627 2005-09-14 2006-08-24 作業機械用ブレード装置およびこれが搭載された作業機械 WO2007032191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800324413A CN101258290B (zh) 2005-09-14 2006-08-24 用于工程机械的铲刀装置及搭载有该装置的工程机械
EP06796740A EP1925752A4 (en) 2005-09-14 2006-08-24 BLADE DEVICE FOR A WORK MACHINE AND WORKING MACHINE THEREWITH
US12/065,959 US7654336B2 (en) 2005-09-14 2006-08-24 Work machine blade device and work machine including the same
BRPI0615725-4A BRPI0615725A2 (pt) 2005-09-14 2006-08-24 dispositivo de lámina de máquina de obra e respectiva máquina de obra

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-267098 2005-09-14
JP2005267098A JP2007077681A (ja) 2005-09-14 2005-09-14 ガード部材およびこれを備えた作業機械用ブレード
JP2005-268443 2005-09-15
JP2005268443A JP2007077707A (ja) 2005-09-15 2005-09-15 作業機械用ブレード装置と同ブレード装置が搭載された建設・土木車両

Publications (1)

Publication Number Publication Date
WO2007032191A1 true WO2007032191A1 (ja) 2007-03-22

Family

ID=37864789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316627 WO2007032191A1 (ja) 2005-09-14 2006-08-24 作業機械用ブレード装置およびこれが搭載された作業機械

Country Status (4)

Country Link
US (1) US7654336B2 (ja)
EP (1) EP1925752A4 (ja)
BR (1) BRPI0615725A2 (ja)
WO (1) WO2007032191A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028225A1 (en) * 2006-09-04 2008-03-13 Agrator Pty Ltd As Trustee For Gessner Unit Trust A blade assembly for an excavating apparatus
JP2010059708A (ja) * 2008-09-04 2010-03-18 Komatsu Ltd 作業機械用ブレード
CN113221061A (zh) * 2021-04-29 2021-08-06 河南科技大学 一种抛物线基底共振式曲面推土板及触土曲面的设置方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8701313B2 (en) * 2006-09-04 2014-04-22 Spadeblade Pty Ltd Blade assembly for an excavating apparatus
US8739437B2 (en) * 2011-03-04 2014-06-03 Meyer Products, Llc Snowplow blade
US8479838B1 (en) 2011-12-21 2013-07-09 Caterpillar Inc. Dozing blade assembly, cutter and dozing method
US8602122B2 (en) 2011-12-21 2013-12-10 Caterpillar Inc. Track-type tractor, dozing blade assembly, and dozing blade with steep center segment
US8783376B2 (en) 2012-08-09 2014-07-22 Caterpillar Inc. Cutter for dozing blade, service package, and method
US9957688B2 (en) * 2012-10-08 2018-05-01 Spadeblade Pty Ltd Excavator bucket
GB2519763A (en) * 2013-10-29 2015-05-06 Caterpillar Inc Blade Assembly
BE1022074B1 (nl) * 2014-03-03 2016-02-15 Cnh Industrial Belgium Nv Werkvoertuig met koeling voor tractietandwielkast
DE102017102683B4 (de) * 2017-02-10 2020-12-17 Franz-Ferdinand Huber Pflugvorrichtung mit zwei Schneidelementen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542344U (ja) * 1991-11-08 1993-06-08 新キヤタピラー三菱株式会社 ブレード装置
WO1993022512A1 (en) 1992-05-01 1993-11-11 Balderson Inc. Blade assembly for a compacting vehicle
WO2004044337A1 (ja) 2002-11-12 2004-05-27 Komatsu Ltd. 作業機械用ブレードと同ブレードを備えた建設・土木機械

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620053A (en) * 1994-01-28 1997-04-15 Komatsu, Ltd. Blade apparatus and its control method in bulldozer
CN2506701Y (zh) * 2001-05-18 2002-08-21 黄河工程机械集团有限责任公司 推土机组合式铲刀
USD478098S1 (en) * 2002-12-09 2003-08-05 Komatsu Ltd. Blade for bulldozer
USD477610S1 (en) * 2002-12-09 2003-07-22 Komatsu Ltd. Blade for a bulldozer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542344U (ja) * 1991-11-08 1993-06-08 新キヤタピラー三菱株式会社 ブレード装置
WO1993022512A1 (en) 1992-05-01 1993-11-11 Balderson Inc. Blade assembly for a compacting vehicle
WO2004044337A1 (ja) 2002-11-12 2004-05-27 Komatsu Ltd. 作業機械用ブレードと同ブレードを備えた建設・土木機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1925752A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008028225A1 (en) * 2006-09-04 2008-03-13 Agrator Pty Ltd As Trustee For Gessner Unit Trust A blade assembly for an excavating apparatus
AU2007294462B2 (en) * 2006-09-04 2013-05-30 Spadeblade Pty Ltd A blade assembly for an excavating apparatus
JP2010059708A (ja) * 2008-09-04 2010-03-18 Komatsu Ltd 作業機械用ブレード
CN113221061A (zh) * 2021-04-29 2021-08-06 河南科技大学 一种抛物线基底共振式曲面推土板及触土曲面的设置方法
CN113221061B (zh) * 2021-04-29 2024-05-14 河南科技大学 一种抛物线基底共振式曲面推土板及触土曲面的设置方法

Also Published As

Publication number Publication date
EP1925752A1 (en) 2008-05-28
US7654336B2 (en) 2010-02-02
BRPI0615725A2 (pt) 2012-12-18
US20090101372A1 (en) 2009-04-23
EP1925752A4 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
WO2007032191A1 (ja) 作業機械用ブレード装置およびこれが搭載された作業機械
WO2007032230A1 (ja) 作業機械用ブレード装置と同ブレード装置が搭載された作業機械
JP4493504B2 (ja) 作業機械用ブレードと同ブレードを備えた建設・土木機械
AU2005200645B2 (en) Blade apparatus for work machine and work machine having the same
US7401658B2 (en) Blade for work machine, and construction and earth-moving machine provided with the same blade
US8291624B2 (en) Blade assembly for an excavating apparatus
CN104005436A (zh) 挖掘机铲斗和推土机
US7191846B2 (en) Blade for work machine, and construction and earth-moving machine provided with the same blade
US8701313B2 (en) Blade assembly for an excavating apparatus
JP2007077690A (ja) 作業機械用ブレード装置と同ブレード装置が搭載された建設・土木車両
JP2007077681A (ja) ガード部材およびこれを備えた作業機械用ブレード
CN105339556B (zh) 铲斗及具备其的作业车辆
JP2007077722A (ja) 作業機械用ブレード装置と同ブレード装置を搭載した建設・土木車両
CN211816511U (zh) 一种工程机械支撑横梁
JP2007077707A (ja) 作業機械用ブレード装置と同ブレード装置が搭載された建設・土木車両
CN218667693U (zh) 一种挖掘机推土铲
CN213805536U (zh) 推土铲刀、推土铲结构及推土机
JP4031372B2 (ja) 建設機械の排土装置
JP3004961U (ja) 土工用バケット
AU2012216440A1 (en) A blade assembly for an excavating apparatus
CN110284540A (zh) 多功能铲斗

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032441.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006796740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12065959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0615725

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080306