WO2007029435A1 - 伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール - Google Patents

伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール Download PDF

Info

Publication number
WO2007029435A1
WO2007029435A1 PCT/JP2006/315509 JP2006315509W WO2007029435A1 WO 2007029435 A1 WO2007029435 A1 WO 2007029435A1 JP 2006315509 W JP2006315509 W JP 2006315509W WO 2007029435 A1 WO2007029435 A1 WO 2007029435A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transmission
coil
semiconductor device
signal
Prior art date
Application number
PCT/JP2006/315509
Other languages
English (en)
French (fr)
Inventor
Hideki Sasaki
Muneo Fukaishi
Toru Taura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US12/065,068 priority Critical patent/US8190086B2/en
Priority to JP2007534287A priority patent/JP4784773B2/ja
Publication of WO2007029435A1 publication Critical patent/WO2007029435A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Definitions

  • the present invention relates to a transmission method, an interface circuit, a semiconductor device, a semiconductor package, a printed circuit board, a semiconductor module, a memory module, and a portable device, and in particular, enables signal transmission with excellent noise resistance.
  • the present invention relates to a transmission method and an interface circuit, and a semiconductor device and the like provided with the interface circuit.
  • Non-Patent Document 1 semiconductor chips in which through vias and bumps are formed are stacked such that they are stacked, and signal transmission and power supply are performed between the stacked semiconductor chips.
  • a semiconductor device is disclosed.
  • Patent Documents 1 and 2 and Non-Patent Document 2 signal transmission between stacked semiconductor chips is formed on each semiconductor chip without using contact means such as through vias and bumps.
  • a semiconductor device using a noncontact interface circuit between the coils is disclosed.
  • a coil formed in one semiconductor chip generates a magnetic field signal
  • a coil formed in the other semiconductor chip receives the magnetic field signal to transmit a signal between the chips. Takes place without contact.
  • FIG. 1 is a schematic cross-sectional view of the semiconductor device described in Patent Document 1.
  • electromagnetic induction coils 102 or 103 are formed on the surfaces of the semiconductor chips 100 and 101.
  • the semiconductor chips 100 and 101 are electromagnetically coupled by the coils 102 and 103.
  • Each of the coils 102 and 103 is provided with a ferromagnetic film 104 or 105 for increasing the coupling coefficient between the coil 102 and the coil 103.
  • Patent Document 1 discloses that the coil is formed using a highly accurate film formation technique such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or sputtering. As it can be formed, it is described that this semiconductor device can be easily adapted to high integration and multiple pins.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • sputtering sputtering
  • Patent Document 1 describes that since the solder is not used, it is possible to eliminate the influence of a circuit malfunction caused by alpha line.
  • Patent Document 1 it is easy to disassemble and reassemble a circuit chip which does not use heat treatment or the like after conducting a characteristic test after assembling a semiconductor chip and confirming the characteristics, It is described that the yield improvement can be expected.
  • FIG. 2 is a schematic cross-sectional view of the semiconductor device described in Patent Document 2.
  • a semiconductor chip Ln in which a transmitter S and a transmitter coil SPS connected thereto are disposed, and a semiconductor chip Ln + x in which a receiver E and a receiver coil SPE coupled thereto are disposed and a force stack. It is done.
  • This semiconductor device performs signal transmission between the transmitting coil SPS and the receiving coil SPE.
  • this semiconductor device is adjacent to the chip in the vertical direction from the inside of one chip, which imposes extremely high requirements on mutual adjustment and surface flatness between the semiconductor chips. It is described that the signal can be transmitted directly and reliably inside the chip.
  • FIG. 3 is a schematic perspective view of the semiconductor device described in Non-Patent Document 2.
  • a plurality of semiconductor chips 300, 301, 302 and 303 are stacked. Further, the coils 304, 305 and 307 formed on the semiconductor chip are arranged in the same position in the same vertical direction. Furthermore, the transmitter Tx and the receiver Rx are located close to the coil. In this semiconductor device, signal transmission is performed between upper and lower semiconductor chips by such a configuration.
  • Non-Patent Document 2 describes that low power consumption and wide bandwidth interfaces can be realized.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-221260
  • Patent Document 2 JP-A-8-236696
  • Non-Japanese Literature 2 NonyuKi iura, et al., Analysis and Design of Transceiver Circuits and Inductor Layout for Inductive Inter-chip Wireless Superconnect, IEE 2004 Symposium on VLSI Circuits Digest of Technical Papers, pp. 246 -249 (2004 ).
  • Non-Patent Document 3 AX Widmer and PA Franaszek, "A DC-Balanced, Partitioned-B Lock, 8 B / 10 B Transmission Code", IBM J. Res. Develop., Vol. 27, No. 5, pp. 44 0- 451, Sep. (1983).
  • the waveform of the magnetic field signal received by the receiving coil is very similar to the waveform of noise mixed in the receiving coil in the semiconductor device. It is difficult to separate the signal and the noise.
  • FIG. 4 is a waveform diagram showing the waveforms at the input / output of the transmitter S and the receiver E (see FIG. 2) described in Patent Document 2.
  • the symbols U201, IL, U203 and U204 in FIG. 4 correspond to the respective input / output terminals shown in FIG.
  • Symbol U201 is an input voltage waveform of the transmitter S.
  • Symbol IL is a current waveform flowing through the transmission coil SPS.
  • the code U203 is a voltage waveform induced in the receiving coil SPE.
  • the code U 204 is a voltage waveform output from the receiver E.
  • the transmitter S receives a rectangular wave signal such as a digital clock signal and a data signal as indicated by a symbol U201.
  • a rectangular wave signal such as a digital clock signal and a data signal as indicated by a symbol U201.
  • the current waveform IL flowing through the transmitting coil SPS and the voltage waveform U203 induced by the receiving coil SPE become a waveform having a narrow pulse width and a sharp peak.
  • the current waveform IL flowing through the transmission coil SPS is a steep waveform having a narrow pulse width such that current flows only at rising power S and falling strength of the rectangular wave input to the transmitter S. This is understood as the circuit configuration of the transmitter S.
  • FIG. 5 is a circuit diagram showing a transmitter S described in Patent Document 2. As shown in FIG. Inverter 2 At 05, inverters 206 and 207 and transmitting coil SPs form a loop! The output voltage of the inverter 205 and the output voltage of the inverter 207 have the same phase difference between the delay times of the power inverters 206 and 207. Since current flows in the transmission coil SPS during this deviation, a current waveform such as symbol IL is generated.
  • a derivative waveform of the receiving magnetic field is induced as a voltage according to Faraday's law of electromagnetic induction. For this reason, as shown in FIG. 4, a differential waveform (one dILZ dt) of IL is induced. As a result, the receiver E receives a voltage waveform U203 having a sharp peak with a narrow pulse width.
  • Non-Patent Document 2 a voltage waveform having a sharp peak with a narrow pulse width is input to the receiving circuit.
  • FIG. 6 is a waveform diagram showing the transmission Z receiving circuit described in Non-Patent Document 2, and the current waveform or voltage waveform at each input / output point thereof. Similar to Patent Document 2, the transmission signal Txdata 308 is a rectangular wave by a digital signal, but the current IT flowing through the transmission coil has a waveform in which the current flows only at the rising edge and the falling edge of the rectangular wave.
  • FIG. 7 is a circuit diagram showing this transmission circuit Tx.
  • the transmission signal Txdata 308 is input to the transmission circuit Tx, a time lag occurs between the signal and the signal input to the coil via the delay buffer. During this deviation, the current IT flows in the transmitting coil.
  • the waveform strength of VR in FIG. 6 is that the received voltage VR is a differential waveform of the current IT flowing through the transmitting coil.
  • the power supply current flowing at the time of ONZOFF of the transistor has a waveform such as IL shown in FIG. 4 or IT shown in FIG.
  • the receiving coil receives the magnetic field that arrives from the outside of the semiconductor device.
  • noise resulting from electrostatic discharge or noise due to switching of the power supply circuit may be mixed into the receiving coil.
  • the voltage waveform due to the noise is very similar to the voltage waveform based on the normal received signal induced in the receiving coil. In principle, it is very difficult to separate the noise and the received signal.
  • Patent Document 2 describes an example using this method.
  • FIG. 9 is an explanatory view for explaining the principle.
  • the differential circuit generates a voltage (referred to as -dIL / dt) induced in one receiving coil and a voltage whose phase and phase are inverted by 180 ° (referred to as -dIL / dt bar).
  • -dIL / dt bar a voltage whose phase and phase are inverted by 180 °
  • FIG. 10 is an explanatory diagram for explaining an example in which signal reception fails due to a slight delay.
  • ⁇ dIL / dt bar has a delay compared to ⁇ dIL / dt, and the signals that should originally be added at the same timing are shifted, and the signal strength S8 that should originally have four peaks. Change to a signal with one peak!
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to perform signal transmission without being affected by noise even when noise is mixed.
  • Noise-resistant transmission method and interface circuit that can
  • Another object of the present invention is to provide a semiconductor device, a printed circuit board, a semiconductor package, a semiconductor module and a memory module provided with the interface circuit.
  • Another object of the present invention is to provide a portable device provided with the semiconductor device or the printed circuit board. Means to solve the problem
  • the transmission method of the present invention is characterized in that it is a magnetic field signal force triangular wave or a substantially triangular wave output from a transmitting coil in the transmission method of performing signal transmission noncontacting by electromagnetic induction I assume.
  • a voltage differentiated from the receiving magnetic field is induced according to Faraday's law of electromagnetic induction.
  • the transmission coil transmits a rectangular wave digital signal as a magnetic field signal! /. For this reason, it was induced by the above-described differential processing with a narrow impulse-like waveform force receiving coil with a narrow pulse width. It was difficult to separate the noise and the received signal because the waveform is very similar to the waveform of the noise in which the external force in the semiconductor chip is also mixed.
  • the magnetic field signal output from the transmitting coil is a triangular wave or a substantially triangular wave
  • the voltage waveform induced by the receiving coil becomes a waveform with a wide pulse width. It can be a received signal.
  • the received signal can be clearly distinguished from the noise signal that exhibits a narrow voltage waveform. Therefore, even when noise is mixed, it is possible to provide a non-contact transmission method excellent in noise resistance that is not affected by the noise.
  • the transmission method of the present invention is suitable for high-speed signal transmission and differential transmission.
  • the triangular wave or the substantially triangular wave is characterized by a waveform that continuously increases or decreases, or a waveform that increases or decreases stepwise.
  • a magnetic field signal of a triangular wave or a triangular wave can be output by devising the signal waveform sent to the transmitting coil by various methods.
  • the magnetic field signal is integrated by the transmission circuit connected to the transmission coil, and the shaped current signal is input to the transmission coil. It is preferable that the integration process be performed by an RC integration circuit.
  • the magnetic field signal is connected to the transmission coil.
  • the current switch is switched and processed by the transmission circuit, and the current signal obtained by shaping the current signal is input to the transmission coil.
  • the current switch switching process is performed by using a plurality of variable current sources and the variable current. Preferably done by a circuit having a switch connected to each source.
  • the current signal is preferably input to the transmission coil after being smoothed by a smoothing circuit. Since this smoothing circuit smoothes the magnetic field signal, distortion of the voltage waveform induced in the receiving coil is alleviated. For this reason, the strength of the received signal can be kept high, and if the communication quality can be kept high, an effect will occur.
  • two transmission coils may be provided, and magnetic field signals generated from each transmission coil may be transmitted while being 180 ° out of phase with each other. .
  • the magnetic field signals generated by the transmission coil force are transmitted with their phases inverted by 180 ° with respect to each other, signal transmission between the transmission coil Z and the reception coil becomes differential transmission, and external noise It is possible to cancel Furthermore, since the pulse width of the received signal becomes wide, waveform reproduction of differential transmission by delay becomes easy.
  • an interface circuit of the present invention is an interface circuit that performs signal transmission by electromagnetic induction, and generates a signal in which a magnetic field signal output from a transmitting coil is a triangular wave or a substantially triangular wave. It is characterized by
  • the triangular wave or the substantially triangular wave is characterized by a waveform that continuously increases or decreases, or a waveform that increases or decreases stepwise.
  • the transmission circuit preferably includes an integration processing circuit that performs integration processing, and the integration processing circuit is preferably an RC integration circuit.
  • the transmission circuit includes a current switch switching processing circuit that performs current switch switching processing, and the current switch switching processing circuit is connected to each of the plurality of variable current sources and each of the variable current sources. It is preferable to have a switch.
  • the signal output from the current switch switching processing circuit is A smoothing circuit is provided for slippery, and preferably.
  • the two transmitting coils are provided, and the two transmitting coils are disposed such that magnetic field signals are generated such that the transmitting coil forces are also 180 ° out of phase with each other.
  • a semiconductor device of the present invention includes a transmitting coil, and a transmitting circuit that generates a signal in which a magnetic field signal output from the transmitting coil is a triangular wave or a substantially triangular wave. It is characterized by
  • the triangular wave or the substantially triangular wave is characterized by a waveform that continuously increases or decreases, or a waveform that increases or decreases stepwise.
  • the transmission circuit preferably includes an integration processing circuit that performs integration processing, and the integration processing circuit is preferably an RC integration circuit.
  • the transmission circuit includes a current switch switching processing circuit that performs current switch switching processing, and the current switch switching processing circuit is connected to each of the plurality of variable current sources and each of the variable current sources. It is preferable to have a switch.
  • the transmission circuit is provided with a smoothing circuit for smoothing a signal output from the current switch switching processing circuit.
  • the two transmission coils are provided, and the two transmission coils are arranged such that magnetic field signals whose phases are mutually inverted by 180 ° are generated.
  • a semiconductor device having a receiving coil may be stacked, and (B) a plurality of semiconductor devices having a receiving coil may be stacked, C) A plurality of semiconductor devices having at least the transmission coil and a semiconductor device having a reception coil may be stacked.
  • the semiconductor device of the present invention even if another semiconductor device is stacked between the semiconductor device having the transmission coil and the transmission circuit and the semiconductor device having the reception coil. Good.
  • the semiconductor package of the present invention is a semiconductor package of the present invention described above.
  • a conductor device is characterized in that it is laminated on a printed circuit board.
  • the semiconductor device and the printed circuit board may be electrically connected via a conductor, and the printed circuit board may be provided with a receiving coil.
  • the printed circuit board of the present invention includes a transmitting coil, and a transmitting circuit that generates a signal in which a magnetic field signal output from the transmitting coil is a triangular wave or a substantially triangular wave. It is characterized by
  • the triangular wave or the substantially triangular wave is characterized by a waveform that continuously increases or decreases, or a waveform that increases or decreases stepwise.
  • the transmission circuit preferably includes an integration processing circuit that performs integration processing, and the integration processing circuit is preferably an RC integration circuit.
  • the transmission circuit includes a current switch switching processing circuit that performs current switch switching processing, and the current switch switching processing circuit is connected to each of the plurality of variable current sources and each of the variable current sources. It is preferable to have a switch.
  • the transmission circuit is provided with a smoothing circuit for smoothing a signal output from the current switch switching processing circuit.
  • two of the transmission coils are provided, and the two transmission coils are disposed such that magnetic field signals whose phases are mutually inverted by 180 ° are generated.
  • a semiconductor package of the present invention is characterized in that a semiconductor device having a receiving coil is stacked on the above-described print substrate of the present invention.
  • another semiconductor device may be stacked between the printed circuit board and the semiconductor device, and a plurality of semiconductor devices having receiving coils are stacked on the printed circuit board.
  • the semiconductor device of the present invention described above is stacked on a printed circuit board, and at least one of the semiconductor devices generates a signal different from the magnetic field signal. And a functional unit.
  • the semiconductor device and the printed circuit board are electrically connected via a conductor.
  • the transmission coil of at least one of the semiconductor devices may be connected, or may be disposed at a position not facing the transmission coil of the other semiconductor device.
  • the memory module of the present invention is the “semiconductor device having a transmission coil” or the “semiconductor device having a reception coil” of the present invention described above, or the above-described present invention of the present invention.
  • At least one semiconductor device memory in the “semiconductor device having a receiving coil” is characterized.
  • the memory module of the present invention includes a printed circuit board having a receiving circuit, and a transmitting coil and a magnetic field signal outputted from the transmitting coil, which are stacked on the printed circuit board. And a semiconductor device including a transmission circuit that generates a signal that is a triangular wave or a substantially triangular wave, and the semiconductor device power S memory.
  • the triangular wave or the substantially triangular wave is characterized by a waveform that continuously increases or decreases, or a waveform that gradually increases or decreases, and in this case, a plurality of semiconductor devices are stacked. , U is preferred.
  • a portable device of the present invention is characterized by including the above-described semiconductor device of the present invention or the above-described printed circuit board of the present invention.
  • the interface circuit of the present invention is applied to a semiconductor device, a large amount of signals can be transmitted between the superposed circuit chips by forming many transmitting Z receiving coils on the circuit chip. In particular, the effects of noise can not be ignored, and it is effective for signal transmission at high frequencies of the gigahertz band.
  • signals can be transmitted between adjacent circuit chips formed on a printed circuit board and also between circuit chips overlapping the circuit chips above and below.
  • semiconductor modules can be realized that are not easily affected by noise from the circuit chip between them.
  • one-to-many signal transmission can be performed between at least one interface chip and a plurality of memory chips, and a large capacity and high speed operation can be achieved.
  • Possible memory modules can be realized.
  • the interface circuit of the present invention is applied to a portable device, a mobile phone which is hard to be affected by noise in the portable device and is capable of high-speed image processing and communication control is realized. It can be realized.
  • the magnetic field signal output from the transmitting coil is a triangular wave or a substantially triangular wave
  • the voltage waveform induced by the receiving coil has a wide pulse width. It can be a signal.
  • the received signal can be clearly distinguished from the noise signal exhibiting a narrow voltage waveform.
  • the transmission method and interface circuit of the present invention are suitable for high-speed signal transmission and differential transmission.
  • the semiconductor device, the semiconductor package, the printed circuit board, the semiconductor module, the memory module and the portable device of the present invention provided with the transmission method or interface circuit of the present invention are resistant to noise and are not affected by noise. It is particularly good when high speed, high capacity processing is required.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor device described in Patent Document 1.
  • FIG. 2 is a schematic cross-sectional view showing a semiconductor device described in Patent Document 2.
  • FIG. 3 is a schematic perspective view showing a semiconductor device described in Non-Patent Document 2.
  • FIG. 4 is a waveform diagram showing waveforms at the input and output of the transmitter and the receiver described in Patent Document 2.
  • FIG. 5 is a circuit diagram showing a transmitter circuit described in Patent Document 2.
  • FIG. 6 is a waveform diagram showing the transmission Z receiving circuit described in Non-Patent Document 2 and the current waveform or voltage waveform at each input / output point thereof.
  • FIG. 7 is a circuit diagram showing a transmitter circuit described in Non-Patent Document 2.
  • FIG. 8 is a schematic view showing a waveform when noise is mixed in the conventional method.
  • FIG. 9 is a diagram for explaining the principle of a differential transmission method for canceling noise.
  • FIG. 10 is an explanatory view showing an example in which signal reception fails due to a slight delay.
  • FIG. 11 is a cross-sectional view of a semiconductor device provided with the interface circuit of the present invention.
  • FIG. 12 is a plan view of a semiconductor chip on which a transmitting device including a transmitting coil and a transmitting circuit is formed.
  • FIG. 13 is a block diagram showing an example of the entire interface circuit having a transmitting device and a receiving device.
  • FIG. 14 is a schematic circuit diagram showing an example of the interface circuit of the present invention.
  • FIG. 15 shows the input waveform of the transmitting circuit shown in FIG. 14, the current waveform input to the transmitting coil, the magnetic field waveform generated from the transmitting coil, the induced voltage at the receiving coil, and the output signal of the receiving circuit. It is a wave form diagram which shows an example.
  • FIG. 16 is a waveform diagram showing a waveform of an induced voltage in the receiving coil when the receiving coil simultaneously receives a signal and noise.
  • FIG. 17 is a circuit diagram showing an example of a transmission circuit having an integration processing circuit.
  • FIG. 18 is a timing chart showing an example when the data to be transmitted is random.
  • FIG. 19 is a circuit diagram showing an example of a transmission circuit provided with a current switch switching processing circuit.
  • FIG. 20 is a timing chart showing an example of applying a triangular wave to the transmission coil of the transmission circuit shown in FIG.
  • FIG. 21 is a circuit diagram showing another example of a transmission circuit provided with a current switch switching processing circuit.
  • FIG. 22 is a timing chart for applying a triangular wave to the transmitting coil of the transmitting circuit shown in FIG.
  • FIG. 23 is a timing chart showing another example in the case of applying a triangular wave to the transmitting coil of the transmitting circuit shown in FIG.
  • FIG. 24 is a timing chart showing an example in the case where the stepped current generated in the timing chart of FIG. 23 is smoothed by the transmission circuit shown in FIG.
  • FIG. 25 is a timing chart of an example in the case of emphasizing the current waveform of the triangular wave.
  • FIG. 26 is an example of a timing chart when the sawtooth current waveform is emphasized.
  • FIG. 27 is a circuit diagram showing an example of a transmitting circuit having a differential circuit.
  • FIG. 28 is a timing chart showing an example of the operation of the transmission circuit shown in FIG. 27.
  • FIG. 29 is a circuit diagram showing an example of a transmission circuit having another differential circuit.
  • FIG. 30 shows that the transmitter has one transmitter circuit, and two transmitter coils are provided in the transmitter circuit, and the transmitter coil forces generate magnetic field signals whose phases are inverted by 180 °.
  • FIG. 2 is a plan view of a semiconductor chip on which the two transmission coils are disposed.
  • FIG. 31 is a plan view showing the current flowing in the transmission coil of the semiconductor chip shown in FIG. 30 and the direction of the magnetic field generated from the current.
  • FIG. 32 is a block diagram of a transmission circuit shown in FIG. 30 to FIG.
  • FIG. 33 is a circuit diagram showing an example of the transmission circuit shown in FIG. 30 to FIG.
  • FIG. 34 is a circuit diagram showing an example of a receiving circuit.
  • FIG. 35 is a circuit diagram showing another example of the receiving circuit.
  • Fig. 36 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in series.
  • FIG. 37 is a waveform diagram showing an induced voltage waveform to the receiving coil in the case where in-phase noise is mixed in the receiving coil in the present invention.
  • FIG. 38 is an explanatory diagram of differential transmission for canceling noise.
  • FIG. 39 shows that the transmitter has one transmission circuit, and two transmission coils are provided in parallel in the transmission circuit, and the transmission coil force is a magnetic field signal whose phase is reversed by 180 °.
  • FIG. 5 is a plan view of a semiconductor chip in which the two transmission coils are arranged to be generated.
  • FIG. 40 is a plan view showing the current flowing in the transmission coil of the semiconductor chip shown in FIG. 39 and the direction of the magnetic field generated from the current.
  • FIG. 41 is a circuit diagram showing an example of the transmission circuit shown in FIGS. 39 and 40.
  • FIG. 42 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in parallel.
  • FIG. 43 shows that the transmitting apparatus has one transmitting circuit, and two transmitting coils in the transmitting circuit. Are connected in series, and their transmission coils have four powers, whose magnetic field signals are 180 ° out of phase with each other.
  • FIG. 5 is a plan view of a semiconductor chip in which the two transmission coils are arranged to be generated.
  • FIG. 44 is a plan view showing the current flowing in the transmission coil of the semiconductor chip shown in FIG. 43 and the direction of the magnetic field generated from the current.
  • FIG. 45 is a block diagram of a transmission circuit shown in FIG. 43 to FIG.
  • FIG. 46 is a circuit diagram showing an example of the transmission circuit shown in FIG. 43 to FIG.
  • FIG. 47 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in series.
  • FIG. 48 is a cross sectional view showing another example of the semiconductor device provided with the interface circuit of the present invention.
  • FIG. 49 is a schematic cross-sectional view showing an example in which the interface circuit of the present invention is used for transmission between stacked chips.
  • FIG. 50 is a schematic cross-sectional view showing another example in which the interface circuit of the present invention is used for transmission between stacked chips.
  • FIG. 51 is a schematic cross-sectional view showing an example in which the interface circuit of the present invention is mounted in a printed circuit board.
  • the interface circuit according to the present invention is characterized in that the interface circuit that performs signal transmission by electromagnetic induction includes a transmission circuit that generates a signal in which the magnetic field signal output from the transmission coil is a triangular wave or a substantially triangular wave.
  • the magnetic field signal output from the transmitting coil is triangular wave by devising the signal waveform sent from the transmitting circuit to the transmitting coil by various methods. Or it can be made into a substantially triangular wave. Such a magnetic field signal can be generated by inputting a triangular or substantially triangular current to the transmission coil.
  • a waveform that increases or decreases continuously or a waveform that increases or decreases stepwise is used as the triangular wave or the substantially triangular wave.
  • FIG. 11 is a cross-sectional view of a semiconductor device provided with the interface circuit of the present invention.
  • a semiconductor device provided with an interface circuit a plurality of semiconductor chips 1 and 2 are stacked, and between the transmission coil 4 and the reception coil 5 transmit signals.
  • the semiconductor chip 1 may also be formed with the transmitter S (transmission time). Path 3 and transmitting coil 4) may be provided. Further, in FIG. 11, only the transmitter S, the receiver E, and the semiconductor chips 1 and 2 on which they are formed, which are minimally required for the interface circuit of the present invention, are emphasized and described, and a cross section is shown. Hatching is omitted for convenience.
  • the transmitter circuit 3 and the receiver circuit 6 are formed using the transistors in each semiconductor chip, and the transmitter coil 4 and the receiver coil 5 are formed in the wiring layer of each semiconductor chip!
  • the semiconductor chips 1 and 2 be adhered by interposing an adhesive layer having no conductivity between the semiconductor chips 1 and 2 to be stacked.
  • the magnetic field generated in the transmitting coil 4 is blocked by the adhesive layer, and the magnetic field to the receiving coil 5 is reduced. I have a problem.
  • the receiving coil 5 can receive the magnetic field from the transmitting coil 4 as much as possible.
  • the thickness per semiconductor chip may be a thin semiconductor chip having a force of about 50 m, which is usually about 100 m, and further about 25 m.
  • the force with which a plurality of such semiconductor chips are stacked generally has a total thickness of 1 mm or less.
  • the thickness of the adhesive layer may be reduced to a force of about 5 m, which is usually about 25 m.
  • FIG. 12 is a plan view of a semiconductor chip 1 in which a transmitter S including the transmitter coil 4 and the transmitter circuit 3 is formed.
  • a transmitter S including the transmitter coil 4 and the transmitter circuit 3 is formed.
  • one transmission coil 4 is connected to one transmission circuit 3.
  • the receiving coil and the receiving circuit are similarly arranged on another semiconductor chip or on the same semiconductor chip.
  • the positional relationship between the transmitting coil 4 and the transmitting circuit 3 can be changed as appropriate without being limited to the form shown in FIG. As in the embodiment described later, the number of transmission coils 4 and the number of transmission circuits 3 included in the transmission apparatus S may change.
  • FIG. 13 is a diagram showing an example of a block diagram of the entire interface circuit having the transmitter S and the receiver E.
  • the interface circuit of the present invention is a receiving device having at least a transmitting device S having a transmitting circuit 3 and a transmitting coil 4, a receiving coil 5 and a receiving circuit 6.
  • E is composed of.
  • And 4 transmit coils It is characterized in that the magnetic field signal outputted from the circuit is a triangular wave or a substantially triangular wave.
  • the magnetic field signal output from the four transmitting coils is received by the receiving coil 5, differentiated by the receiving circuit 6, and shaped into a rectangular wave.
  • the magnetic field signal is generated by inputting a triangular or nearly triangular current signal shaped by integration processing in (1) transmission circuit 3 connected to transmission coil 4 to the transmission coil. (2) It is obtained by inputting a triangular or nearly triangular current signal shaped by the current switch switching process in the transmission circuit 3 connected to the transmission coil 4 to the transmission coil.
  • a triangular or substantially triangular current signal is generated by integration processing in the transmission circuit 3 connected to the transmission coil 4, and the current signal is input to the transmission coil 4 to generate a triangular or substantially triangular magnetic field signal.
  • integration processing in the transmission circuit 3 connected to the transmission coil 4 and the current signal is input to the transmission coil 4 to generate a triangular or substantially triangular magnetic field signal.
  • FIG. 14 is a schematic circuit diagram showing an example of the interface circuit of the present invention.
  • the transmission circuit 3 includes the integration processing circuit 7, and the integration processing circuit 7 shapes the input waveform Vi (t) of the transmission circuit 3 into a triangular wave or a substantially triangular current I (t). .
  • FIG. 15 shows the input waveform Vi (t) of the transmitter circuit 3, the current waveform I (t) input to the transmitter coil 4, the magnetic field waveform Hl (t) generated from the transmitter coil 4, and the receiver coil 5.
  • FIG. 6 is a diagram showing an example of the induced voltage Ve (t) of the signal and the output signal Vo (t) of the receiving circuit 6.
  • integration processing circuit 7 converts the rectangular wave data signal Vi (t) (see FIG. 15 (a)) input to transmission circuit 3 into a triangular wave or a substantially triangular wave.
  • the current waveform I (t) is shaped into the current waveform I (t) (see Fig. 15 (b)), and the current waveform I (t) is input to the transmitter coil 4.
  • the magnetic field Hl (t) (see 015 (b)) generated from the transmission coil 4 has the same waveform as that of the current waveform I (t).
  • an induced voltage Ve (t) is generated in the receiving coil 5.
  • the induced voltage Ve (t) is a differential waveform of triangular wave or substantially triangular wave I (t) or Hl (t). Since I (t) or Hl (t) is a waveform obtained by integrating the rectangular wave by the transmitting circuit 3, its differential waveform is eventually a rectangular wave with a wide pulse width similar to the input waveform (see FIG. c) see
  • FIG. 16 shows an induction in the receiving coil 5 when the receiving coil 5 receives a signal and noise simultaneously. It is the figure which showed the waveform of electromotive voltage Ve (t). If the pulse width of the signal is sufficiently long compared to the width of the noise, it becomes easy to separate the signal and the noise, and as a result, an interface circuit with excellent noise resistance can be realized.
  • FIG. 17 is a circuit diagram showing a part of the transmission circuit 3 having an integration processing circuit.
  • This transmission circuit 3 does not use a variable current source, and is a signal obtained by integrating and processing the data signal Vi input to the transmission circuit 3 by an RC integration circuit (a low noise filter) having a resistance R and a capacitance C. Is input to transmitter coil 4.
  • the symbols 10 and 10 'in FIG. 17 are applied to an integration processing circuit having an RC integration circuit (low pass filter) !.
  • transmission data be data that repeats 1 and 0, such as a clock signal.
  • passing the RC circuit results in a triangular wave that oscillates between the amplitudes of the same current value.
  • the cutoff frequency of the RC circuit when the cutoff frequency of the RC circuit is equal to the symbol rate indicating one symbol width of transmission data, single bit data equal to the symbol rate is clearly output as a triangular wave. If, however, the cutoff frequency of the RC circuit is higher than the symbol rate, the output of the RC integrator circuit may not be a perfect triangular wave, and a slight rectangular portion may remain. As described above, when a small number of rectangular portions remain, when data is transmitted using the transmitting Z receiving coil, there is a possibility that the transmission waveform may have a spike-like shape as in the prior art. Therefore, in the case of integration processing using an RC circuit as shown in FIG. 17, the filter constant of RC circuit is increased by changing the resistance value of R and the capacitance value of C. As a result, the RC circuit It is desirable that the power off frequency be less than or equal to the symbol rate of the signal to be transmitted.
  • the signal to be transmitted is a data string of 0 or 1 having no rule, and there is no component of the maximum number of consecutive 0s or 1s, as shown in FIG.
  • the current starts to flow at the start time of the data signal, and the current flowing to the transmitting coil 4 is controlled to stop the current at the end time of the data signal.
  • FIG. 18 shows a timing chart in the case where data to be transmitted is a data string of 0 or 1 having no rule.
  • the transmitter S When the transmitter S generates a triangular wave current so that the receiver E can obtain a rectangular wave data signal, the current flowing in the transmitter coil 4 is used for a data signal train in which 0 and 1 are continuous. It is necessary to keep decreasing the power which continues to increase while the 0 or 1 data signal continues. Since the data signals (Vi and Vi bars) input to the transmitter circuit 3 are irregular, it is impossible to predict the number of consecutive 0 or 1 data signals, and the upper limit of the current flowing through the transmitter coil 4 should be determined. There is a problem that you can not When the current is controlled by the semiconductor electronic circuit as in the present application, the current can not be continuously increased or decreased infinitely, and therefore, the triangular wave can not be shaped by the current control, .
  • the current starts to flow at the start time of the data, and the current stops at the end time of the data. It is possible to transmit data under various control.
  • the current is increased or decreased continuously between the start time and the end time of the data as in this embodiment.
  • the triangular wave can be transmitted by the current control as described above.
  • the 8B10B code circuit is a code circuit that adds 2 bits to 8-bit data and sends it in 10 bits, and the number of consecutive 0 or 1 data can be made 5 or less. .
  • the integration process may also be performed by an integration circuit using a charge pump, an operational amplifier, a switched capacitor, etc. it can.
  • the triangular wave or substantially triangular wave current signal can be shaped also by the various integration processing circuits, and the current signal can be input to the transmission coil to generate a triangular wave or substantially triangular wave magnetic field signal.
  • the transmission circuit connected to the transmission coil shapes a triangular or substantially triangular current signal in the current switch switching process, and inputs the current signal to the transmission coil to generate a triangular or substantially triangular magnetic field signal.
  • FIG. 19 is a circuit diagram showing an example of a transmission circuit provided with a current switch switching processing circuit
  • FIG. 20 is for explaining an operation of giving a triangular wave to a transmission coil of the transmission circuit shown in FIG. It is an example of a timing chart.
  • the transmission circuit includes a current switch switching processing circuit 11.
  • the current switch switching processing circuit 11 includes a plurality of variable current sources 8a to 8e and switches a to 8e connected to the variable current sources 8a to 8e. It consists of e.
  • the shaping of the rectangular data signal Vi to a triangular wave or a substantially triangular wave input to the transmitter circuit can be performed by controlling the switching time of the switches a to e.
  • the triangular wave or the substantially triangular wave will be abbreviated as "triangular wave" unless otherwise specified.
  • a method of providing a triangular wave to the transmitting coil 4 when a data signal Vi containing consecutive 0s or 1s and the continuous number of 0s or 1s is arbitrary is used as an input signal to the transmitting circuit, This will be described using the timing chart of FIG. In this example, the currents flowing to all of the variable current sources 8a to 8e connected to the switches a to e are the same.
  • the switches a to e possessed by the variable current sources 8a to 8e are changed in synchronization with the switching timing of the data signal Vi.
  • switch a is closed by 90% of the central data width of the data width in the time from the start to the end of the data signal Vi
  • switch b is The central force is also closed for 70% of the data width
  • switch c is likewise closed for 50% of the data width
  • switch d is likewise closed for 30% of the data width
  • switch e is likewise 10 for the data width Close only by%.
  • variable current sources 8a to 8e arranged in series with the closed switches flows to the transmitting coil 4, so that the transmission is performed according to the number of closed switches.
  • the amount of current flowing to the receiving coil 4 can be controlled.
  • the absolute value of the amount of current flowing through transmission coil 4 is maximum at the center of the data width of data signal Vi, and is minimum at the start and end of data signal Vi. That is, when the data signal Vi input to the transmission circuit is 1, the change in current flowing through the transmission coil 4 starts to increase and then decreases. Conversely, when the data signal Vi is 0, the current flowing through the transmission coil 4 Change will increase after decreasing. Then, when the data signal Vi is switched, it is always reset to a fixed value (line L in FIG. 20).
  • the transmission circuit as shown in FIG. 19 the current flowing through the transmission coil 4 is always reset to zero when the data signal Vi is switched, and when the data signal Vi is 1, the transmission of FIG.
  • the current flowing through the coil 4 in the direction of the arrow is positive, the current increases positively and then returns to zero. Conversely, when the data signal Vi is 0, the current flowing to the transmitting coil 4 increases negatively and then returns to zero.
  • the transmitting coil When the current of the triangular wave shaped in this way flows in the transmitting coil 4, the transmitting coil outputs a magnetic field signal of the triangular wave.
  • the magnetic field signal of this triangular wave is induced by the receiving coil, and the induced voltage waveform is obtained by differentiating the magnetic field signal of the triangular wave output from the transmitting coil (that is, substantially the same as the current of the triangular wave flowing through the transmitting coil 4). It appears as a waveform.
  • the voltage induced in the reception coil is 1 in the first half of the data width of the data signal Vi and 0 in the second half.
  • the voltage induced in the receiving coil is 0 for the first half of the data width of the data signal Vi and 1 for the second half, resulting in a rectangular wave with a wide pulse width. .
  • the interface circuit of the present invention determines the transmitted data by determining the first half of the induced voltage change with the clock signal of the receiving device with respect to the received signal received as such. Can.
  • FIG. 21 is a circuit diagram showing another example of a transmission circuit provided with a current switch switching processing circuit. It is. Specifically, in FIG. 21, a current smoothing circuit is connected between the current switch switching processing circuit 11 in the transmission circuit shown in FIG. 19 and the differential semiconductor element to which a signal is input to the transmission circuit. It is a circuit diagram showing an example.
  • FIG. 22 is a timing chart for illustrating an operation of giving a triangular wave to the transmission coil of the transmission circuit shown in FIG.
  • the current smoothing circuit is inserted between the current switch switching circuit 11 and the transmission differential pair transistor, which is a differential semiconductor element, to provide a staircase. Discontinuities in the shape are smoothed. As a result, the distortion of the voltage waveform induced in the receiving coil is alleviated, the strength of the received signal can be kept high, and the communication quality can be kept high.
  • FIG. 23 is another example of a timing chart for illustrating the operation of applying a triangular wave to the transmission coil of the transmission circuit shown in FIG.
  • the example of FIG. 23 uses the five switches a to e and the variable current sources 8a to 8e to input the triangular wave current to the transmitting coil 4, and switches the switches a to e in stages.
  • the current flowing through the transmission coil continues to increase upward or downward to the right.
  • the current flowing to each variable current source is the same.
  • the switch a opens after 10% of the data width from the start time of the data signal Vi and closes with the end of the data signal Vi.
  • switch b opens after 30% of the data width
  • switch c opens after 50% of the data width
  • switch d opens 70% of the data width.
  • the switch e opens after 90% of the data width, and all the switches a to e close simultaneously with the end of the data signal Vi.
  • the transmitting coil 4 is a sawtooth that is substantially a triangular wave. Wavy current can flow.
  • the reception signal induced in the reception coil becomes a rectangular wave having substantially the same shape as the data signal Vi input to the transmission circuit.
  • glitches may appear in the received signal for each data width. In that case, reception is performed using the reception clock near the center of the received signal data. If the signal waveform is shaped, the data signal Vi can be received correctly even if glitches occur in consecutive 1s or 0s of the received signal.
  • FIG. 24 is an example of a timing chart for explaining the operation when the stepped current generated in the timing chart of FIG. 23 is smoothed by the transmission circuit shown in FIG. As shown in FIG. 23, when a plurality of switches a to e are switched to shape a sawtooth wave current which is a substantially triangular wave, a step-like discontinuous portion force S generation corresponding to the switching timing of the switches a to e is generated. There is something to do.
  • a step-like discontinuity can be obtained by inserting the current smoothing circuit between the current switch switching processing circuit 11 and the transmission differential pair transistor which is a differential semiconductor element. The part is smoothed. As a result, the distortion of the voltage waveform induced in the receiving coil is alleviated, the strength of the received signal can be kept high, and the communication quality can be kept high.
  • the transmission circuit there are active components such as resistance elements, transmission coils, differential pair transistors, switch elements and current sources, and parasitic components (loads) such as parasitic capacitances of passive elements. Due to the parasitic components, as shown in FIGS. 25 and 26, the current flowing to the transmitting coil 4 may be smooth and not be a clear triangular wave or a sawtooth wave (substantially triangular wave). In such a case, the waveform of the voltage induced in the receiving coil is distorted, and the strength of the received signal is reduced. As a result, the communication quality is reduced.
  • the current waveform of the triangular wave can be emphasized, and as shown in FIG. 26, the sawtooth current waveform can be emphasized.
  • the dullness of the current flowing through the transmitting coil 4 can be suppressed, and the communication quality can be maintained while maintaining the strength of the received signal.
  • the magnetic field signal output from the transmitting coil becomes a triangular wave or a substantially triangular wave, and as a result, the receiving coil
  • the voltage waveform induced in the circuit that is, the reception signal waveform input to the reception circuit, can be made wider and the pulse width, and signal transmission excellent in noise resistance can be realized.
  • two transmission coil coils generate magnetic field signals whose phases are inverted by 180 ° each other, and the receiving coils induce differential transmission of the magnetic field signals to the reception voltage, thereby widening the pulse width and during the signal. Noise that is mixed into the
  • FIG. 27 is a circuit diagram showing an example of a transmission circuit having a basic differential circuit.
  • the transmission circuit 3 shown in FIG. 27 is a single-ended differential conversion circuit that converts a data signal Vi (t) that is a single-ended signal into a differential signal, and a variable for performing integration processing on the data signal Vi (t).
  • a current source 8 is configured.
  • FIG. 28 is a timing chart showing the operation of the transmission circuit shown in FIG.
  • the signal Vi is input to one of the two input terminals of the single-ended differential conversion circuit
  • the reference voltage Vrei3 ⁇ 4 is input to the
  • the reference voltage Vref is set to an intermediate value between the high level and the low level of the signal input Vi
  • differential outputs 1701 and 1702 are output by the single-ended differential conversion circuit.
  • the variable current source 8 constituting the output circuit generates a triangular current which returns the current flowing through the current source to the minimum value through the minimum value and the maximum value again according to the symbol rate of the input signal Vi.
  • the current flowing through the coil becomes a triangular wave as shown in the timing chart.
  • the symbol rate indicates one symbol width of transmission data.
  • FIG. 29 is a circuit diagram showing an example of a transmission circuit having another differential circuit.
  • two differential circuits for inverting and inputting two Vi (t) and two Vi (t) bars at the top, bottom, left, and right of the transmission coil 4 are connected.
  • the current waveform of the triangular wave or the substantially triangular wave can be shaped by controlling the value of the pair of biases Vbl and Vb2 of each differential circuit and the value of the pair of Vb3 and Vb4. .
  • the switch a of the variable current source 8a shown in FIG. 19 or 21 is replaced with a pair of Vbl and Vb2
  • the switch b of the variable current source 8b is replaced with a pair of Vb3 and Vb4
  • the number of such differential circuits is further reduced.
  • the transmission circuit 3 shown in FIG. 29 can be operated in the same manner as the current switch switching processing circuit shown above by increasing.
  • FIG. 29 The basic operation is the same as the timing chart of the transmission circuit of FIG. 19 (see FIG. 20).
  • two transistors Vbl and Vb2 play the role of a switch corresponding to the switch a in FIG.
  • the role of switch b in Fig. 19 is played by Vb3 and Vb4 in Fig. 29.
  • a circuit having, as a minimum unit, Vbl to Vb2 and a circuit formed of input transistors 1801, 1802, 1803, and 1804 is connected in parallel to transmitting coil 4. By connecting them, it is possible to increase the number of switches for controlling the current flowing through the transmission coil 4.
  • the circuit constituting this minimum unit can control the current flowing through the transmitting coil 4 in a step-like manner by controlling the switches Vbl to Vb4 stepwise with a time lag.
  • the interface circuit of the present invention has a coil form and a circuit form that can cancel noise by differential transmission using the above-described differential circuit.
  • the transmitting apparatus As a transmitting apparatus for performing such differential transmission, (A) the transmitting apparatus has two transmitting circuits of the form shown in FIG. 12, one transmitting coil is provided for each of the transmitting circuits, and the transmission is performed. The two transmit coils may be arranged so that they produce magnetic field signals that are 180 ° out of phase with each other and used! /.
  • the transmitter has one transmitter circuit, and two transmitter coils are provided in parallel in the transmitter circuit, and the phase of the transmitter coil coil is inverted by 180 ° with respect to each other.
  • the two transmitter coils may be arranged and used to generate the generated magnetic field signal.
  • the transmitter has one transmitter circuit, and two transmitter coils are provided in series in the transmitter circuit, and the phases are mutually inverted by 180 ° from the transmitter coils.
  • the two transmitter coils may be arranged and used to generate a magnetic field signal.
  • the transmitting apparatus has one transmitting circuit 3 ', and two transmitting coils 4a and 4b are provided in the transmitting circuit 3', and the phases of the transmitting coils 4a and 4b are mutually inverted by 180 °.
  • FIG. 6 is a plan view of a semiconductor chip in which two transmission coils 4a and 4b are arranged so that a magnetic field signal is generated.
  • a receiving circuit corresponding to this transmitting circuit it is preferable to use a receiving circuit including two receiving coils of the same configuration corresponding to transmitting coils 4a and 4b on the transmitting circuit side.
  • the size of the receiving coil does not have to be the same as that of the transmitting coil. Also, the coil size may not be adjusted to obtain the desired receiver sensitivity.
  • FIG. 31 is a plan view showing the direction of the current flowing through the transmission coils 4a and 4b of the semiconductor chip shown in FIG. 30 and the direction of the magnetic field generated from the current flow.
  • the transmitting circuit 3 'applies a current to the transmitting coils 4a and 4b so as to generate opposite magnetic fields.
  • the direction of the receiving magnetic field of the receiving coil is also reverse as well as the transmitting coil.
  • differential transmission of the magnetic field is performed between the two transmitting coils and the two receiving coils, and a semiconductor device excellent in noise resistance that cancels in-phase noise mixed from the outside can be realized.
  • FIG. 32 is a block diagram of the transmission circuit shown in FIG. 30 to FIG. Data signal sent by Vi
  • the triangular wave current input to the receiving circuit 3 'and shaped by the transmitting circuit 3' is applied to the two transmitting coils 4a and 4b.
  • the magnetic field signals output from the two transmission coils 4a and 4b are signals whose phases are 180 ° opposite to each other, and are received by the reception coils 5a and 5b.
  • the voltage induced by the receiving coils 5a and 5b has a waveform close to a rectangular wave with a wide pulse width, so that it is possible to obtain the received voltage Vo by receiving it in a differential circuit.
  • FIG. 33 is a circuit diagram showing an example of a transmitting apparatus provided with the transmitting circuit shown in FIG. 30 to FIG.
  • the transmitter S shown in FIG. 33 has, for example, two transmitter circuits shown in FIG. 12, and each of the transmitter circuits 3a ′ and 3b ′ has one transmitter coil 4a or 4b.
  • the two transmission coils 4a and 4b are arranged such that magnetic field signals inverted in phase with each other are generated from the respective transmission coils 4a and 4b.
  • the variable current sources 8a or 8b included in each of the transmitter circuits 3a 'and 3b' are the same as the variable current sources described above.
  • FIG. 34 is a circuit diagram showing an example of a receiving circuit.
  • the receiving circuit 6 is roughly divided into a receiving coil 5, a differential circuit, and a latch circuit 9. Between the two input terminals of the differential circuit, the receiving coil 5 and two resistors that determine the middle point (Vb) of the induced voltage of the receiving coil 5 are connected in parallel. The two outputs of the differential circuit are connected to the latch circuit 9, and the latch circuit 9 outputs a single-ended reception signal Vo.
  • FIG. 35 is a circuit diagram showing another example of the receiving circuit, and as in the case of FIG. 34, in the induced voltage of the receiving coil and the receiving coil between the two input terminals of the differential circuit. Two resistors which determine the point (Vb) are connected in parallel. In the receiving circuit 6, finally received signal is output as a differential signal Vo and V o bar.
  • FIG. 36 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in series.
  • the receiving coil is provided in series, and of the receiving circuit 6 shown in FIG. 34, two differential circuits excluding the latch circuit 9 are arranged, and the output thereof is one latch. It is input to circuit 9.
  • differential transmission using the two transmitting coils described in FIGS. 30 to 33 becomes possible.
  • FIG. 37 shows an induced voltage waveform to the receiving coil in the case where in-phase noise is mixed in the receiving coil in the present invention.
  • In-phase noise is mixed in Vea (t) and Veb (t). Therefore, in-phase noise is canceled by the difference.
  • FIG. 38 is an explanatory diagram for illustrating differential transmission for canceling noise.
  • FIG. 39 shows that the transmitting device has one transmitting circuit 3 "and two transmitting coils 4a in transmitting circuit 3".
  • FIG. 40 is a plan view showing the direction of the current flowing through the transmission coils 4a ′ and 4b ′ of the semiconductor chip shown in FIG. 39 and the direction of the magnetic field generated by the current force.
  • the transmitter circuit 3 "applies current so as to generate magnetic fields in opposite directions to the transmitter coils 4a 'and 4b' respectively. Although not shown because of the same configuration, the transmitter coils are similar to the transmitter coils.
  • the direction of the received magnetic field is also reversed, which means that the differential transmission of the magnetic field is performed between the two transmitting coils and the two receiving coils, and it is excellent in noise resistance to cancel out the common mode noise mixed from the outside.
  • Semiconductor devices can be realized.
  • FIG. 41 is a circuit diagram showing an example of the transmitter circuit 3 ′ ′ shown in FIGS. 39 and 40.
  • This transmitter circuit 3 ′ ′ includes, for example, two transmitter coils 4a ′ ′ and 4b ′ in the transmitter circuit shown in FIG. "Is a transmitter inserted in parallel.
  • the variable current source 8 included in the transmitter circuit 3 is the same as the variable current source described above.
  • FIG. 42 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in parallel.
  • the receiving circuit 6 "is roughly divided into two receiving coils 5a 'and 5b', a differential circuit, and a latch circuit. It consists of nine. Between the two input terminals of the differential circuit, two receiving coils 5a and 5b 'and two resistors for determining the midpoint (Vb) of the induced voltage of the receiving coils 5a' and 5b 'are respectively connected in parallel. It is connected to the.
  • the two outputs of the differential circuit are connected to the latch circuit 9, and the latch circuit 9 outputs a single end received signal Vo.
  • FIG. 43 shows that the transmitting device has one transmitting circuit 3 "', and two transmitting coils 4a” and 4b "are provided in series in transmitting circuit 3"', and transmitting coils 4a “and 4b”
  • FIG. 6 is a plan view of a semiconductor chip in which two transmitting coils 4 a ′ ′ and 4 b ′ ′ are arranged such that magnetic field signals whose phases are inverted 180 ° with respect to each other are generated. Two transmitting coils 4a "and 4b" are connected in series to the transmitting circuit 3 "'also having this configuration.
  • This transmitting apparatus can simplify its structure as in the parallel configuration of FIG. It is preferable to use the same form for the receiving circuit.
  • FIG. 44 is a plan view showing the direction of the current flowing through the transmitter coils 4a ′ ′ and 4b ′ ′ of the semiconductor chip shown in FIG. 43, and the direction of the magnetic field generated by the current force.
  • the transmitting circuit 3 ' generates opposite magnetic fields in the transmitting coils 4a" and 4b "respectively.
  • the direction of the receiving magnetic field of the receiving coil is also the same as the transmitting coil.
  • FIG. 45 is a block diagram of the transmission circuit shown in FIG. 43 to FIG.
  • the data signal Vi is input to the transmission circuit 3 ′ ′, and the triangular wave current shaped by the transmission circuit 3 ′ ′ is applied to two transmission coils 4 a ′ ′ and 4 b ′ ′ arranged in series.
  • the magnetic field signals for which the two transmitting coils 4a ′ ′ and 4b ′ ′ are also output are signals inverted in phase with each other by 180 ° and are received by the receiving coils 5a ′ ′ and 5b ′ ′.
  • FIG. 46 is a circuit diagram showing an example of the transmitter circuit 3 ′ ′ shown in FIGS. 43 to 44.
  • This transmitter includes, for example, two transmitter coils 4 a ′ and 4 b in the transmitter circuit shown in FIG.
  • the variable current source 8 included in the transmitter circuit 3a ′ ′ is the same as the variable current source described above.
  • FIG. 47 is a circuit diagram showing an example of a receiving circuit in which receiving coils are provided in series.
  • the receiving circuit 6 "'is roughly divided into two receiving coils 5a" and 5b ", a differential circuit, and a latch circuit.
  • the two input terminals of the differential circuit are arranged in series.
  • the two resistors that determine the middle point (Vb) of the induced voltage of the receiver coil are connected in parallel, and the two outputs of the differential circuit are connected to the latch circuit, which is the latch circuit.
  • Power A single-ended receive signal Vo is output, and by thus forming two transmit Z receive coils in one transmit Z receive circuit, the circuit scale of the interface section can be reduced.
  • Fig. 32 in which two differential circuits are prepared, there is an advantage that the gap between differential pairs can be reduced.
  • the two transmitting coil powers of the transmitting apparatus since the two transmitting coil powers of the transmitting apparatus generate magnetic field signals whose phases are inverted by 180 ° with each other, transmission and reception of signals between the transmitting coil and the Z receiving coil become differential transmission. It is possible to cancel the noise. Furthermore, since the pulse width of the received signal becomes wide, waveform reproduction of differential transmission by delay becomes easy. Furthermore, arranging transmission coils in series or in parallel simplifies the transmission circuit and reduces variations due to circuit manufacture, thereby improving noise immunity.
  • FIG. 48 is a cross-sectional view showing another example of the semiconductor device provided with the interface circuit of the present invention.
  • This semiconductor device differs from the semiconductor device described above with reference to FIG. 11 in that the transmitting coil 4 and the receiving coil 5 face each other.
  • the positional relationship between the transmitting coil 4 and the receiving coil 5 may be opposite or back to back.
  • the power used for signal transmission between the coils can be smaller as the distance between the transmitting and receiving coils is closer, the power used for signal transmission is smaller in the example shown in FIG.
  • the circuit chips are stacked and the same as seen through the same.
  • the transmitting coil 4 is disposed in one circuit chip
  • the receiving coil 5 is disposed in the other circuit chip.
  • the circuit chip is overlapped when the signal is intentionally transmitted outside the semiconductor device, or only when the signal from the outside of the semiconductor device is received intentionally, and the same place when viewed through the same. You may arrange only the transmitting coil only or the receiving coil on top of each other.
  • a transmission coil for transmitting a signal to a receiving coil outside the present semiconductor device is provided between the circuit chips. It is provided separately from the transmission coil used for signal transmission of.
  • each circuit chip receives a signal transmitted from a transmitting coil outside the present semiconductor device for signal transmission between the circuit chips. It is provided separately from the receiving coil to be used.
  • a transmitter coil or receiver coil for operation monitoring or test operation, and a transmitter or receiver provided in this way can be located in the inner layer only in the surface layer of the laminated circuit chip. Operation monitoring and testing can be performed easily.
  • FIG. 49 shows an example of a semiconductor module used for signal transmission between circuit chips in which three or more interface circuits of the present invention are stacked.
  • semiconductor circuit chips are stacked on a printed circuit board 21 and signals are transmitted by the interface circuit of the present invention between circuit chips overlapping the upper and lower sides not only between the circuit chips contacting the upper and lower sides. Make a transmission.
  • the circuit chip located at the bottom is referred to as an IF (interface) chip, and one-to-many signal transmission is performed between the circuit chip stacked thereover.
  • the circuit chip superimposed on top is a memory chip, and the transmitter S of the IF chip and the receiver E of all the memory chips are disposed so as to overlap. As a result, since all the memory chips can receive the magnetic field signal generated from the transmitter S of the IF chip at the same timing, high speed writing to the memory becomes possible.
  • the semiconductor module shown in FIG. 49 many transmitters S of all the memory chips and a receiver E of one of the IF chips are arranged on the printed circuit board 21 in an overlapping manner.
  • a magnetic field signal that also generates a transmission coil force can be received by one reception coil.
  • signal transmission from each memory chip to the IF chip can be reliably performed by time division.
  • the transmission coil force generates a magnetic field signal that is easily distinguishable from the noise generated in the circuit chip, as described above. Therefore, reliable signal transmission can be performed.
  • connection means 22 such as a solder ball or a metal bump is formed between the printed circuit board 21 constituting the present semiconductor module.
  • the connection means 22 may have such a structure when it does not correspond to the force which is unnecessary when the printed circuit board 21 constituting the present semiconductor module corresponds to the interface circuit. If the IF chip is equipped with a function to convert a noncontact signal into a conventional contact signal, it is possible to use this semiconductor module using conventional circuit design technology.
  • FIG. 50 shows an example of another semiconductor module using the interface circuit of the present invention for signal transmission between three or more stacked circuit chips. This is an example in which the transmitter S or the receiver E is selectively provided at an arbitrary position which is not located at the same position of each circuit chip.
  • the transmitter S is formed only on the bottom circuit chip, and only the receiver E of the upper two circuit chips receives the magnetic field signal generated therefrom.
  • the third circuit chip receives the magnetic field signal generated by the first circuit chip force, and the second circuit chip generates the second magnetic field signal.
  • the eye circuit chip receives.
  • the state in which the transmitter S and the receiver E overlap is a state in which the transmitter coil and the receiver coil face each other, and the formation region of the transmitter coil and the receiver are not shown. It is sufficient if at least a part of the formation region of the coil is opposed. More preferably, the transmission efficiency can be improved by matching the central axes of the transmitting coil and the receiving coil.
  • the semiconductor module of the present invention may have a functional unit for generating another signal in addition to the semiconductor device of the present invention.
  • a functional unit for generating another signal in addition to the semiconductor device of the present invention.
  • other signals generated by the functional unit may affect signal transmission as noise, but in the semiconductor module of the present invention, since a triangular wave or a substantially triangular wave signal is used, noise may be generated. Force effects can be suppressed.
  • Other functional units that generate signals may be formed as a circuit in a semiconductor device or may be mounted on a printed circuit board together with the semiconductor device of the present invention.
  • an oscillator, a clock operation component, a DC ZDC converter, and the like can be mentioned.
  • a portable terminal such as a cellular phone requires a large capacity memory together with a CPU (central processing unit) chip for communication in order to cope with the speeding up of wireless communication. Also, in order to process game-like software at high speed, a large amount of memory is required together with the CPU chip for the application.
  • CPU central processing unit
  • the semiconductor module can be exemplified by a form in which a memory chip is stacked on a printed circuit board provided with each of a communication CPU and an application CPU.
  • FIG. 51 is a schematic cross-sectional view showing an example in which the interface circuit of the present invention is mounted in a printed circuit board.
  • connection means such as solder balls or metal bumps have been used between the two.
  • connection means since the temperature change occurs, it is always a problem that the connection means is cracked due to the difference between the thermal expansion coefficient of the circuit chip and the thermal expansion coefficient of the printed circuit board.
  • resin-based adhesives such as epoxy resin can be used without using metal connection means such as solder balls or metal bumps, so that circuit chip can be used. And the printed circuit board can be reliably connected, and at the same time, the reliability of the signal connection is also improved.
  • an adhesive that does not contain metal particles such as resin, in order to fix the circuit chips. If a conductive adhesive containing metal particles is used, the metal particles turn the magnetic field strength into heat, and the power used for signal transmission is wasted.
  • the signal input to the transmission circuit is a rectangular wave voltage waveform. This is because the current general circuit is driven by the rectangular wave voltage waveform.
  • the magnetic field waveform output from the transmitting coil is a triangular wave or a substantially triangular wave, no signal is input to the transmitting circuit. For example, even if it is a square wave current waveform, do
  • circuit chips shown in the embodiments of the semiconductor device, the semiconductor module, the memory module, and the portable terminal of the present application are illustrated in the same size for the sake of convenience, they are not limited to this. It is not limited to the size of the illustrated circuit chip as long as the circuit chip is overlapped such that the and the receiving coil face each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 信号伝送を電磁誘導により行うインターフェース回路であって、送信コイルと、前記送信コイルに信号を提供して前記送信コイルから三角波又は略三角波の磁界信号を出力させる送信回路と、を含む。

Description

明 細 書
伝送方法、インターフ ース回路、半導体装置、半導体パッケージ、半導 体モジュールおよびメモリモジュール 技術分野
[0001] 本発明は、伝送方法、インターフェース回路、半導体装置、半導体パッケージ、プリ ント基板、半導体モジュール、メモリモジュールおよび携帯機器に関し、特には、耐ノ ィズ性に優れた信号伝送を可能にする伝送方法及びインターフェース回路、並びに 、そのインターフェース回路を備えた半導体装置等に関する。
背景技術
[0002] 近年、半導体装置に組み込まれる回路の高集積化に伴い、複数の半導体チップを 積層した半導体装置力 Sいくつか開示されている。
[0003] 例えば、非特許文献 1には、貫通ビアとバンプとが形成された半導体チップが、そ れらが積層するように積層され、積層された半導体チップ間で信号伝送と電力供給 を行う半導体装置が開示されている。
[0004] これに対し、特許文献 1、 2及び非特許文献 2には、貫通ビアおよびバンプ等の接 触手段を用いず、積層された半導体チップ間の信号伝送を各半導体チップに形成さ れたコイル間で行う非接触のインターフェース回路を用いた半導体装置が開示され ている。
[0005] これらの半導体装置では、一方の半導体チップに形成されたコイルが磁界信号を 発生し、もう一方の半導体チップに形成されたコイルがその磁界信号を受信すること で、チップ間の信号伝送が非接触で行われる。以下それぞれについて詳しく説明す る。
[0006] 図 1は、特許文献 1に記載された半導体装置の模式的な断面図である。この半導 体装置には、半導体チップ 100および 101の表面に電磁誘導コイル 102または 103 が形成されている。半導体チップ 100および 101は、コイル 102および 103によって 電磁結合されている。なお、各コイル 102および 103には、コイル 102とコイル 103の 間の結合係数を高めるための強磁性体膜 104または 105が設けられている。 [0007] 特許文献 1には、コイルを CVD (Chemical Vapor Deposition :化学気相成長法)、 PVD (Physical Vapor Deposition :物理気相成長法)、又はスパッタ等の高精度な 成膜技術を用いて形成できるため、この半導体装置は、高集積ィ匕および多ピン化に 容易に適応できることが記載されて 、る。
[0008] また、特許文献 1には、はんだを用いないため、アルファ一線による回路誤動作の 影響を排除できることが記載されて 、る。
[0009] さらには、特許文献 1には、半導体チップを組み立てた後に特性試験を行い、特性 を確認した後に、熱処理等を用いることなぐ回路チップを分解し、再び組み立てるこ とが容易であり、歩留まり向上が期待できることが記載されている。
[0010] 図 2は、特許文献 2に記載された半導体装置の模式的な断面図である。この半導 体装置では、送信装置 Sとそれにつながる送信コイル SPSとが配置された半導体チ ップ Lnと、受信装置 Eとそれにつながる受信コイル SPEとが配置された半導体チップ Ln+xと力積層されている。この半導体装置は、送信コイル SPSと受信コイル SPEと の間で信号伝送を行う。
[0011] 特許文献 2には、この半導体装置は、各半導体チップ間の相互調整及び表面平坦 度に極端に高い必要条件を課すことなぐ一のチップの内部から、そのチップの垂直 方向に隣接するチップの内部に、直接かつ確実に信号を伝達できることが記載され ている。
[0012] 図 3は、非特許文献 2に記載された半導体装置の模式的な斜視図である。この半 導体装置では、複数の半導体チップ 300、 301、 302および 303が積層されている。 また、半導体チップに形成されたコイル 304、 305および 307力 上下方向において 同じ位置に重ねて配置されている。さら〖こ、送信回路 Txと受信回路 Rxが、そのコィ ルの近くに配置されている。この半導体装置では、このような構成によって、上下の半 導体チップ間で信号伝送が行われる。
[0013] 非特許文献 2には、低消費電力および広帯域のインターフェースが実現できること が記載されている。
特干文献 1: John Baliga, Chips uo Vertical , IEEE Spectrum, March, pp.35 -39(2004). 特許文献 1 :特開平 7— 221260号公報
特許文献 2:特開平 8 - 236696号公報
非特干文献 2: NonyuKi iura, et al., Analysis and Design of Transceiver Cir cuit and Inductor Layout for Inductive Inter-chip Wireless Superconnect", I EEE 2004 Symposium on VLSI Circuits Digest of Technical Papers, pp.246 -249(2004).
非特許文献 3 :A.X.Widmer and P.A.Franaszek, "A DC-Balanced, Partitioned- B lock, 8B/10B Transmission Code", IBM J.Res.Develop., Vol.27, No.5, pp.44 0-451, Sep.(1983).
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、上記各文献に記載の先行技術では、受信コイルで受ける磁界信号 の波形が、半導体装置内外力 受信コイルに混入するノイズの波形と非常によく似た 形であるため、信号とノイズとを分離することが難 、と 、う問題がある。
[0015] 図 4は、特許文献 2に記載されている送信装置 Sと受信装置 E (図 2を参照)の入出 力での波形を示した波形図である。
[0016] 図 4中の符号 U201、 IL、 U203および U204は、図 2に示した各入出力端子と対 応する。符号 U201は送信装置 Sの入力電圧波形である。、符号 ILは送信コイル SP Sを流れる電流波形である。符号 U203は受信コイル SPEに誘起される電圧波形で ある。符号 U204は受信装置 Eから出力される電圧波形である。
[0017] 送信装置 Sには、符号 U201のようにデジタルのクロック信号およびデータ信号等、 矩形波の信号が入力される。一方、送信コイル SPSを流れる電流波形 ILおよび受信 コイル SPEで誘起される電圧波形 U203は、パルス幅の狭い、急峻なピークをもつ波 形となる。
[0018] 送信コイル SPSを流れる電流波形 ILは、送信装置 Sに入力される矩形波の立ち上 力 Sり時と立ち下り時にのみ電流が流れるような、急峻でパルス幅の狭い波形になる。 これは、送信装置 Sの回路構成力 理解される。
[0019] 図 5は、特許文献 2に記載された送信装置 Sを示した回路図である。インバーター 2 05の先で、インバーター 206および 207と送信コイル SPsがループを構成して!/、る。 インバーター 205の出力電圧と、インバーター 207の出力電圧とは同相である力 ィ ンバーター 206と 207の遅延時間分のずれが生ずる。このずれの間に送信コイル SP Sに電流が流れるため、符号 ILのような電流波形が生じる。
[0020] 一方、受信コイル SPEには、ファラデーの電磁誘導の法則により受信磁界の微分 波形が電圧として誘起される。このため、図 4に示すように、 ILの微分波形(一 dILZ dt)が誘起される。この結果、受信装置 Eには、パルス幅の狭い急峻なピークをもつ 電圧波形 U203が入力される。
[0021] 同様に、非特許文献 2に記載された半導体装置においても、パルス幅の狭い急峻 なピークをもつ電圧波形が受信回路に入力される。
[0022] 図 6は、非特許文献 2に記載されている送 Z受信回路と、その各入出力点での電 流波形又は電圧波形を示す波形図である。特許文献 2と同様に、送信信号 Txdata3 08は、デジタル信号による矩形波であるが、送信コイルを流れる電流 ITは、矩形波 の立ち上がり時と立ち下がり時にのみ電流が流れる波形となる。
[0023] 図 7は、この送信回路 Txを示した回路図である。送信信号 Txdata308が送信回路 Txに入力した際、その信号と、 Delay Bufferを介してコイルに入力した信号との間に 、時間的なずれが生じる。このずれの間に送信コイルに電流 ITが流れる。同文献中 には明記されて ヽな ヽが、受信電圧 VRが送信コイルを流れる電流 ITの微分波形で あることは、図 6の VRの波形力も容易に推測できる。
[0024] 通常、半導体装置の内外には色々なノイズ発生源がある。
[0025] 例えば、半導体チップ内には多くの論理回路が存在し、その回路間の信号伝送は 、受信回路の入力にあるキャパシタの充放電によって行われる。この際に流れる電流 は、図 4の ILまたは図 6の ITと非常によく似た波形であることが広く知られている。こう した波形の電流が受信コイルにノイズとして混入すれば、そのノイズに起因した電圧 の波形は、図 4の U203および図 6の VRと同様の波形になることは明らかである。
[0026] また、トランジスタの ONZOFFの際に流れる電源電流も、図 4の ILまたは図 6の IT のような波形になることが知られて 、る。
[0027] さらに、受信コイルが半導体装置外から到達する磁界を受信する可能性も高い。例 えば、静電気放電に伴うノイズまたは電源回路のスイッチングによるノイズが受信コィ ルに混入する恐れがある。
[0028] これらのノイズが受信コイルに混入した場合、図 8に示す通り、ノイズに起因した電 圧波形と、受信コイルに誘起された正規の受信信号に基づく電圧波形とが非常に似 通っているため、ノイズと受信信号とを切り分けることは原理的に非常に難しい。
[0029] ノイズをキャンセルするために差動伝送を用いる方法が知られている。特許文献 2 には、この方法を利用した実施例が記載されて ヽる。
[0030] 図 9は、その原理を説明するための説明図である。この方法では、差動回路が、一 つの受信コイルに誘起される電圧 (-dIL/dtという。)と、その電圧と位相が 180° 反転 した電圧 (- dIL/dtバーという。)と、を受信し、 -dIL/dt 力 - dIL/dtバーを差し引くこ とで、図 9にあるような同相ノイズがキャンセルされる。
[0031] -dIL/dtと- dIL/dtバーとの間に遅延がなければ、同相ノイズはキャンセルされる。し 力しながら、上述の通り、原理的に受信信号のパルス幅が狭いため、半導体内の素 子のばらつきおよびコイル形状のばらつき等により僅かな遅延が生ずるだけで、同相 ノイズのキャンセルばかりか、受信信号の正確な取り込みができなくなる。
[0032] 図 10は、僅かな遅延により信号受信に失敗した例を説明するための説明図である 。図 10の例では、— dIL/dtバーが- dIL/dtに比べて遅延を生じており、本来同一タイ ミングで足し合わされるべき信号がずれてしまい、もともと 4つのピークをもつべき信号 力 S8つのピークをもつ信号に変わって!/、る。
[0033] 本発明は、上記問題点を解決するためになされたものであって、その目的は、ノィ ズが混入した場合であっても、そのノイズに影響されることなく信号伝送を行うことが できる耐ノイズ性に優れた伝送方法及びインターフェース回路を提供することにある
[0034] また、本発明の他の目的は、そのインターフェース回路を備えた半導体装置、プリ ント基板、半導体パッケージ、半導体モジュール及びメモリモジュールを提供すること にある。
[0035] また、本発明の更に他の目的は、その半導体装置又はプリント基板を備えた携帯 機器を提供することにある。 課題を解決するための手段
[0036] 上記課題を解決するために、本発明の伝送方法は、電磁誘導により非接触で信号 伝送を行う伝送方法において、送信コイルから出力される磁界信号力 三角波又は 略三角波であることを特徴とする。
[0037] 送信コイルから出力された磁界信号を受信する受信コイルでは、ファラデーの電磁 誘導の法則により、受信磁界を微分した電圧が誘起される。
[0038] 従来、送信コイルは、矩形波のデジタル信号を磁界信号として送信して!/、た。この ため、上記の微分処理によってパルス幅の狭い急峻なインパルス状の波形力 受信 コイルで誘起されて 、た。その波形が半導体チップ内外力も混入するノイズの波形に 非常によく似ていることから、ノイズと受信信号とを切り分けることが難しかった。
[0039] しかし、本発明によれば、送信コイルから出力される磁界信号が、三角波又は略三 角波であるので、受信コイルで誘起される電圧波形を、パルス幅の広い波形カゝらなる 受信信号にすることができる。
[0040] その結果、受信信号は、幅の狭い電圧波形を示すノイズ信号と明確に区別されるこ とができる。よって、ノイズが混入した場合であっても、そのノイズに影響されることの ない耐ノイズ性に優れた非接触の伝送方法を提供することができる。
[0041] 特に、受信信号のパルス幅が相対的に広くなるので、本発明の伝送方法は、高速 信号伝送や差動伝送に適して ヽる。
[0042] 本発明の伝送方法において、前記三角波又は前記略三角波は、連続的に増加又 は減少する波形、あるいは、段階的に増加又は減少する波形であることを特徴とする 。また、本発明の伝送方法においては、以下のように、送信コイルに送り込む信号波 形を種々の方法で工夫することにより、送信コイル力 三角波又は略三角波の磁界 信号を出力することができる。
[0043] すなわち、本発明の伝送方法において、(1)前記磁界信号が、前記送信コイルに 接続された送信回路で積分処理されて整形された電流信号が前記送信コイルに入 力されることによって得られたものであり、さらに、その積分処理が RC積分回路により 行われることが好ましい。
[0044] また、本発明の伝送方法にお!ヽて、 (2)前記磁界信号が、前記送信コイルに接続さ れた送信回路で電流スィッチ切換処理されて整形された電流信号が前記送信コイル に入力されることによって得られたものであり、さらに、その電流スィッチ切換処理が 複数の可変電流源と当該可変電流源それぞれに接続されたスィッチとを有する回路 により行われることが好ま 、。
[0045] この場合において、前記電流信号は、平滑化回路により平滑化させた後、前記送 信コイルに入力されることが好ましい。この平滑化回路は、磁界信号を平滑化させる ので、受信コイルに誘起される電圧波形の歪が緩和される。このため、受信信号の強 度を高く保つことができ、通信品質を高く保つことができると 、う効果が生じる。
[0046] また、本発明の伝送方法は、前記送信コイルが 2つ設けられ、各送信コイルから発 生される磁界信号が互いに位相を 180° 反転されて伝送される形態とすることができ る。
[0047] この発明によれば、送信コイル力 発生される磁界信号が互いに位相を 180° 反 転されて伝送されるので、送信コイル Z受信コイル間の信号授受が差動伝送になり、 外来ノイズをキャンセルすることが可能となる。さらに、受信信号のパルス幅が広くな ることから、遅延による差動伝送の波形再生が容易になる。
[0048] 上記課題を解決するために、本発明のインターフェース回路は、信号伝送を電磁 誘導により行うインターフェース回路において、送信コイルから出力される磁界信号 が三角波又は略三角波となる信号を発生する送信回路を備えていることを特徴とす る。
[0049] 本発明のインターフェース回路において、前記三角波又は前記略三角波は、連続 的に増加又は減少する波形、あるいは、段階的に増加又は減少する波形であること を特徴とする。
[0050] また、本発明のインターフェース回路は、(1)前記送信回路が、積分処理を行う積 分処理回路を備えており、さらに、その積分処理回路が、 RC積分回路であることが 好ましい。また、(2)前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換 処理回路を備えており、さらに、その電流スィッチ切換処理回路が、複数の可変電流 源と当該可変電流源それぞれに接続されたスィッチとを備えていることが好ましい。 また、この送信回路には、前記電流スィッチ切換処理回路から出力される信号を平 滑ィ匕させるための平滑ィ匕回路が設けられて 、ることが好まし 、。
[0051] また、本発明のインターフェース回路において、前記送信コイルが 2つ設けられ、各 送信コイル力も互いに位相を 180° 反転させた磁界信号が発生するように前記 2つ の送信コイルが配置されている形態とすることができる。
[0052] 上記課題を解決するために、本発明の半導体装置は、送信コイルと、当該送信コィ ルから出力される磁界信号が三角波又は略三角波となる信号を発生する送信回路と を備えて ヽることを特徴とする。
[0053] 本発明の半導体装置において、前記三角波又は前記略三角波は、連続的に増加 又は減少する波形、あるいは、段階的に増加又は減少する波形であることを特徴と する。
[0054] また、本発明の半導体装置は、(1)前記送信回路が、積分処理を行う積分処理回 路を備えており、さらに、その積分処理回路が、 RC積分回路であることが好ましい。 また、(2)前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換処理回路 を備えており、さらに、その電流スィッチ切換処理回路が、複数の可変電流源と当該 可変電流源それぞれに接続されたスィッチとを備えていることが好ましい。また、この 送信回路には、前記電流スィッチ切換処理回路から出力される信号を平滑化させる ための平滑ィ匕回路が設けられて 、ることが好ま 、。
[0055] また、本発明の半導体装置において、前記送信コイルが 2つ設けられ、各送信コィ ルカ 互いに位相を 180° 反転させた磁界信号が発生するように前記 2つの送信コ ィルが配置されて 、る形態とすることができる。
[0056] また、本発明の半導体装置は、 (A)受信コイルを有する半導体装置が積層されて いてもよいし、(B)受信コイルを有する半導体装置が複数積層されていてもよいし、 ( C)少なくとも前記送信コイルを有する複数の半導体装置と、受信コイルを有する半 導体装置とが積層されて 、てもよ 、。
[0057] また、本発明の半導体装置は、前記送信コイルと前記送信回路とを有する半導体 装置と、前記受信コイルを有する半導体装置と、の間に、他の半導体装置が積層さ れていてもよい。
[0058] 上記課題を解決するために、本発明の半導体パッケージは、上述した本発明の半 導体装置がプリント基板に積層されていることを特徴とする。この半導体パッケージに おいては、前記半導体装置と前記プリント基板とが導電体を介して電気的に接続さ れていてもよぐまた、前記プリント基板が受信コイルを備えていてもよい。
[0059] 上記課題を解決するために、本発明のプリント基板は、送信コイルと、当該送信コィ ルから出力される磁界信号が三角波又は略三角波となる信号を発生する送信回路と を備えて ヽることを特徴とする。
[0060] 本発明のプリント基板において、前記三角波又は前記略三角波は、連続的に増加 又は減少する波形、あるいは、段階的に増加又は減少する波形であることを特徴と する。
[0061] また、本発明のプリント基板は、(1)前記送信回路が、積分処理を行う積分処理回 路を備えており、さらに、その積分処理回路が、 RC積分回路であることが好ましい。 また、(2)前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換処理回路 を備えており、さらに、その電流スィッチ切換処理回路が、複数の可変電流源と当該 可変電流源それぞれに接続されたスィッチとを備えていることが好ましい。また、この 送信回路には、前記電流スィッチ切換処理回路から出力される信号を平滑化させる ための平滑ィ匕回路が設けられて 、ることが好ま 、。
[0062] また、本発明のプリント基板において、前記送信コイルが 2つ設けられ、各送信コィ ルカ 互いに位相を 180° 反転させた磁界信号が発生するように前記 2つの送信コ ィルが配置されて 、る形態とすることができる。
[0063] 上記課題を解決するために、本発明の半導体パッケージは、上述した本発明のプ リント基板に、受信コイルを有する半導体装置が積層されていることを特徴とする。こ の半導体パッケージにおいては、前記プリント基板と前記半導体装置との間に、他の 半導体装置が積層されていてもよいし、前記プリント基板に、受信コイルを有する複 数の半導体装置が積層されていてもよい。
[0064] 上記課題を解決するために、本発明の半導体モジュールは、上述した本発明の半 導体装置をプリント基板に積層し、当該半導体装置のうち少なくとも 1つが前記磁界 信号とは異なる信号を発生する機能部を有することを特徴とする。この半導体モジュ ールにおいては、前記半導体装置と前記プリント基板とが導電体を介して電気的に 接続されていてもよいし、少なくとも 1つの前記半導体装置の送信コイルが、前記他 の半導体装置の送信コイルと対向しな 、位置に配置されて 、てもよ 、。
[0065] 上記課題を解決するために、本発明のメモリモジュールは、上述した本発明の「送 信コイルを有する半導体装置」又は「受信コイルを有する半導体装置」、あるいは、上 述した本発明の「受信コイルを有する半導体装置」のうち、少なくとも 1つの半導体装 置カ モリであることを特徴とする。
[0066] また、上記課題を解決するために、本発明のメモリモジュールは、受信回路を有す るプリント基板と、当該プリント基板に積層され、送信コイル及び当該送信コイルから 出力される磁界信号が三角波又は略三角波となる信号を発生する送信回路を備え た半導体装置とを有し、当該半導体装置力 Sメモリであることを特徴とする。このメモリ モジュールにおいて、前記三角波又は前記略三角波は、連続的に増加又は減少す る波形、あるいは、段階的に増加又は減少する波形であることを特徴とし、この場合 における半導体装置は複数積層されて 、ることが好ま U、。
[0067] 上記課題を解決するために、本発明の携帯機器は、上述した本発明の半導体装 置、又は、上述した本発明のプリント基板を備えていることを特徴とする。
[0068] 本発明のインターフェース回路が半導体装置に適用されれば、回路チップ上に多 くの送信 Z受信コイルを形成することで、重ね合わせた回路チップ間で大容量の信 号を伝送することができ、特にノイズの影響が無視できな 、ギガへルツ帯の高周波で の信号送信にぉ 、て効果的である。
[0069] また、本発明のインターフェース回路が半導体モジュールに適用されれば、プリント 基板上に形成された隣り合う回路チップ間だけでなぐさらにその上下に重なる回路 チップとの間でも信号を伝送することができ、特に、間に挟まる回路チップからのノィ ズの影響を受け難!、半導体モジュールを実現できる。
[0070] また、本発明のインターフェース回路力メモリモジュールに適用されれば、少なくと も 1つのインターフェイスチップと複数のメモリチップの間で 1対多数の信号伝送が可 能となり、大容量で高速動作の可能なメモリモジュールを実現できる。
[0071] また、本発明のインターフェース回路が携帯機器に適用されれば、携帯機器内のノ ィズの影響が受けづらぐかつ、高速の画像処理や通信制御が可能な携帯電話を実 現できる。
発明の効果
[0072] 本発明の伝送方法及びインターフェース回路によれば、送信コイルから出力される 磁界信号を三角波又は略三角波としたので、受信コイルで誘起される電圧波形をパ ルス幅の広い波形力もなる受信信号にすることができる。その結果、受信信号を、幅 の狭い電圧波形を示すノイズ信号と、明確に区別することができる。
[0073] よって、たとえノイズが混入しても、そのノイズに影響されることのな ヽ耐ノイズ性に 優れた伝送方法及びインターフェース回路を提供することが可能になる。特に、受信 信号のパルス幅が相対的に広くなるので、本発明の伝送方法及びインターフェース 回路は、高速信号伝送や差動伝送に適している。
[0074] また、本発明の伝送方法又はインターフェース回路を備えた、本発明の半導体装 置、半導体パッケージ、プリント基板、半導体モジュール、メモリモジュール及び携帯 機器は、ノイズに影響されることのない耐ノイズ性に優れたものとなり、特に高速で大 容量の処理が必要となる場合に好ま 、。
図面の簡単な説明
[0075] [図 1]図 1は特許文献 1に記載された半導体装置を示す模式的な断面図である。
[図 2]図 2は特許文献 2に記載された半導体装置を示す模式的な断面図である。
[図 3]図 3は非特許文献 2に記載された半導体装置を示す模式的な斜視図である。
[図 4]図 4は特許文献 2に記載されている送信装置と受信装置の入出力での波形を 示す波形図である。
[図 5]図 5は特許文献 2に記載されている送信回路を示す回路図である。
[図 6]図 6は非特許文献 2に記載されている送 Z受信回路とその各入出力点での電 流波形又は電圧波形を示す波形図である。
[図 7]図 7は非特許文献 2に記載されている送信回路を示す回路図である。
[図 8]図 8は従来方式でノイズが混入した場合の波形を示す模式図である。
[図 9]図 9はノイズをキャンセルするための差動伝送方法の原理を説明する図である。
[図 10]図 10は僅かな遅延により信号受信に失敗した例を示す説明図である。
[図 11]図 11は本発明のインターフェース回路を備えた半導体装置の断面図である。 圆 12]図 12は送信コイルと送信回路とからなる送信装置が形成された半導体チップ の平面図である。
圆 13]図 13は送信装置と受信装置とを有するインターフェース回路全体の一例を示 したブロック図である。
[図 14]図 14は本発明のインターフェース回路の一例を示す概略回路図である。
[図 15]図 15は図 14で示した送信回路の入力波形、送信コイルに入力される電流波 形、送信コイルから発生する磁界波形、受信コイルでの誘起電圧、及び受信回路の 出力信号の一例を示す波形図である。
[図 16]図 16は受信コイルが信号とノイズを同時に受信した場合の、受信コイルでの 誘起電圧の波形を示す波形図である。
圆 17]図 17は積分処理回路を有した送信回路の一例を示す回路図である。
[図 18]図 18は伝送するデータがランダムな場合の一例を示すタイミングチャートであ る。
圆 19]図 19は電流スィッチ切換処理回路を備えた送信回路の一例を示す回路図で ある。
[図 20]図 20は図 19に示す送信回路の送信コイルに三角波を与える場合の一例を示 すタイミングチャートである。
圆 21]図 21は電流スィッチ切換処理回路を備えた送信回路の他の一例を示す回路 図である。
[図 22]図 22は図 21に示す送信回路の送信コイルに三角波を与えるためのタイミング チャートである。
[図 23]図 23は図 19に示す送信回路の送信コイルに三角波を与える場合の他の例を 示すタイミングチャートである。
[図 24]図 24は図 23のタイミングチャートで生じた階段状の電流を、図 21に示す送信 回路で平滑ィ匕した場合の一例を示すタイミングチャートである。
[図 25]図 25は三角波の電流波形を強調した場合の一例のタイミングチャートである。
[図 26]図 26はノコギリ波状の電流波形を強調した場合の一例のタイミングチャートあ る。 圆 27]図 27は差動回路を有した送信回路の一例を示す回路図である。
[図 28]図 28は図 27に示した伝送回路の動作の一例を示すタイミングチャートである 圆 29]図 29は他の差動回路を有した送信回路の一例を示す回路図である。
[図 30]図 30は、送信装置が送信回路を 1つ有し、その送信回路内に 2つの送信コィ ルが設けられ、その送信コイル力 互いに位相を 180° 反転させた磁界信号が発生 するように前記 2つの送信コイルが配置された半導体チップの平面図である。
[図 31]図 31は図 30に示す半導体チップの送信コイルを流れる電流とその電流から 発生する磁界の向きを示した平面図である。
[図 32]図 32は図 30乃至図 31に示す送信回路のブロック図である。
[図 33]図 33は図 30乃至図 31に示す送信回路の一例を示す回路図である。
圆 34]図 34は受信回路の一例を示す回路図である。
[図 35]図 35は受信回路の他の一例を示す回路図である。
圆 36]図 36は受信コイルが直列に設けられた受信回路の一例を示す回路図である
[図 37]図 37は本発明において受信コイルに同相ノイズが混入した場合の受信コイル への誘起電圧波形を示す波形図である。
[図 38]図 38はノイズをキャンセルするための差動伝送の説明図である。
[図 39]図 39は、送信装置が送信回路を 1つ有し、その送信回路内に 2つの送信コィ ルが並列に設けられ、その送信コイル力 互いに位相を 180° 反転させた磁界信号 が発生するように前記 2つの送信コイルが配置された半導体チップの平面図である。
[図 40]図 40は図 39に示す半導体チップの送信コイルを流れる電流とその電流から 発生する磁界の向きを示した平面図である。
[図 41]図 41は図 39及び図 40に示す送信回路の一例を示す回路図である。
圆 42]図 42は受信コイルが並列に設けられた受信回路の一例を示す回路図である 圆 43]図 43は送信装置が送信回路を 1つ有し、その送信回路内に 2つの送信コイル が直列に設けられ、その送信コイル 4力 互いに位相を 180° 反転させた磁界信号が 発生するように前記 2つの送信コイルが配置された半導体チップの平面図である。
[図 44]図 44は図 43に示す半導体チップの送信コイルを流れる電流とその電流から 発生する磁界の向きを示した平面図である。
[図 45]図 45は図 43乃至図 44に示す送信回路のブロック図である。
[図 46]図 46は図 43乃至図 44に示す送信回路の一例を示す回路図である。
[図 47]図 47は受信コイルが直列に設けられた受信回路の一例を示す回路図である
[図 48]図 48は本発明のインターフェース回路を備えた半導体装置の他の例を示す 断面図である。
[図 49]図 49は本発明のインターフェース回路を積層チップ間伝送に利用した一例を 示す模式断面図である。
[図 50]図 50は本発明のインターフェース回路を積層チップ間伝送に利用した他の一 例を示す模式断面図である。
[図 51]図 51は本発明のインターフェース回路をプリント基板内に装着した一例を示 す模式断面図である。
符号の説明
1, 2 半導体チップ
3, 3,, 3", 3,,,, 3a' , 3b' 送信回路
4, 4a, 4b, 4a' , 4b' , 4a", 4b" 送信コイル
5, 5a, 5b, 5a' , 5b' , 5a", 5b" 受信コイル
6, 6 ' , 6", 6", 受信回路
7 積分処理回路
8、 8a〜8e, 8, 可変電流源
9 ラッチ回路
10, 10' 積分処理回路
11 電流スィッチ切換処理回路
21 プリント基板
22 はんだボーノレ s 送信装置
E 受信装置
発明を実施するための最良の形態
[0077] 以下、本発明の伝送方法、インターフェース回路、半導体装置、半導体パッケージ 、プリント基板、半導体モジュール、メモリモジュール及び携帯機器の実施形態につ いて、図面を参照しつつ説明する。以下においては、本発明のインターフェース回路 を中心に、各発明を詳細に説明する。なお、以下の実施形態は本発明の一例を示 す形態であり、その説明及び図面の形態に限定解釈されるものではない。また、断面 図については、便宜上、断面であることを示すハッチングを省略してある。
[0078] (インターフェース回路)
本発明のインターフェース回路は、信号伝送を電磁誘導により行うインターフェース 回路において、送信コイルから出力する磁界信号が三角波又は略三角波となる信号 を発生する送信回路を備えていることに特徴を有する。
[0079] このインターフェース回路では、以下の各実施形態で説明するように、送信回路か ら送信コイルに送り込む信号波形を種々の方法で工夫することにより、送信コイルか ら出力される磁界信号を三角波又は略三角波とすることができる。なお、そうした磁 界信号は、送信コイルに三角波又は略三角波の電流を入力することにより発生させ ることができる。また、三角波又は略三角波としては、例えば、連続的に増加又は減 少する波形あるいは段階的に増加又は減少する波形が用いられる。
[0080] 図 11は、本発明のインターフェース回路を備えた半導体装置の断面図である。イン ターフェース回路を備える半導体装置では、複数の半導体チップ 1および 2が重ねら れ、その間を送信コイル 4と受信コイル 5とが信号を伝送する。
[0081] 図 11に示す半導体装置では、 2つの半導体チップ 1および 2しか記載されていない 力 その上下にさらに別の半導体チップが重ねられることによって、 3枚以上の半導 体チップが用いられてもよ 、。
[0082] また、半導体チップ 1には、送信装置 S (送信回路 3及び送信コイル 4を含む。以下 同じ。)のみが記載されているが、受信装置 E (受信回路 6及び受信コイル 5を含む。 以下同じ。)が形成されていても構わないし、半導体チップ 2にも送信装置 S (送信回 路 3及び送信コイル 4)が設けられても構わない。また、図 11では、本発明のインター フェース回路に最低限度必要となる送信装置 S、受信装置 E、及びそれらが形成され た半導体チップ 1, 2のみが強調して記載され、また、断面を示すハッチングは便宜 上省略してある。
[0083] 送信回路 3と受信回路 6は、各半導体チップ内のトランジスタを用いて形成され、送 信コイル 4と受信コイル 5は、各半導体チップの配線層に形成されて!ヽる。
[0084] 積層される各半導体チップ 1および 2の間に導電性をもたない接着剤層を介在させ ることによって、各半導体チップ 1および 2が接着させることが好ましい。
[0085] なお、各半導体チップ 1および 2が導電性を有する接着剤層を介して接着されると、 送信コイル 4で発生した磁界がこの接着剤層で遮断され、受信コイル 5まで届力ゝな ヽ ことがある。送信コイル 4の中心軸と受信コイル 5の中心軸とを一致させることによって 、送信コイル 4からの磁界を受信コイル 5が最大限に受信することができる。
[0086] 半導体チップ 1枚当たりの厚さは、通常、 100 m前後である力 50 m程度、さら には 25 m程度の薄い半導体チップが用いられてもよい。半導体装置では、そうし た半導体チップが複数積層されている力 その全体の厚さは、通常 lmm以下である 。また、上記の接着剤層の厚さは、通常 25 m程度である力 5 m程度まで薄くし たものでも構わない。
[0087] 図 12は、送信コイル 4と送信回路 3とからなる送信装置 Sが形成された半導体チッ プ 1の平面図である。この送信装置 Sは、 1つの送信回路 3に対して 1つの送信コイル 4が接続されている。図示しないが、受信コイルと受信回路も別の半導体チップ上又 は同じ半導体チップに同様に配置される。送信コイル 4と送信回路 3との位置関係は 、図 12に示す形態に限定されるものではなぐ適宜変更可能である。なお、後述の実 施形態のように、送信装置 Sが備える送信コイル 4の数と送信回路 3の数が変わって ちょい。
[0088] 図 13は、送信装置 Sと受信装置 Eとを有するインターフェース回路全体のブロック 図の一例を示した図である。本発明のインターフェース回路は、基本的には、図 13 に示すように、少なくとも、送信回路 3と送信コイル 4とを有する送信装置 Sと、受信コ ィル 5と受信回路 6とを有する受信装置 Eとで構成されている。そして、送信コイル 4か ら出力される磁界信号が三角波又は略三角波であることに特徴がある。送信コイル 4 カゝら出力された磁界信号は、受信コイル 5で受信され、受信回路 6で微分処理されて 、矩形波に整形される。
[0089] 本発明のインターフェース回路においては、磁界信号は、(1)送信コイル 4に接続 された送信回路 3での積分処理にて整形された三角波又は略三角波の電流信号を 送信コイルに入力することによって得られてもよいし、(2)送信コイル 4に接続された 送信回路 3での電流スィッチ切換処理にて整形された三角波又は略三角波の電流 信号を送信コイルに入力することによって得られてもよい。
[0090] (積分処理による整形)
先ず、送信コイル 4に接続された送信回路 3での積分処理にて三角波又は略三角 波の電流信号が生成され、その電流信号が送信コイル 4に入力されて、三角波又は 略三角波の磁界信号が発生する例を説明する。
[0091] 図 14は、本発明のインターフェース回路の一例を示す概略回路図である。この実 施形態においては、送信回路 3が積分処理回路 7を含んでおり、積分処理回路 7が、 送信回路 3の入力波形 Vi(t)を三角波又は略三角波の電流 I(t)に整形する。
[0092] 図 15は、送信回路 3の入力波形 Vi(t)、送信コイル 4に入力される電流波形 I(t)、送 信コイル 4から発生する磁界波形 Hl(t)、受信コイル 5での誘起電圧 Ve(t)、及び受信 回路 6の出力信号 Vo(t)の一例を示した図である。
[0093] 積分処理回路 7を有する送信回路 3においては、積分処理回路 7が、送信回路 3に 入力される矩形波のデータ信号 Vi(t) (図 15 (a)参照)を三角波又は略三角波の電流 波形 I(t)に整形し(図 15 (b)参照)、その電流波形 I(t)を送信コイル 4に入力する。
[0094] 送信コイル 4から発生する磁界 Hl(t) (015 (b)参照)は、その電流波形 I(t)と同じ波 形になる。磁界 Hl(t)が受信コイル 5に到達すると、受信コイル 5で誘起電圧 Ve(t)が発 生する。
[0095] 誘起電圧 Ve(t)は、三角波又は略三角波の I(t)若しくは Hl(t)の微分波形となる。 I(t) 若しくは Hl(t)は送信回路 3が矩形波を積分した波形であるため、その微分波形は、 結果的に入力波形と同様の、パルス幅の広い矩形波となる(図 15 (c)参照)。
[0096] 図 16は、受信コイル 5が信号とノイズを同時に受信した場合の、受信コイル 5での誘 起電圧 Ve(t)の波形を示した図である。信号のパルス幅がノイズの幅に比べ十分長け れば、信号とノイズとを分離することは容易になり、その結果、耐ノイズ性に優れたィ ンターフェース回路を実現できる。
[0097] 図 17は、積分処理回路を有した送信回路 3の一部を示す回路図である。この送信 回路 3は、可変電流源を用いず、送信回路 3に入力するデータ信号 Viを、抵抗 Rと容 量 Cによる RC積分回路(ローノ スフィルタ)によって積分処理し、積分処理された信 号を送信コイル 4に入力する。図 17中の符号 10および 10'は、 RC積分回路(ローバ スフィルタ)を有する積分処理回路に付与されて!、る。
[0098] 図 17中の(a) (b)に示すように入力端子 Vi又は Viバーに入力された信号が矩形波 の場合、 RC回路によるローパスフィルタの効果により、 RC回路の出力(すなわち、送 信回路 3の送信コイル 4の両端に接続されている 2つの NMOSカゝら構成される差動 対の入力トランジスタへのゲート入力)は、図 17中の(c) (d)に示すように、三角波に なる。その結果として、送信コイル 4には、矩形波ではなぐ三角波の電流波形を流す ことが可能となる。
[0099] なお、積分処理回路として RC回路を用いる場合においては、送信データは、クロッ ク信号のような 1と 0を繰り返すデータであることが望ましい。その理由は、クロック信 号の場合、 RC回路を通過することで信号が、常に同じ電流値の振幅間で振動する 三角波になるからである。
[0100] し力しながら、図 17に示す本実施例の RC積分回路を用いた三角波の作成方法で は、 RC回路のローパスフィルタ定数と送信データのシンボルレートとを適切に選択す る必要である。
[0101] 例えば、 RC回路のカットオフ周波数と送信データの 1シンボル幅を示すシンボルレ ートとが等しい場合、シンボルレートと等しくなる単一ビットのデータはきれいに三角 波として出力される。し力しながら、 RC回路のカットオフ周波数がシンボルレートより も高周波の場合は、 RC積分回路の出力は、完全な三角波にはならず、若干矩形部 分が残ってしまう可能性がある。このように、若干の矩形部分が残った場合には、送 Z受信コイルを用いてデータが伝送される場合、従来のようなスパイク状の伝送波形 となってしまう可能性がある。 [0102] 従って、図 17に示すような RC回路を用いた積分処理の場合は、 Rの抵抗値および Cの容量値を変えることで RC回路のフィルタ定数を大きくし、その結果、 RC回路の力 ットオフ周波数が伝送する信号のシンボルレート以下になるようにするのが望ましい。
[0103] 次に、送信される信号が、ある規則を持たない 0又は 1のデータ列であり、かつ、 0 又は 1の連続する数が最大いくつになるのかが分力もない場合において、図 17に示 す RC回路を利用した積分回路のように、データ信号の開始時刻に電流が流れ始め 、データ信号の終了時刻に電流が停止するように、送信コイル 4に流れる電流を制御 して三角波の整形を行おうとする例を説明する。
[0104] 図 18は、伝送されるデータが、ある規則を持たない 0又は 1のデータ列である場合 のタイミングチャートを示す。
[0105] 受信装置 Eが矩形波のデータ信号を得ることができるように、送信装置 Sが三角波 の電流を作成する場合、 0や 1が連続するデータ信号列では、送信コイル 4に流す電 流を、 0又は 1のデータ信号が連続している間、増カロさせ続ける力、減少させ続ける 必要がある。カロえて、送信回路 3に入力されるデータ信号 (Vi及び Viバー)は規則的 でないため、 0又は 1のデータ信号が連続する数を予想できず、送信コイル 4に流す 電流の上限を定めることができないという問題がある。本願のように半導体電子回路 で電流を制御する場合には、電流を無限に増加させ続けたり減少させ続けたりするこ とはできな 、ため、三角波の整形を電流制御で行うことはできな 、。
[0106] ただし、送信データがランダムなデータでなぐ 0又は 1の連続する数が予め予想可 能な場合には、データの開始時刻に電流が流れ始め、データの終了時刻に電流が 停止するような制御によって、データを伝送することが可能である。
[0107] 例えば、上記非特許文献 3に示されている 8B10B符号ィ匕回路が用いられれば、本 実施例のようなデータの開始時刻と終了時刻の間、連続して電流を増加又は減少さ せるような電流制御によって、三角波を送信することができる。なお、 8B10B符号ィ匕 回路は、 8ビット分のデータに 2ビット付加して 10ビットで送る符号ィ匕回路であり、 0又 は 1のデータの連続する数を 5つ以下にすることができる。
[0108] 次に、積分処理による整形の他の形態について説明する。積分処理は、チャージ ポンプ、オペアンプ、スィッチドキャパシタ等を用いた積分回路により行われることも できる。こうした種々の積分処理回路によっても三角波又は略三角波の電流信号を 整形することができ、その電流信号を送信コイルに入力して三角波又は略三角波の 磁界信号を発生させることができる。
[0109] (電流スィッチ切換処理による整形)
次に、送信コイルに接続された送信回路が、電流スィッチ切換処理にて、三角波又 は略三角波の電流信号を整形し、その電流信号を送信コイルに入力して三角波又 は略三角波の磁界信号を発生させる例について説明する。
[0110] 図 19は、電流スィッチ切換処理回路を備えた送信回路の一例を示す回路図であり 、図 20は、図 19に示す送信回路の送信コイルに三角波を与える動作を説明するた めのタイミングチャートの一例である。
[0111] この送信回路は、電流スィッチ切換処理回路 11を備え、電流スィッチ切換処理回 路 11は、複数の可変電流源 8a〜8eと、各可変電流源 8a〜8eに接続されたスィッチ a〜eと、で構成されている。送信回路に入力した矩形のデータ信号 Viカゝら三角波又 は略三角波の電流への整形は、スィッチ a〜eの開閉時間を制御することによって行 うことができる。なお、特に断らない限り、以下においては、三角波又は略三角波を「 三角波」と略記する。
[0112] 連続する 0又は 1を含み且つ 0又は 1の連続する数が任意であるデータ信号 Viが送 信回路への入力信号として用いられた場合に、送信コイル 4に三角波を与える方法 を、図 20のタイミングチャートを用いて説明する。なお、この例では各スィッチ a〜eに 接続されて 、る全ての可変電流源 8a〜8eに流れる電流は同一として 、る。
[0113] 先ず、各可変電流源 8a〜8eが有するスィッチ a〜eが、データ信号 Viの切り替わり のタイミングに同期して変化される。例えば、図 20に示すように、スィッチ aは、データ 信号 Viの開始時から終了時までの時間のうち、データ幅の中心力 データ幅の 90% の時間だけ閉じ、スィッチ bは、データ幅の中心力もデータ幅の 70%の時間だけ閉じ 、スィッチ cは、同様にデータ幅の 50%だけ閉じ、スィッチ dは、同様にデータ幅の 30 %だけ閉じ、スィッチ eは、同様にデータ幅の 10%だけ閉じる。
[0114] 個々のスィッチを閉じている間は、閉じているスィッチに直列に配置された可変電 流源 8a〜8eの電流が送信コイル 4に流れるため、閉じているスィッチの数に応じて送 信コイル 4に流れる電流量を制御することができる。
[0115] 例えば図 20に示した例では、送信コイル 4に流れる電流量の絶対値は、データ信 号 Viのデータ幅の中心で最大となり、データ信号 Viの開始時と終了時に最小となる。 すなわち、送信回路に入力するデータ信号 Viが 1の場合には、送信コイル 4に流れる 電流の変化は増加後に減少に転じ、逆にデータ信号 Viが 0の場合には、送信コイル 4に流れる電流の変化は減少後に増加に転じる。そして、データ信号 Viの切り替わり 時には、必ず一定値(図 20中のライン L)にリセットされる。図 19に示すような送信回 路を用いた場合には、データ信号 Viの切り替わり時に、送信コイル 4に流れる電流は 必ずゼロにリセットされ、データ信号 Viが 1の場合には、図 19の送信コイル 4中を矢印 の方向に流れる電流を正としたとき、その電流は正に増加した後にゼロに戻る。逆に データ信号 Viが 0の場合は、送信コイル 4に流れる電流は負に増加した後にゼロ〖こ 戻る。
[0116] こうして整形された三角波の電流が送信コイル 4内を流れると、送信コイルは三角波 の磁界信号を出力する。この三角波の磁界信号は、受信コイルで誘起され、誘起さ れた電圧波形は、送信コイルから出力した三角波の磁界信号 (すなわち、送信コイル 4に流れた三角波の電流と略同じ。 )を微分した波形として現れる。
[0117] 従って、図 20に示すように、送信コイル 4を流れる電流が右上がりに一定の傾きで 増加している場合は、受信コイルにはその微分値としての 1の電圧が誘起され、逆に 送信コイル 4を流れる電流が右下がりに一定の傾きで減少して ヽる場合は、受信コィ ルにはその微分値としての 0の電圧が誘起される。
[0118] すなわち、送信回路へのデータ信号 Vi力 の場合、受信コイルに誘起される電圧は 、そのデータ信号 Viのデータ幅の前半は 1となり、後半は 0となる。逆に、送信回路へ のデータ信号 Viが 0の場合、受信コイルに誘起される電圧は、そのデータ信号 Viの データ幅の前半は 0となり、後半は 1となり、パルス幅の広い矩形波となる。
[0119] 本発明のインターフェース回路は、そのように受信された受信信号に対して、誘起 された電圧変化の前半部分を受信装置のクロック信号で判別することで、送信された データを判定することができる。
[0120] 図 21は、電流スィッチ切換処理回路を備えた送信回路の他の一例を示す回路図 である。具体的には、図 21は、図 19に示す送信回路内の電流スィッチ切換処理回 路 11と、送信回路に信号入力される差動半導体素子と、の間に、電流平滑化回路を 接続した例を示した回路図である。
[0121] 図 22は、図 21に示す送信回路の送信コイルに三角波を与える動作を説明するた めのタイミングチャートである。
[0122] 図 20で示したように、複数のスィッチ a〜eを切り替えて三角波の電流を整形した場 合、スィッチ a〜eの切り替えのタイミングに対応した階段状の不連続部が発生するこ と力ある。三角波の電流が階段状の不連続部を有する場合、受信コイルに誘起され る電圧の波形が歪み、その結果、受信信号の強度が低下し、通信品質が低下してし まつ。
[0123] そこで、図 21に示す送信回路では、電流平滑化回路を、電流スィッチ切換処理回 路 11と、差動半導体素子である送信差動対トランジスタと、の間に挿入することにより 、階段状の不連続部が平滑化される。その結果、受信コイルに誘起される電圧波形 の歪みが緩和され、受信信号の強度を高く保つことができ、通信品質を高く保つこと が可能となる。
[0124] 図 23は、図 19に示す送信回路の送信コイルに三角波を与える動作を説明するた めのタイミングチャートの他の一例である。
[0125] 図 23の例も、上記同様、送信コイル 4に三角波の電流を入力するために、 5つのス イッチ a〜eと可変電流源 8a〜8eを用い、スィッチ a〜eを段階的に制御することによ つて、データ幅の時間の間に送信コイルを流れる電流が右上がりに又は右下がりに 増加し続ける。なお、この例でも、各可変電流源に流れる電流は同一とする。
[0126] 図 23に示すように、スィッチ aは、データ信号 Viの開始時刻からデータ幅の 10%の 時間が経った後に開き、データ信号 Viの終了と共に閉じる。同様に、スィッチ bは、デ ータ幅の 30%の時間が経った後に開き、スィッチ cは、データ幅の 50%の時間が経 つた後に開き、スィッチ dは、データ幅の 70%の時間が経った後に開き、スィッチ eは 、データ幅の 90%の時間が経った後に開き、全てのスィッチ a〜eはデータ信号 Viの 終了と同時に閉じる。
[0127] 複数のスィッチをこのように制御することで、送信コイル 4に略三角波であるノコギリ 波状の電流を流すことができる。このようなノコギリ波状の電流が送信コイル 4に流さ れた場合、受信コイルに誘起される受信信号は、送信回路に入力されるデータ信号 Viとほぼ同じ形状の矩形波となる。但し、 1や 0が連続するデータ信号 Viの場合は、 受信信号にデータ幅ごとのグリッジが現れる可能性があるが、その場合は、受信した 信号データの中心付近で受信クロックを用いて、受信信号の波形が整形されれば、 1又は 0の連続の受信信号でグリッジが発生した場合でも、データ信号 Viを正確に受 信することができる。
[0128] 図 24は、図 23のタイミングチャートで生じた階段状の電流を、図 21に示す送信回 路で平滑ィ匕したときの動作を説明するためのタイミングチャートの一例である。図 23 で示したように、複数のスィッチ a〜eを切り替えて略三角波であるノコギリ波状の電流 を整形した場合、スィッチ a〜eの切り替えのタイミングに対応した階段状の不連続部 力 S発生することがある。
[0129] ノコギリ波状の電流が階段状の不連続部を有する場合、受信コイルに誘起される電 圧の波形が歪み、その結果、受信信号の強度が低下し、通信品質が低下してしまう。 そこで、図 21に示す送信回路では、電流平滑化回路を、電流スィッチ切換処理回路 11と、差動半導体素子である送信差動対トランジスタと、の間に挿入することにより、 階段状の不連続部が平滑化される。その結果、受信コイルに誘起される電圧波形の 歪みが緩和され、受信信号の強度を高く保つことができ、通信品質を高く保つことが 可能となる。
[0130] 以上、図 20、図 22、図 23及び図 24のタイミングチャートを用いて説明したように、 送信コイル 4に流れる電流を三角波またはノコギリ波状 (略三角波に相当する波形) に整形することで、受信コイルに誘起される電圧をデータ幅の広い矩形波にすること ができる。
[0131] 一方、送信回路内には、抵抗素子、送信コイル、差動対トランジスタ、スィッチ素子 、電流源等の能動素子、および、受動素子の寄生容量等の寄生成分 (負荷)が存在 するので、その寄生成分が原因で、図 25及び図 26に示すように、送信コイル 4に流 れる電流がなだらかになって明確な三角波またはノコギリ波状 (略三角波)にならな い場合がある。 [0132] このような場合には、受信コイルに誘起される電圧の波形が歪み、受信信号の強度 が低下し、その結果、通信品質が低下してしまう。
[0133] そこで、送信コイル 4に流す電流波形を、三角波またはノコギリ波が強調されるよう に変化させることが望ましぐそのためには、例えば図 19又は図 21に示したスィッチ a とスィッチ eにつながる可変電流源 8aおよび 8eの電流量を、他のスィッチにつながる 電流源の電流量よりも多くする。
[0134] こうすること〖こより、全ての電流源に流れる電流の総和力 増加から減少又は減少 力も増加に転じるときに、総和の電流量の変化分を強調することができ、具体的には 、図 25に示すように、三角波の電流波形を強調でき、図 26に示すように、ノコギリ波 状の電流波形を強調できる。その結果、送信コイル 4に流れる電流の鈍りを抑え、受 信信号の強度を保ちながら通信品質を維持することができる。
[0135] 以上のように、送信コイルに入力する信号を矩形波ではなぐ三角波又は略三角波 とすることによって、送信コイルから出力される磁界信号が三角波又は略三角波とな り、その結果、受信コイルに誘起される電圧波形、即ち受信回路に入力される受信信 号波形をパルス幅の広 、波形にすることができ、耐ノイズ性に優れた信号伝送が実 現できる。
[0136] (差動伝送)
次に、耐ノイズ性に優れた差動伝送について説明する。本発明においては、 2つの 送信コイルカゝら互いに位相を 180° 反転させた磁界信号を発生させ、受信コイルにて その磁界信号を受信電圧に誘起する差動伝送により、パルス幅の広 、信号中に混 入するノイズをキャンセルすることができる。
[0137] 差動伝送によってノイズをキャンセルできるコイル形態と回路形態にっ 、て説明す る前に、基本的な差動回路について説明する。図 27は、基本的な差動回路を有した 送信回路の一例を示す回路図である。図 27に示す送信回路 3は、シングルエンドの 信号であるデータ信号 Vi(t)を差動信号に変換するシングルエンド 差動変換回路と 、データ信号 Vi(t)に積分処理を行うための可変電流源 8とによって構成されている。
[0138] 図 28は、図 27に示した伝送回路の動作を示すタイミングチャートである。シングル エンド 差動変換回路の 2つの入力端子には、片一方に信号 Viが入力され、もう一 方に参照電圧 Vrei¾入力されている。参照電圧 Vrefは、信号入力 Viのハイレベルと ローレベルの中間値に設定され、シングルエンド 差動変換回路によって差動出力 1701および 1702が出力される。出力回路を構成する可変電流源 8は、入力信号 Vi のシンボルレートに応じて、電流源に流れる電流を最小値力 最大値を経て再度最 小値に戻るような三角波的な電流を発生する。その結果、コイルに流れる電流はタイ ミングチャートに示すような三角波になる。なお、シンボルレートとは、既述のように、 送信データの 1シンボル幅を示すものである。
[0139] 図 29は、他の差動回路を有した送信回路の一例を示す回路図である。図 29に示 す送信回路 3では、 2つの Vi(t)と 2つの Vi(t)バーとを送信コイル 4の上下左右で反転 させて入力する差動回路が 2つ接続されている。
[0140] 送信回路 3では、各差動回路のバイアス Vblと Vb2のペアの値と、 Vb3と Vb4のペア の値とを制御することで、三角波又は略三角波の電流波形を整形することができる。 また、図 19又は図 21に示した可変電流源 8aのスィッチ aを Vblと Vb2のペア、可変電 流源 8bのスィッチ bを Vb3と Vb4のペアと置き換え、さらにこのような差動回路の数を 増やすことで、図 29に示す送信回路 3を、先に示した電流スィッチ切換処理回路と 同様に動作させることができる。
[0141] 基本的な動作は、図 19の送信回路のタイミングチャート(図 20を参照)と同様であ る。図 19のスィッチ aに相当するスィッチの役割を、図 29では Vblおよび Vb2の 2つの トランジスタが果たしている。図 19のスィッチ bの役割を、図 29では Vb3および Vb4が 果たしている。
[0142] 更に、図 29には示していないが、 Vbl〜Vb2と、入力トランジスタ 1801、 1802、 18 03および 1804で構成される回路と、を最小単位とする回路を、送信コイル 4に並列 に接続することで、送信コイル 4に流れる電流を制御するスィッチの数を多くすること ができる。この最小単位を構成する回路は、スィッチ Vblから Vb4を時間的にずれを 持つように段階的に制御することで、送信コイル 4に流れる電流を階段状に制御する ことができる。
[0143] 本発明のインターフェース回路は、上述した差動回路を利用した差動伝送によって ノイズをキャンセルできるコイル形態と回路形態を有している。 [0144] そうした差動伝送を行う送信装置としては、(A)送信装置が図 12に示す形態の送 信回路を 2つ有し、各送信回路それぞれに 1つの送信コイルが設けられ、その送信コ ィルカ 互いに位相を 180° 反転させた磁界信号が発生するように、その 2つの送信 コイルが配置されて 、るものが用いられてもよ!/、。
[0145] また、その送信装置として、 (B)送信装置が送信回路を 1つ有し、その送信回路内 に 2つの送信コイルが並列に設けられ、その送信コイルカゝら互いに位相を 180° 反転 させた磁界信号が発生するように、その 2つの送信コイルが配置されて 、るものが用 いられてもよい。
[0146] また、その送信装置として、 (C)送信装置が送信回路を 1つ有し、その送信回路内 に 2つの送信コイルが直列に設けられ、その送信コイルから互いに位相を 180° 反転 させた磁界信号が発生するように、その 2つの送信コイルが配置されて 、るものが用 いられてもよい。以下、それぞれの態様について説明する。
[0147] 図 30は、送信装置が送信回路 3 'を 1つ有し、送信回路 3 '内に 2つの送信コイル 4a およぶ 4bが設けられ、送信コイル 4aおよび 4bから互いに位相を 180° 反転させた磁 界信号が発生するように、 2つの送信コイル 4aおよび 4bが配置された半導体チップ の平面図である。
[0148] なお、この送信回路に対応する受信回路として、送信回路側の送信コイル 4aおよ び 4bと対応する同じ構成の 2つの受信コイルを備える受信回路が用いられることが好 ましい。ただし、受信コイルの大きさは送信コイルと同じにする必要はない。また、所 望の受信感度を得るために、コイルの大きさが調整されても力まわない。
[0149] 図 31は、図 30に示す半導体チップの送信コイル 4aおよび 4bを流れる電流とその 電流カゝら発生する磁界の向きを示した平面図である。送信回路 3 'は、送信コイル 4a および 4bにそれぞれ逆向きの磁界を発生させるように電流を印加する。同じ構成の ために図示していないが、送信コイルと同様に、受信コイルの受信磁界の向きも逆方 向にしている。これにより、 2つの送信コイルと 2つの受信コイルの間で磁界の差動伝 送が行われ、外部より混入する同相ノイズをキャンセルする耐ノイズ性に優れた半導 体装置が実現できる。
[0150] 図 32は、図 30乃至図 31に示す送信回路のブロック図である。データ信号 Viが送 信回路 3 'に入力され、送信回路 3 'で整形された三角波の電流が 2つの送信コイル 4 aおよび 4bに印加される。 2つの送信コイル 4aおよび 4bから出力される磁界信号は、 互いに 180° 位相が反転した信号となり、受信コイル 5aおよび 5bによって受信される 。受信コイル 5aおよび 5bで誘起された電圧は、パルス幅の広い矩形波に近い波形と なるので、それを差動回路で受信することによって受信電圧 Voを得ることができる。
[0151] 図 33は、図 30乃至図 31に示す送信回路を備えた送信装置の一例を示す回路図 である。図 33に示す送信装置 Sは、例えば図 12に示す送信回路を 2つ有し、各送信 回路 3a'および 3b 'が 1つずつ送信コイル 4aまたは 4bを有する。各送信コイル 4aお よび 4bから互いに位相を 180° 反転させた磁界信号が発生するように、その 2つの送 信コイル 4aおよび 4bが配置されている。それぞれの送信回路 3a'および 3b'が有す る可変電流源 8aまたは 8bは、既述の可変電流源と同じである。
[0152] ここで、受信回路について説明する。図 34は、受信回路の一例を示す回路図であ る。受信回路 6は、大きく分けて、受信コイル 5、差動回路、ラッチ回路 9によって構成 されている。差動回路の 2つの入力端子間には、受信コイル 5と、受信コイル 5の誘起 電圧の中点 (Vb)を決める 2つの抵抗とが並列に接続されて 、る。差動回路の 2つの 出力は、ラッチ回路 9に接続され、ラッチ回路 9からシングルエンドの受信信号 Voが 出力される。
[0153] 図 35は、受信回路の他の一例を示す回路図であり、図 34の場合と同様に、差動回 路の 2つの入力端子間に、受信コイルと受信コイルの誘起電圧の中点 (Vb)を決める 2つの抵抗とが並列に接続されている。受信回路 6では、最終的に受信信号が、 Voと Voバーの差動信号として出力される。
[0154] 図 36は、受信コイルが直列に設けられた受信回路の一例を示す回路図である。受 信回路 6 'では、受信コイルが直列に設けられていると共に、図 34に示した受信回路 6のうち、ラッチ回路 9を除いた差動回路が 2つ並べられ、その出力が 1つのラッチ回 路 9に入力される。受信回路 6 'がこのような回路構成であることで、図 30〜図 33で説 明した 2つの送信コイルを用いた差動伝送が可能となる。
[0155] 図 37は、本発明において受信コイルに同相ノイズが混入した場合の受信コイルへ の誘起電圧波形である。 Vea(t)と Veb(t)に同相ノイズが混入している力 差動伝送の ため、その差分では同相ノイズがキャンセルされる。
[0156] 図 38は、ノイズをキャンセルするための差動伝送を説明するための説明図である。
従来技術では、図 10に示した通り、受信信号のパルス幅が狭いため、半導体内の素 子のばらつき、またはコイル形状のばらつき等により、僅かな遅延が生ずるだけで同 相ノイズのキャンセルばかりか、受信信号の正確な取り込みができなくなつていた。し かし、図 38に示す通り、本発明のインターフェース回路に上記の差動伝送を適用す ることにより、パルス幅が広くなり、僅かな遅延があっても差動波形を再生できる。即 ち、配線経路または素子のばらつきによって生ずる遅延があっても、正確に差動信 号を再生することができるという新たなメリットがある。
[0157] 図 39は、送信装置が送信回路 3"を 1つ有し、送信回路 3"内に 2つの送信コイル 4a
'および 4b'が並列に設けられ、送信コイル 4a'および 4b '力 互いに位相を 180° 反 転させた磁界信号が発生するように、 2つの送信コイル 4a'および 4b 'が配置された 半導体チップの平面図である。この形態力もなる送信回路 3"は、その構造をより簡単 にすることができる点で好ましい。なお、受信回路についても、同様の形態とすること が好ましい。
[0158] 図 40は、図 39に示す半導体チップの送信コイル 4a'および 4b 'を流れる電流と、そ の電流力 発生する磁界の向きを示した平面図である。送信回路 3"は、送信コイル 4 a'および 4b 'にそれぞれ逆向きの磁界を発生させるように電流を印加する。同じ構成 のために図示していないが、送信コイルと同様に、受信コイルの受信磁界の向きも逆 方向にしている。これ〖こより、 2つの送信コイルと 2つの受信コイルの間で磁界の差動 伝送が行われ、外部より混入する同相ノイズをキャンセルする耐ノイズ性に優れた半 導体装置が実現できる。
[0159] 図 41は、図 39及び図 40に示す送信回路 3"の一例を示す回路図である。この送信 回路 3"は、例えば図 12に示す送信回路に 2つの送信コイル 4a"および 4b"が並列に 挿入されている送信装置である。送信回路 3"が有する可変電流源 8は、既述の可変 電流源と同じである。
[0160] 図 42は、受信コイルが並列に設けられた受信回路の一例を示す回路図である。受 信回路 6"は、大きく分けて、 2つの受信コイル 5a'および 5b '、差動回路、ラッチ回路 9によって構成されている。差動回路の 2つの入力端子間には、 2つの受信コイル 5a ,および 5b'と、受信コイル 5a'および 5b 'の誘起電圧の中点(Vb)を決める 2つの抵 抗とが、それぞれ並列に接続されている。差動回路の 2つの出力は、ラッチ回路 9に 接続され、ラッチ回路 9からシングルエンドの受信信号 Voが出力される。このように 2 つの送 Z受信コイルを一つの送 Z受信回路内に作り込むことで、インターフェース部 の回路規模を小さくすることができる。また、 2つの差動回路を用意する図 33の例に 比べ、差動ペア間のばらつきを抑えることができるという利点もある。
[0161] 図 43は、送信装置が送信回路 3" 'を 1つ有し、送信回路 3" '内に 2つの送信コイル 4a"および 4b"が直列に設けられ、送信コイル 4a"および 4b"力 互いに位相を 180 ° 反転させた磁界信号が発生するように、 2つの送信コイル 4a"および 4b"が配置さ れた半導体チップの平面図である。この形態力もなる送信回路 3" 'には、 2つの送信 コイル 4a"および 4b"が直列に接続されている。この送信装置は、図 39の並列形態と 同様、その構造をより簡単にすることができる点で好ましい。なお、受信回路につい ても、同様の形態とすることが好ましい。
[0162] 図 44は、図 43に示す半導体チップの送信コイル 4a"および 4b"を流れる電流と、そ の電流力 発生する磁界の向きを示した平面図である。送信回路 3" 'は、送信コイル 4a"および 4b"に、それぞれ逆向きの磁界を発生する。同じ構成のために図示してい ないが、送信コイルと同様に、受信コイルの受信磁界の向きも逆方向にしている。こ れにより、 2つの送信コイルと 2つの受信コイルの間で磁界の差動伝送が行われ、外 部より混入する同相ノイズをキャンセルする耐ノイズ性に優れた半導体装置が実現で きる。
[0163] 図 45は、図 43乃至図 44に示す送信回路のブロック図である。データ信号 Viが送 信回路 3" 'に入力され、送信回路 3" 'で整形された三角波の電流が、直列に配置さ れた 2つの送信コイル 4a"および 4b"に印加される。 2つの送信コイル 4a"および 4b" 力も出力される磁界信号は、互いに 180° 位相が反転した信号となり、受信コイル 5a "および 5b"によって受信される。受信コイル 5a"および 5b"で誘起された電圧は、パ ルス幅の広い矩形波に近い波形となるので、それを差動回路で受信することによつ て受信電圧 Voを得ることができる。 [0164] 図 46は、図 43乃至図 44に示す送信回路 3" 'の一例を示す回路図である。この送 信装置は、例えば図 12に示す送信回路に 2つの送信コイル 4a"および 4b"が直列に 挿入されている送信装置である。送信回路 3a' "が有する可変電流源 8は、既述の可 変電流源と同じである。
[0165] 図 47は、受信コイルが直列に設けられた受信回路の一例を示す回路図である。受 信回路 6" 'は、大きく分けて、 2つの受信コイル 5a"および 5b"、差動回路、ラッチ回 路によって構成されている。差動回路の 2つの入力端子間には、直列に配置された 受信コイルと、受信コイルの誘起電圧の中点 (Vb)を決める 2つの抵抗と、が並列に 接続されている。差動回路の 2つの出力は、ラッチ回路に接続され、このラッチ回路 力 シングルエンドの受信信号 Voが出力される。このように 2つの送 Z受信コイルを 一つの送 Z受信回路内に作り込むことで、インターフェース部の回路規模を小さくす ることができる。また、 2つの差動回路を用意する図 32の例に比べ、差動ペア間のば らっきを抑えることができると 、う利点もある。
[0166] 以上説明したように、送信装置が有する 2つの送信コイル力 互いに位相を 180° 反転させた磁界信号が発生するので、送信コイル Z受信コイル間の信号授受が差動 伝送になり、外来ノイズをキャンセルすることが可能となる。さらに、受信信号のパルス 幅が広くなることから、遅延による差動伝送の波形再生が容易になる。また、送信コィ ルを直列又は並列に配置することにより、送信回路が簡素化され、かつ、回路製造に よるばらつきも小さくなるため、ノイズ耐カが向上する。
[0167] (インターフェース回路の使用形態)
次に、本発明のインターフェース回路の使用形態について説明する。
[0168] 図 48は、本発明のインターフェース回路を備えた半導体装置の他の例を示す断面 図である。この半導体装置は、図 11で既述した半導体装置とは異なり、送信コイル 4 と受信コイル 5が対向した形態となっている。このように、送信コイル 4と受信コイル 5 の位置関係は、対向していても、逆に背中合わせになっていても構わない。ただし、 送 Z受信コイル間の距離が近いほどコイル間の信号伝送に使う電力は小さくできる ため、図 48に示す形態の例がより信号伝送に使う電力が小さくなる。
[0169] 図 11と図 48に示した半導体装置では、回路チップを重ね、透しで見た場合の同じ 位置に、一方の回路チップには送信コイル 4、他方の回路チップには受信コイル 5が 配置される。
[0170] 例外として、半導体装置外に故意に信号を送信する場合、もしくは、半導体装置の 外部からの信号を故意に受信する場合に限り、回路チップを重ね、透しで見た場合 の同じ場所に送信コイルだけ、もしくは受信コイルだけを重ねて配置してもよ 、。
[0171] 例えば、本半導体装置内の回路チップの動作を外部力 モニタリングしたい場合、 各回路チップに、本半導体装置外にある受信コイルに向けて信号を送信する送信コ ィルが、回路チップ間の信号伝送に使う送信コイルとは別に設けられる。
[0172] 一方、本半導体装置のテスト動作を外部より制御したい場合、各回路チップに、本 半導体装置外にある送信コイルから送信される信号を受信する受信コイルが、回路 チップ間の信号伝送に使う受信コイルとは別に設けられる。
[0173] このように動作のモニタリングまたはテスト動作のための送信コイルまたは受信コィ ル、および送信装置または受信装置が設けられば、積層された回路チップの表層に あるものだけでなぐ内層にあるものに対しても動作のモニタリングおよびテスト動作 を容易に行える。
[0174] 図 49は、本発明のインターフェース回路を 3枚以上重ねた回路チップ間の信号伝 送に利用した半導体モジュールの一例である。この半導体モジュールは、プリント基 板 21上に半導体回路チップが積層されてなり、上下で接する回路チップ間だけでな ぐさらにその上下に重なる回路チップとの間でも、本発明のインターフェース回路に よって信号伝送を行う。
[0175] ここでは、一番下に位置する回路チップを IF (インターフェース)チップと呼び、その 上に重ねた回路チップとの間で 1対多の信号伝送を行うものとする。例えば、上に重 ねた回路チップをすベてメモリチップとし、 IFチップの送信装置 Sとすべてのメモリチ ップの受信装置 Eとを重なるように配置する。これにより、 IFチップの送信装置 Sから 発生する磁界信号を、すべてのメモリチップが同じタイミングで受信することができる ため、メモリへの高速書き込みが可能となる。
[0176] 一般的には、非接触で多層に積層された回路チップに信号を伝送する場合、 IFチ ップからの磁界信号が一番離れた回路チップへ到達するまでの間に、間に挟まった 回路チップで発生するノイズが多く含まれる可能性があつたが、本発明にお 、ては、 前述した通り、回路チップで発生するノイズと判別しやすい磁界信号を送信コイルか ら送信して 、るため、確実な信号伝送を行うことができる。
[0177] また、図 49に示した半導体モジュールにおいては、プリント基板 21上に、メモリチッ プすべての送信装置 Sと IFチップの一つの受信装置 Eとを重ねて配置することによつ て、多数の送信コイル力も発生する磁界信号を一つの受信コイルで受信することが できる。その結果、数少ない信号伝送の経路を使いながら、高速にメモリから情報を 取り出すことができる。この際、例えば、各メモリチップから IFチップへの信号伝送は 、時間分割することで確実に行うことが可能である。さらに、この実施形態でも、間に 挟まった回路チップで発生するノイズが多く含まれてしまう可能性がある力 前述した 通り、回路チップで発生するノイズと判別しやすい磁界信号を送信コイル力 発生し ているため、確実な信号伝送を行うことができる。
[0178] 図 49の IFチップには、本半導体モジュールを構成するプリント基板 21との間にハ ンダボールまたは金属バンプ等の接続手段 22が形成されて 、る。接続手段 22は、 本半導体モジュールを構成するプリント基板 21がインターフェース回路に対応してい る場合には不用である力 対応していない場合には、このような構造にするとよい。 IF チップに、非接触方式による信号を従来の接触方式による信号に変換する機能が付 カロされる場合には、従来の回路設計技術を使って本半導体モジュールを利用するこ とがでさる。
[0179] 図 50は、 3枚以上重ねた回路チップ間の信号伝送に、本発明のインターフェース 回路を利用した他の半導体モジュールの一例である。送信装置 S又は受信装置 Eが 、各回路チップの同じ位置に配置されるのではなぐ任意の位置に選択的に設けら れた例である。
[0180] 例えば、右端では一番下の回路チップにのみ送信装置 Sが形成され、そこから発 生する磁界信号を上 2つの回路チップの受信装置 Eのみが受信する。また、その左 に位置する部分では、 1番上の回路チップ力 発生する磁界信号を上力 3番目の 回路チップが受信し、また、 2番目の回路チップ力 発生する磁界信号を上力 4番 目の回路チップが受信する。 [0181] このように、選択的に送信装置 Sと受信装置 Eを配置する構成にすることで、回路チ ップ間の信号伝送位置を自由に設計することが可能となる。本発明では、ノイズに影 響されにくい磁界信号を利用するため、信号伝送位置をさらに自由に選択できる。な お、詳細な平面図を図示していないが、送信装置 Sと受信装置 Eが重なった状態とは 、送信コイルと受信コイルとが対向している状態であり、送信コイルの形成領域と受信 コイルの形成領域とが少なくとも一部対向していればよい。また、より好ましくは、送信 コイルと受信コイルの中心軸を一致させることにより送信効率を向上させることができ る。
[0182] 本発明の半導体モジュールは、本発明の半導体装置のほかに、他の信号を発生 する機能部を有したものであってもよい。この半導体モジュールにおいては、機能部 が発生する他の信号が、ノイズとして信号伝送に影響することが考えられるが、本発 明の半導体モジュールでは、三角波又は略三角波の信号を用いているため、ノイズ 力もの影響を抑制することができる。他の信号を発生する機能部としては、半導体装 置に回路として形成されている場合や、プリント基板上に本発明の半導体装置と共に 搭載されている場合がある。また、機能部としては、発振器やクロック動作部品、 DC ZDCコンバータ等を挙げることができる。
[0183] また、本発明のインターフェース回路を備えた半導体モジュールを携帯端末に適 用することにより、高速で大容量の信号処理が行えると同時にノイズに影響され難い という効果が生じる。携帯電話のような携帯端末では、無線通信の高速化に対応す るために、通信用の CPU (中央処理装置)チップと共に大容量のメモリが必要になる 。また、ゲームのようなソフトウェアを高速で処理するために、アプリケーション用の C PUチップと共に大容量のメモリが必要になる。
[0184] 本発明の半導体モジュールを用いることで、前記 IFチップの機能を各 CPUにもた せることによって、高速で大容量の信号伝送を CPUとメモリ間で実現することができ、 高機能な携帯端末が実現できる。
[0185] また、携帯端末には無線機能があるため、その無線機能から発せられる無線信号 力 本発明に係る非接触の信号に混入することが懸念されるが、このような混入ノィ ズに強い信号伝送方法を利用しているため、このような懸念は払拭される。ここでの 半導体モジュールは、通信用 CPU、アプリケーション用 CPU各々を備えたプリント基 板の上にメモリチップが積層されている形態を例示できる。
[0186] 図 51は、本発明のインターフェース回路をプリント基板内に装着した一例を示す模 式断面図である。
[0187] 従来、回路チップをプリント基板に搭載する場合、両者の間にハンダボールや金属 バンプ等の接続手段が使われていた。電子機器の実際の使用環境では、温度変化 が生ずるため、回路チップの熱膨張係数とプリント基板の熱膨張係数の違いにより、 この接続手段にクラックが生じることが常に問題になっていた。
[0188] しかし、本発明では、ハンダボールや金属バンプ等の金属接続手段を用いず、ェ ポキシ榭脂等の広く一般に使われている榭脂系の接着剤を使用できるため、回路チ ップとプリント基板との接続が確実に行え、同時に、信号接続の信頼性も向上する。 なお、前記半導体装置、半導体モジュール、メモリモジュール、携帯端末では、図示 していないが、回路チップ間を固定するために、榭脂系等の金属粒子を含まない接 着剤を使うことが好ましい。金属粒子を含むような導電性の接着剤を使用すると、そ の金属粒子によって磁界強度が熱に変わり、信号伝送に使われる電力が無駄に消 費されるからである。
[0189] なお、本願では、送信回路に入力される信号が矩形波の電圧波形である場合を記 載した。これは、現状の一般的な回路が矩形波の電圧波形によって駆動されている ためである。しかしながら、送信コイルから出力される磁界波形が三角波もしくは略三 角波になるのであれば、送信回路に入力される信号はいかなるものでも力まわない。 例えば、それが矩形波の電流波形であっても力まわな 、。
[0190] また、本願の半導体装置、半導体モジュール、メモリモジュール、携帯端末の実施 例に示した回路チップは、便宜的にすべて同じ大きさで図示したが、これに限定され るものではなぐ送信コイルと受信コイルとが対向するように回路チップが重なってい ればよぐ図示した回路チップの大きさに限定されるものではない。

Claims

請求の範囲
[I] 送信コイルが磁界信号を出力し、前記磁界信号に基づく電磁誘導により非接触で 信号伝送を行う伝送方法であって、
前記送信コイルが、三角波又は略三角波の磁界信号を出力する伝送方法。
[2] 前記三角波又は前記略三角波は、連続的に増加又は減少する波形、あるいは、段 階的に増加又は減少する波形である、請求項 1に記載の伝送方法。
[3] 前記磁界信号は、前記送信コイルに接続された送信回路が積分処理して整形した 電流信号を前記送信コイルに提供することによって得られる、請求項 1又は 2に記載 の伝送方法。
[4] 前記積分処理が、 RC積分回路により行われる、請求項 3に記載の伝送方法。
[5] 前記磁界信号は、前記送信コイルに接続された送信回路が電流スィッチ切換処理 して整形した電流信号を前記送信コイルに提供することによって得られる、請求項 1 又は 2に記載の伝送方法。
[6] 前記電流スィッチ切換処理が、複数の可変電流源と当該可変電流源それぞれに 接続されたスィッチとを有する回路により行われる、請求項 5に記載の伝送方法。
[7] 前記電流信号を、平滑化回路により平滑化させた後に、前記送信コイルに提供す る、請求項 5又は 6に記載の伝送方法。
[8] 前記送信コイルが 2つ設けられ、各送信コイルから発生する磁界信号が互いに位 相を 180° 反転されて伝送される、請求項 1ないし 7のいずれか 1項に記載の伝送方 法。
[9] 信号伝送を電磁誘導により行うインターフェース回路であって、
送信コイルと、
前記送信コイルに信号を提供して前記送信コイルから三角波又は略三角波の磁界 信号を出力させる送信回路と、を含むインターフェース回路。
[10] 前記三角波又は前記略三角波は、連続的に増加又は減少する波形、あるいは、段 階的に増加又は減少する波形である、請求項 9に記載のインターフェース回路。
[II] 前記送信回路が、積分処理を行う積分処理回路を備えている、請求項 9又は 10に 記載のインターフェース回路。
[12] 前記積分処理回路が、 RC積分回路である、請求項 11に記載のインターフェース 回路。
[13] 前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換処理回路を備え ている、請求項 9又は 10に記載のインターフェース回路。
[14] 前記電流スィッチ切換処理回路が、複数の可変電流源と当該可変電流源それぞ れに接続されたスィッチとを備えている、請求項 13に記載のインターフェース回路。
[15] 前記送信回路には、前記電流スィッチ切換処理回路から出力される信号を平滑ィ匕 させるための平滑ィ匕回路が設けられている、請求項 13又は 14に記載のインターフエ ース回路。
[16] 前記送信コイルが 2つ設けられ、各送信コイル力 互いに位相を 180° 反転させた 磁界信号が発生するように前記 2つの送信コイルが配置されて 、る、請求項 9な 、し
15のいずれか 1項に記載のインターフェース回路。
[17] 送信コイルと、前記送信コイルに信号を提供して前記送信コイルカゝら三角波又は略 三角波の磁界信号を出力させる送信回路と、を含む半導体装置。
[18] 前記三角波又は前記略三角波は、連続的に増加又は減少する波形、あるいは、段 階的に増加又は減少する波形である、請求項 17に記載の半導体装置。
[19] 前記送信回路が、積分処理を行う積分処理回路を備えている、請求項 17又は 18 に記載の半導体装置。
[20] 前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換処理回路を備え ている、請求項 17又は 18に記載の半導体装置。
[21] 前記送信回路には、前記電流スィッチ切換処理回路から出力される信号を平滑ィ匕 させるための平滑ィ匕回路が設けられている、請求項 20に記載の半導体装置。
[22] 前記送信コイルが 2つ設けられ、各送信コイル力も互いに位相を 180° 反転させた 磁界信号が発生するように前記 2つの送信コイルが配置されて 、る、請求項 17な 、 し 21のいずれか 1項に記載の半導体装置。
[23] 受信コイルを有する半導体装置が積層されている、請求項 17ないし 22のいずれか
1項に記載の半導体装置。
[24] 受信コイルを有する半導体装置が複数積層されている、請求項 17ないし 22のいず れか 1項に記載の半導体装置。
[25] 少なくとも前記送信コイルを有する複数の半導体装置と、受信コイルを有する半導 体装置とが積層されて 、る、請求項 17な 、し 22の 、ずれか 1項に記載の半導体装 置。
[26] 前記送信コイルと前記送信回路とを有する半導体装置と前記受信コイルを有する 半導体装置との間に積層された他の半導体装置をさらに含む、請求項 17ないし 25 の!、ずれか 1項に記載の半導体装置。
[27] 請求項 17ないし 26のいずれか 1項に記載の半導体装置と、前記半導体装置が積 層されているプリント基板と、を含む半導体パッケージ。
[28] 前記半導体装置と前記プリント基板とが、導電体を介して電気的に接続されている
、請求項 27に記載の半導体パッケージ。
[29] 前記プリント基板が受信コイルを備えている、請求項 27又は 28に記載の半導体パ ッケーン。
[30] 送信コイルと、前記送信コイルに信号を提供して前記送信コイルカゝら三角波又は略 三角波の磁界信号を出力させる送信回路と、を含むプリント基板。
[31] 前記三角波又は前記略三角波は、連続的に増加又は減少する波形、あるいは、段 階的に増加又は減少する波形である、請求項 30に記載のプリント基板。
[32] 前記送信回路が、積分処理を行う積分処理回路を備えている、請求項 30又は 31 に記載のプリント基板。
[33] 前記送信回路が、電流スィッチ切換処理を行う電流スィッチ切換処理回路を備え て 、る、請求項 30又は 31に記載のプリント基板。
[34] 前記送信回路には、前記電流スィッチ切換処理回路から出力される信号を平滑ィ匕 させるための平滑ィ匕回路が設けられている、請求項 33に記載のプリント基板。
[35] 前記送信コイルが 2つ設けられ、各送信コイル力も互いに位相を 180° 反転させた 磁界信号が発生するように前記 2つの送信コイルが配置されて 、る、請求項 30な 、 し 34のいずれか 1項に記載のプリント基板。
[36] 請求項 30ないし 35のいずれか 1項に記載のプリント基板と、前記プリント基板に積 層され、かつ、受信コイルを有する半導体装置と、を含む半導体パッケージ。
[37] 前記プリント基板と前記半導体装置との間に積層された他の半導体装置をさらに含 む、請求項 36に記載の半導体パッケージ。
[38] 前記プリント基板に積層された、受信コイルを有する複数の半導体装置をさらに含 む、請求項 36又は 37に記載の半導体パッケージ。
[39] 請求項 17ないし 26のいずれか 1項に記載の半導体装置と、前記半導体装置が積 層されたプリント基板と、を含み、当該半導体装置のうち少なくとも 1つが、前記磁界 信号とは異なる信号を発生する機能部を有する、半導体モジュール。
[40] 前記半導体装置と前記プリント基板とが導電体を介して電気的に接続されている、 請求項 39に記載の半導体モジュール。
[41] 少なくとも 1つの前記半導体装置の送信コイルが、前記他の半導体装置の送信コィ ルと対向しな 、位置に配置されて 、る、請求項 39又は 40に記載の半導体モジ ル。
[42] 請求項 17ないし 26のいずれか 1項に記載の送信コイルを有する半導体装置と、受 信コイルを有する半導体装置、あるいは、請求項 36ないし 38のいずれかに記載の 受信コイルを有する半導体装置と、を含み、前記半導体装置の少なくとも 1つがメモリ である、メモリモジ
[43] 受信回路を有するプリント基板と、当該プリント基板に積層され、送信コイル及び当 該送信コイルに信号を提供して当該送信コイルカゝら三角波又は略三角波の磁界信 号を出力させる送信回路を備えたメモリである半導体装置と、を含むメモリモジ ル。
[44] 前記三角波又は前記略三角波は、連続的に増加又は減少する波形、あるいは、段 階的に増加又は減少する波形である、請求項 43に記載のメモリモジュール。
[45] 前記半導体装置が複数積層されている、請求項 43又は 44に記載のメモリモジ ル。
[46] 請求項 17ないし 26のいずれか 1項に記載の半導体装置、又は、請求項 30ないし 3 5の 、ずれか 1項に記載のプリント基板を備えて 、る携帯機器。
PCT/JP2006/315509 2005-09-02 2006-08-04 伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール WO2007029435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/065,068 US8190086B2 (en) 2005-09-02 2006-08-04 Transmission method, interface circuit, semiconductor device, semiconductor package, semiconductor module and memory module
JP2007534287A JP4784773B2 (ja) 2005-09-02 2006-08-04 伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005255576 2005-09-02
JP2005-255576 2005-09-02

Publications (1)

Publication Number Publication Date
WO2007029435A1 true WO2007029435A1 (ja) 2007-03-15

Family

ID=37835561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315509 WO2007029435A1 (ja) 2005-09-02 2006-08-04 伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール

Country Status (3)

Country Link
US (1) US8190086B2 (ja)
JP (1) JP4784773B2 (ja)
WO (1) WO2007029435A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214274A (ja) * 2006-02-08 2007-08-23 Sony Corp 半導体装置
JP2008270787A (ja) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd 半導体装置
JP2008277521A (ja) * 2007-04-27 2008-11-13 Fuji Xerox Co Ltd 半導体集積回路装置
WO2009035028A1 (ja) * 2007-09-12 2009-03-19 Nec Corporation データ伝送装置およびデータ伝送方法
WO2009113373A1 (ja) * 2008-03-13 2009-09-17 日本電気株式会社 半導体装置
JP2010003907A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 半導体装置
JP2010056140A (ja) * 2008-08-26 2010-03-11 Toshiba Corp 積層型半導体装置
JP2010147557A (ja) * 2008-12-16 2010-07-01 Nec Corp 信号伝送方法と受信器と送信器と半導体装置
WO2010119625A1 (ja) * 2009-04-13 2010-10-21 日本電気株式会社 半導体装置及びそのテスト方法
JP5360066B2 (ja) * 2008-09-19 2013-12-04 日本電気株式会社 送信装置、受信装置及び送受信装置並びに送受信方法
WO2014087481A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 信号伝達回路
WO2017037883A1 (ja) * 2015-09-02 2017-03-09 株式会社PEZY Computing 半導体装置
JP2017092932A (ja) * 2015-11-04 2017-05-25 財團法人工業技術研究院Industrial Technology Research Institute 電気絶縁体実装構造および電気絶縁体の製造方法
JP2017130906A (ja) * 2016-01-19 2017-07-27 財團法人工業技術研究院Industrial Technology Research Institute ガルバニーアイソレータ回路
WO2017126018A1 (ja) * 2016-01-18 2017-07-27 ウルトラメモリ株式会社 半導体装置
WO2017138106A1 (ja) * 2016-02-10 2017-08-17 ウルトラメモリ株式会社 半導体装置
US11923598B2 (en) 2011-05-12 2024-03-05 Molex, Llc Scalable high-bandwidth connectivity

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008099711A1 (ja) * 2007-02-13 2010-05-27 日本電気株式会社 半導体装置
US7750435B2 (en) * 2008-02-27 2010-07-06 Broadcom Corporation Inductively coupled integrated circuit and methods for use therewith
JP5671200B2 (ja) * 2008-06-03 2015-02-18 学校法人慶應義塾 電子回路
JP5326088B2 (ja) * 2008-10-21 2013-10-30 学校法人慶應義塾 電子回路と通信機能検査方法
JP5578797B2 (ja) * 2009-03-13 2014-08-27 ルネサスエレクトロニクス株式会社 半導体装置
US8811914B2 (en) * 2009-10-22 2014-08-19 At&T Intellectual Property I, L.P. Method and apparatus for dynamically processing an electromagnetic beam
US20120203620A1 (en) 2010-11-08 2012-08-09 Douglas Howard Dobyns Techniques For Wireless Communication Of Proximity Based Marketing
US8929809B2 (en) 2011-03-22 2015-01-06 Radeum, Inc. Techniques for wireless communication of proximity based content
US8880100B2 (en) 2011-03-23 2014-11-04 Radium, Inc. Proximity based social networking
US8929808B2 (en) * 2011-09-29 2015-01-06 Broadcom Corporation Antenna driver circuit for NFC reader applications
US20130084802A1 (en) * 2011-09-30 2013-04-04 Broadcom Corporation Shaped controlling signals in near field communications (nfc) devices
US8831515B2 (en) 2011-10-12 2014-09-09 Broadcom Corporation Shaped load modulation in a near field communications (NFC) device
TWI492554B (zh) * 2013-07-04 2015-07-11 義守大學 訊號傳輸系統與訊號傳輸電路
KR20150109209A (ko) * 2014-03-19 2015-10-01 에스케이하이닉스 주식회사 반도체 장치
US9621227B2 (en) 2014-08-29 2017-04-11 Freelinc Technologies Proximity boundary based communication using radio frequency (RF) communication standards
US10164685B2 (en) 2014-12-31 2018-12-25 Freelinc Technologies Inc. Spatially aware wireless network
KR102323560B1 (ko) 2017-08-08 2021-11-08 삼성전자주식회사 전류의 피크 세기를 조절하도록 구성되는 회로를 포함하는 전자 장치
DE102018212957B3 (de) 2018-08-02 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Übertragung von daten von einem benutzerendgerät zu einem anderen gerät
US11296750B2 (en) * 2020-05-12 2022-04-05 Nxp B.V. Near-field wireless device including a first near-field antenna and a second near-field antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236696A (ja) * 1994-11-15 1996-09-13 Siemens Ag 垂直方向集積化回路の各チップ層間の誘導による信号伝送用装置
JP2004235875A (ja) * 2003-01-29 2004-08-19 Fujitsu Ltd タイミング信号発生回路および受信回路
JP2005228981A (ja) * 2004-02-13 2005-08-25 Keio Gijuku 電子回路

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537936A (en) * 1978-09-08 1980-03-17 Nippon Signal Co Ltd:The Object discrimination device
US5070500A (en) * 1988-08-30 1991-12-03 Tokyo Keiki Company Ltd. Memory package system utilizing inductive coupling between memory module and read/write unit
JP2713529B2 (ja) * 1992-08-21 1998-02-16 三菱電機株式会社 信号受信用コイルおよびこれを使用した非接触icカード
US5615229A (en) * 1993-07-02 1997-03-25 Phonic Ear, Incorporated Short range inductively coupled communication system employing time variant modulation
JPH07221260A (ja) 1994-02-02 1995-08-18 Fujitsu Ltd 集積回路装置とその製造方法
JP3272544B2 (ja) * 1994-07-18 2002-04-08 株式会社ワコム 位置検出装置及びその位置指示器
JP2866016B2 (ja) * 1994-12-22 1999-03-08 三菱電機株式会社 Icカードのリード・ライト装置の変調器、その復調器
JP3653120B2 (ja) 1995-04-12 2005-05-25 日立マクセル株式会社 雑音低減非接触並列データ転送装置およびその方法
RU2183033C2 (ru) * 1995-07-17 2002-05-27 Флайинг Налл Лимитед Усовершенствования, относящиеся к магнитным ярлыкам или маркерам
JPH0979806A (ja) * 1995-09-12 1997-03-28 Mazda Motor Corp 位置検出装置
JPH10341192A (ja) 1997-04-10 1998-12-22 Oki Electric Ind Co Ltd データ伝送回路
JP2001007745A (ja) 1999-06-24 2001-01-12 Techno Collage:Kk 非接触データ転送システム
JP2004348636A (ja) * 2003-05-26 2004-12-09 Mitsubishi Electric Corp 照合処理装置及び端末装置及びリーダライタ装置
JP4380239B2 (ja) * 2003-06-30 2009-12-09 パナソニック株式会社 非接触icカード読取/書込装置
JP3824000B2 (ja) * 2004-01-20 2006-09-20 オムロン株式会社 Rfidタグ用の読み書き処理装置
US7460604B2 (en) * 2004-06-03 2008-12-02 Silicon Laboratories Inc. RF isolator for isolating voltage sensing and gate drivers
US7447492B2 (en) * 2004-06-03 2008-11-04 Silicon Laboratories Inc. On chip transformer isolator
JP4193060B2 (ja) * 2004-06-04 2008-12-10 学校法人慶應義塾 電子回路
JP4677598B2 (ja) * 2004-08-05 2011-04-27 学校法人慶應義塾 電子回路
JP2006173415A (ja) * 2004-12-16 2006-06-29 Keio Gijuku 電子回路
US20060255459A1 (en) * 2005-05-11 2006-11-16 Simon Muff Stacked semiconductor memory device
KR100914552B1 (ko) * 2005-07-25 2009-09-02 삼성전자주식회사 반도체 메모리 장치 및 이를 구비하는 메모리 모듈

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236696A (ja) * 1994-11-15 1996-09-13 Siemens Ag 垂直方向集積化回路の各チップ層間の誘導による信号伝送用装置
JP2004235875A (ja) * 2003-01-29 2004-08-19 Fujitsu Ltd タイミング信号発生回路および受信回路
JP2005228981A (ja) * 2004-02-13 2005-08-25 Keio Gijuku 電子回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZOGUCHI D. ET AL.: "A 1.2Gb/s/pin Wireless Superconnect Based on Inductive Inter-Chip Signaling (IIS)", IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, 2004, XP010722193 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214274A (ja) * 2006-02-08 2007-08-23 Sony Corp 半導体装置
JP2008270787A (ja) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd 半導体装置
US8902123B2 (en) 2007-03-26 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with wireless communication
US8619003B2 (en) 2007-03-26 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with wireless communication
JP2008277521A (ja) * 2007-04-27 2008-11-13 Fuji Xerox Co Ltd 半導体集積回路装置
WO2009035028A1 (ja) * 2007-09-12 2009-03-19 Nec Corporation データ伝送装置およびデータ伝送方法
US9143205B2 (en) 2007-09-12 2015-09-22 Nec Corporation Data transmission device and data transmission method
JP5187310B2 (ja) * 2007-09-12 2013-04-24 日本電気株式会社 データ伝送装置およびデータ伝送方法
US20100254481A1 (en) * 2007-09-12 2010-10-07 Yoshihiro Nakagawa Data transmission device and data transmission method
WO2009113373A1 (ja) * 2008-03-13 2009-09-17 日本電気株式会社 半導体装置
US8399960B2 (en) 2008-03-13 2013-03-19 Nec Corporation Semiconductor device
US8039936B2 (en) 2008-06-20 2011-10-18 Mitsubishi Electric Corporation Semiconductor device
JP2010003907A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 半導体装置
US8232622B2 (en) 2008-08-26 2012-07-31 Kabushiki Kaisha Toshiba Stacked-chip device
US8338964B2 (en) 2008-08-26 2012-12-25 Kabushiki Kaisha Toshiba Stacked-chip device
JP2010056140A (ja) * 2008-08-26 2010-03-11 Toshiba Corp 積層型半導体装置
JP5360066B2 (ja) * 2008-09-19 2013-12-04 日本電気株式会社 送信装置、受信装置及び送受信装置並びに送受信方法
JP2010147557A (ja) * 2008-12-16 2010-07-01 Nec Corp 信号伝送方法と受信器と送信器と半導体装置
WO2010119625A1 (ja) * 2009-04-13 2010-10-21 日本電気株式会社 半導体装置及びそのテスト方法
US11923598B2 (en) 2011-05-12 2024-03-05 Molex, Llc Scalable high-bandwidth connectivity
WO2014087481A1 (ja) * 2012-12-04 2014-06-12 三菱電機株式会社 信号伝達回路
JP5875704B2 (ja) * 2012-12-04 2016-03-02 三菱電機株式会社 信号伝達回路
US9396871B2 (en) 2012-12-04 2016-07-19 Mitsubishi Electric Corporation Signal transmitting circuit
WO2017037883A1 (ja) * 2015-09-02 2017-03-09 株式会社PEZY Computing 半導体装置
US10396856B2 (en) 2015-09-02 2019-08-27 Pezy Computing K.K. Semiconductor device
JPWO2017037883A1 (ja) * 2015-09-02 2018-06-14 株式会社PEZY Computing 半導体装置
CN107924871A (zh) * 2015-09-02 2018-04-17 Pezy计算股份有限公司 半导体装置
US9847292B2 (en) 2015-11-04 2017-12-19 Industrial Technology Research Institute Electrical isolator packaging structure and manufacturing method for electrical isolator
JP2017092932A (ja) * 2015-11-04 2017-05-25 財團法人工業技術研究院Industrial Technology Research Institute 電気絶縁体実装構造および電気絶縁体の製造方法
WO2017126018A1 (ja) * 2016-01-18 2017-07-27 ウルトラメモリ株式会社 半導体装置
US10044223B2 (en) 2016-01-19 2018-08-07 Industrial Technology Research Institute Galvanic isolator circuit
JP2017130906A (ja) * 2016-01-19 2017-07-27 財團法人工業技術研究院Industrial Technology Research Institute ガルバニーアイソレータ回路
WO2017138106A1 (ja) * 2016-02-10 2017-08-17 ウルトラメモリ株式会社 半導体装置
JPWO2017138106A1 (ja) * 2016-02-10 2019-01-24 ウルトラメモリ株式会社 半導体装置
US10483242B2 (en) 2016-02-10 2019-11-19 Ultramemory Inc. Semiconductor device
US10937765B2 (en) 2016-02-10 2021-03-02 Ultramemory Inc. Semiconductor device with laminated semiconductor chips
US11437350B2 (en) 2016-02-10 2022-09-06 Ultramemory Inc. Semiconductor device

Also Published As

Publication number Publication date
US8190086B2 (en) 2012-05-29
JP4784773B2 (ja) 2011-10-05
US20090233546A1 (en) 2009-09-17
JPWO2007029435A1 (ja) 2009-03-12

Similar Documents

Publication Publication Date Title
WO2007029435A1 (ja) 伝送方法、インターフェース回路、半導体装置、半導体パッケージ、半導体モジュールおよびメモリモジュール
Mizoguchi et al. A 1.2 Gb/s/pin wireless superconnect based on inductive inter-chip signaling (IIS)
US7768790B2 (en) Electronic circuit
US8704609B2 (en) Electronic circuit
US6816011B2 (en) RF power amplifier and method for packaging the same
JP5366932B2 (ja) 超高速信号送受信
EP1388988B1 (en) Chip-scale coils and isolators based thereon
US7813259B2 (en) Electronic circuit
Miura et al. A 195-Gb/s 1.2-W inductive inter-chip wireless superconnect with transmit power control scheme for 3-D-stacked system in a package
US9143205B2 (en) Data transmission device and data transmission method
JP2005203657A (ja) 半導体装置
Majumdar et al. Alignment and performance considerations for capacitive, inductive, and optical proximity communication
US9455770B2 (en) Inductive-coupling system and method with compensation to prevent interference
EP1766562B1 (en) Transmitting circuit for a contactless communicating communication partner device
US20100264954A1 (en) Receive circuit for connectors with variable complex impedance
US8735184B2 (en) Equalization in proximity communication
WO2010013426A1 (ja) 非接触電子装置
Ishikuro et al. Wireless proximity interfaces with a pulse-based inductive coupling technique
WO2007145086A1 (ja) 半導体装置、信号伝送装置および信号伝送方法
JP5245797B2 (ja) 信号伝送方法と受信器と送信器と半導体装置
Miura et al. Inductive coupled communications
Fletcher et al. Low-power 3D integration using inductive coupling links for neurotechnology applications
US20130334890A1 (en) Contactless Interconnect
Franzon Use of ac coupled interconnect in contactless packaging
Mick Analysis and design considerations for AC coupled interconnection systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534287

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12065068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782367

Country of ref document: EP

Kind code of ref document: A1