WO2007022694A1 - Pile de protocoles utilisateur et procede de transfert sans perte - Google Patents

Pile de protocoles utilisateur et procede de transfert sans perte Download PDF

Info

Publication number
WO2007022694A1
WO2007022694A1 PCT/CN2006/002045 CN2006002045W WO2007022694A1 WO 2007022694 A1 WO2007022694 A1 WO 2007022694A1 CN 2006002045 W CN2006002045 W CN 2006002045W WO 2007022694 A1 WO2007022694 A1 WO 2007022694A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nclp
user plane
protocol stack
plane protocol
Prior art date
Application number
PCT/CN2006/002045
Other languages
English (en)
French (fr)
Inventor
Xiaolong Guo
Xingang Liang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007022694A1 publication Critical patent/WO2007022694A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0272Virtual private networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/162Implementing security features at a particular protocol layer at the data link layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/164Implementing security features at a particular protocol layer at the network layer

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a user plane protocol stack and a lossless migration implementation method in a time-based network using a two-layer node structure. Background technique
  • LTE Long Term Evolution
  • the purpose of LTE is to provide a low-cost network that can reduce latency, increase user data rate, and improve system capacity and coverage. Only the PS domain service is used, and the bearer network is an IP bearer. LTE proposes the following objectives:
  • MBMS multicast and broadcast service
  • a more popular network architecture is a two-tier node architecture, as shown in Figure 1.
  • ERS Electronic Radio Station
  • Node B Base Station
  • RNC Radio Network Controller
  • IAGW IP Access GateWay, IP Access Gateway
  • SGSN Serving GPRS Support Node
  • GGSN Gateway GPRS Support Node
  • the user plane protocol stack of the evolved architecture network of the Layer 2 node is as shown in FIG. 2, and includes a UE user plane protocol stack, an ERS user plane protocol stack, and an IAGW user plane protocol stack.
  • the IAGW user plane protocol stack includes: GPRS Tunneling Protocol User Plane (GTP-U) layer, User Datagram Protocol/Internet Protocol Layer (UDP/IP), L2 layer and L1 layer.
  • GTP-U GPRS Tunneling Protocol User Plane
  • UDP/IP User Datagram Protocol/Internet Protocol Layer
  • L2 layer L1 layer.
  • the ERS user plane protocol stack includes a radio interface protocol stack and Iu, an interface protocol stack.
  • the radio interface protocol stack includes: a packet data convergence protocol layer (PDCP layer), a radio link control protocol layer (RLC layer), a medium access control layer (MAC layer), a physical layer ( ⁇ ' layer); Iu, an interface protocol stack Including: GTP-U layer, UDP/IP layer, L2 layer and L1 layer.
  • PDCP layer packet data convergence protocol layer
  • RLC layer radio link control protocol layer
  • MAC layer medium access control layer
  • ⁇ ' layer physical layer
  • Iu an interface protocol stack Including: GTP-U layer, UDP/IP layer, L2 layer and L1 layer.
  • the UE user plane protocol stack includes: a PDCP layer, an RLC layer, a MAC layer, and a PHY layer.
  • the above L2 layer refers to layer 2 in the layered protocol, that is, a data link layer, such as a frame relay, ATM, or a wireless data link layer.
  • the above L1 layer refers to layer 1 in the layered protocol, that is, physical layer, such as physical layer technologies such as El, optical fiber, and microwave transmission.
  • N-PDU protocol data unit sequence buffered in the source ERS (SERS) must be transferred in the lossless migration.
  • the number may also be transferred to the context of the header compression ( Context ).
  • the present invention provides a user plane protocol stack and a lossless migration implementation method, which are used to solve the problem that the PDCP serial number and data need to be frequently transferred during the lossless migration process in the prior art, and the migration process is complicated.
  • the user plane protocol stack provided by the present invention is applied to an evolved network of a two-layer node architecture, including an IP access gateway IAGW user plane protocol stack, an edge radio base station ERS user plane protocol stack, and a user terminal UE user plane protocol search;
  • the ERS-oriented user plane protocol stack in the IAGW includes: GPRS P-channel protocol user plane GTP-U layer, user datagram protocol/internet protocol layer UDP/IP layer, L2 layer and L1 layer;
  • the user plane protocol stack for the IAGW in the ERS includes: a GTP-U layer, a UDP/IP layer, an L2 layer, and an L1 layer;
  • the user plane protocol stack of the UE-oriented air interface protocol stack of the IAGW further includes: a new aggregation layer protocol NCLP layer, which implements a packet data aggregation protocol PDCP layer header compression function;
  • the user plane protocol stack of the ERS UE-oriented air interface protocol stack further includes: an enhanced radio link control protocol layer, an enhanced medium access control layer, and an enhanced physical layer;
  • the user plane protocol stack of the network-oriented air interface protocol stack of the UE includes: the NCLP layer, an enhanced radio link control protocol layer, an enhanced medium access control layer, and an enhanced physical layer.
  • the enhanced radio link control protocol layer includes segmentation, reassembly, concatenation, padding, user data transmission, error detection, sequential transmission of higher layer protocol data unit PDU, replica detection, flow control, non-confirmation data transmission mode sequence number check, Protocol error detection and recovery, encryption, suspend and resume functions, scheduling, automatic repeat request ARQ, hybrid automatic repeat request HARQ, or any combination thereof;
  • the enhanced medium access control layer includes a mapping between a logical channel and a transport channel, selecting an appropriate transport format for each transport channel, prioritizing between UE data streams, and adopting a dynamic pre-arrangement method between UEs.
  • Priority processing priority processing between data streams of multiple users on the downlink shared channel DSCH and the forward access channel FACH, identification of UEs on the common transport channel, multiplexing of higher layer PDUs to the physical layer through the transport channel Transport block, multiplexes the transport block from the physical layer through the transport channel to a higher layer PDU, traffic detection, dynamic transmission channel type switching, transparent
  • the line link controls one of encryption and access service level selection, scheduling, ARQ, HARQ or any combination thereof;
  • the enhanced physical layer includes one of a spreading/despreading, a modulation/demodulation function, a multiple input multiple output MIMO, an orthogonal frequency division multiplexing OFDM function, or any combination of functions.
  • the enhanced radio link control protocol layer and the enhanced medium access control layer are combined into a new layer.
  • the NCLP protocol layer also includes the functionality of encryption and consistency protection.
  • the method for implementing the lossless migration provided by the present invention uses the user plane protocol stack provided by the present invention.
  • the method includes:
  • the buffer needs to be sent to the opposite end of the NCLP data packet, and the NCLP serial number is set, and the NCLP data packet carrying the serial number is forwarded to the opposite end through the ERS;
  • the local end After receiving the acknowledgment packet sent by the peer, the local end deletes the NCLP packet corresponding to the confirmed sequence number buffered by the local end.
  • the enhanced radio link control protocol layer in the UE user plane protocol stack finds that the data packet is not successfully sent, the inter-layer signaling is indicated.
  • the NCLP layer in the UE retransmits the data packet;
  • the IAGW transmitting the NCLP data packet to the UE, if the enhanced radio link control protocol layer in the ERS user plane protocol stack finds that the data packet is not successfully forwarded, the IAGW is notified to resend the NCLP layer in the user plane protocol stack. Cached unacknowledged packets.
  • the sliding window technology can be used to control the traffic sent by the UE or IAGW to the peer NCLP packet.
  • the UE and the NCLP layer in the IAGW user plane protocol stack transmit the buffered NCLP data packet corresponding to the unacknowledged sequence number to the opposite end.
  • the NCLP data packet is discarded; and an acknowledgment data packet is sent to the opposite end.
  • the NCLP layer transmits the NCLP packet corresponding to the unacknowledged sequence number of the buffer, the NCLP packet is forwarded by the migrated new ERS.
  • the acknowledgment data packet is sent to the peer end through a separate acknowledgment message; or the acknowledgment data packet is sent to the peer end through other data packets sent to the peer end.
  • the NCLP layer in the IAGW user plane protocol stack further performs segmentation processing on the data packets received by the upper layer so that the data packets transmitted to the GTP-U layer do not exceed the maximum packet length allowed.
  • the NCLP layer when the non-answer mode or the transparent mode is selected for data transmission, the NCLP layer does not have to carry the NCLP sequence number in the transmitted NCLP packet.
  • the GTP-U layer when the user data of the GTP-U layer is the data of the guaranteed sequence, if the non-acknowledge mode or the transparent mode is selected for data transmission, the GTP-U layer adds the layer serial number to the transmission data packet. send.
  • the NCLP serial number is maintained at the IAGW for header compression.
  • Iu interface transmission
  • the IAGW Since the IAGW maintains the NCLP data packet and the IAGW understands the transmission and reception of the NCLP data, the ERS does not have to use the data traffic report. In the case of multi-rate, the IAGW can perform real-time charging, which solves the multi-rate charging in the prior art. More difficult problems.
  • the user plane protocol stack provided by the present invention can easily support MAC, layer and RLC, layer merging.
  • Figure 1 is a schematic diagram of an evolved network of a two-layer node architecture
  • 2 is a user plane protocol stack of a two-layer node architecture evolution network in the prior art
  • FIG. 3 is a schematic structural diagram of a user plane protocol stack according to the present invention. detailed description
  • FIG. 3 is a schematic structural diagram of a user plane protocol stack according to the present invention, including a UE user plane protocol stack, an ERS user plane protocol stack, and an IAGW user plane protocol stack.
  • the IAGW user plane protocol stack includes: a GTP-U layer, an UP/IP layer, an L2 layer, and an L1 layer, and also includes a newly added ten-layer NCLP (New Converge Layer Procotol), which is a new aggregation layer protocol.
  • NCLP New Converge Layer Procotol
  • the protocol layer has similar functions to the PDCP protocol layer in the prior art, performs header compression, maintains the NCLP PDU (Protocol Data Unit) sequence number, and performs data transfer in lossless migration because the IAGW acts as a fixed anchor point to solve the lossless problem by the present invention. No longer needed, in addition, the NCLP layer can have segmented functionality and encryption and consistency protection.
  • the ERS user plane protocol stack includes a wireless interface user plane protocol stack and an Iu' interface user plane protocol stack.
  • the radio interface user plane association stack includes: an enhanced radio link control protocol layer (RLC, layer), an enhanced medium access control layer (MAC layer), an enhanced physical layer ( ⁇ ' layer); Iu, interface
  • the user plane protocol stack includes: GTP-U layer, UDP/IP layer, L2 layer, and L1 layer, which does not include the PDCP protocol layer in the prior art ERS protocol stack (upward the related functions of the original PDCP protocol layer to this The NCLP layer implementation in the inventive IAGW user plane protocol stack).
  • the UE user plane protocol stack includes: RLC, layer, MAC, layer and PHY, layer, and the newly added NCLP protocol layer of the present invention replaces the original PDCP protocol layer.
  • the enhanced radio link control protocol layer supports three data transmission modes, namely: an answer mode (AM), a non-acknowledge mode (UM), and a transparent mode (TM); its functions include: segmentation , reassembly, concatenation, padding, user data transfer, error detection, sequential transmission of higher layer protocol data units (PDUs), replica detection, flow control, unconfirmed data transfer mode sequence number checking, protocol error detection and recovery, encryption, hangs, and Recovery function, etc.
  • the enhanced medium access control layer has MAC-d (MAC-dedicated), MAC-c/sh (MAC-Public/Shared), MAC-b (MAC-Broadcast), MAC-hs (MAC-High Speed) entity, whose functions include mapping between logical channels and transport channels, selecting the appropriate transport format for each transport channel, prioritizing between user terminal (UE) data streams, and using between UEs Priority processing of the pre-arrangement method, priority processing between data streams of multiple users on the downlink shared channel (DSCH) and forward access channel (FACH), identification of UEs on the common transport channel, complex PDUs Connected to the transport block transmitted to the physical layer through the transport channel, multiplex the transport block from the physical layer through the transport channel to the upper layer PDU, traffic detection, dynamic transport channel type switching, transparent radio link control (RLC) encryption and connection Enter the service level selection function, HARQ (Hybrid Automatic Repeat Request), and so on.
  • MAC-d MAC-dedicated
  • MAC-c/sh MAC
  • MAC Access Management Function
  • RLC Radio Link Control Function
  • ARQ Automatic Repeat Request
  • HARQ Hybrid Automatic Repeat Request
  • the enhanced physical layer includes a spread spectrum/de-spreading, modulation/demodulation function; and includes Multiple Input Multiple Output (MIMO) and/or Orthogonal Frequency-Division Multiple (OFDM) )Features.
  • MIMO Multiple Input Multiple Output
  • OFDM Orthogonal Frequency-Division Multiple
  • the user plane protocol stack of the present invention adopts the AM mode for lossless migration by: in the NCLP layer of the UE and the IAGW user plane protocol stack, buffering the NCLP data packet to be sent to the peer end, and setting the NCLP sequence number, which will carry the The NCLP packet of the sequence number is forwarded to the peer through the ERS. After receiving the acknowledgment packet sent by the peer, the local end deletes the NCLP packet corresponding to the confirmed sequence number buffered by the local end.
  • the PDCP In the prior art user plane protocol stack, the PDCP is in the ERS user plane protocol stack, and the underlying transmission can ensure the arrival of the PDCP packets in sequence, so the PDCP usually transmits the PDCP non-header protocol data unit (PDCP-No-Header PDU) and The PDCP Data Protocol Data Unit (PDCP Data PDU) transmits the PDCP Sequence Number Protocol Data Unit (PDCP SeqNum PDU) to synchronize the sequence number only when the out-of-synchronization or RLC restarts.
  • the present invention places the NCLP protocol layer (completes the function equivalent to the original PDCP protocol layer) in the IAGW.
  • the NCLP protocol layer needs to maintain the serial number to ensure that the NCLP data packets are not lost during migration.
  • the NCLP protocol layer always sends NCLP SeqNum PDUs (like PDCP SeqNum as defined in the 3GPP TS 25.323 specification)
  • the PDU that is, the AMLP data packet of the AM mode always carries the sequence number, so that the NCLP protocol layer can know the untransmitted NCLP PDU.
  • the NCLP protocol layer in the UE and IAGW user plane protocol stack may request to transmit the NCLP packet corresponding to the unacknowledged sequence number (SN).
  • SN unacknowledged sequence number
  • sending an acknowledgment packet it may be sent by separate signaling, or it may be a piggyback acknowledgment, that is, the acknowledgment packet is transmitted together with the reverse data.
  • the following line (the IAGW sends a packet to the UE) is used as an example to describe the transmission process of the NCLP packet.
  • the downlink NCLP packet sets the sequence number to the NCLP packet according to the receiving order of the IAGW, and the NCLP protocol layer can also segment the large packet received by the upper layer, so that the packet transmitted to the GTP-U protocol layer does not exceed the maximum of the GTP-U.
  • Packet length (3GPP TS 23.060 requires GTP-U to have a packet length of no more than 1500 bytes for IP and no more than 1502 bytes for PPP).
  • the NCLP protocol layer buffers the downlink data packet, and copies one copy to the transport layer.
  • the GTP-U protocol layer can be sent without using a serial number (of course, it can also be sent by using a serial number, but without a sequence. Number can save link bandwidth).
  • the order in which the NCLP data packets arrive at the ERS through the IP network may be different from the transmission order of the IAGW.
  • the ERS performs RLC, segmentation, and the like according to the order of reception, and transmits to the UE.
  • the peer RLC of the UE after the protocol layer receives the retransmission and other RLC, layer operation, when the RLC, the protocol layer receives all the segments of the NCLP packet, combines and delivers to the upper layer NCLP protocol layer, at this time,
  • the incoming NCLP PDU is not necessarily the smallest serial number of PDUs to be received.
  • the ERS determines that the NCLP packet has been sent, it does not send an acknowledgment message (such as RLC, -AM-DATA-Conf) to the IAGW because the ERS does not know which NCLP packet was sent successfully.
  • an acknowledgment message such as RLC, -AM-DATA-Conf
  • the IAGW After receiving the data packet by the UE's NCLP protocol layer, it is acknowledged and transmitted to the peer NCLP protocol layer of the IAGW through the ERS.
  • the IAGW transmitting the NCLP data packet to the UE, if the enhanced radio link control protocol layer in the ERS user plane protocol stack finds that the data packet is not successfully forwarded, the IAGW is notified to resend the NCLP layer in the user plane protocol stack. Cached unacknowledged packets.
  • the UE After the UE correctly receives the NCLP data packet, it can send the acknowledgement packet to the peer end separately. Or send it to the peer through other packet piggybacks sent to the peer.
  • the NCLP protocol layer of the IAGW deletes the confirmed cached packets.
  • the principle of uplink data transmission is relatively simple.
  • the bottom layer of the transmission between the UE and the ERS can guarantee the transmission sequence of the data packet.
  • the NCLP layer of the UE sends a data packet to its RLC, layer, and is segmented, transmitted, and retransmitted by the RLC layer.
  • Management such as RLC, layer operation, if the RLC, the layer finds that there is a packet that has not been successfully transmitted, then the inter-layer primitive signaling indicates that the NCLP layer in the UE retransmits the data packet, and does not have to retransmit all the unacknowledged packets. Packet.
  • the uplink data packet sent by the NCLP layer in the UE user plane protocol stack to the IAGW must always carry the NCLP sequence number. Other operations are similar and will not be repeated.
  • the IAGW or the UE After the UE is migrated, the IAGW or the UE directly sends the unacknowledged NCLP packet buffered in the NCLP layer to the new ERS, and performs data forwarding through the migrated new ERS. If the received data packet is received again, the data packet is discarded, and the acknowledgment data packet is sent again to the opposite end; if the NCLP packet that has not been received before is received, the acknowledgment data packet is received and sent to the opposite end. . To enhance flow control, a sliding window can be used to control the number of NCLP packets sent.
  • the RLC is used in the AM mode, and the retransmission is performed to ensure the high efficiency of the RLC and layer retransmission because the RLC is in the ERS close to the UE. If other modes are used to ensure "confirm" transmission, although the NCLP layer is guaranteed to retransmit, the retransmission delay is too large because the IAGW is far away from the air interface.
  • NCLP-No-Header PDU For uncompressed data, carry the NCLP No-Header Protocol Data Unit (NCLP-No-Header PDU); for compressed data, carry the NCLP Data Protocol Data Unit (NCLP Data PDU).
  • NCLP-No-Header PDU and the NCLP Data PDU are the same.
  • GTP-U processing data packets of GTP-U whose user data is out of order such as IP/PPP.
  • the user data of GTP-U is X.25 and other guaranteed order data, for TM/UM mode
  • GTP -U layer needs to use the transmission method with serial number format, as in the 3GPP TS29.060 specification Defined GTP-U with serial number format.
  • the transfer order can be guaranteed by using the above method provided by the present invention for the AM mode.
  • the MAC, layer, RLC, and layer may have retransmission capabilities.
  • the NCLP layer In order to achieve the simplification of the lossless migration and migration process, the NCLP layer also needs to have retransmission function.
  • MAC, layer and RLC layers can be merged, such as canceling RLC, layer, MAC, layer function enhancement, and completing segmentation.
  • HARQ Hybrid-Automatic Repeat reQuest, hybrid automatic retransmission request
  • retransmission is reflected in HARQ.
  • the user plane protocol stack maintaineds the NCLP sequence number at the NCLP protocol layer of the IAGW, performs header compression, and transmits the header compressed data packet to the Iu interface, thereby improving transmission efficiency;
  • the method can realize seamless and non-destructive migration in the migration, without the serial number transfer and data transfer by the ERS, and it is not necessary to use the interface between the ERS, which greatly saves the cost.
  • the NCLP data packet is buffered in the IAGW, the IAGW understands the data transmission and reception.
  • the ERS does not need to use the data traffic report. Under the multi-rate, the IAGW can charge in real time, which solves the problem of multi-rate charging in the prior art. .
  • the user plane protocol stack of the present invention can also easily support MAC, layer and RLC, layer merging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种用户面协议栈和一种无损迁移实现方法 技术领域
本发明涉及无线通信领域, 尤其涉及采用二层节点结构的演时网絡中 种用户面协议栈和一种无损迁移实现方法。 背景技术
目前在 3GPP中, 各厂商积极研究 LTE ( Long Term Evolution ), LTE的 目的是提供一种能够降低时延、 提高用户数据速率、 改进***容量和覆盖的 低成本的网络。 只使用 PS域业务, 承载网络都为 IP承载。 LTE提出以下目 标:
显著提高峰值数据速率, 如 100 Mbps (下行链路 )和 50 Mbps (上行链 路);
在维持现有站点部署位置不变的前提下, 增加 "小区边缘比特率"; 显著改进频谱效率(例如: Re 的 2-4倍);
实现低于 10 ms的无线接入网络延迟;
显著降低控制面延迟;
可扩充带宽, 可灵活地分配窄频谱带宽;
支持现有 3G ***和非 3GPP规范***间的互通;
进一步加强组播和广播业务(MBMS );
支持未来增强型 IMS和核心网, 等等。
在此基石出上, 已衍生出很多满足条件的新的演进网络架构, 一种比较流 行的网络架构是两层节点架构, 如图 1所示。
在这种架构下, ERS ( Edge Radio Station, 边缘无线基站)具有现有技术 中 Node B(基站)和无线网络控制器( RNC )的功能; IAGW( IP Access GateWay, IP接入网关)具有部分 SGSN ( Serving GPRS Support Node, 服务 GPRS支持 节点)的功能和 GGSN ( Gateway GPRS Support Node, 网关 GPRS支持节点) 的功能。
在上述演进网络架构中, 只提出一种架构形式, 即通过减小节点数来达 到减少传输时延等目的。 并没有具体地进行网络实体功能划分。 目前通用的 做法是将现有网络中的 R C的功能全部下放到 ERS, 因此 ERS具有全部的 无线接口协议栈。 该种二层节点的演进架构网络的用户面协议栈如图 2所示, 包括 UE用户面协议栈、 ERS用户面协议栈和 IAGW用户面协议栈。
IAGW用户面协议栈包括: GPRS隧道协议用户面(GTP-U )层、 用户数 据报协议 /互连网协议层(UDP/IP )、 L2层和 L1层。
ERS用户面协议栈中包含无线接口协议栈和 Iu,接口协议栈。 无线接口协 议栈包括:分组数据汇聚协议层( PDCP层)、无线链路控制协议层( RLC层)、 媒体接入控制层(MAC层)、 物理层(ΡΗΥ'层); Iu,接口协议栈包括: GTP-U 层、 UDP/IP层、 L2层和 L1层。
UE用户面协议栈中包含: PDCP层、 RLC层、 MAC层和 PHY,层。 上述的 L2层是指分层协议中的层 2, 即数据链路层, 如帧中继、 ATM、 或无线的数据链路层等。
上述的 L1层是指分层协议中的层 1 , 即物理层, 如 El、 光纤、 微波传输 等物理层技术。
采用上面的用户面协议栈, 由于空口协议栈全部在 ERS, 导致在无损迁 移中, 必须转移源 ERS ( SERS )中緩存的未确认 PDCP数据和 PDCP序列号、 N-PDU (协议数据单元)序列号, 也可能转移头压缩的上下文( Context )。
由于迁移的流程较多且复杂, 如果 ERS之间有接口, 则可通过该接口进 行信令交互和数据转移, 但转移数据会导致该接口拥塞; 如果 ERS之间没有 接口, 则必须通过 IAGW进行数据转移。 由于 ERS的覆盖范围有限, 而对高 速移动的用户来说, 迁移的频率较高, 导致 ERS与 IAGW之间的接口 (Iu,) 或 ERS之间的接口比较拥塞。 发明内容 本发明提供一种用户面协议栈和一种无损迁移实现方法, 用以解决现有 技术中存在的在无损迁移过程中需要频繁转移 PDCP序列号和数据、 迁移流 程复杂的问题。
本发明提供的用户面协议栈, 应用于两层节点架构的演进网络, 包括 IP 接入网关 IAGW用户面协议栈、边缘无线基站 ERS用户面协议栈和用户终端 UE用户面协议找;
所述 IAGW中面向 ERS的用户面协议栈中包含: GPRS P遂道协议用户面 GTP-U层、 用户数据报协议 /互连网协议层 UDP/IP层、 L2层和 L1层;
所述 ERS中面向 IAGW的用户面协议栈中包含: GTP-U层、 UDP/IP层、 L2层和 L1层;
在 IAGW的面向 UE的空口协议栈的用户面协议栈中还包含: 一个新聚 合层协议 NCLP层, 实现分组数据聚合协议 PDCP层头压缩功能;
在 ERS的面向 UE的空口协议栈的用户面协议栈中还包含: 增强的无线 链路控制协议层、 增强的媒体接入控制层、 增强的物理层;
在 UE的面向网絡的空口协议栈的用户面协议栈中包含: 所述 NCLP层、 增强的无线链路控制协议层、 增强的媒体接入控制层、 增强的物理层。
所述增强的无线链路控制协议层包括分段、 重组、 串联、 填充、 用户数 据传送、 错误检测、 按序发送高层协议数据单元 PDU、 副本检测、 流控、 非 证实数据传送模式序号检查、 协议错误检测和恢复、 加密、 挂起和恢复功能、 调度、 自动重复请求 ARQ、 混合自动重复请求 HARQ其中之一或其任意组合 功能;
所述增强的媒体接入控制层包括逻辑信道和传输信道之间的映射、 为每 个传输信道选择适当的传送格式、 UE数据流之间的优先级处理、 UE之间采 用动态预安排方法的优先级处理、下行共享信道 DSCH和前向接入信道 FACH 上多个用户的数据流之间的优先级处理、公共传输信道上 UE的标识、将高层 PDU复接为通过传输信道传送给物理层的传送块、 将通过传输信道来自物理 层的传送块复接为高层 PDU、 业务量检测、 动态传输信道类型切换、 透明无 线链路控制加密和接入业务级别选择、 调度、 ARQ、 HARQ其中之一或其任 意组合功能;
所述增强的物理层包括扩频 /解扩、 调制 /解调功能、 多入多出 MIMO、 正 交频分复用 OFDM功能其中之一或任意组合功能。
所述增强的无线链路控制协议层和所述增强的媒体接入控制层合并为一 个新层。
所述 NCLP协议层还包括加密和一致性保护的功能。
本发明提供的无损迁移实现方法, 采用本发明提供的用户面协议栈, 当 采用应答模式进行数据传输时, 该方法包括:
在 UE和 IAGW用户面协议栈的 NCLP层,緩存需要发送给对端的 NCLP 数据包, 并设置 NCLP序列号, 将携带所述序列号的 NCLP数据包通过 ERS 转发给对端;
当本端收到对端发送的确认数据包后 , 删除本端緩存的被确认序列号对 应的 NCLP数据包。
根据本发明的上述方法, 在 UE向 IAGW上传 NCLP数据包过程中, 若 UE 用户面协议栈中增强的无线链路控制协议层发现有未发送成功的数据包 时, 则通过层间信令指示 UE中的 NCLP层重发所述数据包;
在 IAGW向 UE下传 NCLP数据包过程中, 若 ERS用户面协议栈中增强 的无线链路控制协议层发现有未转发成功的数据包时, 则通知 IAGW重发其 用户面协议栈中 NCLP层緩存的未确认数据包。
根据本发明的上述方法, 可使用滑动窗口技术控制所述 UE或 IAGW发 送给对端 NCLP数据包的流量。
根据本发明的上述方法, 当 UE迁移后, UE和 IAGW用户面协议栈中的 NCLP层传输緩存的未被确认的序列号对应的 NCLP数据包给对端。
根据本发明的上述方法, 当 UE或 IAGW再次收到已收到的所述 NCLP 数据包时, 则丢弃该 NCLP数据包; 并向对端发送确认数据包。
根据本发明的上述方法, 当 UE迁移后, UE和 IAGW用户面协议栈中的 NCLP层传输緩存的未被确认的序列号对应的 NCLP数据包时,通过迁移后的 新的 ERS进行所述 NCLP数据包转发。
所述确认数据包通过单独的确认消息发送到对端; 或将所述确认数据包 通过发送给对端的其它数据包捎带来发送到对端。
根据本发明的上述方法, 还包括 IAGW用户面协议栈中的 NCLP层对上 层接收的数据包进行分段处理, 使传送到其 GTP-U层的数据包不超过其允许 的最大包长。
根据本发明的上述方法, 当选择非应答模式或透明模式进行数据传输时, 所述 NCLP层在发送的 NCLP数据包中不必携带所述 NCLP序列号。
根据本发明的上述方法, 当 GTP-U层的用户数据为保证顺序的数据时, 若选择非应答模式或透明模式进行数据传输, 则 GTP-U层给传输数据包加上 本层序列号后发送。
本发明有益效果如下:
( 1 )使用本发明提供的用户面协议栈, 在 IAGW维护 NCLP序列号, 进 行头压缩。 经过头压缩后在 Iu,接口传输, 提高了传输效率; 使用本发明提供 的方法, 能够在迁移中, 实现无缝和无损迁移, 不必由 ERS进行序号转移和 数据转移, 不必使用 ERS之间的接口, 极大的节省了成本。
( 2 )由于在 IAGW维护 NCLP数据包, IAGW了解 NCLP数据的收发情 况, ERS不必使用数据流量报告, 在多费率情况下, IAGW能够实时计费, 解决了现有技术中多费率计费比较困难的问题。
( 3 )在未来网络演进中, 本发明提供的用户面协议栈能很容易地支持 MAC,层和 RLC,层的合并。 附图说明
图 1为两层节点架构的演进网络示意图;
图 2为现有技术中两层节点架构演进网络的用户面协议栈;
图 3为本发明的用户面协议栈结构示意图。 具体实施方式
参见图 3,为本发明的用户面协议栈结构示意图,包括 UE用户面协议栈、 ERS用户面协议栈和 IAGW用户面协议栈。
IAGW用户面协议栈包括: GTP-U层、 U P/IP层、 L2层和 L1层, 还包 括本发明新增的一个十办议层 NCLP ( New Converge Layer Procotol, 新聚合层 协议), 该 NCLP协议层与现有技术中的 PDCP协议层具有类似功能, 进行头 压缩、 维护 NCLP PDU (协议数据单元)序列号, 在无损迁移中的数据转移 由于 IAGW作为固定锚点通过本发明解决无损问题而不再需要, 另夕卜, NCLP 层可以具有分段的功能和加密与一致性保护的功能。
ERS用户面协议栈包括无线接口用户面协议栈和 Iu'接口用户面协议栈。 其中, 无线接口用户面协义栈包含: 增强的无线链路控制协议层(RLC,层)、 增强的媒体接入控制层(MAC层)、 增强的物理层(ΡΗΥ'层); Iu,接口用户 面协议栈包含: GTP-U层、 UDP/IP层、 L2层和 L1层, 不包含现有技术 ERS 协议栈中的 PDCP协议层(将其原有 PDCP协议层的相关功能上移到本发明 的 IAGW用户面协议栈中的 NCLP层实现)。
UE用户面协议栈中包含: RLC,层、 MAC,层和 PHY,层, 以及本发明新 增的 NCLP协议层替代原有的 PDCP协议层。
所述增强的无线链路控制协议层(RLC,层) 支持三种数据传输模式, 分 别为: 答应模式(AM )、 非应答模式(UM )和透明模式(TM ); 其功能包括: 分段、 重组、 串联、 填充、 用户数据传送、 错误检测、 按序发送高层协议数 据单元(PDU )、 副本检测、 流控、 非证实数据传送模式序号检查、 协议错误 检测和恢复、 加密、 挂起和恢复功能等。
所述增强的媒体接入控制层 (MAC,层) 具有 MAC-d ( MAC-专用)、 MAC-c/sh ( MAC-公共 /共享)、 MAC-b ( MAC-广播)、 MAC-hs ( MAC-高速) 实体, 其功能包括逻辑信道和传输信道之间的映射、 为每个传输信道选择适 当的传送格式、 用户终端 (UE )数据流之间的优先级处理、 UE之间采用动 态预安排方法的优先级处理、下行共享信道( DSCH )和前向接入信道( FACH ) 上多个用户的数据流之间的优先级处理、公共传输信道上 UE的标识、将高层 PDU复接为通过传输信道传送给物理层的传送块、 将通过传输信道来自物理 层的传送块复接为高层 PDU、 业务量检测、 动态传输信道类型切换、 透明无 线链路控制(RLC )加密和接入业务级别选择功能、 HARQ (混合自动重传请 求)等。
MAC,和 RLC,的功能主要体现在调度、 ARQ (自动重复请求)、 HARQ(混 合自动重复请求)功能。
所述增强的物理层包括扩频 /解扩、 调制 /解调功能; 还包括多入多出 ( Multiple Input Multiple Output , MIMO )和 /或正交频分复用 (Orthogonal Frequency-Division Multiple , OFDM )功能。
采用本发明的用户面协议栈采用 AM模式进行无损迁移, 方法为: 在 UE 和 IAGW用户面协议栈的 NCLP层, 緩存需要发送给对端的 NCLP数据包, 并设置 NCLP序列号, 将携带所述序列号的 NCLP数据包通过 ERS转发给对 端; 当本端收到对端发送的确认数据包后, 删除本端緩存的被确认序列号对 应的 NCLP数据包。
下面对本发明的方法原理及具体实施方法加以详细描述。
在现有技术的用户面协议栈中, PDCP处于 ERS用户面协议栈中, 底层 的传输能保证 PDCP包的顺序到达, 因此 PDCP平时发送 PDCP无包头协议 数据单元(PDCP-No-Header PDU )和 PDCP数据协议数据单元(PDCP Data PDU ), 只有在失步或 RLC重启时才发送 PDCP序列号协议数据单元(PDCP SeqNum PDU )来同步序列号。而本发明将 NCLP协议层(完成相当于原 PDCP 协议层的功能)放置于 IAGW中, 由于 IAGW与 ERS之间为 IP传输, 不一 定能保证数据包的传输顺序, UE和 IAGW对应的 NCLP不能保证同步,如果 在迁移过程中需要保证无损迁移, 对 AM模式来说, 就需要 NCLP协议层维 护序列号, 以保证 NCLP数据包在迁移中不丢失。 为此, NCLP协议层始终发 送 NCLP SeqNum PDU (类同 3GPP TS 25.323规范中定义的 PDCP SeqNum PDU ), 即 AM模式的 NCLP数据包始终携带所述序列号, 这样, NCLP协议 层能了解未发送的 NCLP PDU。 在 UE迁移过程中, UE和 IAGW用户面协议 栈中的 NCLP协议层可以要求传输未确认的序列号 (SN )对应的 NCLP包。 实际传输时,可以是只传输未确认的数据包, 或从最小 SN未确认的包开始传 输, 对已收到的数据包再次接收时丢弃。 发送确认数据包时可以采用单独的 信令进行发送, 也可以是捎带 (piggyback ) 的确认, 即确认数据包附在反向 数据中一同传输。
下面以下行( IAGW向 UE发送数据包)为例, 描述 NCLP数据包的发送 过程。
下行的 NCLP包按 IAGW的接收顺序给 NCLP包设置序列号, NCLP协 议层也可以对上层接收的大的包进行分段, 以使得传送到 GTP-U协议层的包 不超过 GTP-U的最大包长( 3GPP TS 23.060要求 GTP-U的包长对 IP不超过 1500字节,对 PPP不超过 1502字节)。同时 NCLP协议层緩存该下行数据包, 并复制一份下发到传输层, GTP-U协议层可使用不带序列号的方式发送 (当 然也可使用带序列号的方式发送, 但不带序列号可节省链路带宽)。
NCLP数据包经过 IP网络到达 ERS的顺序可能与 IAGW的发送顺序不同, ERS按照其接收顺序, 进行分段等 RLC,操作, 发送给 UE。
UE的对等 RLC,协议层收到后进行重传等 RLC,层操作, 当 RLC,协议层 收到该 NCLP包的全部分段后, 进行组合并递交给其上层 NCLP协议层, 此 时收到的 NCLP PDU不一定是准备接收的最小序号的 PDU。
当 ERS 判断出 NCLP 包已发送完毕时, 不发送确认消息 (比如 RLC,-AM-DATA-Conf)给 IAGW,因为 ERS不了解是哪个 NCLP包发送成功。 而由 UE的 NCLP协议层收到数据包后进行确认, 通过 ERS传送到 IAGW的 对等 NCLP协议层。 在 IAGW向 UE下传 NCLP数据包过程中, 若 ERS用户 面协议栈中增强的无线链路控制协议层发现有未转发成功的数据包时, 则通 知 IAGW重发其用户面协议栈中 NCLP层緩存的未确认数据包。
UE正确接收到 NCLP数据包后, 可以通过单独发送确认数据包到对端; 或通过发送给对端的其它数据包捎带 (piggyback )来发送到对端。 IAGW 的 NCLP协议层将确认的緩存数据包删除。
上行的数据发送原理比较简单, UE与 ERS之间的传输底层能够保证数 据包的发送顺序, UE的 NCLP层下发数据包到其 RLC,层, 由 RLC,层进行分 段、 发送、 重传管理等 RLC,层操作, 若 RLC,层发现有未发送成功的数据包 时,则通过层间原语信令指示 UE中的 NCLP层重发所述数据包即可,不必全 部重发未确认的数据包。 但由于 ERS与 IAGW之间是 IP传送, 发送顺序无 法保证, 因此, UE用户面协议栈中的 NCLP层发送给 IAGW的上行数据包也 必须始终携带 NCLP序列号。 其他操作类似, 不再重述。
UE迁移后, IAGW或 UE直接发送 NCLP层中緩存的未确认的 NCLP包 给新的 ERS, 通过该迁移后的新的 ERS进行数据转发。 若再次收到之前已收 到的数据包, 则丟弃该数据包, 再次发送确认数据包给对端; 若收到之前未 收到的 NCLP包, 则进行接收并发送确认数据包给对端。 为了加强流量控制, 可使用滑动窗口来对发送的 NCLP数据包数量进行控制。
在以上方法中, AM模式下使用 RLC,进行重传是为了保证 RLC,层重传 的高效率, 因为 RLC,处于离 UE近的 ERS中。 如果使用其他模式来保证 "确 认'' 传输, 尽管也能保证 NCLP层确认重传, 但由于 IAGW离空口较远, 重 传时延太大。
以上描述的是 AM模式的情况, 在 UM模式和 TM模式, NCLP层在发 送的 NCLP数据包中不必携带序列号。 对无压缩数据, 携带 NCLP无包头协 议数据单元(NCLP-No-Header PDU ); 对有压缩数据, 携带 NCLP数据协议 数据单元( NCLP Data PDU )。 其中 NCLP-No-Header PDU和 NCLP Data PDU 理相同。
以上所述都是对 GTP-U的用户数据为 IP/PPP等无序保证的数据包进行处 理, 当 GTP-U的用户数据为 X.25等保证顺序的数据, 对于 TM/UM模式, GTP-U层需要使用带序列号格式的传送方式, 如使用 3GPP TS29.060规范中 定义的带序列号格式的 GTP-U。 对 AM模式使用本发明提供的上述方法即可 保证传送顺序。
随着网络演进的进一步发展, MAC,层、 RLC,层可能具有重传功能。 为了 达到无损迁移和迁移流程的简化, NCLP层也需要具有重传功能, 为避免功能 重复, MAC,层和 RLC,层可以进行合并, 如取消 RLC,层, MAC,层功能增强, 完成分段、 HARQ ( Hybrid-Automatic Repeat reQuest, 混合自动重传请求)等 功能, 重传体现在 HARQ中。
总之,在网络演进的两层节点架构下, 由于 ERS的覆盖范围较小,在 UE 移动中会频繁发生迁移, 当采用现有技术在 ERS中保存 PDCP包序列号, 则 在迁移中需要频繁转移序列号和数据, 迁移流程复杂。 同时, ERS 需要进行 流量报告, 在多费率的情况下, 由于 ERS不了解费率的变化, 目前的流量报 告也没有携带多费率的流量报告, 这将引起计费的不准确。 而使用本发明提 供的用户面协议栈, 在 IAGW的 NCLP协议层维护 NCLP序列号, 进行头压 缩, 将经过头压缩后的数据包在 Iu,接口传输, 提高了传输效率; 使用本发明 提供的方法, 能够在迁移中, 实现无缝和无损迁移, 不必由 ERS进行序号转 移和数据转移, 不必使用 ERS之间的接口, 极大的节省了成本。 同时, 由于 在 IAGW中緩存 NCLP数据包, IAGW了解数据的收发情况, ERS不必使用 数据流量报告, 多费率下, IAGW 能够实时计费, 解决了现有技术中多费率 计费困难的问题。 在未来演进网络中, 使用本发明的用户面协议栈也很容易 支持 MAC,层和 RLC,层的合并。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种用户面协议栈,应用于两层节点架构的演进网络, 包括 IP接入网 关 IAGW用户面协议栈、 边缘无线基站 ERS用户面协议栈和用户终端 UE用 户面协议栈;
所述 IAGW中面向 ERS的用户面协议栈中包含: GPRS隧道协议用户面 GTP-U层、 用户数据报协议 /互连网协议层 UDP/IP层、 L2层和 L1层;
所述 ERS中面向 IAGW的用户面协议栈中包含: GTP-U层、 UDP/IP层、 层和 L1层;
其特征在于:
在 IAGW的面向 UE的空口协议栈的用户面协议栈中还包含: 一个新聚 合层协议 NCLP层, 实现分组数据聚合协议 PDCP层头压缩功能;
在 ERS的面向 UE的空口协议栈的用户面协议栈中还包含: 增强的无线 链路控制协议层、 增强的媒体接入控制层、 增强的物理层;
在 UE的面向网络的空口协议栈的用户面协议栈中包含: 所述 NCLP层、 增强的无线链路控制协议层、 增强的媒体接入控制层、 增强的物理层。
2、 如权利要求 1所述的用户面协议栈, 其特征在于: 所述增强的无线链 路控制协议层包括分段、 重组、 串联、 填充、 用户数据传送、 错误检测、 按 序发送高层协议数据单元 PDU、 副本检测、 流控、 非证实数据传送模式序号 检查、 协议错误检测和恢复、 加密、 挂起和恢复功能、 调度、 自动重复请求 ARQ、 混合自动重复请求 HARQ其中之一或其任意组合功能;
所述增强的媒体接入控制层包括逻辑信道和传输信道之间的映射、 为每 个传输信道选择适当的传送格式、 UE数据流之间的优先级处理、 UE之间采 用动态预安排方法的优先级处理、下行共享信道 DSCH和前向接入信道 FACH 上多个用户的数据流之间的优先级处理、公共传输信道上 UE的标识、将高层 PDU复接为通过传输信道传送给物理层的传送块、 将通过传输信道来自物理 层的传送块复接为高层 PDU、 业务量检测、 动态传输信道类型切换、 透明无 线链路控制加密和接入业务级别选择、 调度、 ARQ、 HARQ其中之一或其任 意组合功能;
所述增强的物理层包括扩频 /解扩、 调制 /解调功能、 多入多出 MIMO、 正 交频分复用 OFDM功能其中之一或任意组合功能。
3、 如权利要求 2所述的用户面协议栈, 其特征在于: 所述增强的无线链 路控制协议层和所述增强的媒体接入控制层合并为一个新层。
4、 如权利要求 1所述的用户面协议栈, 其特征在于: 所述 NCLP协议层 还包括加密和一致性保护的功能。
5、 一种无损迁移实现方法, 采用权利要求 1所述的用户面协议栈, 当采 用应答模式进行数据传输时 , 该方法包括:
在 UE和 IAGW用户面协议栈的 NCLP层,緩存需要发送给对端的 NCLP 数据包, 并设置 NCLP序列号, 将携带所述序列号的 NCLP数据包通过 ERS 转发给对端;
当本端收到对端发送的确认数据包后, 删除本端緩存的被确认序列号对 应的 NCLP数据包。
6、 如权利要求 5所述的方法, 其特征在于: 在 UE向 IAGW上传 NCLP 数据包过程中,若 UE用户面协议栈中增强的无线链路控制协议层发现有未发 送成功的数据包时, 则通过层间信令指示 UE中的 NCLP层重发所述数据包; 在 IAGW向 UE下传 NCLP数据包过程中, 若 ERS用户面协议栈中增强 的无线链路控制协议层发现有未转发成功的数据包时, 则通知 IAGW重发其 用户面协议栈中 NCLP层緩存的未确认数据包。
7、 如权利要求 6所述的方法, 其特征在于: 可使用滑动窗口技术控制所 述 UE或 IAGW发送给对端 NCLP数据包的流量。
8、 如权利要求 5所述的方法, 其特征在于: 当 UE迁移后, UE和 IAGW 用户面协议栈中的 NCLP层传输緩存的未被确认的序列号对应的 NCLP数据 包给对端。
9、 如权利要求 8所述的方法, 其特征在于: 当 UE或 IAGW再次收到已 收到的所述 NCLP数据包时, 则丢弃该 NCLP数据包; 并向对端发送确认数 据包。
10、如权利要求 8所述的方法,其特征在于: 当 UE迁移后, UE和 IAGW 用户面协议栈中的 NCLP层传输緩存的未被确认的序列号对应的 NCLP数据 包时, 通过迁移后的新的 ERS进行所述 NCLP数据包转发。
11、 如权利要求 5 所述的方法, 其特征在于: 所述确认数据包通过单独 的确认消息发送到对端; 或将所述确认数据包通过发送给对端的其它数据包 捎带来发送到对端。
12、 如权利要求 5所述的方法, 其特征在于: 还包括 IAGW用户面协议 栈中的 NCLP层对上层接收的数据包进行分段处理, 使传送到其 GTP-U层的 数据包不超过其允许的最大包长。
13、 如权利要求 5 所述的方法, 其特征在于: 当选择非应答模式或透明 模式进行数据传输时, 所述 NCLP层在发送的 NCLP数据包中不必携带所述 NCLP序列号。
14、 如权利要求 13所述的方法, 其特征在于: 当 GTP-U层的用户数据 为保证顺序的数据时,若选择非应答模式或透明模式进行数据传输,则 GTP-U 层给传输数据包加上本层序列号后发送。
PCT/CN2006/002045 2005-08-26 2006-08-14 Pile de protocoles utilisateur et procede de transfert sans perte WO2007022694A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005100933635A CN1921481A (zh) 2005-08-26 2005-08-26 一种用户面协议栈和一种无损迁移实现方法
CN200510093363.5 2005-08-26

Publications (1)

Publication Number Publication Date
WO2007022694A1 true WO2007022694A1 (fr) 2007-03-01

Family

ID=37771224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002045 WO2007022694A1 (fr) 2005-08-26 2006-08-14 Pile de protocoles utilisateur et procede de transfert sans perte

Country Status (2)

Country Link
CN (1) CN1921481A (zh)
WO (1) WO2007022694A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636628A (zh) * 2018-06-21 2019-12-31 中兴通讯股份有限公司 信息传输方法及装置
CN117834755A (zh) * 2024-03-04 2024-04-05 中国人民解放军国防科技大学 面向芯粒互连接口的协议层与适配器层间接口电路及芯片

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992717B (zh) * 2005-12-30 2010-09-29 华为技术有限公司 无线接入网络架构及其实时业务无损迁移的实现方法
CN101599890B (zh) * 2008-06-06 2011-12-07 中兴通讯股份有限公司 一种通信***中的数据传输***和方法
CN101877915B (zh) * 2009-04-28 2014-07-02 中兴通讯股份有限公司 一种长期演进***中继站的数据传输方法和***
CN107359968B (zh) * 2016-05-10 2020-05-26 电信科学技术研究院 一种单层序列号的数据传输方法及装置
CN113923729A (zh) * 2020-07-07 2022-01-11 ***通信有限公司研究院 功能实体的数据处理方法、装置及设备
CN114301994B (zh) * 2021-12-29 2023-09-19 迈普通信技术股份有限公司 一种双栈转换方法、装置、网络设备及存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457153A (zh) * 2002-05-10 2003-11-19 华硕电脑股份有限公司 决定触发一封包数据会合协议序号同步程序的时机的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457153A (zh) * 2002-05-10 2003-11-19 华硕电脑股份有限公司 决定触发一封包数据会合协议序号同步程序的时机的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network(UTRAN); Radio interface protocol aspects (Release 7)", 3GPP TR 25.813 V0.0.1, August 2005 (2005-08-01), XP003008781 *
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Interface Protocol Architecture (Release 6)", 3GPP TS 25.301 V6.3.0, June 2005 (2005-06-01), XP003008782 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110636628A (zh) * 2018-06-21 2019-12-31 中兴通讯股份有限公司 信息传输方法及装置
CN117834755A (zh) * 2024-03-04 2024-04-05 中国人民解放军国防科技大学 面向芯粒互连接口的协议层与适配器层间接口电路及芯片
CN117834755B (zh) * 2024-03-04 2024-05-10 中国人民解放军国防科技大学 面向芯粒互连接口的协议层与适配器层间接口电路及芯片

Also Published As

Publication number Publication date
CN1921481A (zh) 2007-02-28

Similar Documents

Publication Publication Date Title
EP1449334B1 (en) Method and System of Transmitting Data
CN101444033B (zh) 用于低延迟业务的双向rlc非持久模式
AU2003276747B2 (en) Method for moving a receive window in a radio access network
KR101387475B1 (ko) 복수의 네트워크 엔터티를 포함하는 이동 통신시스템에서의 데이터 처리 방법
US20070291695A1 (en) Method and apparatus for facilitating lossless handover in 3gpp long term evolution systems
EP2469750A1 (en) Method and apparatus for downlink data transmission control in multi-hop relay communication system
US9565699B2 (en) Method of performing polling procedure in a wireless communication system
Racz et al. Handover performance in 3GPP long term evolution (LTE) systems
WO2007098676A1 (fr) Procédé de réassemblage de données dans un système de communication sans fil et appareil associé
US20050039101A1 (en) Method and system of retransmission
CA2666265A1 (en) Method and apparatus for performing handover using packet data convergence protocol (pdcp) reordering in mobile communication system
WO2014153937A1 (zh) 一种传输数据的方法及***
WO2007022694A1 (fr) Pile de protocoles utilisateur et procede de transfert sans perte
JP2010536272A (ja) ユーザデータ損失を回避する無線データパケット通信システムにおけるハンドオーバ
KR20100053625A (ko) 무선 통신 시스템에서의 핸드오버 동안 데이터의 계층 2 터널링
JP2005064594A (ja) フレーム送受信システム、フレーム送信装置、フレーム受信装置、及びフレーム送受信方法
KR20090031239A (ko) 성공적으로 수신했으나 헤더 압축 복원에 실패한 패킷의 처리 방법
CN1829187A (zh) 一种保持分组数据协议汇聚子层序列号同步的方法
EP1813076B1 (en) Fast resume of tcp sessions
KR100849323B1 (ko) 이동 통신 시스템에서 자동 재전송을 수행하는 방법 및 장치
WO2017133595A1 (zh) 数据处理的方法及装置
KR101583724B1 (ko) 통신 시스템 및 그의 패킷 송수신 방법
WO2009152726A1 (zh) 一种无线链路控制重传处理方法和装置
KR101595575B1 (ko) 이동 통신 시스템에서 데이터 송수신 방법 및 장치
Bestak et al. Interactions between the TCP and RLC Protocols in UMTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06775363

Country of ref document: EP

Kind code of ref document: A1