WO2007017506A1 - Electrochemical energy accumulator - Google Patents

Electrochemical energy accumulator Download PDF

Info

Publication number
WO2007017506A1
WO2007017506A1 PCT/EP2006/065150 EP2006065150W WO2007017506A1 WO 2007017506 A1 WO2007017506 A1 WO 2007017506A1 EP 2006065150 W EP2006065150 W EP 2006065150W WO 2007017506 A1 WO2007017506 A1 WO 2007017506A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
electrodes
storage according
dlc
electrode
Prior art date
Application number
PCT/EP2006/065150
Other languages
German (de)
French (fr)
Inventor
Alexander Hahn
Manfred Waidhas
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2007017506A1 publication Critical patent/WO2007017506A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to an electrochemical energy storage, with a housing, an electrolyte, with arresters and with electrodes.
  • Electrochemical energy stores are known in the prior art in separate embodiments either as a battery or as a capacitor. Batteries are characterized by a high energy density compared to capacitors, but have a comparatively low power density. Particularly marked from ⁇ is such behavior in primary lithium thionyl batteries. But also rechargeable systems, such as the known lead-acid battery, are not in the La ⁇ ge, high pulse currents to provide. In contrast, capacitors, in particular double-layer capacitors (DLC), have a limited energy density but a very high power density.
  • DLC double-layer capacitors
  • Photoflash cameras are a specific example in which a high-energy energy store, ie, a battery, is connected to a high-pulse-capacity memory, ie, a capacitor.
  • a high-energy energy store ie, a battery
  • a high-pulse-capacity memory ie, a capacitor
  • the invention solves the problem of insufficient pulse load capacity of smaller and medium size, now compact units are formed.
  • the Dop ⁇ pel fürkondensatoren can be fully integrated into the battery structure and in the battery and the Doppeltikkon- capacitors use of the same electrolyte is made.
  • the electrodes of the battery form a redox system, wherein the DLC electrodes can be applied to the same arresters of the battery system.
  • an electrochemical energy storage is realized, which has a much higher pulse load capacity ⁇ than the corresponding pure battery systems.
  • FIG. 1 shows the schematic structure of a battery with DLC electrodes integrated therein
  • FIG. 2 shows a design especially for a coin cell
  • FIG. 3 shows the structure of a primary lithium battery with DLC electrodes in a three-layered formation
  • FIG. 4 shows such a structure in four-ply formation and FIG. 5 shows an alternative to FIG. 3.
  • FIG. 1 shows a battery structure is shown with a negative electrode 1 and a positive electrode 3, see between the one in Figure 1 is not designated in detail
  • Electrolyte and a separator 2 is arranged. 4 and 4 ', the arresters for the electrodes 1 and 3 are shown.
  • the separator 2 consists of insulating, but porous material and has the function to open the electrolyte space.
  • the electrolyte is located in the pores of the separator 2 and establishes an ionic connection between the electrodes 1, 3 of the further he can fill the remaining space in the housing enclosing the structure.
  • Such a double-layer capacitor is also generally referred to as a DLC element, wherein the English term "p_ouble L_ayer Ondenator" is used.
  • a housing 10 is further indicated, in which the combination of battery and DLC is located.
  • Suitable electrolyzer ⁇ th are available for such applications: either water-based systems SYS such. As potassium hydroxide, or organic electrolyte systems, such as those used for example for lithium-ion batteries.
  • a button cell 20 is taken as an example.
  • Such a cell consists of a negative electrode 21, which is located on an arrester 24, a separator 22 and an associated positive electrode 23 with arrester 24 '.
  • On the negative electrode 21 are now several strip-shaped electrodes 25 of a double-layer capacitor DLC.
  • the negative electrode 21 consists of Li and C segments and the positive electrode 23 of MnO 2 .
  • the housing of the button cell 20 is omitted in Figure 3 for the sake of clarity.
  • FIGS. 3 to 5 each describe differently constructed, but in principle identical, primary lithium batteries.
  • lithium-ion elements are suitable with a corresponding structure.
  • FIG 3 such a construction is shown with egg ⁇ ner three-layered electrode assembly, in Figure 4 a four-layer electrode arrangement and in Figure 5 an alternative in turn with a three-layer electrode assembly.
  • the negative electrode 11, the positive electrode 13, the separators 12, the arresters 14 and the DCL-electrode 15 be ⁇ are distinguished in Figures 3 to fifth
  • the negative electrode 11 is made of lithium or Li / C is the positive electrode of, for example, manganese oxide (MnO 2 ).
  • the DCL electrode is formed in particular by optionally modified activated carbon.
  • FIG. 4 there is centrally a negative electrode 11, which is covered on the opposite side of the arrester 12 with a DLC electrode 15 made of carbon (C).
  • a separator 12 On both sides there is a separator 12 which is followed on the lower side by a positive electrode 13 followed by a DLC electrode 15 and on the upper side by a DLC electrode 15 having a positive electrode 13.
  • This arrangement is part of a construction with m stacked individual electrodes, wherein in particular the electrode layer n and n + 1 are shown.
  • the positive electrode 13 is again formed of MnO 2 and the negative electrode is made of Li / C.
  • the arresters 14 are coated differently on the front and back.
  • FIG. 5 A basically similar construction results from FIG. 5, in which again two layers n and n + 1 of an m-layer structure are shown. The result is the above sequence of the negative electrode 11 with the DLC electrode 15 and the separator 12, followed by the positive electrode 13 with separator 12.
  • ⁇ Lich is that the negative arrester 14 is coated on both sides un ⁇ differently here.
  • the positive arrester 14 ' is coated with only one material.
  • the negative electrode 11 can also - as in a
  • Nickel (Ni) -Metallhydrid battery - consist of a hydrogen (H 2 ) - storing metal alloy and the positive electrode of a NiO / NiO (OH) 2 -redox system.
  • DLC electrode materials instead of the activated carbon (C), other suitable DLC electrode materials can be used, whereby a sufficient conductivity and a large surface must be ensured. , Also mixtures of different materials are possible.
  • ge ⁇ is respectively ensured that the combination of Faraday ' ⁇ schem energy storage and double layer capacitor has a much higher capacity than pulse corresponding pure battery elements.

Abstract

In the prior art, electrochemical energy accumulators are known as batteries or capacitors. Batteries are characterized by being compared to capacitors of a high energy density, but have a comparatively low power density. According to the invention, a faradaic energy accumulator, i.e. a battery, is combined with a double layer capacitor (DLC) and located in the same electrolytes. A common housing (10) is provided, in particular, for both partial accumulators.

Description

Elektrochemischer Energiespeieher Electrochemical energy collector
Die Erfindung bezieht sich auf einen elektrochemischen Energiespeicher, mit einem Gehäuse, einem Elektrolyten, mit Ableitern und mit Elektroden.The invention relates to an electrochemical energy storage, with a housing, an electrolyte, with arresters and with electrodes.
Elektrochemische Energiespeicher sind vom Stand der Technik in separaten Ausführungen entweder als Batterie oder als Kondensator bekannt. Batterien zeichnen sich durch eine im Vergleich zu Kondensatoren hohe Energiedichte aus, besitzen aber eine vergleichsweise geringe Leistungsdichte. Besonders aus¬ geprägt ist ein derartiges Verhalten bei primären Lithium- Thionyl-Batterien . Aber auch wieder aufladbare Systeme, wie beispielsweise der bekannte Blei-Akku, sind nicht in der La¬ ge, hohe Impulsströme bereitzustellen. Kondensatoren, insbesondere Doppelschichtkondensatoren (DLC = Double Layer Con- densator) besitzen dagegen eine eingeschränkte Energiedichte, dafür allerdings eine sehr hohe Leistungsdichte.Electrochemical energy stores are known in the prior art in separate embodiments either as a battery or as a capacitor. Batteries are characterized by a high energy density compared to capacitors, but have a comparatively low power density. Particularly marked from ¬ is such behavior in primary lithium thionyl batteries. But also rechargeable systems, such as the known lead-acid battery, are not in the La ¬ ge, high pulse currents to provide. In contrast, capacitors, in particular double-layer capacitors (DLC), have a limited energy density but a very high power density.
In der Praxis behilft man sich für den Fall, dass für technische Anwendungen eine hohe Energiedichte bei gleichzeitig ho¬ her Impulsbelastbarkeit gefordert wird, damit, dass das Bat¬ teriesystem nicht nach der erforderlichen Energiemenge, sondern nach der Leistung ausgelegt wird. Dies führt allerdings in Bezug auf die Energiemenge zu deutlich überdimensionierten Systemen mit dem Nachteil eines zu hohen Gewichtes und Volu¬ mens. Die Starterbatterien im PKW bis hin in Diesellokomoti¬ ven sind dafür entsprechende Beispiele.In practice, that a high energy density is required together with ho ¬ her impulse capacity for technical applications makes do in the event so that the bat ¬ is teriesystem not designed according to the required amount of energy, but after the performance. However, this results in terms of the amount of energy to significantly oversized systems with the disadvantage of excessive weight and Volu ¬ mens. Are ven the starter batteries in cars ranging in Diesellokomoti ¬ for appropriate examples.
Blitzlichtgeräte für die Photographie sind ein spezifisches Beispiel, bei dem ein Energiespeicher hoher Energie, d.h. eine Batterie, mit einem Speicher hoher Impulsleistung, d.h. einem Kondensator, miteinander verbunden sind. Beim Einschalten des Gerätes wird der Kondensator aus der Batterie aufge¬ laden und gibt dann in sehr kurzer Zeit seinen Energieinhalt ab. Hierbei handelt es sich aber um die Kombination zweier isolierter elektrochemischer Energiespeicher.Photoflash cameras are a specific example in which a high-energy energy store, ie, a battery, is connected to a high-pulse-capacity memory, ie, a capacitor. When the device, the capacitor load from the battery topped ¬ and then in a very short time its energy content from. But this is the combination of two isolated electrochemical energy storage.
Ausgehend von letzterem Stand der Technik ist es Aufgabe der Erfindung, einen kompakten Energiespeicher anzugeben, der die Vorteile der Batterie mit den Vorteilen des Kondensators ver¬ bindet .Based on the latter prior art, it is an object of the invention to provide a compact energy storage, which ver ¬ binds the advantages of the battery with the advantages of the capacitor.
Die Aufgabe ist erfindungsgemäß durch die Gesamtheit der Merkmale des Patentanspruches 1 gelöst. Weiterbildungen sind in den Unteransprüchen angegeben.The object is achieved by the totality of the features of claim 1. Further developments are specified in the subclaims.
Die Erfindung löst das Problem unzureichender Impulsbelastbarkeit von Batterien kleinerer und mittlerer Baugröße, wobei nun kompakte Einheiten gebildet werden.The invention solves the problem of insufficient pulse load capacity of smaller and medium size, now compact units are formed.
Vorteilhaft ist bei der Erfindung insbesondere, dass die Dop¬ pelschichtkondensatoren voll in den Batterieaufbau integriert werden können und bei der Batterie und den Doppelschichtkon- densatoren Verwendung vom gleichen Elektrolyten gemacht wird. Dabei bilden die Elektroden der Batterie ein Redoxsystem, wobei die DLC-Elektroden auf den gleichen Ableitern des Batteriesystems aufgebracht werden können.It is advantageous in the invention in particular that the Dop ¬ pelschichtkondensatoren can be fully integrated into the battery structure and in the battery and the Doppelschichtkon- capacitors use of the same electrolyte is made. The electrodes of the battery form a redox system, wherein the DLC electrodes can be applied to the same arresters of the battery system.
Mit der Erfindung ist ein elektrochemischer Energiespeicher realisiert, der eine deutlich höhere Impulsbelastbarkeit auf¬ weist als die entsprechenden reinen Batteriesysteme.With the invention, an electrochemical energy storage is realized, which has a much higher pulse load capacity ¬ than the corresponding pure battery systems.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus nachfolgender Figurenbeschreibung von Ausführungsbeispielen in Verbindung den Patentansprüchen. Es zeigenFurther details and advantages of the invention will become apparent from the following description of exemplary embodiments in conjunction with the claims. Show it
Figur 1 den schematischen Aufbau einer Batterie mit darin integrierten DLC-Elektroden, Figur 2 einen Aufbau speziell für eine Knopfzelle,1 shows the schematic structure of a battery with DLC electrodes integrated therein, FIG. 2 shows a design especially for a coin cell,
Figur 3 den Aufbau einer primären Lithiumbatterie mit DLC- Elektroden in dreilagiger Formation,FIG. 3 shows the structure of a primary lithium battery with DLC electrodes in a three-layered formation,
Figur 4 einen derartigen Aufbau in vierlagiger Formation und Figur 5 eine Alternative zu Figur 3.Figure 4 shows such a structure in four-ply formation and FIG. 5 shows an alternative to FIG. 3.
In der Figur 1 ist ein Batterieaufbau mit einer negativen Elektrode 1 und einer positiven Elektrode 3 dargestellt, zwi- sehen der ein in Figur 1 nicht im Einzelnen bezeichneter1 shows a battery structure is shown with a negative electrode 1 and a positive electrode 3, see between the one in Figure 1 is not designated in detail
Elektrolyt und ein Separator 2 angeordnet ist. Mit 4 bzw. 4' sind die Ableiter für die Elektroden 1 und 3 dargestellt.Electrolyte and a separator 2 is arranged. 4 and 4 ', the arresters for the electrodes 1 and 3 are shown.
Der Separator 2 besteht aus isolierendem, aber porösem Mate- rial und hat die Funktion, den Elektrolytraum aufzuspannen. Der Elektrolyt befindet sich in den Poren des Separators 2 und stellt eine ionische Verbindung zwischen den Elektroden 1, 3 her Des weitern kann er den verbleibenden Leerraum im, den Aufbau umschließenden Gehäuse füllen.The separator 2 consists of insulating, but porous material and has the function to open the electrolyte space. The electrolyte is located in the pores of the separator 2 and establishes an ionic connection between the electrodes 1, 3 of the further he can fill the remaining space in the housing enclosing the structure.
In einem Endbereich befinden sich auf den Ableitern 4 bzw. 4' Elektroden 5 bzw. 5' , die zusammen mit dem Elektrolyten und dem Separator 2 einen Doppelschichtkondensator bilden. Ein solcher Doppelschichtkondensator wird auch allgemein als DLC- Element bezeichnet, wobei auf die englische Bezeichnung „p_ouble L_ayer £ondensator" zurückgegriffen wird.In one end region are on the arresters 4 and 4 'electrodes 5 and 5', which together with the electrolyte and the separator 2 form a double-layer capacitor. Such a double-layer capacitor is also generally referred to as a DLC element, wherein the English term "p_ouble L_ayer Ondenator" is used.
In Figur 1 ist weiterhin ein Gehäuse 10 angedeutet, in dem sich die Kombination aus Batterie und DLC befindet.In Figure 1, a housing 10 is further indicated, in which the combination of battery and DLC is located.
Wesentlich ist bei der Anordnung gemäß Figur 1, dass ein gemeinsamer Elektrolytraum mit dem gleichen Elektrolyten für die Batterie und dem DLC vorhanden ist. Geeignete Elektroly¬ ten für solche Anwendungen sind: Entweder wasserbasierte Sys- teme, z. B. Kalilauge, oder organische Elektrolytsysteme, wie sie beispielsweise für Lithium-Ionen-Batterien eingesetzt werden .It is essential in the arrangement of Figure 1, that a common electrolyte space with the same electrolyte for the battery and the DLC is present. Suitable electrolyzer ¬ th are available for such applications: either water-based systems SYS such. As potassium hydroxide, or organic electrolyte systems, such as those used for example for lithium-ion batteries.
In Figur 2 ist eine Knopfzelle 20 als Beispiel herangezogen. Eine solche Zelle besteht aus einer negativen Elektrode 21, die sich auf einem Ableiter 24 befindet, einem Separator 22 und einer zugehörigen positiven Elektrode 23 mit Ableiter 24' . Auf der negativen Elektrode 21 befinden sich nun mehrere streifenförmige Elektroden 25 eines Doppelschichtkondensators DLC. Die negative Elektrode 21 besteht dabei aus Li- und C- Segmenten und die positive Elektrode 23 aus MnO2. Das Gehäuse der Knopfzelle 20 ist in Figur 3 der Übersichtlichkeit halber weggelassen.In Figure 2, a button cell 20 is taken as an example. Such a cell consists of a negative electrode 21, which is located on an arrester 24, a separator 22 and an associated positive electrode 23 with arrester 24 '. On the negative electrode 21 are now several strip-shaped electrodes 25 of a double-layer capacitor DLC. The negative electrode 21 consists of Li and C segments and the positive electrode 23 of MnO 2 . The housing of the button cell 20 is omitted in Figure 3 for the sake of clarity.
Die Figuren 3 bis 5 beschreiben jeweils unterschiedlich aufgebaute, aber prinzipiell gleiche primäre Lithiumbatterien. Alternativ sind auch Lithium-Ionenelemente mit entsprechendem Aufbau geeignet. In Figur 3 ist ein derartiger Aufbau mit ei¬ ner dreilagigen Elektroden-Anordnung dargestellt, in Figur 4 eine vierlagige Elektroden-Anordnung und in Figur 5 eine Alternative wiederum mit einer dreilagigen Elektrodenanordnung.FIGS. 3 to 5 each describe differently constructed, but in principle identical, primary lithium batteries. Alternatively, lithium-ion elements are suitable with a corresponding structure. In Figure 3, such a construction is shown with egg ¬ ner three-layered electrode assembly, in Figure 4 a four-layer electrode arrangement and in Figure 5 an alternative in turn with a three-layer electrode assembly.
Im Einzelnen sind in den Figuren 3 bis 5 die negative Elektrode mit 11, die positive Elektrode mit 13, die Separatoren mit 12, die Ableiter mit 14 und die DCL-Elektrode mit 15 be¬ zeichnet .In detail, the negative electrode 11, the positive electrode 13, the separators 12, the arresters 14 and the DCL-electrode 15 be ¬ are distinguished in Figures 3 to fifth
In den Figuren 3 bis 5 besteht die negative Elektrode 11 aus Lithium oder Li/C die positive Elektrode aus beispielsweise Manganoxid (MnO2) . Die DCL-Elektrode wird insbesondere durch ggf. modifizierte Aktivkohle gebildet.In FIGS. 3 to 5, the negative electrode 11 is made of lithium or Li / C is the positive electrode of, for example, manganese oxide (MnO 2 ). The DCL electrode is formed in particular by optionally modified activated carbon.
Speziell in Figur 4 ist zentrisch eine negative Elektrode 11 vorhanden, die auf der Gegenseite des Ableiters 12 mit einer DLC-Elektrode 15 aus Kohlenstoff (C) belegt ist. Beidseitig ist ein Separator 12 vorhanden, der an der unteren Seite von einer positiven Elektrode 13 mit anschließender DLC-Elektrode 15 und auf der Oberseite von einer DLC-Elektrode 15 mit einer positiven Elektrode 13 gefolgt wird. Diese Anordnung ist Teil eines Aufbaus mit m gestapelten Einzelelektroden, wobei speziell die Elektrodenlage n und n+1 dargestellt sind.Specifically in FIG. 4, there is centrally a negative electrode 11, which is covered on the opposite side of the arrester 12 with a DLC electrode 15 made of carbon (C). On both sides there is a separator 12 which is followed on the lower side by a positive electrode 13 followed by a DLC electrode 15 and on the upper side by a DLC electrode 15 having a positive electrode 13. This arrangement is part of a construction with m stacked individual electrodes, wherein in particular the electrode layer n and n + 1 are shown.
In Figur 4 sind die positive Elektrode 13 wiederum aus MnO2 und die negative Elektrode aus Li/C gebildet. Die Ableiter 14 sind auf Vorder- und Rückseite unterschiedlich beschichtet. Ein prinzipiell ähnlicher Aufbau ergibt sich aus Figur 5, in der wiederum zwei Lagen n und n+1 eines m-lagigen Aufbaus dargestellt sind. Es ergibt sich obige Abfolge der negativen Elektrode 11 mit der DLC-Elektrode 15 und dem Separator 12, dem die positive Elektrode 13 mit Separator 12 folgt. Wesent¬ lich ist hier, dass der negative Ableiter 14 beidseitig un¬ terschiedlich beschichtet ist. Der positive Ableiter 14' ist dagegen mit nur einem Material beschichtet.In Fig. 4, the positive electrode 13 is again formed of MnO 2 and the negative electrode is made of Li / C. The arresters 14 are coated differently on the front and back. A basically similar construction results from FIG. 5, in which again two layers n and n + 1 of an m-layer structure are shown. The result is the above sequence of the negative electrode 11 with the DLC electrode 15 and the separator 12, followed by the positive electrode 13 with separator 12. Wesent ¬ Lich, is that the negative arrester 14 is coated on both sides un ¬ differently here. The positive arrester 14 ', however, is coated with only one material.
Die negative Elektrode 11 kann auch - wie bei einerThe negative electrode 11 can also - as in a
Nickel (Ni) -Metallhydrid-Batterie - aus einer Wasserstoff (H2) - speichernden Metalllegierung bestehen und die positive Elektrode aus einem NiO/NiO (OH) 2-Redoxsystem.Nickel (Ni) -Metallhydrid battery - consist of a hydrogen (H 2 ) - storing metal alloy and the positive electrode of a NiO / NiO (OH) 2 -redox system.
Statt der Aktivkohle (C) können auch andere geeignete DLC- Elektrodenmaterialien verwendet werden, wobei eine hinreichende Leitfähigkeit und eine große Oberfläche gewährleistet sein muss. . Auch Mischungen unterschiedlicher Materialien sind möglich.Instead of the activated carbon (C), other suitable DLC electrode materials can be used, whereby a sufficient conductivity and a large surface must be ensured. , Also mixtures of different materials are possible.
Bei den vorstehend beschriebenen Beispielen ist jeweils ge¬ währleistet, dass die Kombination von Faraday' schem Energie¬ speicher und Doppelschichtkondensator eine deutlich höhere Impulsbelastbarkeit als entsprechende reine Batterieelemente aufweist . In the above examples ge ¬ is respectively ensured that the combination of Faraday schem energy storage and double layer capacitor has a much higher capacity than pulse corresponding pure battery elements.

Claims

Patentansprüche claims
1. Elektrochemischer Energiespeicher, mit einem Gehäuse, einem Elektrolyten, Ableitern und Elektroden, dadurch gekenn- zeichnet, dass ein Faraday' scher Energiespeicher (Batterie) und ein Doppelschichtkondensator (DLC) miteinander kombiniert sind und sich im gleichen Elektrolytraum befinden.1. Electrochemical energy storage, with a housing, an electrolyte, arresters and electrodes, characterized in that a Faraday 'shear energy storage (battery) and a double-layer capacitor (DLC) are combined and are in the same electrolyte space.
2. Energiespeicher nach Anspruch 1, dadurch gekennzeichnet, dass in einem einzigen Gehäuse (10) sowohl Elektroden (1, 3;2. Energy storage according to claim 1, characterized in that in a single housing (10) both electrodes (1, 3;
11, 13; 11, 23) mit einem Redoxsystem als auch Elektroden (5, 15, 25) eines Doppelschichtkondensators enthalten sind.11, 13; 11, 23) are contained with a redox system as well as electrodes (5, 15, 25) of a double-layer capacitor.
3. Energiespeicher nach Anspruch 2, dadurch gekennzeichnet, dass sich die Doppelschichtkondensator-Elektroden räumlich abgegrenzt von den Elektroden (1, 3; 11, 13; 11, 23) der Bat¬ terie auf den Batterieelektrodenableitern (4, 14, 24) befinden .3. Energy storage according to claim 2, characterized in that the double-layer capacitor electrodes are spatially delimited from the electrodes (1, 3, 11, 13, 11, 23) of the Bat ¬ terie on the Batterieelektrodenableitern (4, 14, 24).
4. Energiespeicher nach Anspruch 2 oder Anspruch 3, dadurch gekennzeichnet, dass die Elektroden mit dem Redoxsystem eine positive Elektrode (3, 13, 23) aus Nickeloxid/Nickeloxid¬ hydrid (NiO/NiO (OH)2) und eine negative Elektrode (1, 11, 23) aus einer Wasserstoff (H2) -speichernden Metalllegierung bein- halten.4. Energy storage according to claim 2 or claim 3, characterized in that the electrodes with the redox system, a positive electrode (3, 13, 23) of nickel oxide / nickel oxide ¬ hydride (NiO / NiO (OH) 2 ) and a negative electrode (1 , 11, 23) comprise a hydrogen (H 2 ) -storing metal alloy.
5. Energiespeicher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die positive Elektrode und/oder die negative Elektrode mit einem DLC-Elektrodenmaterial ge- mischt sind.5. Energy store according to one of the preceding claims, characterized in that the positive electrode and / or the negative electrode are mixed with a DLC electrode material.
6. Energiespeicher nach Anspruch 5, dadurch gekennzeichnet, dass für eine Lithium-Primärbatterie die aus Lithium beste¬ hende negative Elektrode (21) durch Bezirke (25), beispiels- weise Streifen, eines DLC-Materials ergänzt ist.6. Energy storage according to claim 5, characterized in that for a lithium primary battery, the best of lithium existing ¬ negative electrode (21) by districts (25), for example strips, a DLC material is added.
7. Energiespeicher nach Anspruch 5 oder Anspruch 6, dadurch gekennzeichnet, dass das DLC-Material ein Material auf Koh- lenstoffbasis, vorzugsweise Aktivkohle oder anderweitig modi¬ fizierte Kohlenstoffverbindungen, ist.7. Energy storage according to claim 5 or claim 6, characterized in that the DLC material is a material on Koh- lenstoffbasis, preferably activated carbon or otherwise modi ¬ fied carbon compounds, is.
8. Energiespeicher nach einem der vorhergehenden Ansprüche, gekennzeichnet in der Realisierung als primäre Lithiumbatte¬ rie oder Lithium-Ionen-Element .8. Energy storage according to one of the preceding claims, characterized in the realization as primary Lithiumbatte ¬ rie or lithium-ion element.
9. Energiespeicher nach Anspruch 8, dadurch gekennzeichnet, dass eine dreilagige Elektroden-Anordnung vorhanden ist. (Fig. 3, Fig. 5)9. Energy storage according to claim 8, characterized in that a three-layer electrode arrangement is present. (Fig. 3, Fig. 5)
10. Energiespeicher nach Anspruch 6, dadurch gekennzeichnet, dass eine vierlagige Elektroden-Anordnung vorhanden ist.10. Energy storage according to claim 6, characterized in that a four-layer electrode arrangement is present.
(Fig. 4) (Fig. 4)
PCT/EP2006/065150 2005-08-11 2006-08-08 Electrochemical energy accumulator WO2007017506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005038351A DE102005038351A1 (en) 2005-08-11 2005-08-11 Electrochemical energy storage
DE102005038351.3 2005-08-11

Publications (1)

Publication Number Publication Date
WO2007017506A1 true WO2007017506A1 (en) 2007-02-15

Family

ID=37497023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065150 WO2007017506A1 (en) 2005-08-11 2006-08-08 Electrochemical energy accumulator

Country Status (2)

Country Link
DE (1) DE102005038351A1 (en)
WO (1) WO2007017506A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923151B2 (en) 2003-09-18 2011-04-12 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
US8993140B2 (en) 2010-06-18 2015-03-31 Continental Automotive Gmbh Rechargeable battery cell and battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007041513A1 (en) 2007-08-31 2009-03-05 Hella Kgaa Hueck & Co. Electrode arrangement including a copper electrode with a separator layer useful for electrical storage, e.g. in accumulators minimizes danger of shortcircuiting or accelerated self-discharge
US9450239B1 (en) 2012-03-15 2016-09-20 Erik K. Koep Methods for fabrication of intercalated lithium batteries
DE102013209067A1 (en) 2013-05-16 2014-11-20 Robert Bosch Gmbh Battery cell with an electrode ensemble and a battery and a motor vehicle with the battery cell
PT3111503T (en) * 2014-02-26 2021-03-29 Univ Do Porto A solid electrolyte glass for lithium or sodium ions conduction
EP3482443B1 (en) 2016-07-11 2021-08-25 Hydro-Québec Metal plating-based electrical energy storage cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419977A (en) * 1994-03-09 1995-05-30 Medtronic, Inc. Electrochemical device having operatively combined capacitor
US6187061B1 (en) * 1998-09-24 2001-02-13 Glenn G. Amatucci Supercapacitor structure and method of making same
US20050153173A1 (en) * 2004-01-13 2005-07-14 Yoshiaki Kumashiro Energy device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419977A (en) * 1994-03-09 1995-05-30 Medtronic, Inc. Electrochemical device having operatively combined capacitor
US6187061B1 (en) * 1998-09-24 2001-02-13 Glenn G. Amatucci Supercapacitor structure and method of making same
US20050153173A1 (en) * 2004-01-13 2005-07-14 Yoshiaki Kumashiro Energy device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923151B2 (en) 2003-09-18 2011-04-12 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
US8232006B2 (en) 2003-09-18 2012-07-31 Commonwealth Scientific And Industrial Research Organisation High performance energy storage devices
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US8993140B2 (en) 2010-06-18 2015-03-31 Continental Automotive Gmbh Rechargeable battery cell and battery
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system

Also Published As

Publication number Publication date
DE102005038351A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
WO2007017506A1 (en) Electrochemical energy accumulator
DE977070C (en) Alkaline accumulator
EP3435449B1 (en) Secondary electrochemical cell
DE1175302B (en) Permanently gas- and liquid-tight sealed alkaline accumulator
DE2826780A1 (en) GALVANIC ELEMENT
DE102007009295A1 (en) Galvanic element with high capacity
DE2907262C2 (en) Closed maintenance-free cell or battery
EP0658948B1 (en) Electrical nickel-metall hydride accumulator with electrode of nickelhydroxide comprising graphite
DE1671775C3 (en) Gas-tight accumulator
EP3178125B1 (en) Secondary electrochemical element based on nickel / iron
DE69836660T2 (en) Alkaline rechargeable battery
DE1934974B2 (en) Galvanic storage unit be made up of a fuel cell device and a parallel switchable accumulator device with a common negative electrode
EP3331073B1 (en) Secondary cell, battery comprising one or more secondary cells and a method for loading and discharging
DE102021103629A1 (en) battery module and battery cell
DE1596023B1 (en) ELECTRODE FOR ACCUMULATOR CELLS WITH A POROUS MAT RIZE MADE OF ELECTRIC CONDUCTING MATERIAL IN THE FORM OF CONNECTED HONEYCOMB CELLS
DE899214C (en) Rechargeable electrical, in particular alkaline, cell, accumulator cell, with sheet or film-thin electrodes
DE4417732A1 (en) Gas-tight nickel / hydride accumulator of the round cell type
EP0552441B1 (en) Gastight sealed alkaline accumulator of the button-cell type
DE2309716C3 (en) Galvanic metal-air element
DE2618005B2 (en) Primary alkaline cell
DE102023109712A1 (en) DEVICE FOR A PRISMATIC BATTERY CELL WITH BUILT-IN SPRINGS
DE102014223194A1 (en) Secondary electrochemical element
DE1596023C (en) Electrode for accumulator cells with a porous matrix made of electrically conductive material in the form of interconnected honeycomb cells
DE1596140C (en) Galvanic stacked battery, the cells of which contain a separator membrane containing an alkali electrolyte as well as starch and wheat flour thickeners
DE3031015C2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06778199

Country of ref document: EP

Kind code of ref document: A1