WO2007015373A1 - 燃料電池自動車 - Google Patents

燃料電池自動車 Download PDF

Info

Publication number
WO2007015373A1
WO2007015373A1 PCT/JP2006/314301 JP2006314301W WO2007015373A1 WO 2007015373 A1 WO2007015373 A1 WO 2007015373A1 JP 2006314301 W JP2006314301 W JP 2006314301W WO 2007015373 A1 WO2007015373 A1 WO 2007015373A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
target value
electric energy
storage means
energy output
Prior art date
Application number
PCT/JP2006/314301
Other languages
English (en)
French (fr)
Inventor
Masahiro Shige
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/988,392 priority Critical patent/US20090105895A1/en
Priority to CN2006800290385A priority patent/CN101238006B/zh
Priority to DE112006001987T priority patent/DE112006001987T5/de
Publication of WO2007015373A1 publication Critical patent/WO2007015373A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0283Clutch input shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell vehicle, and more particularly to a vehicle equipped with a fuel cell that generates electric energy by an electrochemical reaction between a fuel gas and an oxidizing gas.
  • Patent Document 1 JP 2001-339810 A
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell vehicle capable of improving driver spirit compared to conventional fuel cell vehicles. One. Another object of the present invention is to provide a fuel cell vehicle capable of improving fuel efficiency compared to conventional fuel cell vehicles.
  • the present invention employs the following means in order to achieve at least a part of the above-described object.
  • the first fuel cell vehicle of the present invention is An electric motor for rotating the wheels;
  • a fuel cell that generates electric energy by an electrochemical reaction between a fuel gas and an oxidizing gas, an electric storage means capable of charging and discharging the electric energy,
  • Driving mode detection means for detecting the driving mode set by the driver
  • the A target value setting means for setting the target value of the electric energy output to the electric motor based on the travel mode detected by the travel mode detection means when the required power increases;
  • Control means for controlling the power storage means match the target values set by the target value setting means.
  • the target value of electric energy that is output to the fuel cell power motor and the target value of electric energy that is output to the electric power storage means motor are set based on the required power!
  • the electric energy that is output to the electric motor is set based on the driving mode, and the electric energy that is output from the fuel cell to the electric motor and the electric storage means are supplied to the electric motor.
  • the fuel cell and the power storage means are controlled so that the electric energy output to the power source matches each target value. In this way, when the required power increases, the target value of the electric energy output to the electric storage means motor will be set appropriately according to the driving mode, so the driver's utility and fuel efficiency will be improved compared to the conventional case. be able to.
  • the traveling mode detection means may be a traveling mode switch or a shift position sensor.
  • the travel mode detection means detects a travel mode set by the driver from a plurality of travel modes including at least a fuel consumption priority travel mode and an acceleration priority travel mode, and sets the target value.
  • the means outputs from the power storage means to the electric motor based on the travel mode detected by the travel mode detection means when the required power increases.
  • the target value may be larger when the travel mode is the acceleration priority travel mode than when the fuel consumption priority travel mode is selected. In this way, it is possible to improve driver spirit or improve fuel efficiency according to the driver's intention to prioritize fuel consumption over acceleration and the driver's intention to prioritize acceleration over fuel consumption.
  • the fuel cell vehicle having the driving mode detecting means as described above is further provided with acceleration intention parameter calculating means for calculating an acceleration intention parameter related to the driver's acceleration intention, and the target value setting
  • the means is output to the electric power of the power storage means based on the travel mode detected by the travel mode detection means and the acceleration intention parameter calculated by the acceleration intention parameter calculation means when the required power increases.
  • a target value for electric energy may be set. In this way, it is possible to provide a feeling of sufficient acceleration according to the driver's intention to accelerate or conversely suppress acceleration and improve fuel efficiency.
  • the second fuel cell vehicle of the present invention is
  • a fuel cell that generates electric energy by an electrochemical reaction between the fuel gas and the acid gas, and a power storage means capable of charging and discharging the electric energy
  • Vehicle speed detection means for detecting the vehicle speed
  • Required power calculation means for calculating required power
  • the A target value setting means for setting a target value of electric energy output to the electric motor based on the vehicle speed detected by the vehicle speed detecting means when the required power increases;
  • Control means for controlling the power storage means match the target values set by the target value setting means.
  • the electric storage means power target value to be output to the electric motor is set based on the vehicle speed, the electric energy output from the fuel cell to the electric motor and the electric power output from the electric storage means to the electric motor.
  • the fuel cell and the power storage means are controlled so that the work energy matches each target value. In this way, when the required power increases, the target value of electric energy output to the electric storage means power motor is set appropriately in accordance with the vehicle speed. it can.
  • the vehicle speed detection means may be a means for detecting the rotation speed of the motor when the axle and the rotation shaft of the motor are directly connected.
  • the target value setting means is a target value of electric energy output from the power storage means to the electric motor based on a vehicle speed detected by the vehicle speed detection means when the required power increases.
  • the target value may be larger than in the low vehicle speed range.
  • the torque applied to the motor by the power storage means can be made substantially equal at high and low vehicle speeds, so that the acceleration feeling felt by the driver is the same regardless of the vehicle speed, and the driver Will improve.
  • the power applied to the motor is represented by the product of the motor speed and the motor torque, so even if the power to the motor by the power storage means is the same, the motor speed is high. Sometimes the motor speed is low and the torque is smaller than when the vehicle speed is low.
  • the power of the power storage means is greater than when the vehicle speed is low.
  • the electric energy output to the motor is increased.
  • the torque applied to the motor by the power storage means can be made substantially equal at both high and low vehicle speeds.
  • the fuel cell vehicle further includes acceleration intention parameter calculation means for calculating an acceleration intention parameter related to the driver's acceleration intention
  • the target value setting means includes the request
  • the target value of electric energy output from the power storage means to the electric motor based on the vehicle speed detected by the vehicle speed detection means and the acceleration intention parameter calculated by the acceleration intention parameter calculation means May be set.
  • the fuel cell vehicle equipped with the vehicle speed detection means as described above in addition to the acceleration intention meter calculation means, parameters related to the driver's intention to accelerate and the power storage means power are output to the motor.
  • the target value setting means is a vehicle speed detected by the vehicle speed detection means when the required power increases.
  • the third fuel cell vehicle of the present invention is
  • a fuel cell that generates electric energy by an electrochemical reaction between a fuel gas and an oxidizing gas, an electric storage means capable of charging and discharging the electric energy,
  • a slope detection means for detecting the slope of the road surface
  • an electric worker is output from the fuel cell to the electric motor.
  • the target value setting means for setting the value based on the climb slope detected by the slope detection means!
  • Control means for controlling the power storage means match the target values set by the target value setting means.
  • the target value setting means is a target of electric energy that is output from the power storage means to the electric motor based on an ascending slope detected by the slope detecting means when the required power increases.
  • the target value may be set so as to increase as the climbing gradient increases. In general, when the climbing gradient is large, acceleration is more difficult than when the climbing gradient is small, so by increasing the electric energy output to the motor, the acceleration experienced by the driver is almost the same regardless of the climbing gradient. Can be.
  • the fuel cell vehicle further includes an acceleration intention parameter calculation means for calculating an acceleration intention parameter related to the driver's acceleration intention
  • the target value setting means includes the request value
  • a target value of electric energy output from the power storage means to the electric motor may be set based on a speed intention parameter. In this way, it is possible to provide a feeling of sufficient speed according to the driver's intention to accelerate, or conversely suppress acceleration and improve fuel efficiency.
  • the fuel cell vehicle provided with the gradient detecting means as described above, in addition to the acceleration intention meter calculating means, parameters related to the driver's intention to accelerate and the power storage means power are output to the motor.
  • Storage means for storing the relationship with the target value of electric energy for each predetermined climbing slope region, the target value setting means, the climbing slope detected by the slope detecting means when the required power increases
  • the relationship corresponding to the climbing slope detected by the gradient detection means is read from the storage means, and the relationship
  • the power of the power storage means is a target of electric energy output to the motor. It may derive.
  • the fourth fuel cell vehicle of the present invention is
  • a fuel cell that generates electric energy by an electrochemical reaction between the fuel gas and the acid gas, and a power storage means capable of charging and discharging the electric energy
  • Target value setting means for setting a target value of the electric energy output to the electric motor based on the road surface friction coefficient detected by the friction coefficient detection means when the power increases;
  • the fuel cell and the electric energy output from the fuel cell to the electric motor and the electric energy output from the power storage means to the electric motor match the target values set by the target value setting means.
  • Control means for controlling the power storage means [0022]
  • the target value of electric energy that is output to the fuel cell power motor and the target value of electric energy that is output to the electric power storage means motor are set.
  • the target value of the electric energy that is output to the electric motor is stored based on the road surface friction coefficient, and the electric energy that is output from the fuel cell to the electric motor is stored.
  • the fuel cell and the power storage means are controlled so that the electric energy output to the motor matches each target value.
  • the target value of the electric energy output to the electric storage means power motor is set appropriately according to the road friction coefficient, so that the driver's utility and fuel efficiency are improved compared to the conventional method. Can do.
  • the target value setting means is an electric energy output from the power storage means to the electric motor based on a road surface friction coefficient detected by the friction coefficient detection means when the required power increases.
  • the target value force may be set so as to decrease as the road surface friction coefficient decreases.
  • the power of the storage means is also reduced by reducing the electric energy output to the motor to prevent suddenly large torque from being applied. Improves driver's spirit.
  • the fuel cell vehicle equipped with the friction coefficient detecting means as described above is further provided with an acceleration intention parameter calculating means for calculating an acceleration intention parameter related to the driver's acceleration intention, and the target value setting
  • the means is based on the road friction coefficient detected by the friction coefficient detection means and the acceleration intention parameter calculated by the acceleration intention parameter calculation means. You may set the target value for the electric energy output to. In this way, it is possible to provide a sense of sufficient acceleration on road surfaces that are difficult to slip, and on the other hand, to suppress acceleration and improve fuel efficiency, and to prevent slipping on the road surface. Can do.
  • the power storage means for storing the relationship with the target value of electric energy for each predetermined road surface friction coefficient region;
  • the power storage means force is set based on the road surface friction coefficient detected by the friction coefficient detection means when the electric energy target value to be output to the motor is set by the friction coefficient detection means.
  • the relation corresponding to the detected road surface friction coefficient is read from the storage means, and the electric power output from the power storage means to the electric motor is compared with the acceleration intention parameter calculated by the acceleration intention parameter calculation means.
  • a target value for the engineering energy may be derived.
  • the fifth fuel cell vehicle of the present invention is
  • a fuel cell that generates electric energy by an electrochemical reaction between a fuel gas and an oxidizing gas, an electric storage means capable of charging and discharging the electric energy,
  • Control means for controlling the power storage means match the target values set by the target value setting means.
  • the target value of electric energy that is output to the fuel cell power motor and the target value of electric energy that is output to the power storage means motor are set. In doing so, the state power when the fuel cell operation is stopped Immediately after restarting the operation of the fuel cell, the target value of the electric energy output from the power storage means to the motor is set larger than the normal time, and the fuel cell Battery power The electric energy output to the motor and the power storage means power are controlled so that the electric power output to the motor matches each target value. In general, immediately after the operation of the fuel cell is stopped and restarted from the state where the fuel cell is stopped, the responsiveness of the fuel cell is not as good as that at the normal time.
  • the responsiveness of the power storage means is superior to the responsiveness of the fuel cell. Therefore, the state power when the fuel cell operation is stopped Immediately after restarting the fuel cell operation, the responsiveness can be improved if the electric energy output to the electric motor is increased compared to the normal state. In this way, it is possible to suppress the driver's badness.
  • the predetermined fuel cell stop condition is satisfied and the operation of the fuel cell is stopped.
  • the fuel cell operation may be resumed immediately after a predetermined fuel cell resumption condition is satisfied.
  • the vehicle is provided with an acceleration intention parameter calculation means for calculating an acceleration intention parameter related to the driver's intention to accelerate, and the target value setting means is based on the required power.
  • the fuel cell force is also normally calculated by the acceleration intention parameter calculating means when setting the target value of electric energy output to the electric motor and the target value of electric energy output from the power storage means to the electric motor.
  • the electric storage means power may be set to a larger target value for electric energy output to the motor than in the normal case. In this way, it is possible to improve the fuel economy by suppressing the acceleration so that the driver can feel a sufficient acceleration according to the driver's intention to accelerate.
  • a parameter related to the driver's intention to accelerate and a target value of electric energy output from the power storage means to the electric motor Storage means for storing the relationship separately between the normal time and immediately after resumption of fuel cell operation, and the target value setting means depends on whether the fuel cell is in a normal operation state or an operation state immediately after resumption of fuel cell operation.
  • the relation is read from the storage means, and the target value of the electric energy output to the electric motor is derived by comparing the relation with the acceleration intention parameter calculated by the acceleration intention parameter calculation means. Also good.
  • the acceleration intention parameter calculation means may calculate an accelerator opening change rate, which is a time change of the accelerator depression amount of the driver, as the acceleration intention parameter.
  • the time change in the required travel power determined according to the accelerator depression amount of the driver may be calculated as the acceleration intention parameter.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a fuel cell vehicle.
  • FIG. 2 is a configuration diagram showing a schematic configuration of a fuel cell.
  • FIG. 3 is a flowchart of a drive control routine.
  • FIG. 4 is an explanatory diagram showing an example of a required torque setting map.
  • FIG. 5 is an explanatory diagram showing a notch assist amount map, in which (a) shows a fuel efficiency priority map, (b) shows a normal control map, and (c) shows a speed priority map.
  • FIG. 6 Graphs showing the characteristics of the fuel cell, where (a) shows the PI characteristics and (b) shows the IV characteristics.
  • FIG. 7 is a graph showing the relationship between elapsed time and the sum of output power.
  • FIG. 8 A graph showing the relationship between the elapsed time and the sum of output power.
  • (A) is when mode position MP is in eco mode
  • (b) is when mode position MP is in normal mode
  • (c) is mode. This indicates when the MP is in sport mode.
  • FIG. 9 is an explanatory diagram showing a battery assist amount map in which the assist amount time change rate increases as the vehicle speed increases.
  • FIG. 10 is an explanatory diagram showing a battery assist amount map, where (a) shows a small gradient area map, (b) shows a medium gradient area map, and (c) shows a large gradient area map.
  • FIG. 11 is an explanatory diagram showing a battery assist amount map, where (a) shows a low road surface map and (b) shows a normal manor map.
  • FIG. 12 is a flowchart of another drive control routine.
  • FIG. 13 is an explanatory diagram showing a battery assist amount map, where (a) shows a normal FC map, and (b) shows a FC power generation responsiveness drop map.
  • FIG. 1 is a configuration diagram showing an outline of the configuration of a fuel cell vehicle 10 representing an example of the present invention.
  • the fuel cell vehicle 10 includes a fuel cell stack 30 in which a plurality of fuel cells 40 that generate power by an electrochemical reaction between hydrogen as a fuel gas and oxygen in the air as an acid gas, and the fuel cell.
  • the motor 52 connected via the stack 30 and the inverter 54, the battery 58 connected via the DC / DC converter 56 to the power line 53 connecting the inverter 54 and the fuel cell stack 30, and the entire system And an electronic control unit 70 for controlling.
  • the drive shaft 64 is connected to the drive wheels 63 and 63 via the differential gear 62, and the power output from the motor 52 is finally output to the drive wheels 63 and 63 via the drive shaft 64. It is like that.
  • the fuel cell stack 30 is formed by stacking a plurality (for example, several hundreds) of polymer electrolyte fuel cells 40.
  • FIG. 2 shows a schematic configuration of the fuel cell 40.
  • the fuel cell 40 includes a solid electrolyte membrane 42 that is a proton conductive membrane formed of a polymer material such as fluorine-based resin, and a catalyst of platinum or an alloy made of platinum and other metals.
  • the anode 43 and the force sword 44 as gas diffusion electrodes that sandwich the solid electrolyte membrane 42 on the surface formed by the carbon cloth in which the catalyst is kneaded and sandwich the sandwich structure, and the sandwich structure from both sides
  • a fuel gas flow path 46 is formed between the anode 43 and the sword 44 while being sandwiched, and an oxidizing gas flow path 47 is formed between the power sword 44 and two separators 45 forming a partition wall with the adjacent fuel cell 40. It is configured.
  • the hydrogen gas passing through the fuel gas flow path 46 is diffused in the anode 43 and separated into protons and electrons by the catalyst. Among them, protons pass through the wet solid electrolyte membrane 42 and move to the force sword 44, and electrons move to the force sword 44 through an external circuit.
  • the fuel cell stack 30 is provided with an ammeter 31 and a voltmeter 33.
  • the ammeter 31 detects a current output from the fuel cell stack 30, and the voltmeter 33 outputs a voltage output from the fuel cell stack 30. Is to be detected.
  • the fuel cell stack 30 is provided with a hydrogen cylinder 12 for supplying hydrogen and an air compressor 22 for pumping air.
  • the hydrogen cylinder 12 stores high-pressure hydrogen of several tens of MPa, and supplies hydrogen adjusted in pressure by the regulator 14 to the fuel cell stack 30.
  • the hydrogen supplied to the fuel cell stack 30 passes through the fuel gas flow path 46 (see FIG. 2) of each fuel cell 40 and then is led out to the fuel gas discharge pipe 32.
  • An anode purge valve 18 used for increasing the hydrogen concentration in the fuel cell stack 30 is attached to the fuel gas discharge pipe 32.
  • the hydrogen concentration in the fuel gas flow path 46 shown in FIG. 2 decreases as nitrogen in the air in the oxidation gas flow path 47 flows into the anode 43 side.
  • the purge valve 18 is opened so that nitrogen in the fuel gas passage 46 is expelled.
  • the hydrogen circulation pump 20 also transfers the hydrogen-containing gas in the fuel gas discharge pipe 32 from between the fuel cell stack 30 and the anode purge valve 18 in the fuel gas discharge pipe 32 to between the fuel cell stack 30 and the regulator 14.
  • the amount of hydrogen supply can be adjusted by changing the number of rotations.
  • the air compressor 22 pumps air sucked from the atmosphere through an air cleaner (not shown) to the fuel cell stack 30, and adjusts the oxygen supply amount by changing the rotation speed thereof. Can do.
  • a humidifier 24 is provided between the air compressor 22 and the fuel cell stack 30, and the humidifier 24 humidifies the air fed by the air compressor 22 and supplies it to the fuel cell stack 30.
  • the air supplied to the fuel cell stack 30 passes through the acid gas flow path 47 (see FIG. 2) of each fuel cell 40 and is then discharged from the acid gas discharge pipe 34.
  • An air pressure control valve 26 is provided in the acid gas discharge pipe 34, and the pressure in the acid gas flow path 47 is adjusted by the air pressure control valve 26. Note that the air discharged from the fuel cell stack 30 to the oxygen gas exhaust pipe 34 is humid due to the water generated by the electrochemical reaction.
  • the humidifier 24 uses water steam to supply this humid air force. Replace.
  • the auxiliary equipment in FIG. 1 includes a regulator 14, a humidifier 24, an anode purge valve 18, a hydrogen circulation pump 20, an air compressor 22, an air pressure regulating valve 26, etc., and these are the fuel cell stack 30 or Power is supplied from battery 58.
  • the motor 52 is connected to the drive shaft 64, can be driven as a generator, and is electrically driven. It is configured as a well-known synchronous generator motor that can also be driven as a generator, and exchanges power with the battery 58 and the fuel cell stack 30 via the inverter 54.
  • the battery 58 is constituted by a well-known nickel hydride secondary battery or a lithium ion secondary battery, and is connected in parallel to the fuel cell stack 30 via a DC / DC converter 56.
  • the battery 58 absorbs the electric energy generated in the fuel cell stack 30 when the vehicle decelerates, or discharges the accumulated electric energy to discharge the electric power that is insufficient with the fuel cell stack 30 alone. Or to supply.
  • the latter operation is to supply the motor 52 with electric power that is insufficient by the fuel cell stack 30 alone, and is therefore referred to as assisting the fuel cell stack 30 by the battery 58 or simply as battery assist.
  • a capacitor may be used instead of the notch 58.
  • the electronic control unit 70 is configured as a one-chip microprocessor mainly configured by the CPU 72, and includes a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, an input / output port ( (Not shown).
  • the electronic control unit 70 includes an output current Ifc and an output voltage Vfc of the fuel cell stack 30 detected by the ammeter 31 and the voltmeter 33, and a fuel cell stack 30 from a flow meter and a thermometer not shown.
  • the electronic control unit 70 calculates the remaining capacity (SOC) based on the integrated value of the charge / discharge current of the battery 58, and outputs power Pfc based on the output current Ifc and the output voltage Vfc of the fuel cell stack 30.
  • the mode position MP from 90, the drive wheel speed sensor 91 attached to the drive wheels 63, 63, the drive wheel speed Vw, etc. are also input via the input port. It is.
  • the driving mode switch 90 is configured so that the driver sets one of three modes: an eco mode that prioritizes fuel consumption, a sports mode that prioritizes acceleration, and a normal mode that is intermediate between the two.
  • a drive signal to the air compressor 22, a control signal to the humidifier 16, a control signal to the regulator 14, the anode purge valve 18, the air pressure regulating valve 26, a control signal to the inverter 54, Control signals to the DCZDC converter 56 are output via the output port.
  • FIG. 3 shows an example of a drive control routine that is repeatedly executed every predetermined time (for example, every 8 msec) by the electronic control unit 70 when the fuel cell stack 30 is generating power and the fuel cell vehicle 10 is running. It is a flowchart. For convenience of explanation, it is assumed that the required travel power Pdr * can be covered only by the output power Pfc from the fuel cell stack 30, and the SOC of the battery 58 is an appropriate range that does not require charging. It shall be in the box.
  • the CPU 72 of the electronic control unit 70 first determines the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, and the rotational speed of the motor 52. Nm, output current Ifc of fuel cell stack 30 from ammeter 31, output voltage Vfc of fuel cell stack 30 from voltmeter 33, mode position MP from mode switch 90, charge / discharge current of notch 50, etc. Execute the process to enter the necessary data (step S110).
  • FC required power Pfc * required for the fuel cell stack 30 are set (step S115).
  • the required travel torque Tdr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required travel torque Tdr * in the RO M74 as a required torque setting map.
  • the corresponding travel demand torque Tdr * is derived from the stored map and set.
  • Figure 4 shows an example of the required torque setting map.
  • the FC required power Pfc * is obtained by multiplying the set travel request torque Tdr * by the rotational speed Ndr of the drive shaft 64 (that is, the travel request power Pdr *) and the battery 50
  • the FC required power Pfc * matches the travel required power Pdr *.
  • the rotation speed Ndr of the drive shaft 64 matches the rotation speed Nm of the motor 52.
  • a battery assistance amount map is selected based on the mode position MP from the travel mode switch 90 (step S120).
  • the battery assist amount map is a map showing the relationship between the accelerator opening change rate AAcc and the assist amount time change rate, and is created for each of the eco mode, normal mode, and sport mode, and is stored in ROM74.
  • the accelerator opening change rate AAcc is the difference between the accelerator opening Acc input in step S110 of the current drive control routine and the accelerator opening Acc input in step S110 of the previous drive control routine. It is a parameter for estimating the driver's intention to request acceleration.
  • the assist amount time change rate is used to calculate the assist amount Past by the battery 58 by multiplying the elapsed time of the assist start force.
  • each battery assist amount map when the accelerator opening change rate ⁇ Acc is less than or equal to the predetermined threshold Aref, the assist time change rate is created at Not 58 and the accelerator opening change rate ⁇ Acc is When the threshold value Aref is exceeded, the assist amount time change rate of the battery 58 tends to increase as the accelerator opening change rate ⁇ Acc increases, and the assist amount time change in the order of the fuel efficiency priority map, normal map, and acceleration priority map. It is created to increase the rate.
  • Each battery assist amount map is created so that the maximum assist amount time change rate t is obtained when the accelerator opening change rate ⁇ Acc is equal to or greater than a predetermined value.
  • the fuel efficiency priority map is selected when the mode position MP is in the eco mode, and normal mode is selected in the normal mode. A map is selected, and an acceleration priority map is selected in the sport mode.
  • the accelerator opening change rate AAcc is calculated (step S 125), and it is determined whether or not the accelerator opening change rate ⁇ Acc exceeds the threshold value Aref (step S 130).
  • the threshold value Aref is a value that represents the boundary between whether the driver requests a gentle acceleration! / Sudden acceleration, and is obtained by repeating the experiment. Specifically, the time required to cover the increase in the required travel power Pdr * when the accelerator opening change rate ⁇ Acc is the threshold value Aref with only the fuel cell stack 30 and the time required for acceleration expected by the driver The gap is almost set!
  • the transient state flag F is a flag that is set to the value 1 when the fuel cell stack 30 is in the transient state, and is reset to zero when the fuel cell stack 30 is not in the transient state.
  • the transient state is a process in which the output power Pfc of the fuel cell stack 30 increases until it reaches the required travel power Pdr *. This transient state occurs because the fuel cell stack 30 generates electricity by an electrochemical reaction and outputs the output power Pfc, so the required travel power Pdr that is set when the driver requests sudden acceleration.
  • the accelerator amount time change rate corresponding to the accelerator opening change rate ⁇ Acc is obtained using the battery assist amount map selected in step S120 (step S140), and the accelerator amount time change rate and the accelerator opening amount are calculated.
  • a value obtained by multiplying the elapsed time of the point-in-time force when the change rate ⁇ Acc exceeds the threshold Aref is set as a temporary assist amount Pasttmp (step S145).
  • a difference ⁇ P between the travel demand power Pdr * and the current output power Pfc from the fuel cell stack 30 is calculated (step S 150), and it is determined whether or not the difference ⁇ is substantially zero (step S 155).
  • step S160 it is determined that the difference ⁇ P is not substantially zero in consideration of the steady driving force immediately after the driver requests rapid acceleration. Subsequently, it is determined whether or not the temporary assist amount Pasttmp calculated in step S150 is larger than the difference ⁇ (step S160). In this case, it is assumed that the driver requests sudden acceleration immediately after steady operation. Therefore, the difference ⁇ P is a large value, and the provisional assistance amount Pasttmp is less than the difference ⁇ . Then, a negative determination is made in step S160.
  • the assist amount upper limit value Pastmax which is the upper limit value that can be assisted, is calculated (step S165), and the smaller of the temporary assist amount Pasttmp and the assist amount upper limit value Pastmax is set as the assist amount Past (step SI 70).
  • the operating point of the battery stack 30 is moved by the DCZDC converter 56.
  • the hydrogen supplied from the hydrogen cylinder 12 to the fuel cell stack 30 via the regulator 14 is not consumed.
  • the hydrogen discharged to the fuel gas discharge pipe 32 is again returned to the fuel cell stack 30 by the hydrogen circulation pump 20.
  • the consumed amount is supplied from a hydrogen cylinder 12.
  • the assist amount Past is supplied from the battery 58 to the motor 52 via the DC / DC converter 56 and the inverter 54.
  • the FC required power Pfc * is determined, the power-current characteristic (P-I characteristic) force shown in FIG.
  • the current If c * to output Pfc * is determined, the voltage Vfc * corresponding to the current Ifc * is determined from the current-voltage characteristics (IV characteristics) shown in Fig. 6 (b), and the voltage Vfc * is This is done by controlling the output voltage of the fuel cell stack 30 with the DC ZDC converter 56 as the target voltage. Thereby, the operating point of the fuel cell stack 30, that is, the output power can be controlled.
  • the PI characteristics and PV characteristics vary depending on various factors such as temperature, so they are corrected periodically.
  • step S180 the CPU 72 of the electronic control unit 70 determines whether or not the transient state flag F is a value 1 (step S180).
  • the notch 58 assists the fuel cell stack 30 so that the output power Pb from the battery 58 and the output power Pfc from the fuel cell stack 30 are combined. Is controlled to approach the required travel power Pdr *.
  • step S160 if it is determined in step S160 that the temporary assist amount Pasttmp is greater than the difference ⁇ , the value of the temporary assist amount Pasttmp is set. The difference is changed to ⁇ (step S185). In this way, the value of the provisional assistance amount Pasttmp is changed to the difference ⁇ P because the output power Pb of the battery 58 and the output power Pfc of the fuel cell stack 30 are changed when the assist amount Past exceeds the difference ⁇ P. This is because the sum of the values exceeds the required driving power Pdr *.
  • the assist amount Past is set through steps S165 and S170, and power control of the fuel cell stack 30 and the battery 58 is executed in step S175.
  • the total value of the output power Pb of the battery 58 and the output power Pfc of the fuel cell stack 30 is controlled so as not to exceed the required travel power Pdr *.
  • step S155 if it is determined in step S155 that the difference ⁇ is substantially zero, the assist amount Past is set. Set to zero and reset the transient flag F to zero (step S 190).
  • the fact that the difference ⁇ is substantially zero means that the required travel power Pdr * can be output only by the output power Pfc from the fuel cell stack 30.
  • step S175 power control of the fuel cell stack 30 is executed, and the required travel power Pdr * is output from the fuel cell stack 30 to the motor 58.
  • FIG. Figure 7 shows the relationship between the elapsed time from the time t 0 when the accelerator opening change rate ⁇ Acc exceeds the threshold Aref, the output power Pb from the battery 58, and the output value from the fuel cell stack 30. It is a graph to represent.
  • the temporary assistance amount Pasttmp is less than or equal to the assist amount upper limit value Pastmax, and the assist amount Past is the temporary assist amount. The following explanation assumes that the amount is consistent with Pasttmp.
  • time t2 is a time when the temporary assist amount Pasttmp coincides with the difference ⁇ P
  • time t3 is a time when the difference ⁇ P becomes substantially zero.
  • the assist amount Past is calculated by multiplying the assist amount time change rate by the elapsed time, and therefore gradually increases as time elapses.
  • the assist amount Past is the difference ⁇
  • the sum of both powers Pb and Pfc is the travel request power Pdr *.
  • the difference ⁇ becomes substantially zero, so the notation 58 of the battery 58 is not performed, and the required travel power Pdr * is covered only by the power Pfc output from the fuel cell stack 30.
  • the travel demand power Pdr * will not be output unless the time t2 is reached.
  • the required travel power Pdr * is output at time t1.
  • FIG. 8 is similar to FIG. 7, and is the sum of the elapsed time from the time tO when the accelerator opening change rate AAcc exceeds the threshold Aref, the output power Pb from the battery 58, and the output power Pfc from the fuel cell stack 30.
  • Fig. 8 (a) shows the relationship with the values
  • Fig. 8 (a) shows when the mode position MP is in eco mode
  • Fig. 8 (b) shows when the mode position MP is in normal mode
  • Fig. 8 (c) shows that the mode position MP is Indicates the sports mode.
  • the knotter assist is the smallest eco mode car with the sport mode being the largest and then the normal mode being the largest.
  • the time when the power sum reaches the required travel power Pdr * is the earliest in the sport mode (time tl3), the normal mode is earlier (time tl2), and the latest is the latest (time til).
  • the response to the accelerator work during acceleration is the best in the sport mode, followed by the normal mode and the eco mode.
  • the fuel efficiency at the time of acceleration is that the DCZDC converter 56 is interposed between the battery 58 and the inverter 54. The larger the battery assist amount, the worse the charging / discharging efficiency of the DCZDC converter 56 is.
  • Eco mode is the best, followed by normal mode and sport mode.
  • the cost can be improved.
  • the accelerator opening change rate AAcc is large, it is presumed that the driver is requesting rapid acceleration.Therefore, the assist amount is increased so that a sufficient sense of speed can be obtained.
  • the accelerator opening change rate AAcc is small, it is presumed that the driver requests slow acceleration, so the assist amount can be reduced to suppress acceleration and improve fuel efficiency.
  • the mode position MP is in the sport mode, it is presumed that the driver expresses his intention to prioritize acceleration over fuel consumption.
  • the mode position MP is in the eco mode, the driver is expected to give a willingness to prioritize the fuel consumption over the acceleration. Improve fuel consumption.
  • the present invention is not limited to the above-described embodiments, and can be implemented in various modes as long as they belong to the technical scope of the present invention.
  • the travel mode switch 90 there are three modes that can be selected by the travel mode switch 90: the sport mode, the normal mode, and the eco mode.
  • the assist amount is changed to other modes.
  • Other modes such as snow mode, which is smaller than the mode, may be added. Note that battery assist may not be performed in the eco mode.
  • the threshold AAref is set in the order of the fuel efficiency priority map at the time of the power economy, the normal map at the normal mode, and the acceleration priority map at the sport mode in which the threshold AAref is set to the same value in any mode. It may be made smaller. By doing so, the frequency of battery assistance is the highest in the sport mode and the lowest in the eco mode, thereby further improving the fuel efficiency in the eco mode.
  • the battery assist amount is calculated without considering the vehicle speed.
  • the battery assist amount may be calculated in consideration of the vehicle speed. For example, as shown in Fig. 9, the higher the vehicle speed, the larger the assist time change rate.
  • the assist torque applied to the motor 52 by the battery 58 can be made substantially equal at both high and low vehicle speeds, so that the acceleration feeling felt by the driver is the same regardless of the vehicle speed, and the driver Improves your spirit.
  • the power applied to the motor 52 is represented by the product of the rotation speed and the torque of the motor 52. At low speeds, the torque is smaller than at low vehicle speeds where the number of revolutions of the motor 52 is low.
  • the assist torque of the motor 52 can be made substantially equal.
  • the drive shaft 64 and the rotation shaft of the motor 52 are directly connected.
  • step S120 of the drive control routine of FIG. 3 is performed.
  • the battery assist amount map was selected, but instead of the following (1) to (3) You can select the battery assist amount map!
  • the driver can operate the shift lever 81 so that the shift position can be selected from the shift position in the sport mode, the shift position in the normal mode, and the shift position in the eco mode.
  • the battery assist amount map corresponding to each mode may be selected based on the shift position SP from the shift position sensor 82 in the same manner as in the above-described embodiment. In this case, the same effect as the above-described embodiment can be obtained.
  • the range of the climb gradient R ⁇ is divided in advance into a small gradient region, a medium gradient region, and a large gradient region.
  • the battery assist amount in the small gradient region The map is the battery assist amount map for the eco mode of the embodiment described above, the battery assist amount map for the medium gradient region is the battery assist amount map for the normal mode of the embodiment described above, and the battery assist amount map for the large gradient region is described above.
  • the battery assist amount map for the sport mode of the embodiment described above may be used, and one of the battery assist amount maps may be selected based on the climb gradient R ⁇ from the gradient sensor 89 in step S120 of the drive control routine of FIG. Good.
  • the amount of knotter assist can be set appropriately according to the climbing slope R 0, so that driver spirit and fuel consumption can be improved compared to the conventional case.
  • the notch assist amount also changes depending on the accelerator opening change rate AAcc, so that the driver feels sufficient acceleration depending on the driver's intention to accelerate. It is possible to improve the fuel efficiency by reducing the acceleration or conversely.
  • step S120 of the drive control routine of FIG. 3 the deviation force between the vehicle speed V and the drive wheel speed Vw also detects the slip ratio of the drive wheels 63, 63, and the detected slip ratio is a predetermined low value.
  • the current road surface is judged to be a low road surface (the road surface friction coefficient ⁇ is small) and battery assist is performed as shown in Fig. 11 (a).
  • the amount map is the battery assist amount map of the eco mode of the above-described embodiment, and if the slip ratio range of the low road surface is not entered, it is not a low ⁇ road surface (the road surface friction coefficient ⁇ is large! / ⁇ ). As shown in FIG.
  • the battery assist amount map may be determined as the normal mode battery assist amount map of the above-described embodiment.
  • the notch assist amount can be appropriately set according to the road surface friction coefficient, so that driver utility and fuel consumption can be improved as compared with the conventional case.
  • the road friction coefficient is small, the road friction coefficient ⁇ is large and slips compared to the case. Therefore, by reducing the amount of assist and preventing sudden increase in torque, improves.
  • the notch assist amount also changes depending on the accelerator opening change rate AAcc.Therefore, on a road surface that is difficult to slip, a sufficient acceleration feeling can be experienced, or conversely, acceleration can be suppressed to reduce fuel consumption. It is possible to improve the slip, and it is possible to prevent the occurrence of slip on the low slip surface.
  • a drive control routine shown in FIG. 12 may be adopted.
  • the drive control routine of FIG. 12 is the same as the drive control routine of FIG. 3 except that steps S100 to S108 are adopted instead of steps S110 to S120 of the drive control routine of FIG. Only this will be explained.
  • the CPU 72 of the electronic control unit 70 that improves the fuel consumption is such that the FC required power Pfc * becomes lower as the operating efficiency of the fuel cell stack 30 becomes worse when a predetermined stop condition is satisfied.
  • the normal battery assist amount map shown in Fig. 13 (a) is selected (step S102).
  • the battery assist amount map that is, the power generation responsiveness deterioration time map is selected (step S104).
  • the amount of assistance is increased for a certain period from the resumption of operation compared to the normal time.
  • the normal battery assist amount map is the same as the normal mode map of the above-described embodiment, and the battery assist amount map at the time of restart after stop is the same as the sports mode map of the above-described embodiment.
  • step S106 the data necessary for control is input (step S106), and the torque required for the vehicle is output to the drive shaft 64 connected to the drive wheels 63, 63 based on the input accelerator opening Acc and the vehicle speed V.
  • the required travel torque Tdr * to be applied and the FC required power Pfc * required for the fuel cell stack 30 are set (step S108). Since the subsequent processing is the same as the drive control routine of FIG. 3, its description is omitted. In this way, the state power when the operation of the fuel cell stack 30 is stopped.
  • the power generation response of the fuel cell stack 30 is better than the normal time for a certain period after the operation is restarted.
  • by increasing the amount of assist by the battery 58 it is possible to improve the response and suppress the driver's badness.
  • the notch assist amount also changes depending on the accelerator opening change rate ⁇ Acc, so that a sufficient acceleration feeling can be experienced according to the driver's intention to accelerate or conversely the acceleration can be suppressed. Fuel consumption can be improved.
  • the present invention is applicable to industries related to automobiles such as passenger cars, buses, and trucks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

 燃料電池自動車10では、燃料電池スタック30をアシストするバッテリアシスト量をモードポジションMPとアクセル開度変化率ΔAccに応じて適切に設定する。具体的には、ΔAccが大きいときには運転者は急加速を要求していると推定されるから、バッテリアシスト量を大きくして十分な加速感が味わえるようにし、逆にアクセル開度変化率ΔAccが小さいときには緩加速を要求していると推測されるから、バッテリアシスト量を小さくして加速を抑え燃費を向上させる。また、スポーツモードのときには加速を優先したいと推定されるから他のモードのときと比べてバッテリアシスト量を大きくして十分な加速感が得られるようにし、エコモードのときには燃費を優先したいと推定されるから他のモードのときと比べてバッテリアシスト量を小さくして燃費を改善する。

Description

明 細 書
燃料電池自動車
技術分野
[0001] 本発明は、燃料電池自動車に関し、詳しくは、燃料ガスと酸化ガスとの電気化学反 応により電気工ネルギを発生する燃料電池を搭載した自動車に関する。
背景技術
[0002] 従来より、燃料ガスと酸化ガスとの電気化学反応により電気工ネルギを発生する燃 料電池を搭載した燃料電池自動車が知られて!/、る。この種の燃料電池自動車として は、燃料電池と共にバッテリを搭載し、加速時の燃料電池への要求パワーをバッテリ の充電量に応じて制御する燃料電池自動車も提案されている。例えば、特許文献 1 には、アクセル踏込変化量が所定の変化量のとき、ノ ッテリ充電量が十分あればカロ 速要求が大きくてもバッテリが十分なパワーをアシストできるので燃料電池への要求 パワーはさほど大きくしなくてもよいが、バッテリ充電量が少ないときには加速要求が 小さくてもバッテリから十分なパワーをアシストできないので燃料電池への要求パワー を大きくすると ヽぅ制御が提案されて ヽる。
特許文献 1 :特開 2001— 339810
発明の開示
[0003] し力しながら、特許文献 1では加速要求の大きさとバッテリ充電量を考慮してバッテ リによるアシスト量を決定して 、るものの、その他の要因につ!ヽては考慮して!/ヽな!、た め、運転状態によってはドライバピリティが悪ィ匕したり燃費が低下したりするという問題 かあつた。
[0004] 本発明は、このような問題を解決するためになされたものであり、従来の燃料電池 自動車と比べてドライバピリティを改善することができる燃料電池自動車を提供するこ とを目的の一つとする。また、従来の燃料電池自動車と比べて燃費を改善することが できる燃料電池自動車を提供することを目的の一つとする。
[0005] 本発明は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
[0006] すなわち、本発明の第 1の燃料電池自動車は、 車輪を回転駆動する電動機と、
燃料ガスと酸化ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
運転者の設定した走行モードを検出する走行モード検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記走行モード検出手段によって検出され た走行モードに基づいて設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えたものである。
[0007] この燃料電池自動車では、要求動力に基づ!/ヽて燃料電池力 電動機へ出力され る電気工ネルギの目標値と蓄電手段力 電動機へ出力される電気工ネルギの目標 値とを設定するにあたり、要求動力が増大したときには蓄電手段力 電動機へ出力さ れる電気工ネルギの目標値を走行モードに基づいて設定し、燃料電池から電動機へ 出力される電気工ネルギと蓄電手段カゝら電動機へ出力される電気工ネルギとが各目 標値に一致するよう燃料電池及び蓄電手段を制御する。このように、要求動力が増 大したときには蓄電手段力 電動機へ出力される電気工ネルギの目標値を走行モー ドに応じて適切に設定するため、従来に比べてドライバピリティや燃費を改善すること ができる。なお、走行モード検出手段は、走行モードスィッチとしてもよいしシフトポジ シヨンセンサとしてもよい。
[0008] ここで、前記走行モード検出手段は、少なくとも燃費優先の走行モードと加速優先 の走行モードとを含む複数の走行モードの中から運転者の設定した走行モードを検 出し、前記目標値設定手段は、前記要求動力が増大したときに前記走行モード検出 手段によって検出された走行モードに基づいて前記蓄電手段から前記電動機へ出 力される電気工ネルギの目標値を設定する際、前記走行モードが加速優先の走行 モードのときには燃費優先の走行モードのときよりも前記目標値が大きくなるようにし てもよい。こうすれば、加速よりも燃費を優先したいという運転者の意思や燃費よりも 加速を優先したいという運転者の意思に応じてドライバピリティを改善したり燃費を改 善したりすることができる。
[0009] また、このように走行モード検出手段を備えた燃料電池自動車にお!、て、運転者の 加速意思に関連する加速意思パラメータを算出する加速意思パラメータ算出手段を 備え、前記目標値設定手段は、前記要求動力が増大したときには前記走行モード検 出手段によって検出された走行モードと前記加速意思パラメータ算出手段によって 算出された加速意思パラメータとに基づいて前記蓄電手段力 前記電動機へ出力さ れる電気工ネルギの目標値を設定してもよい。こうすれば、運転者の加速意思に応じ て十分な加速感が味わえるようにしたり逆に加速を抑えて燃費を向上したりすること ができる。
[0010] 更に、このように走行モード検出手段を備えた燃料電池自動車において、前記カロ 速意思パラメータ算出手段に加えて、運転者の加速意思に関連するパラメータと前 記蓄電手段から前記電動機へ出力される電気工ネルギの目標値との関係を走行モ ードごとに記憶する記憶手段を備え、前記目標値設定手段は、前記要求動力が増 大したときに前記走行モード検出手段によって検出された走行モードに基づいて前 記蓄電手段から前記電動機へ出力される電気工ネルギの目標値を設定する際、前 記走行モード検出手段によって検出された走行モードに対応する前記関係を前記 記憶手段から読み出し、該関係に前記加速意思パラメータ算出手段によって算出さ れた加速意思パラメータを照らして前記蓄電手段から前記電動機へ出力される電気 エネルギの目標値を導出してもよ!/、。
[0011] 本発明の第 2の燃料電池自動車は、
車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
車速を検出する車速検出手段と、 要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記車速検出手段によって検出された車 速に基づ 、て設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えたものである。
[0012] この燃料電池自動車では、要求動力に基づいて燃料電池から電動機へ出力され る電気工ネルギの目標値と蓄電手段力 電動機へ出力される電気工ネルギの目標 値とを設定するにあたり、要求動力が増大したときには蓄電手段力 電動機へ出力さ れる電気工ネルギの目標値を車速に基づいて設定し、燃料電池から電動機へ出力 される電気工ネルギと蓄電手段カゝら電動機へ出力される電気工ネルギとが各目標値 に一致するよう燃料電池及び蓄電手段を制御する。このように、要求動力が増大した ときには蓄電手段力 電動機へ出力される電気工ネルギの目標値を車速に応じて適 切に設定するため、従来に比べてドライバピリティや燃費を改善することができる。な お、車速検出手段は、車軸と電動機の回転軸とが直結されているときには電動機の 回転数を検出する手段としてもょ ヽ。
[0013] ここで、前記目標値設定手段は、前記要求動力が増大したときに前記車速検出手 段によって検出された車速に基づいて前記蓄電手段から前記電動機へ出力される 電気工ネルギの目標値を設定する際、前記車速が高車速域のときには低車速域の ときよりも前記目標値が大きくなるようにしてもよい。こうすれば、高車速のときと低車 速のときで蓄電手段による電動機へのトルクを略同等にすることができるため、運転 者の体感する加速感が車速によらず同等となり、ドライバピリティが向上する。すなわ ち、電動機に付与されるパワーは電動機の回転数と電動機のトルクとの積で表される から、蓄電手段による電動機へのパワーが同じでも電動機の回転数が高い高車速の ときには電動機の回転数が低い低車速のときに比べてトルクが小さくなる力 ここでは 高車速のときには低車速のときに比べて蓄電手段力 電動機へ出力される電気エネ ルギを大きくしているため結果的に高車速のときも低車速のときも蓄電手段による電 動機へのトルクを略同等にすることができるのである。
[0014] また、このように車速検出手段を備えた燃料電池自動車において、運転者の加速 意思に関連する加速意思パラメータを算出する加速意思パラメータ算出手段を備え 、前記目標値設定手段は、前記要求動力が増大したときには前記車速検出手段に よって検出された車速と前記加速意思パラメータ算出手段によって算出された加速 意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力される電気工ネル ギの目標値を設定してもよい。こうすれば、運転者の加速意思に応じて十分な加速 感が味わえるようにしたり逆に加速を抑えて燃費を向上したりすることができる。
[0015] 更に、このように車速検出手段を備えた燃料電池自動車において、前記加速意思 ノ メータ算出手段に加えて、運転者の加速意思に関連するパラメータと前記蓄電 手段力 前記電動機へ出力される電気工ネルギの目標値との関係を予め定めた車 速域ごとに記憶する記憶手段を備え、前記目標値設定手段は、前記要求動力が増 大したときに前記車速検出手段によって検出された車速に基づいて前記蓄電手段 カゝら前記電動機へ出力される電気工ネルギの目標値を設定する際、前記車速検出 手段によって検出された車速に対応する前記関係を前記記憶手段力 読み出し、該 関係に前記加速意思パラメータ算出手段によって算出された加速意思パラメータを 照らして前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値を導出 してちよい。
[0016] 本発明の第 3の燃料電池自動車は、
車輪を回転駆動する電動機と、
燃料ガスと酸化ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
路面の登り勾配を検出する勾配検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記勾配検出手段によって検出された登り 勾配に基づ!/、て設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えたものである。
[0017] この燃料電池自動車では、要求動力に基づいて燃料電池から電動機へ出力され る電気工ネルギの目標値と蓄電手段力 電動機へ出力される電気工ネルギの目標 値とを設定するにあたり、要求動力が増大したときには蓄電手段力 電動機へ出力さ れる電気工ネルギの目標値を登り勾配に基づいて設定し、燃料電池から電動機へ出 力される電気工ネルギと蓄電手段カゝら電動機へ出力される電気工ネルギとが各目標 値に一致するよう燃料電池及び蓄電手段を制御する。このように、要求動力が増大し たときには蓄電手段力 電動機へ出力される電気工ネルギの目標値を登り勾配に応 じて適切に設定するため、従来に比べてドライバピリティや燃費を改善することができ る。
[0018] ここで、前記目標値設定手段は、前記要求動力が増大したときに前記勾配検出手 段によって検出された登り勾配に基づいて前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値を設定する際、前記登り勾配が大き!、ほど前記目標値が 大きくなる傾向を示すように設定してもよい。一般に登り勾配が大きいときには登り勾 配が小さいときに比べて加速しにくいため蓄電手段力も電動機へ出力される電気工 ネルギを大きくすることにより、運転者の体感する加速度が登り勾配によらず略同等 にすることができる。
[0019] また、このように勾配検出手段を備えた燃料電池自動車において、運転者の加速 意思に関連する加速意思パラメータを算出する加速意思パラメータ算出手段を備え 、前記目標値設定手段は、前記要求動力が増大したときには前記勾配検出手段に よって検出された登り勾配と前記加速意思パラメータ算出手段によって算出されたカロ 速意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力される電気エネ ルギの目標値を設定してもよい。こうすれば、運転者の加速意思に応じて十分なカロ 速感が味わえるようにしたり逆に加速を抑えて燃費を向上したりすることができる。
[0020] 更に、このように勾配検出手段を備えた燃料電池自動車において、前記加速意思 ノ メータ算出手段に加えて、運転者の加速意思に関連するパラメータと前記蓄電 手段力 前記電動機へ出力される電気工ネルギの目標値との関係を予め定めた登り 勾配領域ごとに記憶する記憶手段を備え、前記目標値設定手段は、前記要求動力 が増大したときに前記勾配検出手段によって検出された登り勾配に基づいて前記蓄 電手段から前記電動機へ出力される電気工ネルギの目標値を設定する際、前記勾 配検出手段によって検出された登り勾配に対応する前記関係を前記記憶手段から 読み出し、該関係に前記加速意思パラメータ算出手段によって算出された加速意思 ノ メータを照らして前記蓄電手段力 前記電動機へ出力される電気工ネルギの目 標値を導出してもよい。
[0021] 本発明の第 4の燃料電池自動車は、
車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
路面摩擦係数を検出する摩擦係数検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ 、て前記燃料電池力 前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記摩擦係数検出手段によって検出され た路面摩擦係数に基づいて設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えたものである。 [0022] この燃料電池自動車では、要求動力に基づ!/ヽて燃料電池力 電動機へ出力され る電気工ネルギの目標値と蓄電手段力 電動機へ出力される電気工ネルギの目標 値とを設定するにあたり、要求動力が増大したときには蓄電手段力 電動機へ出力さ れる電気工ネルギの目標値を路面摩擦係数に基づいて設定し、燃料電池から電動 機へ出力される電気工ネルギと蓄電手段カゝら電動機へ出力される電気工ネルギとが 各目標値に一致するよう燃料電池及び蓄電手段を制御する。このように、要求動力 が増大したときには蓄電手段力 電動機へ出力される電気工ネルギの目標値を路面 摩擦係数に応じて適切に設定するため、従来に比べてドライバピリティや燃費を改善 することができる。
[0023] ここで、前記目標値設定手段は、前記要求動力が増大したときに前記摩擦係数検 出手段によって検出された路面摩擦係数に基づいて前記蓄電手段から前記電動機 へ出力される電気工ネルギの目標値を設定する際、前記路面摩擦係数が小さいほ ど前記目標値力 、さくなる傾向を示すように設定してもよい。一般に路面摩擦係数が 小さいときには路面摩擦係数が大きいときに比べてスリップしやすいため、蓄電手段 力も電動機へ出力される電気工ネルギを小さくして急に大きなトルクが力かるのを防 止することにより、ドライバピリティが向上する。
[0024] また、このように摩擦係数検出手段を備えた燃料電池自動車にお!、て、運転者の 加速意思に関連する加速意思パラメータを算出する加速意思パラメータ算出手段を 備え、前記目標値設定手段は、前記要求動力が増大したときには前記摩擦係数検 出手段によって検出された路面摩擦係数と前記加速意思パラメータ算出手段によつ て算出された加速意思パラメータとに基づいて前記蓄電手段力 前記電動機へ出 力される電気工ネルギの目標値を設定してもよい。こうすれば、スリップしにくい路面 では十分な加速感が味わえるようにしたり逆に加速を抑えて燃費を向上したりするこ とができるし、スリップしゃす!/、路面ではスリップの発生を防止することができる。
[0025] 更に、このように摩擦係数検出手段を備えた燃料電池自動車において、前記加速 意思パラメータ算出手段に加えて、運転者の加速意思に関連するパラメータと前記 蓄電手段力 前記電動機へ出力される電気工ネルギの目標値との関係を予め定め た路面摩擦係数領域ごとに記憶する記憶手段を備え、前記目標値設定手段は、前 記要求動力が増大したときに前記摩擦係数検出手段によって検出された路面摩擦 係数に基づいて前記蓄電手段力 前記電動機へ出力される電気工ネルギの目標値 を設定する際、前記摩擦係数検出手段によって検出された路面摩擦係数に対応す る前記関係を前記記憶手段から読み出し、該関係に前記加速意思パラメータ算出手 段によって算出された加速意思パラメータを照らして前記蓄電手段から前記電動機 へ出力される電気工ネルギの目標値を導出してもよい。
[0026] 本発明の第 5の燃料電池自動車は、
車輪を回転駆動する電動機と、
燃料ガスと酸化ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記燃料電池の運転を停止している状態力 該燃料電池の運 転を再開した直後は、通常時に比べて前記蓄電手段力 前記電動機へ出力される 電気工ネルギの目標値を大きく設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えたものである。
[0027] この燃料電池自動車では、要求動力に基づ!/ヽて燃料電池力 電動機へ出力され る電気工ネルギの目標値と蓄電手段力 電動機へ出力される電気工ネルギの目標 値とを設定するにあたり、燃料電池の運転を停止している状態力 該燃料電池の運 転を再開した直後は、通常時に比べて蓄電手段から電動機へ出力される電気エネ ルギの目標値を大きく設定し、燃料電池力 電動機へ出力される電気工ネルギと蓄 電手段力 電動機へ出力される電気工ネルギとが各目標値に一致するよう燃料電池 及び蓄電手段を制御する。一般に燃料電池の運転を停止して!/、る状態から燃料電 池の運転を再開した直後は、通常時に比べて燃料電池の応答性がよくない。また、 一般に燃料電池の応答性に比べて蓄電手段の応答性の方が優れて 、る。このため 、燃料電池の運転を停止している状態力 燃料電池の運転を再開した直後は、通常 時に比べて蓄電手段力 電動機へ出力される電気工ネルギが大きくなるようにすれ ば応答性が改善され、ドライバピリティの悪ィ匕を抑制することができる。
[0028] ここで、前記燃料電池の運転を停止している状態から該燃料電池の運転を再開し た直後とは、前記所定の燃料電池停止条件が成立して前記燃料電池の運転を停止 したあと所定の燃料電池再開条件が成立したことにより前記燃料電池の運転が再開 された直後としてもよい。
[0029] また、このような燃料電池自動車において、運転者の加速意思に関連する加速意 思パラメータを算出する加速意思パラメータ算出手段を備え、前記目標値設定手段 は、前記要求動力に基づいて前記燃料電池力も前記電動機へ出力される電気エネ ルギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値 とを設定するにあたり、通常時には前記加速意思パラメータ算出手段によって算出さ れた加速意思パラメータに基づいて前記蓄電手段から前記電動機へ出力される電 気エネルギの目標値を設定し、前記燃料電池の運転を停止している状態力ゝら該燃料 電池の運転を再開した直後には通常時に比べて前記蓄電手段力 前記電動機へ 出力される電気工ネルギの目標値を大きく設定してもよい。こうすれば、運転者の加 速意思に応じて十分な加速感が味わえるようにしたり逆に加速を抑えて燃費を向上 したりすることがでさる。
[0030] 更に、このような燃料電池自動車において、前記加速意思パラメータ手段に加えて 、運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を通常時と燃料電池運転再開直後とに分けて 記憶する記憶手段を備え、前記目標値設定手段は、前記燃料電池が通常時の運転 状態か燃料電池運転再開直後の運転状態かに応じて前記関係を前記記憶手段か ら読み出し、該関係に前記加速意思パラメータ算出手段によって算出された加速意 思パラメータを照らして前記蓄電手段力 前記電動機へ出力される電気工ネルギの 目標値を導出してもよい。
[0031] 上述したいずれかの燃料電池自動車のうち加速意思パラメータ算出手段を備えて いる場合には、該加速意思パラメータ算出手段は、運転者のアクセル踏込量の時間 変化であるアクセル開度変化率を前記加速意思パラメータとして算出するようにして もよい。あるいは、運転者のアクセル踏込量に応じて決定される走行要求パワーの時 間変化を前記加速意思パラメータとして算出するようにしてもよい。
図面の簡単な説明
[0032] [図 1]燃料電池自動車の構成の概略を示す構成図である。
[図 2]燃料電池の構成の概略を示す構成図である。
[図 3]駆動制御ルーチンのフローチャートである。
[図 4]要求トルク設定用マップの一例を示す説明図である。
[図 5]ノ ッテリアシスト量マップを示す説明図であり、(a)は燃費優先マップ、(b)はノ 一マノレマップ、 (c)はカ卩速優先マップを示す。
[図 6]燃料電池の特性を表すグラフであり、(a)は P— I特性を表し、(b)は I— V特性を 表す。
[図 7]経過時間と出力パワーの合算値との関係を表すグラフである。
[図 8]経過時間と出力パワーの合算値の関係を表すグラフであり、 (a)はモードポジシ ヨン MPがェコモードのとき、(b)はモードポジション MPが通常モードのとき、(c)はモ ードポジション MPがスポーツモードのときを表す。
[図 9]高車速になるほどアシスト量時間変化率が大きくなるようにしたバッテリアシスト 量マップを示す説明図である。
[図 10]バッテリアシスト量マップを示す説明図であり、(a)は小勾配領域マップ、(b) は中勾配領域マップ、(c)は大勾配領域マップを示す。
[図 11]バッテリアシスト量マップを示す説明図であり、(a)は低 路面マップ、(b)はノ 一マノレマップを示す。
[図 12]他の駆動制御ルーチンのフローチャートである。
[図 13]バッテリアシスト量マップを示す説明図であり、(a)は FC通常時マップ、(b)は FC発電応答性低下時マップを示す。
発明を実施するための最良の形態
[0033] 次に、本発明を実施するための最良の形態を、図面に基づいて以下に説明する。 図 1は、本発明の一例を表す燃料電池自動車 10の構成の概略を示す構成図である
[0034] 燃料電池自動車 10は、燃料ガスとしての水素と酸ィ匕ガスとしての空気中の酸素と の電気化学反応により発電する燃料電池 40が複数積層された燃料電池スタック 30 と、この燃料電池スタック 30とインバータ 54を介して接続されたモータ 52と、インバー タ 54と燃料電池スタック 30とを接続する電力ライン 53に DC/DCコンバータ 56を介 して接続されたバッテリ 58と、システム全体をコントロールする電子制御ユニット 70と を備えている。なお、駆動軸 64は、ディファレンシャルギヤ 62を介して駆動輪 63, 63 に接続されており、モータ 52から出力された動力は駆動軸 64を経て最終的には駆 動輪 63, 63に出力されるようになっている。
[0035] 燃料電池スタック 30は、固体高分子型の燃料電池 40を複数 (例えば数百個)積層 したものである。図 2に燃料電池 40の概略構成を示す。図示するように、燃料電池 4 0は、フッ素系榭脂などの高分子材料により形成されたプロトン伝導性の膜体である 固体電解質膜 42と、白金または白金と他の金属からなる合金の触媒が練り込められ たカーボンクロスにより形成され触媒が練り込められた面で固体電解質膜 42を挟持 してサンドイッチ構造を構成するガス拡散電極としてのアノード 43および力ソード 44 と、このサンドイッチ構造を両側から挟みつつアノード 43との間に燃料ガス流路 46を 形成し、力ソード 44との間に酸化ガス流路 47を形成すると共に、隣接する燃料電池 40との隔壁をなす 2つのセパレータ 45とにより構成されている。そして、燃料ガス流 路 46を通過する水素ガスは、アノード 43でガス拡散され触媒によってプロトンと電子 に分かれる。このうちプロトンは湿潤状態の固体電解質膜 42を伝導して力ソード 44に 移動し、電子は外部回路を通って力ソード 44に移動する。また、酸ィ匕ガス流路 47を 通過するエアに含まれる酸素は、力ソード 44でガス拡散され触媒上でプロトンと電子 とエア中の酸素とが反応して水が生成する。以上の電気化学反応により各燃料電池 40には起電力が生じ電気工ネルギが発生する。この燃料電池スタック 30には、電流 計 31と電圧計 33とが取り付けられ、電流計 31は燃料電池スタック 30から出力される 電流を検出し、電圧計 33は燃料電池スタック 30から出力される電圧を検出するよう になっている。 [0036] 燃料電池スタック 30には、水素を供給する水素ボンべ 12と、空気を圧送するェアコ ンプレッサ 22が取り付けられている。水素ボンべ 12は、数十 MPaの高圧水素を蓄え ており、レギユレータ 14により圧力調整された水素を燃料電池スタック 30へ供給する ものである。燃料電池スタック 30へ供給された水素は、各燃料電池 40の燃料ガス流 路 46 (図 2参照)を通過したあと燃料ガス排出管 32へと導出される。この燃料ガス排 出管 32には、燃料電池スタック 30内の水素濃度を高めるために用いられるアノード パージ弁 18が取り付けられている。図 2に示す燃料ガス流路 46内の水素濃度は酸 化ガス流路 47内の空気中の窒素がアノード 43側に流入することにより低下するため 、所定のインターバルごとに所定の開放時間だけアノードパージ弁 18を開いて燃料 ガス流路 46内の窒素を追い出すようにしている。また、水素循環ポンプ 20は、燃料 ガス排出管 32のうち燃料電池スタック 30とアノードパージ弁 18との間から燃料電池 スタック 30とレギユレータ 14との間へ燃料ガス排出管 32内の水素含有ガスを合流さ せるものであり、その回転数を変動させることで水素供給量を調整することができる。
[0037] 一方、エアコンプレッサ 22は、図示しないエアクリーナを介して大気中から吸入した 空気を燃料電池スタック 30へ圧送するものであり、その回転数を変動させることで酸 素供給量を調整することができる。このエアコンプレッサ 22と燃料電池スタック 30との 間には加湿器 24が設けられ、この加湿器 24はエアコンプレッサ 22によって圧送され た空気を加湿して燃料電池スタック 30へ供給する。燃料電池スタック 30へ供給され た空気は、各燃料電池 40の酸ィ匕ガス流路 47 (図 2参照)を通過したあと酸ィ匕ガス排 出管 34から排出される。この酸ィ匕ガス排出管 34には、空気調圧弁 26が設けられ、こ の空気調圧弁 26によって酸ィ匕ガス流路 47内の圧力が調整される。なお、燃料電池 スタック 30から酸ィ匕ガス排出管 34へ排出される空気は電気化学反応によって生じた 水により多湿になっている力 加湿器 24ではこの多湿な空気力 圧送空気へと水蒸 気を交換する。
[0038] なお、図 1における補機類とは、レギユレータ 14、加湿器 24、アノードパージ弁 18、 水素循環ポンプ 20、エアコンプレッサ 22、空気調圧弁 26などであり、これらは燃料 電池スタック 30又はバッテリ 58から電力の供給を受ける。
[0039] モータ 52は、駆動軸 64に接続され、発電機として駆動することができると共に電動 機としても駆動することができる周知の同期発電電動機として構成されており、インバ ータ 54を介してバッテリ 58や燃料電池スタック 30と電力のやり取りを行う。
[0040] バッテリ 58は、周知のニッケル水素二次電池や、リチウムイオン二次電池により構 成されており、 DC/DCコンバータ 56を介して燃料電池スタック 30と並列に接続さ れている。このバッテリ 58は、車両減速時の回生エネルギゃ燃料電池スタック 30で 発生した電気工ネルギを吸収したり、蓄積した電気工ネルギを放電して燃料電池スタ ック 30だけでは不足する電力をモータ 52に供給したりする。後者の動作は、燃料電 池スタック 30だけでは不足する電力をモータ 52に供給するものであるから、バッテリ 58による燃料電池スタック 30のアシストと呼んだり単にバッテリアシストと呼んだりする 。なお、ノ ッテリ 58の代わりにキャパシタを採用してもよい。
[0041] 電子制御ユニット 70は、 CPU72を中心として構成されたワンチップマイクロプロセ ッサとして構成されており、処理プログラムを記憶した ROM74と、一時的にデータを 記憶する RAM76と、入出力ポート(図示せず)とを備えている。この電子制御ュ-ッ ト 70には、電流計 31や電圧計 33で検出される燃料電池スタック 30の出力電流 Ifcや 出力電圧 Vfc、図示しな ヽ流量計や温度計からの燃料電池スタック 30へ供給される 水素及び空気の流量や温度に関する信号、加湿器 24やエアコンプレッサ 22の運転 状態に関する信号、モータ 52を制御するために必要な信号 (例えばモータ 52の回 転数 Nmやモータ 52に印加される相電流など)、ノ ッテリ 58を管理するために必要な 充放電電流などが入力ポートを介して入力される。なお、電子制御ユニット 70は、バ ッテリ 58の充放電電流の積算値に基づいて残容量 (SOC)を計算し、燃料電池スタ ック 30の出力電流 Ifc及び出力電圧 Vfcに基づいて出力パワー Pfcを計算する。また 、車速センサ 88からの車速 V,シフトレバー 81の位置を検出するシフトポジションセ ンサ 82からのシフトポジション SP,アクセルペダル 83の踏み込み量を検出するァク セルペダルポジションセンサ 84からのアクセル開度 Acc,ブレーキペダル 85の踏み 込み量を検出するブレーキペダルポジションセンサ 86からのブレーキペダルポジショ ン BP、路面の勾配を検出する勾配センサ 89からの路面勾配 R 0 ,運転者により設定 される走行モードスィッチ 90からのモードポジション MP、駆動輪 63, 63に取り付け られた駆動輪速度センサ 91からの駆動輪速度 Vwなども入力ポートを介して入力さ れる。本実施形態では、走行モードスィッチ 90は、燃費を優先するェコモードと加速 を優先するスポーツモードと両者の中間の通常モードの 3つのうちいずれかを運転者 が設定するようになっている。一方、電子制御ユニット 70からは、エアコンプレッサ 22 への駆動信号、加湿器 16への制御信号、レギユレータ 14やアノードパージ弁 18,空 気調圧弁 26への制御信号、インバータ 54への制御信号、 DCZDCコンバータ 56へ の制御信号などが出力ポートを介して出力される。
[0042] 次に、こうして構成された実施例の燃料電池自動車 10の動作について説明する。
図 3は、燃料電池スタック 30が発電中であり且つ燃料電池自動車 10が走行中である ときに電子制御ユニット 70により所定時間毎 (例えば 8msecごと)に繰り返し実行され る駆動制御ルーチンの一例を示すフローチャートである。なお、説明の便宜のため、 ここでは前提として、走行要求パワー Pdr *は燃料電池スタック 30からの出力パワー Pfcだけで賄うことができるものとし、ノ ッテリ 58の SOCは充電を必要としない適正範 囲にあるものとする。
[0043] この駆動制御ルーチンが実行されると、電子制御ユニット 70の CPU72は、まず、ァ クセルペダルポジションセンサ 84からのアクセル開度 Accや車速センサ 88からの車 速 V,モータ 52の回転数 Nm,電流計 31からの燃料電池スタック 30の出力電流 Ifc, 電圧計 33からの燃料電池スタック 30の出力電圧 Vfc,モードスィッチ 90からのモー ドポジション MP,ノ ッテリ 50の充放電電流など制御に必要なデータを入力する処理 を実行する (ステップ S 110)。
[0044] こうしてデータを入力すると、入力したアクセル開度 Accと車速 Vとに基づいて車両 に要求されるトルクとして駆動輪 63, 63に連結された駆動軸 64に出力すべき走行要 求トルク Tdr *と燃料電池スタック 30に要求される FC要求パワー Pfc *とを設定する (ステップ S115)。走行要求トルク Tdr*は、本実施形態では、アクセル開度 Accと車 速 Vと走行要求トルク Tdr*との関係を予め定めて要求トルク設定用マップとして RO M74に記憶しておき、アクセル開度 Accと車速 Vとが与えられると記憶したマップか ら対応する走行要求トルク Tdr *を導出して設定するものとした。図 4に要求トルク設 定用マップの一例を示す。 FC要求パワー Pfc *は、設定した走行要求トルク Tdr * に駆動軸 64の回転数 Ndrを乗じたもの(つまり走行要求パワー Pdr * )とバッテリ 50 が要求する充放電要求パワー Pb *との和として計算することができる力 既述したよ うに、ここでは走行要求パワー Pdr*は燃料電池スタック 30からの出力パワー Pfじだ けで賄うことができるものとし、バッテリ 58の SOCは充電を必要としない適正範囲にあ るとしたため、 FC要求パワー Pfc *は走行要求パワー Pdr *と一致する。なお、本実 施形態ではモータ 52の回転軸が駆動軸 64と直結されているため駆動軸 64の回転 数 Ndrはモータ 52の回転数 Nmと一致する。
続いて、走行モードスィッチ 90からのモードポジション MPに基づいてバッテリアシ スト量マップを選択する(ステップ S 120)。バッテリアシスト量マップは、図 5に示すよう にアクセル開度変化率 AAccとアシスト量時間変化率との関係を表すマップであり、 ェコモード、通常モード、スポーツモードの各モード毎に作成され、 ROM74に記憶 されている。ここで、アクセル開度変化率 AAccは、今回の駆動制御ルーチンのステ ップ S 110において入力したアクセル開度 Accと前回の駆動制御ルーチンのステップ S110において入力したアクセル開度 Accとの差分であり、運転者の加速要求意思 を推測するためのパラメータである。例えば、アクセル開度変化率 Δ Accが大きいと きには、アクセルペダル 83が急に大きく踏み込まれたということである力も運転者が 急加速を要求しているものと推測することができ、アクセル開度変化率 Δ Accが小さ いときには、アクセルペダル 83がゆっくり踏み込まれたということであるから運転者が 緩加速を要求しているものと推測することができる。また、アシスト量時間変化率は、 アシスト開始時力もの経過時間を乗じることによりバッテリ 58によるアシスト量 Pastを 算出するためのものである。各バッテリアシスト量マップとも、アクセル開度変化率 Δ Accが予め定めた閾値 Aref以下のときには、ノ ッテリ 58でアシスト時間変化率がゼ 口となるように作成され、アクセル開度変化率 Δ Accが閾値 Arefを超えたときには、 アクセル開度変化率 Δ Accが大きくなるほどバッテリ 58のアシスト量時間変化率が大 きくなる傾向を持ち且つ燃費優先マップ、ノーマルマップ、加速優先マップの順にァ シスト量時間変化率が大きくなるように作成されている。また、各バッテリアシスト量マ ップとも、アクセル開度変化率 Δ Accが所定値以上のときには最大のアシスト量時間 変化率 tになるように作成されている。そして、ステップ S 120でモードポジション MP がェコモードのときには燃費優先マップが選択され、通常モードのときにはノーマル マップが選択され、スポーツモードのときには加速優先マップが選択される。
[0046] 続いて、アクセル開度変化率 AAccを算出し (ステップ S 125)、そのアクセル開度 変化率 Δ Accが閾値 Arefを超えているか否かを判定する(ステップ S130)。ここで、 閾値 Arefは、運転者が緩加速を要求して!/ヽるカゝ急加速を要求して ヽるかの境界を 表す値であり、実験を繰り返すことにより求めた値である。具体的には、アクセル開度 変化率 Δ Accが閾値 Arefのときの走行要求パワー Pdr *の増加分を燃料電池スタツ ク 30だけで賄う場合に要する時間と運転者が期待する加速に要する時間とのズレが ほとんどな 、ように設定されて!、る。
[0047] いま、定常運転力 運転者が急加速を要求した直後を考えると、アクセル開度変化 率 Δ Accが閾値 Arefを超えるから、過渡状態フラグ Fに値 1をセットする (ステップ S1 35)。ここで、過渡状態フラグ Fは、燃料電池スタック 30が過渡状態のときに値 1にセ ットされ、過渡状態でないときにゼロにリセットされるフラグである。また、過渡状態とは 、燃料電池スタック 30の出力パワー Pfcが走行要求パワー Pdr*に達するまで上昇 する過程をいう。このような過渡状態が生じるのは、燃料電池スタック 30は電気化学 反応により発電して出力パワー Pfcを出力することから、運転者が急な加速を要求し たときに設定される走行要求パワー Pdr *を出力するまでに時間を要するためである 。続いて、ステップ S120で選択したバッテリアシスト量マップを用いてアクセル開度 変化率 Δ Accに対応するアクセル量時間変化率を求め(ステップ S 140)、そのァク セル量時間変化率とアクセル開度変化率 Δ Accが閾値 Arefを超えた時点力 の経 過時間とを乗じた値を仮アシスト量 Pasttmpとする(ステップ S145)。また、走行要求 パワー Pdr *と現在の燃料電池スタック 30からの出力パワー Pfcとの差分 Δ Pを算出 し (ステップ S 150)、差分 Δ Ρが実質ゼロか否かを判定する (ステップ S 155)。ここで は、定常運転力 運転者が急加速を要求した直後を考えて 、るから差分 Δ Pは実質 ゼロでないと判定される。続いて、ステップ S 150で算出した仮アシスト量 Pasttmpが 差分 Δ Ρより大きいか否かを判定する (ステップ S160)。ここでは、定常運転から運転 者が急加速を要求した直後を考えて 、るから、差分 Δ Pは大きな値となっており仮ァ シスト量 Pasttmpは差分 Δ Ρ以下になっているとする。すると、ステップ S160では否 定的な判定がなされる。続 ヽてバッテリ 58の SOCゃバッテリ温度など力も現時点で アシスト可能な上限値であるアシスト量上限値 Pastmaxを算出し (ステップ S165)、 仮アシスト量 Pasttmpとアシスト量上限値 Pastmaxのうち小さい方をアシスト量 Past として設定する (ステップ SI 70)。その後、燃料電池スタック 30及びバッテリ 58のパヮ 一コントロールを実行する (ステップ S175)。具体的には、燃料電池スタック 30から F C要求パワー Pfc * ( =走行要求パワー Pdr * )が出力されるようにエアコンプレッサ 22の回転数を調節して空気量を増加又は減少させると同時に、燃料電池スタック 30 の動作点を DCZDCコンバータ 56によって移動させる。このとき、水素は水素ボンべ 12からレギユレータ 14を介して燃料電池スタック 30に供給される力 消費されずに 燃料ガス排出管 32に排出された水素は水素循環ポンプ 20によって再び燃料電池ス タック 30に供給され、消費された分は水素ボンべ 12から補給される。また、アシスト 量 Pastがバッテリ 58から DC/DCコンバータ 56やインバータ 54を介してモータ 52 に供給されるようにする。
[0048] ここで、燃料電池スタック 30の動作点の制御は、 FC要求パワー Pfc *が決定される と、図 6 (a)に示す電力—電流特性 (P— I特性)力 その FC要求パワー Pfc *を出力 するための電流 If c *を決定し、図 6 (b)に示す電流 電圧特性 (I V特性)からそ の電流 Ifc *に対応した電圧 Vfc *を決定し、その電圧 Vfc *を目標電圧として DC ZDCコンバータ 56で燃料電池スタック 30の出力電圧を制御することにより行う。これ により、燃料電池スタック 30の動作点すなわち出力パワーを制御することができる。 なお、 P— I特性と P—V特性は、温度など種々の要因によって変動するため定期的 に補正する。
[0049] さて、ステップ S110〜S175の処理が繰り返されるうちに、運転者によるアクセルぺ ダル 83の踏み込み量が安定してステップ S 130でアクセル開度変化率 Δ Accが閾 値 Aref以下と判定されたとき、電子制御ユニット 70の CPU72は過渡状態フラグ Fが 値 1か否かを判定する (ステップ S180)。いま、アクセル開度変化率 Δ Accが閾値 Ar efを超えていた状態力 初めて閾値 Aref以下になったときを考えると、過渡状態フラ グ Fは値 1であるためステップ S 180で肯定的な判定がなされ、その後ステップ S 145 〜ステップ S 170の処理が実行されてアシスト量 Pastが設定され、ステップ S 175で 燃料電池スタック 30及びバッテリ 58のパワーコントロールが実行される。これにより、 アクセル開度変化率 Δ Accが閾値 Aref以下になったあとも、ノ ッテリ 58が燃料電池 スタック 30をアシストすることによりバッテリ 58からの出力パワー Pbと燃料電池スタック 30からの出力パワー Pfcの合算値が走行要求パワー Pdr *に近づくように制御され る。
[0050] その後、ステップ S110〜S130, S180、 S145〜S175の処理力繰り返されるうち に、ステップ S 160で仮アシスト量 Pasttmpが差分 Δ Ρより大きいと判定されると、仮 アシスト量 Pasttmpの値を差分 Δ Ρに変更する(ステップ S185)。このように仮アシス ト量 Pasttmpの値を差分 Δ Pに変更するのは、アシスト量 Pastが差分 Δ Pを超えてし まうと、バッテリ 58の出力パワー Pbと燃料電池スタック 30の出力パワー Pfcとの合算 値が走行要求パワー Pdr*を超えてしまうからである。その後、ステップ S165, S170 を経てアシスト量 Pastを設定し、ステップ S 175で燃料電池スタック 30及びバッテリ 5 8のパワーコントロールが実行される。これにより、バッテリ 58の出力パワー Pbと燃料 電池スタック 30の出力パワー Pfcとの合算値が走行要求パワー Pdr *を超えないよう に制御される。
[0051] その後、ステップ S110〜S130, S180、 S145〜S160, S185, S165〜S175の 処理が繰り返されるうちに、ステップ S155で差分 Δ Ρが実質ゼロであると判定される と、アシスト量 Pastをゼロに設定すると共に過渡状態フラグ Fをゼロにリセットする (ス テツプ S 190)。差分 Δ Ρが実質ゼロということは、走行要求パワー Pdr *を燃料電池 スタック 30からの出力パワー Pfcだけで出力可能な状態になったということであるから 、アシスト量 Pastをゼロにしてバッテリ 58によるアシストを終了するのである。その後、 ステップ S175で燃料電池スタック 30のパワーコントロールが実行され、燃料電池スタ ック 30からモータ 58へ走行要求パワー Pdr *が出力される。
[0052] このような駆動制御ルーチンを実行しているときのバッテリ 58からの出力パワー Pb と燃料電池スタック 30からの出力パワー Pfcの合算値の推移について、図 7のグラフ に基づいて説明する。図 7はアクセル開度変化率 Δ Accが閾値 Arefを超えた時刻 t 0からの経過時間とバッテリ 58からの出力パワー Pbと燃料電池スタック 30からの出力 ノ ヮ一 Pfcの合算値との関係を表すグラフである。ここでは、説明の便宜上、仮アシス ト量 Pasttmpがアシスト量上限値 Pastmax以下であり、アシスト量 Pastは仮アシスト 量 Pasttmpと一致するものとして説明する。図 7において、時刻 t2は仮アシスト量 Pa sttmpが差分 Δ Pと一致した時点であり、時刻 t3は差分 Δ Pが実質ゼロになった時点 である。時刻 tO〜時刻 tlでは、アシスト量 Pastはアシスト量時間変化率に経過時間 を乗じて算出されるため時間の経過に伴い徐々に増大していく。時刻 tl〜時刻 t2で は、アシスト量 Pastは差分 Δ Ρとなるため、両パワー Pb, Pfcの合算値は走行要求パ ヮー Pdr *となる。時刻 t2以降は、差分 Δ Ρが実質ゼロとなるため、ノ ッテリ 58のァシ ストは行われず燃料電池スタック 30から出力されるパワー Pfcのみで走行要求パワー Pdr *を賄うことになる。つまり、当初力もバッテリ 58のアシストなしで燃料電池スタツ ク 30から出力されるパワー Pfcのみで対処するとすれば時刻 t2にならないと走行要 求パワー Pdr *が出力されないのに対して、ノ ッテリ 58でアシストしたことにより時刻 t 1の時点で走行要求パワー Pdr*が出力されるようになる。
[0053] 図 8は、図 7と同様、アクセル開度変化率 AAccが閾値 Arefを超えた時刻 tOからの 経過時間とバッテリ 58からの出力パワー Pbと燃料電池スタック 30からの出力パワー Pfcの合算値との関係を表すグラフであり、図 8 (a)はモードポジション MPがェコモー ドのとき、図 8 (b)はモードポジション MPが通常モードのとき、図 8 (c)はモードポジシ ヨン MPがスポーツモードのときを表す。これらのグラフを比較するとわ力るように、ノ ッテリアシスト分はスポーツモードが最も大きぐ次いで通常モードが大きぐェコモー ドカ S最も小さい。このため、パワー合算値が走行要求パワー Pdr *に到達する時刻は 、スポーツモードが最も早く(時刻 tl3)、次いで通常モードが早く(時刻 tl2)、ェコモ ードが最も遅い(時刻 ti l)。つまり、加速時のアクセルワークに対するレスポンスは、 スポーツモードが最も良ぐ次いで通常モード、ェコモードの順となる。一方、加速時 の燃費は、バッテリ 58とインバータ 54との間に DCZDCコンバータ 56が介在してい ること力らバッテリアシスト量が大きいほど DCZDCコンバータ 56での充放電効率の 悪ィ匕が燃費に不利に働くことになるため、ェコモードが最も良ぐ次いで通常モード、 スポーツモードの順となる。
[0054] 以上詳述したように、本実施形態の燃料電池自動車 10によれば、バッテリ 58による アシスト量(=アシスト量時間変化率 X経過時間)をモードポジション MPとアクセル 開度変化率 Δ Accに応じて適切に設定するため、従来に比べてドライバピリティや燃 費を改善することができる。具体的には、アクセル開度変化率 AAccが大きいときに は運転者は急加速を要求していると推定されるから、アシスト量を大きくして十分なカロ 速感が味わえるようにし、逆にアクセル開度変化率 AAccが小さいときには運転者は 緩加速を要求して 、ると推知されるから、アシスト量を小さくして加速を抑え燃費を向 上することができる。また、モードポジション MPがスポーツモードのときには運転者は 燃費よりも加速を優先したいという意思表示をしていると推定されるから他のモードの ときと比べてアシスト量を大きくして十分な加速感が得られるようにし、モードポジショ ン MPがェコモードのときには運転者は加速よりも燃費を優先したいという意思表示 をしていると推定される力 他のモードのときと比べてアシスト量を小さくして燃費が改 善されるようにする。
[0055] なお、本発明は上述した実施形態に何ら限定されることはなぐ本発明の技術的範 囲に属する限り種々の態様で実施し得ることはいうまでもない。
[0056] 例えば、上述した実施形態では走行モードスィッチ 90により選択可能なモードをス ポーッモード、通常モード、ェコモードの 3つとしたが、トルクの急激な増加を防止す るためにアシスト量を他のモードよりも小さくするスノーモードなどのほかのモードを加 えてもよい。なお、ェコモード時にはバッテリアシストを行わないようにしてもよい。
[0057] また、上述した実施形態では、閾値 AArefをどのモードでも同じ値とした力 ェコモ ード時の燃費優先マップ、通常モード時のノーマルマップ、スポーツモード時の加速 優先マップの順に閾値 AArefが小さくなるようにしてもよい。こうすれば、バッテリアシ ストを行う頻度はスポーツモード時が最も多くなりェコモード時が最も少なくなるため、 ェコモード時の燃費が一層向上する。
[0058] 更に、上述した実施形態では、車速を考慮せずにバッテリアシスト量を算出したが、 車速を考慮してバッテリアシスト量を算出してもよい。例えば図 9に示すように高車速 になるほどアシスト量時間変化率が大きくなるようにする。こうすれば、高車速のときで も低車速のときでもバッテリ 58によるモータ 52へのアシストトルクを略同等にすること ができるため、運転者の体感する加速感が車速によらず同等となり、ドライバピリティ が向上する。すなわち、モータ 52に付与されるパワーはモータ 52の回転数とトルクと の積で表されるから、アシスト量 (パワー)が同じでもモータ 52の回転数が高い高車 速のときにはモータ 52の回転数が低い低車速のときに比べてトルクが小さくなるが、 ここでは高車速のときには低車速のときに比べてアシスト量を大きくしているため結果 的に高車速のときも低車速のときもモータ 52のアシストトルクを略同等にすることがで きる。なお、上述した実施形態では、駆動軸 64とモータ 52の回転軸とが直結されて
V、るため車速 Vの代わりにモータ 52の回転数 Nmを用いてもよ!、。
[0059] 更にまた、上述した実施形態では、図 3の駆動制御ルーチンのステップ S120にお
V、て、走行モードスィッチ 90からのモードポジション MPに基づ!/、てバッテリアシスト 量マップを選択するようにしたが、その代わりに以下の(1)〜(3)の 、ずれかのように してバッテリアシスト量マップを選択してもよ!/、。
[0060] (1)運転者がシフトレバー 81を操作することによりスポーツモードのシフト位置と通 常モードのシフト位置とェコモードのシフト位置の中からシフト位置を選択できるよう にし、図 3の駆動制御ルーチンのステップ S120でシフトポジションセンサ 82からのシ フトポジション SPに基づいて上述した実施形態と同様にして各モードに対応するバッ テリアシスト量マップを選択するようにしてもよい。この場合も、上述した実施形態と同 様の効果が得られる。
[0061] (2)登り勾配 R Θの範囲を予め小勾配領域と中勾配領域と大勾配領域とに分け、 図 10 (a)〜(c)に示すように、小勾配領域のバッテリアシスト量マップを上述した実施 形態のェコモードのバッテリアシスト量マップとし、中勾配領域のバッテリアシスト量マ ップを上述した実施形態の通常モードのバッテリアシスト量マップとし、大勾配領域の ノ ッテリアシスト量マップを上述した実施形態のスポーツモードのバッテリアシスト量 マップとし、図 3の駆動制御ルーチンのステップ S120で勾配センサ 89からの登り勾 配 R Θに基づいていずれかのバッテリアシスト量マップを選択するようにしてもよい。 こうすれば、ノ ッテリアシスト量を登り勾配 R 0に応じて適切に設定できるため、従来 に比べてドライバピリティや燃費を改善することができる。すなわち、一般に登り勾配 R Θが大きいときには登り勾配 R Θが小さいときに比べて加速しにくいためアシスト量 を大きくすることにより、運転者の体感する加速度が登り勾配 R 0によらず略同等に することができる。なお、上述した実施形態と同様、ノ ッテリアシスト量はアクセル開度 変化率 AAccに応じても変わるため、運転者の加速意思に応じて十分な加速感が味 わえるようにしたり逆に加速を抑えて燃費を向上したりすることができる。
[0062] (3)図 3の駆動制御ルーチンのステップ S120で、車速 Vと駆動輪速度 Vwとの偏差 力も駆動輪 63, 63のスリップ率を検出し、該検出したスリップ率が予め定めた低 路 面のスリップ率範囲(例えば 20%以上)に入る場合には現在走行中の路面が低 路 面 (路面摩擦係数 μが小さ 、)と判定して図 11 (a)に示すようにバッテリアシスト量マ ップを上述した実施形態のェコモードのバッテリアシスト量マップとし、低 路面のス リップ率範囲に入らな 、場合には低 μ路面ではな 、 (路面摩擦係数 μが大き!/ヽ)と判 定して図 11 (b)に示すようにバッテリアシスト量マップを上述した実施形態の通常モ ードのバッテリアシスト量マップとしてもよい。こうすれば、ノ ッテリアシスト量を路面摩 擦係数 に応じて適切に設定できるため、従来に比べてドライバピリティや燃費を改 善することができる。すなわち、一般に路面摩擦係数 が小さいときには路面摩擦係 数 μが大き 、ときに比べてスリップしゃす 、ためアシスト量を小さくして急に大きなト ルクが力かるのを防止することにより、ドライバピリティが向上する。なお、上述した実 施形態と同様、ノ ッテリアシスト量はアクセル開度変化率 AAccに応じても変わるた め、スリップしにくい路面では十分な加速感が味わえるようにしたり逆に加速を抑えて 燃費を向上したりすることができるし、スリップしゃすい低 路面ではスリップの発生 を防止することができる。
[0063] そしてまた、上述した実施形態の図 3の駆動制御ルーチンの代わりに、図 12に示 す駆動制御ルーチンを採用してもよい。図 12の駆動制御ルーチンでは、図 3の駆動 制御ルーチンのステップ S110〜S 120の代わりにステップ S100〜S 108を採用した 以外は図 3の駆動制御ルーチンと同じであるため、ここではその相違点のみについ て説明する。但し、ここでは前提として、燃費を向上させるベぐ電子制御ユニット 70 の CPU72は、所定の停止条件が成立したとき(例えば FC要求パワー Pfc *が燃料 電池スタック 30の運転効率が悪くなるほど低くなつたとき)には燃料電池スタック 30へ の水素や空気の供給を停止して燃料電池スタック 30の運転を停止させ、その後所定 の再開条件が成立したとき (例えばバッテリ 58だけで燃料電池自動車 10に必要な電 力をまかなえなくなったとき)には水素や空気の供給を再開して燃料電池スタック 30 の運転を再開する制御を行っているものとする。 [0064] 図 12の駆動制御ルーチンが開始されると、電子制御ユニット 70の CPU72は、まず 、燃料電池スタック 30の運転を停止したあと運転を再開した時点力も予め定めた一 定期間内に入る力否かを判定する(ステップ S100)。ここで、燃料電池スタック 30は 運転停止状態力 運転を再開したあと暫くの間は通常時に比べて燃料電池の応答 性がよくないため、実験を繰り返すことによりその期間を求め、それを一定期間とした 。ステップ S100で現時点がその一定期間外のときには図 13 (a)に示す通常時のバ ッテリアシスト量マップを選択し (ステップ S102)、その一定期間内のときには図 13 (b )に示す停止後再開時のバッテリアシスト量マップつまり発電応答性低下時マップを 選択する (ステップ S 104)。つまり、運転再開時から一定期間は、通常時に比べてァ シスト量が大きくなるようにしている。ここで、通常時のバッテリアシスト量マップは上述 した実施形態の通常モードのマップと同じものとし、停止後再開時のバッテリアシスト 量マップは上述した実施形態のスポーツモードのマップと同じものとする。その後、制 御に必要なデータを入力し (ステップ S106)、入力したアクセル開度 Accと車速 Vと に基づいて車両に要求されるトルクとして駆動輪 63, 63に連結された駆動軸 64に出 力すべき走行要求トルク Tdr*と燃料電池スタック 30に要求される FC要求パワー Pf c *とを設定する (ステップ S108)。これ以降の処理は図 3の駆動制御ルーチンと同 じであるためその説明を省略する。こうすれば、燃料電池スタック 30の運転を停止し ている状態力 運転を再開したあとの一定期間は、通常時に比べて燃料電池スタツ ク 30の発電応答性がよくな 、ため、応答性のょ 、バッテリ 58によるアシスト量を増や すことにより、応答性を改善すると共にドライバピリティの悪ィ匕を抑制することができる 。なお、上述した実施形態と同様、ノ ッテリアシスト量はアクセル開度変化率 Δ Acc に応じても変わるため、運転者の加速意思に応じて十分な加速感が味わえるようにし たり逆に加速を抑えて燃費を向上したりすることができる。
[0065] 本発明は、 2005年 8月 4日に出願された日本国特願 2005— 226684号を優先権 主張の基礎としており、その内容のすべてが編入される。
産業上の利用可能性
[0066] 本発明は、乗用車やバス、トラックなどの自動車に関連する産業に利用可能である

Claims

請求の範囲
[1] 車輪を回転駆動する電動機と、
燃料ガスと酸化ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
運転者の設定した走行モードを検出する走行モード検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!/ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記走行モード検出手段によって検出され た走行モードに基づいて設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えた燃料電池自動車。
[2] 前記走行モード検出手段は、少なくとも燃費優先の走行モードと加速優先の走行 モードとを含む複数の走行モードの中から運転者の設定した走行モードを検出し、 前記目標値設定手段は、前記要求動力が増大したときに前記走行モード検出手 段によって検出された走行モードに基づいて前記蓄電手段から前記電動機へ出力 される電気工ネルギの目標値を設定する際、前記走行モードが加速優先の走行モ ードのときには燃費優先の走行モードのときよりも前記目標値が大きくなるようにする 請求項 1に記載の燃料電池自動車。
[3] 請求項 1又は 2に記載の燃料電池自動車であって、
運転者の加速意思に関連する加速意思パラメータを算出する加速意思パラメータ 算出手段を備え、
前記目標値設定手段は、前記要求動力が増大したときには前記走行モード検出 手段によって検出された走行モードと前記加速意思パラメータ算出手段によって算 出された加速意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力され る電気工ネルギの目標値を設定する、
燃料電池自動車。
[4] 請求項 3に記載の燃料電池自動車であって、
運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を走行モードごとに記憶する記憶手段を備え、 前記目標値設定手段は、前記要求動力が増大したときに前記走行モード検出手 段によって検出された走行モードに基づいて前記蓄電手段から前記電動機へ出力 される電気工ネルギの目標値を設定する際、前記走行モード検出手段によって検出 された走行モードに対応する前記関係を前記記憶手段から読み出し、該関係に前 記加速意思パラメータ算出手段によって算出された加速意思パラメータを照らして前 記蓄電手段から前記電動機へ出力される電気工ネルギの目標値を導出する、 燃料電池自動車。
[5] 前記走行モード検出手段は、走行モードスィッチ又はシフトポジションセンサである 請求項 1〜4のいずれかに記載の燃料電池自動車。
[6] 車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
車速を検出する車速検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記車速検出手段によって検出された車 速に基づ 、て設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えた燃料電池自動車。
[7] 前記目標値設定手段は、前記要求動力が増大したときに前記車速検出手段によ つて検出された車速に基づいて前記蓄電手段から前記電動機へ出力される電気工 ネルギの目標値を設定する際、前記車速が高車速域のときには低車速域のときょり も前記目標値が大きくなるようにする、
請求項 6に記載の燃料電池自動車。
[8] 請求項 6又は 7に記載の燃料電池自動車であって、
運転者の加速意思に関連する加速意思パラメータを算出する加速意思パラメータ 算出手段を備え、
前記目標値設定手段は、前記要求動力が増大したときには前記車速検出手段に よって検出された車速と前記加速意思パラメータ算出手段によって算出された加速 意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力される電気工ネル ギの目標値を設定する、
燃料電池自動車。
[9] 請求項 8に記載の燃料電池自動車であって、
運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を予め定めた車速域ごとに記憶する記憶手段を 備え、
前記目標値設定手段は、前記要求動力が増大したときに前記車速検出手段によ つて検出された車速に基づいて前記蓄電手段から前記電動機へ出力される電気工 ネルギの目標値を設定する際、前記車速検出手段によって検出された車速に対応 する前記関係を前記記憶手段から読み出し、該関係に前記加速意思パラメータ算出 手段によって算出された加速意思パラメータを照らして前記蓄電手段から前記電動 機へ出力される電気工ネルギの目標値を導出する、
燃料電池自動車。
[10] 前記車速検出手段は、前記車軸と前記電動機の回転軸とが直結されているときに は前記電動機の回転数を検出する、 請求項 6〜9に記載の燃料電池自動車。
[11] 車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
路面の登り勾配を検出する勾配検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあた
り、前記要求動力が増大したときには前記蓄電手段から前記電動機へ出力される電 気エネルギの目標値を前記勾配検出手段によって検出された登り勾配に基づいて 設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えた燃料電池自動車。
[12] 前記目標値設定手段は、前記要求動力が増大したときに前記勾配検出手段によ つて検出された登り勾配に基づいて前記蓄電手段から前記電動機へ出力される電 気エネルギの目標値を設定する際、前記登り勾配が大き 、ほど前記目標値が大きく なる傾向を示すように設定する、
請求項 11に記載の燃料電池自動車。
[13] 請求項 11又は 12に記載の燃料電池自動車であって、
運転者の加速意思に関連する加速意思パラメータを算出する加速意思パラメータ 算出手段を備え、
前記目標値設定手段は、前記要求動力が増大したときには前記勾配検出手段に よって検出された登り勾配と前記加速意思パラメータ算出手段によって算出された加 速意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力される電気エネ ルギの目標値を設定する、 燃料電池自動車。
[14] 請求項 13に記載の燃料電池自動車であって、
運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を予め定めた登り勾配領域ごとに記憶する記憶 手段を備え、
前記目標値設定手段は、前記要求動力が増大したときに前記勾配検出手段によ つて検出された登り勾配に基づいて前記蓄電手段から前記電動機へ出力される電 気エネルギの目標値を設定する際、前記勾配検出手段によって検出された登り勾配 に対応する前記関係を前記記憶手段から読み出し、該関係に前記加速意思パラメ ータ算出手段によって算出された加速意思パラメータを照らして前記蓄電手段から 前記電動機へ出力される電気工ネルギの目標値を導出する、
燃料電池自動車。
[15] 車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
路面摩擦係数を検出する摩擦係数検出手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ 、て前記燃料電池力 前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記要求動力が増大したときには前記蓄電手段力 前記電動 機へ出力される電気工ネルギの目標値を前記摩擦係数検出手段によって検出され た路面摩擦係数に基づいて設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えた燃料電池自動車。
[16] 前記目標値設定手段は、前記要求動力が増大したときに前記摩擦係数検出手段 によって検出された路面摩擦係数に基づいて前記蓄電手段から前記電動機へ出力 される電気工ネルギの目標値を設定する際、前記路面摩擦係数が小さいほど前記 目標値が小さくなる傾向を示すように設定する、
請求項 15に記載の燃料電池自動車。
[17] 請求項 15又は 16に記載の燃料電池自動車であって、
運転者の加速意思に関連する加速意思パラメータを算出する加速意思パラメータ 算出手段を備え、
前記目標値設定手段は、前記要求動力が増大したときには前記摩擦係数検出手 段によって検出された路面摩擦係数と前記加速意思パラメータ算出手段によって算 出された加速意思パラメータとに基づいて前記蓄電手段から前記電動機へ出力され る電気工ネルギの目標値を設定する、
燃料電池自動車。
[18] 請求項 17に記載の燃料電池自動車であって、
運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を予め定めた路面摩擦係数領域ごとに記憶す る記憶手段を備え、
前記目標値設定手段は、前記要求動力が増大したときに前記摩擦係数検出手段 によって検出された路面摩擦係数に基づいて前記蓄電手段から前記電動機へ出力 される電気工ネルギの目標値を設定する際、前記摩擦係数検出手段によって検出さ れた路面摩擦係数に対応する前記関係を前記記憶手段力 読み出し、該関係に前 記加速意思パラメータ算出手段によって算出された加速意思パラメータを照らして前 記蓄電手段から前記電動機へ出力される電気工ネルギの目標値を導出する、 燃料電池自動車。
[19] 車輪を回転駆動する電動機と、
燃料ガスと酸ィ匕ガスとの電気化学反応により電気工ネルギを発生する燃料電池と、 電気工ネルギの充放電が可能な蓄電手段と、
要求動力を算出する要求動力算出手段と、
前記要求動力に基づ!ヽて前記燃料電池から前記電動機へ出力される電気工ネル ギの目標値と前記蓄電手段から前記電動機へ出力される電気工ネルギの目標値と を設定するにあたり、前記燃料電池の運転を停止している状態力 該燃料電池の運 転を再開した直後は、通常時に比べて前記蓄電手段力 前記電動機へ出力される 電気工ネルギの目標値を大きく設定する目標値設定手段と、
前記燃料電池から前記電動機へ出力される電気工ネルギと前記蓄電手段から前 記電動機へ出力される電気工ネルギとが前記目標値設定手段によって設定された 各目標値に一致するよう前記燃料電池及び前記蓄電手段を制御する制御手段と、 を備えた燃料電池自動車。
[20] 前記燃料電池の運転を停止して!/ヽる状態から該燃料電池の運転を再開した直後と は、前記所定の燃料電池停止条件が成立して前記燃料電池の運転を停止したあと 所定の燃料電池再開条件が成立したことにより前記燃料電池の運転が再開された直 後である、
請求項 19に記載の燃料電池自動車。
[21] 請求項 19又は 20に記載の燃料電池自動車であって、
運転者の加速意思に関連する加速意思パラメータを算出する加速意思パラメータ 算出手段を備え、
前記目標値設定手段は、前記要求動力に基づ!、て前記燃料電池から前記電動機 へ出力される電気工ネルギの目標値と前記蓄電手段から前記電動機へ出力される 電気工ネルギの目標値とを設定するにあたり、通常時には前記加速意思パラメータ 算出手段によって算出された加速意思パラメータに基づいて前記蓄電手段から前記 電動機へ出力される電気工ネルギの目標値を設定し、前記燃料電池の運転を停止 している状態力 該燃料電池の運転を再開した直後には通常時に比べて前記蓄電 手段力 前記電動機へ出力される電気工ネルギの目標値を大きく設定する、 燃料電池自動車。
[22] 請求項 21に記載の燃料電池自動車であって、
運転者の加速意思に関連するパラメータと前記蓄電手段から前記電動機へ出力さ れる電気工ネルギの目標値との関係を通常時と燃料電池運転再開直後とに分けて 記憶する記憶手段を備え、
前記目標値設定手段は、前記燃料電池が通常時の運転状態か燃料電池運転再 開直後の運転状態かに応じて前記関係を前記記憶手段から読み出し、該関係に前 記加速意思パラメータ算出手段によって算出された加速意思パラメータを照らして前 記蓄電手段から前記電動機へ出力される電気工ネルギの目標値を導出する、 燃料電池自動車。
前記加速意思パラメータ算出手段は、運転者のアクセル踏込量の時間変化である アクセル開度変化率を前記加速意思パラメータとして算出する、
請求項 3, 4, 8, 9, 13, 14, 17, 18, 21又 ίま 22に記載の燃料電池自動車。
PCT/JP2006/314301 2005-08-04 2006-07-19 燃料電池自動車 WO2007015373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/988,392 US20090105895A1 (en) 2005-08-04 2006-07-19 Fuel Cell Vehicle
CN2006800290385A CN101238006B (zh) 2005-08-04 2006-07-19 燃料电池汽车
DE112006001987T DE112006001987T5 (de) 2005-08-04 2006-07-19 Brennstoffzellenfahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-226684 2005-08-04
JP2005226684A JP4353154B2 (ja) 2005-08-04 2005-08-04 燃料電池自動車

Publications (1)

Publication Number Publication Date
WO2007015373A1 true WO2007015373A1 (ja) 2007-02-08

Family

ID=37708653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314301 WO2007015373A1 (ja) 2005-08-04 2006-07-19 燃料電池自動車

Country Status (6)

Country Link
US (1) US20090105895A1 (ja)
JP (1) JP4353154B2 (ja)
KR (1) KR100960696B1 (ja)
CN (1) CN101238006B (ja)
DE (1) DE112006001987T5 (ja)
WO (1) WO2007015373A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077295B2 (ja) 2009-06-16 2012-11-21 トヨタ自動車株式会社 車両搭載用燃料電池システム
US8401761B2 (en) * 2009-07-09 2013-03-19 Ford Global Technologies, Llc Fuel indicator method
JP4975891B1 (ja) 2010-11-10 2012-07-11 本田技研工業株式会社 電動車両
JP5527259B2 (ja) * 2011-03-07 2014-06-18 三菱自動車工業株式会社 出力トルク制御装置
KR20120114604A (ko) * 2011-04-07 2012-10-17 (주)브이이엔에스 전기자동차 및 그 속도제어방법
JP5409702B2 (ja) * 2011-05-18 2014-02-05 本田技研工業株式会社 燃料電池車両
KR101220388B1 (ko) * 2011-08-11 2013-01-09 현대자동차주식회사 전기자동차의 이코노미 주행장치 및 그 제어방법
DE102011083453A1 (de) * 2011-09-26 2013-03-28 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren eines elektrischen Energie-Systems eines Kraftfahrzeugs
KR101864897B1 (ko) * 2011-11-21 2018-06-05 현대모비스 주식회사 연료전지차량의 무부하 출력증강 운영방법
WO2013077233A1 (ja) 2011-11-24 2013-05-30 本田技研工業株式会社 電動車両
US8914176B2 (en) * 2012-01-23 2014-12-16 Nanotek Instruments, Inc. Surface-mediated cell-powered vehicles and methods of operating same
JP5957951B2 (ja) * 2012-02-24 2016-07-27 トヨタ自動車株式会社 燃料電池システム
CN104619567B (zh) * 2012-09-19 2017-03-08 日产自动车株式会社 车辆控制装置及车辆的控制方法
JP5683627B2 (ja) 2013-03-22 2015-03-11 トヨタ自動車株式会社 電源制御装置
KR101550976B1 (ko) * 2013-10-11 2015-09-08 현대자동차주식회사 연료 전지 차량의 공기 공급 제어 방법
WO2015064641A1 (ja) * 2013-10-31 2015-05-07 日本電気株式会社 電力制御システム、電力制御方法および記録媒体
FR3016218B1 (fr) * 2014-01-03 2016-01-01 Commissariat Energie Atomique Procede, dispositif et systeme d'estimation de l'etat de sante d'une batterie d'un vehicule electrique ou hybride en condition d'utilisation, et procede de construction d'un modele pour une telle estimation
KR101637647B1 (ko) 2014-05-12 2016-07-08 현대자동차주식회사 연료전지 과급 방법
CN104218656B (zh) * 2014-08-25 2017-02-08 长乐圆明工业设计有限公司 一种双电源电动车电机控制装置
CN104210376B (zh) * 2014-08-25 2017-02-08 福建惠安县凯利登鞋业有限公司 一种电动车控制装置改进结构
CN104210377A (zh) * 2014-08-25 2014-12-17 长兴飞扬动力能源科技有限公司 一种电动车控制***
CN104210375B (zh) * 2014-08-25 2017-02-08 泉州五九五网络科技有限公司 一种电动车控制***改进结构
KR101646372B1 (ko) * 2014-11-03 2016-08-12 현대자동차주식회사 연료전지차량의 공기블로워 제어방법
US9776526B2 (en) 2014-11-14 2017-10-03 Toyota Jidosha Kabushiki Kaisha Fuel cell system, fuel cell vehicle, and method of controlling fuel cell system
JP6168033B2 (ja) * 2014-11-15 2017-07-26 トヨタ自動車株式会社 燃料電池システムを搭載した車両
JP6213498B2 (ja) * 2015-02-25 2017-10-18 トヨタ自動車株式会社 ハイブリッド車両
JP6213497B2 (ja) * 2015-02-25 2017-10-18 トヨタ自動車株式会社 ハイブリッド車両
DE102015116952A1 (de) * 2015-10-06 2017-04-06 Volkswagen Ag Verfahren zum Betreiben eines Brennstoffzellen-Fahrzeugs sowie Steuereinrichtung und Brennstoffzellen-Fahrzeug
JP6547957B2 (ja) * 2016-02-25 2019-07-24 トヨタ自動車株式会社 エアコンプレッサー装置
US10486543B2 (en) * 2016-10-25 2019-11-26 Toyota Jidosha Kabushiki Kaisha Voltage control device for fuel-cell vehicle
JP6336005B2 (ja) * 2016-11-04 2018-06-06 三菱電機株式会社 パワードライブユニットの制御装置および制御方法
JP2018137855A (ja) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 燃料電池車両
KR102507227B1 (ko) * 2017-11-27 2023-03-08 현대자동차주식회사 연료전지 차량의 전력 분배 시스템 및 방법
US10978903B2 (en) * 2018-01-15 2021-04-13 Ford Global Technologies, Llc Cell specific traction battery monitoring
CN108418424A (zh) * 2018-03-07 2018-08-17 北京亿华通科技股份有限公司 一种直流升压变换器控制方法
KR102530940B1 (ko) * 2018-04-23 2023-05-11 현대자동차주식회사 차량용 에너지저장장치 시스템
CN113165533B (zh) * 2018-12-13 2023-11-28 本田技研工业株式会社 控制装置、电力供给装置、作业机械、控制方法以及计算机可读取的记录介质
JP7043472B2 (ja) * 2019-09-30 2022-03-29 ダイハツ工業株式会社 電動車両用制御装置
CN110957505B (zh) * 2019-11-25 2021-05-04 中国第一汽车股份有限公司 一种多模式燃料电池***的控制方法
CN114572062B (zh) * 2020-12-01 2024-07-16 长城汽车股份有限公司 一种燃料电池功率爬升的控制方法、***与车辆
CN113193214B (zh) * 2021-05-12 2022-09-30 中国第一汽车股份有限公司 燃料电池***排水控制方法、燃料电池***及电动汽车
CN114117725A (zh) * 2021-09-30 2022-03-01 东风汽车集团股份有限公司 一种燃料电池汽车动力***选配方法和装置
CN115303087A (zh) * 2022-06-29 2022-11-08 山东交通学院 混合燃料电池汽车工况过渡阶段转速自抗扰控制***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178705A (ja) * 1996-12-19 1998-06-30 Toyota Autom Loom Works Ltd 電気自動車
JPH11346402A (ja) * 1998-06-02 1999-12-14 Mitsubishi Motors Corp ハイブリッド車両
JP2001268721A (ja) * 2000-03-17 2001-09-28 Honda Motor Co Ltd 燃料電池を搭載した車両の水素供給装置
JP2001325976A (ja) * 2000-05-15 2001-11-22 Toyota Motor Corp 燃料電池と充放電可能な蓄電部とを利用した電力の供給
JP2001339810A (ja) * 2000-05-30 2001-12-07 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003317762A (ja) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd 燃料電池システムの制御装置及び制御方法
JP2004147385A (ja) * 2002-10-22 2004-05-20 Toyota Motor Corp 車両用駆動制御装置
JP2005033953A (ja) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd 燃料電池車両の坂道発進時後退防止システム
JP2005190938A (ja) * 2003-12-26 2005-07-14 Toyota Motor Corp ハイブリッドシステム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5558588A (en) * 1995-02-16 1996-09-24 General Motors Corporation Two-mode, input-split, parallel, hybrid transmission
JP3520668B2 (ja) * 1996-06-11 2004-04-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP3685920B2 (ja) * 1997-09-14 2005-08-24 本田技研工業株式会社 ハイブリッド車用電動機制御装置
EP1055545B1 (en) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
JP2001339310A (ja) 2000-05-26 2001-12-07 Nippon Hoso Kyokai <Nhk> 符号化装置
JP4713758B2 (ja) * 2001-05-01 2011-06-29 本田技研工業株式会社 燃料電池発電システム及びその運転方法
DE10125106B4 (de) * 2001-05-23 2006-06-14 Daimlerchrysler Ag Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems und dessen Verwendung
JP3679070B2 (ja) * 2001-06-22 2005-08-03 本田技研工業株式会社 燃料電池自動車の制御装置
JP3784011B2 (ja) * 2001-07-18 2006-06-07 本田技研工業株式会社 電気車両用パワーコントロールユニット
US6551208B1 (en) * 2001-10-18 2003-04-22 General Motors Corporation Three-mode, compound-split, electrically-variable transmission
US6920865B2 (en) * 2002-01-29 2005-07-26 Daimlerchrysler Corporation Mechatronic vehicle powertrain control system
ES2394405T3 (es) * 2002-06-10 2013-01-31 Toyota Jidosha Kabushiki Kaisha, Vehículo de pila combustible
US20040034460A1 (en) * 2002-08-13 2004-02-19 Folkerts Charles Henry Powertrain control system
JP2004122972A (ja) * 2002-10-03 2004-04-22 Toyota Motor Corp 自動車
FR2845525B1 (fr) * 2002-10-03 2005-03-18 Renault Sa Procede de recuperation d'energie a bord d'un vehicule equipe d'une pile a combustible a reformeur
JP3945370B2 (ja) * 2002-10-25 2007-07-18 トヨタ自動車株式会社 自動車
JP4554151B2 (ja) * 2002-11-29 2010-09-29 本田技研工業株式会社 燃料電池車両の制御装置
JP2004222413A (ja) * 2003-01-15 2004-08-05 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2004248432A (ja) * 2003-02-14 2004-09-02 Toyota Motor Corp 駆動装置およびこれを備える自動車
JP3700061B2 (ja) * 2003-02-19 2005-09-28 トヨタ自動車株式会社 電気自動車および性能設定方法
US6868318B1 (en) * 2003-10-14 2005-03-15 General Motors Corporation Method for adjusting battery power limits in a hybrid electric vehicle to provide consistent launch characteristics
JP2005226684A (ja) 2004-02-10 2005-08-25 Calsonic Kansei Corp 自動変速機のセレクトアシスト装置
US20060145482A1 (en) * 2005-01-06 2006-07-06 Bob Roethler Vehicle powertrain that compensates for a prime mover having slow transient response
US7680575B2 (en) * 2005-01-07 2010-03-16 Gm Global Technology Operations, Inc. Selecting transmission ratio based on performance drivability and fuel economy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178705A (ja) * 1996-12-19 1998-06-30 Toyota Autom Loom Works Ltd 電気自動車
JPH11346402A (ja) * 1998-06-02 1999-12-14 Mitsubishi Motors Corp ハイブリッド車両
JP2001268721A (ja) * 2000-03-17 2001-09-28 Honda Motor Co Ltd 燃料電池を搭載した車両の水素供給装置
JP2001325976A (ja) * 2000-05-15 2001-11-22 Toyota Motor Corp 燃料電池と充放電可能な蓄電部とを利用した電力の供給
JP2001339810A (ja) * 2000-05-30 2001-12-07 Nissan Motor Co Ltd 燃料電池システムの制御装置
JP2003317762A (ja) * 2002-04-25 2003-11-07 Nissan Motor Co Ltd 燃料電池システムの制御装置及び制御方法
JP2004147385A (ja) * 2002-10-22 2004-05-20 Toyota Motor Corp 車両用駆動制御装置
JP2005033953A (ja) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd 燃料電池車両の坂道発進時後退防止システム
JP2005190938A (ja) * 2003-12-26 2005-07-14 Toyota Motor Corp ハイブリッドシステム

Also Published As

Publication number Publication date
US20090105895A1 (en) 2009-04-23
DE112006001987T5 (de) 2008-05-21
JP4353154B2 (ja) 2009-10-28
KR100960696B1 (ko) 2010-05-31
CN101238006A (zh) 2008-08-06
KR20080032648A (ko) 2008-04-15
CN101238006B (zh) 2011-06-01
JP2007043850A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4353154B2 (ja) 燃料電池自動車
US9034495B2 (en) Fuel cell system
US8795861B2 (en) Fuel cell system and vehicle equipped with the same
JP4613694B2 (ja) 燃料電池自動車及びその制御方法
JP3662872B2 (ja) 燃料電池電源装置
US8715876B2 (en) Fuel cell vehicle
JP5920525B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
US9070917B2 (en) Method of controlling fuel cell system
US8557461B2 (en) Fuel cell vehicle
JP5062512B2 (ja) 燃料電池システム
US8600599B2 (en) Fuel cell vehicle
US9786938B2 (en) Fuel cell system
JP4444343B2 (ja) 燃料電池車両
JP5505024B2 (ja) 燃料電池自動車及びその制御方法
EP2712015B1 (en) Fuel cell system
US20150125772A1 (en) Fuel cell system
JP2007128778A (ja) 燃料電池システム、その制御方法及びそれを搭載した車両
JP2017143020A (ja) 燃料電池システム及びその制御方法
JP4380676B2 (ja) 移動体
WO2007072693A1 (ja) 燃料電池システム及び移動体
JP3866187B2 (ja) 燃料電池自動車
JP2011142033A (ja) 電源装置および電源装置の制御方法
JP5825839B2 (ja) 燃料電池車両
JP4712895B2 (ja) 燃料電池車両
US20170294667A1 (en) Method of determining hydrogen deficiency and device for determining hydrogen deficiency

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029038.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 0722059

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070417

WWE Wipo information: entry into national phase

Ref document number: 11988392

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060019872

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005307

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112006001987

Country of ref document: DE

Date of ref document: 20080521

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06781268

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607