WO2007013445A1 - Method for processing metal member and apparatus for processing metal member - Google Patents

Method for processing metal member and apparatus for processing metal member Download PDF

Info

Publication number
WO2007013445A1
WO2007013445A1 PCT/JP2006/314653 JP2006314653W WO2007013445A1 WO 2007013445 A1 WO2007013445 A1 WO 2007013445A1 JP 2006314653 W JP2006314653 W JP 2006314653W WO 2007013445 A1 WO2007013445 A1 WO 2007013445A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
gas
processing
metal
electrode
Prior art date
Application number
PCT/JP2006/314653
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiro Furuya
Yasunori Kumagai
Katsuya Okumura
Original Assignee
Tokyo Electron Limited
Octec Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Octec Inc. filed Critical Tokyo Electron Limited
Priority to JP2007528473A priority Critical patent/JPWO2007013445A1/en
Publication of WO2007013445A1 publication Critical patent/WO2007013445A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75251Means for applying energy, e.g. heating means in the lower part of the bonding apparatus, e.g. in the apparatus chuck
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8101Cleaning the bump connector, e.g. oxide removal step, desmearing
    • H01L2224/81014Thermal cleaning, e.g. decomposition, sublimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Definitions

  • Metal member processing method and metal member processing apparatus are Metal member processing method and metal member processing apparatus
  • the present invention relates to a metal member processing method and a metal member processing apparatus performed before joining metal members.
  • the present invention has been made in view of the strong point, and an object of the present invention is to remove the oxide film without using hydrochloric acid before joining metal members such as electrodes.
  • the present invention for achieving the above object is a metal member processing method performed before joining metal members, in an atmosphere of a mixed gas of an inert gas and a hydrogen gas. The metal member is heated.
  • the hydrogen gas in the atmosphere reacts with the oxide film of the metal member, and the metal member The oxide film can be removed. Therefore, the oxide film can be removed without using hydrochloric acid, the installation space for the apparatus for removing the oxide film can be reduced, and corrosion of the metal member due to chlorine can be prevented.
  • the metal member may be heated in a low oxygen atmosphere having an oxygen concentration of 500 ppm (parts per million by volume) or less.
  • the metal member may be heated by heat at 150 ° C to 300 ° C.
  • the metal member may be formed of copper.
  • the atmosphere around the metal member may be made a low oxygen atmosphere by an inert gas not containing hydrogen gas. Also, the metal member may be heated at the same temperature as the temperature at which the metal members are joined together.
  • the present invention according to another aspect is an apparatus for processing a metal member before joining the metal members, and includes a processing container and a substrate on which the metal member is formed in the processing container.
  • a holding member to hold a gas supply unit for supplying an inert gas and hydrogen gas into the processing vessel, an exhaust unit for exhausting the gas in the processing vessel, and a heating member for heating the substrate held by the holding member And.
  • the metal member on the holding member can be heated by placing the inside of the processing container in an atmosphere of a mixed gas of an inert gas and hydrogen gas.
  • the hydrogen gas in the atmosphere reacts with the oxide film of the metal member, and the oxide film of the metal member can be removed. Therefore, the oxide film can be removed without using hydrochloric acid, the installation space of the apparatus can be reduced, and corrosion of the metal member due to chlorine can be prevented.
  • two holding members facing each other are provided in the processing container, and at least one holding member is moved to the other holding member side to each holding member.
  • a holding member driving unit that press-contacts the metal members of the held substrate may be further provided.
  • the installation space of the apparatus can be reduced and corrosion of the metal member can be prevented.
  • FIG. 1 is a longitudinal sectional view showing an outline of a configuration of a processing apparatus.
  • FIG. 2 is a flowchart of a processing process.
  • FIG. 3 A diagram showing the timing of oxygen concentration change, gas supply, and electrode temperature change in the processing vessel.
  • FIG. 4 is a longitudinal sectional view of an electrode for explaining a reaction of an oxide film during treatment.
  • FIG. 5 is a side view of the upper chuck and the lower chuck showing a state where the electrodes are in pressure contact with each other.
  • FIG. 1 is a longitudinal sectional view showing an outline of the configuration of a metal member processing apparatus 1 according to the present invention.
  • the processing apparatus 1 has a processing container 10 having a substantially cylindrical shape, for example.
  • the processing container 10 is configured to be hermetically closed, and a processing chamber S is formed inside the processing container 10.
  • the processing container 10 is made of aluminum, for example.
  • a lower chuck 13 as a holding member is provided via an O-ring 12 at the center bottom in the processing container 10. Note that a heat insulating material may be interposed between the bottom of the processing vessel 10 and the lower chuck 13.
  • the lower chuck 13 has a substantially disk shape with a thickness.
  • a chip T on which an electrode P as a metal member is formed can be placed on the upper surface of the lower chuck 13.
  • a suction port (not shown) communicating with the suction device 14 is formed on the upper surface of the lower chuck 13. The tip T can be sucked onto the lower chuck 13 by suction with this suction force.
  • the lower chuck 13 is made of, for example, stainless steel.
  • a heating member as a heating member that generates heat when power is supplied from the power source 15.
  • Data 16 is built in. With this heater 16, the chip T on the lower chuck 13 can be heated to a predetermined temperature.
  • An upper chuck 20 as a holding member is provided at a position facing the lower chuck 13.
  • the upper chuck 20 is supported by a rod 22 that moves up and down by, for example, an air cylinder 21 as a holding member driving unit.
  • the upper chuck 20 has a substantially disk shape with a large thickness.
  • a suction port (not shown) communicating with the suction device 23 is formed on the lower surface of the upper chuck 20. By suction from this suction port, the chip T can be sucked and held on the lower surface of the upper chuck 20.
  • the upper chuck 20 is made of stainless steel, for example.
  • a heater 25 is built in as a heating member that generates heat by power supply from the power supply 24. With this heater 25 mm, the chip T on the lower surface of the upper chuck 20 can be heated to a predetermined temperature.
  • the air cylinder 21 is installed on the ceiling surface of the central portion of the processing container 10, for example.
  • the bottom 22 of the air cylinder 21 also extends through the ceiling surface of the processing vessel 10 to the center of the processing chamber S.
  • An upper chuck 20 is supported at the lower end of the rod 22.
  • an O-ring 28 and a bellows 29 are arranged in order from the bottom along the axis of the rod 22.
  • the upper surface of the bellows 29 is connected to the ceiling surface of the processing container 10 via an O-ring 30. Due to the construction, the space around the rod 22 communicating with the atmosphere outside the processing vessel 10 and the space inside the processing chamber S are blocked, and the airtightness inside the processing vessel 10 is secured.
  • a gas supply pipe 40 is connected to the side wall surface of the processing vessel 10.
  • the gas supply pipe 40 branches in the middle and is connected to, for example, two gas supply sources 41a and 41b.
  • the gas supply source 41a is filled with an inert gas such as nitrogen gas
  • the gas supply source 41b is filled with hydrogen gas.
  • a mass flow controller 42 is provided in each branch pipe of the gas supply pipe 40 leading to each gas supply source 41a, 41b.
  • the gas sources 41a and 41b can be mixed with a predetermined flow rate and supplied to the processing chamber S.
  • the gas supply device is configured by the gas supply pipe 40, the gas supply sources 4la and 41b, and the mass flow controller 42.
  • An exhaust pipe 50 as an exhaust unit is connected to the bottom of the processing container 10.
  • the exhaust pipe 50 is connected to an exhaust device 51 having a vacuum pump or the like.
  • the exhaust pipe 50 is connected to a position on the opposite side across the upper chuck 20 and the lower chuck 13 as viewed from the connection position of the gas supply pipe 40, for example. As a result, the gas supplied from the gas supply pipe 40 can be exhausted from the exhaust pipe 50 through the periphery of the upper chuck 20 and the lower chuck 13.
  • a transfer port 60 for chips T is formed on the side wall surface of the processing container 10, and a shirter 61 is provided in the transfer port 60. By closing the shirt 61 during processing, the inside of the processing container 10 can be made airtight.
  • FIG. 2 is a flowchart of a powerful process.
  • FIG. 3 is a graph showing the timing of oxygen concentration change, gas supply, and electrode temperature change in the processing container 10.
  • the atmosphere in the processing chamber S is replaced with a nitrogen gas atmosphere that does not contain hydrogen gas, and the processing chamber S has, for example, a low oxygen atmosphere with an oxygen concentration of 500 ppm or less, more preferably 50 ppm or less (see FIG. 2).
  • Process Q2 the inside of the processing chamber S is maintained at a slight positive pressure with respect to the outside of the processing container 10.
  • the replacement with the nitrogen gas atmosphere may be performed, for example, by alternately introducing nitrogen gas into the processing chamber S and exhausting the atmosphere in the processing chamber S (cycle purge)! .
  • a mixed gas of nitrogen gas and hydrogen gas is then supplied from the gas supply pipe 40 (step Q3 in FIG. 2).
  • the mixing ratio of nitrogen gas and hydrogen gas is adjusted to 97% for nitrogen gas and 3% for hydrogen gas by volume ratio.
  • the mixing ratio of hydrogen gas is preferably 1% or more and 3% or less of the whole.
  • the heater 25 of the upper chuck 20 and the heater 16 of the lower chuck 13 generate heat when the mixed gas is introduced into the processing chamber S or after a predetermined time has elapsed, and the upper chuck 20 and the lower chuck 13 are heated.
  • the electrodes Pl and ⁇ 2 of each chip Tl and ⁇ 2 are heated from room temperature to about 150 ° C to 300 ° C.
  • the electrodes Pl and P2 are heated in a mixed gas atmosphere containing hydrogen gas (step Q4 in FIG. 2).
  • the oxide film A adhering to the surfaces of the electrodes Pl and P2 is reduced by hydrogen, and the oxide film A on the surfaces of the electrodes Pl and P2 is removed.
  • the electrodes Pl and P2 are made of copper, CuO (acid oxide film) + H ⁇ Cu + HO
  • the electrodes Pl and P2 are maintained in a mixed gas atmosphere for a predetermined time, for example, about 5 minutes, and the oxide film A is sufficiently removed, the amount of power supplied to the heaters 16 and 25 is reduced.
  • the temperature of Tl, ⁇ 2 electrode Pl, ⁇ 2 is lowered to about 120 ° C (process Q5 in Fig. 2).
  • the upper chuck 20 is lowered, and the upper and lower electrodes Pl and P2 are pressed.
  • the electrode P1 and the electrode P2 are joined (step Q6 in FIG. 2).
  • step Q5 and step Q6 the supply of the mixed gas containing hydrogen gas into the processing vessel 10 is continued, and the inside of the processing vessel 10 is maintained in a low oxygen atmosphere. Thereafter, the chucking of the chip T1 by the upper chuck 20 is released, and the upper chuck 20 is lifted while the upper chip T1 remains on the lower chuck 13. Thereafter, for example, the amount of power supplied to the heaters 16 and 25 is reduced, and the temperature of the electrodes Pl and P2 is lowered to about 100 ° C., which is higher than the normal temperature (step Q7 in FIG. 2). At this time, only nitrogen gas is supplied into the processing container 10 and maintained in a low oxygen atmosphere containing no hydrogen gas. Thereafter, the supply of nitrogen gas is stopped, and the chips Tl and ⁇ 2 are unloaded from the transfer port 60 (step Q8 in FIG. 2), and the series of processing ends.
  • the oxide film A on the surfaces of the electrodes Pl and P2 can be removed using hydrogen gas. Accordingly, there is no need for a plurality of hydrochloric acid washing tanks that do not require the use of hydrochloric acid as in the prior art, so the installation space for the apparatus can be reduced. Moreover, since chlorine does not remain on the electrodes Pl and P2, the corrosion of the electrodes Pl and P2 can be prevented. Furthermore, since the removal of the oxide film A and the joining of the electrodes Pl and P2 can be continuously performed in the processing apparatus 1, the processing time can be greatly shortened.
  • the oxygen concentration in the low oxygen atmosphere is more preferably 50 ppm (parts per million by volume) or less.
  • the heating temperature of the electrodes Pl and P2 at the time of removing the oxide film A is more preferably 200 ° C. or less.
  • the heating temperature in the step of removing the oxide film A of the electrodes Pl and P2 is different from the heating temperature in the step of bonding the electrodes Pl and P2. Removal of the oxide film A And the electrodes Pl and P2 may be joined at the same temperature. As a result, the temperature of the electrodes Pl and P2 does not change during the transition to the joining process of the electrodes Pl and P2 due to the removal process of the oxide film A. Therefore, the removal of the oxide film A from the electrodes Pl and P2 and the joining of the electrodes Pl and P2 can be performed stably and appropriately. In addition, since the time for changing the heating temperature is unnecessary, the processing time can be greatly shortened.
  • the inside of the processing vessel 10 may be maintained in a low oxygen atmosphere of nitrogen gas not containing hydrogen gas.
  • an inert gas and a hydrogen gas are sealed in separate gas supply sources 41a and 41b, mixed in the gas supply pipe 40, and mixed into the processing vessel 10.
  • a mixed gas of inert gas and hydrogen gas having a predetermined volume ratio is sealed in one gas supply source in advance, and the gas supply source and the gas supply pipe enter the processing vessel 10. Supply mixed gas.
  • the chips Tl and ⁇ 2 may be substrates before being separated.
  • the electrode is limited to copper. However, it may be formed of other metals such as tin, gold, and silver. Further, the present invention can also be applied to processing of metal members other than electrodes.
  • the present invention is useful when removing the oxide film on the surface of the metal member before joining the metal members.

Abstract

Before bonding electrodes together, oxide films on the electrode surfaces are removed without using hydrochloric acid. Two chips respectively provided with an electrode are carried into a processing chamber, and respectively sucked onto an upper chuck and a lower chuck. Then, a nitrogen gas is introduced into the processing chamber, thereby creating a low oxygen atmosphere. After that, a hydrogen gas and a nitrogen gas are introduced into the processing chamber and each electrode is heated in the mixed gas atmosphere. Consequently, the oxide film on the surface of each electrode is reduced with hydrogen, and thus the oxide film is removed from the electrode surface.

Description

明 細 書  Specification
金属部材の処理方法及び金属部材の処理装置  Metal member processing method and metal member processing apparatus
技術分野  Technical field
[0001] 本発明は、金属部材同士を接合する前に行われる金属部材の処理方法と、金属部 材の処理装置に関する。  The present invention relates to a metal member processing method and a metal member processing apparatus performed before joining metal members.
背景技術  Background art
[0002] 例えば半導体デバイスの製造プロセスにおける組立工程にぉ 、ては、例えば異な るチップに形成された電極同士を合せて接合する処理が行われて 、る。しかしながら 、この接合前の電極の表面には、金属の酸化により酸化膜が形成されており、そのま までは接合が十分にできない。そこで、接合する前に電極表面の酸化膜を取り除く 必要があった。  For example, in an assembling process in a semiconductor device manufacturing process, for example, a process of joining together electrodes formed on different chips is performed. However, an oxide film is formed on the surface of the electrode before bonding by metal oxidation, and bonding cannot be sufficiently performed until that time. Therefore, it was necessary to remove the oxide film on the electrode surface before bonding.
[0003] このため、電極を接合する前に、例えば貯留された塩酸内にチップを浸漬して、電 極表面の酸ィ匕膜を除去して 、た。  [0003] For this reason, before joining the electrodes, for example, the tip was immersed in stored hydrochloric acid to remove the acid film on the electrode surface.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] し力しながら、上述の酸化膜の除去方法では、電極が塩酸内に浸されるので、その 後数回にわたり純水で電極を洗浄する必要がある。このため、電極を塩酸に浸す装 置に加えて、複数の洗浄槽が必要になり、装置を設置するためのスペースが広くなつ ていた。また、電極を純水で洗浄しても、電極に少量の塩素が残留することがあり、こ の塩素によって電極が腐食されることがあった。  However, in the above-described method for removing an oxide film, since the electrode is immersed in hydrochloric acid, it is necessary to wash the electrode with pure water several times thereafter. For this reason, in addition to a device for immersing the electrode in hydrochloric acid, a plurality of cleaning tanks are required, and the space for installing the device has become wide. Further, even when the electrode was washed with pure water, a small amount of chlorine might remain on the electrode, and the electrode could be corroded by this chlorine.
[0005] 本発明は、力かる点に鑑みてなされたものであり、電極などの金属部材同士を接合 する前に、塩酸を用いずに酸ィ匕膜を除去することをその目的とする。  [0005] The present invention has been made in view of the strong point, and an object of the present invention is to remove the oxide film without using hydrochloric acid before joining metal members such as electrodes.
課題を解決するための手段  Means for solving the problem
[0006] 上記目的を達成するための本発明は、金属部材同士を接合する前に行われる金 属部材の処理方法であって、不活性ガスと水素ガスとの混合ガスの雰囲気内におい て、金属部材を加熱することを特徴とする。 [0006] The present invention for achieving the above object is a metal member processing method performed before joining metal members, in an atmosphere of a mixed gas of an inert gas and a hydrogen gas. The metal member is heated.
[0007] 本発明によれば、雰囲気中の水素ガスと金属部材の酸化膜が反応し、金属部材の 酸ィ匕膜を除去することができる。したがって、塩酸を用いずに酸化膜を除去すること ができ、酸ィ匕膜除去のための装置の設置スペースを低減し、塩素による金属部材の 腐食を防止できる。 According to the present invention, the hydrogen gas in the atmosphere reacts with the oxide film of the metal member, and the metal member The oxide film can be removed. Therefore, the oxide film can be removed without using hydrochloric acid, the installation space for the apparatus for removing the oxide film can be reduced, and corrosion of the metal member due to chlorine can be prevented.
[0008] 前記金属部材の処理方法にお!、て、酸素濃度が 500ppm (体積百万分率)以下の 低酸素雰囲気内で金属部材を加熱してもよい。また、 150°C〜300°Cで金属部材を カロ熱してもよい。さらに前記金属部材は、銅により形成されていてもよい。  [0008] In the method for treating a metal member, the metal member may be heated in a low oxygen atmosphere having an oxygen concentration of 500 ppm (parts per million by volume) or less. Alternatively, the metal member may be heated by heat at 150 ° C to 300 ° C. Furthermore, the metal member may be formed of copper.
[0009] 前記金属部材を加熱する前に、水素ガスを含まない不活性ガスにより前記金属部 材の周辺雰囲気を低酸素雰囲気にしてもよい。また、金属部材同士を接合する温度 と同じ温度で、前記金属部材を加熱するようにしてもょ ヽ。  [0009] Prior to heating the metal member, the atmosphere around the metal member may be made a low oxygen atmosphere by an inert gas not containing hydrogen gas. Also, the metal member may be heated at the same temperature as the temperature at which the metal members are joined together.
[0010] 別の観点による本発明は、金属部材同士を接合する前に金属部材を処理する装 置であって、処理容器と、前記処理容器内において、前記金属部材が形成されてい る基板を保持する保持部材と、前記処理容器内に不活性ガスと水素ガスを供給する ガス供給部と、処理容器内のガスを排気する排気部と、前記保持部材に保持された 基板を加熱する加熱部材と、を備えたことを特徴とする。  The present invention according to another aspect is an apparatus for processing a metal member before joining the metal members, and includes a processing container and a substrate on which the metal member is formed in the processing container. A holding member to hold, a gas supply unit for supplying an inert gas and hydrogen gas into the processing vessel, an exhaust unit for exhausting the gas in the processing vessel, and a heating member for heating the substrate held by the holding member And.
[0011] 本発明によれば、不活性ガスと水素ガスとの混合ガスの雰囲気に処理容器内をし て、保持部材上の金属部材を加熱することができる。これにより、雰囲気中の水素ガ スと金属部材の酸化膜が反応し、金属部材の酸ィ匕膜を除去することができる。したが つて、塩酸を用いずに酸ィ匕膜を除去することができ、装置の設置スペースを低減し、 塩素による金属部材の腐食を防止できる。  [0011] According to the present invention, the metal member on the holding member can be heated by placing the inside of the processing container in an atmosphere of a mixed gas of an inert gas and hydrogen gas. Thereby, the hydrogen gas in the atmosphere reacts with the oxide film of the metal member, and the oxide film of the metal member can be removed. Therefore, the oxide film can be removed without using hydrochloric acid, the installation space of the apparatus can be reduced, and corrosion of the metal member due to chlorine can be prevented.
[0012] 前記金属部材の処理装置において、処理容器内には、互いに対向する 2つ保持 部材が設けられ、少なくとも一方の保持部材を他方の保持部材側に移動させて、各 々の保持部材に保持された基板の金属部材同士を圧接する保持部材駆動部を、さ らに備えていてもよい。  [0012] In the metal member processing apparatus, two holding members facing each other are provided in the processing container, and at least one holding member is moved to the other holding member side to each holding member. A holding member driving unit that press-contacts the metal members of the held substrate may be further provided.
発明の効果  The invention's effect
[0013] 本発明によれば、塩酸を用いずに金属部材の酸ィ匕膜を除去できるので、装置の設 置スペースの低減と、金属部材の腐食の防止が図られる。  [0013] According to the present invention, since the acid film of the metal member can be removed without using hydrochloric acid, the installation space of the apparatus can be reduced and corrosion of the metal member can be prevented.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]処理装置の構成の概略を示す縦断面図である。 [図 2]処理プロセスのフローチャートである。 FIG. 1 is a longitudinal sectional view showing an outline of a configuration of a processing apparatus. FIG. 2 is a flowchart of a processing process.
[図 3]処理容器内の酸素濃度変化、ガス供給、電極温度変化のタイミングを示すダラ フである。  [FIG. 3] A diagram showing the timing of oxygen concentration change, gas supply, and electrode temperature change in the processing vessel.
[図 4]処理時の酸ィ匕膜の反応を説明するための電極の縦断面図である。  FIG. 4 is a longitudinal sectional view of an electrode for explaining a reaction of an oxide film during treatment.
[図 5]電極同士が圧接された状態を示す上部チャックと下部チャックの側面図である 符号の説明  FIG. 5 is a side view of the upper chuck and the lower chuck showing a state where the electrodes are in pressure contact with each other.
[0015] 1 処理装置 [0015] 1 processing device
10 処理容器  10 Processing container
13 下部チャック  13 Lower chuck
20 上部チャック  20 Upper chuck
T チップ  T tip
P 電極  P electrode
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の好ましい実施の形態について説明する。図 1は、本発明にかかる金 属部材の処理装置 1の構成の概略を示す縦断面図である。  [0016] Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 is a longitudinal sectional view showing an outline of the configuration of a metal member processing apparatus 1 according to the present invention.
[0017] 処理装置 1は、例えば略円筒形状の処理容器 10を有している。処理容器 10は、気 密に閉鎖可能に構成され、処理容器 10の内部には、処理室 Sが形成されている。処 理容器 10は、例えばアルミニウムにより形成されている。 The processing apparatus 1 has a processing container 10 having a substantially cylindrical shape, for example. The processing container 10 is configured to be hermetically closed, and a processing chamber S is formed inside the processing container 10. The processing container 10 is made of aluminum, for example.
[0018] 処理容器 10内の中央の底部には、 Oリング 12を介して保持部材としての下部チヤ ック 13が設けられている。なお、処理容器 10の底部と下部チャック 13との間に断熱 材が介在されていてもよい。 A lower chuck 13 as a holding member is provided via an O-ring 12 at the center bottom in the processing container 10. Note that a heat insulating material may be interposed between the bottom of the processing vessel 10 and the lower chuck 13.
[0019] 下部チャック 13は、厚みのある略円盤形状を有している。下部チャック 13の上面に は、金属部材としての電極 Pが形成されたチップ Tを載置できる。下部チャック 13の 上面には、吸引装置 14に連通する図示しない吸引口が形成されている。この吸引口 力もの吸引により、チップ Tを下部チャック 13上に吸着できる。下部チャック 13は、例 えばステンレス鋼により形成されている。 The lower chuck 13 has a substantially disk shape with a thickness. A chip T on which an electrode P as a metal member is formed can be placed on the upper surface of the lower chuck 13. A suction port (not shown) communicating with the suction device 14 is formed on the upper surface of the lower chuck 13. The tip T can be sucked onto the lower chuck 13 by suction with this suction force. The lower chuck 13 is made of, for example, stainless steel.
[0020] 下部チャック 13の内部には、電源 15からの給電により発熱する加熱部材としてのヒ ータ 16が内蔵されている。このヒータ 16により、下部チャック 13上のチップ Tを所定 の温度に加熱できる。 [0020] Inside the lower chuck 13 is a heating member as a heating member that generates heat when power is supplied from the power source 15. Data 16 is built in. With this heater 16, the chip T on the lower chuck 13 can be heated to a predetermined temperature.
[0021] 下部チャック 13に対向する位置には、保持部材としての上部チャック 20が設けられ ている。上部チャック 20は、例えば保持部材駆動部としてのエアシリンダ 21により上 下動するロッド 22により支持されている。  An upper chuck 20 as a holding member is provided at a position facing the lower chuck 13. The upper chuck 20 is supported by a rod 22 that moves up and down by, for example, an air cylinder 21 as a holding member driving unit.
[0022] 上部チャック 20は、厚みのある略円盤形状を有している。上部チャック 20の下面に は、吸引装置 23に連通する図示しない吸引口が形成されている。この吸引口からの 吸引により、チップ Tを上部チャック 20の下面に吸着保持できる。上部チャック 20は、 例えばステンレス鋼により形成されている。  [0022] The upper chuck 20 has a substantially disk shape with a large thickness. A suction port (not shown) communicating with the suction device 23 is formed on the lower surface of the upper chuck 20. By suction from this suction port, the chip T can be sucked and held on the lower surface of the upper chuck 20. The upper chuck 20 is made of stainless steel, for example.
[0023] 上部チャック 20の内部には、電源 24からの給電により発熱する加熱部材としてのヒ ータ 25が内蔵されている。このヒータ 25〖こより、上部チャック 20の下面のチップ Tを 所定の温度に加熱できる。  Inside the upper chuck 20, a heater 25 is built in as a heating member that generates heat by power supply from the power supply 24. With this heater 25 mm, the chip T on the lower surface of the upper chuck 20 can be heated to a predetermined temperature.
[0024] エアシリンダ 21は、例えば処理容器 10の中央部の天井面上に設置されている。口 ッド 22は、エアシリンダ 21の下面力も処理容器 10の天井面を貫通し、処理室 S内の 中央部まで延伸している。ロッド 22の下端部に、上部チャック 20が支持されている。  The air cylinder 21 is installed on the ceiling surface of the central portion of the processing container 10, for example. The bottom 22 of the air cylinder 21 also extends through the ceiling surface of the processing vessel 10 to the center of the processing chamber S. An upper chuck 20 is supported at the lower end of the rod 22.
[0025] 上部チャック 20上には、ロッド 22の軸に沿って、 Oリング 28とべローズ 29が下から 順に配置されている。ベローズ 29の上面は、 Oリング 30を介して処理容器 10の天井 面に接続されている。カゝかる構成により、処理容器 10の外部の雰囲気に通じている ロッド 22の周辺空間と、処理室 S内の空間が遮断され、処理容器 10内の気密性が確 保される。  On the upper chuck 20, an O-ring 28 and a bellows 29 are arranged in order from the bottom along the axis of the rod 22. The upper surface of the bellows 29 is connected to the ceiling surface of the processing container 10 via an O-ring 30. Due to the construction, the space around the rod 22 communicating with the atmosphere outside the processing vessel 10 and the space inside the processing chamber S are blocked, and the airtightness inside the processing vessel 10 is secured.
[0026] 処理容器 10の側壁面には、ガス供給管 40が接続されて 、る。ガス供給管 40は、 途中で分岐して、例えば 2つのガス供給源 41a、 41bに接続されている。本実施の形 態においては、ガス供給源 41aには、不活性ガス、例えば窒素ガスが封入されており 、ガス供給源 41bには、水素ガスが封入されている。各ガス供給源 41a、 41bに通じ るガス供給管 40の各分岐管には、それぞれマスフローコントローラ 42が設けられて いる。これにより、各ガス供給源 41a、 41b力ものガスを所定の流量比で混合して処 理室 Sに供給できる。なお、本実施の形態においては、ガス供給管 40、ガス供給源 4 la、 41b及びマスフローコントローラ 42によりガス供給装置が構成されている。 [0027] 処理容器 10の底部には、排気部としての排気管 50が接続されている。排気管 50 は、真空ポンプなどを備えた排気装置 51に接続されている。排気管 50は、例えばガ ス供給管 40の接続位置から見て、上部チャック 20及び下部チャック 13を挟んだ反 対側の位置に接続されている。これにより、ガス供給管 40から供給されたガスを、上 部チャック 20及び下部チャック 13の周辺を通過させて排気管 50から排気できる。 A gas supply pipe 40 is connected to the side wall surface of the processing vessel 10. The gas supply pipe 40 branches in the middle and is connected to, for example, two gas supply sources 41a and 41b. In the present embodiment, the gas supply source 41a is filled with an inert gas such as nitrogen gas, and the gas supply source 41b is filled with hydrogen gas. A mass flow controller 42 is provided in each branch pipe of the gas supply pipe 40 leading to each gas supply source 41a, 41b. As a result, the gas sources 41a and 41b can be mixed with a predetermined flow rate and supplied to the processing chamber S. In the present embodiment, the gas supply device is configured by the gas supply pipe 40, the gas supply sources 4la and 41b, and the mass flow controller 42. An exhaust pipe 50 as an exhaust unit is connected to the bottom of the processing container 10. The exhaust pipe 50 is connected to an exhaust device 51 having a vacuum pump or the like. The exhaust pipe 50 is connected to a position on the opposite side across the upper chuck 20 and the lower chuck 13 as viewed from the connection position of the gas supply pipe 40, for example. As a result, the gas supplied from the gas supply pipe 40 can be exhausted from the exhaust pipe 50 through the periphery of the upper chuck 20 and the lower chuck 13.
[0028] 処理容器 10の側壁面には、チップ Tの搬送口 60が形成され、その搬送口 60には 、シャツタ 61が設けられている。処理時にシャツタ 61を閉鎖することによって、処理容 器 10内を気密にできる。  A transfer port 60 for chips T is formed on the side wall surface of the processing container 10, and a shirter 61 is provided in the transfer port 60. By closing the shirt 61 during processing, the inside of the processing container 10 can be made airtight.
[0029] 次に、以上のように構成された処理装置 1で行われる電極 Pに対する処理プロセス について説明する。図 2は、力かる処理プロセスのフローチャートである。図 3は、処 理容器 10内の酸素濃度変化、ガス供給、電極温度変化のタイミングを示すグラフで ある。  Next, a processing process for the electrode P performed in the processing apparatus 1 configured as described above will be described. FIG. 2 is a flowchart of a powerful process. FIG. 3 is a graph showing the timing of oxygen concentration change, gas supply, and electrode temperature change in the processing container 10.
[0030] 先ず、搬送口 60から、異なる 2つのチップ Tl、 Τ2が処理容器 10内に搬入され、図 1に示すように例えばチップ T1が上部チャック 20に吸着保持され、チップ Τ2が下部 チャック 13に吸着保持される(図 2の工程 Ql)。これにより、チップ T1の電極 P1とチ ップ T2の電極 P2が互いに対向配置される。このとき上部チャック 20と下部チャック 1 3は、加熱されておらず、常温に維持されている。次に、シャツタ 61が閉じられ、処理 室 Sの密閉された後、ガス供給管 40から窒素ガスのみが導入され、処理室 S内の雰 囲気は排気管 50から排気される。これにより、処理室 S内の雰囲気が水素ガスを含ま ない窒素ガス雰囲気に置換され、処理室 S内が例えば酸素濃度が 500ppm以下、よ り好ましくは 50ppm以下の低酸素雰囲気になる(図 2の工程 Q2)。また、処理室 S内 は、処理容器 10の外部に対して僅か〖こ陽圧に維持される。なお、この窒素ガス雰囲 気への置換は、例えば処理室 S内への窒素ガスの導入と処理室 S内の雰囲気の排 気を交互に繰り返す (サイクルパージ)ことにより行ってもよ!、。  [0030] First, two different chips Tl and Τ2 are carried into the processing container 10 from the transfer port 60, and for example, the chip T1 is sucked and held on the upper chuck 20 as shown in FIG. (Step Ql in Fig. 2). As a result, the electrode P1 of the chip T1 and the electrode P2 of the chip T2 are arranged to face each other. At this time, the upper chuck 20 and the lower chuck 13 are not heated and are maintained at room temperature. Next, after the shirter 61 is closed and the processing chamber S is sealed, only nitrogen gas is introduced from the gas supply pipe 40, and the atmosphere in the processing chamber S is exhausted from the exhaust pipe 50. As a result, the atmosphere in the processing chamber S is replaced with a nitrogen gas atmosphere that does not contain hydrogen gas, and the processing chamber S has, for example, a low oxygen atmosphere with an oxygen concentration of 500 ppm or less, more preferably 50 ppm or less (see FIG. 2). Process Q2). In addition, the inside of the processing chamber S is maintained at a slight positive pressure with respect to the outside of the processing container 10. The replacement with the nitrogen gas atmosphere may be performed, for example, by alternately introducing nitrogen gas into the processing chamber S and exhausting the atmosphere in the processing chamber S (cycle purge)! .
[0031] 処理室 S内が低酸素雰囲気になると、次にガス供給管 40から窒素ガスと水素ガス の混合ガスが供給される(図 2の工程 Q3)。このときの窒素ガスと水素ガスとの混合比 は、容積比で窒素ガスが 97%、水素ガスが 3%に調整される。なお、このときの水素 ガスの混合比率は、全体の 1%以上、 3%以下が望ましい。 [0032] 例えば処理室 S内に混合ガスが導入されると同時又は所定時間経過後に、上部チ ャック 20のヒータ 25と下部チャック 13のヒータ 16が発熱し、上部チャック 20と下部チ ャック 13の各チップ Tl、 Τ2の電極 Pl、 Ρ2が常温から 150°C〜300°C程度に加熱さ れる。こうして、各電極 Pl、 P2は、水素ガスを含む混合ガス雰囲気内で加熱される( 図 2の工程 Q4)。これにより、図 4に示すように電極 Pl、 P2の表面に付着している酸 化膜 Aが水素により還元され、電極 Pl、 P2の表面の酸ィ匕膜 Aが除去される。例えば 電極 Pl、 P2が銅で形成されている場合には、 CuO (酸ィ匕膜) +H→Cu+H Oの反 [0031] When the inside of the processing chamber S becomes a low oxygen atmosphere, a mixed gas of nitrogen gas and hydrogen gas is then supplied from the gas supply pipe 40 (step Q3 in FIG. 2). At this time, the mixing ratio of nitrogen gas and hydrogen gas is adjusted to 97% for nitrogen gas and 3% for hydrogen gas by volume ratio. At this time, the mixing ratio of hydrogen gas is preferably 1% or more and 3% or less of the whole. For example, the heater 25 of the upper chuck 20 and the heater 16 of the lower chuck 13 generate heat when the mixed gas is introduced into the processing chamber S or after a predetermined time has elapsed, and the upper chuck 20 and the lower chuck 13 are heated. The electrodes Pl and Τ2 of each chip Tl and Τ2 are heated from room temperature to about 150 ° C to 300 ° C. Thus, the electrodes Pl and P2 are heated in a mixed gas atmosphere containing hydrogen gas (step Q4 in FIG. 2). As a result, as shown in FIG. 4, the oxide film A adhering to the surfaces of the electrodes Pl and P2 is reduced by hydrogen, and the oxide film A on the surfaces of the electrodes Pl and P2 is removed. For example, when the electrodes Pl and P2 are made of copper, CuO (acid oxide film) + H → Cu + HO
2 2 応により、電極 Pl、 P2の酸ィ匕膜 Aが除去される。  2 2 As a result, the oxide film A on the electrodes Pl and P2 is removed.
[0033] 所定時間、例えば 5分間程度、電極 Pl、 P2を混合ガスの雰囲気に維持し、酸ィ匕膜 Aを十分に除去した後、ヒータ 16、 25への給電量が減らされ、各チップ Tl、 Τ2の電 極 Pl、 Ρ2の温度が 120°C程度に下げられる(図 2の工程 Q5)。その状態で、図 5に 示すように上部チャック 20が下降し、上下の電極 Pl、 P2が圧接される。こうして、電 極 P1と電極 P2が接合される(図 2の工程 Q6)。例えばこの工程 Q5と工程 Q6の間、 処理容器 10内への水素ガスを含む混合ガスの供給が継続され、処理容器 10内が 低酸素雰囲気に維持されている。その後、上部チャック 20によるチップ T1の吸着が 解除され、上側のチップ T1を下部チャック 13に残した状態で、上部チャック 20が上 昇する。その後、例えばヒータ 16、 25への給電量が減らされ、電極 Pl、 P2の温度が 常温よりも高い 100°C程度に下げられる(図 2の工程 Q7)。この際、処理容器 10内に は、窒素ガスのみが供給され、水素ガスを含まない低酸素雰囲気に維持される。そ の後、窒素ガスの供給が停止され、チップ Tl、 Τ2が搬送口 60から搬出されて(図 2 の工程 Q8)、一連の処理が終了する。  [0033] After the electrodes Pl and P2 are maintained in a mixed gas atmosphere for a predetermined time, for example, about 5 minutes, and the oxide film A is sufficiently removed, the amount of power supplied to the heaters 16 and 25 is reduced. The temperature of Tl, Τ2 electrode Pl, Ρ2 is lowered to about 120 ° C (process Q5 in Fig. 2). In this state, as shown in FIG. 5, the upper chuck 20 is lowered, and the upper and lower electrodes Pl and P2 are pressed. Thus, the electrode P1 and the electrode P2 are joined (step Q6 in FIG. 2). For example, during step Q5 and step Q6, the supply of the mixed gas containing hydrogen gas into the processing vessel 10 is continued, and the inside of the processing vessel 10 is maintained in a low oxygen atmosphere. Thereafter, the chucking of the chip T1 by the upper chuck 20 is released, and the upper chuck 20 is lifted while the upper chip T1 remains on the lower chuck 13. Thereafter, for example, the amount of power supplied to the heaters 16 and 25 is reduced, and the temperature of the electrodes Pl and P2 is lowered to about 100 ° C., which is higher than the normal temperature (step Q7 in FIG. 2). At this time, only nitrogen gas is supplied into the processing container 10 and maintained in a low oxygen atmosphere containing no hydrogen gas. Thereafter, the supply of nitrogen gas is stopped, and the chips Tl and Τ2 are unloaded from the transfer port 60 (step Q8 in FIG. 2), and the series of processing ends.
[0034] 以上の実施の形態によれば、処理装置 1において、電極 Pl、 P2の表面の酸ィ匕膜 Aを、水素ガスを用いて除去することができる。したがって、従来のように塩酸を用い る必要がなぐ塩酸の複数の洗浄槽も必要ないので、装置の設置スペースを低減で きる。また、電極 Pl、 P2に塩素が残留することもないので、電極 Pl、 P2の腐食も防 止できる。さらに、処理装置 1内において、酸ィ匕膜 Aの除去と電極 Pl、 P2の接合を両 方連続して行うことができるので、処理時間を大幅に短縮することができる。  According to the above embodiment, in the processing apparatus 1, the oxide film A on the surfaces of the electrodes Pl and P2 can be removed using hydrogen gas. Accordingly, there is no need for a plurality of hydrochloric acid washing tanks that do not require the use of hydrochloric acid as in the prior art, so the installation space for the apparatus can be reduced. Moreover, since chlorine does not remain on the electrodes Pl and P2, the corrosion of the electrodes Pl and P2 can be prevented. Furthermore, since the removal of the oxide film A and the joining of the electrodes Pl and P2 can be continuously performed in the processing apparatus 1, the processing time can be greatly shortened.
[0035] 酸素濃度が 500ppm以下の低酸素雰囲気の下、 150°C〜300°Cの高温度で水素 ガスを酸ィ匕膜 Aに反応させたので、酸ィ匕膜 Aの除去を効率的に行うことができる。な お、低酸素雰囲気の酸素濃度は、 50ppm (体積百万分率)以下がより好ましい。また 、酸ィ匕膜 Aの除去時の電極 Pl、 P2の加熱温度は、 200°C以下がより好ましい。 [0035] Hydrogen at a high temperature of 150 ° C to 300 ° C in a low oxygen atmosphere with an oxygen concentration of 500 ppm or less Since the gas is reacted with the acid film A, the acid film A can be removed efficiently. The oxygen concentration in the low oxygen atmosphere is more preferably 50 ppm (parts per million by volume) or less. Further, the heating temperature of the electrodes Pl and P2 at the time of removing the oxide film A is more preferably 200 ° C. or less.
[0036] 以上の実施の形態において、電極 Pl、 P2の酸ィ匕膜 Aを除去する工程の加熱温度 と、電極 Pl、 P2を接合する工程の加熱温度が異なっていた力 酸化膜 Aの除去と電 極 Pl、 P2の接合を同じ温度で行ってもよい。こうすること〖こより、酸化膜 Aの除去ェ 程カゝら電極 Pl、 P2の接合工程に移行する際に、電極 Pl、 P2の温度が変化しない ので、例えば電極 Pl、 P2面内の温度斑が低減し、電極 Pl、 P2の酸化膜 Aの除去と 電極 Pl、 P2の接合を安定的かつ適正に行うことができる。また、加熱温度を変化さ せる時間が不要であるので、処理時間を大幅に短縮できる。  In the above embodiment, the heating temperature in the step of removing the oxide film A of the electrodes Pl and P2 is different from the heating temperature in the step of bonding the electrodes Pl and P2. Removal of the oxide film A And the electrodes Pl and P2 may be joined at the same temperature. As a result, the temperature of the electrodes Pl and P2 does not change during the transition to the joining process of the electrodes Pl and P2 due to the removal process of the oxide film A. Therefore, the removal of the oxide film A from the electrodes Pl and P2 and the joining of the electrodes Pl and P2 can be performed stably and appropriately. In addition, since the time for changing the heating temperature is unnecessary, the processing time can be greatly shortened.
[0037] また、前記実施の形態においては、電極 Pl、 P2の接合時に水素ガスを含む混合 ガス雰囲気に処理容器 10内を維持していた力 接合時には、処理容器 10内に窒素 ガスのみを供給して、処理容器 10内を水素ガスを含まない窒素ガスの低酸素雰囲 気に維持してもよい。  [0037] In addition, in the above embodiment, only the nitrogen gas is supplied into the processing container 10 at the time of joining the force in which the inside of the processing container 10 is maintained in a mixed gas atmosphere containing hydrogen gas at the time of joining the electrodes Pl and P2. Thus, the inside of the processing vessel 10 may be maintained in a low oxygen atmosphere of nitrogen gas not containing hydrogen gas.
[0038] 以上の実施の形態にぉ 、て、不活性ガスと水素ガスを別のガス供給源 41a、 41b に封入し、ガス供給管 40にお 、て混合して処理容器 10に混合ガスを供給して 、た 力 予め一つのガス供給源に所定の容積比の不活性ガスと水素ガスの混合ガスを封 入しておき、そのガス供給源カゝらガス供給管を通じて処理容器 10内に混合ガスを供 給してちょい。  [0038] In the above embodiment, an inert gas and a hydrogen gas are sealed in separate gas supply sources 41a and 41b, mixed in the gas supply pipe 40, and mixed into the processing vessel 10. A mixed gas of inert gas and hydrogen gas having a predetermined volume ratio is sealed in one gas supply source in advance, and the gas supply source and the gas supply pipe enter the processing vessel 10. Supply mixed gas.
[0039] 以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、 本発明はカゝかる例に限定されない。当業者であれば、特許請求の範囲に記載された 思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであ り、それらについても当然に本発明の技術的範囲に属するものと了解される。例えば 本実施の形態では、不活性ガスとして窒素ガスを用いていた力 アルゴンガス、ヘリ ゥムガスなどの他に不活性ガスを用いてもよい。また、本実施の形態では、各チップ T 1、 T2上に一つの電極が形成されていた力 各チップ Tl、 Τ2上にそれぞれ複数の 電極が形成され、その複数の電極同士を接合する場合にも、本発明は適用できる。 さら〖こ、チップ Tl、 Τ2は、分離される前の基板であってもよい。また、電極は、銅に限 られず、錫、金、銀などの他の金属により形成されていてもよい。また、本発明は、電 極以外の他の金属部材の処理にも適用できる。 [0039] The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the spirit and scope of the claims as set forth in the appended claims. It is understood that it belongs to. For example, in the present embodiment, an inert gas may be used in addition to the force argon gas, helium gas, etc., which used nitrogen gas as the inert gas. Further, in the present embodiment, when one electrode is formed on each chip T1, T2, a plurality of electrodes are formed on each chip Tl, Τ2, and the plurality of electrodes are joined together. However, the present invention is applicable. Furthermore, the chips Tl and Τ2 may be substrates before being separated. The electrode is limited to copper. However, it may be formed of other metals such as tin, gold, and silver. Further, the present invention can also be applied to processing of metal members other than electrodes.
産業上の利用可能性 Industrial applicability
本発明は、金属部材同士を接合する前に、金属部材表面の酸化膜を除去する際 に有用である。  The present invention is useful when removing the oxide film on the surface of the metal member before joining the metal members.

Claims

請求の範囲 The scope of the claims
[1] 金属部材同士を接合する前に行われる金属部材の処理方法であって、  [1] A metal member processing method performed before joining metal members,
不活性ガスと水素ガスとの混合ガスの雰囲気内において、金属部材を加熱する。  The metal member is heated in an atmosphere of a mixed gas of inert gas and hydrogen gas.
[2] 請求項 1に記載の金属部材の処理方法にぉ 、て、  [2] In the method for treating a metal member according to claim 1,
酸素濃度が 500ppm以下の低酸素雰囲気内で金属部材を加熱する。  The metal member is heated in a low oxygen atmosphere with an oxygen concentration of 500 ppm or less.
[3] 請求項 1に記載の金属部材の処理方法にぉ 、て、 [3] In the method for treating a metal member according to claim 1,
150°C〜300°Cで金属部材を加熱する。  The metal member is heated at 150 ° C to 300 ° C.
[4] 請求項 1に記載の金属部材の処理方法にぉ 、て、 [4] The method for treating a metal member according to claim 1, wherein
前記金属部材は、銅により形成されている。  The metal member is made of copper.
[5] 請求項 1に記載の金属部材の処理方法にぉ 、て、 [5] The method for treating a metal member according to claim 1, wherein
前記金属部材を加熱する前に、水素ガスを含まな 、不活性ガスにより前記金属部 材の周辺雰囲気を低酸素雰囲気にする。  Before heating the metal member, the atmosphere around the metal member is made a low oxygen atmosphere with an inert gas without hydrogen gas.
[6] 請求項 1に記載の金属部材の処理方法にぉ 、て、 [6] The method for treating a metal member according to claim 1, wherein
金属部材同士を接合する温度と同じ温度で、前記金属部材を加熱する。  The said metal member is heated at the same temperature as the temperature which joins metal members.
[7] 金属部材同士を接合する前に金属部材を処理する装置であって、 [7] An apparatus for processing a metal member before joining the metal members,
処理容器と、  A processing vessel;
前記処理容器内にお!ヽて、前記金属部材が形成されて!ヽる基板を保持する保持 部材と、  A holding member for holding a substrate formed by the formation of the metal member in the processing container;
前記処理容器内に不活性ガスと水素ガスを供給するガス供給装置と、 処理容器内のガスを排気する排気部と、  A gas supply device for supplying an inert gas and hydrogen gas into the processing container, an exhaust unit for exhausting the gas in the processing container,
前記保持部材に保持された基板を加熱する加熱部材と、を備える。  A heating member that heats the substrate held by the holding member.
[8] 請求項 7に記載の金属部材の処理装置において、 [8] In the metal member processing apparatus according to claim 7,
処理容器内には、互いに対向する 2つ保持部材が設けられ、  In the processing container, two holding members facing each other are provided,
少なくとも一方の保持部材を他方の保持部材側に移動させて、各々の保持部材に 保持された基板の金属部材同士を圧接する保持部材駆動部を、さらに備える。  A holding member drive unit that moves at least one holding member toward the other holding member and presses the metal members of the substrate held by each holding member is further provided.
PCT/JP2006/314653 2005-07-25 2006-07-25 Method for processing metal member and apparatus for processing metal member WO2007013445A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528473A JPWO2007013445A1 (en) 2005-07-25 2006-07-25 Metal member processing method and metal member processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005214567 2005-07-25
JP2005-214567 2005-07-25

Publications (1)

Publication Number Publication Date
WO2007013445A1 true WO2007013445A1 (en) 2007-02-01

Family

ID=37683341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314653 WO2007013445A1 (en) 2005-07-25 2006-07-25 Method for processing metal member and apparatus for processing metal member

Country Status (3)

Country Link
JP (1) JPWO2007013445A1 (en)
TW (1) TW200721242A (en)
WO (1) WO2007013445A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004906A1 (en) * 2007-07-04 2009-01-08 Tokyo Electron Limited Substrate treatment method, substrate treatment apparatus, reducing agent sheet, and computer-readable storage medium
CN101444873B (en) * 2007-11-29 2012-07-11 Smc株式会社 Bonding method and apparatus therefor
CN104759751A (en) * 2015-04-15 2015-07-08 中国科学院福建物质结构研究所 Vacuum/atmosphere welding device and method capable of conducting continuous feeding work
US10497667B2 (en) * 2017-09-26 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for bond wave propagation control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106486386A (en) * 2016-12-08 2017-03-08 天津大学 A kind of device and method of the pressure assisted sintering large-area nano silver paste of controlled atmosphere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314322A (en) * 1996-05-23 1997-12-09 Fuji Electric Co Ltd Soldering device and soldering method with using the device
JP2002263852A (en) * 2001-03-09 2002-09-17 Shoichi Shimada Thermal diffusion bonding method for precision component
WO2003077307A1 (en) * 2002-03-11 2003-09-18 Toyo Kohan Co., Ltd. Electronic circuit device and porduction method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314322A (en) * 1996-05-23 1997-12-09 Fuji Electric Co Ltd Soldering device and soldering method with using the device
JP2002263852A (en) * 2001-03-09 2002-09-17 Shoichi Shimada Thermal diffusion bonding method for precision component
WO2003077307A1 (en) * 2002-03-11 2003-09-18 Toyo Kohan Co., Ltd. Electronic circuit device and porduction method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004906A1 (en) * 2007-07-04 2009-01-08 Tokyo Electron Limited Substrate treatment method, substrate treatment apparatus, reducing agent sheet, and computer-readable storage medium
CN101444873B (en) * 2007-11-29 2012-07-11 Smc株式会社 Bonding method and apparatus therefor
CN104759751A (en) * 2015-04-15 2015-07-08 中国科学院福建物质结构研究所 Vacuum/atmosphere welding device and method capable of conducting continuous feeding work
US10497667B2 (en) * 2017-09-26 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for bond wave propagation control
US11031369B2 (en) 2017-09-26 2021-06-08 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for bond wave propagation control
US11742321B2 (en) 2017-09-26 2023-08-29 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for bond wave propagation control

Also Published As

Publication number Publication date
TW200721242A (en) 2007-06-01
JPWO2007013445A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
TWI428986B (en) Semiconductor device manufacturing method and substrate processing apparatus
KR101368768B1 (en) Film formation method and apparatus, and storage medium
KR101133341B1 (en) Film formation apparatus and method for using the same
KR101129741B1 (en) Film formation apparatus for semiconductor process and method for using same
JPH07302776A (en) Surface washing method and system for semiconductor substrate
JP4675127B2 (en) Thin film forming apparatus, thin film forming apparatus cleaning method and program
JP4918452B2 (en) Thin film forming apparatus cleaning method, thin film forming method, thin film forming apparatus, and program
JP2001176833A (en) Substrate processor
WO2007013445A1 (en) Method for processing metal member and apparatus for processing metal member
JPH1116858A (en) Method of cleaning and processing film forming device
JP3557601B2 (en) Cleaning / drying processing apparatus and method
JP5498640B2 (en) Method and apparatus for cleaning nitride semiconductor manufacturing equipment parts
WO2005016563A1 (en) Methods of thinning a silicon wafer using hf and ozone
JP5554469B2 (en) Thin film forming apparatus cleaning method, thin film forming method, and thin film forming apparatus
JP6578015B2 (en) Substrate processing equipment
JP2010034283A (en) Substrate processing apparatus
JP5575299B2 (en) Film forming method and film forming apparatus
JP5687755B1 (en) Soldering apparatus and method for manufacturing joining member
US11185895B2 (en) Substrate processing method, substrate processing apparatus, and composite processing apparatus
JP2002210422A (en) Apparatus and method for cleaning substrate to be treated
WO2005054543A1 (en) Cleaning method
JPH05283386A (en) Substrate surface treatment device
CN111276425B (en) Light emission monitoring method, substrate processing method, and substrate processing apparatus
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP2009027104A (en) Method of washing thin-film forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528473

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781565

Country of ref document: EP

Kind code of ref document: A1