WO2007013207A1 - 超電導装置およびアキシャルギャップ型の超電導モータ - Google Patents

超電導装置およびアキシャルギャップ型の超電導モータ Download PDF

Info

Publication number
WO2007013207A1
WO2007013207A1 PCT/JP2006/308016 JP2006308016W WO2007013207A1 WO 2007013207 A1 WO2007013207 A1 WO 2007013207A1 JP 2006308016 W JP2006308016 W JP 2006308016W WO 2007013207 A1 WO2007013207 A1 WO 2007013207A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
field
superconducting
magnetic
iron core
Prior art date
Application number
PCT/JP2006/308016
Other languages
English (en)
French (fr)
Inventor
Toru Okazaki
Shingo Ohashi
Hidehiko Sugimoto
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/996,849 priority Critical patent/US7932659B2/en
Priority to CN200680027761XA priority patent/CN101233674B/zh
Priority to EP06745407A priority patent/EP1909376A1/en
Publication of WO2007013207A1 publication Critical patent/WO2007013207A1/ja
Priority to HK08108833.6A priority patent/HK1117949A1/xx

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K53/00Alleged dynamo-electric perpetua mobilia
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/103Motors having windings on the stator and a variable reluctance soft-iron rotor without windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • H02K19/24Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators with variable-reluctance soft-iron rotors without winding

Definitions

  • the present invention relates to a superconducting device, and more particularly, to a coil comprising a superconducting material attached to an iron core, and applied to a motor, a generator, a transformer, and a superconducting power storage device (SMES).
  • SMES superconducting power storage device
  • it is preferably used for an axial gap type superconducting motor having an inductor.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-6907
  • generators and transformers are superconducting using superconducting materials.
  • superconducting coil 2 is formed at the required location of C-type iron core 1 by pouring a superconducting material with no gap between it and C-type iron core 1, and in the gap la of C-type iron core 1.
  • Another magnetic body 5 is arranged.
  • the magnetic body 5 may also be composed of an iron core.
  • the magnetic flux F2 passes through the air around the superconducting coil 2 and the C-type iron core 1 near the superconducting coil 2 without passing through the gap la.
  • the magnitude of the magnetic flux is expressed by the magnetomotive force Z magnetic resistance. If the magnetomotive force is constant, the smaller the magnetic resistance, the larger the magnetic flux. Therefore, the magnetic flux F2 has a large magnetic resistance, (low permeability! ⁇ ) small magnetic resistance only in the air! / ⁇ (high permeability) Passes through the C-type iron core 1, so the magnetic flux F2 is compared The magnetic field acting on the superconducting coil 2 becomes stronger and the characteristics of the superconducting coil 2 are reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-6907
  • the present invention has been made in view of the above problems, and by improving the structure for attaching the superconducting coil to the iron core, the magnetic field applied to the superconducting coil itself is weakened so that the superconducting characteristics are not reduced.
  • the goal is to reduce the size of the superconducting coil by improving the current density of the superconducting coil.
  • the present invention provides:
  • a superconducting device characterized in that a gap is provided between the coil and the iron core, or a nonmagnetic material is interposed between Z and the coil and the iron core.
  • the magnetic flux excited in the vicinity of the superconducting coil (the magnetic flux corresponding to the magnetic flux F2 in Fig. 10) is at least either of the air gap and the non-magnetic material. Pass through.
  • the magnetic field acting on the superconducting coil is weakened with a gap between the superconducting coil and the iron core, the AC opening generated in the coil is reduced when an alternating current is applied to the superconducting coil. , Equipment loss can be reduced.
  • FRP fluorescence spectroscopy
  • stainless steel tin, aluminum, copper, etc.
  • the relative permeability is preferably 100 or less.
  • non-magnetic material When a non-magnetic material is interposed between the coil and the iron core, several non-magnetic materials may be combined and interposed!
  • the distance between the coil and the iron core is preferably 0.1 mm or more, more preferably 0.5 mm or more.
  • the magnetic flux excited in the vicinity of the superconducting coil can be reduced. Further, if the distance is 0.5 mm or more, the magnetic flux is further reduced, and in addition, there is an advantage that the superconducting coil can be easily attached to the iron core and the superconducting device can be easily manufactured.
  • a total of the gap dimensions in the magnetic circuit interposing the magnetized magnetic material is a, a dimension of each interval between the coil and the iron core is b, and b> a. ,.
  • the magnetic flux that magnetizes the magnetic material passes through a gap with a low magnetic permeability (for example, the gap in FIG. 10), this magnetic flux also decreases. Therefore, by setting b> a as the relationship between a and b, the magnetic flux excited in the vicinity of the superconducting coil is significantly smaller than the magnetic flux that magnetizes the magnetic material, and the current density of the superconducting coil is increased. The magnetic flux force that magnetizes the magnetic material can be prevented from becoming too small.
  • the superconducting device having the above-described configuration according to the present invention includes, for example, a magnetic medium interposed in the magnetic circuit.
  • the body is an inductor attached to the rotor, and the rotor can be applied to rotate when energized.
  • An axial gap type superconducting motor provided with an inductor is provided as a second invention using the above configuration.
  • an armature side stator having an armature coil attached to an iron core around a rotation axis, and a pair of rotors including inductors arranged on both sides of the armature side stator, A pair of field side stators having field coils arranged on both sides of these rotors, the rotor comprising an axial gap type inductor motor that is fitted and fixed to the rotating shaft.
  • the armature coil and the field coil are coils formed of a superconducting material, and a gap is provided between the armature coil and an iron core to which the armature coil is attached, or Z and the armature coil A non-magnetic material is interposed between the iron core and a gap is provided between the field coil and the field-side stator serving as the iron core, or Z and the field A non-magnetic material is interposed between the coil and the field side stator,
  • the field coil has N and S poles arranged concentrically,
  • the rotor inductor which becomes a magnetic body when energizing the armature coil and the field coil, is
  • N pole inductors arranged opposite to the N poles of the field coils and S pole inductors arranged opposite to the S poles of the field coils are alternately arranged in the circumferential direction.
  • the superconducting device having a space between the superconducting coil and the iron core of the present invention is not limited to the axial cap type motor, but is also suitably used for a generator, a transformer, and a superconducting power storage device (SMES). be able to.
  • SMES superconducting power storage device
  • a gap or a nonmagnetic material is provided between a coil (superconducting coil) formed of a superconducting material and an iron core to which the superconducting coil is attached.
  • the magnetic flux excited in the vicinity of the superconducting coil passes through a low magnetic permeability gap or nonmagnetic material. Therefore, most of the magnetic flux passes through air or a non-magnetic material with low permeability, so that the magnetic flux is reduced and the magnetic field applied to the superconducting coil can be weakened, and the superconducting characteristics of the superconducting coil can be reduced.
  • a large current can be applied to the superconducting coil. Thereby, since the current density of the superconducting coil can be increased, the superconducting coil can be reduced in size, and the superconducting device provided with the superconducting coil can also be reduced in size.
  • FIG. 1 is a cross-sectional view of an inductor type motor according to a first embodiment of the present invention
  • FIG. 1B is a cross-sectional view at a position where a rotor is rotated 90 °.
  • FIG. 2 (A) is a front view of the field side stator, (B) is a cross-sectional view taken along line II of (A), and (C) is an enlarged view of the main part of the field side stator.
  • FIG. 3 (A) is a front view of the rotor, (B) is a cross-sectional view taken along line II of (A), (C) is a rear view, and (D) is a cross-sectional view taken along line II-II of (A). .
  • FIG. 4 (A) is a front view of the rotor and field side stator penetrated by the rotating shaft, (B) is a cross-sectional view taken along the line I-I in (A), and (C) is in (A).
  • FIG. 11 is a sectional view taken along line II.
  • FIG. 5 is a front view of an armature side stator.
  • FIG. 6 is a cross-sectional view taken along line I I of FIG.
  • FIGS. 7A and 7B are cross-sectional views showing a state where magnetic flux is excited in the inductor type motor.
  • FIG. 8 is a drawing showing the basic principle of the present invention.
  • FIG. 9A is a cross-sectional view of an inductor type motor according to a second embodiment of the present invention
  • FIG. 9B is a cross-sectional view at a position where the rotor is rotated 90 °.
  • FIG. 10 is a drawing showing the principle of a conventional example.
  • a superconducting coil 2 which is a superconducting material, is attached to the required location of the C-type iron core 1 with a gap 3 for the required magnetoresistance between the C-type iron core 1 and the C-type iron core.
  • the magnetic body 5 is arranged in the gap la of 1.
  • magnetic fluxes Fl and F2 indicated by broken lines, for example are excited.
  • the magnetic flux F1 passes through the C-type iron core 1, generates a magnetic field in the gap la, and magnetizes the magnetic material arranged in the gap la.
  • the magnetic flux F2 passes through the air around the superconducting coil 2 without passing through the C-type iron core 1.
  • this magnetic flux F2 passes only in air with low magnetic permeability, air becomes a magnetic resistance, the magnetic flux F2 becomes a small magnetic flux, and the magnetic field applied to the superconducting coil 2 is reduced, greatly reducing the characteristics of the superconducting coil 2. I will not let you. As a result, the current density of the superconducting coil can be improved and the superconducting coil can be downsized.
  • the magnetic flux F2 that passes only in the air increases and the magnetic field applied to the superconducting coil 2 can be reduced.
  • FIG. 1 shows an inductor-type motor 10 according to a first embodiment of the present invention, and the inductor-type motor 10 is an application of the principle described for the c-type iron core.
  • the inductor type motor 10 has an axial gap structure, and passes through the rotating shaft 34 in the order of the field side stator 11, the rotor 12, the armature side stator 13, the rotor 14, and the field side stator 15.
  • the field-side stators 11 and 15 and the armature-side stator 13 are fixed to the installation surface G and have a gap with the rotating shaft 34, and the rotors 12 and 14 are fixedly fitted to the rotating shaft 34.
  • FIGS. 2 (A), (B), and (C) are representative of one field-side stator 15. And describe it!
  • the field side stators 11 and 15 (iron cores) made of a magnetic material are fixed to the installation surface G.
  • the field side stators 11 and 15 are insulated from the heat insulating refrigerant containers 17 and 30 having a vacuum heat insulating structure, and the heat insulating refrigerant containers.
  • Field coils 18 and 31 are attached, which are superconducting materials housed in 17 and 30, respectively.
  • a non-magnetic material such as grease, aluminum, or brass is interposed between the field coils 18 and 31 and the field side stators 11 and 15, so that the field coils 18 and 31 and the field side stators are interposed.
  • the field coils 18 and 31 are supported with the air gap 3 provided between 11 and 15.
  • the field side stators 11 and 15 are recessed in an annular shape with the loose fitting holes l ib and 15b drilled in the center larger than the outer diameter of the rotary shaft 34, and the loose fitting holes l lb and 15b. And provided groove portions l la and 15a.
  • the adiabatic refrigerant container 30 accommodates the field coils 18 and 31 in a state where liquid nitrogen is circulated, and the adiabatic refrigerant containers 17 and 30 are embedded in the grooves lla and 15a.
  • the field side stators 11 and 15 are made of a magnetic material such as permender, silicon steel plate, iron or permalloy.
  • the superconducting material for forming the field coils 18 and 31 is a superconducting material such as bismuth or yttrium.
  • the rotors 12 and 14 are bilaterally symmetric, and FIGS. 3A to 3D show one rotor 14 as a representative.
  • the rotors 12 and 14 are disk-shaped and have a non-magnetic material force, and a pair of support portions 19 and 26 having mounting holes 19a and 26a on the rotating shaft, and a pair of points embedded in point-symmetric positions around the mounting holes 19a and 26a.
  • S pole inductors 21 and 27, and a pair of N pole inductors 20 and 28 embedded at positions rotated by 90 ° from the S pole inductors 21 and 27 are provided.
  • S pole inductors 21 and 27 and N pole inductors 20 and 28 have fan-shaped one end faces 20a, 21a, 27a, and 28a facing the armature-side stator 13 and are arranged at equal intervals on concentric circles. They have the same area.
  • the other end faces 21b, 27b of the S pole inductors 21, 27 are arranged to face the S pole generation position of the field coils 18, 31.
  • the other end face 27b of the S pole inductor 27 is As shown in FIG. 2 (C) and FIG. 4 (B), it is in the shape of a circular arc disposed opposite to the outer peripheral side of the field coil 31.
  • the other end faces 20b and 28b of the N pole inductors 20 and 28 are arranged to face the N pole generation position of the field coils 18 and 31, for example, the other end face 28b of the N pole inductor 28 is shown in FIG. As shown in FIG. 4 (B) and FIG. 4 (C), it is in the shape of a circular arc disposed opposite to the inner peripheral side of the field coil 31.
  • the S-pole inductors 21 and 27 and the N-pole inductors 20 and 28 have one end face 20a by changing the cross-sectional shape from the arcuate other end faces 20b, 21b, 27b, and 28b in the axial direction.
  • 21a, 27a, and 28a are three-dimensional shapes that are fan-shaped.
  • the cross-sectional areas of the S pole inductors 21 and 27 and the N pole inductors 20 and 28 are constant and the other end surfaces 20b, 21b, 27b, and 28b force up to the one end surfaces 20a, 21a, 27a, and 28a!
  • the other end surfaces 20b and 28b of the south pole inductors 20 and 28 have the same area as the other end faces 21b and 27b of the north pole inductors 21 and 27.
  • the support portion 26 is made of a nonmagnetic material such as FRP or stainless steel.
  • Each of the inductors 27 and 28 is made of a magnetic material such as permender, silicon steel plate, iron, and permalloy.
  • the armature-side stator 13 that also has non-magnetic strength is fixed to the installation surface G, and the armature-side stator 13 has a heat insulating refrigerant having a vacuum heat insulating structure.
  • the armature coil 13 that is a winding made of a superconducting material housed in a container 23 and a heat-insulating refrigerant container 23 is attached to the armature-side stator 13 from the outer diameter of the rotary shaft 34 in the center.
  • V is provided with a loosely-fitting hole 13b that is largely drilled and four mounting holes 13a that are drilled at equal intervals in the circumferential direction around the loosely-fitting hole 13b.
  • the adiabatic refrigerant container 23 accommodates the armature coil 24 in a state in which liquid nitrogen is circulated, and a flux collector 25 (iron core) having magnetic strength is disposed in the hollow portion of the armature coil 24.
  • a flux collector 25 iron core
  • Four heat insulating refrigerant containers 23 containing the armature coils 24 inside are embedded in each coil mounting hole 13a.
  • the armature coil 24 is not directly wound around the outer peripheral surface of the flux collector 25. As shown in FIGS. 5 and 6, the armature coil 24 is not between the inner peripheral surface of the armature coil 24 and the outer peripheral surface of the flux collector 25. There is also an air gap 3 in them.
  • the flux collector 25 is made of a magnetic material such as permender, silicon steel plate, iron or permalloy. Further, as a superconducting material for forming the armature coil 24, a superconducting material such as bismuth or yttrium is used.
  • the armature side stator 13 is made of a non-magnetic material such as FRP stainless steel.
  • a power feeding device 32 is connected to the field coils 18 and 31 and the armature coil 24 via wiring, and a direct current is supplied to the field coils 18 and 31, and a three-phase alternating current is supplied to the armature coil 24. Supply.
  • a direct current is supplied to the field coils 18 and 31, and a three-phase alternating current is supplied to the armature coil 24.
  • Supply When current is supplied to the field coils 18 and 31 and the armature coil 24, the S pole inductors 21 and 27 of the rotors 12 and 14 and the N pole inductors 20 and 28 are magnetized, The rotors 12 and 14 rotate according to the principle described later, and the magnetic flux F1 indicated by the solid and broken lines in FIG. 7 is excited.
  • the required gap 4 is provided between the field side stator 11, the rotor 12, the armature side stator 13, the rotor 14, and the field side stator 15, respectively.
  • the magnetic flux F1 passes through the air gap 4 at eight locations.
  • a is set to be smaller than the dimension b of the gap 3 provided around the field coils 18, 31 and the armature coil 24. Then (a and b).
  • a liquid nitrogen tank 33 is connected to the heat insulating refrigerant containers 17, 23, and 30 through a heat insulating pipe, and circulates liquid nitrogen as a refrigerant.
  • the other end surfaces 27b and 28b are arranged on concentric circles along the inner and outer circumferences of the field coil 31, even if the rotor 14 rotates, the one end surface 27a of the S pole inductor 27 always has an S pole. And N-pole always appears on one end face 28a of N-pole inductor 28.
  • the N pole always appears on one end face 20a of the N pole inductor 20, and the S pole always appears on one end face 21a of the S pole inductor 21.
  • the field coils 18, 31 and the armature coil 24 are not brought into contact with the field side stators 11, 15 and the flux collector 25 serving as iron cores, and the field coils 18, 31 and the electric machine Since the gap 3 is provided around the child coil 24, the magnetic flux F2 excited around the field coils 18 and 31 and the armature coil 24 can be reduced. This weakens the magnetic field acting on the field coils 18 and 31 and the armature coil 24 made of superconducting material so that the superconducting characteristics are not reduced, and the current density of the field coils 18 and 31 and the armature coil 24 is reduced. Can be increased. Therefore, the coil can be reduced in size.
  • the dimension b of the air gap 3 is set to be larger than the sum of the dimensions of the air gap 4 through which the magnetic flux F1 passes, and the air gap 3 is sufficiently provided, so the strength of the magnetic flux F2 is greatly increased. Can be reduced.
  • liquid nitrogen serving as a refrigerant is introduced into the gap to cool the field coil and the armature coil.
  • the refrigerant is not introduced into the gap, and the refrigerant around the coil is cooled by a refrigerant cooler.
  • a refrigerant cooler As a configuration to cool the air and indirectly cool the coil.
  • a force radial gear type motor which is an axial gap type motor may be used.
  • FIG. 9 shows a second embodiment of the present invention.
  • a non-magnetic material 40 is interposed between the field side stators 11 and 15 and the field coils 18 and 31, and a gap is provided between the flux collector 25 and the armature coil 24.
  • a nonmagnetic material 41 is interposed and spaced apart.
  • Non-magnetic material 40 is interposed between the field side stators 11 and 15 and the field coils 18 and 31, a space for introducing the refrigerant is provided in the heat insulating refrigerant containers 17 and 30, and the field is fixed.
  • the magnetic coils 18, 31 can be cooled.
  • Nonmagnetic materials include FRP, stainless steel, tin, aluminum, and copper.
  • the magnetic flux F 2 excited around the field coils 18 and 31 and the armature coil 24 can be reduced.
  • the density can be increased. Therefore, the coil can be miniaturized.
  • the superconducting device of the present invention is used as a drive motor for traveling a ship or traveling an automobile, as well as a generator, a transformer, or a superconducting power storage device (SMES).
  • SMES superconducting power storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 超電導材で形成されたコイルと、前記コイルが取り付けられる鉄芯と、  前記コイルへの通電により発生する前記鉄芯を通る磁気回路中に介在され、磁束により磁化される磁性体を備え、前記コイルと鉄芯との間に空隙を設けている、あるいは/および、前記コイルと鉄芯との間に非磁性体を介在させている。

Description

明 細 書
超電導装置およびアキシャルギャップ型の超電導モータ
技術分野
[0001] 本発明は、超電導装置に関し、詳しくは、鉄芯に取り付けた超電導材からなるコィ ルを備えたものであって、モータ、発電機、変圧器、超電導電力貯蔵装置 (SMES) に適用でき、特に、誘導子を備えたアキシャルギャップ型の超電導モータに好適に 用いられるものである。
背景技術
[0002] 近年、ガソリン等の燃料資源の枯渴ゃ排気ガスによる環境悪ィ匕を改善すベぐ電気 によりモータを駆動して渡航する船舶や走行する自動車等の開発が進められている 。特に、特開平 6— 6907号 (特許文献 1)に開示されている超電導モータを採用すれ ば、超電導コイルでの銅損がなくなり高効率になると共に、モータ自身を小型化およ び高出力化することができる。
また、モータに限らず発電機や変圧器等においても超電導材を用いて超電導化が 図られている。
[0003] しかしながら、超電導材に磁場が作用すると超電導材の特性が低下して、超電導 材に大電流を通電できなくなる。特に、鉄芯に超電導コイルを取り付ける構成とした 場合には、超電導コイルへの通電によって発生した磁場が鉄芯により強められて、こ の超電導コイル自体に作用するため、超電導コイルに通電できる電流が小さくなつて 電流密度が低下する。よって、所要の電流量を通電させるためには超電導コイルが 大型化し、それによつて超電導装置自体が大型化する問題がある。
[0004] 上記問題を超電導コイルを取り付けた C型マグネット (鉄芯)で具体的に説明する。
図 10に示すように、 C型鉄芯 1の所要箇所に、 C型鉄芯 1との間に隙間なく超電導 材を卷きつけて超電導コイル 2を形成し、 C型鉄芯 1のギャップ laに別の磁性体 5を 配置している。該磁性体 5も鉄芯で構成してもよい。前記超電導コイル 2に電流を通 電させると、例えば破線で示した磁束 Fl、 F2が励磁される。磁束 F1は C型鉄芯 1を 通り、ギャップ laにおいて磁場を生じさせ、ギャップ laに配置した磁性体 5を磁ィ匕さ せる。一方、磁束 F2は、ギャップ laを通らずに、超電導コイル 2近傍の C型鉄芯 1と 超電導コイル 2の周囲の空気中を通過する。磁束の大きさは起磁力 Z磁気抵抗で表 され、起磁力が一定であれば磁気抵抗が小さい程、磁束は大きくなる。よって、磁束 F2は磁気抵抗の大き 、 (透磁率の低!ヽ)空気中だけでなぐ磁気抵抗が小さ!/ヽ (透 磁率の高い) C型鉄芯 1を通過するため、磁束 F2は比較的大きな磁束となり、超電導 コイル 2に作用する磁場が強くなつて、超電導コイル 2の特性が低減される。
[0005] 特許文献 1 :特開平 6— 6907号公報
発明の開示
発明が解決しょうとする課題
[0006] 本発明は前記問題に鑑みてなされたものであり、超電導コイルの鉄芯への取り付け 構造を改良することにより、超電導コイル自体に力かる磁場を弱くして超電導特性を 低減させないようにし、超電導コイルの電流密度を向上させて、超電導コイルを小型 化することを課題としている。
課題を解決するための手段
[0007] 前記課題を解決するため、本発明は、
超電導材で形成されたコイルと、
前記コイルが取り付けられる鉄芯と、
前記コイルへの通電により発生する前記鉄芯を通る磁気回路中に介在され、磁束 により磁化される磁性体を備え、
前記コイルと鉄芯との間に空隙を設けている、あるいは Zおよび、前記コイルと鉄芯 との間に非磁性体を介在させて ヽることを特徴とする超電導装置を提供して ヽる。
[0008] 前記構成によれば、超電導材で形成されたコイル (超電導コイル)と該超電導コィ ルを取り付けた鉄芯との間に磁気抵抗となる空隙や非磁性体を設けているため、超 電導コイルへの通電により励磁される磁束のうち、超電導コイルの近傍に励磁される 磁束(図 10の磁束 F2に相当する磁束)が透磁率の低い前記空隙、非磁性体の少な くともいずれ力を通過する。よって、該磁束の大部分が透磁率の低い空気中ゃ非磁 性体を通過することとなって、磁束が小さくなり、超電導コイルに作用する磁場を弱く することができ、超電導コイルの超電導特性を大幅に低減させることなぐ超電導コィ ルへの大電流の通電が可能となる。これにより、超電導コイルの電流密度が大きくす ることができるため、超電導コイルを小型化でき、該超電導コイルを備えた超電導装 置も小型化することができる。
超電導コイルを鉄芯に取り付けた場合、他の磁性体に作用する磁束(図 10の磁束 F1)と共に超電導コイルの近傍に励磁される磁束(図 10の磁束 F2)も大きくなつてし まうが、本発明では超電導コイルを鉄芯に取り付けても、超電導コイルの近傍に励磁 される磁束のみを小さくすることができる。
また、超電導コイルと鉄芯との間に間隔をあけて超電導コイルに作用する磁場を弱 くして 、るため、超電導コイルに交流電流を通電させたときにコイルに発生する AC口 スが小さくなり、機器の損失を低減することができる。
例えば、非磁性体として FRP、ステンレス、すず、アルミニウム、銅等が挙げられ、 比透磁率が 100以下であることが好まし 、。
なお、コイルと鉄芯との間に非磁性体を介在させる場合には、数種の非磁性体を組 み合わせて介在させてもよ!、。
[0009] 前記コイルと鉄芯との間隔を 0. 1mm以上としていることが好ましぐより好ましくは 0 . 5mm以上である。
前記構成によれば、前記間隔を 0. 1mm以上とすると、超電導コイルの近傍に励磁 される磁束を小さくすることができる。また、前記間隔を 0. 5mm以上とすると、さらに 磁束が小さくなり、加えて鉄芯に超電導コイルを取り付けやすくなり超電導装置を製 造しやすくなるというメリットがある。
[0010] さらには、前記磁化させる磁性体を介在させた磁気回路中の空隙寸法の総和を a、 前記コイルと鉄芯との各間隔の寸法を bとし、 b >aとして 、ることが好ま 、。
磁性体を磁ィ匕させる磁束が透磁率の低い空隙 (例えば図 10のギャップ)を通過す ると、この磁束も小さくなる。そこで、前記 aと bとの関係を b >aとすることにより、磁性 体を磁化させる磁束と比べて超電導コイルの近傍に励磁される磁束を大幅に小さくし 、超電導コイルの電流密度を高めて、磁性体を磁化させる磁束力 、さくなりすぎない ようにすることができる。
[0011] 本発明の前記構成の超電導装置は、例えば、前記磁気回路中に介在させた磁性 体は、回転子に取り付けた誘導子とし、通電時に前記回転子を回転作動させる構成 として適用することができる。
前記構成を利用して、第二の発明として、誘導子を備えたアキシャルギャップ型の 超電導モータを提供して 、る。
具体的には、回転軸回りに、鉄芯に取り付けた電機子コイルを有する電機子側固 定子と、該電機子側固定子の両側に配置される誘導子を備えた一対の回転子と、こ れら回転子の両側に配置された界磁コイルを有する一対の界磁側固定子とを備え、 前記回転子が前記回転軸に外嵌固定されるアキシャルギャップ型の誘導子型モータ からなり、
前記電機子コイルおよび界磁コイルを超電導材より形成したコイルとし、前記電機 子コイルと該電機子コイルを取り付けた鉄芯との間に空隙を設けている、あるいは Z および、前記電機子コイルと鉄芯との間に非磁性体を介在させていると共に、前記界 磁コイルと鉄芯となる前記界磁側固定子との間にも空隙を設けている、あるいは Zお よび、前記界磁コイルと界磁側固定子との間に非磁性体を介在させ、
前記界磁コイルは N極と S極とを同心円上に配置する一方、
前記電機子コイルと界磁コイルへの通電時に磁性体となる前記回転子の誘導子は
、前記界磁コイルの N極と対向配置される N極誘導子と、界磁コイルの S極と対向配 置される S極誘導子とを周方向に交互に配置して 、る。
なお、本発明の超電導コイルと鉄心との間に間隔を設けた超電導装置は、前記ァ キシャルキャップ型モータに限らず、発電機、変圧器、超電導電力貯蔵装置 (SMES )にも好適に利用することができる。
発明の効果
前述したように、本発明によれば、超電導材で形成されたコイル (超電導コイル)と 該超電導コイルを取り付けた鉄芯との間に空隙や非磁性体を設けているため、超電 導コイルへの通電により励磁される磁束のうち、超電導コイルの近傍に励磁される磁 束が透磁率の低い空隙、非磁性体を通過する。よって、該磁束の大部分が透磁率の 低い空気中や非磁性体を通過することとなって、磁束が小さくなり、超電導コイルに 力かる磁場を弱くすることができ、超電導コイルの超電導特性を大幅に低減させるこ となぐ超電導コイルへの大電流の通電が可能となる。これにより、超電導コイルの電 流密度が大きくすることができるため、超電導コイルを小型化でき、該超電導コイルを 備えた超電導装置も小型化することができる。
図面の簡単な説明
[0013] [図 1] (A)は本発明の第 1実施形態の誘導子型モータの断面図、(B)は回転子を 90 ° 回転させた位置での断面図である。
[図 2] (A)は界磁側固定子の正面図、(B)は (A)の I I線断面図、(C)は界磁側固 定子の要部拡大図である。
[図 3] (A)は回転子の正面図、(B)は (A)の I-I線断面図、(C)は背面図、(D)は (A )の Π— II線断面図である。
[図 4] (A)は回転子および界磁側固定子を回転軸で貫通した状態の正面図、(B)は (A)の I— I線断面図、(C)は (A)の Π— II線断面図である。
[図 5]電機子側固定子の正面図である。
[図 6]図 5の I I線断面図である。
[図 7] (A) (B)は誘導子型モータに磁束が励磁された状態を示す断面図である。
[図 8]本発明の基本原理を示す図面である。
[図 9] (A)は本発明の第 2実施形態の誘導子型モータの断面図、(B)は回転子を 90 ° 回転させた位置での断面図である。
[図 10]従来例の原理を示す図面である。
符号の説明
[0014] 3 空隙
10 誘導子型モータ
11、 15 界磁側固定子 (鉄芯)
12、 14 回転子
13 電機子側固定子
18、 31 界磁コイル
20、 28 N極誘導子
21、 27 S極誘導子 24 電機子コイル
25 フラックスコレクタ (鉄芯)
40、 41 非磁性体
F1、F2 磁束
発明を実施するための最良の形態
[0015] 本発明の実施形態を図面を参照して説明する。
先ず、本発明の基本原理を C型鉄芯で説明する。
図 8に示すように、 C型鉄芯 1の所要箇所に C型鉄芯 1との間に所要の磁気抵抗用 の空隙 3をあけて超電導材カ なる超電導コイル 2を取り付け、 C型鉄芯 1のギャップ laに磁性体 5を配置している。前記超電導コイル 2に電流を通電させると、例えば破 線で示した磁束 Fl、 F2が励磁される。磁束 F1は C型鉄芯 1を通り、ギャップ laにお いて磁場を生じさせ、ギャップ laに配置した磁性体を磁ィ匕させる。一方、磁束 F2は、 C型鉄芯 1を通らずに、超電導コイル 2の周囲の空気中を通過する。この磁束 F2は 透磁率の低い空気中のみを通るため、空気が磁気抵抗となって、磁束 F2が小さな磁 束となり、超電導コイル 2にかかる磁場が小さくなつて、超電導コイル 2の特性を大きく 低減させることがない。これにより、超電導コイルの電流密度を向上させ、超電導コィ ルを小型化することができる。
なお、前記空隙 3の C型鉄芯 1と超電導コイル 2との間の寸法を大きくする程、空気 中のみを通過する磁束 F2が多くなり超電導コイル 2にかかる磁場を小さくすることが できる。
[0016] 図 1は本発明の第 1実施形態の誘導子型モータ 10を示し、該誘導子型モータ 10 は前記 c型鉄芯で説明した原理を応用したものである。
誘導子型モータ 10はアキシャルギャップ構造であり、界磁側固定子 11、回転子 12 、電機子側固定子 13、回転子 14、界磁側固定子 15の順番に回転軸 34で貫通し、 界磁側固定子 11、 15および電機子側固定子 13は設置面 Gに固定すると共に回転 軸 34と空隙をあけ、回転子 12、 14は回転軸 34に外嵌固定している。
[0017] 界磁側固定子 11と界磁側固定子 15とは左右対称であり、図 2 (A) (B) (C)には一 方の界磁側固定子 15につ ヽて代表して記載して!/ヽる。 磁性体からなる界磁側固定子 11、 15 (鉄芯)は設置面 Gに固定されており、界磁側 固定子 11、 15に真空断熱構造の断熱冷媒容器 17、 30と、断熱冷媒容器 17、 30に 収容された超電導材カもなる卷線である界磁コイル 18、 31が取り付けられている。
[0018] 界磁側固定子 11、 15と界磁コイル 18、 31との間には、図 2 (C)に示すように、界磁 コイル 18、 31の全周に亙って空隙 3を設けており、該空隙 3における界磁側固定子 1 1、 15と界磁コイル 18、 31との間隔を bとしている。本実施形態では、 bl = 0. 5mmと している。このように、界磁コイル 18、 31の周囲に空隙 3を設けることにより、本実施 形態の誘導子型モータ 10においても、前記 C型鉄芯で例示した磁束 F2に相当する 磁束を小さくして、界磁コイル 18、 31にかかる磁場を弱くしている。
なお、界磁コイル 18、 31と界磁側固定子 11、 15との間に榭脂、アルミニウム、真鍮 等の非磁性体を介在させることにより、界磁コイル 18、 31と界磁側固定子 11、 15と の間に空隙 3を設けた状態で界磁コイル 18、 31を支持している。
[0019] 界磁側固定子 11、 15は、中央に回転軸 34の外径より大きく穿設された遊嵌穴 l ib 、 15bと、遊嵌穴 l lb、 15bを中心として円環状に凹設された溝部 l la、 15aとを備え ている。断熱冷媒容器 30には液体窒素を循環させた状態で界磁コイル 18、 31を収 容しており、その断熱冷媒容器 17、 30を溝部 l la、 15aに埋設している。
なお、界磁側固定子 11、 15は、パーメンダ一、珪素鋼板、鉄、パーマロイ等の磁性 体で形成している。また、界磁コイル 18、 31を形成する超電導材としては、ビスマス 系やイットリウム系等の超電導材を用いて 、る。
[0020] 回転子 12、 14は左右対称であり、図 3 (A)〜(D)には一方の回転子 14について 代表して記載している。
回転子 12、 14は、円盤形状で非磁性材料力もなり回転軸の取付穴 19a、 26aを有 する支持部 19、 26と、取付穴 19a、 26aを中心として点対称位置に埋設された一対 の S極誘導子 21、 27と、 S極誘導子 21、 27から 90° 回転した位置に埋設された一 対の N極誘導子 20、 28とを備えている。
S極誘導子 21、 27および N極誘導子 20、 28は、電機子側固定子 13と対向する扇 形状の一端面 20a、 21a、 27a、 28aをそれぞれ同心円上の等間隔に配置すると共 に互 、に同一面積として 、る。 [0021] S極誘導子 21、 27の他端面 21b、 27bは、界磁コイル 18、 31の S極発生位置に対 向するように配置され、例えば S極誘導子 27の他端面 27bは、図 2 (C)および図 4 (B )に示すように、界磁コイル 31の外周側に対向配置される円弧状としている。
N極誘導子 20、 28の他端面 20b、 28bは、界磁コイル 18、 31の N極発生位置に対 向するように配置され、例えば N極誘導子 28の他端面 28bは、図 3 (B)および図 4 (C )に示すように、界磁コイル 31の内周側に対向配置される円弧状としている。
[0022] 即ち、 S極誘導子 21、 27および N極誘導子 20、 28は、円弧状の他端面 20b、 21b 、 27b, 28bから軸線方向に向けて断面形状を変化させることで一端面 20a、 21a, 2 7a、 28aでは扇形状となる立体形状としている。また、 S極誘導子 21、 27および N極 誘導子 20、 28の断面積は、他端面 20b、 21b、 27b, 28b力も一端面 20a、 21a, 27 a、 28aまで一定として!/ヽる。また、 S極誘導子 20、 28の他端面 20b、 28bは、 N極誘 導子 21、 27の他端面 21b、 27bと同一面積として!/、る。
なお、支持部 26は、 FRPやステンレス等の非磁性材料で形成している。また、各誘 導子 27、 28は、パーメンダ一、珪素鋼板、鉄、パーマロイ等の磁性体で形成してい る。
[0023] 非磁性体力もなる電機子側固定子 13は、図 1 (A) (B)に示すように、設置面 Gに固 定され、電機子側固定子 13に真空断熱構造の断熱冷媒容器 23と、断熱冷媒容器 2 3に収容された超電導材カゝらなる卷線である電機子コイル 24とが取り付けられている 電機子側固定子 13は、中央に回転軸 34の外径より大きく穿設された遊嵌穴 13bと 、遊嵌穴 13bを中心として周方向に等間隔に穿設された 4つの取付穴 13aとを備えて V、る。断熱冷媒容器 23には液体窒素を循環させた状態で電機子コイル 24を収容し ていると共に電機子コイル 24の中空部には磁性体力もなるフラックスコレクタ 25 (鉄 芯)を配置している。内部に電機子コイル 24を収容した 4つの断熱冷媒容器 23を各 コイル取付穴 13aにそれぞれ埋設して!/ヽる。
[0024] 電機子コイル 24はフラックスコレクタ 25の外周面に直接巻き付けておらず、図 5及 び図 6に示すように、電機子コイル 24の内周面とフラックスコレクタ 25の外周面との間 にも空隙 3を設けている。電機子コイル 24の内周面とフラックスコレクタ 25の外周面と の間隔を b2 = 5mmとしている。界磁コイル 18、 31と同様、電機子コイル 24の周囲に も空隙 3を設けて、電機子コイル 24に力かる磁場を小さくしている。
なお、フラックスコレクタ 25は、パーメンダ一、珪素鋼板、鉄、パーマロイ等の磁性 体で形成している。また、電機子コイル 24を形成する超電導材としては、ビスマス系 やイットリウム系等の超電導材を用いている。また、電機子側固定子 13は、 FRPゃス テンレス等の非磁性材料で形成して 、る。
[0025] 界磁コイル 18、 31と電機子コイル 24には配線を介して給電装置 32が接続され、界 磁コイル 18、 31には直流を供給すると共に、電機子コイル 24には三相交流を供給し ている。このように、界磁コイル 18、 31及び電機子コイル 24に電流を供給すると、回 転子 12、 14の S極誘導子 21、 27および N極誘導子 20、 28が磁ィ匕されて、後述する 原理により回転子 12、 14が回転し、図 7の実線及び破線で示す磁束 F1が励磁され る。界磁側固定子 11、回転子 12、電機子側固定子 13、回転子 14、界磁側固定子 1 5の間にはそれぞれ所要の空隙 4が設けられており、本実施形態の誘導子型モータ 10では、磁束 F1は 8箇所で空隙 4を通過する。この磁束 F1が通過する 8箇所の空隙 4の寸法の総和を aとすると、 aが界磁コイル 18、 31及び電機子コイル 24の周囲に設 けた空隙 3の寸法 bよりも小さくなるように設定して 、る(aく b)。
また、断熱冷媒容器 17、 23、 30には断熱配管を介して液体窒素タンク 33が接続さ れ、液体窒素を冷媒として循環している。
[0026] 次に、誘導子型モータ 10の動作原理について説明する。
図 1中右側の界磁コイル 31に直流を給電すると、外周側に S極が発生すると共に 内周側に N極が発生する。すると、図 4 (A) (B)に示すように、 S極側の磁束が他端 面 27bより S極誘導子 27内に導入され、一端面 27aに S極磁束が現れる。また、図 4 ( A) (C)に示すように、 N極側の磁束は他端面 28bより N極誘導子 28内に導入され、 一端面 28aに N極磁束が現れる。ここで、他端面 27b、 28bは界磁コイル 31の内外 周に沿った同心円上に配置されているので、回転子 14が回転しても S極誘導子 27 の一端面 27aには常に S極が現れ、 N極誘導子 28の一端面 28aには常に N極が現 れることとなる。
同様の原理により、図 1中左側の界磁コイル 18に直流を給電すると、回転子 12の N極誘導子 20の一端面 20aには常に N極が現れ、 S極誘導子 21の一端面 21aには 常に S極が現れる。
[0027] この状態力 電機子コイル 24に三相交流を給電すると、三相間の給電位相ズレに より電機子側固定子 13の軸線回りに回転磁界が発生し、この回転磁界の影響で回 転子 12、 14の N極誘導子 20、 28および S極誘導子 21、 27に軸線回りの回転力が 発生し、回転子 12、 14が回転して回転軸 34が回転駆動される。
[0028] 前記構成によれば、界磁コイル 18、 31及び電機子コイル 24を鉄芯となる界磁側固 定子 11、 15やフラックスコレクタ 25に接触させず、界磁コイル 18、 31及び電機子コ ィル 24の周囲に空隙 3を設けているため、界磁コイル 18、 31と電機子コイル 24の周 囲に励磁される磁束 F2を小さくすることができる。これにより、超電導材からなる界磁 コイル 18、 31と電機子コイル 24に作用する磁場を弱くして、超電導特性を低減させ ないようにし、界磁コイル 18、 31と電機子コイル 24の電流密度を大きくすることがで きる。よって、コイルの小型化が可能となる。
本実施形態では、空隙 3の寸法 bを磁束 F1が通過する空隙 4の寸法の総和 aよりも 大きくなるように設定して、空隙 3を十分に設けているため、磁束 F2の強さを大幅に 低減することができる。
なお、本実施形態では前記空隙に冷媒となる液体窒素を導入して界磁コイルおよ び電機子コイルを冷却しているが、空隙に冷媒を導入せず、冷媒ゃ冷却器によって コイル周辺の空気を冷却し、間接的にコイルを冷却する構成としてもょ 、。
また、本実施形態ではアキシャルギャップ型のモータとしている力 ラジアルギヤッ プ型のモータとしてもよい。
[0029] 図 9は、本発明の第 2実施形態を示す。
本実施形態では、界磁側固定子 11、 15と界磁コイル 18、 31との間に非磁性体 40 を介在させて間隔をあけると共に、フラックスコレクタ 25と電機子コイル 24との間にも 非磁性体 41を介在させて間隔をあけて 、る。
なお、界磁側固定子 11、 15と界磁コイル 18、 31との間に非磁性体 40を介在させ ているが、断熱冷媒容器 17、 30内に冷媒を導入できるスペースを設けて、界磁コィ ル 18、 31の冷却を可能としている。 また、非磁性体としては FRP、ステンレス、すず、アルミニウム、銅等が挙げられる。
[0030] 前記構成としても、界磁コイル 18、 31と電機子コイル 24の周囲に励磁される磁束 F 2を小さくすることができる。これにより、超電導材カもなる界磁コイル 18、 31と電機子 コイル 24に作用する磁場を弱くして、超電導特性を低減させないようにし、界磁コィ ル 18、 31と電機子コイル 24の電流密度を大きくすることができる。よって、コイルの小 型化が可能となる。
なお、他の構成及び作用効果は第 1実施形態と同様のため、同一の符号を付して 説明を省略する。
産業上の利用可能性
[0031] 本発明の超電導装置は、船舶の渡航や自動車の走行のための駆動用モータや、 その他発電機、変圧器、超電導電力貯蔵装置 (SMES)として用いられるものである

Claims

請求の範囲
[1] 超電導材で形成されたコイルと、
前記コイルが取り付けられる鉄芯と、
前記コイルへの通電により発生する前記鉄芯を通る磁気回路中に介在され、磁束 により磁化される磁性体を備え、
前記コイルと鉄芯との間に空隙を設けている、あるいは Zおよび、前記コイルと鉄芯 との間に非磁性体を介在させていることを特徴とする超電導装置。
[2] 前記コイルと鉄芯との間隔を 0. 1mm以上としている請求項 1に記載の超電導装置
[3] 前記磁化させる磁性体を介在させた磁気回路中の空隙寸法の総和を a、前記コィ ルと鉄芯との各間隔の寸法を bとし、 b >aとしている請求項 1または請求項 2に記載の 超電導装置。
[4] 前記磁気回路中に介在させた磁性体は、回転子に取り付けた誘導子力 なり、通 電時に前記回転子を回転作動させる構成としている請求項 1乃至請求項 3のいずれ 力 1項に記載の超電導装置。
[5] 回転軸回りに、鉄芯に取り付けた電機子コイルを有する電機子側固定子と、該電機 子側固定子の両側に配置される誘導子を備えた一対の回転子と、これら回転子の両 側に配置された界磁コイルを有する一対の界磁側固定子とを備え、前記回転子が前 記回転軸に外嵌固定されるアキシャルギャップ型の誘導子型モータ力 なり、 前記電機子コイルおよび界磁コイルを超電導材より形成したコイルとし、前記電機 子コイルと該電機子コイルを取り付けた鉄芯との間に空隙を設けている、あるいは Z および、前記電機子コイルと鉄芯との間に非磁性体を介在させていると共に、前記界 磁コイルと鉄芯となる前記界磁側固定子との間にも空隙を設けている、あるいは Zお よび、前記界磁コイルと界磁側固定子との間に非磁性体を介在させ、
前記界磁コイルは N極と S極とを同心円上に配置する一方、
前記電機子コイルと界磁コイルへの通電時に磁性体となる前記回転子の誘導子は 、前記界磁コイルの N極と対向配置される N極誘導子と、界磁コイルの S極と対向配 置される S極誘導子とを周方向に交互に配置していることを特徴とするアキシャルギ ヤップ型の超電導モータ,
PCT/JP2006/308016 2005-07-28 2006-04-17 超電導装置およびアキシャルギャップ型の超電導モータ WO2007013207A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/996,849 US7932659B2 (en) 2005-07-28 2006-04-17 Superconducting device and axial-type superconducting motor
CN200680027761XA CN101233674B (zh) 2005-07-28 2006-04-17 超导设备和轴向式超导马达
EP06745407A EP1909376A1 (en) 2005-07-28 2006-04-17 Superconducting device and axial gap type superconducting motor
HK08108833.6A HK1117949A1 (en) 2005-07-28 2008-08-11 Superconducting device and axial-type superconducting motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-219264 2005-07-28
JP2005219264A JP4758703B2 (ja) 2005-07-28 2005-07-28 超電導装置およびアキシャルギャップ型の超電導モータ

Publications (1)

Publication Number Publication Date
WO2007013207A1 true WO2007013207A1 (ja) 2007-02-01

Family

ID=37683114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308016 WO2007013207A1 (ja) 2005-07-28 2006-04-17 超電導装置およびアキシャルギャップ型の超電導モータ

Country Status (8)

Country Link
US (1) US7932659B2 (ja)
EP (1) EP1909376A1 (ja)
JP (1) JP4758703B2 (ja)
KR (1) KR20080030627A (ja)
CN (1) CN101233674B (ja)
HK (1) HK1117949A1 (ja)
TW (1) TW200711192A (ja)
WO (1) WO2007013207A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315103B2 (en) 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
GB2456179A (en) * 2008-01-07 2009-07-08 Converteam Ltd Marine power distribution and propulsion systems
US8049358B2 (en) 2007-10-15 2011-11-01 Converteam Technology Ltd Marine power distribution and propulsion systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923301B2 (ja) * 2007-03-05 2012-04-25 国立大学法人福井大学 超電導コイル装置、誘導子型同期機、及び変圧装置
KR100901461B1 (ko) * 2007-07-11 2009-06-08 한국전기연구원 초전도 동기 전동기
JP5732588B2 (ja) 2012-03-06 2015-06-10 株式会社フジクラ 超電導コイル及び超電導機器
KR101324234B1 (ko) 2012-05-14 2013-11-01 연세대학교 산학협력단 초전도 동기 전동기
DE102018217983A1 (de) * 2018-10-22 2020-04-23 Rolls-Royce Deutschland Ltd & Co Kg Rotor und Maschine mit supraleitendem Permanentmagneten in einem Rotorträger
KR102233200B1 (ko) * 2020-07-03 2021-03-29 한산전력 주식회사 구동모듈 내장형 회전자를 갖는 발전시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134811A (en) * 1975-05-19 1976-11-22 Hitachi Ltd Electric motor with no commutator
JPH01318540A (ja) * 1988-06-16 1989-12-25 Mitsubishi Electric Corp 車両用電動機
JPH066907A (ja) 1992-06-18 1994-01-14 Sumitomo Electric Ind Ltd 電気自動車における超電導モータ装置
JPH0638418A (ja) * 1992-07-10 1994-02-10 Toshiba Corp アキシャルギャップ回転電機
JPH09308222A (ja) * 1996-05-10 1997-11-28 General Electric Co <Ge> 界磁巻線集成体
JPH11318066A (ja) * 1999-03-10 1999-11-16 Denso Corp 車両用交流発電機
JP2000513197A (ja) * 1996-08-05 2000-10-03 ラドフスキー,アレクサンデル ブラシレス同期型ロータリ電気的機械装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4739200A (en) * 1986-04-23 1988-04-19 The United States Of America As Represented By The Secretary Of The Air Force Cryogenic wound rotor for lightweight, high voltage generators
CN88201930U (zh) * 1988-03-22 1988-09-07 中国科大研究生院 一种超导励磁电机
US5334899A (en) * 1991-09-30 1994-08-02 Dymytro Skybyk Polyphase brushless DC and AC synchronous machines
US5581135A (en) * 1993-09-15 1996-12-03 Imra Material R & D Co., Ltd. Superconducting motor
US5532663A (en) * 1995-03-13 1996-07-02 General Electric Company Support structure for a superconducting coil
US5672921A (en) * 1995-03-13 1997-09-30 General Electric Company Superconducting field winding assemblage for an electrical machine
JP3363682B2 (ja) * 1995-12-19 2003-01-08 株式会社ミツバ 磁石発電機
US5774032A (en) * 1996-08-23 1998-06-30 General Electric Company Cooling arrangement for a superconducting coil
US5982070A (en) * 1996-12-27 1999-11-09 Light Engineering Corporation Electric motor or generator having amorphous core pieces being individually accomodated in a dielectric housing
US7315103B2 (en) * 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
JP4653648B2 (ja) * 2004-12-24 2011-03-16 住友電気工業株式会社 誘導子型同期機
JP4680708B2 (ja) * 2005-07-28 2011-05-11 住友電気工業株式会社 アキシャル型モータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134811A (en) * 1975-05-19 1976-11-22 Hitachi Ltd Electric motor with no commutator
JPH01318540A (ja) * 1988-06-16 1989-12-25 Mitsubishi Electric Corp 車両用電動機
JPH066907A (ja) 1992-06-18 1994-01-14 Sumitomo Electric Ind Ltd 電気自動車における超電導モータ装置
JPH0638418A (ja) * 1992-07-10 1994-02-10 Toshiba Corp アキシャルギャップ回転電機
JPH09308222A (ja) * 1996-05-10 1997-11-28 General Electric Co <Ge> 界磁巻線集成体
JP2000513197A (ja) * 1996-08-05 2000-10-03 ラドフスキー,アレクサンデル ブラシレス同期型ロータリ電気的機械装置
JPH11318066A (ja) * 1999-03-10 1999-11-16 Denso Corp 車両用交流発電機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7315103B2 (en) 2004-03-03 2008-01-01 General Electric Company Superconducting rotating machines with stationary field coils
US8049358B2 (en) 2007-10-15 2011-11-01 Converteam Technology Ltd Marine power distribution and propulsion systems
GB2456179A (en) * 2008-01-07 2009-07-08 Converteam Ltd Marine power distribution and propulsion systems
GB2456179B (en) * 2008-01-07 2012-02-15 Converteam Technology Ltd Marine power distribution and propulsion systems

Also Published As

Publication number Publication date
HK1117949A1 (en) 2009-01-23
EP1909376A1 (en) 2008-04-09
JP2007037343A (ja) 2007-02-08
US20100148625A1 (en) 2010-06-17
TW200711192A (en) 2007-03-16
US7932659B2 (en) 2011-04-26
JP4758703B2 (ja) 2011-08-31
KR20080030627A (ko) 2008-04-04
CN101233674A (zh) 2008-07-30
CN101233674B (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
US11784529B2 (en) Torque tunnel Halbach Array electric machine
WO2007013207A1 (ja) 超電導装置およびアキシャルギャップ型の超電導モータ
US7598647B2 (en) Inductor-type synchronous machine
US6175178B1 (en) Low inductance electrical machine for flywheel energy storage
JP4890119B2 (ja) 超電導コイル装置及び誘導子型同期機
JP2013055872A (ja) スイッチドリラクタンスモータ
JP4782303B2 (ja) 永久磁石発電機
JP2015534423A (ja) 高効率acdc電気モータ及び可変速度と可変電力と幾何学的隔離と高効率伝導体とを用いた発電システム。
JP4920322B2 (ja) 誘導子型同期機
JP4751134B2 (ja) 誘導子型モータおよびそれを備えた車両
CN105576862A (zh) 一种全超导电励磁低速直驱同步发电机
JP4751135B2 (ja) 誘導子型発電・駆動両用モータおよびそれを備えた自動車
US20220085674A1 (en) Rotary electric machine
JP4680708B2 (ja) アキシャル型モータ
JP2005269868A (ja) 超電導モータ装置および該超電導モータ装置を用いた移動体
CN115224903A (zh) 一种混合励磁式无轴承开关磁阻电机
KR20170058627A (ko) 전기 모터
JP4923301B2 (ja) 超電導コイル装置、誘導子型同期機、及び変圧装置
JP2020039240A (ja) 回転電機
JP2012034483A (ja) アキシャルギャップモータ
JP2008074263A (ja) 駆動装置
JP4706351B2 (ja) 誘導子型モータ
JPS5899255A (ja) 回転電気機械
CN116647090A (zh) 一种永磁偏置型无轴承开关磁阻电机
CN109302034A (zh) 混合动力汽车用电动发电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027761.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11996849

Country of ref document: US

Ref document number: 421/CHENP/2008

Country of ref document: IN

Ref document number: 1020087002065

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006745407

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE