WO2007010674A1 - コークスの製造方法、及び、銑鉄の製造方法 - Google Patents

コークスの製造方法、及び、銑鉄の製造方法 Download PDF

Info

Publication number
WO2007010674A1
WO2007010674A1 PCT/JP2006/310578 JP2006310578W WO2007010674A1 WO 2007010674 A1 WO2007010674 A1 WO 2007010674A1 JP 2006310578 W JP2006310578 W JP 2006310578W WO 2007010674 A1 WO2007010674 A1 WO 2007010674A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
less
mass
coatus
carbon content
Prior art date
Application number
PCT/JP2006/310578
Other languages
English (en)
French (fr)
Inventor
Noriyuki Okuyama
Atsushi Furuya
Nobuyuki Komatsu
Kanji Matsudaira
Yuko Nishibata
Masaru Nishimura
Original Assignee
Kansai Coke And Chemicals Co., Ltd.
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke And Chemicals Co., Ltd., Kabushiki Kaisha Kobe Seiko Sho filed Critical Kansai Coke And Chemicals Co., Ltd.
Priority to CN200680026729XA priority Critical patent/CN101233211B/zh
Priority to KR1020087003871A priority patent/KR101129061B1/ko
Publication of WO2007010674A1 publication Critical patent/WO2007010674A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/007Conditions of the cokes or characterised by the cokes used

Definitions

  • the present invention relates to a coatus production technique using modified coking coal, and a pig iron production technique using the technique.
  • blended coal of high grade strong caking coal and low grade weak caking coal or non-caking coal is used. This is because blending high-grade strong caking coal improves the strength of the resulting coatus and further ensures gas permeability during operation in the blast furnace.
  • high-grade strong caking coal is gradually withering, its raw material costs are rising, and a large amount of low-grade weak caking coal and non-caking coal are modified.
  • the present invention has been made in view of the above circumstances, and a technique for improving the strength of the resulting coatus, and, when the coatus strength is comparable, is a valuable raw material for producing coatus.
  • the purpose is to provide technology that reduces the amount of strong caking coal and increases the usage of weak caking coal or non-caking coal.
  • the production method of the coatus of the present invention is a blended coal containing coal having a carbon content (daf) of 85% or more and 91% or less and coal having a carbon content (daf) of 60% or more and less than 85%.
  • a gist in using raw coal containing 1 mass part or less of coal substantially free of ash with respect to 100 mass parts.
  • Coal is generally classified into anthracite, strong caking coal, caking coal, weak caking coal, non-caking coal, lignite, and peat, but the definition is not necessarily clear.
  • a part of caking coal may be called adhesive charcoal. Therefore, in the present invention, anthracite, strongly caking coal, caking coal, weak caking coal, non-caking coal, etc.
  • anthracite is carbon content (daf) 91 Coal with a carbon content (daf) of 85% or more and 91% or less, coal with a carbon content (daf) of 83% or more and less than 85%, weak caking Coal is a coal with a carbon content (daf) of 80% or more and less than 83%, non-coking coal is a coal with a carbon content (daf) of 78% or more and less than 80%, and lignite has a carbon content (daf) of 70 % Or more and less than 78%, and peat shall be coal with a carbon content (daf) of less than 70%.
  • coal with a carbon content (daf) of 85% to 91% is simply referred to as ⁇ strong caking coal ''
  • coal with a carbon content (daf) of 60% to less than 85% is simply referred to as ⁇ non-caking coal ''.
  • Etc.
  • the strength of the coatus obtained can be improved by using a raw coal in which coal containing substantially no ash is contained in an amount within the above predetermined range.
  • a raw coal in which coal containing substantially no ash is contained in an amount within the above predetermined range.
  • the coal substantially free of ash for example, it is preferable to use a soluble component obtained by extraction using a coal-powered organic solvent having a carbon content (daf) of 60% or more and less than 95%.
  • the organic solvent include organic solvents containing a bicyclic aromatic compound as a main component.
  • the present invention includes a method for producing pig iron using the coatus obtained by the above-described method for producing coatus.
  • a weak caking coal or a non-caking coal having a carbon content (daf) of 60% or more and less than 95%.
  • Etc. Quality coal can be used, and it can cope with the problem of rising raw material costs.
  • the resulting coatus has a feature of excellent strength, and can be suitably used for the production of pig iron in a blast furnace.
  • FIG. 1 is an explanatory diagram illustrating an apparatus and a process for producing ashless coal used in the present invention.
  • the production method of the coatus of the present invention is a blended coal containing coal having a carbon content (daf) of 85% or more and 91% or less and coal having a carbon content (daf) of 60% or more and less than 85%.
  • Coking coal containing 1 part by mass or less of coal containing substantially no ash with respect to 0 part by mass is dry-distilled.
  • the ashless coal may be coal that does not substantially contain ash, but may contain a small amount of ash.
  • the ash content is preferably 5,000 Oppm or less, more preferably 2, OOOppm or less.
  • Ash is a residual inorganic substance when coal is incinerated by heating at 815 ° C.
  • ash, alumina, iron oxide, lime, magnesia, alkali metal, etc. can be used.
  • coal power having a carbon content (daf) of 60% or more and less than 95% can be obtained by extraction with an organic solvent. It is preferable to use a soluble component. This is because if non-coking coal or the like is used as a starting material, it will not be affected by the problem of drought of strong caking coal.
  • coal extracted with an organic solvent includes weakly caking coal, non-caking coal, lignite, or a mixture thereof having a carbon content (daf) of 70% or more and less than 83%. Use is a preferred embodiment.
  • the ashless coal is obtained by mixing coal with an organic solvent having a carbon content (daf) of 60% or more and less than 95% (more preferably 60% or more and less than 85%).
  • a slurry is prepared, the slurry is heated and aged to extract a soluble component in the organic solvent, and the resulting slurry is separated into a supernatant and a concentrated solution in which a solid phase component is concentrated.
  • the ashless coal can be obtained by filtering and removing the organic solvent by evaporation.
  • FIG. 1 is an explanatory diagram illustrating an apparatus and process for producing ashless coal. In tank 1, carbon content (d.
  • Coal with 60% or more and less than 95% and an organic solvent are mixed to form a slurry.
  • the obtained slurry is supplied to an extraction tank 4 where an extraction process is performed by a pump 2. At that time, the slurry is heated to a predetermined temperature by the preheater 3.
  • the extraction tank 4 After the soluble component is extracted into the organic solvent while stirring the slurry using the stirrer 10, the obtained slurry is supplied to the gravity settling tank 5.
  • gravity sedimentation is performed to settle the solid phase component (arrow 11), and the slurry is separated into a supernatant liquid and a liquid in which the solid phase component is concentrated.
  • the obtained supernatant is supplied to the filter unit 8, and the solid phase component concentrate settled in the gravity sedimentation tank 5 is collected in the solid phase component concentrate receiver 6.
  • the supernatant liquid is filtered by the filter member 7 of the filter unit 8, and the obtained filtrate is recovered in a supernatant liquid receiver 9 that recovers the supernatant liquid.
  • ashless coal can be obtained by evaporating and removing the recovered supernatant liquid organic solvent.
  • a general drying method such as a spray drying method, a distillation method, or a vacuum drying method can be applied.
  • the coal concentration in the slurry is suitably 10 to 35% by mass.
  • the conditions for heating and aging the slurry to extract soluble components in the organic solvent include, for example, Hold the slurry at 300 ° C to 420 ° C for 5 to 120 minutes to dissolve the soluble components in the coal. This is because a temperature lower than 300 ° C is insufficient to weaken the bonds between the molecules constituting the coal, and the proportion of soluble components that can extract coal power also decreases.
  • the temperature is higher than 420 ° C, the pyrolysis reaction of coal becomes active and recombination of generated pyrolysis radicals occurs, so that the ratio of soluble components to be extracted also decreases.
  • the temperature at which the obtained slurry is separated into the supernatant liquid and the solid phase component concentrate by gravity sedimentation is preferably 300 ° C or higher and 420 ° C or lower. This is because if the temperature is lower than 300 ° C, a part of the components dissolved in the liquid phase component is precipitated, and the yield of ashless coal may be lowered.
  • the organic solvent a solvent having a high coal dissolving power is preferred to a coal structural unit.
  • Organic solvents based on similar bicyclic aromatic compounds are preferred.
  • the organic solvent preferably has a boiling point of 180 ° C to 330 ° C. When the boiling point is lower than 180 ° C, the recovery rate of the organic solvent evaporated and removed from the supernatant may be lowered. On the other hand, if the boiling point exceeds 330 ° C, separation of coal and organic solvent becomes difficult, and the recovery rate of organic solvent may also decrease.
  • bicyclic aromatic compound examples include, for example, naphthalene (boiling point: 218 ° C); methylnaphthalene (boiling point: 241 to 242 ° C), dimethylnaphthalene (boiling point: 261 to 272 ° C), trimethylnaphthalene.
  • naphthalenes having an aliphatic side chain such as biphenyl; biphenyls having an aliphatic side chain or an aromatic substituent, or a mixture thereof.
  • Examples of coal having a carbon content (daf) of 60% or more and less than 95% used as a starting material for producing ashless coal include those having the following characteristics, for example. It is preferable to use it.
  • the volatile content of the non-caking coal or the like is preferably 30% or more, more preferably 32% or more, preferably 40% or less, more preferably 36% or less.
  • the average reflectance of the non-caking coal or the like is preferably 0.6 or more, more preferably 0.8 or more, preferably 1.0 or less, more preferably 0.9 or less.
  • the total inert such as non-caking coal is preferably 5% or more, more preferably 15% or more, preferably 35% or less, more preferably 20% or less.
  • the Gieseler maximum fluidity (logMFD) such as non-coking coal is preferably 3.O (logddpm) or more, more preferably 3.3 (logddpm) or more, preferably 4.5 (logddpm) or less, more Preferably it is 3.6 (logddpm) or less.
  • Volatile content is measured by the method stipulated in JIS M8812.
  • Average reflectance is measured by the method stipulated by JIS M8816. it can.
  • Total Inner HTI is calculated from the following formula using the ratio of semi-Fujinit and the group of fine-textured components (maceral * group) in the analysis value of coal micro-structural components (maceral) of JIS M8816. Can be calculated.
  • MM mineral matter
  • A ash (anhydrous base, measured according to JIS M8812)
  • S total sulfur (anhydrous base, measured according to JIS M8813).
  • the ashless coal of 1 part by mass or less, more preferably 0.7 parts by mass or less, and further preferably 0.5 parts by mass or less with respect to 100 parts by mass of the blended coal described later. It is preferable to use raw coal containing
  • the lower limit of the content of ashless coal is not particularly limited, but is preferably 0.2 parts by mass or more.
  • the blended coal has a carbon content (daf) of 85% to 91%, and carbon content.
  • a carbon content (daf) of 85% to 91% there is no particular limitation as long as it contains coal with a rate (daf) of 60% or more and less than 85%.
  • the coal having a carbon content (daf) of 60% or more and less than 85% more preferable one is weakly caking coal, non-caking coal having a carbon content (daf) of 78% or more and less than 83%, or Mention may be made of these mixtures.
  • a combination of coal with a carbon content (daf) of 85% or more and 91% or less and coal with a carbon content (daf) of 60% or more and less than 85% is, for example, strongly caking coal and weak coal. Examples include an embodiment composed of caking coal, an embodiment composed of strong caking coal and non-caking coal, an embodiment consisting of strong caking coal, weak caking coal and non-caking coal, and the like.
  • Coal having a carbon content (daf) of 85% or more and 91% or less in blended coal is blended in order to increase the resulting coatus strength, and the blending amount thereof is When the total blended coal is 100 parts by mass, 10 parts by mass or more is preferable, and 40 parts by mass or more is more preferable. If the amount of strong caking coal is less than 10 parts by mass, the caking component is too short, so even if 1 mass part or less of ashless coal is added to 100 parts by mass of coal blend, it is desirable. In some cases, it may not be possible to obtain the coust strength.
  • the upper limit of the amount of strong caking coal is not particularly limited, but 100 parts by mass is preferable, 90 parts by mass is more preferable, 60 parts by mass, and force S is more preferable. If the amount of strong caking coal is increased too much, the raw material cost during the production of coatus will increase.
  • coal with a carbon content (daf) of 60% or more and less than 85% (non-caking coal, etc.) is preferably blended so that the total blending amount with strong caking coal is 100 parts by mass. .
  • the blended coal obtained by blending strongly caking coal and non-caking coal or the like preferably has the following characteristics.
  • the volatile content of the blended coal is preferably 15% or more, more preferably 26% or more, preferably 35% or less, more preferably 29% or less.
  • the average reflectance of the blended coal is preferably 0.65 or more, more preferably 1.00 or more, preferably 1.60 or less, more preferably 1.10 or less.
  • the total inertness of the blended coal is preferably 15% or more, more preferably 20% or more, preferably 35% or less, more preferably 23% or less.
  • the coalescer maximum fluidity (logMFD) of the blended coal is preferably 0.7 (logddpm) or more, more preferably 2.
  • the granular composition of the blended coal is 3 mm or less, preferably 50% or more, more preferably 75% or more. Preferably, it is 90% or less, more preferably 85% or less.
  • the wide numerical range of each characteristic is a suitable range that can be used as a raw material for blast furnace coatas. By making each of the characteristics within a narrower numerical range, it is possible to substantially reduce the strength of the coatus. Is obtained.
  • the method for producing the coatus of the present invention is a blended coal containing coal having a carbon content (daf) of 85% to 91% and coal having a carbon content (daf) of 60% to less than 85%. Coking coal containing 1 part by mass or less of coal containing substantially no ash with respect to 100 parts by mass is dry-distilled.
  • the conditions for the carbonization are not particularly limited, and normal carbonization conditions in the production of Cotas using a coke oven can be adopted.
  • the conditions are 950 ° C or higher, more preferably 1000 ° C or higher. It is preferable to dry distillation at a temperature of 1200 ° C. or lower, more preferably 1050 ° C. or lower, for 8 hours or longer, more preferably 10 hours or longer, more preferably 24 hours or shorter, more preferably 20 hours or shorter.
  • the present invention includes a pig iron production method characterized by using the coatus obtained by the coatus production method of the present invention. Since the coatus obtained by the production method of the present invention is excellent in strength, it can be suitably used for producing pig iron in a blast furnace. That is, if the coatus obtained by the manufacturing method of the present invention is used, the gas permeability during the pig iron production in the blast furnace is improved.
  • a method for producing pig iron in the blast furnace a known method may be adopted.For example, iron ore and coatus are alternately laminated in a blast furnace in layers, and hot air is blown from the lower part of the blast furnace, and fine powder as required. The method of blowing charcoal can be mentioned.
  • ashless coal was added to the blended coal to prepare raw coal.
  • a soluble component ash content 600 ppm
  • the ashless coal was prepared by the following method using the apparatus shown in FIG. Australian caking coal (carbon content (da f) 84%)
  • the resulting slurry is preheated in 3
  • soluble components were extracted from Australian caking coal in the extraction tank 4.
  • the slurry after the extraction treatment is supplied to the gravity sedimentation tank 5 at a flow rate of 15 kgZh, subjected to gravity sedimentation, separated into a supernatant and a solid phase component concentrate, and the supernatant is supplied to the filter unit 8 at a flow rate of 3 kgZh.
  • the solid phase component concentrate was discharged from the bottom of the gravity sedimentation tank 5 to the solid phase component concentrate receiver 6 at a flow rate of 12 kgZh.
  • the supernatant liquid was filtered through the filter unit 8 and then collected in the supernatant liquid receiver 9, and the recovered liquid organic solvent was removed by evaporation by a spray drying method to obtain ashless coal (ash content: 600 ppm).
  • the coking coal was filled into a can container having a size of 378 mm in width X 121 mm in length X 114 mm in height so as to have a desired density (720 kgZm 3 and 780 kgZm 3 ).
  • Four of these cans are placed in a steel retort (size: width 380mm x length 430mm x height 350mm), and the retort is placed in a double-sided electric furnace that can heat the cans in the width direction.
  • the raw coal was carbonized. Dry distillation was performed at 1000 ° C for 10 hours, after which the retort was removed from the electric furnace and allowed to cool naturally over about 16 hours.
  • the sized Kotas was washed with distilled water to remove the Kotas fine powder adhering during sizing (at the time of cutting), and dried with a dryer at 150 ° C ⁇ 2 ° C. If the packing density of the coking coal is 78 OkgZm 3 so that the total weight of the sized granule after drying is 200 g, select 12, 12, or 11 in order of head, body, and tail force. If the packing density of the coal is 720KgZm 3, head, body, turn 12 is also the tail force, 13, and 11 selected to obtain a sample for strength measurement. [0031] Using the obtained strength measurement sample, the type I strength was measured.
  • a cylindrical container made of SUS (length: 720 mm, circular bottom diameter: 132 mm) was used as the equipment for the I-type strength test, and 200 g of the sample was placed in this container, and 20 times per minute. Rotating at a rotational speed of 30 minutes for 30 minutes, impact was applied by a total of 600 rotational movements.
  • This cylinder was rotated by setting a rotation axis at 360 mm, which is the middle of the cylinder length of 720 mm, and rotating the cylinder around this rotation axis so that the bottom of the cylinder draws a circle with a diameter of 720 mm.
  • the cylindrical container force was also taken out and divided by a 9.5 mm sieve to measure the mass on the sieve. At this time, the mass that was applied to the sieve was measured as the mass on the sieve.
  • the type I strength index was calculated as follows, and the results are shown in Table 1.
  • Type I strength index 1 6 °° 100 X 9.5 mm Mass on screen (unit: g) / 200 g
  • the rotational strength of the coatus can be divided into one that evaluates the volume fracture in which the coatus mass breaks as a large mass and one that evaluates the surface fracture due to surface abrasion. Mold strength index 1 6
  • 9.5 is interpreted as an index used to assess surface fracture.
  • Cortus No. 12 is a case where the ratio of the strong caking coal is lower than that of Cortus No. 8, and it can be seen that the resulting Kotas strength is reduced. However, the strength of the coatus was improved by adding 0.5 parts by mass of ashless coal (coatus No. 13).
  • the present invention can be suitably applied to the production of coatas and further to the production of pig iron in a blast furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

 コークス原料炭である強粘結炭を代替するものとして、弱粘結炭または非粘結炭を改質した石炭を用いて、得られるコークスの強度を向上する技術、及び、コークス強度が同程度の場合には、貴重な強粘結炭の使用量を低減する技術を提供する。本発明は、コークスの原料炭として有用な強粘結炭を代替するものとして、炭素質含有率(d.a.f)が60%以上95%未満の石炭を改質して得られる灰分を実質的に含有しない石炭を所定量使用するところに特徴がある。

Description

明 細 書
コータスの製造方法、及び、銑鉄の製造方法
技術分野
[0001] 本発明は、改質された原料炭を使用するコータス製造技術、及び、該技術を利用 する銑鉄の製造技術に関するものである。
背景技術
[0002] 高炉用コータスを製造する原料炭としては、高品位の強粘結炭と、低品位の弱粘結 炭または非粘結炭などとの配合炭が使用されている。高品位の強粘結炭を配合する ことによって、得られるコータスの強度が向上し、さらに高炉における操業時のガス通 気性を確保できるからである。し力しながら、高品位の強粘結炭は次第に枯渴しつつ あり、その原料コストが高騰しつつあり、多量に存在する低品位の弱粘結炭、及び、 非粘結炭などを改質する技術が検討されて 、る (特開昭 51— 107301号公報、特開 昭 51— 107302号公報、特開平 7— 53965号公報、特開平 8— 269459号公報、 西 撒ら、 「SRCのコータス原料としての利用について」、第 72回コータス特別会予 稿集、 p. 46-p. 49 (1982) (以下、単に「第 72回コータス特別会予稿集」という。 ) )
[0003] 例えば、特開昭 51— 107301号公報、及び特開昭 51— 107302号公報には、微 粉炭と溶剤とを混合して、常圧または加圧下で、場合によっては水素雰囲気中でカロ 熱して得られる石炭改質物を処理して 60〜25%の揮発分を有し、かつ 90%以上の 粘結力指数を示す粘結性補填剤を弱粘結炭または非粘結炭に配合することが開示 されている。特開平 7— 53965号公報及び第 72回コータス特別会予稿集には、褐炭 などを水素供与性溶媒に混ぜてスラリーとし、これを高温'高圧下で触媒を用いて水 添、液化を行い、最終的に精製される SRC (溶剤精製炭)を分離抽出してこれをコー タス用原料炭に利用する方法が開示されている。
発明の開示
[0004] 本発明は、上記事情に鑑みてなされたものであり、得られるコータスの強度を向上 する技術、及び、コータス強度が同程度の場合には、コータス製造原料である貴重な 強粘結炭の使用量を減らし、弱粘結炭又は非粘結炭などの使用量を増加させる技 術を提供することを目的とする。
[0005] 本発明のコータスの製造方法は、炭素含有率 (d. a. f. )が 85%以上 91%以下の 石炭と、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭とを含有する配合炭 10 0質量部に対して、灰分を実質的に含有しない石炭を 1質量部以下含有する原料炭 を使用するところに要旨がある。石炭は、一般に無煙炭、強粘結炭、粘結炭、弱粘結 炭、非粘結炭、褐炭、泥炭などに分類されているが、その定義は必ずしも明確ではな い。粘結炭の一部を粘着炭という場合もある。そこで、本発明では、無煙炭、強粘結 炭、粘結炭、弱粘結炭、非粘結炭などを炭素含有率 (d. a. f)で分類するものとし、 無煙炭を炭素含有率 (d. a. f. ) 91 %超の石炭、強粘結炭を炭素含有率 (d. a. f. ) が 85%以上 91%以下の石炭、粘結炭を炭素含有率 (d. a. f. )が 83%以上 85%未 満の石炭、弱粘結炭を炭素含有率 (d. a. f. )が 80%以上 83%未満の石炭、非粘 結炭を炭素含有率 (d. a. f. )が 78%以上 80%未満の石炭とし、褐炭を炭素含有率 (d. a. f. )が 70%以上 78%未満の石炭とし、及び、泥炭を炭素含有率 (d. a. f. )が 70%未満の石炭とする。ここで、炭素含有率(d. a. f. =dry ash free)は、石炭の 水分と灰分を除いた有機質 (C、 H、 0、 S、 N)の炭素の含有率 (質量%)をいい、 JIS M8819に準じて測定することができる。以下、炭素含有率 (d. a. f. )が 85%以上 91 %以下の石炭を単に「強粘結炭」と称し、炭素含有率 (d. a. f. )が 60%以上 85 %未満の石炭を単に「非粘結炭等」と称する場合がある。
[0006] 本発明では、前記配合炭に対して、灰分を実質的に含有しない石炭を上記所定範 囲の量含有させた原料炭を使用すれば、得られるコータス強度が向上する。前記灰 分を実質的に含有しない石炭としては、例えば、炭素含有率 (d. a. f. )が 60%以上 95%未満の石炭力 有機溶媒を用いて抽出して得られる可溶成分を用いることが好 ましい。前記有機溶媒としては、例えば、 2環芳香族化合物を主成分とする有機溶媒 を挙げることができる。本発明には、上記コータスの製造方法により得られるコータス を用いる銑鉄の製造方法が含まれる。
[0007] 本発明によれば、コータス製造原料である強粘結炭の一部を代替するものとして、 炭素含有率 (d. a. f. )が 60%以上 95%未満の弱粘結炭または非粘結炭などを改 質した石炭を用いることができ、強粘結炭の枯渴ゃ原料コストの高騰問題に対応でき る。また、得られるコータスは強度に優れるという特徴も有しており、高炉における銑 鉄の製造に好適に利用できる。
図面の簡単な説明
[0008] [図 1]本発明で使用する無灰炭を製造する装置およびプロセスを例示する説明図 発明を実施するための最良の形態
[0009] 本発明のコータスの製造方法は、炭素含有率 (d. a. f. )が 85%以上 91%以下の 石炭と、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭とを含有する配合炭 10
0質量部に対して、灰分を実質的に含有しない石炭を 1質量部以下含有する原料炭 を乾留することを特徴とする。
[0010] まず、本発明で使用する灰分を実質的に含有しない石炭 (以下、「無灰炭」と称す る場合がある)について説明する。前記無灰炭は、灰分を実質的に含まない石炭で あればよいが、微量の灰分を含有してもよい。斯かる場合の灰分の含有率は、 5, 00 Oppm以下であることが好ましぐ 2, OOOppm以下であることがより好ましい。尚、灰 分は、石炭を 815°Cで加熱して灰化したときの残留無機物であり、例えば、ケィ酸、 アルミナ、酸化鉄、石灰、マグネシア、アルカリ金属など力も成る。
[0011] 本発明では、前記無灰炭として、炭素含有率 (d. a. f. )が 60%以上 95%未満 (よ り好ましくは 60%以上 85%未満)の石炭力も有機溶媒で抽出して得られる可溶成分 を用いることが好ましい。非粘結炭等を出発原料とすれば、強粘結炭の枯渴の問題 に左右されないからである。特に本発明では、有機溶媒で抽出する石炭としては、炭 素含有率 (d. a. f. )が 70%以上 83%未満の弱粘結炭、非粘結炭、及び、褐炭、又 は、これらの混合物を使用することが好ましい態様である。
[0012] 具体的には、前記無灰炭は、炭素含有率 (d. a. f. )が 60%以上 95%未満 (より好 ましくは 60%以上 85%未満)の石炭と有機溶媒とを混合してスラリーを調製し、前記 スラリーを加熱し熟成して前記有機溶媒中に可溶成分を抽出させ、得られたスラリー を上澄み液と固相成分が濃縮された濃縮液とに分離し、前記上澄み液を濾過して有 機溶媒を蒸発除去することにより無灰炭を得ることができる。図 1は、無灰炭を製造す る装置およびプロセスを例示する説明図である。タンク 1において、炭素含有率 (d. a . f. )が 60%以上 95%未満の石炭と有機溶媒とを混合し、スラリーを生成する。得ら れたスラリーは、ポンプ 2によって抽出処理を行う抽出槽 4に供給される。その際、スラ リーは、予熱器 3によって所定の温度に加温される。抽出槽 4において、スラリーを撹 拌機 10を用いて撹拌しながら可溶成分を有機溶媒中に抽出させた後、得られたスラ リーは、重力沈降槽 5に供給される。重力沈降槽 5では、重力沈降を行って固相成分 を沈降させて (矢印 11)、スラリーを上澄み液と固相成分が濃縮された液とに分離す る。得られた上澄み液は、フィルターユニット 8に供給され、重力沈降槽 5内で沈降し た固相成分濃縮液は、固相成分濃縮液受け器 6に回収される。上澄み液は、フィル ターユニット 8のフィルタ一部材 7で濾過され、得られた濾液は、上澄み液を回収する 上澄み液受け器 9に回収される。次いで、回収された上澄み液力 有機溶媒を蒸発 除去することによって無灰炭を得ることができる。上澄み液から有機溶媒を蒸発除去 する方法としては、例えば、スプレードライ法、蒸留法、真空乾燥法など、一般的な乾 燥方法を適用できる。
[0013] 前記スラリー中の石炭濃度は、 10〜35質量%とすることが適切であり、前記スラリ 一を加熱し熟成して有機溶媒中に可溶成分を抽出させる条件としては、例えば、前 記スラリーを 300°C〜420°Cで 5〜120分間保持し、石炭中の可溶成分を可溶ィ匕さ せる。 300°Cより低い温度では、石炭を構成する分子間の結合を弱めるには不十分 であり、石炭力も抽出できる可溶成分の割合が低下するからである。一方、 420°Cよ り高い温度では、石炭の熱分解反応が活発になり、生成した熱分解ラジカルの再結 合が起こるため、やはり抽出される可溶成分の割合が低下する。一方、 300〜420°C の温度では、石炭を構成する分子間の結合が緩み、穏和な熱分解が起こり石炭から 抽出される可溶成分の割合が高くなる。この際、石炭の穏和な熱分解により、主に平 均沸点 (Tb50: 50%留出温度)が 200〜300°Cにある芳香族が豊富な成分が生成 し、有機溶媒の一部として有効に利用できる。
[0014] 得られたスラリーを重力沈降により上澄み液と固相成分濃縮液とに分離する温度は 、 300°C以上 420°C以下が好ましい。 300°C未満では、液相成分に溶解している成 分の一部が析出し、無灰炭の収率が低下する場合があるからである。
[0015] 前記有機溶媒としては、石炭の溶解力が高い溶媒が好ましぐ石炭構造単位に近 似した 2環芳香族化合物を主成分とする有機溶媒が好ましい。また、前記有機溶媒と しては、その沸点が 180°C〜330°Cのものが好適である。沸点が 180°Cより低い場合 には、上澄み液から蒸発除去させた有機溶媒の回収率が低下する場合がある。一方 、沸点が 330°Cを超えると、石炭と有機溶媒との分離が困難となり、やはり有機溶媒 の回収率が低下する場合がある。前記 2環芳香族化合物の具体例としては、例えば 、ナフタレン(沸点: 218°C);メチルナフタレン(沸点: 241〜242°C)、ジメチルナフタ レン (沸点: 261〜272°C)、トリメチルナフタレンなどの脂肪族側鎖をもつナフタレン 類;ビフ ニル;脂肪族側鎖若しくは芳香族置換基を有するビフ ニル類、或いは、こ れらの混合物などを挙げることができる。
[0016] 無灰炭を作製するために出発原料として使用する炭素含有率 (d. a. f. )が 60% 以上 95%未満の石炭(非粘結炭等)としては、例えば、以下の特性を有するものを使 用するのが好ましい。前記非粘結炭等の揮発分は、好ましくは 30%以上、より好まし くは 32%以上であり、好ましくは 40%以下、より好ましくは 36%以下である。前記非 粘結炭等の平均反射率は、好ましくは 0. 6以上、より好ましくは 0. 8以上であり、好ま しくは 1. 0以下、より好ましくは 0. 9以下である。前記非粘結炭等のトータルイナート は、好ましくは 5%以上、より好ましくは 15%以上であり、好ましくは 35%以下、より好 ましくは 20%以下である。前記非粘結炭等のギーセラー最高流動度 (logMFD)は、 好ましくは 3. O (logddpm)以上、より好ましくは 3. 3 (logddpm)以上であり、好ましく は 4. 5 (logddpm)以下、より好ましくは 3. 6 (logddpm)以下である。揮発分は、 JIS M8812に規定された方法、平均反射率は、 JIS M8816に規定された方法、ギー セラー最高流動度 (logMFD)は、 JIS M8801に規定されたギーセラープラストメ一 タ法によって測定できる。また、トータルイナ一 HTI)は、 JIS M8816の石炭微細組 織成分 (マセラル)の分析値のうち、セミフジニットの割合および微細組織成分群 (マ セラル*グループ)の割合を用いて、下記式にて算出することができる。
[0017] [数 1] (100-MM) x補正イナ一チニット トータルイナ一ト(TI) = + MM
100
100(1.08A+0.55S)/2.8
[100-(1.08A+0.55S)]/1.35+(1.08A+0.55S)/2.8
補正ィナ一チニット =イナ一チニット%—セミフジニット% 1 /3
式中、 MM (ミネラルマター)は鉱物質を、 Aは灰分 (無水ベース、 JIS M8812に て測定)を、 Sは全硫黄分 (無水ベース、 JIS M8813にて測定)を意味する。
[0018] 本発明のコータス製造方法では、後述する配合炭 100質量部に対して、 1質量部 以下、より好ましくは 0. 7質量部以下、さらに好ましくは 0. 5質量部以下の無灰炭を 含有する原料炭を使用することが好ましい。無灰炭の含有量の下限は、特に限定さ れるものではないが、 0. 2質量部以上であることが好ましい。
[0019] 無灰炭を 0. 2質量部以上含有させることによって、得られるコータスの強度につい て実質的に有意な向上が認められる。特に、無灰炭の含有量が 0. 5質量部の場合 には、得られるコータスの強度が最高値を有する。一方、無灰炭の含有量が 0. 5質 量部を超えて 1質量部以下の場合、無灰炭を無添加の場合に比べてコータス強度は 優れている力 無灰炭の含有量を増加するにつれて、得られるコータス強度が低下 する傾向がある。そして、 1質量部を超えると、無灰炭を無添加の場合に比べて、コ 一タス強度が却って低下する。
[0020] 次に、本発明において使用する炭素含有率 (d. a. f. )が 85%以上 91%以下の石 炭と、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭とを含有する配合炭につ いて説明する。
[0021] 前記配合炭は、炭素含有率 (d. a. f. )が 85%以上 91%以下の石炭と、炭素含有 率 (d. a. f. )が 60%以上 85%未満の石炭とを含有するものであれば特に限定され ない。前記炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭として、より好ましい ものとしては、炭素含有率 (d. a. f. )が 78%以上 83%未満の弱粘結炭、非粘結炭、 又は、これらの混合物を挙げることができる。炭素含有率 (d. a. f. )が 85%以上 91 %以下の石炭と、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭との糸且合せと しては、例えば、強粘結炭と弱粘結炭とからなる態様、強粘結炭と非粘結炭とからな る態様、強粘結炭と弱粘結炭と非粘結炭とからなる態様などを挙げることができる。
[0022] 配合炭中の前記炭素含有率 (d. a. f. )が 85%以上 91%以下の石炭 (強粘結炭) は、得られるコータス強度を高めるために配合されるものであり、その配合量は、配合 炭全体を 100質量部としたときに、 10質量部以上が好ましぐ 40質量部以上がより好 ましい。強粘結炭の配合量が 10質量部未満であると、粘結性成分が不足しすぎるた めに、配合炭 100質量部に対して無灰炭を 1質量部以下添加したとしても、所望のコ 一タス強度が得られない場合がある。一方、強粘結炭の配合量の上限は、特に限定 されるものではないが、 100質量部が好ましぐ 90質量部がより好ましぐ 60質量部 力 Sさらに好ましい。強粘結炭の配合量が多くなり過ぎると、コータス製造時の原料コス トが上昇する力 である。一方、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭 (非粘結炭等)は、強粘結炭との合計配合量が 100質量部になるように配合されるこ とが好ましい。
[0023] 本発明にお ヽて、強粘結炭と、非粘結炭等とを配合して得られる配合炭は、以下の 特性を有することが好ましい。前記配合炭の揮発分は、好ましくは 15%以上、より好 ましくは 26%以上であり、好ましくは 35%以下、より好ましくは 29%以下である。前記 配合炭の平均反射率は、好ましくは 0. 65以上、より好ましくは 1. 00以上であり、好 ましくは 1. 60以下、より好ましくは 1. 10以下である。前記配合炭のトータルイナート は、好ましくは 15%以上、より好ましくは 20%以上であり、好ましくは 35%以下、より 好ましくは 23%以下である。前記配合炭のギーセラー最高流動度 (logMFD)は、好 ましくは 0. 7 (logddpm)以上、より好ましくは 2. O (logddpm)以上であり、好ましくは 3. 5 (logddpm)以下、より好ましくは 2. 3 (logddpm)以下である。前記配合炭の粒 度構成は、 3mm以下のものが、好ましくは 50%以上、より好ましくは 75%以上であり 、好ましくは 90%以下、より好ましくは 85%以下である。前記各特性の広い数値範囲 は、高炉用コータスの原料として使用し得る好適な範囲であり、前記各特性をより狭 い数値範囲内とすることによって、実質的に強度に問題のない程度のコータスが得ら れる。
[0024] 本発明のコータスの製造方法は、炭素含有率 (d. a. f. )が 85%以上 91%以下の 石炭と、炭素含有率 (d. a. f. )が 60%以上 85%未満の石炭とを含有する配合炭 10 0質量部に対して、灰分を実質的に含有しない石炭を 1質量部以下含有する原料炭 を乾留することを特徴とする。
[0025] 前記乾留の条件は、特に限定されるものではなぐコークス炉を使用するコータス製 造における通常の乾留条件を採用でき、例えば、 950°C以上、より好ましくは 1000 °C以上であって、 1200°C以下、より好ましくは 1050°C以下の温度で、 8時間以上、 より好ましくは 10時間以上、より好ましくは 24時間以下、より好ましくは 20時間以下 乾留することが好ましい。
[0026] 本発明には、本発明のコータスの製造方法により得られるコータスを用いることを特 徴とする銑鉄の製造方法が含まれる。本発明の製造方法により得られるコータスは、 強度に優れるので、高炉における銑鉄の製造に好適に使用できる。すなわち、本発 明の製造方法により得られるコータスを使用すれば、高炉における銑鉄製造時のガ ス通気性が向上する。尚、高炉における銑鉄の製造方法は、公知の方法を採用すれ ばよぐ例えば、高炉に鉄鉱石とコータスとをそれぞれ層状に交互に積層させて、高 炉の下部より熱風、必要に応じて微粉炭を吹き込む方法を挙げることができる。
実施例
[0027] 以下、本発明を実施例によって詳細に説明するが、本発明は、下記実施例によつ て限定されるものではなぐ本発明の趣旨を逸脱しない範囲の変更、実施の態様は、 いずれも本発明の範囲内に含まれる。
[0028] 表 1に示すように、配合炭に無灰炭を添加して原料炭を調製した。無灰炭としては、 オーストラリア産粘結炭 (炭素含有率 (d. a. f. ) 84%)から 1—メチルナフタレンを用 いて抽出した可溶成分 (灰分 600ppm)を用いた。尚、無灰炭は、図 1の装置を用い て、以下の方法により調製した。オーストラリア産粘結炭 (炭素含有率 (d. a. f) 84%) と 1—メチルナフタレンをタンク 1内で混合して (オーストラリア産粘結炭: 1—メチルタ フタレン =20質量%: 80質量%)スラリーを調製した。得られたスラリーを予熱器 3
370°Cに加温して、抽出槽 4内でオーストラリア産粘結炭から可溶成分を抽出した。 抽出処理後のスラリーを流量 15kgZhで重力沈降槽 5に供給し、重力沈降を行って 、上澄み液と固相成分濃縮液とに分離し、上澄み液を 3kgZhの流量でフィルターュ ニット 8に供給し、固相成分濃縮液を、 12kgZhの流量で重力沈降槽 5の底部から固 相成分濃縮液受け器 6に排出した。上澄み液をフィルターユニット 8で濾過した後、 上澄み液受け器 9に回収し、スプレードライ法により回収液力 有機溶媒を蒸発除去 して、無灰炭 (灰分 600ppm)を得た。
[0029] 前記原料炭を、幅 378mm X長さ 121mm X高さ 114mmの大きさの缶容器に、所 望の密度(720kgZm3及び 780kgZm3)となるように充填した。この缶容器 4個をさ らに鋼製のレトルト(大きさ:幅 380mm X長さ 430mm X高さ 350mm)に並べて入れ て、この缶容器を幅方向に加熱できる両面加熱式電気炉に前記レトルトを入れて、原 料炭を乾留した。乾留は、 1000°Cで 10時間の条件で行い、その後、レトルトを電気 炉から取り出して約 16時間かけて自然放冷した。
[0030] 冷却したレトルトから 4個の缶容器を取り出し、幅方向の半分に相当する 189mm部 分のコータスを切り出した。両面加熱を行った場合、幅方向の真中に当たる場所は、 炭芯と呼ばれ、加熱面力 炭芯までの焼成されたコータスは加熱面に近 、所からへ ッド、ボディー、テールと呼ばれており、ヘッド、ボディー、テールの加熱時の昇温速 度の差で強度に差が生じることが知られている。そのため、幅方向の半分に相当する 189mm部分のコータスのヘッド、ボディー、テールの部分に相当する約 60mmに分 割したそれぞれの部位から、ほぼ直方体(一辺:約 20mm± lmm)に切り出し、整粒 されたコータスを得た。この整粒されたコータスを、蒸留水で洗浄して、整粒時 (切り 出し時に)に付着したコータスの微粉を取り除き、 150°C± 2°Cの乾燥機で乾燥した。 乾燥後の整粒されたコータスを、合計が 200gになるように、原料炭の充填密度が 78 OkgZm3の場合、ヘッド、ボディー、テール力 順に 12個、 12個、 11個選択し、原 料炭の充填密度が 720kgZm3の場合、ヘッド、ボディー、テール力も順に 12個、 13 個、 11個選択して、強度測定用のサンプルとした。 [0031] 得られた強度測定用サンプルを用いて、 I型強度を測定した。 I型強度試験に用い る装置として、 SUS材で作られた円筒状の容器 (長さ 720mm、円の底面直径 132m m)を用い、この容器に前記サンプル 200gを入れて、 1分間に 20回の回転速度で 3 0分間回転させて、合計 600回の回転運動による衝撃を加えた。この円筒の回転は、 円筒の長さ 720mmの真中に当たる 360mmのところに回転軸を設け、この回転軸を 中心に円筒を回転させて、円筒の底面が直径 720mmの円を描くように行った。規定 の 600回転の回転による衝撃をカ卩えた後、この円筒状の容器力もサンプルを取り出 し、 9. 5mmの篩目の篩で分けて篩上の質量を測った。この際、篩に引つ力かったも のも篩上として質量を測定した。 I型強度指数は、以下のようにして算出し、算出した 結果を表 1に示した。
[0032] I型強度指数 16°° = 100 X 9. 5mm篩上質量 (単位: g) /200g
9. 5
尚、一般にコータスの回転強度は、コータス塊が大きな塊として割れていく体積破 壊を評価するものと、表面の摩耗による表面破壊を評価するものとに区別されるが、 本発明で用いた I型強度指数 16
9. 5は、表面破壊を評価するのに用いる指標として 解釈される。
[0033] [表 1]
表 1
Figure imgf000012_0001
配合:質量部、配合炭:カツコ内は炭素含有率 (d.a.f)
表 1の結果より、コータス No. 1力ら No. 5、及び、 No. 8〜No. 10を比較すると、 配合炭 100質量部に対して無灰炭を 1質量部以下添加することによって、得られるコ 一タス強度が向上することが分かる。特に、配合炭 100質量部に対して、無灰炭を 0 . 5質量部添加したときに得られるコータス強度が最も大きくなつた。また、コータス No . 6及び No. 7の結果から、無灰炭の添加量が配合炭 100質量部に対して 1質量部 を超えるとコータス強度が却って低下することが分力つた。
[0034] 原料炭の充填密度が 780kgZm3 (コータス No. 1と No. 3)の場合と 720kgZm3( コータス No. 8と No. 9)の場合とを比較すると、原料炭の充填密度が 720kgZm3の 場合の方が、コータス強度の向上効果が大きくなることが分力つた。
[0035] コータス No. 12は、コータス No. 8と比べて、強粘結炭の割合が低い場合であり、 得られるコータス強度が低下していることが分かる。し力しながら、無灰炭を 0. 5質量 部添加することによって、コータス強度が向上した (コータス No. 13)。
[0036] また、コータス No. 9とコータス No. 11とを比較すると、本発明で使用する無灰炭の 強度向上効果力 アスファルト系ピッチの強度向上効果より大きいことが分かる。 産業上の利用可能性
[0037] 本発明は、コータスの製造、さらには、高炉における銑鉄の製造に好適に適用でき る。

Claims

請求の範囲
[1] 炭素含有率 (d. a. f. )が 85%以上 91%以下の石炭と、炭素含有率 (d. a. f. )が 6
0%以上 85%未満の石炭とを含有する配合炭 100質量部に対して、灰分を実質的 に含有しない石炭を 1質量部以下含有する原料炭を乾留することを特徴とするコーク スの製造方法。
[2] 前記灰分を実質的に含有しない石炭として、炭素含有率 (d. a. f. )が 60%以上 9 5%未満の石炭力 有機溶媒を用いて抽出して得られる可溶成分を用いる請求項 1 に記載のコ一タスの製造方法。
[3] 前記有機溶媒は、 2環芳香族化合物を主成分とする有機溶媒である請求項 2に記 載のコータスの製造方法。
[4] 請求項 1〜3のいずれか一項記載のコータスの製造方法により得られるコータスを 用いることを特徴とする銑鉄の製造方法。
PCT/JP2006/310578 2005-07-19 2006-05-26 コークスの製造方法、及び、銑鉄の製造方法 WO2007010674A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200680026729XA CN101233211B (zh) 2005-07-19 2006-05-26 焦炭的制造方法及生铁的制造方法
KR1020087003871A KR101129061B1 (ko) 2005-07-19 2006-05-26 코크스의 제조 방법 및 선철의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005209042A JP4109686B2 (ja) 2005-07-19 2005-07-19 コークスの製造方法、及び、銑鉄の製造方法
JP2005-209042 2005-07-19

Publications (1)

Publication Number Publication Date
WO2007010674A1 true WO2007010674A1 (ja) 2007-01-25

Family

ID=37668561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310578 WO2007010674A1 (ja) 2005-07-19 2006-05-26 コークスの製造方法、及び、銑鉄の製造方法

Country Status (5)

Country Link
JP (1) JP4109686B2 (ja)
KR (1) KR101129061B1 (ja)
CN (1) CN101233211B (ja)
TW (1) TW200710212A (ja)
WO (1) WO2007010674A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105682A1 (ja) * 2006-03-15 2007-09-20 Kabushiki Kaisha Kobe Seiko Sho コークスの製造方法、及び、銑鉄の製造方法
CN101531907B (zh) * 2008-03-10 2012-10-03 株式会社神户制钢所 焦炭的制造方法
CN101531940B (zh) * 2008-03-11 2013-04-10 株式会社神户制钢所 焦炭制造用原料煤的制造方法,焦炭的制造方法和生铁的制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143433B2 (ja) * 2007-01-17 2013-02-13 株式会社神戸製鋼所 コークスの製造方法、及び、銑鉄の製造方法
JP5118388B2 (ja) * 2007-05-23 2013-01-16 株式会社神戸製鋼所 カーボンブラックの製造方法
JP5247193B2 (ja) * 2008-03-17 2013-07-24 株式会社神戸製鋼所 コークスの製造方法、及び、銑鉄の製造方法
KR101032276B1 (ko) * 2009-08-28 2011-05-06 한국에너지기술연구원 탈황공정을 포함한 청정석탄의 제조 방법
CN102241992A (zh) * 2010-05-14 2011-11-16 湖南省醴陵市马恋耐火泥有限公司 7.63米焦炉的改造方法
JP5530292B2 (ja) * 2010-07-28 2014-06-25 株式会社神戸製鋼所 製鉄用コークスの製造方法
CN102453490B (zh) * 2010-10-22 2013-09-25 宝山钢铁股份有限公司 一种制备高活性高强度焦炭的配煤方法
WO2013099650A1 (ja) * 2011-12-28 2013-07-04 株式会社神戸製鋼所 無灰炭の製造方法
JP5722208B2 (ja) * 2011-12-28 2015-05-20 株式会社神戸製鋼所 無灰炭の製造方法
WO2014129337A1 (ja) * 2013-02-21 2014-08-28 Jfeスチール株式会社 冶金用コークスの製造方法
JP6266409B2 (ja) * 2014-03-31 2018-01-24 株式会社神戸製鋼所 石炭混合材
JP6297412B2 (ja) * 2014-05-27 2018-03-20 株式会社神戸製鋼所 無灰炭の製造装置及び無灰炭の製造方法
WO2016024513A1 (ja) * 2014-08-15 2016-02-18 Jfeスチール株式会社 冶金用コークスおよびその製造方法
JP6424152B2 (ja) * 2015-11-24 2018-11-14 株式会社神戸製鋼所 炭素繊維製造用原料ピッチの製造方法
CN107903971B (zh) * 2017-11-28 2021-03-05 北京科技大学 一种基于hpc的型煤制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575485A (en) * 1978-12-05 1980-06-06 Mitsui Cokes Kogyo Kk Coke production and coke composition
JP2004307714A (ja) * 2003-04-09 2004-11-04 Kobe Steel Ltd 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049372A (zh) * 1990-09-29 1991-02-20 北京市燃气煤化工研究所 一种炼焦的配煤方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575485A (en) * 1978-12-05 1980-06-06 Mitsui Cokes Kogyo Kk Coke production and coke composition
JP2004307714A (ja) * 2003-04-09 2004-11-04 Kobe Steel Ltd 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105682A1 (ja) * 2006-03-15 2007-09-20 Kabushiki Kaisha Kobe Seiko Sho コークスの製造方法、及び、銑鉄の製造方法
CN101531907B (zh) * 2008-03-10 2012-10-03 株式会社神户制钢所 焦炭的制造方法
CN101531940B (zh) * 2008-03-11 2013-04-10 株式会社神户制钢所 焦炭制造用原料煤的制造方法,焦炭的制造方法和生铁的制造方法

Also Published As

Publication number Publication date
CN101233211B (zh) 2011-07-06
TWI324633B (ja) 2010-05-11
KR101129061B1 (ko) 2012-03-26
JP2007023190A (ja) 2007-02-01
KR20080041653A (ko) 2008-05-13
JP4109686B2 (ja) 2008-07-02
TW200710212A (en) 2007-03-16
CN101233211A (zh) 2008-07-30

Similar Documents

Publication Publication Date Title
WO2007010674A1 (ja) コークスの製造方法、及び、銑鉄の製造方法
JP5280072B2 (ja) コークスの製造方法
JP5241105B2 (ja) コークスの製造方法、及び銑鉄の製造方法
JP5334433B2 (ja) 無灰炭の製造方法
JP5342794B2 (ja) 炭素材料の製造方法
JP5438277B2 (ja) コークスの製造方法、および銑鉄の製造方法
WO2011096405A1 (ja) 炭素陽極の製造方法
TWI485237B (zh) Forming blended coal and its manufacturing method, and coke and its manufacturing method
JP4950527B2 (ja) コークスの製造方法、及び、銑鉄の製造方法
JP5247193B2 (ja) コークスの製造方法、及び、銑鉄の製造方法
JP5390977B2 (ja) 鉄鉱石含有コークス、及び該鉄鉱石含有コークスの製造方法
JP5143433B2 (ja) コークスの製造方法、及び、銑鉄の製造方法
JP2009227929A (ja) 高炉用コークスの製造方法
JP5559628B2 (ja) 製鉄用コークスの製造方法
JP2014043583A (ja) コークス製造用原料炭の製造方法、コークスの製造方法、および銑鉄の製造方法
US20180320083A1 (en) Method for producing coke, and coke
JP5438423B2 (ja) 鉄鉱石含有コークスの製造方法
JP2014015641A (ja) 無灰炭配合コークスを用いた高炉操業方法
JPS58217593A (ja) 改質炭及びタ−ル油の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026729.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 247/KOLNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087003871

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06746907

Country of ref document: EP

Kind code of ref document: A1