WO2007007639A1 - Magnetic antenna - Google Patents

Magnetic antenna Download PDF

Info

Publication number
WO2007007639A1
WO2007007639A1 PCT/JP2006/313495 JP2006313495W WO2007007639A1 WO 2007007639 A1 WO2007007639 A1 WO 2007007639A1 JP 2006313495 W JP2006313495 W JP 2006313495W WO 2007007639 A1 WO2007007639 A1 WO 2007007639A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
coil
insulating layer
magnetic antenna
Prior art date
Application number
PCT/JP2006/313495
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuya Kimura
Yoshiro Sato
Original Assignee
Toda Kogyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005199451A external-priority patent/JP4821965B2/en
Priority claimed from JP2005206254A external-priority patent/JP2007028114A/en
Application filed by Toda Kogyo Corporation filed Critical Toda Kogyo Corporation
Priority to KR1020077030092A priority Critical patent/KR101274354B1/en
Priority to EP06767954.8A priority patent/EP1901394B1/en
Priority to CN200680023105.2A priority patent/CN101208830B/en
Publication of WO2007007639A1 publication Critical patent/WO2007007639A1/en
Priority to US12/003,951 priority patent/US8072387B2/en
Priority to US13/285,041 priority patent/US8159405B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core

Definitions

  • the present invention relates to a magnetic antenna, and more specifically, a credible magnetic antenna that uses a magnetic field component, and transmits and receives signals with high sensitivity even when attached to a metal object.
  • the present invention relates to a magnetic antenna that can be used.
  • the magnetic antenna of the present invention is particularly suitable for RFID tags and RFID tag readers / writers. Background art
  • An antenna that transmits and receives electromagnetic waves using a magnetic material (hereinafter referred to as "magnetic antenna”;) has a coil formed by winding a conducting wire around a magnetic material, and has a magnetic field component flying from the outside.
  • Magnetic antennas are also used in non-contact type object identification devices called RFID tags, which have become popular in recent years.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-317052
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-318634
  • the antenna to be wound is not mass-productive.
  • the conventional magnetic antenna has a problem that the characteristics of the magnetic antenna change as the metal object is approached, and the resonance frequency changes. In order to obtain resonance at a desired frequency, it is attached to a metal plate. In addition, it is necessary to adjust the frequency individually.
  • the present invention has been made in view of the above circumstances, and an object thereof is a magnetic antenna suitable for an RFID tag and a reader / writer for an R FID tag, in which a coil is in contact with a metal object. Even in such a case, it is also possible to provide a magnetic antenna excellent in mass productivity because the characteristics of the antenna vary. Another object of the present invention is to provide a magnetic antenna in which the resonance frequency does not change even when approaching a metal object. Furthermore, another object of the present invention is to provide a magnetic antenna suitable for the RFID tag reader Z writer and capable of transmitting and receiving accurately with one pole of a coil.
  • a coil is formed by arranging an electrode material on a magnetic layer in a coil shape, and a structure in which a conductive layer is laminated on the coil via an insulating layer is adopted.
  • the present invention suitable for an RFID tag is composed of the following first to third aspects, and the first aspect is a magnetic antenna for transmitting and receiving a magnetic field component, A coil formed by arranging electrode materials in a coil shape on the outer periphery of the layer, an insulating layer provided on one or both outer surfaces of the coil, and a conductive layer provided on the outer surface of one or both insulating layers
  • a magnetic antenna characterized by comprising:
  • the second gist of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, which is a single layer or a plurality of layers formed by molding a mixture of magnetic powder and binder resin into a sheet shape.
  • a coil is formed by arranging an electrode material on the outer periphery of the magnetic layer in the form of a coil as an electric circuit, and an insulating layer is provided on both outer surfaces of the coil, and the outer surface of one or both insulating layers
  • a magnetic antenna is characterized in that a conductive layer is provided, and is cut into a desired size and then fired integrally.
  • a third gist of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, in which a magnetic powder is mixed with a binder and the plane shape is formed into a square or rectangular sheet.
  • a through-hole is formed in a magnetic layer having a layer structure or a multilayer structure, an electrode material is poured into the through-hole, and electrode layers are formed on both surfaces of the magnetic layer orthogonal to the through-hole with the electrode material.
  • a coil having a configuration in which both ends of the magnetic layer are open on the magnetic circuit is created, and the upper and lower surfaces of the coil on which the electrode layer is formed are sandwiched between insulating layers, and one or both of the insulating layers are outside.
  • a magnetic antenna is characterized in that a conductive layer is disposed on a side surface, cut at a position corresponding to a through hole and a coil open end surface, and integrally fired.
  • the present invention suitable for the RFID tag reader Z writer has the following four aspects, the fourth aspect being a magnetic antenna for transmitting and receiving magnetic field components.
  • the coil has a plurality of coils each having a square or rectangular magnetic layer, and these coils are arranged radially at almost equal intervals in plan view, and one end of each coil has its polarity. Are connected in series or in parallel with each other at the center of the radial shape, and the other end of each coil is opened toward the outside of the radial shape, and the upper and lower surfaces of the coil One or both of them are provided with an insulating layer, and a conductive layer is provided outside one of the insulating layers. To do.
  • the fifth aspect of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, comprising a plurality of coils each having a square or rectangular magnetic layer as a planar shape.
  • the coils are arranged radially at almost equal intervals in a plan view, and one end of each coil is opened toward the center of the radial shape, and the other end of each coil is outside the radial shape.
  • the magnetic antenna is characterized in that a conductive layer is provided outside one of the insulating layers.
  • a sixth aspect of the present invention is a magnetic antenna manufactured using LTCC technology for transmitting and receiving a magnetic field component, wherein magnetic powder is mixed with a binder and formed into a sheet shape.
  • a through-hole is formed in a magnetic layer having a single layer or a multi-layer structure, an electrode material is poured into the through-hole, and electrode layers are formed on both sides of the magnetic layer perpendicular to the through-hole with an electrode material.
  • Material The conductive layer is formed and cut into individual pieces and fired, or integrally fired and then cut into individual pieces, and the planar shape is composed of a square or rectangular magnetic layer.
  • Several coils are arranged radially at substantially equal intervals in plan view, and one end of each coil is a magnetic layer in series or in parallel at the center of the radial shape so that the polarity is the same. The other end of each coil is connected to the outside of the radiating shape and is opened to be present in the magnetic antenna.
  • a seventh aspect of the present invention is a magnetic antenna manufactured using LTCC technology for transmitting and receiving a magnetic field component, wherein magnetic powder is mixed with a binder and formed into a sheet shape.
  • a through hole is made in a magnetic layer having a single layer or a multi-layer structure, an electrode material is poured into the through hole, and an electrode material is formed on both sides of the magnetic layer orthogonal to the through hole.
  • An electrode layer is formed with a material, and a coil is formed by punching the magnetic layer at a position passing through the center of the through hole, and the magnetic layer of the coil is sandwiched by an insulating layer from the upper surface and the lower surface.
  • the insulating layer disposed on the insulating layer is punched into a shape covering the electrode layer.
  • a conductive layer made of the same material as the electrode material is further provided on the lower surface of the insulating layer on the lower surface of the magnetic layer, and cut into individual pieces and fired.
  • a plurality of coils having a planar shape constituted by a rectangular or rectangular magnetic layer are arranged in a radiating manner at almost equal intervals in a plan view, and One end is opened toward the center of the radial shape, and the other end of each coil is directed toward the outside of the radial shape and is mutually connected across the annular portion on the outer peripheral side so that the polarity is the same. It is characterized by being connected by a magnetic layer. Exists in the magnetic antenna.
  • the conductive layer is provided by the LTCC technology, so that the wire having good adhesion between the laminated layers and the added conductive layer can be stably coupled.
  • the force can also be adjusted by a single element that does not need to be adjusted in the operating environment.
  • a conductive layer is added, characteristics do not fluctuate even when approaching a metal object.
  • a plurality of elements can be stably manufactured from a single sheet, variations in each element can be suppressed, mass productivity can be improved, and manufacturing costs can be reduced.
  • the magnetic antenna according to the first to third aspects of the present invention has a small change of the resonance frequency of 1MHz or less when it is attached to a metal surface, the frequency range from 125KHz to 2.45GHz is wide.
  • a communication distance of 3cm or more can be obtained even if the tag is attached to a metal surface.
  • the green sheet stacking structure symmetrical vertically with respect to the central coil, it is possible to suppress warping after firing to 0.5 mm or less per long side lcm. It can be used as a practical antenna.
  • the magnetic antennas according to the fourth to seventh aspects of the present invention can further suppress fluctuations in characteristics when attached to a metal object by providing a magnetic layer outside the conductive layer. I can do it.
  • the magnetic antenna of the present invention can be used not only for the RFID tag reader Z writer but also for the RFID tag. Depending on the selection of the magnetic layer to be the core of the coil, the magnetic antenna can be 125 kHz to 2.45 GHz. It is applicable in a wide frequency range.
  • FIG. 1 is a perspective view showing a laminated structure of a coil portion of a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 2 is a perspective view showing Example 1 which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 3 is a perspective view showing Example 2, which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 4 is a perspective view showing Example 3 which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 5 is a perspective view showing Example 4 which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 6 is a perspective view showing Example 5, which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 7 is a perspective view showing Example 6 which is a magnetic antenna according to the first to third aspects of the present invention.
  • FIG. 8 is a perspective view showing a laminated magnetic antenna as Comparative Example 1 having no conductive layer.
  • FIG. 9 is a perspective view showing Example 7 which is a magnetic antenna according to the fourth to seventh aspects of the present invention.
  • FIG. 10 is a perspective view showing Example 8 which is a magnetic antenna according to the fourth to seventh aspects of the present invention.
  • FIG. 11 is a circuit diagram schematically showing an example in which three coils are connected in series and capacitors are connected in parallel between both ends of the magnetic antenna shown in FIGS. 9 and 10.
  • FIG. 12 is a circuit diagram schematically showing an example in which three coils are connected in series and capacitors are connected in series between both ends of the magnetic antenna shown in FIGS. 9 and 10.
  • FIG. 13 is a circuit diagram schematically showing an example in which three coils are connected in parallel and capacitors are connected in parallel between both ends of the magnetic antenna shown in FIGS. 9 and 10. Explanation of symbols [0020] 11: Through hole
  • the magnetic antenna of the present invention is generally configured by sandwiching a coil 14 as shown in FIG. 1 from above and below with an insulating layer 16 as shown in FIG.
  • the coil 14 is composed of a magnetic layer 15 having a planar or rectangular shape as shown in FIG.
  • the magnetic layer 15 has a single-layer or multi-layer structure, and each layer is formed into a sheet by mixing magnetic powder with a binder.
  • the magnetic layer 15 has A through hole 11 is opened, and an electrode material is poured into the through hole 11.
  • electrode layers 12 are formed of an electrode material on both surfaces of the magnetic layer 15 orthogonal to the through holes 11.
  • the electrode layer 12 is connected to the through hole 11. Thereby, both ends of the magnetic layer 15 forming the coil 14 are configured to be open on the magnetic circuit.
  • the coil 14 on which the electrode layer 12 is printed is sandwiched between the upper and lower surfaces of the insulating layer 16, and the conductive layer 17 is provided on the upper surface of one or both of the insulating layers. .
  • the above laminate comprising the coil 14, the insulating layer 16 and the conductive layer 17 is cut at the through hole 11 and the coil open end face 13 and integrally fired.
  • mass productivity can be improved by utilizing the LTCC (Low Temperature Co-fired Ceramics) technology.
  • a coil lead terminal 19 and an IC chip connection terminal 18 may be provided as shown in FIG. That is, the through-hole 11 is provided in the insulating layer 16 on the upper and lower surfaces of the coil 14 on which the electrode layer 12 is printed, and the electrode material is poured into the through-hole 11. Connected. Further, a coil lead terminal 19 and an IC chip connection terminal 18 are printed on the surface of the insulating layer 16 with an electrode material. Then, the laminated body including the coil 14, the insulating layer 16, and the conductive layer 17 is integrally fired.
  • the magnetic antenna of the present invention may be provided with the magnetic layer 15 on the lower surface of the insulating layer 16 having the conductive layer 17 and may be integrally fired.
  • the characteristic change becomes smaller and the change in the resonance frequency can be made smaller.
  • a conductive layer 17 is provided on the upper surface of the insulating layer 16
  • a magnetic layer 15 is provided on the lower surface of the insulating layer 16
  • an insulating layer 16 is provided on the lower surface of the magnetic layer. And may be integrally fired.
  • the magnetic antenna of the present invention may include a capacitor electrode 1C as shown in FIG. That is, the capacitor electrode 1C is disposed on one or both outer surfaces of the insulating layer 16 sandwiching the upper and lower surfaces of the coil 14, and the capacitor electrode 1C is disposed.
  • An insulating layer 16 is further provided on the outer surface of the insulating layer 16, and an electrode is printed on the outer surface of the insulating layer to form a capacitor so as to sandwich the insulating layer.
  • the coil 14 is connected to the IC chip connection terminal 18 and the coil lead terminal 19 in parallel or in series.
  • a capacitor is formed by printing parallel electrodes or comb-shaped electrodes on the upper surface of the insulating layer, and the coil 14 is connected in parallel or in series with the coil lead terminal. Also good.
  • the capacitor 1 may be a parallel flat plate structure sandwiching the insulating layer 16 or a comb-shaped or parallel electrode planar structure. In the parallel plate structure, as shown in FIG. 6, one capacitor electrode may also serve as the IC chip connection terminal 18.
  • the magnetic antenna of the present invention is manufactured by using a Ni—Zn ferrite magnetic material for the magnetic layer 15 and firing it as a single body.
  • the composition of the ferrite powder used is Fe O: 45-49.5 mol
  • NiO 9. 0 ⁇ 45 0 mole 0/0
  • ZnO 0. 5 ⁇ 35 0 mole 0/0
  • Such a composition with a preferred% is preferably selected so that the magnetic loss is high and the magnetic loss is low in the frequency band to be used. If the permeability is too low, the number of coil turns required to form with LTCC technology becomes too large and difficult to manufacture. On the other hand, if the magnetic permeability is too high, the loss increases, making it unsuitable for an antenna. For example, when applying to RFID tags, select the ferrite composition so that the permeability is 70-120 at 13.56 MHz, and for commercial FM broadcast reception, the permeability at 100 MHz is 10-30. Is preferred.
  • the sintering temperature of ferrite is 800-1000. C, preferably 850-920. C.
  • Zn-based ferrite is used for the insulating layer 16.
  • ferrite powder it is preferable to select a Zn-based ferrite having a composition such that the volume resistivity of the sintered body is 10 8 ⁇ cm or more. That is, the composition of the Zn-based ferrite, Fe O:. 45 ⁇ 49 5 Monore 0/0, ZnO:
  • glass ceramic is used for the insulating layer 16.
  • a glass-based ceramic borosilicate glass, zinc-based glass, lead-based glass, or the like can be used.
  • the magnetic antenna of the present invention has a terminal to which an IC chip can be connected on the upper surface of the insulating layer 16, and the terminal is connected in parallel or in series with the IC chip connection terminal 18. Body firing may be performed.
  • a terminal for providing a variable capacitor The lead terminal may be connected in parallel or in series.
  • an Ag paste is suitable as the electrode material, and other metal-based conductive pastes such as other Ag-based alloy pastes can also be used.
  • the magnetic antenna of the present invention is an antenna for transmitting and receiving a magnetic field component.
  • the magnetic antenna 21 has a rectangular planar shape or a rectangular shape.
  • a coil is formed.
  • a plurality of such coils are arranged radially at substantially equal intervals in plan view.
  • One end of each coil is connected to each other by a magnetic layer at the center of the radial shape, and the other end of each coil is opened toward the outside of the radial shape.
  • One end of each coil is connected to each other in series (see Fig. 11 and Fig. 12) or in parallel (see Fig. 13) so that the polarity is the same.
  • an insulating layer 23 is provided on one or both of the upper and lower surfaces of the coil in plan view, and a conductive layer 24 is provided on the outer side of the one insulating layer 23.
  • the magnetic antenna of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, and as shown in FIG. 10, another rectangular or rectangular magnetic layer 21 similar to the above is shown.
  • a plurality of coils are arranged radially at substantially equal intervals in plan view.
  • One end of each coil is opened toward the center of the radial shape, and the other end of each coil is directed to the outside of the radial shape and connected by a magnetic layer at the annular portion on the outer peripheral side.
  • the other ends of the coils are connected to each other in series or in parallel so that their polarities are the same.
  • an insulating layer 23 is provided on one or both of the upper and lower surfaces of the coil in plan view, and a conductive layer 24 is provided on the outer side of the one insulating layer 23.
  • Each of the magnetic antennas described above is manufactured using LTCC technology, and the magnetic layer 21 constituting the coil has a single-layer or multi-layer structure, and each layer is a temporary layer.
  • the fired magnetic powder is mixed with a binder and formed into a sheet.
  • a through hole is opened in the magnetic layer 21, and an electrode material is poured into the through hole.
  • electrode layers are formed of an electrode material on both surfaces of the magnetic layer 21 orthogonal to the through hole.
  • the electrode layer The magnetic layer 21 containing is stamped into a coil structure at a position including an extension of a line passing through the center of the through hole. That is, the coil electrode 26 is formed by the through-hole cross section.
  • the molded magnetic layer 21 (coil) is sandwiched between the upper and lower surfaces and the insulating layer 23.
  • the insulating layer 23 disposed on the upper surface of the magnetic layer on which the electrode layer is printed is punched into a shape covering the electrode layer 24.
  • a conductive layer 24 having the same material force as that of the electrode material is provided on the lower surface of the insulating layer 23 on the lower surface of the magnetic layer 21. And it cut
  • the magnetic antenna obtained as described above is obtained by arranging a plurality of coils in which the planar shape of the magnetic layer 21 is formed in a square shape or a rectangular shape. One end of the coil is connected by the magnetic layer 21 and the other end is open. The coils are connected in series or in parallel so that the polarities of the coils are the same. Since the opposing coils have the same polarity, the component parallel to the metal surface of the magnetic field 27 is canceled (see Fig. 11), and only the component perpendicular to the metal surface is obtained (Fig. 9). And Figure 10).
  • the through hole is formed on the insulating layer 23 on the upper and lower surfaces of the coil on which the electrode layer 24 is printed, or on the insulating layer 23 on the surface opposite to the surface on which the conductive layer 24 is provided.
  • the coil lead terminal 29 may be printed with the electrode material on the surface of the insulating layer 23 so that the electrode material is poured into the through hole and connected to both ends of the coil end and end of the coil.
  • a magnetic layer 25 may be provided outside the conductive layer 24. When the magnetic layer 25 is provided on the outer side of the conductive layer 24, the change in the resonance frequency when the magnetic antenna is attached to the metal surface can be further reduced as compared with the case where only the conductive layer 24 is provided.
  • an insulating layer may be provided on the outer side of the magnetic layer outside the conductive layer 24. This balances the stress generated between the layers in the laminated structure including the coil, and can reduce the warpage.
  • a square or circular shape is sandwiched between the upper surface of the insulating layer 23 that sandwiches the upper and lower surfaces of the coil so that the circuit shown in FIGS.
  • An insulating layer on which electrodes are printed to form a capacitor 28 is provided.
  • the electrode 28 may be connected in parallel (see FIGS. 11 and 13) or in series (see FIG. 12) with the electrode force coil lead terminal electrode 29 of the sensor 28.
  • a capacitor 28 is formed by printing parallel electrodes or comb-shaped electrodes on the upper surface of the insulating layer 23 sandwiching the coil so as to obtain a circuit as shown in FIGS. 11 to 13.
  • the lead terminal 29 may be connected in parallel (see FIGS. 11 and 13) or in series (see FIG. 12).
  • An example of a specific print pattern is shown in FIG.
  • the capacitor 28 may be a parallel plate structure sandwiching the insulating layer 23 or a planar structure of a comb shape or parallel electrodes. In the parallel plate structure, one capacitor electrode may also serve as an IC chip connection terminal.
  • the magnetic antenna of the present invention uses a Ni—Zn ferrite magnetic material for the magnetic layer 21 and is integrally fired in the same manner as in the magnetic antenna according to the first to third aspects described above. Manufactured.
  • the composition of the ferrite powder and the sintering temperature of the ferrite are the same as in the magnetic antenna described above.
  • the composition of the insulating layer 23 is the same as that of the magnetic antenna described above, and glass ceramics can be used for the insulating layer 23 as in the case of the magnetic antenna described above.
  • the magnetic antenna of the present invention has a terminal structure to which an IC chip can be connected to the upper surface of the insulating layer 23, as in the case of the magnetic antenna described above, and the terminal is parallel to the coil lead terminal 29 or They may be connected in series.
  • an Ag paste is suitable as the electrode material, and other metal conductive pastes such as other Ag-based alloy pastes can also be used.
  • the magnetic antenna of the present invention was manufactured using LTCC technology.
  • the magnetic layer 15 was formed.
  • the magnetic permeability mosquito 100 at 13. 56 MHz after sintering at 900 ° C ⁇ over 211-01 Feraito calcined powder ⁇ 6 0:?. 48 5 mole 0/0, NiO: 25 mole 0/0 ZnO: 16 mol%, CuO: 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, and solvent 80 parts by weight were mixed in a ball mill to produce a slurry.
  • the obtained slurry was applied onto a PET film with a doctor blade, and a sheet was molded so as to have a 150 mm square and a thickness of 0.1 mm upon sintering.
  • a slurry was prepared by mixing 8 parts by weight of a resin, 5 parts by weight of a plasticizer, and 80 parts by weight of a solvent with a ball mill. The resulting slurry was applied onto a PET film with a doctor blade, and a sheet was molded to the same size and thickness as the magnetic layer.
  • each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours to obtain a size of 18 mm in width.
  • a magnetic antenna (sample 1) with a length of 4 mm and a coil winding number of 32 turns was manufactured. (For simplicity, the number of coil turns is indicated by 7 turns in FIGS. 1 and 2 and the number of magnetic layers is indicated by 3 layers. The same applies to other figures. )
  • an RFID tag IC was connected to both ends of the coil of the above magnetic antenna, and a capacitor was connected in parallel with the IC, and the resonance frequency was adjusted to 13.1 MHz to produce an RFID tag.
  • An RFID tag was attached to a metal plate, and the communicable distance was measured with a reader Z writer with an output of 10 mW. Moreover, the curvature of the magnetic antenna was measured.
  • Each measurement method is as follows.
  • Resonance frequency is measured by connecting a one-turn coil to an impedance analyzer (product name: 4291A, manufactured by Hewlett-Packard Company) and combining it with an RFID tag.
  • the peak frequency of the impedance was used as the resonance frequency.
  • the adjustment was performed by selecting the position of the coil electrode exposed on the end face of the magnetic antenna and adjusting the inductance.
  • the resonant frequency can be adjusted by changing the capacitance of the capacitor connected in parallel with the IC.
  • the communication distance is 10mW.
  • the reader Z writer product name; UR WI-201, manufactured by Efficy Co., Ltd.
  • the reader Z writer is fixed horizontally, and the RFID tag attached to the metal plate is placed horizontally above the antenna.
  • the RFID tag was moved within a range where communication was possible at 13.56 MHz, and the maximum vertical distance between the antenna and the RFID tag was measured as the communication distance.
  • the warp in the magnetic antenna was 0.6 mm, which was in a practical range.
  • the RFID tag using a magnetic antenna has a small resonance frequency fluctuation of + 1MHZ before and after the metal plate is attached, and a communication distance of 3 cm can be obtained when attached to the metal surface.
  • a green sheet as the magnetic layer 15 similar to that in Example 1 and a green sheet as the insulating layer 16 having a glass ceramic force instead of Zn—Cu ferrite were used. As shown in FIG. 3, five green sheets constituting the magnetic layer 15 are stacked, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11.
  • the coil 14 was formed by printing.
  • a green sheet constituting the insulating layer 16 was laminated on one surface of the coil 14.
  • the conductive layer 17 was printed on the insulating layer 16 with Ag paste.
  • another insulating layer 16 is laminated, and in this insulating layer 16, a through hole 11 is formed so as to be connected to both ends of the coil 14, and Ag paste is filled in the through hole 11.
  • Coil lead terminals 19 and IC chip connection terminals 18 for connecting ICs were printed with Ag paste on the surface layer of the insulating layer orthogonal to the holes 11.
  • each of the above green sheets was pressure-bonded together, cut at the through-hole 11 and the open end face 13 of the coil, and then integrally fired at 900 ° C for 2 hours.
  • an RFID tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel to the IC, and the resonance frequency is adjusted to 13.1 MHz.
  • An RFID tag was attached to a metal plate, and the distance and resonance frequency that could be communicated with a reader Z writer with an output of 10 mW were measured.
  • the warpage in the above magnetic antenna was 1. Omm, which was in the practical range.
  • the RFID tag using a magnetic antenna had a resonance frequency of 14.1 MHz when the metal plate was attached, and the resonance frequency fluctuation before and after the metal plate was attached was +1 MHz.
  • a communication distance of 3.1 cm was obtained when it was attached to a metal surface.
  • the same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 4, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11.
  • the coil 14 was formed by printing.
  • a green sheet constituting the insulating layer 16 was laminated on the lower surface of the coil 14. At that time, the conductive layer 17 was printed on the insulating layer 16 with Ag paste. Further, a green sheet as the magnetic layer 15 was laminated on the lower surface of the insulating layer 16. Further, a green sheet constituting the insulating layer 16 was laminated on the upper surface of the coil 14. On the upper surface of the insulating layer 16, a through hole 11 is formed so as to connect to both ends of the coil 14, and an Ag paste is filled therein, and the surface layer of the insulating layer perpendicular to the through hole 11 is formed. The coil lead terminal 19 and the IC chip connection terminal 18 for connecting the IC were printed with Ag paste.
  • each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the coil open end face 13, and then integrally fired in the same manner as in Example 1 to obtain a size of 18 mm in width.
  • a magnetic antenna (sample 3) with a length of 4 mm and a coil winding number of 32 turns
  • an RFID tag IC is connected to the IC chip connection terminal 18 of the magnetic antenna, and a capacitor is connected in parallel with the IC, so that the resonance frequency is 13.1M.
  • the RFID tag was created by adjusting to Hz.
  • An RFID tag was attached to a metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 1 OmW were measured.
  • the warpage of the magnetic antenna was measured.
  • the warpage in the above magnetic antenna was 0.8 mm, which was within the practical range.
  • the RFID tag using a magnetic antenna had a smaller fluctuation with a resonance frequency fluctuation of +0.5 MHz before and after the metal plate was attached.
  • a communication distance of 3.3 cm was obtained when it was attached to a metal surface.
  • the same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 5, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11.
  • the coil 14 was formed by printing.
  • a conductive layer 17 was printed on the lower insulating layer 16 with an Ag paste.
  • a green sheet constituting the magnetic layer 15 was laminated on the lower surface of the two insulating layers 16, and a green sheet as the insulating layer 16 was further laminated on the lower surface.
  • the insulating layer 16 on the upper surface side of the coil 14 is formed with a through hole 11 so as to be connected to one end of the coil 14 and filled with an Ag paste, and the insulation perpendicular to the through hole 11 is provided.
  • the coil lead terminal 19 and one of the IC chip connection terminals 18 for connecting the IC were printed with Ag paste.
  • a through hole 11 is formed so as to be connected to the other end of the coil 14 and several places in the middle, and an Ag paste is filled therein.
  • a coil lead terminal 19 and an IC chip connection terminal 18 for connecting the IC were printed with Ag paste on the surface layer of the insulating layer orthogonal to the surface. The coil lead terminal 19 The ends were drawn out to face each other.
  • each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours to obtain a size of 18 mm in width.
  • the RFID tag IC is connected to the IC chip connection terminal 18 of the magnetic antenna, and the arbitrary end surfaces of the coil lead terminal 19 facing each other are connected to each other.
  • the RFID tag was created by short-circuiting with conductive paint, adjusting the inductance, and adjusting the resonance frequency to 13.1 MHz.
  • An RFID tag was attached to the metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 1 OmW were measured.
  • the warpage of the magnetic antenna was measured.
  • the warp in the above magnetic antenna was 1. Omm, which was extremely small.
  • the RFID tag using a magnetic antenna has a small fluctuation of the resonance frequency of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.4 cm is obtained when it is attached to the metal surface.
  • the same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 6, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11.
  • the coil 14 was formed by printing.
  • a conductive layer 17 was printed on the lower insulating layer 16 with an Ag paste. Further, a green sheet as a magnetic layer 15 was laminated on the lower surface. A green sheet as a magnetic layer 15 and an insulating layer 16 was laminated on the upper surface side of the coil 14. At that time, the green sheet constituting the insulating layer 16 on the upper surface side of the coil 14 is formed with a through hole 11 so as to be connected to both ends of the coil 14 and filled with Ag paste. Capacitor electrode 1C was printed with Ag paste on the surface layer of the insulating layer that was orthogonal.
  • an IC for RFID tag is connected to the IC chip connection terminal 18 of the magnetic antenna, and further, a part of the IC chip connection terminal 18 is scraped off to adjust the capacitance to adjust the resonance frequency. 13. Adjusted to 1MHz and created RFID tag. An RFID tag was attached to a metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 10 mW were measured. In addition, the warpage of the magnetic antenna was measured. As a result, the warpage of the magnetic antenna was 0.1 mm, which was extremely small. The RFID tag using a magnetic antenna has a small fluctuation of the resonance frequency of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.3 cm can be obtained when attached to the metal surface.
  • a green sheet constituting the magnetic layer 15 was prepared.
  • 900 permeability at sintering after 100 MHz z of ° C is 20 Ni- Zn- Cu ferrite calcined powder (Fe O:. 48 5 mole 0/0, NiO
  • a green sheet constituting the insulating layer 16 was prepared. Like the ⁇ Karu green sheet also above, Zn- Cu ferrite calcined powder (Fe O:. 48 5 mole 0/0, ZnO: 40 mol 0/0, CuO:
  • each of the above green sheets was pressure-bonded together, cut at the through-hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours, resulting in a size of 18 mm in width.
  • FM radio 1R was connected to both ends of the coil of the above magnetic antenna, and a capacitor was further connected in parallel with coil 14 to adjust the resonance frequency to 82 MHz to obtain an FM broadcast receiving antenna.
  • This is a force that assumes that an antenna is installed outside the metal housing of a mobile phone or the like.
  • FM broadcasting 82 MHz
  • a good reception state was obtained.
  • the warpage of the magnetic antenna was measured, the warpage was as small as 0.6 mm.
  • a magnetic antenna (Sample 7) was manufactured in the same manner as in Example 1 except that the conductive layer 17 in Example 1 was not provided.
  • an RFID tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the IC, and the resonance frequency is adjusted to 13.1 MHz. It was created.
  • an RFID tag was attached to the metal plate, and the communicable distance and the resonance frequency were measured in the same manner as in Example 1, and the warpage of the magnetic antenna was measured.
  • the warpage in the above magnetic antenna was 1. Omm.
  • the RFID tag using a magnetic antenna has a large resonance frequency fluctuation of +1.5 MHz before and after the metal plate is attached, and the communication distance when attached to the metal surface is only 1.4 cm. .
  • a general commercially available IC card type tag product name: Texas Instruments, manufactured by connecting ICs to both ends of an antenna coil spirally wired on the surface of a film-like resin
  • Tag —ItTMHF Tag —ItTMHF
  • Example 7 The magnetic antenna of the present invention was manufactured using LTCC technology. First, the magnetic layer 21 was formed. In the production of the magnetic layer 21, as in Example 1, a calcined powder of flour, butyral resin, a plasticizer, and a solvent were mixed with a ball mill to produce a slurry, and the resulting slurry was obtained as in Example 1. The sheet was molded in the same manner. Insulating layer 23 was prepared in the same manner as in Example 1.
  • the insulating layer 23 was prepared by mixing a Zn—Cu flake calcined powder, a petal resin, a plasticizer, and a solvent with a ball mill to produce a slurry, and the obtained slurry was used in the Example.
  • the sheet was molded in the same manner as in 1.
  • each of the above green sheets is pressure-bonded together, cut into individual coil pieces (single pieces), and then integrally fired at 900 ° C for 2 hours to produce one coil.
  • a magnetic antenna (sample 8) with a length of 20 mm and a number of turns of each coil of 10 turns was manufactured.
  • Figure 9 shows a schematic diagram of the magnetic antenna obtained. In the figure, the number of turns of the coil is shown in a simplified manner.
  • an RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the reader Z writer, and the resonance frequency is adjusted to 13.56 MHz. It was attached to a metal plate and the communication distance with the RFID tag was measured.
  • the resonant frequency measurement and adjustment method and the communication distance measurement method are as follows.
  • impedance analyzer manufactured by Hewlett-Packard Company, The product name: 4291A
  • the adjustment was made by changing the capacitance of the capacitors connected in parallel or in series.
  • the communication distance is the output lOOmW reader Z writer (manufactured by Takaya Co., Ltd., product name; D002A), the standard antenna is removed and the magnetic antenna of the present invention is connected and fixed horizontally. Instrument IC card type tag, product name; Tag—it (TM) HF) is positioned horizontally, and the R FID tag is moved within the communication range at 56 MHz, and the antenna at that time The maximum vertical distance between the RFID tag and the RFID tag was measured as the communication distance.
  • Instrument IC card type tag, product name; Tag—it (TM) HF Instrument IC card type tag, product name; Tag—it (TM) HF
  • the reader Z writer using the above magnetic antenna has a small fluctuation of resonance frequency of +1 MHz before and after the metal plate is attached, A communication distance of 3cm was obtained when it was attached to a metal surface.
  • a green sheet as the magnetic layer 21 similar to that in Example 7 and a green sheet as the insulating layer 23 having a glass ceramic force instead of Zn—Cu ferrite were used.
  • Five green sheets composing the magnetic layer 21 were laminated, through holes were opened in this, and Ag paste was filled therein.
  • an Ag paste constituting the coil electrode 22 was printed on one surface orthogonal to the through holes of the two green sheets.
  • each of the above green sheets is pressure-bonded together, and each coil piece ( After being cut as individual pieces, the magnetic antenna (sample 9) having a diameter of 10 mm and a number of turns of each coil of 7 turns was manufactured by firing at 900 ° C. for 2 hours.
  • Figure 10 shows a schematic diagram of the magnetic antenna obtained. In the figure, the number of turns of the coil is shown in a simplified manner.
  • an RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel or in series with the reader Z writer to adjust the resonance frequency to 13.56 MHz.
  • the resonance frequency and the communication distance with the RFID tag when attached to a metal plate were measured in the same manner as in Example 7.
  • the reader Z writer using the above magnetic antenna has a small resonance frequency fluctuation of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.4 cm when attached to the metal surface. was gotten.
  • a magnetic antenna (Sample 10) was manufactured by the same process as Example 7 except that the conductive layer 24 shown in FIG. 9 was omitted.
  • the RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel or in series with the reader Z writer to adjust the resonance frequency to 13.56 MHz.
  • the communication distance with the RFID tag when pasted on a metal plate was measured in the same manner as in Example 7. As a result, the change in resonance frequency before and after the metal plate was affixed was +2.3 MHz, and the communication distance when the metal plate was affixed was 1.6 cm.
  • a commercially available reader Z writer antenna that was spirally wired on the surface of a plate-like resin was attached to a metal plate, and the distance to communicate with the RFID tag was measured.
  • the antenna size was 30mm x 55mm and the number of coil turns was 3 turns.
  • the communication distance when the metal plate was affixed was 0.5 cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

A magnetic antenna preferable to an RFID tag and a reader/writer for RFID tag and capable of functioning stably even when it is made to approach a metal and be mass produced. The magnetic antenna has a structure in which a conductive layer is provided through an insulating layer to a magnetic layer that forms a coil. Further, the magnetic antenna is constructed by radially arranging a plurality of coils formed by the magnetic layer having a square or rectangular shape. One ends of the coils are so connected in series or parallel that their polarities match each other. The insulating layer is provided on one side or both sides of the upper and lower surface of the coil. The conductive layer is further provided outside one of the insulating layers. The magnetic antenna is fabricated using the LTCC technique.

Description

明 細 書  Specification
磁性体アンテナ  Magnetic antenna
技術分野  Technical field
[0001] 本発明は、磁性体アンテナに関するものであり、詳しくは、磁界成分を利用した通 信用の磁性体アンテナであって、金属製の対象物に添付した場合でも、感度よく信 号を送受信することができる磁性体アンテナに関するものである。本発明の磁性体ァ ンテナは、特に、 RFIDタグ、および、 RFIDタグ用リーダ Zライタに適している。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a magnetic antenna, and more specifically, a credible magnetic antenna that uses a magnetic field component, and transmits and receives signals with high sensitivity even when attached to a metal object. The present invention relates to a magnetic antenna that can be used. The magnetic antenna of the present invention is particularly suitable for RFID tags and RFID tag readers / writers. Background art
[0002] 磁性体を使用して電磁波を送受信するアンテナ (以下、「磁性体アンテナ」と称する 。;)は、磁性体に導線を巻き線してコイルが構成され、外部から飛来する磁界成分を 磁性体に貫通させ、コイルに誘導させて磁界成分を電圧 (または電流)に変換するァ ンテナであり、小型ラジオや TVに広く利用されてきた。また、磁性体アンテナは、近 年普及してきた RFIDタグと呼ばれる非接触型の物体識別装置にも利用されている。  [0002] An antenna that transmits and receives electromagnetic waves using a magnetic material (hereinafter referred to as "magnetic antenna";) has a coil formed by winding a conducting wire around a magnetic material, and has a magnetic field component flying from the outside. An antenna that penetrates a magnetic material and induces it into a coil to convert the magnetic field component into voltage (or current), and has been widely used in small radios and TVs. Magnetic antennas are also used in non-contact type object identification devices called RFID tags, which have become popular in recent years.
[0003] 一方、 RFIDタグにおいては、周波数がより高くなると、磁性体を使用せず且つコィ ル面が識別対象物と平行なループコイルカゝら成るループアンテナが使用され、更に 周波数が高い場合 (UHF帯やマイクロ波帯)は、 RFIDタグを含め、一般的に、磁界 成分ではなく電界成分を検出する電界アンテナ (ダイポールアンテナや誘電体アン テナ)が広く使用されている。  [0003] On the other hand, when the frequency becomes higher in the RFID tag, a loop antenna made of a loop coil cable that does not use a magnetic material and whose coil surface is parallel to the object to be identified is used, and the frequency is higher. In the UHF band and microwave band, including RFID tags, electric field antennas (dipole antennas and dielectric antennas) that generally detect electric field components instead of magnetic field components are widely used.
[0004] し力しながら、この様なループアンテナや電界アンテナは、金属物が接近した場合 、金属物にイメージ (ミラー効果)が発生し、イメージの磁界がアンテナと逆位相にな つたり、電界が金属面でゼロになるため、アンテナの感度が失われると言う問題が生 じる。そこで、斯かる問題を回避するため、平面視してコイル面が角型あるいは長方 形状に形成されたコイルを備え、金属製識別対象物の金属面に対してコイル断面が 垂直になるように、対象物に直接貼付する磁性体アンテナが開発されている (特許文 献 1)。また、磁性体アンテナを貼付する金属面を積極的に利用し、金属面に対して 平行な磁界を打ち消す方向にコイルを対向させ、金属面に垂直な方向に磁界を発 生させるようにした非接触式センサコイルが提案されて ヽる (特許文献 2)。 特許文献 1:特開 2003— 317052号公報 [0004] However, with such a loop antenna or electric field antenna, when a metal object approaches, an image (mirror effect) is generated on the metal object, and the magnetic field of the image is in an opposite phase to the antenna. The problem is that the sensitivity of the antenna is lost because the electric field is zero on the metal surface. Therefore, in order to avoid such a problem, the coil surface is provided with a coil having a rectangular or rectangular shape in plan view so that the coil cross section is perpendicular to the metal surface of the metal identification object. A magnetic antenna that is directly attached to an object has been developed (Patent Document 1). Also, the metal surface to which the magnetic antenna is affixed is actively used, the coil is opposed to cancel the magnetic field parallel to the metal surface, and the magnetic field is generated in the direction perpendicular to the metal surface. A contact-type sensor coil has been proposed (Patent Document 2). Patent Document 1: Japanese Patent Laid-Open No. 2003-317052
特許文献 2:特開 2003— 318634号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-318634
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、 RFIDタグに適用する上記の磁性体アンテナは、卷線したコイルが金 属物に接触した場合、卷線と金属板の接触面が不安定になり、その結果、特性にバ ラツキが発生すると言う問題がある。一方、 RFIDタグ用のリーダ Zライタにおいては 、一つの極で送受信できる磁性体アンテナが望まれている力 この種のアンテナは、 両端が開放構造のため、コイル両端に磁界が発生し、分離された 2つの極で送受信 するという問題がある。また、この問題を改善した磁性体アンテナも開発されているが 、斯カゝる磁性体アンテナにおいては、上記の場合と同様に、エナメル線等で卷線した コイルが金属物に接触した場合、特性にバラツキが発生する。  [0005] However, in the above magnetic antenna applied to the RFID tag, when the coiled coil contacts the metal, the contact surface between the coil and the metal plate becomes unstable. There is a problem that variations occur in the characteristics. On the other hand, the reader Z writer for RFID tags requires a magnetic antenna that can transmit and receive with one pole. This type of antenna has an open structure at both ends, so a magnetic field is generated at both ends of the coil and separated. There is a problem of transmitting and receiving at two poles. Also, a magnetic antenna that has improved this problem has been developed. However, in the case of such a magnetic antenna, as in the case described above, when a coil that has been wound with an enameled wire contacts a metal object, Variations in characteristics occur.
[0006] RFIDタグ、リーダ Zライタの何れに適用するにせよ、卷線するアンテナは量産性に 欠けると言う問題がある。更に、従来の磁性体アンテナは、金属物に近づくと、磁性 体アンテナの特性が変化し、共振周波数が変化するという問題があり、 目的の周波 数に共振を得るためには、金属プレートに貼り付けて個別に周波数調整する必要が ある。  [0006] Regardless of whether it is applied to an RFID tag or a reader Z writer, there is a problem that the antenna to be wound is not mass-productive. Furthermore, the conventional magnetic antenna has a problem that the characteristics of the magnetic antenna change as the metal object is approached, and the resonance frequency changes. In order to obtain resonance at a desired frequency, it is attached to a metal plate. In addition, it is necessary to adjust the frequency individually.
[0007] 本発明は、上記の実情に鑑みてなされたものであり、その目的は、 RFIDタグ及び R FIDタグ用リーダ Zライタに適した磁性体アンテナであって、コイルが金属物に接触 した場合でも、アンテナとしての特性がばらつくことがなぐし力も、量産性に優れた磁 性体アンテナを提供することにある。また、金属物に近づいた場合でも、共振周波数 が変化することのない磁性体アンテナを提供することにある。更に、本発明の他の目 的は、 RFIDタグ用リーダ Zライタに適した磁性体アンテナであって、正確にコイルの 一つの極で送受信できる磁性体アンテナを提供することにある。  [0007] The present invention has been made in view of the above circumstances, and an object thereof is a magnetic antenna suitable for an RFID tag and a reader / writer for an R FID tag, in which a coil is in contact with a metal object. Even in such a case, it is also possible to provide a magnetic antenna excellent in mass productivity because the characteristics of the antenna vary. Another object of the present invention is to provide a magnetic antenna in which the resonance frequency does not change even when approaching a metal object. Furthermore, another object of the present invention is to provide a magnetic antenna suitable for the RFID tag reader Z writer and capable of transmitting and receiving accurately with one pole of a coil.
課題を解決するための手段  Means for solving the problem
[0008] 本発明にお ヽては、磁性層に電極材料をコイル状に配置してコイルを構成すると 共に、当該コイルに対して絶縁層を介して導電層が積層された構造を採用すること により、上記の各課題を解決した。 [0009] すなわち、 RFIDタグに好適な本発明は、以下の第 1〜3の 3つの要旨から成り、そ の第 1の要旨は、磁界成分を送受信するための磁性体アンテナであって、磁性層の 外周に電極材料をコイル状に配置して成るコイルと、当該コイルの一方または両方の 外側面に設けられた絶縁層と、一方または両方の絶縁層の外側面に設けられた導 電層とを備えて 、ることを特徴とする磁性体アンテナに存する。 In the present invention, a coil is formed by arranging an electrode material on a magnetic layer in a coil shape, and a structure in which a conductive layer is laminated on the coil via an insulating layer is adopted. The above-mentioned problems were solved. [0009] That is, the present invention suitable for an RFID tag is composed of the following first to third aspects, and the first aspect is a magnetic antenna for transmitting and receiving a magnetic field component, A coil formed by arranging electrode materials in a coil shape on the outer periphery of the layer, an insulating layer provided on one or both outer surfaces of the coil, and a conductive layer provided on the outer surface of one or both insulating layers And a magnetic antenna characterized by comprising:
[0010] また、本発明の第 2の要旨は、磁界成分を送受信するための磁性体アンテナであ つて、磁性粉末とバインダー榭脂との混合物をシート状に成形して成る単層または複 層構造の磁性層に対して、その外周に電極材料を電気回路としてコイル状に配置し てコイルを形成し、当該コイルの両方の外側面に絶縁層を設け、一方または両方の 絶縁層の外側面に導電層を設け、所望の大きさに切断した後、一体焼成したことを 特徴とする磁性体アンテナに存する。  [0010] Further, the second gist of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, which is a single layer or a plurality of layers formed by molding a mixture of magnetic powder and binder resin into a sheet shape. A coil is formed by arranging an electrode material on the outer periphery of the magnetic layer in the form of a coil as an electric circuit, and an insulating layer is provided on both outer surfaces of the coil, and the outer surface of one or both insulating layers A magnetic antenna is characterized in that a conductive layer is provided, and is cut into a desired size and then fired integrally.
[0011] そして、本発明の第 3の要旨は、磁界成分を送受信するための磁性体アンテナで あって、磁性粉末をバインダーと混合して平面形状が角型または長方形のシート状 に成形した単層または複層構造の磁性層に対してスルーホールを開け、当該スルー ホールに電極材料を流し込み、かつ、スルーホールと直交する磁性層の両面に電極 材料で電極層を形成し、当該電極層をスルーホールと接続することにより、磁性層の 両端が磁性回路上開放となる構成のコイルを作成し、電極層が形成されたコイルの 上下面を絶縁層で挟み込み、一方または両方の絶縁層の外側面に導電層を配置し 、スルーホールとコイル開放端面に相当する位置で切断し、一体焼成したことを特徴 とする磁性体アンテナに存する。  [0011] A third gist of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, in which a magnetic powder is mixed with a binder and the plane shape is formed into a square or rectangular sheet. A through-hole is formed in a magnetic layer having a layer structure or a multilayer structure, an electrode material is poured into the through-hole, and electrode layers are formed on both surfaces of the magnetic layer orthogonal to the through-hole with the electrode material. By connecting to the through-hole, a coil having a configuration in which both ends of the magnetic layer are open on the magnetic circuit is created, and the upper and lower surfaces of the coil on which the electrode layer is formed are sandwiched between insulating layers, and one or both of the insulating layers are outside. A magnetic antenna is characterized in that a conductive layer is disposed on a side surface, cut at a position corresponding to a through hole and a coil open end surface, and integrally fired.
[0012] また、 RFIDタグ用リーダ Zライタに好適な本発明は、以下の第 4〜7の 4つの要旨 力 成り、その第 4の要旨は、磁界成分を送受信するための磁性体アンテナであって 、平面形状が角型または長方形の磁性層によって構成されたコイルを複数個備え、 これらコイルは、平面視してほぼ均等な間隔で放射状に配置され、かつ、各コイルの 一端は、その極性が同一となるように放射形状の中心において直列または並列に互 いに磁性層で接続され、各コイルの他端は、放射形状の外側に向けられて開放され 、しかも、コイルの上下面のうちの一方または両方には、絶縁層が設けられ、一方の 絶縁層の外側には、導電層が設けられて ヽることを特徴とする磁性体アンテナに存 する。 In addition, the present invention suitable for the RFID tag reader Z writer has the following four aspects, the fourth aspect being a magnetic antenna for transmitting and receiving magnetic field components. The coil has a plurality of coils each having a square or rectangular magnetic layer, and these coils are arranged radially at almost equal intervals in plan view, and one end of each coil has its polarity. Are connected in series or in parallel with each other at the center of the radial shape, and the other end of each coil is opened toward the outside of the radial shape, and the upper and lower surfaces of the coil One or both of them are provided with an insulating layer, and a conductive layer is provided outside one of the insulating layers. To do.
[0013] また、本発明の第 5の要旨は、磁界成分を送受信するための磁性体アンテナであ つて、平面形状が角型または長方形の磁性層によって構成されたコイルを複数個備 え、これらコイルは、平面視してほぼ均等な間隔で放射状に配置され、かつ、各コィ ルの一端は、放射形状の中心側に向けられて開放され、各コイルの他端は、放射形 状の外側に向けられ且つその極性が同一となるように外周側の円環部において直列 または並列に互いに磁性層で接続され、しかも、コイルの上下面のうちの一方または 両方には、絶縁層が設けられ、一方の絶縁層の外側には、導電層が設けられている ことを特徴とする磁性体アンテナに存する。  [0013] Further, the fifth aspect of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, comprising a plurality of coils each having a square or rectangular magnetic layer as a planar shape. The coils are arranged radially at almost equal intervals in a plan view, and one end of each coil is opened toward the center of the radial shape, and the other end of each coil is outside the radial shape. Are connected to each other by a magnetic layer in series or in parallel in the outer ring portion so that the polarities thereof are the same, and an insulating layer is provided on one or both of the upper and lower surfaces of the coil. The magnetic antenna is characterized in that a conductive layer is provided outside one of the insulating layers.
[0014] そして、本発明の第 6の要旨は、磁界成分を送受信するために LTCC技術を利用 して製造された磁性体アンテナであって、磁性粉末をバインダーと混合してシート状 に成形した単層または複層構造の磁性層に対してスルーホールを開け、当該スルー ホールに電極材料を流し込み、かつ、スルーホールと直交する磁性層の両面に電極 材料で電極層を形成し、スルーホールの中心を通る位置で磁性層を打ち抜くこと〖こ より、放射形状を形成する複数個、例えば 3つのコイルの中心で磁性層が接続される ようにコイルを形成し、当該コイルの磁性層を上面および下面カゝら絶縁層で挟み込 み、かつ、磁性層上面に配置される絶縁層が電極層を覆う形状に打ち抜いた絶縁層 であり、磁性層下面の絶縁層の更に下面に電極材料と同様の材料カゝら成る導電層を 設け、個片に切断して焼成するか、または、一体焼成した後に個片に切断することに より製造され、そして、平面形状が角型または長方形の磁性層によって構成された複 数個のコイルが平面視してほぼ均等な間隔で放射状に配置され、かつ、各コイルの 一端は、その極性が同一となるように放射形状の中心において直列または並列に互 いに磁性層で接続され、各コイルの他端は、放射形状の外側に向けられて開放され て 、ることを特徴とする磁性体アンテナに存する。  [0014] A sixth aspect of the present invention is a magnetic antenna manufactured using LTCC technology for transmitting and receiving a magnetic field component, wherein magnetic powder is mixed with a binder and formed into a sheet shape. A through-hole is formed in a magnetic layer having a single layer or a multi-layer structure, an electrode material is poured into the through-hole, and electrode layers are formed on both sides of the magnetic layer perpendicular to the through-hole with an electrode material. By punching out the magnetic layer at a position passing through the center, a coil is formed such that the magnetic layers are connected at the center of a plurality of, for example, three coils that form a radial shape. An insulating layer sandwiched between insulating layers on the lower surface and punched into a shape that covers the electrode layer, and the insulating layer disposed on the upper surface of the magnetic layer is the same as the electrode material on the lower surface of the insulating layer on the lower surface of the magnetic layer. Material The conductive layer is formed and cut into individual pieces and fired, or integrally fired and then cut into individual pieces, and the planar shape is composed of a square or rectangular magnetic layer. Several coils are arranged radially at substantially equal intervals in plan view, and one end of each coil is a magnetic layer in series or in parallel at the center of the radial shape so that the polarity is the same. The other end of each coil is connected to the outside of the radiating shape and is opened to be present in the magnetic antenna.
[0015] また、本発明の第 7の要旨は、磁界成分を送受信するために LTCC技術を利用し て製造された磁性体アンテナであって、磁性粉末をバインダーと混合してシート状に 成形した単層または複層構造の磁性層に対してスルーホールを開け、当該スルーホ ールに電極材料を流し込み、かつ、スルーホールと直交する磁性層の両面に電極材 料で電極層を形成し、スルーホールの中心を通る位置で磁性層を打ち抜くことにより コイルを形成し、当該コイルの磁性層を上面および下面カゝら絶縁層で挟み込み、力 つ、磁性層上面に配置される絶縁層が電極層を覆う形状に打ち抜いた絶縁層であり 、磁性層下面の絶縁層の更に下面に電極材料と同様の材料から成る導電層を設け 、個片に切断して焼成することにより製造され、そして、平面形状が角型または長方 形の磁性層によって構成された複数個のコイルが平面視してほぼ均等な間隔で放 射状に配置され、かつ、各コイルの一端は、放射形状の中心側に向けられて開放さ れ、各コイルの他端は、放射形状の外側に向けられ且つその極性が同一となるように 外周側の円環部にぉ ヽて互いに磁性層で接続されて ヽることを特徴とする磁性体ァ ンテナに存する。 [0015] A seventh aspect of the present invention is a magnetic antenna manufactured using LTCC technology for transmitting and receiving a magnetic field component, wherein magnetic powder is mixed with a binder and formed into a sheet shape. A through hole is made in a magnetic layer having a single layer or a multi-layer structure, an electrode material is poured into the through hole, and an electrode material is formed on both sides of the magnetic layer orthogonal to the through hole. An electrode layer is formed with a material, and a coil is formed by punching the magnetic layer at a position passing through the center of the through hole, and the magnetic layer of the coil is sandwiched by an insulating layer from the upper surface and the lower surface. The insulating layer disposed on the insulating layer is punched into a shape covering the electrode layer. A conductive layer made of the same material as the electrode material is further provided on the lower surface of the insulating layer on the lower surface of the magnetic layer, and cut into individual pieces and fired. And a plurality of coils having a planar shape constituted by a rectangular or rectangular magnetic layer are arranged in a radiating manner at almost equal intervals in a plan view, and One end is opened toward the center of the radial shape, and the other end of each coil is directed toward the outside of the radial shape and is mutually connected across the annular portion on the outer peripheral side so that the polarity is the same. It is characterized by being connected by a magnetic layer. Exists in the magnetic antenna.
発明の効果  The invention's effect
[0016] 本発明の磁性体アンテナによれば、 LTCC技術によって導電層が設けられるため、 積層された各層の密着性が良ぐ卷線と付加された導電層とを安定して結合でき、し 力も、使用環境下で調整する必要がなぐ素子単独で周波数調整が出来る。また、 導電層が付加されているため、金属物に接近した際も、特性が変動することがない。 更に、一つのシートから複数個の素子を安定して製作できるため、各素子のバラツキ が押さえられ、量産性を高め、製造コストを低減できる。  [0016] According to the magnetic antenna of the present invention, the conductive layer is provided by the LTCC technology, so that the wire having good adhesion between the laminated layers and the added conductive layer can be stably coupled. The force can also be adjusted by a single element that does not need to be adjusted in the operating environment. In addition, since a conductive layer is added, characteristics do not fluctuate even when approaching a metal object. Furthermore, since a plurality of elements can be stably manufactured from a single sheet, variations in each element can be suppressed, mass productivity can be improved, and manufacturing costs can be reduced.
[0017] 特に、本発明の第 1〜3の要旨に係る磁性体アンテナは、金属面に貼付した際の 共振周波数の変化が 1MHz以下と少ないため、 125KHz力ら 2. 45GHzまでの広 い周波数範囲で適用可能であり、例えば 13. 56MHzの RFIDタグに適用した場合、 タグを金属面に貼り付けても通信距離が 3cm以上取れる。また、グリーンシートの積 層構造を中心のコイルに対して上下に対称な積層構造とすることにより、焼成後の反 りを長辺 lcm当たり 0. 5mm以下に抑制することが可能であり、一層実用的なアンテ ナとして利用可能である。  [0017] In particular, since the magnetic antenna according to the first to third aspects of the present invention has a small change of the resonance frequency of 1MHz or less when it is attached to a metal surface, the frequency range from 125KHz to 2.45GHz is wide. For example, when applied to a 13.56MHz RFID tag, a communication distance of 3cm or more can be obtained even if the tag is attached to a metal surface. In addition, by making the green sheet stacking structure symmetrical vertically with respect to the central coil, it is possible to suppress warping after firing to 0.5 mm or less per long side lcm. It can be used as a practical antenna.
[0018] また、本発明の第 4〜7の要旨に係る磁性体アンテナは、導電層の外側に磁性層を 設けることにより、金属物に貼り付けた際の特性の変動を一層抑制することが出来る 。そして、本発明の磁性体アンテナは、 RFIDタグ用リーダ Zライタに限らず、 RFID タグにも使用でき、コイルの芯となる磁性層の選択により、 125kHzから 2. 45GHzま での広 、周波数範囲で適用可能である。 [0018] In addition, the magnetic antennas according to the fourth to seventh aspects of the present invention can further suppress fluctuations in characteristics when attached to a metal object by providing a magnetic layer outside the conductive layer. I can do it. The magnetic antenna of the present invention can be used not only for the RFID tag reader Z writer but also for the RFID tag. Depending on the selection of the magnetic layer to be the core of the coil, the magnetic antenna can be 125 kHz to 2.45 GHz. It is applicable in a wide frequency range.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第 1〜3の要旨に係る磁性体アンテナのコイル部分の積層構造を示 す斜視図である。 FIG. 1 is a perspective view showing a laminated structure of a coil portion of a magnetic antenna according to the first to third aspects of the present invention.
[図 2]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 1を示す斜視図で ある。  FIG. 2 is a perspective view showing Example 1 which is a magnetic antenna according to the first to third aspects of the present invention.
[図 3]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 2を示す斜視図で ある。  FIG. 3 is a perspective view showing Example 2, which is a magnetic antenna according to the first to third aspects of the present invention.
[図 4]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 3を示す斜視図で ある。  FIG. 4 is a perspective view showing Example 3 which is a magnetic antenna according to the first to third aspects of the present invention.
[図 5]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 4を示す斜視図で ある。  FIG. 5 is a perspective view showing Example 4 which is a magnetic antenna according to the first to third aspects of the present invention.
[図 6]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 5を示す斜視図で ある。  FIG. 6 is a perspective view showing Example 5, which is a magnetic antenna according to the first to third aspects of the present invention.
[図 7]本発明の第 1〜3の要旨に係る磁性体アンテナである実施例 6を示す斜視図で ある。  FIG. 7 is a perspective view showing Example 6 which is a magnetic antenna according to the first to third aspects of the present invention.
[図 8]導電層のない比較例 1としての積層磁性体アンテナを示す斜視図である。  FIG. 8 is a perspective view showing a laminated magnetic antenna as Comparative Example 1 having no conductive layer.
[図 9]本発明の第 4〜7の要旨に係る磁性体アンテナである実施例 7を示す斜視図で ある。  FIG. 9 is a perspective view showing Example 7 which is a magnetic antenna according to the fourth to seventh aspects of the present invention.
[図 10]本発明の第 4〜7の要旨に係る磁性体アンテナである実施例 8を示す斜視図 である。  FIG. 10 is a perspective view showing Example 8 which is a magnetic antenna according to the fourth to seventh aspects of the present invention.
[図 11]図 9及び図 10の磁性体アンテナにお 、て三つのコイルを直列に接続し、その 両端間にコンデンサを並列に接続した例を模式的に示す回路図である。  FIG. 11 is a circuit diagram schematically showing an example in which three coils are connected in series and capacitors are connected in parallel between both ends of the magnetic antenna shown in FIGS. 9 and 10.
[図 12]図 9及び図 10の磁性体アンテナにお 、て三つのコイルを直列に接続し、その 両端間にコンデンサを直列に接続した例を模式的に示す回路図である。  FIG. 12 is a circuit diagram schematically showing an example in which three coils are connected in series and capacitors are connected in series between both ends of the magnetic antenna shown in FIGS. 9 and 10.
[図 13]図 9及び図 10の磁性体アンテナにお 、て三つのコイルを並列に接続し、それ ぞれの両端間にコンデンサを並列に接続した例を模式的に示す回路図である。 符号の説明 [0020] 11:スルーホール FIG. 13 is a circuit diagram schematically showing an example in which three coils are connected in parallel and capacitors are connected in parallel between both ends of the magnetic antenna shown in FIGS. 9 and 10. Explanation of symbols [0020] 11: Through hole
12:電極層  12: Electrode layer
13:コイル開放端面  13: Coil open end face
14 :=fィル  14: = f
15:磁性層  15: Magnetic layer
16:絶縁層  16: Insulation layer
17:導電層  17: Conductive layer
18:ICチップ接続端子  18: IC chip connection terminal
19:コイルリード端子  19: Coil lead terminal
1R:FMラジオ  1R: FM radio
1C:コンデンサー電極  1C: Capacitor electrode
21:コイル部磁性層  21: Coil part magnetic layer
22:コイル電極  22: Coil electrode
23:絶縁層  23: Insulating layer
24:導電層  24: Conductive layer
25:磁性層  25: Magnetic layer
26:スルーホール断面で形成されたコイル電極  26: Coil electrode formed with through-hole cross section
27:磁力線の方向  27: Direction of magnetic field lines
28:コンデンサー  28: Condenser
29:コイルリード端子  29: Coil lead terminal
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 先ず、 RFIDタグに好適な本発明の第 1〜3の要旨に係る磁性体アンテナの実施形 態を図 1〜図 7に基づいて説明する。  First, an embodiment of a magnetic antenna according to the first to third aspects of the present invention suitable for an RFID tag will be described with reference to FIGS.
[0022] 本発明の磁性体アンテナは、概略、図 1に示すようなコイル 14をその上下面から図 2に示すような絶縁層 16で挟み込んで構成される。本発明の磁性体アンテナにおい て、コイル 14は、図 1に示すように、平面形状を角型あるいは長方形に形成された磁 性層 15によって構成される。磁性層 15は、単層あるいは複層の層構成を備えており 、各層は、磁性粉末をバインダーと混合してシート状に形成される。磁性層 15にはス ルーホール 11が開けられ、スルーホール 11には電極材料が流し込まれる。しかも、 スルーホール 11と直交する磁性層 15の両面には、電極材料で電極層 12が形成さ れる。そして、電極層 12はスルーホール 11と接続される。これにより、コイル 14を形 成する磁性層 15の両端が磁性回路上開放となるように構成される。 [0022] The magnetic antenna of the present invention is generally configured by sandwiching a coil 14 as shown in FIG. 1 from above and below with an insulating layer 16 as shown in FIG. In the magnetic antenna according to the present invention, the coil 14 is composed of a magnetic layer 15 having a planar or rectangular shape as shown in FIG. The magnetic layer 15 has a single-layer or multi-layer structure, and each layer is formed into a sheet by mixing magnetic powder with a binder. The magnetic layer 15 has A through hole 11 is opened, and an electrode material is poured into the through hole 11. In addition, electrode layers 12 are formed of an electrode material on both surfaces of the magnetic layer 15 orthogonal to the through holes 11. The electrode layer 12 is connected to the through hole 11. Thereby, both ends of the magnetic layer 15 forming the coil 14 are configured to be open on the magnetic circuit.
[0023] 更に、図 2に示すように、電極層 12が印刷されたコイル 14は、その上下面から絶縁 層 16で挟み込まれ、一方あるいは両方の絶縁層上面には、導電層 17が設けられる 。コイル 14、絶縁層 16及び導電層 17から成る上記の積層体は、スルーホール 11と コイル開放端面 13で切断されて一体焼成される。本発明においては、このように、 L TCC (Low Temperature Co -fired Ceramics;低温共焼成セラミックス)技術 を利用することにより、量産性を高めることが出来る。  Further, as shown in FIG. 2, the coil 14 on which the electrode layer 12 is printed is sandwiched between the upper and lower surfaces of the insulating layer 16, and the conductive layer 17 is provided on the upper surface of one or both of the insulating layers. . The above laminate comprising the coil 14, the insulating layer 16 and the conductive layer 17 is cut at the through hole 11 and the coil open end face 13 and integrally fired. In the present invention, mass productivity can be improved by utilizing the LTCC (Low Temperature Co-fired Ceramics) technology.
[0024] 本発明の磁性体アンテナにおいては、図 3に示すように、コイルリード端子 19と IC チップ接続端子 18が設けられてもよい。すなわち、電極層 12が印刷されたコイル 14 の上下面の絶縁層 16には、スルーホール 11が設けられ、このスルーホール 11には 、電極材料が流し込まれ、スルーホール 11は、コイル 14の両端と接続される。更に、 絶縁層 16の表面には、電極材料でコイルリード端子 19と ICチップ接続端子 18が印 刷される。そして、コイル 14、絶縁層 16及び導電層 17から成る上記の積層体は一体 焼成される。  In the magnetic antenna of the present invention, a coil lead terminal 19 and an IC chip connection terminal 18 may be provided as shown in FIG. That is, the through-hole 11 is provided in the insulating layer 16 on the upper and lower surfaces of the coil 14 on which the electrode layer 12 is printed, and the electrode material is poured into the through-hole 11. Connected. Further, a coil lead terminal 19 and an IC chip connection terminal 18 are printed on the surface of the insulating layer 16 with an electrode material. Then, the laminated body including the coil 14, the insulating layer 16, and the conductive layer 17 is integrally fired.
[0025] また、本発明の磁性体アンテナは、図 4に示すように、導電層 17を有する絶縁層 1 6の下面に磁性層 15が設けられ、そして、一体焼成されてもよい。これにより、本発明 の磁性体アンテナにおいては、金属物に近づけても、特性変化がより小さくなり、共 振周波数の変化をより小さくすることが出来る。更に、図 5に示すように、絶縁層 16上 面に導電層 17が設けられ且つ前記の絶縁層 16の下面に磁性層 15が設けられ、更 に当該磁性層の下面に絶縁層 16が設けられ、そして、一体焼成されてもよい。これ により、本発明の磁性体アンテナにおいては、磁性体アンテナの層間に生じる応力 をバランスさせ、反りを低減することが出来る。  In addition, as shown in FIG. 4, the magnetic antenna of the present invention may be provided with the magnetic layer 15 on the lower surface of the insulating layer 16 having the conductive layer 17 and may be integrally fired. As a result, in the magnetic antenna of the present invention, even if it is close to a metal object, the characteristic change becomes smaller and the change in the resonance frequency can be made smaller. Further, as shown in FIG. 5, a conductive layer 17 is provided on the upper surface of the insulating layer 16, a magnetic layer 15 is provided on the lower surface of the insulating layer 16, and an insulating layer 16 is provided on the lower surface of the magnetic layer. And may be integrally fired. Thereby, in the magnetic antenna of the present invention, the stress generated between the layers of the magnetic antenna can be balanced and the warpage can be reduced.
[0026] また、本発明の磁性体アンテナは、図 6に示すように、コンデンサー電極 1Cを備え ていてもよい。すなわち、コイル 14の上下面を挟み込む絶縁層 16の一方あるいは両 方の外側面には、コンデンサー電極 1Cが配置され、コンデンサー電極 1Cを配置し た絶縁層 16の外側面には、更に絶縁層 16が設けられ、当該絶縁層の外側面に電 極が印刷されて当該絶縁層を挟み込むようにコンデンサーが形成される。そして、コ ィル 14が ICチップ接続端子 18とコイルリード端子 19に並列もしくは直列に接続され る。 [0026] The magnetic antenna of the present invention may include a capacitor electrode 1C as shown in FIG. That is, the capacitor electrode 1C is disposed on one or both outer surfaces of the insulating layer 16 sandwiching the upper and lower surfaces of the coil 14, and the capacitor electrode 1C is disposed. An insulating layer 16 is further provided on the outer surface of the insulating layer 16, and an electrode is printed on the outer surface of the insulating layer to form a capacitor so as to sandwich the insulating layer. The coil 14 is connected to the IC chip connection terminal 18 and the coil lead terminal 19 in parallel or in series.
[0027] 更に、本発明の磁性体アンテナにおいては、絶縁層の上面に平行電極または櫛型 電極を印刷することによりコンデンサーが形成され、コイル 14がコイルリード端子と並 列もしくは直列に接続されてもよい。コンデンサ一は、絶縁層 16を挟み込む平行平 板構造でも、櫛形または平行電極の平面構造でもよい。また、平行平板構造では、 図 6に示すように、一方のコンデンサー電極が ICチップ接続端子 18を兼ねてもよい。  Furthermore, in the magnetic antenna of the present invention, a capacitor is formed by printing parallel electrodes or comb-shaped electrodes on the upper surface of the insulating layer, and the coil 14 is connected in parallel or in series with the coil lead terminal. Also good. The capacitor 1 may be a parallel flat plate structure sandwiching the insulating layer 16 or a comb-shaped or parallel electrode planar structure. In the parallel plate structure, as shown in FIG. 6, one capacitor electrode may also serve as the IC chip connection terminal 18.
[0028] 本発明の磁性体アンテナは、磁性層 15に Ni—Zn系フェライト磁性体を使用し、一 体焼成して製造される。使用するフェライト粉末の組成は、 Fe O :45〜49. 5モル  The magnetic antenna of the present invention is manufactured by using a Ni—Zn ferrite magnetic material for the magnetic layer 15 and firing it as a single body. The composition of the ferrite powder used is Fe O: 45-49.5 mol
2 3  twenty three
%、 NiO : 9. 0〜45. 0モル0 /0、 ZnO : 0. 5〜35. 0モル0 /0、 CuO :4. 5〜15. 0モル%, NiO: 9. 0~45 0 mole 0/0, ZnO:. 0. 5~35 0 mole 0/0, CuO:.. . 4 5~15 0 mol
%が好ましぐ斯かる組成は、使用する周波数帯で透磁率が高ぐ磁性損失が低くな るように選択するのがよい。透磁率が低すぎると、 LTCC技術で形成するには必要な コイルの巻き数が大きくなりすぎ、製造が困難になる。一方、透磁率が高すぎると、損 失が増えるのでアンテナに適さなくなる。例えば、 RFIDタグに適用する場合は、 13. 56MHzでの透磁率力 70〜 120、民生 FM放送受信用の場合は、 100MHzでの透 磁率が 10〜30となるように、フェライト組成を選択するのが好ましい。フェライトの焼 結温度は 800〜 1000。Cであり、好ましくは 850〜920。Cである。 Such a composition with a preferred% is preferably selected so that the magnetic loss is high and the magnetic loss is low in the frequency band to be used. If the permeability is too low, the number of coil turns required to form with LTCC technology becomes too large and difficult to manufacture. On the other hand, if the magnetic permeability is too high, the loss increases, making it unsuitable for an antenna. For example, when applying to RFID tags, select the ferrite composition so that the permeability is 70-120 at 13.56 MHz, and for commercial FM broadcast reception, the permeability at 100 MHz is 10-30. Is preferred. The sintering temperature of ferrite is 800-1000. C, preferably 850-920. C.
[0029] また、絶縁層 16には、 Zn系フェライトが使用される。斯カるフェライト粉末としては、 焼結体の体積固有抵抗が 108 Ω cm以上になるような組成の Zn系フェライトを選択す るのがよい。すなわち、 Zn系フェライトの組成は、 Fe O :45〜49. 5モノレ0 /0、 ZnO : In addition, Zn-based ferrite is used for the insulating layer 16. As such ferrite powder, it is preferable to select a Zn-based ferrite having a composition such that the volume resistivity of the sintered body is 10 8 Ωcm or more. That is, the composition of the Zn-based ferrite, Fe O:. 45~49 5 Monore 0/0, ZnO:
2 3  twenty three
17. 0〜22. 0モノレ0 /0、 CuO :4. 5〜15. 0モノレ0 /0力 ^好まし!/、。更に、絶縁層 16に【ま 、ガラス系セラミックが使用される。斯カるガラス系セラミックとしては、ホウケィ酸系ガ ラス、亜鉛系ガラス、鉛系ガラス等を使用することが出来る。 17.0 to 22 0 Monore 0/0, CuO:.. .! 4 5~15 0 Monore 0/0 force ^ preferred /,. Further, glass ceramic is used for the insulating layer 16. As such a glass-based ceramic, borosilicate glass, zinc-based glass, lead-based glass, or the like can be used.
[0030] 本発明の磁性体アンテナは、図 3に示すように、絶縁層 16上面に ICチップが接続 できる端子を有し、当該端子を ICチップ接続端子 18と並列または直列に接続して一 体焼成されてもよい。また、絶縁層上面には、可変コンデンサーを設ける端子がコィ ルリード端子と並列または直列に接続されてもよい。更に、本発明において、電極材 料としては、 Agペーストが適しており、その他の Ag系合金ペースト等、金属系導電 性ペーストを使用することも出来る。 As shown in FIG. 3, the magnetic antenna of the present invention has a terminal to which an IC chip can be connected on the upper surface of the insulating layer 16, and the terminal is connected in parallel or in series with the IC chip connection terminal 18. Body firing may be performed. In addition, on the upper surface of the insulating layer, a terminal for providing a variable capacitor The lead terminal may be connected in parallel or in series. Furthermore, in the present invention, an Ag paste is suitable as the electrode material, and other metal-based conductive pastes such as other Ag-based alloy pastes can also be used.
[0031] 次に、 RFIDタグ用リーダ/ライタに好適な本発明の第 4〜7の要旨に係る磁性体 アンテナの実施形態を図 9〜図 13に基づいて説明する。  Next, embodiments of magnetic antennas according to the fourth to seventh aspects of the present invention suitable for RFID tag reader / writers will be described with reference to FIGS. 9 to 13.
[0032] 本発明の磁性体アンテナは、磁界成分を送受信するためのアンテナであり、図 9に 一態様を示すように、平面形状を角型ある 、は長方形に形成された磁性層 21によつ てコイルが構成される。斯カゝるコイルは、平面視してほぼ均等な間隔で放射状に複数 個配置される。各コイルの一端は、放射形状の中心において互いに磁性層で接続さ れ、また、各コイルの他端は、放射形状の外側に向けられて開放される。各コイルの 一端は、その極性が同一となるように直列(図 11及び図 12参照)又は並列(図 13参 照)に相互に接続される。そして、平面視した場合のコイルの上下面のうちの一方ま たは両方には絶縁層 23が設けられ、し力も、一方の絶縁層 23の外側には導電層 24 が設けられる。  [0032] The magnetic antenna of the present invention is an antenna for transmitting and receiving a magnetic field component. As shown in FIG. 9, the magnetic antenna 21 has a rectangular planar shape or a rectangular shape. A coil is formed. A plurality of such coils are arranged radially at substantially equal intervals in plan view. One end of each coil is connected to each other by a magnetic layer at the center of the radial shape, and the other end of each coil is opened toward the outside of the radial shape. One end of each coil is connected to each other in series (see Fig. 11 and Fig. 12) or in parallel (see Fig. 13) so that the polarity is the same. In addition, an insulating layer 23 is provided on one or both of the upper and lower surfaces of the coil in plan view, and a conductive layer 24 is provided on the outer side of the one insulating layer 23.
[0033] また、本発明の磁性体アンテナは、磁界成分を送受信するための磁性体アンテナ であり、図 10に他の態様を示すように、上記と同様の角型あるいは長方形の磁性層 2 1によってコイルが構成され、斯カるコイルは、平面視してほぼ均等な間隔で放射状 に複数個配置される。各コイルの一端は、放射形状の中心側に向けられて開放され 、また、各コイルの他端は、放射形状の外側に向けられ且つ外周側の円環部におい て磁性層で接続される。各コイルの他端は、その極性が同一となるように直列または 並列に相互に接続される。そして、平面視した場合のコイルの上下面のうちの一方ま たは両方には絶縁層 23が設けられ、し力も、一方の絶縁層 23の外側には導電層 24 が設けられる。  [0033] The magnetic antenna of the present invention is a magnetic antenna for transmitting and receiving a magnetic field component, and as shown in FIG. 10, another rectangular or rectangular magnetic layer 21 similar to the above is shown. Thus, a plurality of coils are arranged radially at substantially equal intervals in plan view. One end of each coil is opened toward the center of the radial shape, and the other end of each coil is directed to the outside of the radial shape and connected by a magnetic layer at the annular portion on the outer peripheral side. The other ends of the coils are connected to each other in series or in parallel so that their polarities are the same. In addition, an insulating layer 23 is provided on one or both of the upper and lower surfaces of the coil in plan view, and a conductive layer 24 is provided on the outer side of the one insulating layer 23.
[0034] 上記の各磁性体アンテナは、 LTCC技術を利用して製造されたものであり、コイル を構成する磁性層 21は、単層あるいは複層の層構成を備えており、各層は、仮焼成 した磁性粉末をバインダーと混合してシート状に成形される。磁性層 21には、スルー ホールが開けられ、スルーホールには、電極材料が流し込まれる。また、スルーホー ルと直交する磁性層 21の両面には、電極材料で電極層が形成される。更に、電極層 を含む磁性層 21は、スルーホールの中心を通る線の延長線上を含む位置で打ち抜 いてコイル構造に成形される。すなわち、スルーホール断面によってコイル電極 26が 形成される。その際、放射形状を形成する 3つのコイルの中心で磁性層が接続される ようにコイル部分を残して打ち抜かれる。成形された磁性層 21 (コイル)は、上面およ び下面カゝら絶縁層 23で挟み込まれる。電極層を印刷した磁性層上面に配置される 絶縁層 23は、電極層 24を覆う形状に打ち抜いたものである。更に、磁性層 21下面 の絶縁層 23の更に下面には、電極材料と同様の材料力も成る導電層 24が設けられ る。そして、個々のコイル片 (個片)として切断され、一体焼成される。 [0034] Each of the magnetic antennas described above is manufactured using LTCC technology, and the magnetic layer 21 constituting the coil has a single-layer or multi-layer structure, and each layer is a temporary layer. The fired magnetic powder is mixed with a binder and formed into a sheet. A through hole is opened in the magnetic layer 21, and an electrode material is poured into the through hole. In addition, electrode layers are formed of an electrode material on both surfaces of the magnetic layer 21 orthogonal to the through hole. Furthermore, the electrode layer The magnetic layer 21 containing is stamped into a coil structure at a position including an extension of a line passing through the center of the through hole. That is, the coil electrode 26 is formed by the through-hole cross section. At that time, punching is performed leaving the coil portion so that the magnetic layer is connected at the center of the three coils forming the radial shape. The molded magnetic layer 21 (coil) is sandwiched between the upper and lower surfaces and the insulating layer 23. The insulating layer 23 disposed on the upper surface of the magnetic layer on which the electrode layer is printed is punched into a shape covering the electrode layer 24. Further, a conductive layer 24 having the same material force as that of the electrode material is provided on the lower surface of the insulating layer 23 on the lower surface of the magnetic layer 21. And it cut | disconnects as an individual coil piece (individual piece), and is integrally fired.
[0035] 上記のようにして得られる磁性体アンテナは、前述のように、磁性層 21の平面形状 を角型または長方形形成されたコイルが放射状に複数個配置されたものであり、全 てのコイルの一方の端部が磁性層 21で接続され、他方の端が開放されている。そし て、各コイルの極性が同一となるように直列または並列に接続されている。このように 対向する各コイルの極性が同一であることにより、磁界 27の金属面に平行な成分は 打ち消され(図 11参照)、金属面に垂直な成分のみが得られるようになる(図 9及び 図 10参照)。 [0035] As described above, the magnetic antenna obtained as described above is obtained by arranging a plurality of coils in which the planar shape of the magnetic layer 21 is formed in a square shape or a rectangular shape. One end of the coil is connected by the magnetic layer 21 and the other end is open. The coils are connected in series or in parallel so that the polarities of the coils are the same. Since the opposing coils have the same polarity, the component parallel to the metal surface of the magnetic field 27 is canceled (see Fig. 11), and only the component perpendicular to the metal surface is obtained (Fig. 9). And Figure 10).
[0036] また、本発明の磁性体アンテナにおいては、電極層 24を印刷したコイルの上下面 の絶縁層 23、または、導電層 24を設けた面と反対側の面の絶縁層 23にスルーホー ルを設け、当該スルーホールに電極材料を流し込んでコイルの卷始めと卷終わりの 両端と接続するように、絶縁層 23の表面に電極材料でコイルリード端子 29が印刷さ れてもよい。更に、導電層 24の外側に磁性層 25が設けられてもよい。導電層 24の外 側に磁性層 25を設けた場合には、導電層 24のみの場合に比べ、磁性体アンテナを 金属面に貼付した際の共振周波数の変化を更に小さくすることが出来る。また、本発 明の磁性体アンテナにお 、ては、導電層 24の外側の磁性層の更に外側に絶縁層が 設けられてもよい。これにより、コイルを含む積層構造において層間に生ずる応力を バランスさせ、反りを低減することが出来る。  [0036] In the magnetic antenna of the present invention, the through hole is formed on the insulating layer 23 on the upper and lower surfaces of the coil on which the electrode layer 24 is printed, or on the insulating layer 23 on the surface opposite to the surface on which the conductive layer 24 is provided. The coil lead terminal 29 may be printed with the electrode material on the surface of the insulating layer 23 so that the electrode material is poured into the through hole and connected to both ends of the coil end and end of the coil. Furthermore, a magnetic layer 25 may be provided outside the conductive layer 24. When the magnetic layer 25 is provided on the outer side of the conductive layer 24, the change in the resonance frequency when the magnetic antenna is attached to the metal surface can be further reduced as compared with the case where only the conductive layer 24 is provided. In the magnetic antenna of the present invention, an insulating layer may be provided on the outer side of the magnetic layer outside the conductive layer 24. This balances the stress generated between the layers in the laminated structure including the coil, and can reduce the warpage.
[0037] また、本発明の磁性体アンテナにおいては、図 11〜図 13に示すような回路となる ように、コイルの上下面を挟み込む絶縁層 23の上面に対し、挟み込むように角型、 円形電極を印刷してコンデンサー 28を形成した絶縁層が設けられ、前記のコンデン サー 28の電極力コイルリード端子電極 29と並列(図 11及び図 13参照)又は直列(図 12参照)に接続されてもよい。 [0037] Further, in the magnetic antenna of the present invention, a square or circular shape is sandwiched between the upper surface of the insulating layer 23 that sandwiches the upper and lower surfaces of the coil so that the circuit shown in FIGS. An insulating layer on which electrodes are printed to form a capacitor 28 is provided. The electrode 28 may be connected in parallel (see FIGS. 11 and 13) or in series (see FIG. 12) with the electrode force coil lead terminal electrode 29 of the sensor 28.
[0038] 更に図 11〜図 13に示すような回路となるように、コイルを挟み込む絶縁層 23の上 面に対し、平行電極または櫛型電極を印刷することによりコンデンサー 28が形成さ れ、コイルリード端子 29と並列(図 11及び図 13参照)又は直列(図 12参照)に接続さ れてもよい。具体的な印刷パターンの例は先の図 6に示す。そして、コンデンサー 28 は、絶縁層 23を挟みこむ平行平板構造でも、櫛形または平行電極の平面構造でよ い。また、平行平板構造では、一方のコンデンサー電極が ICチップ接続端子を兼ね てもよい。 Further, a capacitor 28 is formed by printing parallel electrodes or comb-shaped electrodes on the upper surface of the insulating layer 23 sandwiching the coil so as to obtain a circuit as shown in FIGS. 11 to 13. The lead terminal 29 may be connected in parallel (see FIGS. 11 and 13) or in series (see FIG. 12). An example of a specific print pattern is shown in FIG. The capacitor 28 may be a parallel plate structure sandwiching the insulating layer 23 or a planar structure of a comb shape or parallel electrodes. In the parallel plate structure, one capacitor electrode may also serve as an IC chip connection terminal.
[0039] 本発明の磁性体アンテナは、前述の第 1〜3の要旨に係る磁性体アンテナにおけ るのと同様に、磁性層 21に Ni—Zn系フェライト磁性体を使用し、一体焼成して製造 される。フェライト粉末の組成、フェライトの焼結温度も前述の磁性体アンテナの場合 と同様である。更に、絶縁層 23の組成も前述の磁性体アンテナの場合と同様であり、 また、前述の磁性体アンテナの場合と同様に、絶縁層 23にはガラス系セラミックを使 用できる。  The magnetic antenna of the present invention uses a Ni—Zn ferrite magnetic material for the magnetic layer 21 and is integrally fired in the same manner as in the magnetic antenna according to the first to third aspects described above. Manufactured. The composition of the ferrite powder and the sintering temperature of the ferrite are the same as in the magnetic antenna described above. Further, the composition of the insulating layer 23 is the same as that of the magnetic antenna described above, and glass ceramics can be used for the insulating layer 23 as in the case of the magnetic antenna described above.
[0040] また、本発明の磁性体アンテナは、前述の磁性体アンテナの場合と同様に、絶縁 層 23上面に ICチップが接続できる端子構造を有し、当該端子をコイルリード端子 29 と並列または直列に接続されてもよい。更に、前述の磁性体アンテナの場合と同様に 、電極材料としては、 Agペーストが適しており、その他の Ag系合金ペースト等、金属 系導電性ペーストを使用することも出来る。  [0040] Further, the magnetic antenna of the present invention has a terminal structure to which an IC chip can be connected to the upper surface of the insulating layer 23, as in the case of the magnetic antenna described above, and the terminal is parallel to the coil lead terminal 29 or They may be connected in series. Further, as in the case of the magnetic antenna described above, an Ag paste is suitable as the electrode material, and other metal conductive pastes such as other Ag-based alloy pastes can also be used.
実施例  Example
[0041] 以下の実施例は、一般に広く使用されている 13. 56MHzの ICカード型タグシステ ムに適用する場合の例である。先ず、本発明の第 1〜3の要旨に係る磁性体アンテ ナの実施例(実施例 1〜6)及びこれに対する比較例 (比較例 1、 2)を説明する。  [0041] The following embodiment is an example in which the present invention is applied to a 13.56 MHz IC card type tag system that is widely used in general. First, examples (Examples 1 to 6) of magnetic antennas according to the first to third aspects of the present invention and comparative examples (Comparative Examples 1 and 2) corresponding thereto will be described.
[0042] 実施例 1 :  [0042] Example 1:
LTCC技術を利用し、本発明の磁性体アンテナを製造した。先ず、磁性層 15を作 成した。磁性層 15の作成においては、 900°Cで焼結後に 13. 56MHzでの透磁率 カ 100になる?^ー211—01フェラィト仮焼粉^6 0 :48. 5モル0 /0、 NiO : 25モル0 /0 、 ZnO : 16モル%、 CuO : 10. 5モル%) 100重量部、ブチラール榭脂 8重量部、可 塑剤 5重量部、溶剤 80重量部をボールミルで混合してスラリーを製造した。得られた スラリーをドクターブレードで PETフィルム上に塗布し、 150mm角で且つ焼結時の 厚みが 0. 1mmとなるようにシート成型した。 The magnetic antenna of the present invention was manufactured using LTCC technology. First, the magnetic layer 15 was formed. In the creation of the magnetic layer 15, the magnetic permeability mosquito 100 at 13. 56 MHz after sintering at 900 ° C ^ over 211-01 Feraito calcined powder ^ 6 0:?. 48 5 mole 0/0, NiO: 25 mole 0/0 ZnO: 16 mol%, CuO: 10.5 mol%) 100 parts by weight, butyral resin 8 parts by weight, plasticizer 5 parts by weight, and solvent 80 parts by weight were mixed in a ball mill to produce a slurry. The obtained slurry was applied onto a PET film with a doctor blade, and a sheet was molded so as to have a 150 mm square and a thickness of 0.1 mm upon sintering.
[0043] また、絶縁層 16の作成においては、上記と同様に、 Zn— Cuフェライト仮焼粉 (Fe [0043] Further, in the production of the insulating layer 16, similarly to the above, a Zn-Cu ferrite calcined powder (Fe
2 2
O :48. 5モル0 /0、ZnO :41モル0 /0、CuO : 10. 5モル0 /0) 100重量部、ブチラールO:. 48 5 mole 0/0, ZnO: 41 mol 0/0, CuO: 10. 5 mole 0/0) 100 parts by weight of a butyral
3 Three
榭脂 8重量部、可塑剤 5重量部、溶剤 80重量部をボールミルで混合してスラリーを製 造した。得られたスラリーをドクターブレードで PETフィルム上に塗布し、磁性層と同 様のサイズと厚みにシート成型した。  A slurry was prepared by mixing 8 parts by weight of a resin, 5 parts by weight of a plasticizer, and 80 parts by weight of a solvent with a ball mill. The resulting slurry was applied onto a PET film with a doctor blade, and a sheet was molded to the same size and thickness as the magnetic layer.
[0044] 次いで、図 1に示すように、磁性層 15を構成するグリーンシートを 5枚積層し、これ にスルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホール 11と 直交する両面に Agペーストを印刷することにより、コイル 14を形成した。更に、図 2に 示すように、絶縁層 16を構成するグリーンシートをコイル 14の上下面に積層した。そ して、 Agペーストで導電層 17がー方の面に印刷された絶縁層 16としてのグリーンシ ートを更に積層した。 Next, as shown in FIG. 1, five green sheets constituting the magnetic layer 15 are laminated, through-holes 11 are opened therein, and Ag paste is filled therein, and orthogonal to the through-holes 11. Coil 14 was formed by printing Ag paste on both sides. Further, as shown in FIG. 2, green sheets constituting the insulating layer 16 were laminated on the upper and lower surfaces of the coil 14. Then, a green sheet as an insulating layer 16 in which the conductive layer 17 was printed on the opposite side with Ag paste was further laminated.
[0045] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、 900°Cで 2時間、一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 32ターンの磁性体アンテナ(サンプル 1)を製造した 。 (なお、図の簡略化のため、図 1及び図 2では、コイル巻き数を 7ターンで表示し、ま た、磁性層の積層枚数は、 3層で表している。他の図についても同様である。 )  [0045] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours to obtain a size of 18 mm in width. A magnetic antenna (sample 1) with a length of 4 mm and a coil winding number of 32 turns was manufactured. (For simplicity, the number of coil turns is indicated by 7 turns in FIGS. 1 and 2 and the number of magnetic layers is indicated by 3 layers. The same applies to other figures. )
[0046] 次に、上記の磁性体アンテナのコイル両端に RFIDタグ用 ICを接続し、更に、 ICと 並列にコンデンサーを接続し、共振周波数を 13. 1MHzに調整し、 RFIDタグを作成 した。そして、金属板に RFIDタグを貼り付け、出力 10mWのリーダ Zライタで通信可 能な距離を測定した。また、磁性体アンテナの反りを測定した。各測定方法は以下の 通りである。  Next, an RFID tag IC was connected to both ends of the coil of the above magnetic antenna, and a capacitor was connected in parallel with the IC, and the resonance frequency was adjusted to 13.1 MHz to produce an RFID tag. An RFID tag was attached to a metal plate, and the communicable distance was measured with a reader Z writer with an output of 10 mW. Moreover, the curvature of the magnetic antenna was measured. Each measurement method is as follows.
[0047] (共振周波数の測定と調整方法)  [0047] (Resonance frequency measurement and adjustment method)
共振周波数については、インピーダンスアナライザー(ヒューレットパッカード社製、 製品名;4291A)に 1ターンコイルを接続し、これと RFIDタグを結合させ、測定される インピーダンスのピーク周波数をもって共振周波数とした。また、その調整は、上記の 磁性体アンテナの端面に露出するコイル電極の位置を選択し、インダクタンスを調整 することにより行った。 ICと並列に接続するコンデンサの容量を変更することにより共 振周波数を調節できる。 Resonance frequency is measured by connecting a one-turn coil to an impedance analyzer (product name: 4291A, manufactured by Hewlett-Packard Company) and combining it with an RFID tag. The peak frequency of the impedance was used as the resonance frequency. The adjustment was performed by selecting the position of the coil electrode exposed on the end face of the magnetic antenna and adjusting the inductance. The resonant frequency can be adjusted by changing the capacitance of the capacitor connected in parallel with the IC.
[0048] (通信距離の測定方法)  [0048] (Measurement method of communication distance)
通信距離は、出力 10mWのリーダ Zライタ (株式会社エフィーシー製、製品名; UR WI-201)のアンテナを水平に固定し、金属板に貼り付けた RFIDタグを前記のアン テナの上方に水平に位置させると共に、 13. 56MHzで通信が可能な範囲で RFID タグを移動させ、その際のアンテナと RFIDタグとの垂直方向の最大距離を通信距離 として測定した。  The communication distance is 10mW. The reader Z writer (product name; UR WI-201, manufactured by Efficy Co., Ltd.) is fixed horizontally, and the RFID tag attached to the metal plate is placed horizontally above the antenna. At the same time, the RFID tag was moved within a range where communication was possible at 13.56 MHz, and the maximum vertical distance between the antenna and the RFID tag was measured as the communication distance.
[0049] (反りの測定方法)  [0049] (Measurement method of warpage)
平板状測定子を持つダイヤルゲージ (ミツトヨダイヤルゲージ ID— C112)をスタンド (ミツトヨスタンド BSG— 20)に取り付け、定盤上でダイヤルゲージを 0点調整した後、 磁性体アンテナを定盤と平板状測定子の間に挟むことによりダイヤルゲージで最高 点を測定し、その高さからノギス (ミツトヨノギス CD— C)で測定した磁性体アンテナの 厚みを差し引くことにより、反りの値を算出した。  Attach a dial gauge (Mitutoyo Dial Gauge ID—C112) with a flat surface probe to the stand (Mitutoyo Stand BSG-20), adjust the dial gauge to 0 on the surface plate, and then attach the magnetic antenna to the surface plate and flat plate shape. The warp value was calculated by subtracting the thickness of the magnetic antenna measured with a vernier caliper (Mitotogigi CD-C) from the height of the highest point measured with a dial gauge.
[0050] 上記の各方法により共振周波数、通信距離および反りを測定した結果、上記の磁 性体アンテナにおける反りは 0. 6mmであり、実用範囲であった。磁性体アンテナを 使用した RFIDタグは、金属板貼り付け前後の共振周波数変動が + 1MHZと小さぐ かつ、金属面に貼り付けた状態で 3cmの通信距離が得られた。  [0050] As a result of measuring the resonance frequency, the communication distance, and the warp by each of the above methods, the warp in the magnetic antenna was 0.6 mm, which was in a practical range. The RFID tag using a magnetic antenna has a small resonance frequency fluctuation of + 1MHZ before and after the metal plate is attached, and a communication distance of 3 cm can be obtained when attached to the metal surface.
[0051] 実施例 2 :  [0051] Example 2:
実施例 1と同様の磁性層 15としてのグリーンシートと、 Zn—Cuフェライトに替えてガ ラスセラミック力も成る絶縁層 16としてのグリーンシートを使用した。図 3に示すように 、磁性層 15を構成するグリーンシートを 5枚積層し、これにスルーホール 11を開けて その中に Agペーストを充填し、かつ、スルーホール 11と直交する両面に Agペースト を印刷することにより、コイル 14を形成した。  A green sheet as the magnetic layer 15 similar to that in Example 1 and a green sheet as the insulating layer 16 having a glass ceramic force instead of Zn—Cu ferrite were used. As shown in FIG. 3, five green sheets constituting the magnetic layer 15 are stacked, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11. The coil 14 was formed by printing.
[0052] 次いで、絶縁層 16を構成するグリーンシートをコイル 14の一方の面に積層した。そ の際、絶縁層 16には、 Agペーストで導電層 17を印刷した。更に、コイル 14の他方の 面には、他の絶縁層 16を積層し、斯カゝる絶縁層 16には、コイル 14の両端に接続す るようスルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホール 1 1と直交する当該絶縁層の表層には、コイルリード端子 19と、 ICを接続する ICチップ 接続端子 18とを Agペーストで印刷した。 Next, a green sheet constituting the insulating layer 16 was laminated on one surface of the coil 14. At that time, the conductive layer 17 was printed on the insulating layer 16 with Ag paste. Furthermore, the other side of the coil 14 On the surface, another insulating layer 16 is laminated, and in this insulating layer 16, a through hole 11 is formed so as to be connected to both ends of the coil 14, and Ag paste is filled in the through hole 11. Coil lead terminals 19 and IC chip connection terminals 18 for connecting ICs were printed with Ag paste on the surface layer of the insulating layer orthogonal to the holes 11.
[0053] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、 900°Cで 2時間、一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 32ターンの磁性体アンテナ(サンプル 2)を製造した [0053] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through-hole 11 and the open end face 13 of the coil, and then integrally fired at 900 ° C for 2 hours. Produced a magnetic antenna (sample 2) with X length of 4 mm and coil turns of 32 turns
[0054] 次に、実施例 1と同様に、上記の磁性体アンテナのコイル両端に RFIDタグ用 ICを 接続し、更に、 ICと並列にコンデンサーを接続し、共振周波数を 13. 1MHzに調整 し、 RFIDタグを作成した。そして、金属板に RFIDタグを貼り付け、出力 10mWのリ ーダ Zライタで通信可能な距離、共振周波数を測定した。また、磁性体アンテナの反 りを測定した。その結果、上記の磁性体アンテナにおける反りは 1. Ommであり、実 用範囲であった。磁性体アンテナを使用した RFIDタグは、金属板貼付状態での共 振周波数が 14. 1MHzであり、金属板貼り付け前後の共振周波数変動が + 1MHZ であった。また、金属面に貼り付けた状態で 3. 1cmの通信距離が得られた。 [0054] Next, as in Example 1, an RFID tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel to the IC, and the resonance frequency is adjusted to 13.1 MHz. Created RFID tag. An RFID tag was attached to a metal plate, and the distance and resonance frequency that could be communicated with a reader Z writer with an output of 10 mW were measured. We also measured the curvature of the magnetic antenna. As a result, the warpage in the above magnetic antenna was 1. Omm, which was in the practical range. The RFID tag using a magnetic antenna had a resonance frequency of 14.1 MHz when the metal plate was attached, and the resonance frequency fluctuation before and after the metal plate was attached was +1 MHz. In addition, a communication distance of 3.1 cm was obtained when it was attached to a metal surface.
[0055] 実施例 3 :  [0055] Example 3:
実施例 1と同様の磁性層 15としてのグリーンシートと、絶縁層 16としてのグリーンシ ートを使用した。図 4に示すように、磁性層 15を構成するグリーンシートを 5枚積層し 、これにスルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホー ル 11と直交する両面に Agペーストを印刷することにより、コイル 14を形成した。  The same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 4, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11. The coil 14 was formed by printing.
[0056] 次いで、絶縁層 16を構成するグリーンシートをコイル 14の下面に積層した。その際 、絶縁層 16には、 Agペーストで導電層 17を印刷した。更に、絶縁層 16の下面には 、磁性層 15としてのグリーンシートを積層した。更に絶縁層 16を構成するグリーンシ ートをコイル 14の上面に積層した。斯カゝる絶縁層 16の上面には、コイル 14の両端に 接続するようにスルーホール 11を開けてその中に Agペーストを充填し、かつ、スル 一ホール 11と直交する当該絶縁層の表層には、コイルリード端子 19と、 ICを接続す る ICチップ接続端子 18とを Agペーストで印刷した。 [0057] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、実施例 1と同様に一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 32ターンの磁性体アンテナ(サンプル 3)を製造した Next, a green sheet constituting the insulating layer 16 was laminated on the lower surface of the coil 14. At that time, the conductive layer 17 was printed on the insulating layer 16 with Ag paste. Further, a green sheet as the magnetic layer 15 was laminated on the lower surface of the insulating layer 16. Further, a green sheet constituting the insulating layer 16 was laminated on the upper surface of the coil 14. On the upper surface of the insulating layer 16, a through hole 11 is formed so as to connect to both ends of the coil 14, and an Ag paste is filled therein, and the surface layer of the insulating layer perpendicular to the through hole 11 is formed. The coil lead terminal 19 and the IC chip connection terminal 18 for connecting the IC were printed with Ag paste. [0057] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the coil open end face 13, and then integrally fired in the same manner as in Example 1 to obtain a size of 18 mm in width. Produced a magnetic antenna (sample 3) with a length of 4 mm and a coil winding number of 32 turns
[0058] 次に、実施例 1と同様に、上記の磁性体アンテナの ICチップ接続端子 18に RFID タグ用 ICを接続し、更に、 ICと並列にコンデンサーを接続し、共振周波数を 13. 1M Hzに調整して RFIDタグを作成した。そして、金属板に RFIDタグを貼り付け、出力 1 OmWのリーダ Zライタで通信可能な距離、共振周波数を測定した。また、磁性体ァ ンテナの反りを測定した。その結果、上記の磁性体アンテナにおける反りは 0. 8mm であり、実用範囲であった。磁性体アンテナを使用した RFIDタグは、金属板貼り付 け前後の共振周波数変動が + 0. 5MHzであり、より小さな変動であった。また、金属 面に貼り付けた状態で 3. 3cmの通信距離が得られた。 [0058] Next, as in Example 1, an RFID tag IC is connected to the IC chip connection terminal 18 of the magnetic antenna, and a capacitor is connected in parallel with the IC, so that the resonance frequency is 13.1M. The RFID tag was created by adjusting to Hz. An RFID tag was attached to a metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 1 OmW were measured. In addition, the warpage of the magnetic antenna was measured. As a result, the warpage in the above magnetic antenna was 0.8 mm, which was within the practical range. The RFID tag using a magnetic antenna had a smaller fluctuation with a resonance frequency fluctuation of +0.5 MHz before and after the metal plate was attached. In addition, a communication distance of 3.3 cm was obtained when it was attached to a metal surface.
[0059] 実施例 4 :  [0059] Example 4:
実施例 1と同様の磁性層 15としてのグリーンシートと、絶縁層 16としてのグリーンシ ートを使用した。図 5に示すように、磁性層 15を構成するグリーンシートを 5枚積層し 、これにスルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホー ル 11と直交する両面に Agペーストを印刷することにより、コイル 14を形成した。  The same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 5, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11. The coil 14 was formed by printing.
[0060] 次いで、 2つの絶縁層 16を構成するグリーンシートをコイル 14の下面に積層した。 Next, green sheets constituting the two insulating layers 16 were laminated on the lower surface of the coil 14.
その際、下方の絶縁層 16には、 Agペーストで導電層 17を印刷した。続いて、 2つの 絶縁層 16の更に下面に磁性層 15を構成するグリーンシートを積層し、更に、その下 面に絶縁層 16としてのグリーンシートを積層した。また、コイル 14の上面側の絶縁層 16には、コイル 14の一端に接続するようにスルーホール 11を開けてその中に Agぺ 一ストを充填し、かつ、スルーホール 11と直交する当該絶縁層の表層には、コイルリ ード端子 19と、 ICを接続する ICチップ接続端子 18の一方とを Agペーストで印刷し た。更に、コイル 14の上面側の絶縁層 16には、コイル 14の他の一端及び中間の数 箇所に接続するようにスルーホール 11を開けてその中に Agペーストを充填し、かつ 、スルーホール 11と直交する当該絶縁層の表層には、コイルリード端子 19と、 ICを 接続する ICチップ接続端子 18とを Agペーストで印刷した。コイルリード端子 19は、 その端部が相互に向かい合う形状に引き出した。 At that time, a conductive layer 17 was printed on the lower insulating layer 16 with an Ag paste. Subsequently, a green sheet constituting the magnetic layer 15 was laminated on the lower surface of the two insulating layers 16, and a green sheet as the insulating layer 16 was further laminated on the lower surface. Further, the insulating layer 16 on the upper surface side of the coil 14 is formed with a through hole 11 so as to be connected to one end of the coil 14 and filled with an Ag paste, and the insulation perpendicular to the through hole 11 is provided. On the surface of the layer, the coil lead terminal 19 and one of the IC chip connection terminals 18 for connecting the IC were printed with Ag paste. Further, in the insulating layer 16 on the upper surface side of the coil 14, a through hole 11 is formed so as to be connected to the other end of the coil 14 and several places in the middle, and an Ag paste is filled therein. A coil lead terminal 19 and an IC chip connection terminal 18 for connecting the IC were printed with Ag paste on the surface layer of the insulating layer orthogonal to the surface. The coil lead terminal 19 The ends were drawn out to face each other.
[0061] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、 900°Cで 2時間、一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 32ターンの磁性体アンテナ(サンプル 4)を製造した  [0061] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours to obtain a size of 18 mm in width. Produced a magnetic antenna (Sample 4) with X length of 4mm and coil turns of 32 turns
[0062] 次に、実施例 1と同様に、上記の磁性体アンテナの ICチップ接続端子 18に RFID タグ用 ICを接続し、更に、向かい合わせになったコイルリード端子 19の任意の端面 同士を導電性塗料などで短絡させ、インダクタンスを調節して共振周波数を 13. 1M Hzに調整し、 RFIDタグを作成した。そして、金属板に RFIDタグを貼り付け、出力 1 OmWのリーダ Zライタで通信可能な距離、共振周波数を測定した。また、磁性体ァ ンテナの反りを測定した。その結果、上記の磁性体アンテナにおける反りは 1. Omm であり、極めて小さ力つた。磁性体アンテナを使用した RFIDタグは、金属板貼り付け 前後の共振周波数変動が + 0. 5MHzと小さぐまた、金属面に貼り付けた状態で 3. 4cmの通信距離が得られた。 Next, as in Example 1, the RFID tag IC is connected to the IC chip connection terminal 18 of the magnetic antenna, and the arbitrary end surfaces of the coil lead terminal 19 facing each other are connected to each other. The RFID tag was created by short-circuiting with conductive paint, adjusting the inductance, and adjusting the resonance frequency to 13.1 MHz. An RFID tag was attached to the metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 1 OmW were measured. In addition, the warpage of the magnetic antenna was measured. As a result, the warp in the above magnetic antenna was 1. Omm, which was extremely small. The RFID tag using a magnetic antenna has a small fluctuation of the resonance frequency of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.4 cm is obtained when it is attached to the metal surface.
[0063] 実施例 5 :  [0063] Example 5:
実施例 1と同様の磁性層 15としてのグリーンシートと、絶縁層 16としてのグリーンシ ートを使用した。図 6に示すように、磁性層 15を構成するグリーンシートを 5枚積層し 、これにスルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホー ル 11と直交する両面に Agペーストを印刷することにより、コイル 14を形成した。  The same green sheet as the magnetic layer 15 as in Example 1 and the green sheet as the insulating layer 16 were used. As shown in FIG. 6, five green sheets constituting the magnetic layer 15 are laminated, through holes 11 are formed in the green sheets, and Ag paste is filled therein, and Ag paste is formed on both sides orthogonal to the through holes 11. The coil 14 was formed by printing.
[0064] 次いで、 2つの絶縁層 16を構成するグリーンシートをコイル 14の下面に積層した。 Next, green sheets constituting the two insulating layers 16 were laminated on the lower surface of the coil 14.
その際、下方の絶縁層 16には、 Agペーストで導電層 17を印刷した。更に、その下面 に磁性層 15としてのグリーンシートを積層した。また、コイル 14の上面側には、磁性 層 15及び絶縁層 16としてのグリーンシートを積層した。その際、コイル 14の上面側 の絶縁層 16を構成するグリーンシートには、コイル 14の両端に接続するようにスルー ホール 11を開けてその中に Agペーストを充填し、かつ、スルーホール 11と直交する 当該絶縁層の表層に Agペーストでコンデンサー電極 1Cを印刷した。また、その上面 側の絶縁層 16を構成するグリーンシートには、 ICチップ接続端子 18を印刷し、当該 I Cチップ接続端子 18とコンデンサー電極 1Cとの間でコンデンサーを形成した。 [0065] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、 900°Cで 2時間、一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 32ターンの磁性体アンテナ(サンプル 5)を製造した At that time, a conductive layer 17 was printed on the lower insulating layer 16 with an Ag paste. Further, a green sheet as a magnetic layer 15 was laminated on the lower surface. A green sheet as a magnetic layer 15 and an insulating layer 16 was laminated on the upper surface side of the coil 14. At that time, the green sheet constituting the insulating layer 16 on the upper surface side of the coil 14 is formed with a through hole 11 so as to be connected to both ends of the coil 14 and filled with Ag paste. Capacitor electrode 1C was printed with Ag paste on the surface layer of the insulating layer that was orthogonal. An IC chip connection terminal 18 was printed on the green sheet constituting the insulating layer 16 on the upper surface side, and a capacitor was formed between the IC chip connection terminal 18 and the capacitor electrode 1C. [0065] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through hole 11 and the open end face 13 of the coil, and then integrally fired at 900 ° C for 2 hours to obtain a size of 18 mm in width. Produced a magnetic antenna (sample 5) with X length of 4 mm and coil turns of 32 turns
[0066] 次に、上記の磁性体アンテナの ICチップ接続端子 18に RFIDタグ用 ICを接続し、 更に、 ICチップ接続端子 18の一部を削り落とし、静電容量を調整して共振周波数を 13. 1MHzに調整し、 RFIDタグを作成した。そして、金属板に RFIDタグを貼り付け 、出力 10mWのリーダ Zライタで通信可能な距離、共振周波数を測定した。また、磁 性体アンテナの反りを測定した。その結果、上記の磁性体アンテナにおける反りは 0 . 1mmであり、極めて小さカゝつた。磁性体アンテナを使用した RFIDタグは、金属板 貼り付け前後の共振周波数変動が + 0. 5MHzと小さぐまた、金属面に貼り付けた 状態で 3. 3cmの通信距離が得られた。 [0066] Next, an IC for RFID tag is connected to the IC chip connection terminal 18 of the magnetic antenna, and further, a part of the IC chip connection terminal 18 is scraped off to adjust the capacitance to adjust the resonance frequency. 13. Adjusted to 1MHz and created RFID tag. An RFID tag was attached to a metal plate, and the distance and resonance frequency at which communication was possible with a reader Z writer with an output of 10 mW were measured. In addition, the warpage of the magnetic antenna was measured. As a result, the warpage of the magnetic antenna was 0.1 mm, which was extremely small. The RFID tag using a magnetic antenna has a small fluctuation of the resonance frequency of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.3 cm can be obtained when attached to the metal surface.
[0067] 実施例 6 :  [0067] Example 6:
磁性層 15を構成するグリーンシートを作成した。先ず、 900°Cの焼結後に 100MH zでの透磁率が 20になる Ni— Zn— Cuフェライト仮焼粉(Fe O :48. 5モル0 /0、 NiO A green sheet constituting the magnetic layer 15 was prepared. First, 900 permeability at sintering after 100 MHz z of ° C is 20 Ni- Zn- Cu ferrite calcined powder (Fe O:. 48 5 mole 0/0, NiO
2 3  twenty three
: 39モル0 /0、 ZnO: 2モル0 /0、 CuO: 10. 5モル0 /0) 100重量部、ブチラール榭脂 7重 量部、可塑剤 3重量部、溶剤 100重量部をボールミルで混合し、スラリーを製造した。 次、で、得られたスラリーをドクターブレードで PETフィルム上に塗布してシート成型 した。 : 39 mole 0/0, ZnO: 2 mol 0/0, CuO: 10. 5 mole 0/0) 100 parts by weight of a butyral榭脂7 by weight unit, 3 parts by weight of a plasticizer, 100 parts by weight solvent in a ball mill Mixed to produce a slurry. Next, the obtained slurry was applied onto a PET film with a doctor blade and formed into a sheet.
[0068] また、絶縁層 16を構成するグリーンシートを作成した。斯カるグリーンシートも上記 と同様に、 Zn— Cuフェライト仮焼粉(Fe O :48. 5モル0 /0、 ZnO :40モル0 /0、 CuO : [0068] Further, a green sheet constituting the insulating layer 16 was prepared. Like the斯Karu green sheet also above, Zn- Cu ferrite calcined powder (Fe O:. 48 5 mole 0/0, ZnO: 40 mol 0/0, CuO:
2 3  twenty three
11. 5モル%) 100重量部、プチラール榭脂 7重量部、可塑剤 3重量部、溶剤 100重 量部をボールミルで混合し、スラリーを製造した後、当該スラリーをドクターブレードで PETフィルム上に塗布し、シート成型した。  11.5 mol%) 100 parts by weight, 7 parts by weight of Petitral resin, 3 parts by weight of plasticizer and 100 parts by weight of solvent were mixed with a ball mill to produce a slurry, and then the slurry was placed on a PET film with a doctor blade. Application and sheet molding.
[0069] 次いで、図 7に示すように、磁性層 15としてのグリーンシートを 5枚積層し、これらに スルーホール 11を開けてその中に Agペーストを充填し、かつ、スルーホール 11と直 交する両表面に Agペーストを印刷し、コイル 14を形成した。更に、絶縁層 16として のグリーンシートをコイル 14の上下面側に積層し、その下面側には、 Agペーストで導 電層 17が印刷された絶縁層 16を更に積層した。 Next, as shown in FIG. 7, five green sheets as the magnetic layer 15 are laminated, through-holes 11 are formed in these, and Ag paste is filled therein, and the through-holes 11 are directly crossed. Ag paste was printed on both surfaces to form a coil 14. Further, a green sheet as the insulating layer 16 is laminated on the upper and lower surfaces of the coil 14, and the lower surface is guided with Ag paste. An insulating layer 16 on which the electric layer 17 was printed was further laminated.
[0070] 続いて、上記の各グリーンシートをまとめて加圧接着させ、スルーホール 11とコイル 開放端面 13で切断した後、 900°Cで 2時間、一体焼成することにより、サイズが横 18 mm X縦 4mm、コイル巻き数が 50ターンの磁性体アンテナ(サンプル 6)を製造した [0070] Subsequently, each of the above green sheets was pressure-bonded together, cut at the through-hole 11 and the open end face 13 of the coil, and then fired integrally at 900 ° C for 2 hours, resulting in a size of 18 mm in width. Produced a magnetic antenna (Sample 6) with X length of 4 mm and coil turns of 50 turns
[0071] 次に、上記の磁性体アンテナのコイル両端に FMラジオ 1Rを接続し、更にコイル 1 4と並列にコンデンサーを接続し、共振周波数を 82MHzに調整して FM放送受信用 アンテナとした。これは、携帯電話等の金属筐体の外側にアンテナを設置することを 想定したものである力 上記の磁性体アンテナを金属板に貼り付けて FM放送 (82M Hz)の受信を試みたところ、良好な受信状態が得られた。また、磁性体アンテナの反 りを測定したところ、反りは 0. 6mmと小さかった。 [0071] Next, FM radio 1R was connected to both ends of the coil of the above magnetic antenna, and a capacitor was further connected in parallel with coil 14 to adjust the resonance frequency to 82 MHz to obtain an FM broadcast receiving antenna. This is a force that assumes that an antenna is installed outside the metal housing of a mobile phone or the like. When the above magnetic antenna was attached to a metal plate and FM broadcasting (82 MHz) was attempted, A good reception state was obtained. Also, when the warpage of the magnetic antenna was measured, the warpage was as small as 0.6 mm.
[0072] 比較例 1 :  [0072] Comparative Example 1:
図 8に示すように、実施例 1における導電層 17を備えていない点を除き、実施例 1と 同様に磁性体アンテナ (サンプル 7)を製造した。次いで、実施例 1と同様に、上記の 磁性体アンテナのコイル両端に RFIDタグ用 ICを接続し、更に、 ICと並列にコンデン サーを接続し、共振周波数を 13. 1MHzに調整し、 RFIDタグを作成した。そして、 金属板に RFIDタグを貼り付け、実施例 1と同様に、通信可能な距離、共振周波数を 測定し、また、磁性体アンテナの反りを測定した。その結果、上記の磁性体アンテナ における反りは 1. Ommであった。磁性体アンテナを使用した RFIDタグは、金属板 貼り付け前後の共振周波数変動が + 1. 5MHzと大きぐまた、金属面に貼り付けた 状態での通信距離も 1. 4cmしか得られな力つた。  As shown in FIG. 8, a magnetic antenna (Sample 7) was manufactured in the same manner as in Example 1 except that the conductive layer 17 in Example 1 was not provided. Next, as in Example 1, an RFID tag IC is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the IC, and the resonance frequency is adjusted to 13.1 MHz. It was created. Then, an RFID tag was attached to the metal plate, and the communicable distance and the resonance frequency were measured in the same manner as in Example 1, and the warpage of the magnetic antenna was measured. As a result, the warpage in the above magnetic antenna was 1. Omm. The RFID tag using a magnetic antenna has a large resonance frequency fluctuation of +1.5 MHz before and after the metal plate is attached, and the communication distance when attached to the metal surface is only 1.4 cm. .
[0073] 比較例 2 : [0073] Comparative Example 2:
比較対照として、フィルム状の榭脂表面に渦巻き状に配線したアンテナコイルの両 端に ICを接続して成る一般的な市販の ICカード型タグ (テキサスインスツルメンッ社 製、製品名; Tag— itTMHF)に関し、これを金属板に貼り付けて実施例 1と同様に通 信距離を測定した。その結果、金属板貼付状態における通信距離は 0. 1cmであり、 金属板貼付後の共振周波数は観測されな力つた。  As a comparison, a general commercially available IC card type tag (product name: Texas Instruments, manufactured by connecting ICs to both ends of an antenna coil spirally wired on the surface of a film-like resin); Tag —ItTMHF) was attached to a metal plate, and the communication distance was measured in the same manner as in Example 1. As a result, the communication distance with the metal plate attached was 0.1 cm, and the resonance frequency after the metal plate was attached was not observed.
[0074] 因に、上記の各実施例および比較例における測定結果を以下の表に示す。 [0075] [表 1] Incidentally, the measurement results in each of the above examples and comparative examples are shown in the following table. [0075] [Table 1]
Figure imgf000022_0001
Figure imgf000022_0001
[0076] 次に、本発明の第 4〜7の要旨に係る磁性体アンテナの実施例(実施例 7、 8)及び これに対する比較例 (比較例 3、 4)を説明する。 Next, examples (Examples 7 and 8) of the magnetic antenna according to the fourth to seventh aspects of the present invention and comparative examples (Comparative Examples 3 and 4) will be described.
[0077] 実施例 7 : LTCC技術を利用し、本発明の磁性体アンテナを製造した。先ず、磁性層 21を作 成した。磁性層 21の作成においては、実施例 1と同様に、フ ライト仮焼粉、ブチラ ール榭脂、可塑剤、溶剤をボールミルで混合しスラリーを製造し、得られたスラリーを 実施例 1と同様にシート成型した。また、絶縁層 23を実施例 1と同様に作成した。す なわち、絶縁層 23は、実施例 1と同様に、 Zn— Cuフ ライト仮焼粉、プチラール榭 脂、可塑剤、溶剤をボールミルで混合しスラリーを製造し、得られたスラリーを実施例 1と同様にシート成型した。 [0077] Example 7: The magnetic antenna of the present invention was manufactured using LTCC technology. First, the magnetic layer 21 was formed. In the production of the magnetic layer 21, as in Example 1, a calcined powder of flour, butyral resin, a plasticizer, and a solvent were mixed with a ball mill to produce a slurry, and the resulting slurry was obtained as in Example 1. The sheet was molded in the same manner. Insulating layer 23 was prepared in the same manner as in Example 1. That is, in the same manner as in Example 1, the insulating layer 23 was prepared by mixing a Zn—Cu flake calcined powder, a petal resin, a plasticizer, and a solvent with a ball mill to produce a slurry, and the obtained slurry was used in the Example. The sheet was molded in the same manner as in 1.
[0078] 次いで、磁性層 21を構成するグリーンシートを 5枚積層し、これにスルーホールを 開けてその中に Agペーストを充填した後、グリーンシート 2枚のスルーホールと直交 する面に対し、コイル電極 22を構成する Agペーストを印刷した。続いて、これら 5枚 のグリーンシートを打ち抜いた。その際、グリーンシートのスルーホールの中心を通る 線の延長線上を含む位置で打ち抜き、かつ、放射形状を形成する 3つのコイルの中 心で磁性層が接続されるようにコイル部分を残した。次いで、コイル電極が表面に印 刷された 2枚のグリーンシートで残り 3枚のグリーンシートを挟み込んで積層し、 3極の コイルを形成した。そして、 Agペーストで導電層 24を印刷し、磁性層と同じ形状に打 ち抜いた絶縁層 23としてのグリーンシートを導電層 24が外側に位置するようにコイル の下面に積層した。 [0078] Next, five green sheets constituting the magnetic layer 21 were laminated, a through hole was opened in this, and Ag paste was filled therein, and then the surface perpendicular to the through holes of the two green sheets was The Ag paste constituting the coil electrode 22 was printed. Subsequently, these five green sheets were punched out. At that time, it was punched at a position including the extension of the line passing through the center of the through hole of the green sheet, and the coil portion was left so that the magnetic layer was connected at the center of the three coils forming the radial shape. Next, two green sheets with coil electrodes printed on the surface were sandwiched between the remaining three green sheets to form a three-pole coil. Then, the conductive layer 24 was printed with Ag paste, and a green sheet as the insulating layer 23 punched out in the same shape as the magnetic layer was laminated on the lower surface of the coil so that the conductive layer 24 was located outside.
[0079] 続いて、上記の各グリーンシートをまとめて加圧接着させ、更に、個々のコイル片( 個片)として切断した後、 900°Cで 2時間、一体焼成することにより、 1つのコイルの長 さ 20mm、各コイル巻き数が 10ターンの磁性体アンテナ(サンプル 8)を製造した。図 9に得られた磁性体アンテナの概略図を示す。なお、図中では、コイルの巻き数等を 簡略ィ匕して示している。  [0079] Subsequently, each of the above green sheets is pressure-bonded together, cut into individual coil pieces (single pieces), and then integrally fired at 900 ° C for 2 hours to produce one coil. A magnetic antenna (sample 8) with a length of 20 mm and a number of turns of each coil of 10 turns was manufactured. Figure 9 shows a schematic diagram of the magnetic antenna obtained. In the figure, the number of turns of the coil is shown in a simplified manner.
[0080] 次に、上記の磁性体アンテナのコイル両端に RFIDタグ用リーダ Zライタを接続し、 更に、リーダ Zライタと並列にコンデンサーを接続し、共振周波数を 13. 56MHzに 調整し、これを金属板に貼り付けて RFIDタグとの通信距離を測定した。なお、共振 周波数の測定と調整方法、通信距離の測定方法は以下の通りである。  [0080] Next, an RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel with the reader Z writer, and the resonance frequency is adjusted to 13.56 MHz. It was attached to a metal plate and the communication distance with the RFID tag was measured. The resonant frequency measurement and adjustment method and the communication distance measurement method are as follows.
[0081] (共振周波数の測定と調整方法)  [0081] (Resonance frequency measurement and adjustment method)
共振周波数については、インピーダンスアナライザー(ヒューレットパッカード社製、 製品名;4291A)に 1ターンコイルを接続し、これと RFID用リーダ/ライタを結合させ 、測定されるインピーダンスのピーク周波数をもって共振周波数とした。また、その調 整は、並列または直列に接続するコンデンサの容量を変更することにより行った。 For the resonance frequency, impedance analyzer (manufactured by Hewlett-Packard Company, The product name: 4291A) was connected to a one-turn coil, and this was combined with an RFID reader / writer, and the peak frequency of the measured impedance was taken as the resonance frequency. The adjustment was made by changing the capacitance of the capacitors connected in parallel or in series.
[0082] (通信距離の測定方法) [0082] (Measurement method of communication distance)
通信距離は、出力 lOOmWのリーダ Zライタ (タカャ株式会社製、製品名; D002A )の標準のアンテナを取り外し、本発明の磁性体アンテナを接続して水平に固定し、 その上方に RFIDタグ (テキストインスツルメント社製 ICカード型タグ、製品名; Tag— i t (TM) HF)を水平に位置させさせると共に、 13. 56MHzで通信が可能な範囲で R FIDタグを移動させ、その際のアンテナと RFIDタグとの垂直方向の最大距離を通信 距離として測定した。  The communication distance is the output lOOmW reader Z writer (manufactured by Takaya Co., Ltd., product name; D002A), the standard antenna is removed and the magnetic antenna of the present invention is connected and fixed horizontally. Instrument IC card type tag, product name; Tag—it (TM) HF) is positioned horizontally, and the R FID tag is moved within the communication range at 56 MHz, and the antenna at that time The maximum vertical distance between the RFID tag and the RFID tag was measured as the communication distance.
[0083] 上記の各方法により共振周波数および通信距離を測定した結果、上記の磁性体ァ ンテナを使用したリーダ Zライタは、金属板貼り付け前後の共振周波数変動が + 1M Hzと小さぐかつ、金属面に貼り付けた状態で 3cmの通信距離が得られた。  [0083] As a result of measuring the resonance frequency and the communication distance by each of the above methods, the reader Z writer using the above magnetic antenna has a small fluctuation of resonance frequency of +1 MHz before and after the metal plate is attached, A communication distance of 3cm was obtained when it was attached to a metal surface.
[0084] 実施例 8 :  [0084] Example 8:
実施例 7と同様の磁性層 21としてのグリーンシートと、 Zn—Cuフェライトに替えてガ ラスセラミック力も成る絶縁層 23としてのグリーンシートを使用した。磁性層 21を構成 するグリーンシートを 5枚積層し、これにスルーホールを開けその中に Agペーストを 充填した。次いで、グリーンシート 2枚のスルーホールとと直交する片面に対し、コィ ル電極 22を構成する Agペーストを印刷した。  A green sheet as the magnetic layer 21 similar to that in Example 7 and a green sheet as the insulating layer 23 having a glass ceramic force instead of Zn—Cu ferrite were used. Five green sheets composing the magnetic layer 21 were laminated, through holes were opened in this, and Ag paste was filled therein. Next, an Ag paste constituting the coil electrode 22 was printed on one surface orthogonal to the through holes of the two green sheets.
[0085] 続いて、 5枚のグリーンシートを打ち抜いた。その際、グリーンシートのスルーホール の中心を通る線の延長線上を含む位置で打ち抜き、かつ、放射形状を形成する 3つ のコイルの外周の円環部で磁性層が接続されるようにコイル部分を残した。次いで、 コイル電極が表面に印刷された 2枚のグリーンシートで残り 3枚のグリーンシートを挟 み込んで積層し、 3極のコイルを形成した。そして、 Agペーストで導電層 24を印刷し 、絶縁層 23としてのグリーンシートを導電層 24が外側に位置するようにコイルの下面 全体に円盤状に積層し、更に、その下面に磁性層 25としてのグリーンシートを同様 に禾貝層し 7こ。 [0085] Subsequently, five green sheets were punched out. At that time, the coil portion is punched at a position including the extension of the line passing through the center of the through hole of the green sheet, and the magnetic layer is connected at the annular portion of the outer periphery of the three coils forming the radial shape. Left. Next, two green sheets with coil electrodes printed on the surface were sandwiched between the remaining three green sheets to form a three-pole coil. Then, the conductive layer 24 is printed with Ag paste, and a green sheet as the insulating layer 23 is laminated in a disc shape on the entire lower surface of the coil so that the conductive layer 24 is located outside, and further, the magnetic layer 25 is formed on the lower surface. Similarly, use 7 green oysters.
[0086] 続いて、上記の各グリーンシートをまとめて加圧接着させ、更に、個々のコイル片( 個片)として切断した後、 900°Cで 2時間、一体焼成することにより、サイズが直径 10 mm、各コイル巻き数が 7ターンの磁性体アンテナ(サンプル 9)を製造した。図 10に 得られた磁性体アンテナの概略図を示す。なお、図中では、コイルの巻き数等を簡 略ィ匕して示している。 [0086] Subsequently, each of the above green sheets is pressure-bonded together, and each coil piece ( After being cut as individual pieces, the magnetic antenna (sample 9) having a diameter of 10 mm and a number of turns of each coil of 7 turns was manufactured by firing at 900 ° C. for 2 hours. Figure 10 shows a schematic diagram of the magnetic antenna obtained. In the figure, the number of turns of the coil is shown in a simplified manner.
[0087] 次に、上記の磁性体アンテナのコイル両端に RFIDタグ用リーダ Zライタを接続し、 更に、リーダ Zライタと並列または直列にコンデンサーを接続して共振周波数を 13. 56MHzに調整し、共振周波数、および、金属板に貼り付けた場合の RFIDタグとの 通信距離を実施例 7と同様に測定した。その結果、上記の磁性体アンテナを使用し たリーダ Zライタは、金属板貼り付け前後の共振周波数変動が + 0. 5MHzと小さぐ かつ、金属面に貼り付けた状態で 3. 4cmの通信距離が得られた。  [0087] Next, an RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel or in series with the reader Z writer to adjust the resonance frequency to 13.56 MHz. The resonance frequency and the communication distance with the RFID tag when attached to a metal plate were measured in the same manner as in Example 7. As a result, the reader Z writer using the above magnetic antenna has a small resonance frequency fluctuation of +0.5 MHz before and after the metal plate is attached, and a communication distance of 3.4 cm when attached to the metal surface. was gotten.
[0088] 比較例 3 :  [0088] Comparative Example 3:
図 9に示す導電層 24を省 ヽた点を除き、実施例 7と同じプロセスで磁性アンテナ( サンプル 10)を製造した。そして、斯カゝる磁性体アンテナのコイル両端に RFIDタグ 用リーダ Zライタを接続し、更に、リーダ Zライタと並列または直列にコンデンサーを 接続して共振周波数を 13. 56MHzに調整し、共振周波数の変化、および、金属板 に貼り付けた場合の RFIDタグとの通信距離を実施例 7と同様に測定した。その結果 、金属板貼付前後の共振周波数の変化は + 2. 3MHzであり、金属板貼付状態にお ける通信距離は 1. 6cmであった。  A magnetic antenna (Sample 10) was manufactured by the same process as Example 7 except that the conductive layer 24 shown in FIG. 9 was omitted. The RFID tag reader Z writer is connected to both ends of the coil of the magnetic antenna, and a capacitor is connected in parallel or in series with the reader Z writer to adjust the resonance frequency to 13.56 MHz. And the communication distance with the RFID tag when pasted on a metal plate was measured in the same manner as in Example 7. As a result, the change in resonance frequency before and after the metal plate was affixed was +2.3 MHz, and the communication distance when the metal plate was affixed was 1.6 cm.
[0089] 比較例 4 : [0089] Comparative Example 4:
比較対照として、板状の榭脂表面に渦巻き状に配線した市販のリーダ Zライタ用ァ ンテナを金属板に貼り付けて RFIDタグと通信する距離を測定した。アンテナのサイ ズは、 30mm X 55mm、コイル巻き数は 3ターンであった。その結果、金属板貼付状 態における通信距離は 0. 5cmであった。  As a comparison, a commercially available reader Z writer antenna that was spirally wired on the surface of a plate-like resin was attached to a metal plate, and the distance to communicate with the RFID tag was measured. The antenna size was 30mm x 55mm and the number of coil turns was 3 turns. As a result, the communication distance when the metal plate was affixed was 0.5 cm.

Claims

請求の範囲 The scope of the claims
[1] 磁界成分を送受信するための磁性体アンテナであって、磁性層の外周に電極材料 をコイル状に配置して成るコイルと、当該コイルの一方または両方の外側面に設けら れた絶縁層と、一方または両方の絶縁層の外側面に設けられた導電層とを備えてい ることを特徴とする磁性体アンテナ。  [1] A magnetic antenna for transmitting and receiving magnetic field components, comprising a coil formed by arranging an electrode material in a coil shape on the outer periphery of a magnetic layer, and an insulation provided on one or both outer surfaces of the coil A magnetic antenna comprising: a layer; and a conductive layer provided on an outer surface of one or both insulating layers.
[2] 磁界成分を送受信するための磁性体アンテナであって、磁性粉末とバインダー榭 脂との混合物をシート状に成形して成る単層または複層構造の磁性層に対して、そ の外周に電極材料を電気回路としてコイル状に配置してコイルを形成し、当該コイル の両方の外側面に絶縁層を設け、一方または両方の絶縁層の外側面に導電層を設 け、所望の大きさに切断した後、一体焼成したことを特徴とする磁性体アンテナ。  [2] A magnetic antenna for transmitting and receiving a magnetic field component, with respect to a single-layer or multi-layer magnetic layer formed by molding a mixture of magnetic powder and binder resin into a sheet shape. An electrode material is arranged in a coil shape as an electric circuit, and a coil is formed. An insulating layer is provided on both outer surfaces of the coil, and a conductive layer is provided on the outer surface of one or both insulating layers. A magnetic antenna, characterized by being integrally fired after cutting.
[3] 磁界成分を送受信するための磁性体アンテナであって、磁性粉末をバインダーと 混合して平面形状が角型または長方形のシート状に成形した単層または複層構造 の磁性層に対してスルーホールを開け、当該スルーホールに電極材料を流し込み、 かつ、スルーホールと直交する磁性層の両面に電極材料で電極層を形成し、当該電 極層をスルーホールと接続することにより、磁性層の両端が磁性回路上開放となる構 成のコイルを作成し、電極層が形成されたコイルの上下面を絶縁層で挟み込み、一 方または両方の絶縁層の外側面に導電層を配置し、スルーホールとコイル開放端面 に相当する位置で切断し、一体焼成したことを特徴とする磁性体アンテナ。  [3] A magnetic antenna for transmitting and receiving magnetic field components to a magnetic layer having a single-layer or multi-layer structure in which magnetic powder is mixed with a binder and the planar shape is formed into a square or rectangular sheet. A magnetic layer is formed by opening a through hole, pouring an electrode material into the through hole, forming electrode layers on both sides of the magnetic layer orthogonal to the through hole, and connecting the electrode layer to the through hole. A coil having a structure in which both ends of the coil are open on the magnetic circuit is formed, the upper and lower surfaces of the coil on which the electrode layer is formed are sandwiched between insulating layers, and a conductive layer is disposed on the outer surface of one or both insulating layers. A magnetic antenna, characterized by being cut at a position corresponding to a through hole and an open end face of a coil, and integrally fired.
[4] 請求項 3に記載の磁性体アンテナにおいて、電極層が印刷されたコイルの上下面 の一方または両方の絶縁層にスルーホールを開け、当該スルーホールに電極材料 を流し込んでコイル両端と接続し、その表面に電極材料によりコイルリード端子と IC チップ接続端子を印刷した磁性体アンテナ。  [4] In the magnetic antenna according to claim 3, a through hole is formed in one or both insulating layers on the upper and lower surfaces of the coil on which the electrode layer is printed, and an electrode material is poured into the through hole to connect to both ends of the coil. A magnetic antenna with coil lead terminals and IC chip connection terminals printed on its surface using electrode material.
[5] 請求項 3〜4の何れかに記載の磁性体アンテナにおいて、絶縁層の外側面に設け た導電層の更に外側面に他の絶縁層または磁性層を設けた磁性体アンテナ。  5. The magnetic antenna according to any one of claims 3 to 4, wherein another insulating layer or magnetic layer is further provided on the outer surface of the conductive layer provided on the outer surface of the insulating layer.
[6] 請求項 3〜5の何れかに記載の磁性体アンテナにおいて、絶縁層の外側面に設け た導電層の更に外側面に絶縁層を設け、更に、当該絶縁層の外側面に磁性層を設 けた磁性体アンテナ。  6. The magnetic antenna according to claim 3, wherein an insulating layer is further provided on the outer surface of the conductive layer provided on the outer surface of the insulating layer, and the magnetic layer is further provided on the outer surface of the insulating layer. Magnetic antenna with
[7] 請求項 3〜5の何れかに記載の磁性体アンテナにおいて、絶縁層の外側面に設け た導電層の更に外側面に磁性層を設け、更に、当該磁性層の外側面に絶縁層を設 けた磁性体アンテナ。 [7] The magnetic antenna according to any one of [3] to [5], provided on the outer surface of the insulating layer. A magnetic antenna in which a magnetic layer is further provided on the outer surface of the conductive layer, and an insulating layer is further provided on the outer surface of the magnetic layer.
[8] 請求項 3〜6の何れかに記載の磁性体アンテナにおいて、絶縁層の外側面に設け た導電層の更に外側面に絶縁層を設け、更に、当該絶縁層の外側面に磁性層を設 け、そして、当該磁性層の外側面に絶縁層を設けた磁性体アンテナ。  [8] The magnetic antenna according to any one of claims 3 to 6, wherein an insulating layer is further provided on the outer surface of the conductive layer provided on the outer surface of the insulating layer, and the magnetic layer is further provided on the outer surface of the insulating layer. And a magnetic antenna in which an insulating layer is provided on the outer surface of the magnetic layer.
[9] 請求項 3〜8の何れかに記載の磁性体アンテナにおいて、コイルを上下面から挟み 込む絶縁層の一方または両方の外側面にコンデンサー電極を配置し、当該コンデン サー電極の外側に更に絶縁層を設け、当該絶縁層の外側面に絶縁層を挟みこむよ うに電極を印刷してコンデンサーを形成し、当該コンデンサーを ICチップ接続端子と 並列または直列に接続した磁性体アンテナ。  [9] In the magnetic antenna according to any one of claims 3 to 8, a capacitor electrode is disposed on one or both outer surfaces of the insulating layer sandwiching the coil from the upper and lower surfaces, and further on the outer side of the capacitor electrode. A magnetic antenna in which an insulating layer is provided, electrodes are printed so that the insulating layer is sandwiched on the outer surface of the insulating layer, a capacitor is formed, and the capacitor is connected in parallel or in series with the IC chip connection terminal.
[10] 請求項 3〜9の何れか〖こ記載の磁性体アンテナにおいて、絶縁層の面に平行電極 または櫛型電極を印刷してコンデンサーを形成し、当該コンデンサーをコイルリード 端子と並列または直列に接続した磁性体アンテナ。 [10] In the magnetic antenna according to any one of claims 3 to 9, a capacitor is formed by printing parallel electrodes or comb-shaped electrodes on the surface of the insulating layer, and the capacitor is connected in parallel or in series with the coil lead terminal. Magnetic antenna connected to
[11] 請求項 3〜10の何れかに記載の磁性体アンテナにおいて、 Ni— Zn系フェライトで 磁性層を形成した磁性体アンテナ。 [11] The magnetic antenna according to any one of [3] to [10], wherein the magnetic layer is formed of Ni—Zn-based ferrite.
[12] 請求項 3〜: L 1の何れかに記載の磁性体アンテナにおいて、 Zn系フェライトで絶縁 層を形成した磁性体アンテナ。 [12] Claims 3 to: The magnetic antenna according to any one of L1, wherein an insulating layer is formed of Zn-based ferrite.
[13] 請求項 3〜12の何れかに記載の磁性体アンテナにおいて、ガラス系セラミックで絶 縁層を形成した磁性体アンテナ。 [13] The magnetic antenna according to any one of [3] to [12], wherein an insulating layer is formed of glass-based ceramic.
[14] 請求項 3〜 13の何れかに記載の磁性体アンテナにおいて、絶縁層の上面に ICチ ップを接続可能な端子が備えられ、当該端子をコイルリード端子と並列または直列に 接続した磁性体アンテナ。 [14] The magnetic antenna according to any one of claims 3 to 13, wherein a terminal to which an IC chip can be connected is provided on the upper surface of the insulating layer, and the terminal is connected in parallel or in series with the coil lead terminal. Magnetic antenna.
[15] 請求項 3〜14の何れかに記載の磁性体アンテナにおいて、絶縁層の上面に可変 コンデンサーを設ける端子が備えられ、当該端子をコイルリード端子と並列または直 列に接続した磁性体アンテナ。 15. The magnetic antenna according to claim 3, further comprising a terminal provided with a variable capacitor on the upper surface of the insulating layer, wherein the terminal is connected in parallel or in series with the coil lead terminal. .
[16] 磁界成分を送受信するための磁性体アンテナであって、平面形状が角型または長 方形の磁性層によって構成されたコイルを複数個備え、これらコイルは、平面視して ほぼ均等な間隔で放射状に配置され、かつ、各コイルの一端は、その極性が同一と なるように放射形状の中心にぉ 、て直列または並列に互いに磁性層で接続され、各 コイルの他端は、放射形状の外側に向けられて開放され、し力も、コイルの上下面の うちの一方または両方には、絶縁層が設けられ、一方の絶縁層の外側には、導電層 が設けられて 、ることを特徴とする磁性体アンテナ。 [16] A magnetic antenna for transmitting and receiving magnetic field components, comprising a plurality of coils each having a planar or rectangular magnetic layer, the coils being substantially evenly spaced in plan view And one end of each coil has the same polarity. The center of the radial shape is connected to each other by a magnetic layer in series or parallel to each other, and the other end of each coil is opened toward the outside of the radial shape, and the force is also between the upper and lower surfaces of the coil. One or both of them are provided with an insulating layer, and a conductive layer is provided on the outer side of one of the insulating layers.
[17] 磁界成分を送受信するための磁性体アンテナであって、平面形状が角型または長 方形の磁性層によって構成されたコイルを複数個備え、これらコイルは、平面視して ほぼ均等な間隔で放射状に配置され、かつ、各コイルの一端は、放射形状の中心側 に向けられて開放され、各コイルの他端は、放射形状の外側に向けられ且つその極 '性が同一となるように外周側の円環部にぉ 、て直列または並列に互いに磁性層で接 続され、しかも、コイルの上下面のうちの一方または両方には、絶縁層が設けられ、 一方の絶縁層の外側には、導電層が設けられていることを特徴とする磁性体アンテ ナ。 [17] A magnetic antenna for transmitting and receiving a magnetic field component, comprising a plurality of coils each having a square or rectangular magnetic layer in a planar shape, and these coils are substantially evenly spaced in plan view. And one end of each coil is opened toward the center of the radial shape, and the other end of each coil is directed to the outside of the radial shape and the polarity thereof is the same. Are connected in series or in parallel to each other by a magnetic layer, and an insulating layer is provided on one or both of the upper and lower surfaces of the coil. A magnetic antenna is provided with a conductive layer.
[18] 磁界成分を送受信するために LTCC技術を利用して製造された磁性体アンテナで あって、磁性粉末をバインダーと混合してシート状に成形した単層または複層構造の 磁性層に対してスルーホールを開け、当該スルーホールに電極材料を流し込み、か つ、スルーホールと直交する磁性層の両面に電極材料で電極層を形成し、スルーホ ールの中心を通る位置で磁性層を打ち抜くことにより、放射形状を形成する 3つのコ ィルの中心で磁性層が接続されるようにコイルを形成し、当該コイルの磁性層を上面 および下面から絶縁層で挟み込み、かつ、磁性層上面に配置される絶縁層が電極 層を覆う形状に打ち抜いた絶縁層であり、磁性層下面の絶縁層の更に下面に電極 材料と同様の材料カゝら成る導電層を設け、個片に切断して焼成するか、または、一 体焼した後に個片に切断することにより製造され、そして、平面形状が角型または長 方形の磁性層によって構成された複数個のコイルが平面視してほぼ均等な間隔で 放射状に配置され、かつ、各コイルの一端は、その極性が同一となるように放射形状 の中心において直列または並列に互いに磁性層で接続され、各コイルの他端は、放 射形状の外側に向けられて開放されていることを特徴とする磁性体アンテナ。  [18] A magnetic antenna manufactured using LTCC technology to transmit and receive magnetic field components, and to a magnetic layer with a single or multi-layer structure in which magnetic powder is mixed with a binder and formed into a sheet shape Open a through hole, pour the electrode material into the through hole, form electrode layers on both sides of the magnetic layer perpendicular to the through hole, and punch the magnetic layer at a position passing through the center of the through hole Thus, the coil is formed so that the magnetic layer is connected at the center of the three coils forming the radiation shape, the magnetic layer of the coil is sandwiched between the upper surface and the lower surface by the insulating layer, and the upper surface of the magnetic layer is formed. The insulating layer to be arranged is an insulating layer punched out to cover the electrode layer. A conductive layer made of the same material material as the electrode material is provided on the lower surface of the insulating layer on the lower surface of the magnetic layer, and cut into individual pieces. Bake or Is manufactured by cutting into individual pieces after firing, and a plurality of coils each having a planar shape made up of a square or rectangular magnetic layer are radiated at substantially equal intervals in plan view. One end of each coil is connected to each other by a magnetic layer in series or in parallel at the center of the radial shape so that the polarity thereof is the same, and the other end of each coil is directed to the outside of the radiant shape. A magnetic antenna characterized by being opened.
[19] 磁界成分を送受信するために LTCC技術を利用して製造された磁性体アンテナで あって、磁性粉末をバインダーと混合してシート状に成形した単層または複層構造の 磁性層に対してスルーホールを開け、当該スルーホールに電極材料を流し込み、か つ、スルーホールと直交する磁性層の両面に電極材料で電極層を形成し、スルーホ ールの中心を通る位置で磁性層を打ち抜くことによりコイルを形成し、当該コイルの 磁性層を上面および下面から絶縁層で挟み込み、かつ、磁性層上面に配置される 絶縁層が電極層を覆う形状に打ち抜いた絶縁層であり、磁性層下面の絶縁層の更 に下面に電極材料と同様の材料から成る導電層を設け、個片に切断して焼成するこ とにより製造され、そして、平面形状が角型または長方形の磁性層によって構成され た複数個のコイルが平面視してほぼ均等な間隔で放射状に配置され、かつ、各コィ ルの一端は、放射形状の中心側に向けられて開放され、各コイルの他端は、放射形 状の外側に向けられ且つその極性が同一となるように外周側の円環部にお ヽて互 ヽ に磁性層で接続されていることを特徴とする磁性体アンテナ。 [19] A magnetic antenna manufactured using LTCC technology to transmit and receive magnetic field components, which has a single-layer or multi-layer structure in which magnetic powder is mixed with a binder and formed into a sheet shape. A through-hole is opened in the magnetic layer, an electrode material is poured into the through-hole, and electrode layers are formed on both sides of the magnetic layer perpendicular to the through-hole, and the electrode layer is passed through the center of the through-hole. An insulating layer in which a coil is formed by punching a magnetic layer, the magnetic layer of the coil is sandwiched between insulating layers from the upper surface and the lower surface, and the insulating layer disposed on the upper surface of the magnetic layer is punched into a shape covering the electrode layer In addition to the insulating layer on the lower surface of the magnetic layer, a conductive layer made of the same material as that of the electrode material is provided on the lower surface, cut into individual pieces and fired, and the planar shape is rectangular or rectangular. A plurality of coils composed of layers are arranged radially at almost equal intervals in plan view, and one end of each coil is opened toward the center of the radial shape, and the other end of each coil Is Igata shaped magnetic antenna, wherein a and polarity outwardly directed are connected by the magnetic layer in the annular portion of the outer peripheral side to be the same Te Contact ヽ to each other ヽ.
[20] 請求項 16〜19の何れかに記載の磁性体アンテナにおいて、導電層を設けた面と 反対側の面の絶縁層にスルーホールを設け、当該スルーホールに電極材料を流し 込んでコイルの両端と接続し、その表面に電極材料でコイルリード端子を印刷した磁 性体アンテナ。  [20] The magnetic antenna according to any one of [16] to [19], wherein a through-hole is provided in an insulating layer on a surface opposite to a surface provided with the conductive layer, and an electrode material is poured into the through-hole to form a coil Magnetic antenna with coil lead terminals printed on the surface with electrode material.
[21] 請求項 16〜20の何れかに記載の磁性体アンテナにおいて、導電層の外側面に磁 性層を設けた磁性体アンテナ。  21. The magnetic antenna according to claim 16, wherein a magnetic layer is provided on the outer surface of the conductive layer.
[22] 請求項 21に記載の磁性体アンテナにお ヽて、磁性層の外側面に絶縁層を設けた 磁性体アンテナ。 22. The magnetic antenna according to claim 21, wherein an insulating layer is provided on the outer surface of the magnetic layer.
[23] 請求項 16〜22の何れかに記載の磁性体アンテナにおいて、コイルの上下面に挟 み込んだ絶縁層の上面に対し、挟み込むように角型、円形電極を印刷してコンデン サーを形成した絶縁層を設け、コンデンサーの電極をコイルリード端子電極と並列ま たは直列に接続した磁性体アンテナ。  [23] The magnetic antenna according to any one of claims 16 to 22, wherein a rectangular and circular electrode is printed on the upper surface of the insulating layer sandwiched between the upper and lower surfaces of the coil so that the capacitor is formed. A magnetic antenna in which the formed insulating layer is provided and the capacitor electrode is connected in parallel or in series with the coil lead terminal electrode.
[24] 請求項 16〜23の何れかに記載の磁性体アンテナにおいて、コイルを挟み込んむ 絶縁層の上面に平行電極または櫛型電極を印刷してコンデンサーを形成し、当該コ ンデンサーをコイルリード端子と並列または直列に接続した磁性体アンテナ。  [24] The magnetic antenna according to any one of claims 16 to 23, wherein a capacitor is formed by printing parallel electrodes or comb-shaped electrodes on an upper surface of an insulating layer sandwiching the coil, and the capacitor is connected to a coil lead terminal. Magnetic antenna connected in parallel or in series.
[25] 請求項 16〜24の何れかに記載の磁性体アンテナにおいて、 Ni—Zn系フェライト で磁性層を形成した磁性体アンテナ。 25. The magnetic antenna according to claim 16, wherein a magnetic layer is formed of Ni—Zn ferrite.
[26] 請求項 16〜25の何れかに記載の磁性体アンテナにおいて、 Zn系フェライトで絶 縁層を形成した磁性体アンテナ。 26. The magnetic antenna according to claim 16, wherein an insulating layer is formed of Zn-based ferrite.
[27] 請求項 16〜25の何れかに記載の磁性体アンテナにおいて、ガラス系セラミックで 絶縁層を形成した磁性体アンテナ。 27. A magnetic antenna according to claim 16, wherein an insulating layer is formed of glass-based ceramic.
[28] 請求項 16〜27の何れかに記載の磁性体アンテナにおいて、絶縁層の上面に IC チップを接続可能な端子が備えられ、当該端子をコイルリード端子と並列または直列 に接続した磁性体アンテナ。 [28] The magnetic antenna according to any one of claims 16 to 27, wherein a terminal to which an IC chip can be connected is provided on the upper surface of the insulating layer, and the terminal is connected in parallel or in series with the coil lead terminal. antenna.
PCT/JP2006/313495 2005-07-07 2006-07-06 Magnetic antenna WO2007007639A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077030092A KR101274354B1 (en) 2005-07-07 2006-07-06 Magnetic antenna
EP06767954.8A EP1901394B1 (en) 2005-07-07 2006-07-06 Magnetic antenna
CN200680023105.2A CN101208830B (en) 2005-07-07 2006-07-06 Magnetic antenna
US12/003,951 US8072387B2 (en) 2005-07-07 2008-01-03 Magnetic antenna and board mounted with the same
US13/285,041 US8159405B2 (en) 2005-07-07 2011-10-31 Magnetic antenna and board mounted with the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-199451 2005-07-07
JP2005199451A JP4821965B2 (en) 2005-07-07 2005-07-07 Magnetic antenna
JP2005206254A JP2007028114A (en) 2005-07-14 2005-07-14 Magnetic material antenna
JP2005-206254 2005-07-14

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12003951 A-371-Of-International 2006-07-06
US12/003,951 Continuation-In-Part US8072387B2 (en) 2005-07-07 2008-01-03 Magnetic antenna and board mounted with the same
US13/285,041 Division US8159405B2 (en) 2005-07-07 2011-10-31 Magnetic antenna and board mounted with the same

Publications (1)

Publication Number Publication Date
WO2007007639A1 true WO2007007639A1 (en) 2007-01-18

Family

ID=37637033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313495 WO2007007639A1 (en) 2005-07-07 2006-07-06 Magnetic antenna

Country Status (4)

Country Link
EP (1) EP1901394B1 (en)
KR (1) KR101274354B1 (en)
CN (1) CN103094667B (en)
WO (1) WO2007007639A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130901A1 (en) * 2008-04-25 2009-10-29 戸田工業株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
JP2009259095A (en) * 2008-04-18 2009-11-05 Smart:Kk Multi-pole magnetic field sensor for metallic face, sensor system and method for manufacturing multi-pole magnetic sensor for metallic face
JP2011135223A (en) * 2009-12-22 2011-07-07 Kawasaki Heavy Ind Ltd Radome for flying object
CN102299408A (en) * 2010-06-22 2011-12-28 佳邦科技股份有限公司 Soft board antenna structure
US20120091210A1 (en) * 2009-03-31 2012-04-19 Jun Koujima Composite rf tag, and tool mounted with the composite rf tag
CN101034766B (en) * 2007-04-10 2012-12-12 嘉兴佳利电子股份有限公司 Multi-layer porcelain antenna
JP2014161003A (en) * 2012-08-09 2014-09-04 Murata Mfg Co Ltd Antenna device, radio communication device, and antenna device manufacturing method
CN103496960B (en) * 2007-03-07 2015-04-01 户田工业株式会社 Molded ferrite sheet, sintered ferrite substrate and antenna module
WO2016163212A1 (en) * 2015-04-09 2016-10-13 株式会社村田製作所 Inductor element, coil antenna, antenna device, card-type information medium, and electronic apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793584B2 (en) * 2007-01-10 2011-10-12 戸田工業株式会社 A substrate with a magnetic antenna
EP2387106B1 (en) 2010-05-11 2013-01-23 Samsung Electro-Mechanics Co., Ltd. Case of electronic device having low frequency antenna pattern embedded therein, mold therefor and method of manufacturing thereof
CN102651083B (en) * 2011-02-25 2015-11-25 中国钢铁股份有限公司 Radio RF identification label holder
JP5655962B2 (en) * 2012-02-01 2015-01-21 株式会社村田製作所 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
JP6028391B2 (en) * 2012-05-24 2016-11-16 株式会社村田製作所 Coil antenna and communication terminal device
CN103699917B (en) * 2013-12-27 2017-07-04 威海北洋电气集团股份有限公司 RFID is without coupling compact shelving
CN103682641A (en) * 2013-12-30 2014-03-26 深圳市麦捷微电子科技股份有限公司 Small-sized ferrite chip antenna
CN103825099A (en) * 2014-02-28 2014-05-28 电子科技大学 Short distance wireless communication tag antenna
EP2944982A1 (en) * 2014-05-12 2015-11-18 Ampass-explorer Corp. Transmitting and receiving antenna for a search antenna polarisation instrument
CN105633583A (en) * 2014-10-28 2016-06-01 林小群 Near-field communication module and manufacture method thereof
JP6172418B2 (en) * 2015-04-08 2017-08-02 株式会社村田製作所 ANTENNA DEVICE, CARD TYPE INFORMATION MEDIUM, ELECTRONIC DEVICE, AND ANTENNA DEVICE MANUFACTURING METHOD
CN108140927A (en) * 2015-09-16 2018-06-08 阿莫技术有限公司 Near-field communication aerial module and the portable terminal with the near-field communication aerial module
CN105281013B (en) * 2015-11-13 2018-06-01 联想(北京)有限公司 A kind of antenna and electronic equipment
KR20180047889A (en) * 2016-11-01 2018-05-10 삼성전기주식회사 Antenna device
WO2018097676A1 (en) * 2016-11-25 2018-05-31 주식회사 아모센스 Antenna core for contactless electronic payment and contactless electronic payment module including same
KR101973122B1 (en) * 2017-10-27 2019-08-16 이용하 Wireless communication antenna and manufacturing method thereof
CN108608554B (en) * 2018-05-11 2021-04-20 广东风华高新科技股份有限公司 Preparation method of ceramic antenna
CN111313150A (en) * 2018-12-11 2020-06-19 航天信息股份有限公司 RFID antenna
KR102309322B1 (en) 2020-10-13 2021-10-06 이성복 Crushing apparatus of magnetic thin-crystal by ultrasonic waves

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205025A (en) 1998-01-14 1999-07-30 Murata Mfg Co Ltd Chip antenna
JP2002183689A (en) 2000-12-11 2002-06-28 Dainippon Printing Co Ltd Noncontact data carrier device and method of manufacture
JP2002204121A (en) * 2000-10-31 2002-07-19 Mitsubishi Materials Corp Antenna, radio wave transmitting and receiving equipment using the same and method for manufacturing the same
WO2002089157A1 (en) * 2001-04-27 2002-11-07 Ajinomoto Co., Inc. Multilayer coil and its manufacturing method
JP2003046321A (en) * 2001-08-01 2003-02-14 Mitsubishi Materials Corp Magnetic core member and rfid use tag using the same
JP2003218626A (en) * 2002-01-17 2003-07-31 Sony Corp Antenna circuit, antenna circuit apparatus, and its manufacturing method
JP2005184094A (en) * 2003-12-16 2005-07-07 Olympus Corp Antenna and manufacturing method of antenna
JP2005192044A (en) * 2003-12-26 2005-07-14 Toda Kogyo Corp Magnetic field antenna, and wireless system and communication system configured by employing the same
JP2005192124A (en) * 2003-12-26 2005-07-14 Toda Kogyo Corp Magnetic field antenna, and wireless system and communication system configured by employing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147756B2 (en) * 1995-12-08 2001-03-19 株式会社村田製作所 Chip antenna
US6940468B2 (en) * 2001-02-15 2005-09-06 Integral Technologies, Inc. Transformers or inductors (“transductors”) and antennas manufactured from conductive loaded resin-based materials
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2003152416A (en) * 2001-08-30 2003-05-23 Kyocera Corp Chip antenna manufacturing method
JP2004200829A (en) * 2002-12-17 2004-07-15 Furukawa Electric Co Ltd:The Rf id tag

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205025A (en) 1998-01-14 1999-07-30 Murata Mfg Co Ltd Chip antenna
JP2002204121A (en) * 2000-10-31 2002-07-19 Mitsubishi Materials Corp Antenna, radio wave transmitting and receiving equipment using the same and method for manufacturing the same
JP2002183689A (en) 2000-12-11 2002-06-28 Dainippon Printing Co Ltd Noncontact data carrier device and method of manufacture
WO2002089157A1 (en) * 2001-04-27 2002-11-07 Ajinomoto Co., Inc. Multilayer coil and its manufacturing method
JP2003046321A (en) * 2001-08-01 2003-02-14 Mitsubishi Materials Corp Magnetic core member and rfid use tag using the same
JP2003218626A (en) * 2002-01-17 2003-07-31 Sony Corp Antenna circuit, antenna circuit apparatus, and its manufacturing method
JP2005184094A (en) * 2003-12-16 2005-07-07 Olympus Corp Antenna and manufacturing method of antenna
JP2005192044A (en) * 2003-12-26 2005-07-14 Toda Kogyo Corp Magnetic field antenna, and wireless system and communication system configured by employing the same
JP2005192124A (en) * 2003-12-26 2005-07-14 Toda Kogyo Corp Magnetic field antenna, and wireless system and communication system configured by employing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1901394A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496960B (en) * 2007-03-07 2015-04-01 户田工业株式会社 Molded ferrite sheet, sintered ferrite substrate and antenna module
CN101034766B (en) * 2007-04-10 2012-12-12 嘉兴佳利电子股份有限公司 Multi-layer porcelain antenna
JP2009259095A (en) * 2008-04-18 2009-11-05 Smart:Kk Multi-pole magnetic field sensor for metallic face, sensor system and method for manufacturing multi-pole magnetic sensor for metallic face
JP2009284476A (en) * 2008-04-25 2009-12-03 Toda Kogyo Corp Magnetic antenna, substrate mounting magnetic antenna, and rf tag
WO2009130901A1 (en) * 2008-04-25 2009-10-29 戸田工業株式会社 Magnetic antenna, substrate with the magnetic antenna mounted thereon, and rf tag
US9397401B2 (en) 2008-04-25 2016-07-19 Toda Kogyo Corporation Magnetic antenna, board mounted with the same, and RF tag
US20120091210A1 (en) * 2009-03-31 2012-04-19 Jun Koujima Composite rf tag, and tool mounted with the composite rf tag
US8720787B2 (en) * 2009-03-31 2014-05-13 Toda Kogyo Corporation Composite RF tag, and tool mounted with the composite RF tag
US9218559B2 (en) 2009-03-31 2015-12-22 Toda Kogyo Corporation Composite RF tag, and tool mounted with the composite RF tag
JP2011135223A (en) * 2009-12-22 2011-07-07 Kawasaki Heavy Ind Ltd Radome for flying object
CN102299408A (en) * 2010-06-22 2011-12-28 佳邦科技股份有限公司 Soft board antenna structure
JP2014161003A (en) * 2012-08-09 2014-09-04 Murata Mfg Co Ltd Antenna device, radio communication device, and antenna device manufacturing method
WO2016163212A1 (en) * 2015-04-09 2016-10-13 株式会社村田製作所 Inductor element, coil antenna, antenna device, card-type information medium, and electronic apparatus

Also Published As

Publication number Publication date
KR20080023694A (en) 2008-03-14
EP1901394A4 (en) 2012-09-26
CN103094667A (en) 2013-05-08
KR101274354B1 (en) 2013-06-13
EP1901394A1 (en) 2008-03-19
CN103094667B (en) 2016-06-15
EP1901394B1 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2007007639A1 (en) Magnetic antenna
JP4821965B2 (en) Magnetic antenna
JP4793584B2 (en) A substrate with a magnetic antenna
US8072387B2 (en) Magnetic antenna and board mounted with the same
TWI483472B (en) A magnetic antenna, a substrate on which the magnetic antenna is mounted, and a radio frequency tag
KR101593252B1 (en) Composite magnetic antenna and rf tag, metal part and metal instrument having the composite magnetic antenna or the rf tag
JP5634717B2 (en) Magnetic antenna, RF tag, and substrate mounted with the RF tag
JP5403279B2 (en) RF tag manufacturing method, magnetic antenna manufacturing method, substrate mounted with the RF tag, and communication system
CN110214396B (en) Electronic device, antenna and RF tag
JP2007028114A (en) Magnetic material antenna

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023105.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077030092

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006767954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006767954

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE