WO2007004664A1 - 金属の回収方法とその装置 - Google Patents

金属の回収方法とその装置 Download PDF

Info

Publication number
WO2007004664A1
WO2007004664A1 PCT/JP2006/313377 JP2006313377W WO2007004664A1 WO 2007004664 A1 WO2007004664 A1 WO 2007004664A1 JP 2006313377 W JP2006313377 W JP 2006313377W WO 2007004664 A1 WO2007004664 A1 WO 2007004664A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
precipitation
liquid
main body
reactor
Prior art date
Application number
PCT/JP2006/313377
Other languages
English (en)
French (fr)
Inventor
Tomoharu Maeseto
Mitsushige Shimada
Original Assignee
Kobelco Eco-Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006055074A external-priority patent/JP2007039788A/ja
Application filed by Kobelco Eco-Solutions Co., Ltd. filed Critical Kobelco Eco-Solutions Co., Ltd.
Priority to CN2006800245426A priority Critical patent/CN101218359B/zh
Publication of WO2007004664A1 publication Critical patent/WO2007004664A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a metal recovery method and apparatus, and more particularly, a waste liquid containing heavy metals such as Ni (nickel), Cu (copper), Sn (tin), In (indium), and Ga (gallium).
  • the present invention relates to a method and an apparatus for recovering, as an alloy, a metal simple substance that is a valuable material from a liquid to be processed. Background art
  • industrial waste liquids may contain various metals, and attempts have been made to recover them as simple metals that are valuable resources.
  • the METSUKI factory effluent contains Ni, Cu, Zn, etc.
  • the semiconductor manufacturing factory effluent contains Cu, Ga, etc.
  • the liquid crystal manufacturing factory effluent contains In etc. If it can be recovered as an alloy, these metals can be reused.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-126758
  • the present invention has been made to solve such a problem, and only a target metal can be recovered as a valuable metal element or alloy from a liquid to be treated such as a waste liquid. It is another object of the present invention to provide a recovery method and apparatus having a high recovery rate with a low possibility of containing impurities other than the recovery target metal and a high purity of the recovery target metal.
  • the present invention has been made to solve such problems, and the liquid to be treated containing the metal to be recovered in an ion state has a higher ionization tendency than the metal to be recovered. Then, a deposition metal is added, and the collection target metal contained in the liquid to be treated is deposited on the surface of the deposition metal due to a difference in ionization tendency, and then the collection target is separated from the deposition metal by a peeling means.
  • a method for recovering a metal characterized by peeling and recovering the metal. In such a metal recovery method, the liquid to be processed containing the metal to be recovered in an ionic state may flow into the reactor main body, and the deposition metal may be added to the reactor main body.
  • Precipitation metal force As means for separating the metal to be collected, means for vibrating the metal for precipitation by ultrasonic waves, means for agitating the metal for precipitation by an electromagnet and causing a large number of metals for precipitation to collide with each other , Means for stirring the metal for precipitation by air jet or water jet, means for providing a cylindrical part in the reactor main body, and means for stirring the metal for precipitation by blowing gas into the cylindrical part, A channel and a pump for circulating and transporting the deposition metal are provided outside the reactor main body, and means for stirring the deposition metal by circulating and transporting the liquid to be treated and the deposition metal are employed. be able to.
  • the deposition metal for example, metal particles are used.
  • the average particle size of the metal particles is preferably 0.1 to 8 mm, more preferably 0.5 to 6 mm. 1.0 to
  • the average particle size is preferably 1.5 to 5.5 mm.
  • the average particle size is preferably 1.5 to 4. Omm.
  • the metal to be collected is contained in an ionic state !, and the liquid to be treated flows into the reactor body
  • the liquid to be treated is configured to flow into the lower force of the reactor main body and to flow out of the upper portion of the reactor main body.
  • the reactor main body when the liquid to be treated flows into the reactor main body, the reactor main body may be configured so that the cross-sectional area of the reactor main body increases upward. Further, two or more kinds of metals to be collected may be selectively recovered by using two or more different kinds of deposition metals by using a multi-stage reactor body. Further, the separated metal to be collected may be collected with a filter.
  • a chlorine ion source may be added to the liquid to be treated together with the deposition metal.
  • the liquid to be treated flows into the adjustment tank and a chlorine ion source is added to the adjustment tank.
  • the liquid to be treated in the adjustment tank flows into the reactor main body and the reactor main body.
  • a metal for precipitation may be added inside.
  • the processing liquid after recovering the metal to be recovered from the deposition metal may be added to the liquid to be processed which is the stock solution, and then processed again. .
  • the present invention flows in a liquid to be collected containing the metal to be recovered in an ionic state, and adds a deposition metal having a higher ionization tendency than the metal to be recovered. Due to the difference, a reactor main body for performing a metal precipitation reaction for precipitating the metal to be collected contained in the liquid to be treated on the surface of the metal for precipitation, and for collecting the deposited metal to be collected should be collected. There is provided a metal recovery device comprising a peeling means for peeling off a metal force.
  • a metal recovery apparatus as a means for separating the recovery target metal from the deposition metal, means for vibrating the deposition metal by ultrasonic waves, stirring the deposition metal with an electromagnet, Means for colliding the metal with each other, means for stirring the metal for precipitation by air jet or water jet, means for providing a cylindrical part in the reactor body, and stirring the metal for precipitation by blowing gas into the cylindrical part
  • a flow path and a pump for circulating and transporting the liquid to be treated and the metal particles in the reactor main body and a pump are provided outside the reactor main body, and the liquid to be treated and the metal for deposition are circulated and transported for the deposition.
  • a means for stirring the metal is employed.
  • the reactor main body has an inflow portion for the liquid to be processed in the lower portion thereof, and has a liquid outflow portion in the upper portion, and the inflow portion force the liquid to be processed flows into the reactor main body, and the liquid outflow portion Configured to flow out of
  • the reactor main body may be configured such that its cross-sectional area increases upward. Further, a plurality of reactor bodies may be provided. In addition, a filter for recovering the separated metal to be recovered may be disposed after the reactor body.
  • Sarakuko a recovery tank containing a liquid to be treated containing a metal to be collected in an ionic state and containing nitrate ions, and adjusting by adding a chlorine ion source, You may provide in the front
  • the present invention adds a deposition metal having a higher ionization tendency than the metal to be recovered to the liquid to be recovered in which the metal to be recovered is contained in an ionic state.
  • the recovery target metal contained in the liquid to be treated is deposited on the surface of the deposition metal due to the difference between the two, and then the recovery target metal is stripped from the deposition metal by a stripping means and recovered. For this reason, the recovery target metal that has grown to some extent on the surface of the depositing metal is peeled off by the stripping means, so that the new metal surface can always be exposed and the reaction rate can be maintained. This has the effect of increasing efficiency.
  • the total surface area of the deposition metal for the metal deposition reaction as compared with a method using iron scrap. This increases the precipitation reaction rate and further increases the recovery efficiency of the metal to be recovered.
  • the reactor main body When the liquid to be treated flows into the reactor main body and metal particles with an average particle size of 0.1 to 8 mm, which is a metal for precipitation, are added to the reactor main body, thus, the metal particles can be suitably flowed, and the separation effect of the metal to be recovered from the deposition metal can be further improved.
  • the reactor main body is configured so that the liquid to be treated flows in from the lower part of the reactor main body and the upper force of the reactor main body flows out and the cross-sectional area of the reactor main body increases upward, the reactor main body In the reactor main body, the cross-sectional area of the metal particles, which is a metal for precipitation whose particle size is reduced by the metal precipitation reaction as described above, gradually decreases. At the top, it can be held in the reactor body without inadvertent overflow.
  • the liquid to be treated flows into the lower side of the reactor main body, and when passing through the reactor main body, the recovery target metal is deposited on the deposited metal, and thus the liquid to be treated is directed toward the upper part of the reactor main body.
  • the concentration of the metal to be recovered in the liquid to be treated decreases and the particle size of the deposited metal particles decreases as described above, finer metal particles are present in the upper part of the reactor body, and further, Since it is recognized that the number of metal particles increases as the upward flow velocity of the liquid gradually decreases, the total surface area of the metal particles increases toward the top of the reactor body, and as a result, the reaction rate of the metal precipitation reaction increases. As a result, the recovery target metal can be efficiently recovered even in the upper part of the reactor body where the concentration of the recovery target metal is lower.
  • the first stage Reactor body deposits some metal and collects it with the first stage filter
  • the second stage reactor body deposits other metal and the second stage filter collects the other metal. This makes it possible to selectively recover two or more types of metals to be recovered from the liquid to be treated using two or more different types of deposited metals.
  • the chlorine ion source can be added to the liquid to be treated, even though In cannot be deposited on the deposition metal.
  • the reason why precipitation is possible is considered as follows. In other words, it is recognized that the presence of nitrate ions at a certain concentration in In changes the form in the solution, thereby lowering the standard reduction potential of In below the normally considered value, The standard reduction potential of A1 and Zn constituting the metal for the metal also rises, and the potential difference between the recovered metal In and the precipitation metals Al, Zn, etc. becomes smaller, making it difficult to reduce the In precipitation. Not considered a force.
  • nitrate ions in the solution react with A1 and Zn constituting the deposition metal to form nitrogen dioxide and nitric oxide, which are released as a gas.
  • FIG. 1 is a schematic front view of a metal recovery apparatus as one embodiment.
  • FIG. 2 is a schematic front view of a metal recovery apparatus according to another embodiment.
  • FIG. 3 is a schematic perspective view of a metal recovery apparatus according to another embodiment.
  • FIG. 4 is a schematic sectional view of a metal recovery apparatus according to another embodiment.
  • FIG. 5 is a schematic plan view of an inflow chamber in a metal recovery apparatus according to another embodiment.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • FIG. 7 is a schematic front view of a metal recovery apparatus according to another embodiment.
  • FIG. 8 is a schematic plan view of a slide board provided with an electromagnet used in the embodiment of FIG.
  • FIG. 9 is a schematic block diagram of a metal recovery apparatus according to another embodiment.
  • FIG. 10 is a schematic block diagram of a metal recovery apparatus according to another embodiment.
  • FIG. 11 is a schematic front view of a metal recovery apparatus according to another embodiment.
  • FIG. 12 is a schematic front view of a metal recovery apparatus according to another embodiment.
  • FIG. 13 is a schematic front view of a metal recovery apparatus according to another embodiment.
  • FIG. 14 is a schematic block diagram of an indium recovery apparatus as one embodiment.
  • FIG. 15 is a schematic block diagram showing a test apparatus of an example.
  • FIG. 16 is a graph showing test results.
  • the metal recovery apparatus of the present embodiment is provided with a vertically long reactor main body 1.
  • the reactor main body 1 includes a reactor upper part 2, a reactor intermediate part 3, and a reactor lower part 4, which are connected via connecting parts 5 and 6, respectively.
  • Reactor upper part 2, reactor intermediate part 3, and reactor lower part 4 are each formed to have the same width, but the cross-sectional area of reactor upper part 2 is larger than the cross-sectional area of reactor intermediate part 3, and The cross-sectional area is larger than the cross-sectional area of the reactor bottom 4 It is.
  • the cross-sectional area of the reactor main body 1 is configured to increase discontinuously with upward force.
  • the continuous portions 5 and 6 are formed in a tapered shape that is wide upward.
  • a substantially conical inflow chamber 7 for introducing the waste liquid to be treated is provided, and an inflow pipe 8 is provided further below.
  • the inflow pipe 8 is provided with a check valve.
  • an upper chamber 9 is provided on the upper side of the upper part 2 of the reactor, and a discharge pipe 10 for discharging the recovered flaky or particulate metal is provided on the side thereof.
  • the upper chamber 9 is a part for discharging the metal recovered by such a discharge pipe 10, and based on the difference in the tendency to ionize with the metal to be recovered, a so-called cementation reaction ( It is also the part where the metal for precipitation (metal particles), which has a higher ionization tendency than the metal to be recovered, is used to cause the (metal precipitation reaction). Actually, the cementation reaction between the deposition metal and the metal to be recovered occurs in the entire reactor body 1.
  • the waste liquid flowing in from the inflow pipe 8 reaches the discharge pipe 10 so that the waste liquid rises in the vertical direction and forms a fluidized bed of metal particles.
  • the ultrasonic oscillator l la, l ib is a metal contained in the waste liquid and serves as a stripping means for stripping the metal to be collected deposited on the metal particles introduced by the cementation reaction.
  • 11c are provided in the upper part 2 of the reactor, the middle part 3 of the reactor, and the lower part 4 of the reactor, respectively.
  • zinc (Zn) particles are used as the metal particles to be charged.
  • a metal surface treatment factory waste liquid containing metal ions such as copper (Cu) and tin (Sn) is used as the target waste liquid.
  • Cu and Sn are recovered as metal.
  • the average particle size of the metal particles to be introduced is a force that can use metal particles of 0.1 to 8 mm. In this embodiment, the average particle size is 2 mm. The average particle diameter is measured by an image analysis method or an IS Z 8801 screening test method.
  • waste liquid to be treated is introduced into the reactor main body 1 from the inflow pipe 8 through the inflow chamber 17. Flow into. On the other hand, cementation from the upper chamber 9 Metal particles (Zn particles) are added to cause the reaction. In the reactor main body 1, while the waste liquid that has flowed in rises in the vertical direction, the waste liquid and the metal particles introduced from the upper chamber 9 enter a fluidized state so as to form a fluidized bed.
  • the standard reduction potential of Zn 2+ is the smallest compared to Cu 2+ and Sn 2+ .
  • the ionization tendency of Zn is the largest compared to Cu and Sn. Therefore, in the fluidized state as described above, Zn with a high ionization tendency becomes Zn 2+ (reaction opposite to the above formula (1)) and is eluted in the waste liquid and is contained in the waste liquid along with it.
  • Cu 2+ and Sn 2+ that have been deposited become Cu and Sn, and are deposited on the surface of the Zn particles.
  • the ultrasonic oscillators lla, ib, and 11c are operated.
  • the ultrasonic waves generated from the ultrasonic oscillators l la, l ib, and 11c vibrate to the Zn particles on which the Cu and Sn are deposited.
  • a force and a stirring force are applied, and the precipitated Cu and Sn metals are forcibly separated from the Zn particle force.
  • the ultrasonic oscillators l la, l ib, and 11c can be operated continuously.
  • the ultrasonic oscillator When the ultrasonic oscillator is operated continuously, the ultrasonic oscillator generates heat, and the ultrasonic oscillator is operated for a long time. May be difficult. In addition, when the ultrasonic oscillator is operated continuously, the deposited metal (Cu, Sn) is peeled off before it grows to a certain size, and as a result, a deposited metal with a certain size is obtained. There is a risk of not. In this regard, when the ultrasonic oscillator is operated intermittently, there is little risk of inadvertent peeling until the deposited metal becomes large to some extent, so that the separated metal can be easily separated. Therefore, it is preferable to operate the ultrasonic oscillators 11a, l ib and 11c intermittently. The intermittent operation in this case is For example, 2 seconds ON, 8 seconds OFF, etc.
  • Cu and Sn peeled in this way are discharged from the upper chamber 9 through the discharge pipe 10 to the outside of the reactor body 1 and collected metal (in this embodiment, Cu and Sn). It will be collected as a combination.
  • the metal used for depositing the metal to be collected is in the form of particles, for example, compared to the case where zinc scrap is introduced, the cementate is used.
  • the surface area of the metal (Zn) for causing the Chillon reaction is increased, and the rate of the Cu and Sn precipitation reaction is improved.
  • the forced removal by ultrasonic vibration as described above always exposes a new metal surface (Zn particle surface), and the reaction rate is increased. Can be maintained.
  • the separated metals to be collected have very few impurities other than Cu and Sn.
  • the cross-sectional area of the reactor main body 1 is formed so as to increase discontinuously as the upward force is increased in the present embodiment. Therefore, the waste liquid in the reactor main body 1 is increased. The upward flow velocity gradually decreases. Therefore, as described above, the metal particles whose particle size has decreased due to the cementation reaction, etc., in the reactor body 1 without inadvertently overflowing outside the reactor body at the top of the reactor body 1 where the cross-sectional area increases. Is more likely to be retained.
  • the waste liquid flows into the lower side of the reactor main body 1 and passes through the reactor main body 1, it is converted into metal particles that also have Zn force due to the cementation reaction, Cu, Sn, etc. to be recovered.
  • the concentration of the target metal in the waste liquid decreases as the force toward the top of the reactor body 1 increases.
  • the structure of the reactor main body 1 is different from that of the first embodiment. That is, in the present embodiment, as shown in FIG. 2, the entire peripheral surface of the reactor main body 1 is formed to be tapered upward, and the cross-sectional area of the reactor main body 1 is continuously increased upward. It is configured as follows. In this respect, the cross-sectional area of the reactor body 1 increases discontinuously upwards, which is different from the case of the first embodiment.
  • the reactor upper part 2 Since the cross-sectional area that is not discontinuous is configured to continuously increase upward, the reactor upper part 2, the reactor intermediate part 3, as in Embodiment 1, If the reactor is divided into four parts as shown in the lower part of the reactor,
  • the ultrasonic oscillators l la, l ib and 11c are provided in three places from the upper part to the lower part of the reactor main body 1 in common with the first embodiment. Therefore, in the present embodiment, as in the first embodiment, the recovery target metal deposited on the metal particles is forcibly forced by the ultrasonic waves oscillated from the ultrasonic oscillators lla, ib, and 11c. The effect of being able to peel off is obtained.
  • the cross-sectional area is configured to increase upward, and in common with Embodiment 1, Therefore, even in the present embodiment, the fine metal particles having a reduced particle size are retained at the upper part of the reactor main body 1, and the effect of preventing inadvertent overflow from the reactor main body and the object to be collected This means that the recovery target metal can be efficiently recovered at the upper part of the reactor body 1 where the metal concentration is low.
  • the reactor body 1 of this embodiment is the same as that of Embodiments 1 and 2 in that it is vertically long. However, as shown in FIGS. 3 and 4, the reactor body 1 is formed so that the cross-sectional area is the same at the top and bottom. In this respect, this embodiment is different from Embodiments 1 and 2 in which the cross-sectional area is increased upward.
  • an inflow chamber 7 is provided on the lower side of the reactor body 1, and an upper chamber 9 is provided on the upper side of the reactor body 1.
  • the shape is different from that of Embodiment 1 which is formed in a substantially conical shape. That is, the upper chamber 9 is formed in a shallow cylindrical shape as shown in FIGS. 3 and 4, and the inflow chamber 7 is formed with a central cylindrical portion 20 as shown in FIGS.
  • the central cylinder part 20 is formed in a shape including side cylinder parts 21 and 21 provided on the left and right sides in communication with the central cylinder part 20.
  • the inflow pipes 8 and 8 are provided on the distal end sides of the side tube portions 21 and 21 of the inflow chamber 7, respectively.
  • the side cylinders 21 and 21 of the inflow chamber 7 are provided with two baffle plates 22 and 23 in the vertical direction, and the liquid to be treated flowing in from the inflow pipes 8 and 8 is blocked by these baffles. The flow is disturbed by the plates 22 and 23.
  • the upper chamber 9 is composed of an inner cylinder 9a and an outer cylinder 9b as shown in FIG. 4, and the inner cylinder 9a is externally fitted to the upper part of the reactor main body 1 as shown in FIG. As a result, the upper chamber 9 is attached to the reactor body 1.
  • the discharge pipe 10 is attached to the lower portion of the upper chamber 9 at a position between the inner cylinder 9a and the outer cylinder 9b.
  • the liquid to be treated that flows upward in the reactor body 1 overflows from the upper opening of the inner cylinder 9a between the outer cylinder 9b and the inner cylinder 9a, and is discharged from the discharge pipe 10. It will be discharged to the outside.
  • the metal particles for causing the cementation reaction are also supplied with the force of the upper opening of the inner cylinder 9a. Then, while the waste liquid flowing in from the inflow pipe 8 of the inflow chamber 7 reaches the discharge pipe 10 of the upper chamber 9, the fluid to be treated rises in the vertical direction to form a fluidized bed of metal particles.
  • the point that the cementation reaction between the input metal and the metal to be recovered occurs in the whole reactor body 1 is that Common to states 1 and 2.
  • an ultrasonic oscillator is employed as a stripping means for stripping the metal to be collected, which is a metal contained in the waste liquid and deposited on the metal particles by the cementation reaction.
  • four ultrasonic oscillators l la, l ib, l lc, and l id force are attached to the outer peripheral surface of the reactor main body 1.
  • These four ultrasonic oscillators l la, l lb, l lc, and id are all the forces attached to the reactor body 1 at an angle of about 45 degrees with respect to the horizontal plane.
  • the ultrasonic oscillators l la and 11c are attached in the same direction, and the other two ultrasonic oscillators l lb and l id are attached so as to face in opposite directions.
  • waste liquid is used as the liquid to be treated, and as the waste liquid, for example, the same metal waste treatment liquid containing metal ions such as Cu and Sn as in Embodiment 1 is used. It is done.
  • Zn particles are used as the metal particles to be charged in the same manner as in Embodiment 1, and Cu and Sn are recovered as metals.
  • the waste liquid flows from the inflow pipe 8 into the reactor body 1 through the inflow chamber 17.
  • the inflow chamber 17 is composed of the central cylindrical portion 20 and the side cylindrical portions 21 and 21 as described above, and the side cylindrical portions 21 and 21 are provided with two baffle plates 22 and 23 vertically. Since the waste liquid that flows in from the inflow pipes 8 and 8 that are mounted sideways to the side tube portion 21 does not flow in the horizontal direction at once, the baffle plate that is provided in the vertical direction.
  • the gas flows into the central cylindrical portion 20 while flowing alternately up and down in the side cylindrical portion 21 along the lines 22 and 23, and the force of the central cylindrical portion 20 is also directed upward to the reactor body 1 and flows upward.
  • the waste liquid flowing in from the inflow pipes 8 and 8 is disturbed by the baffle plates 22 and 23, and can easily flow upward in the reactor main body 1 without causing drift.
  • a cylindrical basket containing glass or ceramic balls can be installed in the inflow chamber 17, which can prevent drifting more reliably. It becomes.
  • stirring is performed using an electromagnet.
  • the means to do is adopted. That is, in this embodiment, the slide board 13 having the electromagnet 12 as shown in FIG. 8 is mounted on the guide rail 14 provided on the side of the reactor main body 1 as shown in FIG. Has been. As shown in FIG. 8, the slide board 13 has a space portion 15 in the center, and is disposed so as to surround the reactor body 1 by inserting the reactor body 1 into the space portion 15.
  • the reactor body 1 is not shown.
  • the reactor main body 1 is formed so that the horizontal cross section is rectangular, and in this respect, the cross section is circular, that is, the reactor main body 1 is formed in a cylindrical shape. Is different.
  • the metal particles in the reactor main body 1 are agitated by alternately moving up and down, and a large number of metal particles collide with each other, thereby The metal particle force also forcibly separates the deposited metal.
  • the electromagnet 12 is applied alternately at regular intervals such as 2 seconds, and the vertical movement of the slide board 13 is performed intermittently or continuously.
  • Metal particle force Although the means for separating the deposited metal to be collected is different, the metal to be collected can be suitably separated from the metal particles and recovered in this embodiment as well.
  • the metal particles used in this embodiment are iron particles that are magnetic materials.
  • the reduction reaction and standard electrode potential of Cu and Sn are as shown in the above formulas (2) and (3).
  • the standard electrode potential is smaller in Fe than Cu and Sn. Since the ionization tendency is larger than the ionization tendency of Cu and Sn, this embodiment can be applied to waste liquid containing Cu and Sn.
  • the filter 17 is provided after the first-stage reactor main body la and before the second-stage reactor main body lb, and further, the filter is provided after the second-stage reactor main body lb.
  • One 18 is provided.
  • a cartridge filter or a drum filter is used as the filter.
  • solid-liquid separation means such as a belt press and a filter press in place of the filter.
  • both Cu and Sn have a smaller ionization tendency than Fe.
  • the difference in the habit is that the difference between Fe and Cu is much larger than the difference between Fe and Sn. Therefore, in the first stage reactor body la, Cu preferentially precipitates on Fe particles. It becomes.
  • the ionization tendency of Zn is larger than the ionization tendency of Cu and Sn. Therefore, in the second reactor body lb, both Cu and Sn are Zn.
  • the present embodiment has an advantage that two types of metal can be selectively recovered from the waste liquid using two different types of metal particles. Further, although means for peeling the deposited metal to be recovered also with the metal particle force is not described, it is not particularly limited.
  • the method using the ultrasonic oscillator described above, the method of stirring using an electromagnet, Other methods described can be used.
  • Embodiment 6 In this embodiment, as shown in FIG. 10, three reactors are arranged, and in this respect, only one reactor is used in Embodiments 1 to 4, or two reactors are arranged. This is different from the case of Form 5.
  • the three reactor bodies la, one reactor body lb, and the filter 17, the filter 18, and the filter 19 are provided on the rear stage side of the reactor body lc.
  • the force in which Fe particles are charged in the first-stage reactor main body la and the Zn particles are charged in the second-stage reactor main body lb
  • the third-stage reactor main body lc Aluminum (A1) particles are charged.
  • the Fe particles introduced in the first-stage reactor body la and the Zn particles introduced in the second-stage reactor body lb are made of a metal that has a higher ionization tendency than the target metal as described above. From the comparison of the numerical values of the standard electrode potentials expressed by Eqs. (1), (4), and (5), it is clear that the ionic tendency of A1 is larger than that of Fe and Zn. Therefore, Fe eluted from the first-stage reactor body la and Zn eluted from the second-stage reactor body lb are both deposited on A1 particles by the third-stage reactor body lc. The A 1 particles can be recovered as an Fe—Zn alloy.
  • the power at which A1 elutes The amount of sludge generated does not increase because the amount of elution is less than that of divalent Zn and Fe, and the specific gravity of A1 is light and the sludge weight can be reduced.
  • the means for peeling off the metal to be collected which is a metal particle force.
  • a means for peeling the deposited metal to be collected by metal particle force means for vibrating with ultrasonic waves oscillated by the ultrasonic oscillators of Embodiments 1 to 3 above and the electromagnet of Embodiment 4 are used.
  • agitation means a means utilizing a so-called air lift action, in which a gas such as air is blown and agitated, is employed. That is, in the present embodiment, as shown in FIG. 11, a cylindrical part 25 is provided at the approximate center of the reactor body 1, and a gas inflow pipe 26 is connected to the lower part of the cylindrical part 25.
  • a baffle plate 30 is provided below the lower opening 29 of the cylindrical portion 25.
  • the reactor main body 1 is formed in a substantially cylindrical shape as in the third embodiment, and the inflow chamber is placed under the reactor main body 1 in the same manner as in the first to third embodiments. 7 is provided, and an upper chamber is provided in the upper part.
  • the discharge pipe 10 does not show the force upper chamber shown.
  • A1 or Zn particles are used as the metal particles to be charged.
  • the target waste liquid flat “panel” display (FPD) manufacturing waste liquid containing indium (In) ions is used. In this case, In is recovered as a metal.
  • FPD flat “panel” display
  • the average particle diameter of the metal particles to be added can be 0.1 to 8 mm.
  • the average particle diameter is preferably 1.5 to 5.5 mm.
  • Zn it is preferably 1.5 to 4. Omm.
  • Zn particles exceeding 4. Omm the flow velocity necessary to make these particles flow increases and also the force to increase the amount of gas blown.
  • the particle size of the metal particles gradually decreases due to the cementation reaction, if the initial particle size of the metal particles is small, As described above, there is a possibility that metal particles may flow out of the reactor body 1 together with the treatment liquid. From this point of view, it is preferable that the particle size is 1.5 mm or more in the case of Zn particles or A1 particles.
  • the waste liquid flows into the reactor main body 1 through the inflow chamber 17, and the upper part The best of the chamber is charged with metal particles.
  • gas is caused to flow into the cylindrical portion 25 via the gas inflow pipe 26.
  • the specific gravity of the mixed portion of the gas and water in the cylindrical portion 25 decreases, and the liquid is pushed up together with the gas.
  • the liquid to be treated in the cylindrical portion 25 also flows upward.
  • the liquid to be treated flows through the inside of the cylindrical portion 25, but a pressure difference is generated between the inside and the outside of the cylindrical portion 25, so that the flow rate of the liquid to be treated is also the inside and outside of the cylindrical portion 25.
  • the metal particles are agitated in the reactor main body 1 and the In deposited on the surface of the metal particles is peeled off.
  • the standard quasi-reduction potentials of Zn 2+ and Al 3+ are smaller than those of In 3+ .
  • the ionization tendency of Zn and A1 is greater than that of In.
  • Zn and A1 which have a large ionization tendency, become Zn 2+ or Al 3+ in the waste liquid. It elutes, and In 3+ contained in the waste liquid becomes In and precipitates on the surface of Zn and A1 particles.
  • the In force n particles or A1 particles separated by stirring using the air lift action as described above are peeled off. The peeled In is discharged to the outside of the reactor body 1 through the discharge pipe 10 and collected.
  • the baffle plate 30 is provided below the lower opening 29 of the cylindrical portion 25, the water flow of the waste liquid flowing in from the inflow chamber 17 is directly applied to the cylindrical portion 25.
  • the flow rate of the liquid to be treated in the cylindrical portion 25 is preferably prevented from becoming extremely high.
  • air jet agitation or water jet agitation is adopted as means for separating the metal to be collected from the metal particles, and this is different from the above-described Embodiments 1 to 7. That is, in the present embodiment, as shown in FIG. 12, the jet stirring jetting tool 31 is attached to the peripheral surface portion of the reactor main body 1, and air or water is jetted from the jet stirring jetting tool 31 so that the inside of the reactor main body 1 It is configured to generate fine bubbles. That is, air jet agitation means that a gas such as air is ejected to generate fine bubbles, and water jet agitation means that a liquid such as water is ejected to generate fine bubbles. .
  • the shape of the reactor main body 1 and the configuration in which the inflow chamber 7 and the discharge pipe 10 are provided are the same as those in the seventh embodiment, and a description thereof will be omitted. Further, since the metal particles to be input, the type of waste liquid to be used, and the action of the cementation reaction are the same as those in the seventh embodiment, detailed description thereof will be omitted.
  • a gas such as air or water (for example, treatment liquid) is ejected from the jet stirring jetting tool 31 to generate turbulent flow in the reactor main body 1, and the turbulent flow causes the reactor main body 1 to Thus, the metal particles are agitated, so that the In deposited on the surface of the metal particles is peeled off.
  • the recovery target metal In since the recovery target metal In has poor adhesion to metal particles such as Zn, it is forcibly removed by ultrasonic vibration as in Embodiments 1 to 3 above. Even if the means for separating and the means for forcibly separating using the electromagnet as in Embodiment 4 are not adopted, the metal particle force is relatively reduced by means of simply performing air jet or water jet stirring. It can be easily peeled off. That is, it is possible to recover In with a device having a simple and low energy stirring means.
  • a means for separating the metal to be collected from the metal particles a means by solid-liquid transport pump agitation is adopted, which is different from the above-described Embodiments 1 to 8. That is, in this embodiment, as shown in FIG. 13, a flow path 32 for circulating and transporting the liquid to be treated and the metal particles in the reactor main body 1 and the pump 33 are provided outside the reactor main body 1. Further, means for stirring the metal particles by circulating and transporting the liquid to be treated and the metal particles through the flow path 32 and the reactor main body 1 by the pump 33 is adopted.
  • the shape of the reactor main body 1 and the configuration in which the inflow chamber 7 and the discharge pipe 10 are provided are the same as those in Embodiments 7 and 8 described above, and thus the description thereof is omitted. Further, since the metal particles to be introduced, the type of waste liquid to be used, and the action of the cementation reaction are the same as those in Embodiments 7 and 8, detailed description thereof will be omitted.
  • the liquid to be treated is discharged from the reactor main body 1 to the flow path 32 together with the metal particles by the pump 33, circulates through the flow path 32, and is returned to the reactor main body 1 again.
  • the metal particles in the reactor main body 1 are agitated, whereby In deposited on the surface of the metal particles is peeled off.
  • the deposited metal In has poor adhesion to metal particles such as Zn, it is forced by ultrasonic vibration as in Embodiments 1 to 3 above. Even if the means for peeling off to the outside and the means for forcing peeling using the electromagnet as in Embodiment 4 are not employed, the means for simply stirring the solid-liquid transport pump using the pump 33 and the flow path 32 can be used. In, the metal particle force can be peeled off relatively easily. That is, it is possible to recover In with a device having simple and low energy means.
  • the indium recovery apparatus of the present embodiment has a reactor body 1 and a control unit. It is equipped with a regulating tank 42 and a filter 43.
  • the reactor main body 1 is used for precipitating In from the waste liquid (liquid to be treated) by a cementation reaction (metal precipitation reaction).
  • the Cl _) source is added
  • Caro is for adjusting the chloride ion concentration in the liquid to be treated
  • the filter 43 is for the in, which is deposited in the previous SL reactor body 1 separated and recovered.
  • the separated processing liquid is configured to be able to be returned to the adjustment tank 42, and a flow path for that purpose is provided between the filter 43 and the adjustment tank 42.
  • a flow path from the adjustment tank 42 to the reactor main body 1 and a flow path from the reactor main body 1 to the filter 43 are also provided.
  • FIG. 14 shows a pump for circulating the liquid to be treated.
  • the target waste liquid includes, for example, cleaning waste liquid of aluminum target materials containing In ions and nitrate ions (NO-), or nitric acid.
  • the used FPD etching waste liquid is used.
  • waste liquid to be treated is supplied to the adjustment tank 42, and chlorine ions (Cl_) are supplied to the adjustment tank 42.
  • Add salt such as sodium salt or potassium salt. Since indium forms a hydroxide precipitate when the pH increases, the pH should be adjusted to 1.5 or less in advance so as not to form a precipitate. In addition, if the pH is too low, the reaction with the deposition metal used is promoted, and H, NO, NO gas is generated and no deposition metal is used.
  • the pH is preferably 0.5 or more because it is consumed wastefully.
  • the liquid to be treated which has been adjusted by adding salt and soot in this manner flows from the inflow pipe 8 into the reactor main body 1 through the inflow chamber 7.
  • metal particles Zn or A1 particles
  • the ionization tendency of Zn and A1 is larger than that of In. Therefore, in the state of fluidization as described above, the ionization tendency is large ⁇ ⁇ Zn, A1 force 3 ⁇ 4n 2+ or ⁇ becomes Al 3+ and is eluted in the waste liquid, and it is also contained in the waste liquid! As In 3+ becomes In, it precipitates on the surface of Zn and A1 particles.
  • nitrate ions are contained in the waste liquid.
  • the quasi-reduction potential may decrease, and the standard reduction potential of A1 or Zn may increase, and the potential difference between In and A1 or Zn may be reduced, making it difficult to reduce In.
  • the liquid to be processed is supplied to the adjustment tank 42 in advance and the chlorine ion (cr) source is added, when the liquid to be processed flows into the reactor main body 1.
  • chloride ion (CD) forms a black mouth complex which causes the standard reduction potential of In to rise again, and as a result, the precipitation of In on the surface of Zn and A1 particles is inhibited. There is nothing to do.
  • the waste liquid is applied to the waste liquid of a metal surface treatment plant containing Cu and Sn ions, the cleaning waste liquid of an aluminum target material, the FPD etching waste liquid, etc.
  • the type of waste liquid to be applied is not limited to this, and it can also be applied to METSUKI factory waste liquid, semiconductor manufacturing factory waste liquid, liquid crystal manufacturing factory waste liquid, and the like.
  • the main purpose is to use a waste liquid as a liquid to be treated, but a liquid to be treated other than the waste liquid, for example, a metal-containing solid waste. It can be applied to an aqueous solution obtained by bringing chemicals such as acid into contact with waste to dissolve and ionize the metal to be recovered.
  • the types of metals to be collected are not limited to Cu, Sn, and In in the embodiment, and for example, Ni, Ga, Zn, etc. can be used as the metals to be collected. Does not matter.
  • the average particle diameter of the metal particles is not limited to that of the embodiment. However, it is desirable to be 0.1 to 8mm.
  • the thickness is less than 1 mm, the cementation reaction is not necessarily performed favorably, and there is a possibility that the recovery of the metal to be recovered which has been separated by the metal particle force may not be easily performed.
  • the number of metal particles that can be held in the reactor body decreases, and as a result, the total surface area of the metal particles may decrease and the efficiency of the precipitation reaction may decrease.
  • the flow rate must be increased in order to cause the metal particles to flow. This is because it is necessary to enlarge the reactor (reactor height) in order to maintain the necessary reaction time.
  • the thickness is more preferably 0.5 to 6 mm.
  • the force is more preferably in the range of 1.0 to 2. Omm.
  • the average particle diameter of the metal particles is measured by the image analysis method, the JIS Z 8801 screening test method, etc. as described above.
  • Millitrack JPA manufactured by Nikkiso Co., Ltd. is used for the measurement of the average particle diameter by the image analysis method.
  • the JIS sieving method when the average particle diameter is in the range of 1 to 2 mm, for example, 1000 / z m sieve V is used under a nominal size of 2000 m sieve, and the upper metal particles are used.
  • the uniformity of the metal particles is preferably less than 5 from the viewpoint of power treatment efficiency, operation control, and the like.
  • the uniformity of the metal particles refers to a transmittance curve formed by particle size distribution measurement or sieving or the like (the percentage of the mass of particles smaller than a certain particle size relative to the total sample mass, that is, the transmittance The value obtained by dividing the 60% particle size under the screen by the 10% particle size under the screen. It represents the width of the particle size distribution.
  • the metal particles used a single metal, but even if it is an alloy. Good.
  • the alloy iron-aluminum alloy, calcium-silicon alloy, or the like can be used.
  • the reactor main body 1 since the cross-sectional area of the reactor main body 1 is formed so as to increase toward the top, the force that provides the above preferable effect is obtained. Forming the body 1 is not an essential condition for the present invention. As in the third, seventh, eighth, and ninth embodiments, the reactor main body 1 can be formed so that the cross-sectional area is the same and the entire body is substantially cylindrical.
  • the means for peeling the deposited metal from the metal particles is not limited to the means of Embodiments 1 to 9, but may be other means.
  • force using a salted product such as sodium chloride or potassium salt as a source of added chlorine ions is not limited to such a salted product, and hydrochloric acid is used. It is also possible. However, when hydrochloric acid is used, the acid concentration of the liquid to be treated increases, so that the dissolution reaction of the metal for precipitation to be used is accelerated and hydrogen gas is generated. This leads to an increase in the consumption of unnecessary deposition metal and an increase in the amount of hydrogen gas generated, which in turn leads to an increase in running cost. It is preferable to use things.
  • the liquid to be processed which is the chlorine ion source stock solution remaining in the processing liquid
  • the amount of additional salt and salt required for the next In recovery process can be reduced! Acquired force It is not an essential condition for the present invention to return the treatment liquid and reuse the chlorine ion source as in the above embodiment.
  • the adjustment tank 42 for adding the chlorine ion source is provided separately from the reactor main body 1, but this is not limiting, and the chlorine It is also possible to adjust by adding an on-source.
  • metal particles are used as the deposition metal in each of the above embodiments, the present invention is not limited to this.
  • a metal wire, a metal wire processed into a mesh shape, a plate-like metal, or the like may be used.
  • Zn was used as the metal particles, and a copper sulfate solution was used as a simulated liquid to be tested.
  • a test equipment in addition to the reactor main body 1 with the ultrasonic oscillator 11 in the center, two tanks 34, 35, two pumps 36, 37, bag filter 38 and this An apparatus provided with flow paths 39, 40, and 41 for connecting them was used.
  • the pH of the copper sulfate solution is 5, the initial concentration is 65.5 mg / L, the amount of treatment liquid is 70 L, and the liquid to be treated is applied to metal particles with average particle diameters of 0.05 mm, lmm, 2 mm, 5 mm, and 10 mm.
  • the test was performed by supplying the test equipment shown in Fig. 15 in a circulating manner. The test results are shown in Tables 1 to 5 and Fig. 16.
  • a nitric acid solution in which indium was dissolved was prepared as a simulation solution of the waste liquid.
  • the simulated solution used was a 2.8% nitric acid solution in which In was dissolved at a concentration of 400mgZL. This was put into a 1 L beaker, 50 g of sodium chloride was first added, and In alloy recovery processing was started using A1 metal particles with an average particle diameter of 2 mm by image analysis. H gas and mainly NO with treatment
  • the pH in the solution was measured with a pH meter, and hydrochloric acid was added so that the pH did not exceed 1.5, and stirring was performed for 120 minutes so that the particles did not flow.
  • the In alloy deposited on the A1 metal particles was in the form of a sponge and aggregated during the stirring process to form a large lump, which could be easily peeled and collected by ultrasonic treatment. Sonication was performed once every 2 minutes for 2 seconds each. By the way, the obtained In alloy was about several hundreds of meters to several millimeters in size. Such a large lump can be recovered even with an inexpensive filter such as a knock filter.
  • Example 2 The same treatment was performed by adding only A1 metal particles to the simulated solution prepared in Example 2 above without adding sodium chloride sodium. Since nitrate ions and some of the A1 metal particles reacted, the pH reached 1.5 or higher, and the pH was adjusted using sulfuric acid. The force of stirring the solution for 120 minutes. No precipitation of In alloy was observed on the surface of the A1 metal particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 Ni(ニッケル)、Cu(銅)、Sn(錫)、In(インジウム)、Ga(ガリウム)等の重金属を含む廃液等の被処理液から、それらを有価物である金属単体あるいは合金として回収する方法と装置に関し、廃液等の被処理液から目的とする金属のみを有価物である金属単体あるいは合金として回収することができ、且つ回収対象金属以外の不純物を含有する可能性が少なく、回収率が高く回収対象金属の純度が高い回収方法と装置を提供することを課題とする。  回収対象金属がイオン状態で含有されている被処理液に、前記回収対象金属よりもイオン化傾向が大きい析出用金属を添加し、イオン化傾向の差異により前記被処理液中に含有される回収対象金属を前記析出用金属の表面に析出させ、その後、剥離手段によって前記析出用金属から前記回収対象金属を剥離して回収することを特徴とする。

Description

明 細 書
金属の回収方法とその装置
技術分野
[0001] 本発明は、金属の回収方法とその装置、さらに詳しくは、 Ni (ニッケル)、 Cu (銅)、 Sn (錫)、 In (インジウム)、 Ga (ガリウム)等の重金属を含む廃液等の被処理液から、 それらを有価物である金属単体ある ヽは合金として回収する方法と装置に関する。 背景技術
[0002] 一般に、産業廃液には種々の金属が含有されていることがあり、それらを有価物で ある金属単体として回収することが試みられている。たとえば、メツキ工場廃液には Ni 、 Cu、 Zn等が含有され、半導体製造工場廃液には、 Cu、 Ga等が含有され、液晶製 造工場廃液には In等が含有され、これらを金属単体あるいは合金として回収できれ ば、それらの金属を再利用すること等も可能となる。
[0003] 重金属類を回収する廃液の処理技術として、従来では薬剤を用いた凝集沈殿処理 、共沈処理等が一般に採用されており、濃度が低い場合には吸着剤を用いて金属 類を除去することも行なわれている。また廃メツキ液力もの金属回収では、鉄スクラッ プを廃メツキ液に投入し、 Cu等の回収対象金属をセメンテーシヨン法で回収する方 法がある。たとえば共沈処理を利用する技術として下記特許文献 1に係る発明がある
[0004] 特許文献 1 :日本国特開 2002— 126758号公報
[0005] し力しながら、薬剤を用いた凝集沈殿処理では、水酸ィ匕物の沈殿物カ^ラッジとし て発生するという問題点がある。また鉄スクラップを廃メツキ液に投入し、セメンテーシ ヨン法により Cu等を析出させる方法では、析出した Cuが鉄スクラップ表面を覆った時 点で析出反応が終了し、鉄を Cuでコーティングしたものが回収されることとなり、 目的 とする金属のみを回収対象金属として回収することができな 、。また回収率が低く純 度も低 、ものし力得られな 、と 、う問題がある。
発明の開示
発明が解決しょうとする課題 [0006] 本発明は、このような問題を解決するためになされたもので、廃液等の被処理液か ら目的とする金属のみを有価物である金属単体あるいは合金として回収することがで き、且つ回収対象金属以外の不純物を含有する可能性が少なぐ回収率が高く回収 対象金属の純度が高い回収方法と装置を提供することを課題とする。
課題を解決するための手段
[0007] 本発明は、このような課題を解決するためになされたもので、回収対象金属がィォ ン状態で含有されている被処理液に、前記回収対象金属よりもイオン化傾向が大き V、析出用金属を添加し、イオン化傾向の差異により前記被処理液中に含有される回 収対象金属を前記析出用金属の表面に析出させ、その後、剥離手段によって前記 析出用金属から前記回収対象金属を剥離して回収することを特徴とする金属の回収 方法を提供する。このような金属の回収方法において、回収対象金属がイオン状態 で含有されている被処理液をリアクター本体内に流入するとともに、該リアクター本体 内に析出用金属を添加してもよ 、。
[0008] 析出用金属力 回収対象金属を剥離する手段としては、超音波によって析出用金 属を振動させる手段、電磁石によって析出用金属を攪拌し、多数の析出用金属を相 互に衝突させる手段、エアジェット又はウォータージェットによって析出用金属を攪拌 する手段、リアクター本体内に筒状部を設け、該筒状部内に気体を吹き込んで析出 用金属を攪拌する手段、リアクター本体内の被処理液及び析出用金属を循環させて 輸送させる流路及びポンプを前記リアクター本体の外部に設け、前記被処理液及び 析出用金属を循環、輸送させることによって前記析出用金属を攪拌する手段等を採 用することができる。
[0009] 析出用金属としては、たとえば金属粒子が用いられる。その金属粒子の平均粒径 は、 0. l〜8mmであることが好ましぐ 0. 5〜6mmであることがより好ましぐ 1. 0〜
2. Ommであることがさらに好ましい。
[0010] 金属粒子がアルミニウムである場合には、平均粒径 1. 5〜5. 5mmであることが好 ましい。また金属粒子が亜鉛である場合には、平均粒径 1. 5〜4. Ommであることが 好ましい。
[0011] 回収対象金属がイオン状態で含有されて!、る被処理液をリアクター本体内に流入 する場合、被処理液がリアクター本体の下部力 流入され、リアクター本体の上部か ら流出されるように構成されて 、ることが好まし 、。
[0012] さらに被処理液をリアクター本体内に流入する場合、リアクター本体の断面積が上 方に向力つて増加するように、前記リアクター本体を構成してもよい。また、複数段の リアクター本体によって、異なる 2種以上の析出用金属で 2種以上の回収対象金属を 選択的に回収してもよい。さらに剥離された回収対象金属をフィルターで回収しても よい。
[0013] さらに、イオン状態の回収対象金属の他に硝酸イオンが被処理液中に含有されて いる場合には、該被処理液に、析出用金属とともに塩素イオン源を添加してもよい。 また、この場合、被処理液を調整槽に流入するとともに該調整槽に塩素イオン源を添 加し、次に該調整槽中の被処理液をリアクター本体内に流入するとともに、該リアクタ 一本体内に析出用金属を添加してもよい。さらに、このような塩素イオン源を添加す る場合、析出用金属から回収対象金属を回収した後の処理液を、原液である被処理 液に添カ卩して再度処理を行ってもょ 、。
[0014] また、本発明は、回収対象金属がイオン状態で含有されている被処理液を流入す るとともに、前記回収対象金属よりもイオン化傾向が大きい析出用金属を添加して、 イオン化傾向の差異により前記被処理液中に含有される回収対象金属を前記析出 用金属の表面に析出させる金属析出反応を行なうためのリアクター本体と、前記析 出した回収対象金属を回収すベぐ前記析出用金属力 剥離させるための剥離手段 とを具備することを特徴とする金属の回収装置を提供する。
[0015] このような金属の回収装置において、析出用金属から回収対象金属を剥離する手 段としては、超音波によって析出用金属を振動させる手段、電磁石によって析出用 金属を攪拌し、多数の析出用金属を相互に衝突させる手段、エアジェット又はウォー タージェットによって析出用金属を攪拌する手段、リアクター本体内に筒状部を設け 、該筒状部内に気体を吹き込んで析出用金属を攪拌する手段、リアクター本体内の 被処理液及び金属粒子を循環させて輸送させる流路及びポンプを前記リアクター本 体の外部に設け、前記被処理液及び析出用金属を循環、輸送させることによって前 記析出用金属を攪拌する手段等が採用される。 [0016] リアクター本体は、たとえば、その下部に被処理液の流入部を有し、上部に液流出 部を有するとともに、前記流入部力 被処理液がリアクター本体内に流入し、前記液 流出部から流出するように構成されて 、る。
[0017] さらにリアクター本体は、その断面積が上方に向力つて増加するように構成してもよ い。さらに複数段のリアクター本体を配設してもよい。さらに、リアクター本体の後段に 、剥離された回収対象金属を回収するためのフィルターを配設してもょ 、。
[0018] さら〖こ、回収対象金属がイオン状態で含有されているとともに硝酸イオンが含有さ れている被処理液を収容し、塩素イオン源を添加して調整する調整槽を、リアクター 本体の前段側に設けてもよい。さらに、析出用金属から回収対象金属を回収した後 の処理液を、原液である被処理液に添加して再度処理を行うような返送流路を設け てもよい。
発明の効果
[0019] 本発明は、上述のように、回収対象金属がイオン状態で含有されて!ヽる被処理液 に、前記回収対象金属よりもイオン化傾向が大きい析出用金属を添加し、イオン化傾 向の差異により前記被処理液中に含有される回収対象金属を前記析出用金属の表 面に析出させ、その後、剥離手段によって前記析出用金属から前記回収対象金属を 剥離して回収する方法であるため、析出用金属の表面である程度成長した回収対象 金属を剥離手段で剥離させることで、析出用金属において常に新しい金属表面を露 出させ反応速度を維持することができるので、回収対象金属の回収効率を高めること ができるという効果がある。
[0020] 特に、析出用金属として平均粒径 0. l〜8mmの金属粒子を用いた場合には、たと えば鉄のスクラップを用いる方法に比べて金属析出反応のための析出用金属の総 表面積が増加し、析出反応速度が向上し、回収対象金属の回収効率が一層高まる こととなる。
[0021] また被処理液をリアクター本体内に流入し、そのリアクター本体内に析出用金属であ る平均粒径 0. l〜8mmの金属粒子を添カ卩した場合には、そのリアクター本体内で 金属粒子を好適に流動させることができ、析出用金属からの回収対象金属の剥離効 果を一層向上させることができる。 [0022] さらに被処理液をリアクター本体下部から流入し、リアクター本体上部力 流出する とともに、リアクター本体の断面積が上方に向力つて増加するようにリアクター本体を 構成した場合には、リアクター本体内での被処理液の上向流の速度が徐々に減少し 、上記のような金属析出反応等により粒径が減少した析出用金属である金属粒子は 、断面積が増加していくリアクター本体の上部において、不用意に溢流することなくリ アクター本体内に保持することができる。
[0023] また被処理液はリアクター本体の下部側力 流入し、リアクター本体内を通過する 際に、上記回収対象金属が上記析出金属に析出されることから、リアクター本体の上 部へ向力うほど被処理液中の回収対象金属の濃度が低下し、また上述のように析出 金属である金属粒子の粒径が減少するので、リアクター本体の上部ほど微細な金属 粒子が存在し、さらに被処理液の上向流の速度が徐々に減少することで金属粒子の 数が増加すると認められることから、リアクター本体の上部ほど金属粒子の総表面積 は大きくなり、その結果、金属析出反応の反応速度が向上して、回収対象金属の濃 度がより低濃度となるリアクター本体の上部においても、回収対象金属を効率よく回 収処理することができると 、う効果がある。
[0024] さらに複数段のリアクター本体を設け、その後段にフィルターを設けた場合には、対 象となる被処理液に 2種以上の金属が含有されているような場合、たとえば 1段目のリ アクター本体である種の金属を析出させて 1段目のフィルターでその金属を回収し、 2段目のリアクター本体では他の金属を析出させて 2段目のフィルターで該他の金属 を回収するようなことが可能となり、異なる 2種以上の析出金属を用いて被処理液から 2種以上の回収対象金属を選択的に回収することができるという効果がある。
[0025] さらにイオン状態の回収対象金属の他に硝酸イオンが含有されている被処理液、 特に回収対象金属力 Sインジウム (In)の場合には、上述のようなイオン化傾向の差異 を利用した金属析出反応が好適に生じないことがあった力 析出用金属の他に塩素 イオン源を被処理液に添加することで、被処理液中に硝酸イオンが存在するにもか かわらず、上記塩素イオン源の存在によって、析出用金属に Inのような回収対象金 属を好適に析出することが可能となり、剥離手段により析出用金属力 Inを剥離させ ることで、従来の方法に比べてより簡単に Inを回収することが可能となる。 [0026] このように被処理液中に硝酸イオンが存在する場合には、 Inを析出用金属に析出 させることができないにもかかわらず、塩素イオン源を被処理液に添加することで In の析出が可能となった理由は一応つぎのように考えられる。すなわち、 Inはある程度 の濃度の硝酸イオンが存在することで、溶液中での形態が変化し、それによつて Inの 標準還元電位が通常考えられている値よりも低下すると認められる一方で、析出用 金属を構成する A1や Znの標準還元電位も上昇し、回収金属である Inと、析出用金 属である Al、 Zn等との電位差が小さくなり、 Inの還元析出が困難になるのではない 力と考えられる。そこで、塩素イオン源として塩ィ匕ナトリウムや塩ィ匕カリウム等の塩ィ匕物 や塩酸を添加すると、 Inがクロ口錯体を形成し、硝酸イオンによって低下していた標 準還元電位が再び上昇し、それによつて、析出用金属への Inの還元析出が可能とな るちのと居、われる。
[0027] また別の理由として、被処理液中に硝酸イオンが存在することにより Inの電位が変 化し、 Inイオンとして安定な電位 pH図における領域になることで、析出用金属であ る A1による還元反応が生じに《なっているもの力 C1イオンの添カ卩により In金属とし て安定な電位—pH図における領域に変化し、析出用金属である A1による還元反応 が生じやすくなつて ヽると ヽうことも考えられる。
[0028] さらに、溶液中の硝酸イオンは析出用金属を構成する A1や Znと反応し、二酸化窒 素や一酸化窒素を形成し気体となって放出される。
[0029] また、被処理液力 析出用金属によってインジウムを析出回収した後の処理液を、 原液である被処理液に添加して再度処理を行う場合には、インジウム回収後の処理 液に塩素イオンが残留しているので、その残留した塩素イオンが再利用される結果と なり、その結果、追加する塩素イオン源の量を低減することができ、ひいては処理コス トの削減を図ることができると 、う効果がある。
図面の簡単な説明
[0030] [図 1]一実施形態としての金属の回収装置の概略正面図。
[図 2]他実施形態の金属の回収装置の概略正面図。
[図 3]他実施形態の金属の回収装置の概略斜視図。
[図 4]他実施形態の金属の回収装置の概略断面図。 [図 5]他実施形態の金属の回収装置における流入用チャンバ一の概略平面図。
[図 6]図 5の A— A線格段断面図。
[図 7]他実施形態の金属の回収装置の概略正面図。
[図 8]図 7の実施形態に使用される電磁石を具備したスライドボードの概略平面図。
[図 9]他実施形態の金属の回収装置の概略ブロック図。
[図 10]他実施形態の金属の回収装置の概略ブロック図。
[図 11]他実施形態の金属の回収装置の概略正面図。
[図 12]他実施形態の金属の回収装置の概略正面図。
[図 13]他実施形態の金属の回収装置の概略正面図。
[図 14]一実施形態としてのインジウムの回収装置の概略ブロック図。
[図 15]実施例の試験装置を示す概略ブロック図。
[図 16]試験結果を示すグラフ。
符号の説明
[0031] 1、 la、 lb、 lc…リアクター本体
11aゝ l ibゝ 11cゝ l id…超音波発振体
12· · ·電磁石 17、 18、 19· · ·フィルター
25· · ·筒状部 32· · ·流路
33· · 'ポンプ
発明を実施するための最良の形態
[0032] 以下、本発明の実施形態について図面に従って説明する。
(実施形態 1)
[0033] 本実施形態の金属の回収装置は、図 1に示すように、縦長のリアクター本体 1を具 備したものである。本実施形態では被処理液として廃液を対象とする場合にっ ヽて 説明する。前記リアクター本体 1は、同図に示すように、リアクター上部 2、リアクター 中間部 3、及びリアクター下部 4からなり、それぞれ連設部 5、 6を介して連設されてい る。リアクター上部 2、リアクター中間部 3、及びリアクター下部 4のそれぞれは同幅に 形成されているが、リアクター上部 2の断面積はリアクター中間部 3の断面積より大き く形成され、リアクター中間部 3の断面積はリアクター下部 4の断面積より大きく形成さ れている。この結果、全体としてリアクター本体 1の断面積が上方に向力つて不連続 的に増加するように構成されている。尚、連設部 5、 6は、上向きに幅広なテーパ状に 形成されている。
[0034] リアクター下部 4の下側には、処理対象である廃液を流入するための略円錐形の流 入用チャンバ一 7が設けられ、さらにその下部に流入管 8が設けられている。流入管 8 には、図示しないが、逆止弁が設けられている。またリアクター上部 2の上側には、上 部チャンバ一 9が設けられ、その側部に、回収されたフレーク状や微粒子状の金属を 排出するための排出管 10が設けられている。上部チャンバ一 9は、このような排出管 10によって回収された金属を排出するための部分であるとともに、回収対象金属とィ オン化傾向の相違に基づ 、て 、わゆるセメンテーシヨン反応 (金属析出反応)を生じ させるための、回収対象金属よりもイオン化傾向が大きい析出用金属 (金属粒子)を 投入する部分でもある。実際には、析出用金属と回収対象金属とのセメンテーシヨン 反応は、前記リアクター本体 1の全体で生じることとなる。
[0035] そして、流入管 8から流入された廃液が排出管 10に至るまでの間に、その廃液が 垂直方向に上昇しつつ金属粒子による流動床を形成するように構成されて 、る。さら に、廃液中に含有されている金属であって、前記セメンテーシヨン反応により前記投 入された金属粒子に析出した回収対象金属を剥離させる剥離手段としての超音波 発振体 l la、 l ib, 11cが、リアクター上部 2、リアクター中間部 3、及びリアクター下 部 4にそれぞれ設けられて 、る。
[0036] 本実施形態では、投入する金属粒子として亜鉛 (Zn)の粒子が用いられる。また対 象となる廃液としては、たとえば銅 (Cu)、スズ (Sn)等の金属イオンを含有する金属 表面処理工場廃液等が用いられる。この場合には、 Cu、 Snが金属として回収される ことになる。投入する金属粒子の平均粒径は、 0. l〜8mmの金属粒子を用いること ができる力 本実施形態では平均粒径が 2mmのものが用いられる。尚、平均粒径は 、画像解析法あるい〖お IS Z 8801ふるい分け試験法等により測定される。
[0037] そして、このような構成力もなる金属の回収装置によって金属を回収する方法につ いて説明すると、先ず処理対象である廃液を流入管 8から流入用チャンバ一 7を介し てリアクター本体 1内に流入する。その一方で、上部チャンバ一 9からセメンテーショ ン反応を生じさせるための金属粒子 (Zn粒子)を投入する。リアクター本体 1内にお いては、流入された廃液が垂直方向に上昇する一方で、その廃液と、上部チャンバ 一 9から投入された金属粒子とが流動床を形成するように流動状態となる。
[0038] そして廃液中に含有されて 、る Cu、 Sn等の金属と、投入された金属粒子である Zn とのイオン化傾向の相違に基づぐいわゆるセメンテーシヨン反応を生じさせる。これ をより詳細に説明すると、各金属イオンの還元反応は次式(1)〜(3)のとおりであり、 各金属イオンの標準電極電位 (E° )をそれぞれに示して ヽる。
[0039] Zn2+ + 2e→Zn …ひ) —0. 76V
Cu2+ + 2e→Cu - -- (2) +0. 34V
Sn2+ + 2e→Sn - -- (3) —0. 14V
[0040] 上記(1)〜(3)からも明ら力 うに、 Cu2+、 Sn2+に比べて、 Zn2+の標準還元電位が 最も小さい。換言すれば、 Cu、 Snに比べて、 Znのイオン化傾向が最も大きいことに なる。そのため、上記のような流動状態となった状態で、イオン化傾向の大きい Znが Zn2+となって(上記(1)式と逆の反応)廃液中に溶出し、それとともに廃液中に含有さ れていた Cu2+、 Sn2+が Cu、 Snとなって、 Znの粒子の表面上に析出する。
[0041] そして、このようなセメンテーシヨン反応によって Cu、 Snの各金属を Zn粒子の表面 上に析出させた後、超音波発振体 l la、 l ib, 11cを作動させる。この超音波発振体 l la、 l ib, 11cを作動させることによって、該超音波発振体 l la、 l ib, 11cから発 振される超音波が、前記 Cu、 Snを析出した Zn粒子に振動力及び攪拌力を付与し、 それによつて析出した Cu、 Snの各金属が Zn粒子力 強制的に剥離されることとなる 。この場合、超音波発振体 l la、 l ib, 11cは、連続的に作動させることも可能である 力 連続的に作動させると超音波発振体が発熱し、超音波発振体を長時間作動させ ることが困難になるおそれがある。また超音波発振体を連続的に作動させると、析出 した金属(Cu、 Sn)が成長してある程度の大きさになる前に順次剥離され、その結果 、ある程度の大きさの析出金属が得られないおそれがある。この点、超音波発振体を 間欠的に作動させると、析出する金属がある程度大きくなるまで不用意に剥離される おそれが少ないので、剥離した金属の分離が容易になる。従って、超音波発振体 11 a、 l ib, 11cの作動は間欠的に行なうのが好ましい。この場合の間欠的な作動は、 たとえば 2秒 ON、 8秒 OFF等によって行なう。
[0042] このようにして剥離された Cu、 Snは、上部チャンバ一 9から排出管 10を経てリアク ター本体 1の外部に排出され、回収対象金属 (本実施形態の場合は、 Cuと Snの合 金)として回収されることとなるのである。この場合において、本実施形態では、回収 対象金属を析出させるために投入される金属として、粒子状のものを用いて 、るので 、たとえば亜鉛のスクラップを投入するような場合に比べると、セメンテーシヨン反応を 生じさせるための金属 (Zn)の表面積が増加し、 Cu、 Snの析出反応の速度が向上す ることとなる。
[0043] そして、ある程度成長した金属の析出が認められた後に、上記のような超音波の振 動による強制的な剥離によって、常に新しい金属表面 (Zn粒子の表面)を露出させ、 反応速度を維持することができる。また、従来行われていた亜鉛のスクラップを投入 するような方法に比べると、剥離した回収対象金属中には Cu、 Sn以外の不純物が 非常に少ないものとなる。
[0044] また、 Znからなる金属粒子はリアクター本体 1内で流動し、上記のようなセメンテ一 シヨン反応によって Zn2+が溶出するので、上部チャンバ一 9に投入された金属粒子 の投入初期時における粒径は、時間の経過とともにどうしても減少することになる。こ の結果、リアクター下部力 リアクター上部までリアクター断面が同じであれば廃液が ほぼ同じ上向流の速度でリアクター本体 1内を上昇するので、上部に向力うほど粒径 が減少して小さくなつた金属粒子がリアクター本体 1から不用意に溢流するおそれが ある。
[0045] し力しながら、本実施形態においては、リアクター本体 1の断面積が上方へ向力 ほ ど不連続的に大きくなるように形成されて 、るため、リアクター本体 1内での廃液の上 向流の速度は徐々に減少する。従って上記のようにセメンテーシヨン反応等により粒 径が減少した金属粒子は、断面積が増加していくリアクター本体 1の上部において、 不用意にリアクター本体外へ溢流することなくリアクター本体 1内に保持される可能性 が高くなる。
[0046] また、廃液はリアクター本体 1の下部側力 流入し、リアクター本体 1内を通過する 際に、セメンテーシヨン反応により Zn力もなる金属粒子に、回収対象となる Cu、 Sn等 の金属を析出させることから、リアクター本体 1の上部へ向力うほど、廃液中の回収対 象金属の濃度が低下する。
[0047] し力しながら、本実施形態では、リアクター本体 1の上部ほど微細な金属粒子が存 在し、また廃液の上向流の速度が徐々に減少することで金属粒子の数が増加すると 認められることから、リアクター本体 1の上部ほど金属粒子の総表面積は大きくなる。 この結果、セメンテーシヨン反応の反応速度(回収対象金属析出の効率)が向上する こと力ら、回収対象金属の濃度がより低濃度となるリアクター本体 1の上部においても 、回収対象金属を効率よく回収処理することが可能となるのである。
[0048] (実施形態 2)
本実施形態は、リアクター本体 1の構造が上記実施形態 1と相違する。すなわち、 本実施形態では、図 2に示すようにリアクター本体 1の周面全体が上向きにテーパ状 となるように形成され、リアクター本体 1の断面積が連続的に上方に向力つて増加す るように構成されている。この点で、リアクター本体 1の断面積が不連続的に上方に向 力つて増加して 、る実施形態 1の場合と相違して 、る。
[0049] 不連続的ではなぐ断面積が連続的に上方に向力つて増加するように構成されて いるので、本実施形態においては実施形態 1のようにリアクター上部 2、リアクター中 間部 3、リアクター下部 4のように区分して構成されては 、な 、。
[0050] しかし、超音波発振体 l la、 l ib, 11cが、リアクター本体 1の上部から下部にかけ ての 3箇所に設けられている点は実施形態 1と共通している。従って、本実施形態に おいても、実施形態 1と同様に、超音波発振体 l la、 l ib, 11cから発振される超音 波によって、金属粒子に析出している回収対象金属を強制的に剥離することができ る効果が得られる。
[0051] また、不連続的である力連続的であるかの相違はあるものの、断面積が上方に向か つて増加するように構成されて 、る点では実施形態 1とは共通して 、るので、本実施 形態にお 、ても、粒径が減少した微細な金属粒子をリアクター本体 1の上部で保持し 、不用意にリアクター本体外へ溢流するのを防止する効果、及び回収対象金属の濃 度が低濃度であるリアクター本体 1の上部において回収対象金属を効率よく回収処 理できる効果が生じることとなるのである。 [0052] (実施形態 3)
本実施形態のリアクター本体 1は、縦長のものである点で上記実施形態 1、 2と共通 するが、図 3及び図 4に示すように上下において断面積が同じとなるように形成されて おり、この点で断面積が上方に向力つて増加するように構成されている上記実施形 態 1、 2と相違している。
[0053] 本実施形態においても、上記実施形態 1と同様に、リアクター本体 1の下部側に流 入用チャンバ一 7が設けられているとともに、リアクター本体 1の上部側に上部チャン バー 9が設けられているが、その形状は、略円錐形に形成されていた実施形態 1と相 違する。すなわち、上部チャンバ一 9は、図 3及び図 4に示すように浅い円筒状に形 成されており、流入用チャンバ一 7は、図 5及び図 6に示すように、中央筒部 20と、該 中央筒部 20に連通して左右に設けられた側筒部 21、 21とからなる形状に形成され ている。
[0054] 本実施形態においては、流入管 8、 8は、前記流入用チャンバ一 7の側筒部 21、 21 の先端側にそれぞれ設けられている。そして、流入用チャンバ一 7の側筒部 21、 21 には邪魔板 22、 23が 2条ずつ縦方向に設けられており、流入管 8、 8から流入される 被処理液が、これらの邪魔板 22、 23によって流れが乱されるように構成されている。
[0055] また上部チャンバ一 9は、図 4に示すように内筒 9a及び外筒 9bで構成されており、 同図のように内筒 9aがリアクター本体 1の上部に外嵌合されることによって、上部チヤ ンバー 9がリアクター本体 1に取り付けられている。また排出管 10は、上部チャンバ一 9の下部であって、前記内筒 9aと外筒 9bとの間の位置に取り付けられている。
このように構成されている結果、リアクター本体 1の内部を上向きに流通する被処理 液は、内筒 9aの上部開口部から、外筒 9bと内筒 9a間に溢流し、前記排出管 10から 外部に排出されることとなる。
[0056] また、セメンテーシヨン反応を生じさせるための金属粒子は、内筒 9aの上部開口部 力も投入されることとなる。そして、流入用チャンバ一 7の流入管 8から流入された廃 液が上部チャンバ一 9の排出管 10に至るまでの間に被処理液が垂直方向に上昇し つつ金属粒子による流動床を形成するように構成され、投入される金属と回収対象 金属とのセメンテーシヨン反応がリアクター本体 1の全体で生じる点は、上記実施形 態 1、 2と共通する。
[0057] さらに本実施形態においても、廃液中に含有されている金属であって、セメンテ一 シヨン反応により金属粒子に析出した回収対象金属を剥離させる剥離手段として、超 音波発振体が採用されている。すなわち本実施形態においては、 4個の超音波発振 体 l la、 l ib, l lc、 l id力 リアクター本体 1の外周面に取り付けられている。この 4 個の超音波発振体 l la、 l lb、 l lc、 l idは、いずれも水平面に対して約 45度の角 度をなしてリアクター本体 1に取り付けられている力 そのうちの 2個の超音波発振体 l la、 11cは同じ向きに取り付けられており、他の 2個の超音波発振体 l lb、 l idは 反対方向を向くように取り付けられている。
[0058] 本実施形態においても、被処理液として廃液が用いられ、その廃液としては、たと えば上記実施形態 1と同様の Cu、 Sn等の金属イオンを含有する金属表面処理工場 廃液等が用いられる。この場合には、実施形態 1と同様に投入する金属粒子として Z nの粒子が用いられ、 Cu、 Snが金属として回収されることになる。
[0059] そして、本実施形態の金属の回収装置によって金属を回収する場合には、先ず廃 液を流入管 8から流入用チャンバ一 7を介してリアクター本体 1内に流入する。この場 合において、流入用チャンバ一 7は、上述のように中央筒部 20と側筒部 21、 21とで 構成され、側筒部 21、 21には邪魔板 22、 23が 2条ずつ縦方向に設けられているた め、側筒部 21に対して横向きに取り付けられている流入管 8、 8から流入する廃液は 、横方向に一気に流入するのではなぐ縦方向に設けられた邪魔板 22、 23に沿って 側筒部 21内を上下に交互に流れながら中央筒部 20内に流入し、その中央筒部 20 力もリアクター本体 1に向力つて上向きに流通することとなる。従って、流入管 8、 8か ら流入される廃液は、邪魔板 22、 23によって流れが乱され、偏流を生じさせずにリア クタ一本体 1内を上向きに流通し易い状態となる。また必要があれば、流入チャンバ 一 7内に、たとえば円筒状のかごにガラスあるいはセラミック製のボールを入れたもの を設置することができ、これによつて、より確実に偏流を防ぐことが可能となる。
[0060] 廃液中に含有されて!、る Cu、 Sn等の金属と、投入される金属粒子である Znとのィ オン化傾向の相違に基づぐいわゆるセメンテーシヨン反応の作用、超音波発振体に よる攪拌及び金属の剥離の作用等は上記実施形態と同じであり、その詳細な説明は 省略する。
[0061] (実施形態 4)
本実施形態では、析出した回収対象金属を金属粒子力 剥離する手段として、上 記実施形態 1乃至 3の超音波発振体によって発振される超音波で振動させる手段に 代えて、電磁石を用いて攪拌する手段を採用している。すなわち、本実施形態にお いては、図 8に示すような電磁石 12を具備したスライドボード 13が、図 7に示すように リアクター本体 1の側方に設けられたガイドレール 14に昇降自在に装着されている。 スライドボード 13は、図 8に示すように中央に空間部 15を有し、その空間部 15内にリ アクター本体 1を挿入して該リアクター本体 1を包囲するように配設されている。尚、図
8においては、リアクター本体 1は図示されていない。また本実施形態では、リアクタ 一本体 1は水平断面が長方形状となるように形成されており、この点で断面が円形、 すなわちリアクター本体 1が円筒状に形成されていた上記実施形態 1乃至 3と相違し ている。
[0062] そして、図 7の矢印 16で示すように、上下に交互に移動させることによって、リアクタ 一本体 1内の金属粒子を攪拌するとともに、多数の金属粒子を相互に衝突させ、そ れによって金属粒子力も析出金属を強制的に剥離するのである。電磁石 12は、たと えば 2秒などの一定間隔で交番で印加しており、またスライドボード 13の上下の移動 は、間欠的若しくは連続的に行なう。金属粒子力 析出した回収対象金属を剥離す る手段が異なるものの、本実施形態においても、回収対象金属を金属粒子から好適 に剥離して回収することができる。尚、本実施形態の場合に用いられる金属粒子は、 磁性体である鉄粒子が用いられる。
[0063] 尚、鉄 (Fe)イオンの還元反応と標準電極電位は次のとおりである。
Fe2+ + 2e→Fe · '· (4) —0. 44V
これに対して、 Cuや Snの還元反応や標準電極電位は、上記(2)、 (3)式のとおり であり、標準電極電位の数値が Feは Cuや Snよりも小さぐ従って、 Feのイオン化傾 向は Cuや Snのイオン化傾向よりも大きいため、本実施形態においても Cuや Snを含 有する廃液に適用することが可能となる。
[0064] (実施形態 5) 本実施形態では、図 9に示すように、リアクターが 2個配設されており、その点でリア クタ一が 1個のみ力もなる実施形態 1乃至 4の場合と相違する。すなわち、本実施形 態では、 1段目のリアクター本体 laの後段であって 2段目のリアクター本体 lbの前段 側にフィルター 17が設けられ、さらに 2段目のリアクター本体 lbの後段側にフィルタ 一 18が設けられている。フィルタ一としては、例えば、カートリッジフィルター、ドラムフ ィルター等が用いられる。また、フィルターに代えて、ベルトプレス、フィルタープレス 等の固液分離手段を用いることも可能である。
[0065] 本実施形態においては、たとえば対象となる廃液に Cuと Snが含有されている場合 、 1段目のリアクター本体 laには Fe粒子を投入し、その Fe粒子に Cuを析出させて 1 段目のフィルター 17で Cuを回収し、 2段目のリアクター本体 lbには Zn粒子を投入し 、その Zn粒子に Snを析出させて 2段目のフィルター 18で Snを回収するようなことが 可能となる。
[0066] この場合、上記(2)、 (3)、(4)式で示されて!/、る標準電極電位の数値から、 Cu、 S nともに Feよりもイオン化傾向が小さいが、そのイオンィ匕傾向の差は、 Feと Snとの差 よりも Feと Cuとの差の方がはるかに大きぐ従って 1段目のリアクター本体 laにおい ては、 Cuが優先的に Fe粒子に析出することとなる。一方、上記(1)式で示されている 標準電極電位の数値から、 Znのイオン化傾向は Cu、 Snのイオン化傾向よりも大きく 、従って 2段目のリアクター本体 lbにおいては、 Cu、 Snともに Zn粒子に析出するは ずである力 Cuはすでに 1段目のリアクター本体 laの Fe粒子に析出しているので、 2 段目のリアクター本体 lbにおいては、 Snが主として Zn粒子に析出することとなるの である。ただし 1段目のリアクター本体 laで Fe粒子に析出しな力つた Cuの残留分は 、 2段目のリアクター本体 lbで Zn粒子に析出する。
[0067] このように、本実施形態では、異なる 2種の金属粒子を用いて廃液から 2種の金属 を選択的に回収することができるという利点がある。また、析出した回収対象金属を 金属粒子力も剥離する手段については記載していないが、特に限定されるものでは なぐ前述した超音波発振体を利用する方法や、電磁石を用いて攪拌する方法、後 述するその他の方法を利用することができる。
[0068] (実施形態 6) 本実施形態では、図 10に示すようにリアクターが 3個配設されており、その点でリア クタ一が 1個のみ力 なる実施形態 1乃至 4や、リアクターが 2個配設されていた実施 形態 5の場合と相違する。本実施形態では、これら 3個のリアクター本体 la、リアクタ 一本体 lb、リアクター本体 lcの後段側にフィルター 17、フィルター 18、フィルター 19 が設けられている。本実施形態では、上記実施形態 5と同様に 1段目のリアクター本 体 laで Fe粒子が投入され、 2段目のリアクター本体 lbで Zn粒子が投入される力 3 段目のリアクター本体 lcではアルミニウム (A1)粒子が投入される。
[0069] 本実施形態を、上記実施形態 5と同様に Cuと Snが含有されている廃液に適用する と、 1段目のリアクター本体 laでは実施形態 5と同様に Fe粒子に Cuが析出されて 1 段目のフィルター 17で Cuが回収され、 2段目のリアクター本体 lbにおいても実施形 態 5と同様に Zn粒子に Snが析出されて 2段目のフィルター 18で Snが回収される。
[0070] し力しながら、 3段目のリアクター本体 lcにおいては、実施形態 5からは予期できな い作用が生じる。すなわち、上記のように 1段目のリアクター本体 laでセメンテーショ ン反応により溶出した Feと、 2段目のリアクター本体 lbでセメンテーシヨン反応により 溶出した Znは、 3段目のリアクター本体 lcに投入される A1粒子に析出する。
[0071] この点をより詳細に説明すると、 A1イオンの還元反応と標準電極電位は次式(5)で 示される。
Al3+ + 3e→Al - -- (5) — 1. 66V
1段目のリアクター本体 laで投入された Fe粒子と、 2段目のリアクター本体 lbで投 入された Zn粒子は、上述のように回収対象金属よりもイオン化傾向の大きい金属か らなるが、(1)、 (4)、 (5)式で示される標準電極電位の数値の比較から、 A1のイオン ィ匕傾向は、 Fe、 Znのイオン化傾向よりさらに大きいことは明らかである。従って、 1段 目のリアクター本体 laで溶出した Feと、 2段目のリアクター本体 lbで溶出した Znは、 ともに 3段目のリアクター本体 lcで A1粒子に析出されることとなるのである。そして、 A 1粒子によって Fe—Znの合金として回収することが可能となる。
[0072] 従って、 1段目のリアクター本体 laと 2段目のリアクター本体 lbでそれぞれ溶出した Feと Znとを、後段で凝集沈殿させる等の作業が不要となり、スラッジ発生量を抑制す ることが可能となる。尚、 3段目のリアクター本体 lcでは A1が溶出する力 3価の A1は 2価の Znや Feより少ない溶出量で済み、 A1の比重も軽ぐスラッジ重量を減少させる ことができることから、スラッジ発生量が増大することはない。本実施形態においても 析出した回収対象金属を金属粒子力 剥離する手段については特に限定されない
[0073] (実施形態 7)
本実施形態では、析出した回収対象金属を金属粒子力 剥離する手段として、上 記実施形態 1乃至 3の超音波発振体によって発振される超音波で振動させる手段、 及び実施形態 4の電磁石を用いて攪拌する手段に代えて、空気のような気体を吹き 込んで攪拌する、いわゆるエアリフト作用を利用した手段を採用している。すなわち、 本実施形態においては、図 11に示すように、リアクター本体 1の略中央に筒状部 25 が具備されており、その筒状部 25の下部に気体流入パイプ 26が接続されている。こ の気体流入パイプ 26の一端側開口部である気体流入口 27は前記リアクター本体 1 の外側に臨出され、気体流入パイプ 26の他端側開口部 28は前記筒状部 25と連通 状態とされている。また、筒状部 25の下部開口部 29の下方には、邪魔板 30が設け られている。
[0074] 本実施形態においては、上記実施形態 3と同様にリアクター本体 1が略円筒状に形 成されており、また上記実施形態 1乃至 3と同様にリアクター本体 1の下部に流入用 チャンバ一 7が設けられ、上部には上部チャンバ一が設けられている。ただし図 11に は、排出管 10は図示している力 上部チャンバ一は図示していない。本実施形態で は、投入する金属粒子として A1又は Znの粒子が用いられる。また対象となる廃液とし ては、インジウム(In)イオンを含有するフラット'パネル'ディスプレイ (FPD)製造ェ 場廃液等が用いられる。この場合には、 Inが金属として回収されることになる。
[0075] 投入する金属粒子の平均粒径は上述のように 0. l〜8mmの金属粒子を用いること ができる力 金属粒子が A1の場合には 1. 5〜5. 5mmのものが好ましぐ Znの場合 には 1. 5〜4. Ommのものが好ましい。 Zn粒子の場合は 4. Ommを超えると、また A1 粒子の場合は 5. 5mmを超えると、それらの粒子を流動させるのに必要な流速が大 きくなるとともに気体吹込量が多くなる力もである。一方、セメンテーシヨン反応によつ て徐々に金属粒子の粒径が小さくなることから、当初の金属粒子の粒径が小さいと、 処理液とともにリアクター本体 1から金属粒子が流出する可能性があることは上述のと おりであるが、この観点から、 Zn粒子や A1粒子の場合は 1. 5mm以上であることが好 ましい。
[0076] そして、本実施形態の金属の回収装置によって金属を回収する方法について説明 すると、上記各実施形態と同様に先ず流入用チャンバ一 7を介して廃液をリアクター 本体 1内に流入し、上部チャンバ一力 金属粒子を投入する。また気体流入パイプ 2 6を介して筒状部 25へ気体を流入させる。これによつて筒状部 25内の気体と水の混 合部分の比重が低下し、気体とともに液体が上部へ押し上げられる。
[0077] このように、筒状部 25へ気体を流入させ上向きに流通させることで、筒状部 25内の 被処理液も上向きに流通することとなる。このように被処理液は筒状部 25の内部を流 通するが、筒状部 25の内部と外部とで圧力差が生じるため、被処理液の流通速度も 筒状部 25の内部と外部とで異なることとなり、その結果、リアクター本体 1内で金属粒 子が攪拌され、金属粒子の表面上に析出した Inが剥離されることとなるのである。
[0078] この場合にお 、て、本実施形態における回収対象金属である Inは、スポンジ状で 析出するため、上記実施形態 1等の Cu、 Snに比べると Zn等の金属粒子への密着性 が悪ぐ従って上記実施形態 1乃至 3のような超音波振動によって強制的に剥離する 手段や、実施形態 4のような電磁石を用いて強制的に剥離する手段を採用しなくても 、本実施形態のように単にエアリフト作用を利用した攪拌手段であっても、 Inを金属 粒子力も比較的容易に剥離させることができる。すなわち、簡易且つ低エネルギーな 手段を有する装置で、 Inを回収することが可能である。
[0079] そして廃液中に含有されている Inと、投入された金属粒子である Zn又は A1とのィォ ン化傾向の相違に基づぐいわゆるセメンテーシヨン反応を生じさせる。これをより詳 細に説明すると、 Inイオンの還元反応は次式のとおりであり、標準電極電位 (E° )も 示している。
In3+ + 3e→In · '· (6) —0. 34V
[0080] 上記(1)、(5)、(6)式力 も明ら力 うに、 In3+に比べて、 Zn2+や Al3+の標準準還 元電位が小さい。換言すれば、 Inに比べて、 Znや A1のイオン化傾向が大きいことに なる。そのため、イオン化傾向の大きい Znや A1が Zn2+或いは Al3+となって廃液中に 溶出し、それとともに廃液中に含有されていた In3+が Inとなって、 Znや A1の粒子の 表面上に析出する。このようなセメンテーシヨン反応によって Inを Zn粒子或いは A1粒 子の表面上に析出させた後、上記のようなエアリフト作用を利用した攪拌によって析 出した In力 n粒子或いは A1粒子カゝら剥離され、剥離された Inは、排出管 10を経てリ アクター本体 1の外部に排出され、回収されることとなるのである。
[0081] 尚、本実施形態では、筒状部 25の下部開口部 29の下方に邪魔板 30が設けられ ているため、流入用チャンバ一 7から流入する廃液の水流が直接筒状部 25に流入 することがなぐ邪魔板 30に当たり、筒状部 25内の被処理液の流通速度が極端に速 くなるのが好適に阻止されることとなる。
[0082] (実施形態 8)
本実施形態では、回収対象金属を金属粒子から剥離する手段として、エアジェット 攪拌又はウォータージェット攪拌を採用し、この点で上記実施形態 1乃至 7と相違し ている。すなわち、本実施形態においては、図 12に示すように、ジェット攪拌用噴出 具 31をリアクター本体 1の周面部に取り付け、そのジェット攪拌用噴出具 31から空気 又は水が噴出されてリアクター本体 1内に微細な気泡が発生するように構成されて ヽ る。すなわち、エアジェット攪拌とは空気等の気体を噴出させて微細な気泡を発生さ せることを意味し、ウォータージェット攪拌とは水等の液体を噴出させて微細な気泡 を発生させることを意味する。
[0083] リアクター本体 1の形状や流入用チャンバ一 7、排出管 10が設けられている構成は 上記実施形態 7と同じであるため、その説明は省略する。また投入する金属粒子や 対象となる廃液の種類、さらにはセメンテーシヨン反応の作用等も上記実施形態 7と 同じであるため、その詳細な説明は省略する。本実施形態においては、上記ジェット 攪拌用噴出具 31から空気のような気体又は水(たとえば処理液)が噴出されてリアク ター本体 1内に乱流が発生し、その乱流によってリアクター本体 1内の金属粒子が攪 拌され、それによつて金属粒子の表面上に析出した Inが剥離されることとなるのであ る。
[0084] 本実施形態においても、回収対象金属である Inが Zn等の金属粒子への密着性が 悪いものであるため、上記実施形態 1乃至 3のような超音波振動によって強制的に剥 離する手段や、実施形態 4のような電磁石を用いて強制的に剥離する手段を採用し なくても、単にエアジェット又はウォータージェット攪拌を行なうだけの手段によって、 I nを金属粒子力 比較的容易に剥離させることができる。すなわち、簡易且つ低エネ ルギ一な撹拌手段を有する装置で、 Inを回収することが可能である。
[0085] (実施形態 9)
本実施形態では、回収対象金属を金属粒子から剥離する手段として、固液輸送ポ ンプ攪拌による手段を採用し、この点で上記実施形態 1乃至 8と相違している。すな わち、本実施形態においては、図 13に示すようにリアクター本体 1内の被処理液及 び金属粒子を循環させて輸送させる流路 32とポンプ 33とをリアクター本体 1の外部 に設け、被処理液及び金属粒子を、前記ポンプ 33により前記流路 32及びリアクター 本体 1で循環、輸送させることによって前記金属粒子を攪拌する手段を採用している
[0086] リアクター本体 1の形状や流入用チャンバ一 7、排出管 10が設けられている構成は 上記実施形態 7、 8と同じであるため、その説明は省略する。また投入する金属粒子 や対象となる廃液の種類、さらにはセメンテーシヨン反応の作用等も上記実施形態 7 、 8と同じであるため、その詳細な説明は省略する。
[0087] 本実施形態においては、ポンプ 33によって被処理液が金属粒子とともにリアクター 本体 1から流路 32へ流出され、その流路 32を循環して再度リアクター本体 1へ返送 されることになり、その結果、リアクター本体 1内の金属粒子が攪拌され、それによつ て金属粒子の表面上に析出した Inが剥離されることとなる。
[0088] 本実施形態にぉ 、ても、析出金属である Inが Zn等の金属粒子への密着性が悪 、 ものであるため、上記実施形態 1乃至 3のような超音波振動によって強制的に剥離す る手段や、実施形態 4のような電磁石を用いて強制的に剥離する手段を採用しなくて も、ポンプ 33ゃ流路 32を用いて単に固液輸送ポンプ攪拌するだけの手段によって、 Inを金属粒子力 比較的容易に剥離させることができる。すなわち、簡易且つ低エネ ルギ一な手段を有する装置で、 Inを回収することが可能である。
[0089] (実施形態 10)
本実施形態のインジウムの回収装置は、図 14に示すように、リアクター本体 1と、調 整槽 42と、フィルター 43とを具備したものである。リアクター本体 1は、後述するように セメンテーシヨン反応 (金属析出反応)によって廃液 (被処理液)中から Inを析出させ るためのものであり、調整槽 42は、それに先だって廃液に塩素イオン (Cl_)源を添カロ して被処理液中の塩素イオン濃度を調整するためのものであり、フィルター 43は前 記リアクター本体 1で析出された Inを分離、回収するためのものである。尚、分離され た処理液は前記調整槽 42へ返送しうるように構成され、そのための流路がフィルター 43と調整槽 42間に設けられている。また、調整槽 42からリアクター本体 1への流路、 リアクター本体 1からフィルター 43への流路も設けられている。図 14では、被処理液 を循環させるポンプ等は図示して 、な 、。
[0090] 本実施形態では被処理液として廃液を対象とする場合について説明する。リアクタ 一本体 1の構成は、上記実施形態 1と同じであるため、その詳細な説明は省略する。
[0091] 本実施形態では、投入する金属粒子として亜鉛 (Zn)やアルミニウム (A1)の粒子が 用いられる。また対象となる廃液としては、たとえば Inのイオンを含有するとともに硝 酸イオン (NO―)を含有するアルミニウムターゲット材の洗浄廃液、或いは硝酸を利
3
用した FPDのエッチング廃液等が用いられる。
[0092] そして、このような構成力 なるインジウムの回収装置によってインジウムを回収する 方法について説明すると、先ず処理対象である廃液を調整槽 42へ供給し、その調 整槽 42に塩素イオン (Cl_)源である塩ィ匕ナトリウムや塩ィ匕カリウムのような塩ィ匕物を 添加する。尚、インジウムは pHが高くなると水酸ィ匕物の沈殿物を形成するため、沈殿 物を形成しないように予め pHを 1. 5以下に調整する。また、 pHが低すぎると使用す る析出用金属との反応が促進され、 H、 NO、 NOガスを発生させ析出用金属を無
2 2
駄に消費してしまうため、 pHは 0. 5以上が好ましい。
[0093] 尚、 pHが上記範囲よりも高い場合には塩酸により pH調整を行い、 pHが上記範囲 よりも低い場合には NaOH等のアルカリを添加することにより pH調整を行うことが好 ましい。
[0094] 次に、このようにして塩ィ匕物を添加して調整された被処理液を、流入管 8から流入 用チャンバ一 7を介してリアクター本体 1内に流入する。その一方で、上部チャンバ一 9からセメンテーシヨン反応を生じさせるための金属粒子 (Zn又は A1粒子)を投入す る。リアクター本体 1内においては、流入された廃液が垂直方向に上昇する一方で、 上部チャンバ一 9から投入された金属粒子が流動床を形成するように流動状態となる
[0095] そして廃液中に含有されている Inと、投入された金属粒子である Zn又は A1とのィォ ン化傾向の相違に基づぐいわゆるセメンテーシヨン反応を生じさせる。
[0096] これをより詳細に説明すると、各金属イオンの還元反応は、前述の(1)、 (5)、 (6) 式からも明らかなように、 In3+に比べて、 Zn2+や Al3+の標準還元電位が小さい。
[0097] 換言すれば、 Inに比べて、 Znや A1のイオン化傾向が大きいことになる。そのため、 上記のような流動状態となった状態で、イオン化傾向の大き ヽ Znや A1力 ¾n2+或 ヽは Al3+となって廃液中に溶出し、それとともに廃液中に含有されて!、た In3+が Inとなつ て、 Znや A1の粒子の表面上に析出する。
[0098] この場合にお 、て、廃液中には硝酸イオン (NO ")が含有されて 、るので、 Inの標
3
準還元電位が低下するおそれがあるとともに、 A1や Znの標準還元電位が上昇する おそれがあり、 Inと、 A1又は Znとの電位差が小さくなり、 Inの還元析出が困難になる おそれがある。し力しながら、本実施形態においては、予め被処理液が調整槽 42に 供給されて塩素イオン (cr)源が添加されているため、その被処理液がリアクター本 体 1に流入されたときに、塩素イオン (CDが Inのクロ口錯体を形成させ、それによつ て再び Inの標準還元電位が上昇し、その結果、 Znや A1の粒子の表面上に Inが析出 するのが阻害されることもないのである。
[0099] その他のセメンテーシヨン反応を生じさせる作用や剥離工程等は、上記各実施形 態と同じであるため、その説明は省略する。
[0100] (その他の実施形態)
尚、上記実施形態では、廃液 (被処理液)として Cu、 Snのイオンを含有する金属表 面処理工場の廃液に適用する場合や、アルミニウムターゲット材の洗浄廃液、 FPD のエッチング廃液等に適用する場合について説明したが、対象となる廃液の種類は これに限定されるものではなぐメツキ工場廃液、半導体製造工場廃液、液晶製造ェ 場廃液等に適用することも可能である。また被処理液として、本発明においては廃液 を用いることを主眼としているが、廃液以外の被処理液、たとえば、金属含有固形廃 棄物に酸等の薬品を接触させて回収すべき金属を溶解してイオン化して得られた水 溶液に適用可能である。
従って、回収の対象となる金属の種類も該実施形態の Cu、 Sn、 Inに限らず、たとえ ば、 Ni、 Ga、 Zn等を回収対象金属とすることも可能であり、回収対象金属の種類は 問わない。
[0101] また、該実施形態では、金属粒子の平均粒径を約 2mmとした力 金属粒子の平均 粒径は該実施形態に限定されるものではない。ただし 0. l〜8mmであることが望ま しい。 0. 1mm未満であると、セメンテーシヨン反応が必ずしも好適に行なわれるとは 限らず、また金属粒子力 剥離した回収対象金属の回収が容易に行なえない可能 性があり、また 8mmを超えると、リアクター本体内で保持しうる金属粒子の数が減少 し、結果的に金属粒子の総表面積が減少して析出反応の効率が低下するおそれが あり、また金属粒子を流動させるために流速を上げる必要が生じ、必要な反応時間を 保持するためにリアクターを大型化(リアクター高さを高く)する必要があるからである 。この観点からは、 0. 5〜6mmであることがより好ましい。さらに、リアクター本体内で の流動性、反応性を良好にし、リアクター本体内での保持を容易にするためには、 1 . 0〜2. Ommの範囲であること力 さらに好ましい。
[0102] 尚、金属粒子の平均粒径は、前述の通り、画像解析法、 JIS Z 8801ふるい分け試 験法等にて測定される。画像解析法による平均粒径の測定は、例えば、日機装株式 会社製のミリトラック JPAが用いられる。また、 JISのふるい分け法では、平均粒径 1〜 2mmの範囲とする場合は、例えば、呼び寸法 2000 mふるい下で、 1000 /z mふる V、上となる金属粒子を用いる。
[0103] さらに、金属粒子の均一度は、 5より小さいの力 処理効率や運転制御等の観点か ら好ましい。ここで金属粒子の均一度とは、粒度分布測定或いはふるい分け等によつ て形成される透過率曲線 (ある粒径より小さい粒子の質量の全試料質量に対する百 分率、すなわち透過率をある粒径に対して描いた曲線、ふるい下累積曲線ともいう) において、ふるい下 60%粒径をふるい下 10%粒径で割った値をいう。粒度分布の 幅を表すものである。
[0104] さらに上記各実施形態では、金属粒子は、金属単体を利用したが、合金であっても よい。合金としては、鉄一アルミニウム合金、カルシウム一シリコン合金等を用いること ができる。
[0105] さらに、上記実施形態 1、 2では、リアクター本体 1の断面積が上部に向力うほど大き くなるように形成したため、上記のような好ましい効果が得られた力 このようにリアク ター本体 1を形成することは本発明に必須の条件ではない。実施形態 3、 7、 8、 9の ようにリアクター本体 1の断面積が同じで全体が略円筒状になるように形成することも 可能である。
[0106] さらに、金属粒子から析出金属を剥離する手段も、上記実施形態 1乃至 9の各手段 に限定されるものではなぐこれら以外の手段であってもよい。
[0107] さらに、上記実施形態 10では、添加する塩素イオン源として塩ィ匕ナトリウムや塩ィ匕 カリウム等の塩ィ匕物を用いた力 このような塩ィ匕物に限らず、塩酸を用いることも可能 である。ただし塩酸を用いると被処理液の酸濃度が高くなり、使用する析出用金属の 溶解反応が促進され、水素ガスが発生することとなる。このことは、不要な析出用金 属の消費増大と、水素ガス発生量増大を招き、ひいてはランニングコストの増大につ ながることから、塩素イオン源としては、上記実施形態 10の塩ィ匕物を用いるのが好ま しい。
[0108] 一方、塩素イオン源を添加して Inの還元析出反応が進めば、使用する金属イオン が溶解するとともに、水素ガス発生も必ず生じることから、溶液中の H+が消費され、 被処理液の pHが上昇する。 pHが約 1. 5より大きくなると、被処理液中の Inが水酸化 物となり析出沈殿することから、 pHを下げるために酸の添カ卩が必要となる。このような 場合には塩酸を添加するのが好適である。
[0109] 尚、上記実施形態 10では、図 14に示すように、使用後の処理液を調整槽 42に返 送したため、その処理液に残留している塩素イオン源力 原液である被処理液 (廃液 )に添加されて再利用される結果となり、従って、次の In回収処理のために必要な追 加の塩ィ匕物量を低減させることができると!/ヽぅ好ま U、効果が得られた力 上記実施 形態のように処理液を返送して塩素イオン源を再利用することは本発明に必須の条 件ではない。さらに、上記実施形態では、塩素イオン源を添加するための調整槽 42 をリアクター本体 1とは別に設けたが、これに限らず、リアクター本体 1に直接塩素ィ オン源を添加して調整することも可能である。
[0110] また上記各実施形態析出用金属として金属粒子を利用したが、これに限定されず
、金属線や金属線をメッシュ状に加工したもの、板状の金属等を利用してもよい。 実施例
[0111] (実施例 1)
金属粒子として Znを用い、試験用の模擬被処理液として硫酸銅溶液を用いた。試 験用装置として図 14に示すように、中央に超音波発振体 11を具備させたリアクター 本体 1の他、 2台のタンク 34、 35、 2台のポンプ 36、 37、バグフィルター 38及びこれ らを接続する流路 39、 40、 41を設けた装置を用いた。
[0112] 硫酸銅溶液の pHは 5、初期濃度は 65. 5mg/L、処理液量は 70Lとし、平均粒径 0 . 05mm, lmm、 2mm、 5mm、 10mmの金属粒子について、被処理液を図 15に示 す試験装置を循環するように供給して試験を行なった。試験結果を表 1乃至 5、及び 図 16に示す。
[0113] 表 1乃至 5及び図 16からも明らかなように、平均粒径 lmm、 2mm, 5mmの金属粒 子を採用した場合には、 0. 05mm, 10mmの金属粒子を採用した場合に比べると 析出金属である銅 (Cu)の除去率が良好であった。
[0114] [表 1]
0 . 0 5 mm
Figure imgf000027_0001
[0115] [表 2] (平均粒径 1 mm)
Figure imgf000028_0001
[0116] [表 3]
平均粒径 2 mm)
Figure imgf000028_0002
[0117] [表 4]
(平均粒径 5 mm)
処理時間 (mi n) Cu濃度 (mg/L) Cu除去率 (%)
0. 0 65. 5 0
1. 0 58. 2 1 1
2. 0 47. 7 27
3. 0 41. 4 37
5. 0 33. 6 49
10. 0 22. 8 65
20. 0 10. 1 85 [0118] [表 5]
(平均粒径 1 0 mm)
Figure imgf000029_0001
[0119] (実施例 2)
廃液の模擬液としてインジウムが溶解している硝酸溶液を調製した。模擬液は 2. 8 %の硝酸溶液に Inを 400mgZLの濃度で溶解させたものを利用した。これを 1Lビー カーに入れ、先ず塩ィ匕ナトリウムを 50g添加し、画像解析法による平均粒子径 2mm の A1金属粒子を用いて In合金回収処理を開始した。処理とともに Hガスと主に NO
2 2 ガスとが発生した。処理とともに H+が Hガスとなり消費されることから、 pHが上昇す
2
るので、溶液中の pHを pH計で測定し、 pHが 1. 5を超えないように塩酸を添カ卩して 粒子が流動しな ヽ程度に撹拌処理を 120分間行った。 A1金属粒子上に析出した In 合金はスポンジ状であり、撹拌処理を行っている間に凝集し、大きな塊となることから 、超音波処理によって容易に剥離回収することができた。超音波処理は 2分間に 1回 ずつ行い、それぞれ 2秒間行った。ちなみに、得られた In合金は数 100 m〜数 m m程度の大きさであった。このように大きな塊となれば、ノ ッグフィルターのような安価 なフィルターでも回収可能となる。
[0120] 上記処理後の液に新たな原液 (インジウム含有硝酸溶液)を 1L添加し、塩化ナトリ ゥムを 25g添加して処理を開始することで上記と同じプロセスで処理が可能となる。従 つて、添加する塩化物量が削減でき、処理コストの低減を図ることができた。
[0121] 上記のような条件で試験を行った結果、溶液中からの Inの回収率は 95%で非常に 良好な結果が得られた。 [0122] (実施例 3)
上記実施例 2の Al金属粒子に代えて Zn金属粒子を用い、他は同じ条件で試験を 行った。本実施例においても Inの回収率が 90%という良好な結果が得られた。
[0123] (比較例 1)
上記実施例 2で調製した模擬液に塩ィ匕ナトリウムを添加せずに、 A1金属粒子のみ 添加して同様の処理を行った。尚、硝酸イオンと A1金属粒子の一部が反応するため 、pHが 1. 5以上になったため、硫酸を用いて pH調整を行った。 120分間溶液の撹 拌を行った力 A1金属粒子表面に In合金の析出は見られなカゝつた。
[0124] (比較例 2)
上記比較例 1の A1金属粒子に代えて亜鉛金属粒子を用い、他は同じ条件で試験 を行った。本比較例に置 、ても Inの析出は見られな力つた。

Claims

請求の範囲
[1] 回収対象金属がイオン状態で含有されている被処理液に、前記回収対象金属より もイオン化傾向が大きい析出用金属を添加し、イオン化傾向の差異により前記被処 理液中に含有される回収対象金属を前記析出用金属の表面に析出させ、その後、 剥離手段によって前記析出用金属から前記回収対象金属を剥離して回収することを 特徴とする金属の回収方法。
[2] 回収対象金属がイオン状態で含有されて!ヽる被処理液をリアクター本体内に流入 するとともに、該リアクター本体内に析出用金属を添加する請求項 1記載の金属の回 収方法。
[3] 析出用金属から回収対象金属を剥離する手段が、超音波によって析出用金属を 振動させる手段である請求項 1又は 2記載の金属の回収方法。
[4] 析出用金属力 回収対象金属を剥離する手段が、電磁石によって析出用金属を 攪拌し、多数の析出用金属を相互に衝突させる手段である請求項 1又は 2記載の金 属の回収方法。
[5] 析出用金属力 回収対象金属を剥離する手段が、エアジェット又はウォータージェ ットによって析出用金属を攪拌する手段である請求項 1又は 2記載の金属の回収方 法。
[6] 析出用金属力 回収対象金属を剥離する手段が、リアクター本体内に筒状部を設 け、該筒状部内に気体を吹き込んで析出用金属を攪拌する手段である請求項 2記載 の金属の回収方法。
[7] 析出用金属力 回収対象金属を剥離する手段が、リアクター本体内の被処理液及 び析出用金属を循環させて輸送させる流路及びポンプを前記リアクター本体の外部 に設け、前記被処理液及び析出用金属を循環、輸送させることによって前記析出用 金属を攪拌する手段である請求項 2記載の金属の回収方法。
[8] 析出用金属が平均粒径 0. l〜8mmの金属粒子である請求項 1乃至 7のいずれか に記載の金属の回収方法。
[9] 析出用金属が平均粒径 0. 5〜6mmの金属粒子である請求項 1乃至 7のいずれか に記載の金属の回収方法。
[10] 析出用金属が平均粒径 1. 0〜2. Ommの金属粒子である請求項 1乃至 7のいずれ かに記載の金属の回収方法。
[11] 析出用金属がアルミニウムであって、該析出用金属が平均粒径 1. 5〜5. 5mmの 金属粒子である請求項 1乃至 7のいずれかに記載の金属の回収方法。
[12] 析出用金属が亜鉛であって、該析出用金属が平均粒径 1. 5〜4. Ommの金属粒 子である請求項 1乃至 7のいずれかに記載の金属の回収方法。
[13] 被処理液がリアクター本体の下部力 流入し、リアクター本体の上部力 流出する ように構成されて 、る請求項 2乃至 12の 、ずれかに記載の金属の回収方法。
[14] リアクター本体の断面積が上方に向力つて増加するように、前記リアクター本体が 構成されて!、る請求項 13記載の金属の回収方法。
[15] 複数段のリアクター本体によって、異なる 2種以上の析出用金属で 2種以上の回収 対象金属を選択的に回収する請求項 2乃至 14のいずれかに記載の金属の回収方 法。
[16] 剥離された回収対象金属をフィルターで回収する請求項 1乃至 15のいずれかに記 載の金属の回収方法。
[17] イオン状態の回収対象金属の他に硝酸イオンが被処理液中に含有され、該被処 理液に、析出用金属とともに塩素イオン源を添加する請求項 1乃至 16のいずれかに 記載の金属の回収方法。
[18] 被処理液を調整槽に流入するとともに該調整槽に塩素イオン源を添加し、次に該 調整槽中の被処理液をリアクター本体内に流入するとともに、該リアクター本体内に 析出用金属を添加する請求項 17記載の金属の回収方法。
[19] 析出用金属から回収対象金属を回収した後の処理液を、原液である被処理液に添 カロして再度処理を行う請求項 17又は 18記載の金属の回収方法。
[20] 回収対象金属がイオン状態で含有されている被処理液を流入するとともに、前記回 収対象金属よりもイオン化傾向が大きい析出用金属を添加して、イオン化傾向の差 異により前記被処理液中に含有される回収対象金属を前記析出用金属の表面に析 出させる金属析出反応を行なうためのリアクター本体と、前記析出した回収対象金属 を回収すベぐ前記析出用金属力 剥離させるための剥離手段とを具備することを特 徴とする金属の回収装置。
[21] 析出用金属から回収対象金属を剥離する手段が、超音波によって析出用金属を 振動させる手段である請求項 20記載の金属の回収装置。
[22] 析出用金属力 回収対象金属を剥離する手段が、電磁石によって析出用金属を 攪拌し、多数の析出用金属を相互に衝突させる手段である請求項 20記載の金属の 回収装置。
[23] 析出用金属力 回収対象金属を剥離する手段が、エアジェット又はウォータージェ ットによって析出用金属を攪拌する手段である請求項 20記載の金属の回収装置。
[24] 析出用金属力 回収対象金属を剥離する手段が、リアクター本体内に筒状部を設 け、該筒状部内に気体を吹き込んで析出用金属を攪拌する手段である請求項 20記 載の金属の回収装置。
[25] 析出用金属力 回収対象金属を剥離する手段が、リアクター本体内の被処理液及 び金属粒子を循環させて輸送させる流路及びポンプを前記リアクター本体の外部に 設け、前記被処理液及び析出用金属を循環、輸送させることによって前記析出用金 属を攪拌する手段である請求項 20記載の金属の回収装置。
[26] リアクター本体の下部に被処理液の流入部を有し、リアクター本体の上部に液流出 部を有するとともに、前記流入部力 被処理液がリアクター本体内に流入し、前記液 流出部から流出するように構成されて 、る請求項 20乃至 25の 、ずれかに記載の金 属の回収装置。
[27] リアクター本体の断面積が上方に向力つて増加するように、前記リアクター本体が 構成されて!ヽる請求項 26記載の金属の回収装置。
[28] 複数段のリアクター本体が配設されて 、る請求項 20乃至 27の 、ずれかに記載の 金属の回収装置。
[29] リアクター本体の後段に剥離された回収対象金属を回収するためのフィルターが配 設されて!/、る請求項 20乃至 28の 、ずれかに記載の金属の回収装置。
[30] 回収対象金属がイオン状態で含有されて ヽるとともに硝酸イオンが含有されて ヽる 被処理液を収容し、塩素イオン源を添加して調整する調整槽が、リアクター本体の前 段側に設けられて 、る請求項 20乃至 29の 、ずれかに記載の金属の回収装置。 析出用金属から回収対象金属を回収した後の処理液を、原液である被処理液に添 加して再度処理を行うような返送流路が設けられている請求項 30記載の金属の回収 装置。
PCT/JP2006/313377 2005-07-06 2006-07-05 金属の回収方法とその装置 WO2007004664A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800245426A CN101218359B (zh) 2005-07-06 2006-07-05 金属的回收方法及其装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005197864 2005-07-06
JP2005-197864 2005-07-06
JP2006055074A JP2007039788A (ja) 2005-07-06 2006-03-01 金属の回収方法とその装置
JP2006-055074 2006-03-01
JP2006059561 2006-03-06
JP2006-059561 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007004664A1 true WO2007004664A1 (ja) 2007-01-11

Family

ID=37604524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313377 WO2007004664A1 (ja) 2005-07-06 2006-07-05 金属の回収方法とその装置

Country Status (4)

Country Link
KR (1) KR20080027911A (ja)
CN (1) CN101218359B (ja)
TW (1) TW200714719A (ja)
WO (1) WO2007004664A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208396A (ja) * 2007-02-23 2008-09-11 Kobelco Eco-Solutions Co Ltd インジウムの回収方法とその装置
JP2009001856A (ja) * 2007-06-21 2009-01-08 Seiren Co Ltd 水処理技術
US20100139457A1 (en) * 2007-01-23 2010-06-10 Sharp Kabushiki Kaisha Method and apparatus for recovering indium from etching waste solution containing indium and ferric chloride
KR101133484B1 (ko) * 2007-01-23 2012-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 인듐 및 염화제2철을 함유하는 에칭 폐액으로부터의 인듐의 회수 방법과 그 장치
WO2015122535A1 (ja) * 2014-02-17 2015-08-20 国立大学法人高知大学 ニッケル粉の製造方法
JP2015166489A (ja) * 2014-02-17 2015-09-24 国立大学法人高知大学 ニッケル粉の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI398526B (zh) * 2009-09-18 2013-06-11 Solar Applied Mat Tech Corp 回收鎵的方法
US8834715B2 (en) * 2011-03-15 2014-09-16 Kabushiki Kaisha Toshiba Copper recovery apparatus and copper recovery method
CN103157421B (zh) * 2013-04-07 2016-02-17 株洲市兴民科技有限公司 提高超声波在置换过程作用效果的方法及装置
CN105061269A (zh) * 2015-08-05 2015-11-18 湖北星火化工有限公司 甲基磺酸锡的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171818A (ja) * 1974-12-20 1976-06-22 Showa Electric Wire & Cable Co
US4152143A (en) * 1977-09-08 1979-05-01 Klockner-Humboldt-Deutz Aktiengesellschaft Method and apparatus for precipitating metal cement
JPS56158830A (en) * 1980-04-15 1981-12-07 Kloeckner Humboldt Deutz Ag Method and apparatus for removing metal from metal salt solution
JPS57123934A (en) * 1981-01-26 1982-08-02 Nippon Mining Co Ltd Method and apparatus for manufacturing sponge cadmium
JPH0411989A (ja) * 1990-05-01 1992-01-16 Astecirie Corp Ltd 塩化鉄系廃液の重金属除去方法
US5279641A (en) * 1992-08-25 1994-01-18 Nikko Fine Products Co., Ltd. Method for concurrent production of copper powder and a metal chloride
WO1998050304A1 (fr) * 1997-05-08 1998-11-12 Mitsubishi Chemical Corporation Procede de traitement d'une solution contenant du selenium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171818A (ja) * 1974-12-20 1976-06-22 Showa Electric Wire & Cable Co
US4152143A (en) * 1977-09-08 1979-05-01 Klockner-Humboldt-Deutz Aktiengesellschaft Method and apparatus for precipitating metal cement
JPS56158830A (en) * 1980-04-15 1981-12-07 Kloeckner Humboldt Deutz Ag Method and apparatus for removing metal from metal salt solution
JPS57123934A (en) * 1981-01-26 1982-08-02 Nippon Mining Co Ltd Method and apparatus for manufacturing sponge cadmium
JPH0411989A (ja) * 1990-05-01 1992-01-16 Astecirie Corp Ltd 塩化鉄系廃液の重金属除去方法
US5279641A (en) * 1992-08-25 1994-01-18 Nikko Fine Products Co., Ltd. Method for concurrent production of copper powder and a metal chloride
WO1998050304A1 (fr) * 1997-05-08 1998-11-12 Mitsubishi Chemical Corporation Procede de traitement d'une solution contenant du selenium

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139457A1 (en) * 2007-01-23 2010-06-10 Sharp Kabushiki Kaisha Method and apparatus for recovering indium from etching waste solution containing indium and ferric chloride
KR101133484B1 (ko) * 2007-01-23 2012-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 인듐 및 염화제2철을 함유하는 에칭 폐액으로부터의 인듐의 회수 방법과 그 장치
KR101133485B1 (ko) 2007-01-23 2012-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 인듐 및 염화제2철을 함유하는 에칭 폐액으로부터의 인듐의 회수 방법과 그 장치
US8480785B2 (en) 2007-01-23 2013-07-09 Sharp Kabushiki Kaisha Method and apparatus for recovering indium from etching waste solution containing indium and ferric chloride
JP2008208396A (ja) * 2007-02-23 2008-09-11 Kobelco Eco-Solutions Co Ltd インジウムの回収方法とその装置
JP2009001856A (ja) * 2007-06-21 2009-01-08 Seiren Co Ltd 水処理技術
WO2015122535A1 (ja) * 2014-02-17 2015-08-20 国立大学法人高知大学 ニッケル粉の製造方法
WO2015122534A1 (ja) * 2014-02-17 2015-08-20 国立大学法人高知大学 ニッケル粉の製造方法
JP2015166489A (ja) * 2014-02-17 2015-09-24 国立大学法人高知大学 ニッケル粉の製造方法
JP2015166488A (ja) * 2014-02-17 2015-09-24 国立大学法人高知大学 ニッケル粉の製造方法
CN106029268A (zh) * 2014-02-17 2016-10-12 国立大学法人高知大学 镍粉的制造方法
AU2015216113B2 (en) * 2014-02-17 2017-03-09 Kochi University, National University Corporation Nickel powder production method
US10092955B2 (en) 2014-02-17 2018-10-09 Kochi University, National University Corporation Method for producing nickel powder
US10220446B2 (en) 2014-02-17 2019-03-05 Sumitomo Metal Mining Co., Ltd. Method for producing nickel powder

Also Published As

Publication number Publication date
TW200714719A (en) 2007-04-16
KR20080027911A (ko) 2008-03-28
CN101218359A (zh) 2008-07-09
CN101218359B (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
WO2007004664A1 (ja) 金属の回収方法とその装置
TWI385255B (zh) 由廢棄液晶顯示器回收銦之方法及其裝置
CN102311181A (zh) 膜法和酸化组合处理回用氰化贫液工艺和方法
JP5016895B2 (ja) インジウムの回収方法とその装置
JP2007217760A (ja) 金属の回収方法とその装置
JP2008093633A (ja) 金属の回収方法とその装置
JP2007039788A (ja) 金属の回収方法とその装置
JP5068772B2 (ja) インジウム及び塩化第二鉄を含有するエッチング廃液からのインジウムの回収方法
JPH09156930A (ja) 塩化第二鉄廃液の処理方法
KR101133485B1 (ko) 인듐 및 염화제2철을 함유하는 에칭 폐액으로부터의 인듐의 회수 방법과 그 장치
JPH09136091A (ja) 廃水処理装置
CN217103390U (zh) 一种用于回收废水中重金属的处理装置
US11319613B2 (en) Metal refinement
JP3136731B2 (ja) テルルの回収装置
JPH04116200A (ja) 電気めっきにおける金属イオンの供給装置
JP5030304B2 (ja) 鉛フリーはんだ中の過剰銅の析出分離装置
JP2008144280A (ja) Ti粒又はTi合金粒の製造方法並びに金属Ti又はTi合金の製造方法及び装置
JP2004358406A (ja) 浮遊分離装置
JPH11286796A (ja) 流動床電解槽とそれを用いたニッケル等金属の回収除去方法及び水処理方法
Phetla et al. Removal and recovery of Ni, Cu and Fe from heavy metal effluent by reduction crystallization
WO2015163132A1 (ja) 金属の回収方法及び金属の回収システム、並びに溶液の再生方法及び溶液の再利用システム
JP5344153B2 (ja) 液中金属の還元回収方法および還元回収装置
JPH0641796A (ja) めっきイオン源粉末の連続式溶解装置
CN116732324A (zh) 一种稀酸铜砷分离的方法
JP5276898B2 (ja) フッ素およびアンモニアの回収装置ならびに回収方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024542.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002666

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06767883

Country of ref document: EP

Kind code of ref document: A1