WO2007004559A1 - 調湿装置 - Google Patents

調湿装置 Download PDF

Info

Publication number
WO2007004559A1
WO2007004559A1 PCT/JP2006/313093 JP2006313093W WO2007004559A1 WO 2007004559 A1 WO2007004559 A1 WO 2007004559A1 JP 2006313093 W JP2006313093 W JP 2006313093W WO 2007004559 A1 WO2007004559 A1 WO 2007004559A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity
detection means
filter
adsorbent
Prior art date
Application number
PCT/JP2006/313093
Other languages
English (en)
French (fr)
Inventor
Nobuki Matsui
Yoshinori Narikawa
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007004559A1 publication Critical patent/WO2007004559A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air

Definitions

  • the present invention relates to a humidity control apparatus for adjusting indoor humidity.
  • Patent Document 1 discloses a humidity control apparatus that adjusts the humidity of the taken outdoor air and supplies it to the room.
  • This humidity control apparatus is provided with a refrigerant circuit to which a compressor, an expansion valve, and an adsorption heat exchanger carrying an adsorbent are connected.
  • This humidity control apparatus is configured to be able to switch between a dehumidifying operation and a humidifying operation.
  • the adsorbent is cooled by the refrigerant evaporated in the adsorption heat exchanger, and moisture in the air passing through the adsorption heat exchanger is adsorbed by the adsorbent.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-294048
  • a filter member may be provided in order to clean the taken-in air.
  • Filter members need to be cleaned and replaced as clogging progresses. And it would be convenient if you could let them know when to wash or replace them. Therefore, conventionally, a sensor (for example, a wind speed sensor) for detecting clogging of the filter is provided in the humidity control device, and the clogging state of the filter member is detected based on the detection value of the sensor.
  • a sensor for example, a wind speed sensor
  • the present invention has been made in view of such points, and an object of the present invention is to provide a humidity control apparatus including a filter member for purifying the taken-in air. It is to detect the clogging state of the filter member without complicating the configuration. Means for solving the problem
  • the first invention comprises a filter member (27, 28) for purifying the taken-in air, and an adsorbent in contact with the air that has passed through the filter member (27, 28).
  • a humidity control device 10 that adjusts the humidity of the air and supplies it indoors.
  • the intake humidity detection means (65) for measuring the humidity of the intake air
  • the supply humidity detection means (66) for measuring the humidity of the air supplied to the room
  • a filter state detecting means (63) for detecting the clogged state of the filter member (27, 28) based on the detection value of the supply air humidity detecting means (66).
  • the filter state detection means (63) uses the detection value of the intake humidity detection means (65) and the detection value of the supply air humidity detection means (66).
  • An air volume estimating unit (64) for estimating the air volume of the air passing through the filter member (27, 28) is provided, and the air volume estimating unit (in the initial state of the filter member (27, 28) ( 64) The clogging state of the filter member (27, 28) is detected based on the air volume estimated by 64) and the air volume estimated by the air volume estimation unit (64) at the time of detection.
  • a third invention comprises a filter member (27, 28) for purifying the taken-in air, and an adsorbent in contact with the air that has passed through the filter member (27, 28).
  • a humidity control device 10 that adjusts the humidity and temperature of the air and supplies it indoors.
  • the intake air temperature detection means (65) for measuring the temperature of the air taken in
  • the supply air temperature detection means (66) for measuring the temperature of the air supplied to the room
  • a filter state detecting means (63) for detecting a clogged state of the filter member (27, 28) based on a detection value of the supply air temperature detecting means (66).
  • the filter state detection means (63) uses the detection value of the intake air temperature detection means (65) and the detection value of the supply air temperature detection means (66).
  • An air volume estimating unit (64) for estimating the air volume of the air passing through the filter member (27, 28) is provided, and the air volume estimating unit (in the initial state of the filter member (27, 28) ( 64) The clogging state of the filter member (27, 28) is detected based on the air volume estimated by 64) and the air volume estimated by the air volume estimation unit (64) at the time of detection.
  • an adsorption heat exchanger supporting an adsorbent (51 , 52) is connected to perform a refrigeration cycle, and the adsorbent of the adsorption heat exchanger (51, 52) is heated or cooled by the refrigerant of the refrigerant circuit (50) to absorb the adsorption. Adjust the humidity and temperature of the air in contact with the agent.
  • the air humidity before the intake humidity detecting means (65) comes into contact with the adsorbent that is, the air before the humidity is adjusted, is measured and the humidity of the supply air humidity detecting means (66) is adjusted. Measure the humidity of the air. From the detection value of the intake humidity detection means (65) and the detection value of the supply air humidity detection means (66), the amount of change in air humidity before and after contacting the adsorbent is derived.
  • the clogged state of the filter members affects the air volume of the air in contact with the adsorbent.
  • the air volume in contact with the adsorbent affects the amount of moisture transferred between the adsorbent and the air in contact with the adsorbent, and changes in the humidity of the air before and after contact with the adsorbent. Affect the amount. That is, when the air volume of the air that contacts the adsorbent decreases, the wind speed when contacting the adsorbent decreases accordingly. When the wind speed is reduced, the turbulence of the airflow is also reduced, and the amount of water transferred between the air and the adsorbent is reduced.
  • the air volume in contact with the adsorbent is the same as the air volume passing through the filter member (27, 28), and varies depending on the degree of clogging of the filter member (27, 28). Therefore, in the present invention, the clogged state of the filter member (27, 28) is detected based on the detection value of the intake humidity detection means (65) and the detection value of the supply air humidity detection means (66).
  • the amount of change in air humidity before and after contacting the adsorbent is derived from the detection value of the intake humidity detection means (65) and the detection value of the supply air humidity detection means (66).
  • the amount of air flowing in contact with the adsorbent that is, the amount of air passing through the filter member (27, 28) is estimated from the amount of change in air humidity before and after contacting the adsorbent. Therefore, the clogging state force of the filter member (27, 28) is detected from the air volume of the air passing through the filter member (27, 28).
  • the air before the intake air temperature detecting means (65) contacts the adsorbent that is, The temperature of the air before the temperature is adjusted is measured, and the temperature of the air after the supply air temperature detecting means (66) is adjusted is measured. From the detected value of the intake air temperature detecting means (65) and the detected value of the air supply temperature detecting means (66), the amount of change in air temperature before and after contacting the adsorbent is derived.
  • the clogged state of the filter members (27, 28) affects the air volume of the air in contact with the adsorbent.
  • the air volume in contact with the adsorbent affects the amount of heat exchange between the adsorbent and the air in contact with the adsorbent, and the amount of air temperature change before and after contacting the adsorbent. give. That is, when the air volume in contact with the adsorbent decreases, the wind speed at the time of contact with the adsorbent decreases accordingly. When the wind speed decreases, the air flow turbulence decreases, and the amount of heat exchange between the air and the adsorbent decreases.
  • the air volume in contact with the adsorbent is the same as the air volume passing through the filter member (27, 28), and varies depending on the degree of clogging of the filter member (27, 28). Therefore, in the present invention, the clogged state of the filter member (27, 28) is detected based on the detection value of the intake air temperature detection means (65) and the detection value of the supply air temperature detection means (66).
  • the detected value of the intake air temperature detecting means (65) and the detected value force of the supply air temperature detecting means (66) are derived from the air temperature change amount before and after contacting the adsorbent.
  • the amount of air flowing in contact with the adsorbent that is, the amount of air passing through the filter members (27, 28) can be estimated from the amount of change in air temperature before and after contacting the adsorbent. Therefore, the clogging state force of the filter member (27, 28) is detected from the air volume of the air passing through the filter member (27, 28).
  • the adsorption heat exchanger (51, 52) when the adsorption heat exchanger (51, 52) is heated by the refrigerant in the refrigerant circuit (50), moisture is desorbed from the adsorbent, and the adsorption heat exchanger (51, 52) becomes the refrigerant.
  • the adsorbent When cooled by the refrigerant in the circuit (50), the adsorbent adsorbs moisture. Thereby, the air that contacts the heated adsorption heat exchanger (51, 52) is humidified, and the air that contacts the cooled adsorption heat exchanger (51, 52) is dehumidified.
  • the filter member (27, 28) is clogged before and after contact with the adsorbent. This affects the air humidity change (temperature change) in the air, so the detection value of the intake humidity detection means (65) and the detection value of the supply air humidity detection means (66) (the intake air temperature detection means (65) The clogged state of the filter member (27, 28) is detected based on the detected value and the detected value of the supply air temperature detecting means (66).
  • the intake humidity detection means (65) and the supply air humidity detection means (66) operate the humidity control apparatus (10). It is used for state control.
  • the intake humidity detection means (65) and the supply air humidity detection means (66) (the intake air temperature detection means (65) and the supply air temperature detection means (65)) used for controlling the operating state of the humidity control device (10).
  • 66) is also used to detect clogging of filter members (27, 28). This eliminates the need to provide a separate sensor to detect clogging of the filter member (27, 28), so that the configuration of the humidity control device (10) can be reduced without complicating the configuration of the filter member (27, 28). The state can be detected.
  • FIG. 1 is a perspective view showing a configuration of a humidity control apparatus according to an embodiment.
  • Fig. 2 is a configuration diagram of a schematic configuration of the humidity control apparatus according to the embodiment, viewed in plan, right side, and left side.
  • FIG. 3 is a piping system diagram showing the configuration of the refrigerant circuit of the embodiment, where (A) shows the operation during the first operation, and (B) shows the operation during the second operation. The operation is shown.
  • FIG. 4 is a schematic perspective view of an adsorption heat exchanger.
  • FIG. 5 is a schematic configuration diagram of a humidity control apparatus showing an air flow during the first operation in the dehumidifying operation.
  • Fig. 6 is a schematic configuration diagram of the humidity control apparatus showing the air flow during the second operation in the dehumidifying operation.
  • Fig. 7 is a schematic configuration diagram of the humidity control apparatus showing the air flow during the first operation in the humidifying operation.
  • FIG. 8 is a schematic configuration diagram of a humidity control apparatus showing an air flow during a second operation in a humidifying operation.
  • FIG. 9 is a flowchart showing a flow of operation of the filter state detection unit in the embodiment.
  • FIG. 10 is a schematic configuration diagram of a humidity control apparatus according to a third modification of the other embodiment.
  • FIG. 10 (A) shows the operation during the first operation
  • FIG. 2 Indicates the operation during operation.
  • FIG. 11 is a schematic perspective view of a humidity control unit in a fourth modification of the other embodiment.
  • the humidity control apparatus (10) of the present embodiment performs indoor ventilation as well as indoor humidity adjustment. At the same time, the humidity of the taken outdoor air (OA) is adjusted and supplied to the room. RA) is discharged outside the room.
  • the humidity control apparatus (10) will be described with reference to FIGS. Unless otherwise specified, “up”, “down”, “left”, “right”, “front”, “rear”, “front”, and “back” used in the description here are the front surfaces of the humidity control device (10). This means the direction when viewed from the side.
  • the humidity control apparatus (10) includes a casing (11).
  • a refrigerant circuit (50) is accommodated in the casing (11).
  • the refrigerant circuit (50) includes a first adsorption heat exchanger (51)
  • the second adsorption heat exchanger (52), the compressor (53), the four-way switching valve (54), and the electric expansion valve (55) are connected. Details of the refrigerant circuit (50) will be described later.
  • the casing (11) is formed in a rectangular parallelepiped shape that is slightly flat and relatively low in height.
  • a front panel (12) is erected on the left front side in FIG. 1
  • a rear panel (13) is erected on the right rear side in FIG.
  • the length in the direction toward the left and the right frontal force are almost equal to the length in the direction to the left.
  • the exhaust port (21) is opened to the left and the air supply port (22) is opened to the right.
  • an outside air inlet (24) is opened at a position lower than the outside air inlet (23) force.
  • the internal space of the casing (11) is partitioned into a relatively small space on the front panel (12) side! /, A space, and a relatively large space on the back panel (13) side. Yes.
  • the space on the front panel (12) side in the casing (11) is cut into two left and right spaces.
  • the left space constitutes an exhaust fan chamber (35)
  • the right space constitutes an air supply fan chamber (36).
  • the exhaust fan chamber (35) communicates with the outdoor space via the exhaust port (21).
  • the exhaust fan chamber (35) accommodates an exhaust fan (25), and the outlet of the exhaust fan (25) is connected to the exhaust port (21).
  • the air supply fan chamber (36) communicates with the indoor space via the air supply port (22).
  • the supply fan chamber (36) accommodates the supply fan (26), and the outlet of the supply fan (26) is connected to the supply port (22).
  • the air supply fan chamber (36) also houses a compressor (53).
  • the space on the back panel (13) side in the casing (11) is separated by the first partition plate (16) and the second partition plate (17) standing up and down in the casing (11). It is divided into two spaces.
  • These partition plates (16, 17) extend in the left-right direction of the casing (11).
  • the first cutting plate (16) is arranged near the back of the casing (11) and the second partition plate (17) is arranged near the front of the casing (11).
  • the space behind the first partition plate (16) is partitioned into two upper and lower spaces, and the upper space defines the outside air flow path (32) and the lower space.
  • Inside air flow path (34) Each is composed.
  • the outside air flow path (32) communicates with the outdoor space via the outside air inlet (23).
  • the outside air channel (32) is provided with an outside air filter (27), which is a filter member extending left and right and dividing the channel (32) into the front and rear.
  • the room air side channel (34) communicates with the room through the room air inlet (24).
  • the inside air channel (34) is provided with an inside air filter (28) which is a filter member extending left and right and dividing the channel (34) into the front and rear.
  • the space in front of the second partition plate (17) is partitioned into two upper and lower spaces, the upper space is the exhaust side flow path (31), and the lower space is the air supply side flow path. (33) is configured.
  • the exhaust side flow path (31) communicates with the exhaust fan chamber (35).
  • the supply side flow path (33) communicates with the supply fan chamber (36).
  • the space between the first partition plate (16) and the second partition plate (17) is further divided into two left and right spaces by the central partition plate (18).
  • the space on the right side of the central partition (18) constitutes the first heat exchange chamber (37), and the space on the left side constitutes the second heat exchange chamber (38).
  • the first heat exchanger chamber (37) accommodates the first adsorption heat exchanger (51), and the second heat exchanger chamber (38) accommodates the second adsorption heat exchanger (52).
  • These two adsorption heat exchanges (51, 52) are arranged so as to traverse the heat exchange chamber (37, 38) in which they are accommodated in the left-right direction!
  • the first partition plate (16) is provided with four openable dampers (41 to 44). Specifically, in the first partition plate (16), the first damper (41) is located on the upper right side, the second damper (42) is located on the upper left side, and the third damper (43) is located on the lower left side. A fourth damper (44) is attached to the bottom of each.
  • the first damper (41) is opened, the outside air flow path (32) and the first heat exchange chamber (37) communicate with each other.
  • the second damper (42) is opened, the outside air flow path (32) and the second heat exchanger chamber (38) communicate with each other.
  • the third damper (43) is opened, the inside air flow path (34) and the first heat exchanger chamber (37) communicate with each other.
  • the fourth damper (44) is opened, the inside air flow path (34) and the second heat exchanger chamber (38) communicate with each other.
  • the second partition plate (17) is provided with four openable dampers (45 to 48). Specifically, in the second partition plate (17), the fifth damper (45) is located on the upper right side, the sixth damper (46) force is located on the upper left side, and the seventh damper (47) is located on the lower left side.
  • the 8th danba (48) at the bottom of it Each is attached.
  • the fifth damper (45) is opened, the exhaust side flow path (31) and the first heat exchange chamber (37) communicate with each other.
  • the sixth damper (46) is opened, the exhaust side flow path (31) and the second heat exchange chamber (38) communicate with each other.
  • the seventh damper (47) is opened, the air supply side flow path (33) and the first heat exchanger chamber (37) communicate with each other.
  • the 8th damper (48) is opened, the air supply side flow path (33) and the second heat exchanger chamber (38) communicate with each other.
  • the humidity control device (10) includes an outdoor temperature sensor (65a) and an outdoor air humidity sensor (65) for measuring the temperature and humidity of outdoor air (OA) taken in from the outdoor by the humidity control device (10).
  • the outside air temperature sensor (65a) and the outside air humidity sensor (65b) constitute intake air humidity detection means according to the present invention.
  • the air supply temperature sensor (66a) and the air supply humidity sensor (66b), which measure the temperature and humidity of the supply air (SA) supplied to the humidity control device (10), are supplied to the air supply side channel ( 33).
  • the supply air temperature sensor (66a) and the supply air humidity sensor (66b) constitute supply air humidity detection means according to the present invention. Also, an indoor air temperature sensor (67a) and an indoor air humidity sensor (67b) that measure the temperature and humidity of the indoor air (RA) taken in from the room by the humidity control device (10) are connected to the inside air flow path (34). It is provided on the rear side of the inside air filter (28). The detection values of these sensors (65, 66, 67) are transmitted to the control unit (60).
  • the refrigerant circuit (50) will be described with reference to FIG.
  • the refrigerant circuit (50) includes a first adsorption heat exchange (51), a second adsorption heat exchange (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve ( 55) is a closed circuit.
  • the refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the compressor (53) has a discharge side at the first port of the four-way selector valve (54) and an inlet side at the second port of the four-way selector valve (54). Each port is connected.
  • One end of the first adsorption heat exchange (51) is connected to the third port of the four-way switching valve (54).
  • the other end of the first adsorption heat exchanger (51) is connected to one end of the second adsorption heat exchanger (52) via the electric expansion valve (55).
  • the other end of the second adsorption heat exchanger (52) is connected to the fourth port of the four-way switching valve (54).
  • the four-way switching valve (54) has a first port and a third port communicating with each other, and the second port and the fourth port.
  • the first state (the state shown in Fig. 3 (A)) in which the first port communicates, and the second state in which the first and fourth ports communicate and the second port and third port communicate (Fig. 3 (B)).
  • the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) are both constituted by cross-fin type fins and tubes heat exchangers. Speak.
  • These adsorption heat exchanges (51, 52) include a copper heat transfer tube (58) and an aluminum fin (57)!
  • the plurality of fins (57) provided in the adsorption heat exchange (51, 52) are each formed in a rectangular plate shape and arranged at regular intervals.
  • the heat transfer tube (58) is provided so as to penetrate each fin (57).
  • each of the adsorption heat exchanges (51, 52) an adsorbent is supported on the surface of each fin (57), and air passing between the fins (57) is supported on the fin (57). In contact with the adsorbent formed.
  • this adsorbent those capable of adsorbing water vapor in the air, such as zeolite, silica gel, activated carbon, and organic high molecular weight material having a hydrophilic functional group are used.
  • the controller (60) of the humidity controller (10) includes a fan controller (61) for controlling the air volume of the exhaust fan (25) and the air supply fan (26), and a humidity controller of the humidity controller (10).
  • a humidity control unit (62) that controls the state of the refrigeration cycle of the refrigerant circuit (50) to adjust the capacity, and a filter that is a filter state detecting means for detecting the clogged state of the outside air filter (27)
  • a state detection unit (63) is provided with an air volume estimation section (64) for estimating the air volume Q of the air passing through the outside air filter (27).
  • the fan control unit (61) has a setting fan tap that can adjust the air volume of the supply fan (26) and the exhaust fan (25) in three levels (eg, "large”, “medium”, and “small”). Is provided.
  • the fan motor output of the supply fan (26) and the exhaust fan (25) is determined by the setting state of the setting fan tap. That is, when the setting fan tap of the fan (26, 27) is in a setting state (for example, “large”), the fan motor output is fixed to a predetermined value corresponding to the setting state.
  • the rotational speed of the fan motor may be determined according to the setting state of the setting fan tap.
  • the humidity control unit (62) although not shown, the humidity at which the user inputs the desired indoor humidity An input unit and a temperature input unit for a user to input a desired room temperature are provided.
  • the humidity input unit is configured so that the desired indoor humidity can be selected from three levels of “low”, “medium” and “high”.
  • ranges of relative humidity corresponding to “low”, “medium”, and “high” are preset.
  • the humidity control section (62) sets the relative humidity range corresponding to the input to the target humidity (for example, 50% Set to ⁇ 60%).
  • the humidity control unit (62) sets the desired room temperature to a target temperature (for example, 25 ° C).
  • the humidity control unit (62) includes a calculation unit.
  • the calculation unit calculates the target humidity and the target temperature force and the absolute humidity at that temperature and humidity.
  • the humidity control section (62) sets the absolute humidity calculated by the calculation section as the target absolute humidity, and adjusts the humidity control capacity of the humidity controller (10) so that the indoor absolute humidity approaches the target absolute humidity. To do.
  • the filter state detection unit (63) estimates the air volume Q of the air passing through the outside air filter (27) by the air volume estimation unit (64), and based on the estimated air volume Q, the outside air filter Detect the clogged state (27).
  • the air volume estimation unit (64) stores a database function shown in Equation 1 in order to estimate the air volume Q of the air passing through the outside air filter (27).
  • Equation 1 Xsa is the absolute humidity of the supply air (SA)
  • Xoa is the absolute humidity of the outdoor air (OA)
  • Q is the air volume of the air passing through the outside air filter (27)
  • F is the compressor
  • the operating frequency and K in (53) represent correction values that take into account the pressure loss due to outside and the characteristics of the indoor space where the ventilator (10) is installed. It should be noted that the air volume Q of the air passing through the outside air filter (27) can be considered to be substantially the same as the air volume supplied to the room by the air supply fan (26).
  • the database function of Equation 1 above includes the absolute humidity Xsa of the supply air (SA), the absolute humidity Xoa of the outdoor air (OA), the air volume Q of the air passing through the outdoor air filter (27), and the compressor This is expressed as a function of the operating frequency F in (53).
  • the database function of Equation 1 creates the database function of Equation 2 when designing the ventilation device (10) and installs the ventilation device (10). The value of K was determined when
  • Equation 2 shows that the initial state of the outside air filter (27) (stained immediately after the ventilation device (10) is installed or immediately after the outside air filter (27) is cleaned or replaced) ⁇ state) while changing the air volume of the air supply fan (26), the operating frequency F of the compressor (53), and the state of outdoor air (OA) taken from the outside air inlet (23), Created by measuring the state of the supply air (SA) blown from the mouth (24)!
  • the absolute humidity Xoa of the outdoor air (OA) is calculated by the air volume estimation unit (64) by calculating the detected value force of the outdoor air temperature sensor (65a) and the outdoor air humidity sensor (65b).
  • the absolute humidity Xsa of the supply air (SA) is calculated from the detection values of the supply air temperature sensor (66a) and supply air humidity sensor (66b) by the air flow estimation unit (64).
  • the length and shape of the outside of the duct when the ventilation device (10) is installed differ depending on the installation place, and the pressure loss outside the duct varies depending on the installation place. For this reason, even if the setting fan tap of the air supply fan (26) is the same, the air volume of the air supply fan (26) varies depending on the installation location.
  • this ventilation device (10) the temperature and humidity of the indoor air (RA) taken in from the room are adjusted. The temperature or humidity of the supply air (SA) to the inside changes.
  • the database function of Equation 2 is an adsorption heat exchanger for the air volume Q of the air passing through the outside air filter (27) in the installed state of the humidity controller (10) and the operating frequency F of the compressor (53) ( 5 represents the relationship of the amount of change in humidity of the air passing through 1,52).
  • the outdoor air filter (27) is calculated from the absolute humidity Xoa of outdoor air (OA), the absolute humidity Xsa of supply air (SA), and the operating frequency F of the compressor (53).
  • the air flow estimation unit (64) sets the setting fan tap of the air supply fan (26) to, for example, "medium”, and uses Equation 1 to determine the amount of air passing through the outdoor-side filter (27) in the initial state. Estimate air volume Q (0). At this time, information on the operating frequency F of the compressor (53) is transmitted from the humidity control section (62) to the air volume estimation section (64). The estimated air volume Q (0) is stored in the filter state detection unit (63).
  • the filter state detection unit (63) estimates the air volume Q of the air passing through the outside air filter (27) by the air volume estimation unit (64).
  • the filter state detection unit (63) compares the air volume Q of the air passing through the outside air filter (27) estimated by the air volume estimation unit (64) with the above air volume Q (0) and compares the air volume Q (0). Detect clogging. If the outside air filter (27) needs to be replaced, a “filter replacement sign” is displayed. Details of the operation of the filter state detection unit (63) will be described later.
  • the humidity control apparatus (10) of the present embodiment performs a dehumidifying operation or a humidifying operation.
  • the humidity control device (10) adjusts the humidity of the outdoor air (OA) that has been taken in and supplies it to the room as power supply air (SA), and at the same time exhausts the taken in indoor air (RA). Exhaust outside as air (EA).
  • a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
  • the four-way switching valve (54) is set to the first state.
  • the refrigerant circulates to perform a refrigeration cycle.
  • the refrigerant discharged by the compressor (53) is discharged in the order of the first adsorption heat exchange (51), the electric expansion valve (55), and the second adsorption heat exchange (52).
  • the first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air, which has been given moisture in the first adsorption heat exchange (51) flows into the exhaust-side flow path (31) through the fifth damper (45), passes through the exhaust fan chamber (35), and then enters the exhaust port. It will be discharged outside through (21).
  • the four-way switching valve (54) is set to the second state.
  • the refrigerant circulates to perform a refrigeration cycle.
  • the refrigerant discharged by the compressor (53) is discharged in the order of the second adsorption heat exchange (52), the electric expansion valve (55), and the first adsorption heat exchange (51).
  • the first adsorption heat exchanger (51) becomes an evaporator and the second adsorption heat exchanger (52) becomes a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air dehumidified by the first adsorption heat exchanger (51) flows through the seventh damper (47) into the supply side flow path (33) and passes through the supply fan chamber (36) before being supplied. It is supplied into the room through the mouth (22).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air, which has been given moisture by the second adsorption heat exchanger (52) flows into the exhaust side flow path (31) through the sixth damper (46) and passes through the exhaust fan chamber (35) before being exhausted. It is discharged out of the room through the mouth (21).
  • a first operation and a second operation described later are alternately repeated at a predetermined time interval (for example, every 3 minutes).
  • the four-way switching valve (54) is set to the first state.
  • the first adsorption heat exchanger (51) becomes a condenser and the second adsorption heat exchanger (52) becomes an evaporator.
  • the moisture in the first air is adsorbed by the adsorbent, and the heat of adsorption generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture in the second adsorption heat exchanger (52) flows into the exhaust side flow path (31) through the sixth damper (46) and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
  • the first adsorption heat exchanger (51) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the first adsorption heat exchange (51) flows through the seventh damper (47) into the supply side flow path (33) and passes through the supply fan chamber (36) before being supplied. It is supplied into the room through the mouth (22).
  • the four-way switching valve (54) is set to the second state.
  • the first adsorption heat exchanger (51) becomes an evaporator and the second adsorption heat exchanger (52) becomes a condenser.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent, and the adsorption heat generated at that time is absorbed by the refrigerant.
  • the first air deprived of moisture by the first adsorption heat exchanger (51) flows into the exhaust side flow path (31) through the fifth damper (45), and is exhausted after passing through the exhaust fan chamber (35). It is discharged out of the room through the mouth (21).
  • the second adsorption heat exchanger (52) moisture is desorbed from the adsorbent heated by the refrigerant, and the desorbed moisture is given to the second air.
  • the second air humidified by the second adsorption heat exchanger (52) flows through the eighth damper (48) into the supply side flow path (33) and passes through the supply fan chamber (36). It is supplied into the room through the air supply port (22).
  • control unit (60) The operation of the control unit (60) will be described.
  • the humidity control unit (62) of the control unit (60) controls the operating frequency of the compressor (53) so that the indoor humidity desired by the user is obtained.
  • the filter state detection unit (63) detects the clogged state of the outside air filter (27) at a predetermined time every day.
  • the humidity control unit (62) sets the humidity to the target humidity and sets the temperature to the target temperature. Then, the humidity control unit (62) calculates the absolute humidity at the temperature and humidity from the target temperature and the target humidity in the calculation unit, and sets the calculated absolute humidity as the target absolute humidity.
  • the computing unit calculates the absolute humidity of the outdoor air (OA) from the detection values of the outdoor temperature sensor (65a) and the outdoor air humidity sensor (65b). Further, the calculation unit calculates the absolute humidity of the room air (RA) from the detected values of the indoor temperature sensor (67a) and the indoor air humidity sensor (67b). Further, the calculation unit calculates the absolute humidity of the supply air (SA) from the detection values of the supply air temperature sensor (66a) and the supply air humidity sensor (66b).
  • the humidity control unit (62) determines the absolute humidity of the room based on the absolute humidity of the outdoor air (OA), the indoor air (RA) and the supply air (SA) and the target absolute humidity.
  • the humidity control capacity of the humidity control device (10) is controlled to approach the humidity.
  • the humidity control capacity of the humidity control apparatus (10) is controlled, for example, by changing the refrigerant circulation rate by changing the operating frequency of the compressor (63).
  • the operation of the filter state detection unit (63) will be described with reference to the flowchart of FIG.
  • the fan control unit (61) sets the setting fan tap of the air supply fan (26) to the same state as when the air volume Q (0) is estimated.
  • step ST1 the air volume estimation unit (64) of the filter state detection unit (63) detects the detected values of the outside air temperature sensor (65a) and the outside air humidity sensor (65b), the supply air temperature sensor (66a), and Air supply humidity The sensor (66b) detection value is received, and the absolute humidity Xoa of outdoor air (OA) and the absolute humidity Xsa of supply air (SA) are calculated.
  • step ST1 ends, the process proceeds to step ST2.
  • step ST2 information on the operating frequency F of the compressor (53) is received from the air volume estimation unit (64) force humidity control unit (62). Then, the air volume estimation unit (64) uses the above equation 1 from the absolute humidity X oa of outdoor air (OA), the absolute humidity Xsa of supply air (SA), and the operating frequency F of the compressor (53). Estimate the air volume Q of the air passing through the side filter (27). When step ST2 ends, the process proceeds to step ST3.
  • OA absolute humidity X oa of outdoor air
  • SA absolute humidity Xsa of supply air
  • step ST3 Estimate the air volume Q of the air passing through the side filter (27).
  • step ST3 the air volume Q estimated by the filter state detection unit (63) is compared with the initial air volume Q (0) of the outside air filter (27). Then, when the condition of Equation 3 is satisfied, the filter state detection unit (63) proceeds to step ST4 and displays “filter replacement sign”. L represents a preset constant. When the condition of Equation 3 is not satisfied at step ST3 and when step ST4 is completed, the detection of the clogged state of the outside air filter (27) by the filter state detection unit (63) is completed.
  • the absolute humidity of the outdoor air (OA) is the outside temperature sensor (65a) and the outside air humidity.
  • the absolute humidity of the supply air (SA) is calculated based on the supply air temperature sensor (66a) and the supply air humidity sensor (66b).
  • the temperature or humidity sensor (65, 66) used for controlling the operating state of the humidity control device (10) is also used to detect the clogging state of the outside air filter (27). This eliminates the need for a separate sensor to detect clogging of the outside air filter (27), so that the configuration of the humidity control device (10) can be reduced without complicating the configuration of the filter member (27, 28). The state can be detected.
  • the air volume estimation unit (64) estimates the air volume Q of the air passing through the outdoor air filter (27) by the temperature of the outdoor air (OA) and the temperature force of the supply air (SA)! /,
  • Tsa is the temperature of the supply air (SA)
  • Toa is the temperature of the outdoor air (OA)
  • Q is the air volume passing through the outside air filter (27)
  • F is the operating frequency of the compressor (53)
  • K represents the correction value considering the pressure loss due to outside and the characteristics of the indoor space where the humidity control device (10) is installed.
  • Air volume Q the temperature Toa of the outdoor air (OA), the temperature Tsa of the supply air (SA), the operating frequency F of the compressor (53), and the air passing through the outdoor air filter (27) Air volume Q is estimated.
  • the air volume estimation unit (64) is not provided and is based on the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA). (27) The clogging state is detected.
  • the amount of change in the humidity of the air passing through the adsorption heat exchanger (51, 52) in the initial state of the outside air filter (27) is indicated in the filter state detection unit (63) by the compressor. It is stored as a database for the operating frequency F in (53). This database is created by measuring the supply air (SA) state while changing the operating frequency F of the compressor (53) and the air state of the outdoor air (OA). At this time, the absolute humidity Xoa of the outdoor air (OA) and the absolute humidity Xsa of the supply air (SA) are calculated by the air volume estimation unit (64) as in the above embodiment.
  • the filter state detection unit (63) is configured to detect the difference between the humidity change amount of the air passing through the adsorption heat exchanger (51, 52) at the time of detection and the initial humidity change amount of the outside air filter (27). When the value exceeds the set value, the “filter exchange sign” is displayed.
  • the above embodiment may be configured as in the following modification.
  • a timer for measuring the accumulated operation time of the ventilation device (10) after filter replacement is provided, and when the measured time of the timer reaches a predetermined time, it is detected by the filter state detection unit (63).
  • the outside air filter (27) is clogged until it displays “filter change sign”. This timer is used to cut off the replacement determination of the outside air filter (27).
  • the detected values of the outside air temperature sensor (65a) and the outside air humidity sensor (65b), the supply air temperature sensor (66a), and the supply air humidity sensor (66b) may be detected based on the detected value of).
  • the clogging state of the filter member (27) may be detected based on the detection values of the sensor (66a) and the supply air humidity sensor (66b).
  • the inside air temperature sensor (67a) and the inside air humidity sensor (67b) constitute intake air humidity detecting means according to the present invention, and the supply air temperature sensor (66a) and the supply air humidity sensor (66b) are supplied according to the present invention.
  • Air-humidity detection means is configured.
  • the humidity control apparatus (10) may be comprised as follows.
  • the humidity control apparatus (10) of the first modification includes a refrigerant circuit (100) and two adsorbing elements (111, 112).
  • the refrigerant circuit (100) is a closed circuit in which a compressor (101), a condenser (102), an expansion valve (103), and an evaporator (104) are connected in order.
  • a vapor compression refrigeration cycle is performed.
  • This refrigerant circuit (100) constitutes a heat source means.
  • the first adsorbing element (111) and the second adsorbing element (112) each include an adsorbent such as zeolite and constitute an adsorbing member.
  • Each adsorbing element (111, 112) is formed with a large number of air passages, and the air contacts the adsorbent when passing through the air passages.
  • This humidity control apparatus (10) repeats the first operation and the second operation.
  • the humidity controller (10) in the first operation supplies air heated by the condenser (102) to the first adsorption element (111) to regenerate the adsorbent. Meanwhile, the air deprived of moisture by the second adsorption element (112) evaporates. Cool with vessel (104).
  • the humidity control apparatus (10) in the second operation supplies air heated by the condenser (102) to the second adsorption element (112) to supply the adsorbent.
  • the air deprived of moisture by the first adsorption element (111) is cooled by the evaporator (104).
  • the humidity control apparatus (10) includes a dehumidifying operation for supplying air dehumidified when passing through the adsorbing elements (111, 112) into the room, and the air humidified when passing through the adsorbing elements (111, 112) in the room. Switching between humidification operation to be supplied to.
  • the humidity control apparatus (10) may be comprised as follows.
  • the humidity control apparatus (10) of the second modified example includes a humidity control unit (150).
  • the humidity control unit (150) includes a Peltier element (153) and a pair of suction fins (151, 152).
  • the adsorption fins (151, 152) are obtained by carrying an adsorbent such as zeolite on the surface of a so-called heat sink.
  • the suction fins (151 and 152) constitute a suction member.
  • the Peltier element (153) has a first suction fin (151) joined to one surface and a second suction fin (152) joined to the other surface. When direct current is passed through the Peltier element (153), one of the two adsorption fins (151, 152) becomes the heat absorption side and the other becomes the heat dissipation side.
  • This Peltier element (153) constitutes a heat source means.
  • the humidity control apparatus (10) repeats the first operation and the second operation.
  • the humidity control unit (150) in the first operation regenerates the adsorbent of the first adsorption fin (151) on the heat dissipation side to humidify the air, while the second adsorption fin ( Adsorb moisture to the adsorbent of 152) to dehumidify the air.
  • the humidity control unit (150) during the first operation regenerates the adsorbent of the second adsorption fin (152) on the heat dissipation side to humidify the air, while the first adsorption fin ( Adsorb moisture to the adsorbent of 151) to dehumidify the air.
  • this humidity control apparatus (10) was dehumidified by supplying dehumidified air to the room when passing through the humidity control unit (150) and humidified when passing through the humidity control unit (150). Switching between humidification operation to supply air into the room.
  • the present invention relates to a humidity control apparatus for adjusting indoor humidity. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 吸気湿度検出手段(65)の検出値及び給気湿度検出手段(66)の検出値に基づいてフィルタ部材(27,28)の目詰まりの状態を検出するフィルタ状態検出手段(63)を設ける。吸気湿度検出手段(65)及び給気湿度検出手段(66)は、調湿装置(10)の運転状態の制御に用いるものであり、フィルタ部材(27,28)の目詰まりの状態の検出にも用いるようにしている。

Description

調湿装置
技術分野
[0001] 本発明は、室内の湿度調節を行うための調湿装置に関するものである。
背景技術
[0002] 従来より、吸着剤の水分の吸着又は脱離により室内の湿度調節を行う調湿装置が 知られている。
[0003] 例えば特許文献 1には、取り込んだ室外空気を湿度調節して室内へ供給する調湿 装置が開示されている。この調湿装置には、圧縮機と膨張弁と吸着剤を担持する吸 着熱交換器とが接続された冷媒回路が設けられている。この調湿装置は、除湿運転 と加湿運転とを切換可能に構成されている。除湿運転では、吸着熱交換器で蒸発す る冷媒によって吸着剤が冷却され、吸着熱交換器を通過する空気中の水分が吸着 剤に吸着される。加湿運転では、吸着熱交換器で凝縮する冷媒によって吸着剤が加 熱され、吸着剤力 脱離した水分が吸着熱交 を通過する空気に付与される。 特許文献 1:特開 2004— 294048号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、上述したような調湿装置には、取り込んだ空気を清浄ィ匕するためにフィル タ部材が設けられる場合がある。フィルタ部材は、目詰まりが進行すると洗浄や交換 が必要になる。そして、その洗浄や交換の時期を知らせることが出来れば便利である 。従って、従来は、フィルタの目詰まりを検出するためのセンサ(例えば風速センサ) を調湿装置に設け、そのセンサの検出値に基づいてフィルタ部材の目詰まりの状態 を検出していた。しかし、フィルタ部材の目詰まりを検出するためにセンサを設けると 、その分だけ調湿装置の製作コストが増加するという問題があった。
[0005] 本発明は、斯カる点に鑑みてなされたものであり、その目的とするところは、取り込 んだ空気を清浄ィ匕するためのフィルタ部材を備える調湿装置にっ 、て、その構成を 複雑ィ匕させずにフィルタ部材の目詰まりの状態を検出することにある。 課題を解決するための手段
[0006] 第 1の発明は、取り込んだ空気を清浄ィ匕するフィルタ部材 (27,28)と、該フィルタ部 材 (27,28)を通過した空気と接触する吸着剤とを備え、取り込んだ空気を湿度調節し て室内へ供給する調湿装置(10)を前提とする。そして、取り込む空気の湿度を計測 する吸気湿度検出手段 (65)と、室内へ供給する空気の湿度を計測する給気湿度検 出手段 (66)と、上記吸気湿度検出手段 (65)の検出値及び上記給気湿度検出手段( 66)の検出値に基づ 、て上記フィルタ部材 (27,28)の目詰まりの状態を検出するフィ ルタ状態検出手段 (63)とを備えて!/、る。
[0007] 第 2の発明は、第 1の発明において、上記フィルタ状態検出手段 (63)は、上記吸気 湿度検出手段 (65)の検出値及び上記給気湿度検出手段 (66)の検出値に基づ 、て 上記フィルタ部材 (27,28)を通過する空気の風量を推測する風量推測部(64)を備え 、上記フィルタ部材 (27,28)の初期状態にぉ 、て上記風量推測部(64)が推測した風 量と検出時点で上記風量推測部(64)が推測した風量とに基づいて上記フィルタ部 材 (27,28)の目詰まりの状態を検出する。
[0008] 第 3の発明は、取り込んだ空気を清浄ィ匕するフィルタ部材 (27,28)と、該フィルタ部 材 (27,28)を通過した空気と接触する吸着剤とを備え、取り込んだ空気を湿度調節す ると共に温度調節して室内へ供給する調湿装置(10)を前提とする。そして、取り込む 空気の温度を計測する吸気温度検出手段 (65)と、室内へ供給する空気の温度を計 測する給気温度検出手段 (66)と、上記吸気温度検出手段 (65)の検出値及び上記 給気温度検出手段 (66)の検出値に基づいて上記フィルタ部材 (27,28)の目詰まりの 状態を検出するフィルタ状態検出手段 (63)とを備えている。
[0009] 第 4の発明は、第 3の発明において、上記フィルタ状態検出手段 (63)は、上記吸気 温度検出手段 (65)の検出値及び上記給気温度検出手段 (66)の検出値に基づ 、て 上記フィルタ部材 (27,28)を通過する空気の風量を推測する風量推測部(64)を備え 、上記フィルタ部材 (27,28)の初期状態にぉ 、て上記風量推測部(64)が推測した風 量と検出時点で上記風量推測部(64)が推測した風量とに基づいて上記フィルタ部 材 (27,28)の目詰まりの状態を検出する。
[0010] 第 5の発明は、第 1乃至第 4の発明において、吸着剤を担持する吸着熱交換器 (51 ,52)が接続されて冷凍サイクルを行う冷媒回路 (50)を備え、該冷媒回路 (50)の冷媒 により上記吸着熱交換器 (51,52)の吸着剤を加熱し又は冷却して該吸着剤に接触す る空気の湿度及び温度を調節する。
[0011] 一作用
第 1の発明では、吸気湿度検出手段 (65)が吸着剤に接触する前の空気すなわち 湿度調節される前の空気の湿度を計測し、給気湿度検出手段 (66)が湿度調節され た後の空気の湿度を計測する。吸気湿度検出手段 (65)の検出値及び上記給気湿 度検出手段 (66)の検出値からは、吸着剤に接触する前後における空気の湿度変化 量が導かれる。
[0012] ここで、フィルタ部材 (27,28)の目詰まりの状態は、吸着剤に接触する空気の風量 に影響を与える。また、吸着剤に接触する空気の風量は、吸着剤とその吸着剤に接 触する空気との間で授受される水分量に影響を与え、吸着剤に接触する前後におけ る空気の湿度変化量に影響を与える。つまり、吸着剤に接触する空気の風量が減少 すると、それに伴って吸着剤と接触する際の風速が低下する。風速が低下すると空 気流の乱れも小さくなるため、空気と吸着剤との間で授受される水分量が減少してし まう。このように、吸着剤に接触する空気の風量と、空気と吸着剤との間で授受される 水分量との間には相関がある。また、吸着剤と接触する空気の風量はフィルタ部材 (2 7,28)を通過する空気の風量と同じであり、フィルタ部材 (27,28)の目詰まりの程度に よって変化する。そこで、この発明では、吸気湿度検出手段 (65)の検出値及び上記 給気湿度検出手段 (66)の検出値に基づき、フィルタ部材 (27,28)の目詰まりの状態 を検出している。
[0013] 第 2の発明では、吸気湿度検出手段 (65)の検出値及び上記給気湿度検出手段 (6 6)の検出値から吸着剤に接触する前後における空気の湿度変化量が導かれる。上 述したように、吸着剤に接触する前後における空気の湿度変化量からは、吸着剤に 接触する空気の風量すなわちフィルタ部材 (27,28)を通過する空気の風量が推測さ れる。従って、フィルタ部材 (27,28)の目詰まりの状態力 フィルタ部材 (27,28)を通過 する空気の風量から検出される。
[0014] 第 3の発明では、吸気温度検出手段 (65)が吸着剤に接触する前の空気すなわち 温度調節される前の空気の温度を計測し、給気温度検出手段 (66)が温度調節され た後の空気の温度を計測する。吸気温度検出手段 (65)の検出値及び上記給気温 度検出手段 (66)の検出値からは、吸着剤に接触する前後における空気の温度変化 量が導かれる。
[0015] ここで、フィルタ部材 (27,28)の目詰まりの状態は、吸着剤に接触する空気の風量 に影響を与える。また、吸着剤に接触する空気の風量は、吸着剤とその吸着剤に接 触する空気との間の熱交換量に影響を与え、吸着剤に接触する前後における空気 の温度変化量に影響を与える。つまり、吸着剤に接触する空気の風量が減少すると 、それに伴って吸着剤と接触する際の風速が低下する。風速が低下すると空気流の 乱れも小さくなるため、空気と吸着剤との間の熱交換量が減少してしまう。このように、 吸着剤に接触する空気の風量と、空気と吸着剤との間の熱交換量との間には相関が ある。また、吸着剤と接触する空気の風量はフィルタ部材 (27,28)を通過する空気の 風量と同じであり、フィルタ部材 (27,28)の目詰まりの程度によって変化する。そこで、 この発明では、吸気温度検出手段 (65)の検出値及び上記給気温度検出手段 (66) の検出値に基づき、フィルタ部材 (27,28)の目詰まりの状態を検出している。
[0016] 第 4の発明では、吸気温度検出手段 (65)の検出値及び上記給気温度検出手段 (6 6)の検出値力 吸着剤に接触する前後における空気の温度変化量が導かれる。上 述したように、吸着剤に接触する前後における空気の温度変化量からは、吸着剤に 接触する空気の風量すなわちフィルタ部材 (27,28)を通過する空気の風量が推測さ れる。従って、フィルタ部材 (27,28)の目詰まりの状態力 フィルタ部材 (27,28)を通過 する空気の風量から検出される。
[0017] 第 5の発明では、吸着熱交 (51,52)が冷媒回路 (50)の冷媒により加熱されると 吸着剤からは水分が脱離し、吸着熱交換器 (51,52)が冷媒回路 (50)の冷媒により冷 却されると吸着剤は水分を吸着する。これにより、加熱された吸着熱交換器 (51,52) に接触する空気は加湿され、冷却された吸着熱交換器 (51,52)に接触する空気は除 湿される。
発明の効果
[0018] 本発明では、フィルタ部材 (27,28)の目詰まりの状態は、吸着剤に接触する前後に おける空気の湿度変化量 (温度変化量)に影響を与えるので、吸気湿度検出手段 (6 5)の検出値及び上記給気湿度検出手段 (66)の検出値 (吸気温度検出手段 (65)の 検出値及び上記給気温度検出手段 (66)の検出値)に基づいてフィルタ部材 (27,28) の目詰まりの状態が検出している。ここで、吸気湿度検出手段 (65)及び給気湿度検 出手段 (66) (吸気温度検出手段 (65)及び上記給気温度検出手段 (66) )は、調湿装 置(10)の運転状態の制御に用いるものである。この発明では、調湿装置(10)の運転 状態の制御に用いる吸気湿度検出手段 (65)及び給気湿度検出手段 (66) (吸気温 度検出手段 (65)及び上記給気温度検出手段 (66) )を、フィルタ部材 (27,28)の目詰 まりの状態の検出にも利用している。これにより、フィルタ部材 (27,28)の目詰まりを検 出するために別途センサを設ける必要がなくなるので、調湿装置(10)の構成を複雑 化させずにフィルタ部材 (27,28)の状態を検出することができる。
図面の簡単な説明
[図 1]図 1は、実施形態の調湿装置の構成を示す斜視図である。
[図 2]図 2は、実施形態の調湿装置の概略構成を示す平面視、右側面視、及び左側 面視の構成図である。
[図 3]図 3は、実施形態の冷媒回路の構成を示す配管系統図であって、(A)は第 1動 作中の動作を示すものであり、(B)は第 2動作中の動作を示すものである。
[図 4]図 4は、吸着熱交換器の概略斜視図である。
[図 5]図 5は、除湿運転における第 1動作中の空気の流れを示す調湿装置の概略構 成図である。
[図 6]図 6は、除湿運転における第 2動作中の空気の流れを示す調湿装置の概略構 成図である。
[図 7]図 7は、加湿運転における第 1動作中の空気の流れを示す調湿装置の概略構 成図である。
[図 8]図 8は、加湿運転における第 2動作中の空気の流れを示す調湿装置の概略構 成図である。
[図 9]図 9は、実施形態におけるフィルタ状態検出部の動作の流れを示すフロー図で ある。 [図 10]図 10は、その他の実施形態の第 3変形例における調湿装置の概略構成図で あって、(A)は第 1動作中の動作を示すものであり、(B)は第 2動作中の動作を示すも のである。
[図 11]図 11は、その他の実施形態の第 4変形例における調湿ユニットの概略斜視図 である。
符号の説明
[0020] 10 調湿装置
27 外気側フィルタ(フィルタ部材)
28 内気側フィルタ(フィルタ部材)
50 冷媒回路
51 第 1吸着熱交換器 (吸着熱交換器)
52 第 2吸着熱交換器 (吸着熱交換器)
63 フィルタ状態検出部 (フィルタ状態検出手段)
64 風量推測部
65a外気湿度センサ(吸気湿度検出手段)
65b外気温度センサ(吸気湿度検出手段)
66a給気湿度センサ(給気湿度検出手段)
66b給気温度センサ(給気湿度検出手段)
発明を実施するための最良の形態
[0021] 本発明の実施形態について説明する。本実施形態の調湿装置(10)は、室内の湿 度調節と共に室内の換気を行うものであり、取り込んだ室外空気 (OA)を湿度調節し て室内へ供給すると同時に、取り込んだ室内空気 (RA)を室外に排出する。
[0022] 〈調湿装置の全体構成〉
上記調湿装置(10)について、図 1及び図 2を参照しながら説明する。尚、ここでの 説明で用いる「上」「下」「左」「右」「前」「後」「手前」「奥」は、特にことわらない限り、上 記調湿装置(10)を前面側から見た場合の方向を意味して 、る。
[0023] 上記調湿装置(10)は、ケーシング(11)を備えている。また、ケーシング(11)内には 、冷媒回路 (50)が収容されている。この冷媒回路 (50)には、第 1吸着熱交換器 (51) 、第 2吸着熱交換器 (52)、圧縮機 (53)、四方切換弁 (54)、及び電動膨張弁 (55)が 接続されている。冷媒回路 (50)の詳細は後述する。
[0024] 上記ケーシング(11)は、やや扁平で高さが比較的低い直方体状に形成されている 。このケーシング(11)では、図 1における左手前側に前面パネル(12)が、同図にお ける右奥側に背面パネル(13)がそれぞれ立設されており、同図における左手前から 右奥へ向力う方向の長さと右手前力 左奥へ向力う方向の長さがほぼ等しくなつてい る。
[0025] ケーシング(11)の前面パネル(12)では、左寄りの位置に排気口(21)力 右寄りの 位置に給気口(22)がそれぞれ開口している。ケーシング(11)の背面パネル(13)の 中央部には上寄りの位置に外気吸込口(23)力 下寄りのの位置に内気吸込口(24) がそれぞれ開口している。
[0026] 上記ケーシング(11)の内部空間は、前面パネル(12)側の比較的容積が小さ!/、空 間と、背面パネル (13)側の比較的容積が大きい空間とに区画されている。
[0027] 上記ケーシング(11)内における前面パネル(12)側の空間は、左右 2つの空間に仕 切られている。この左右に仕切られた空間は、左側の空間が排気ファン室 (35)を、右 側の空間が給気ファン室 (36)をそれぞれ構成している。排気ファン室 (35)は、排気 口(21)を介して室外空間と連通している。この排気ファン室 (35)には排気ファン (25) が収容されており、排気ファン (25)の吹出口が排気口(21)に接続されている。一方、 給気ファン室 (36)は、給気口(22)を介して室内空間と連通している。この給気ファン 室 (36)には、給気ファン (26)が収容されており、給気ファン (26)の吹出口が給気口( 22)に接続されている。また、給気ファン室 (36)には、圧縮機 (53)も収容されている。
[0028] 一方、上記ケーシング(11)内の背面パネル(13)側の空間は、ケーシング(11)内に 立設された第 1仕切板(16)及び第 2仕切板(17)によって前後 3つの空間に仕切られ ている。これら仕切板(16,17)は、ケーシング(11)の左右方向に延びている。第 1仕 切板( 16)はケーシング(11)の背面寄りに、第 2仕切板( 17)はケーシング( 11 )の前面 寄りにそれぞれ配置されて!ヽる。
[0029] 上記ケーシング(11)内において、第 1仕切板(16)の奥の空間は上下 2つの空間に 仕切られており、上側の空間が外気側流路 (32)を、下側の空間が内気側流路 (34) をそれぞれ構成している。外気側流路 (32)は、外気吸込口(23)を介して室外空間と 連通している。外気側流路 (32)には、左右に延びてその流路 (32)を前後に区画す るフィルタ部材である外気側フィルタ(27)が設けられて 、る。内気側流路 (34)は内気 吸込口(24)を介して室内と連通している。内気側流路 (34)には、左右に延びてその 流路 (34)を前後に区画するフィルタ部材である内気側フィルタ (28)が設けられて 、 る。
[0030] 一方、第 2仕切板(17)の手前の空間は上下 2つの空間に仕切られており、上側の 空間が排気側流路 (31)を、下側の空間が給気側流路 (33)を構成している。排気側 流路 (31)は、排気ファン室 (35)と連通している。給気側流路 (33)は、給気ファン室( 36)と連通している。
[0031] 第 1仕切板(16)と第 2仕切板(17)との間の空間は、更に中央仕切板(18)によって 左右 2つの空間に仕切られている。そして、中央仕切板(18)の右側の空間が第 1熱 交 室 (37)を構成し、その左側の空間が第 2熱交 室 (38)を構成している。第 1熱交換器室 (37)には第 1吸着熱交換器 (51)が、第 2熱交換器室 (38)には第 2吸着 熱交翻 (52)がそれぞれ収容されている。これら 2つの吸着熱交翻 (51,52)は、そ れぞれが収容される熱交 室 (37,38)を左右方向へ横断するように配置されて!、 る。
[0032] 上記第 1仕切板(16)には、開閉式のダンバ (41〜44)が 4つ設けられている。具体 的に、第 1仕切板(16)では、右側の上部に第 1ダンバ (41)が、左側の上部に第 2ダ ンパ (42) 1S 右側の下部に第 3ダンバ (43)が、左側の下部に第 4ダンバ (44)がそれ ぞれ取り付けられている。第 1ダンバ (41)を開くと、外気側流路 (32)と第 1熱交 室 (37)が連通する。第 2ダンバ (42)を開くと、外気側流路 (32)と第 2熱交換器室 (38 )が連通する。第 3ダンバ (43)を開くと、内気側流路 (34)と第 1熱交換器室 (37)が連 通する。第 4ダンバ (44)を開くと、内気側流路 (34)と第 2熱交換器室 (38)が連通する
[0033] 上記第 2仕切板(17)には、開閉式のダンバ (45〜48)が 4つ設けられている。具体 的に、第 2仕切板(17)では、右側の上部に第 5ダンバ (45)が、左側の上部に第 6ダ ンパ (46)力 右側の下部に第 7ダンバ (47)が、左側の下部に第 8ダンバ (48)がそれ ぞれ取り付けられている。第 5ダンバ (45)を開くと、排気側流路 (31)と第 1熱交 室 (37)が連通する。第 6ダンバ (46)を開くと、排気側流路 (31)と第 2熱交翻室 (38 )が連通する。第 7ダンバ (47)を開くと、給気側流路 (33)と第 1熱交換器室 (37)が連 通する。第 8ダンバ (48)を開くと、給気側流路 (33)と第 2熱交換器室 (38)が連通する
[0034] また、この調湿装置(10)には、調湿装置(10)が室外から取り込む室外空気(OA) の温度及び湿度をそれぞれ計測する外気温度センサ (65a)及び外気湿度センサ (65 b)力 外気側流路 (32)の外気側フィルタ (27)の後側に設けられている。外気温度セ ンサ (65a)及び外気湿度センサ (65b)は、本発明に係る吸気湿度検出手段を構成し ている。また、調湿装置(10)力 室内へ供給される供給空気 (SA)の温度及び湿度を それぞれ計測する給気温度センサ (66a)及び給気湿度センサ (66b)が、給気側流路 (33)に設けられている。給気温度センサ(66a)及び給気湿度センサ(66b)は、本発 明に係る給気湿度検出手段を構成している。また、調湿装置(10)が室内から取り込 む室内空気 (RA)の温度及び湿度をそれぞれ計測する内気温度センサ (67a)及び内 気湿度センサ(67b)が内気側流路 (34)の内気側フィルタ(28)の後側に設けられて 、 る。これらのセンサ (65,66,67)の検出値は、制御部(60)に送信される。
[0035] 〈冷媒回路の構成〉
上記冷媒回路 (50)について、図 3を参照しながら説明する。
[0036] 上記冷媒回路 (50)は、第 1吸着熱交翻 (51)、第 2吸着熱交翻 (52)、圧縮機 (5 3)、四方切換弁 (54)、及び電動膨張弁 (55)が設けられた閉回路である。この冷媒回 路 (50)は、充填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。
[0037] 上記冷媒回路 (50)にお 、て、圧縮機 (53)は、その吐出側が四方切換弁 (54)の第 1のポートに、その吸入側が四方切換弁 (54)の第 2のポートにそれぞれ接続されてい る。第 1吸着熱交翻(51)の一端は、四方切換弁 (54)の第 3のポートに接続されて いる。第 1吸着熱交換器 (51)の他端は、電動膨張弁 (55)を介して第 2吸着熱交換器 (52)の一端に接続されている。第 2吸着熱交換器 (52)の他端は、四方切換弁 (54) の第 4のポートに接続されて 、る。
[0038] 上記四方切換弁 (54)は、第 1のポートと第 3のポートが連通して第 2のポートと第 4 のポートが連通する第 1状態(図 3(A)に示す状態)と、第 1のポートと第 4のポートが 連通して第 2のポートと第 3のポートが連通する第 2状態(図 3(B)に示す状態)とに切 り換え可能となっている。
[0039] 図 4に示すように、第 1吸着熱交換器 (51)及び第 2吸着熱交換器 (52)は、何れもク ロスフィン型のフィン'アンド ·チューブ熱交^^によって構成されて ヽる。これら吸着 熱交翻 (51,52)は、銅製の伝熱管(58)とアルミニウム製のフィン (57)とを備えて!/、 る。吸着熱交翻 (51,52)に設けられた複数のフィン (57)は、それぞれが長方形板 状に形成され、一定の間隔で並べられている。また、伝熱管(58)は、各フィン (57)を 貫通するように設けられて 、る。
[0040] 上記各吸着熱交翻 (51,52)では、各フィン (57)の表面に吸着剤が担持されてお り、フィン (57)の間を通過する空気がフィン (57)に担持された吸着剤と接触する。こ の吸着剤としては、ゼォライト、シリカゲル、活性炭、親水性の官能基を有する有機高 分子材料など、空気中の水蒸気を吸着できるものが用いられる。
[0041] く制御部の構成〉
この調湿装置(10)の制御部(60)には、排気ファン (25)及び給気ファン (26)の風量 を制御するファン制御部 (61)と、調湿装置(10)の調湿能力を調節するために冷媒回 路 (50)の冷凍サイクルの状態を制御する調湿制御部(62)と、外気側フィルタ (27)の 目詰まりの状態を検出するフィルタ状態検出手段であるフィルタ状態検出部 (63)とが 設けられている。フィルタ状態検出部(63)には、外気側フィルタ (27)を通過する空気 の風量 Qを推測する風量推測部 (64)が設けられて 、る。
[0042] ファン制御部(61)には、給気ファン (26)及び排気ファン (25)の風量を 3段階 (例え ば「大」「中」「小」)に調節可能な設定ファンタップが設けられている。給気ファン (26) 及び排気ファン (25)は、設定ファンタップの設定状態によってファンモータ出力が決 められている。つまり、ファン (26,27)の設定ファンタップがある設定状態 (例えば「大」 )にあるときは、ファンモータ出力がその設定状態に対応する所定値に固定される。 なお、設定ファンタップの設定状態によって、ファンモータの回転速度を決定するよう にしてもよい。
[0043] 調湿制御部(62)には、図示しな 、が、ユーザーが希望の室内湿度を入力する湿度 入力部と、ユーザーが希望の室内温度を入力する温度入力部とが設けられている。
[0044] 湿度入力部は、希望の室内湿度を「低」「中」「高」の 3段階の中から選択可能に構 成されている。調湿制御部(62)には、「低」「中」「高」のそれぞれに対応する相対湿 度の範囲が予め設定されている。湿度入力部に「低」「中」「高」の何れかが入力され て 、ると、調湿制御部(62)は、その入力に対応する相対湿度の範囲を目標湿度 (例 えば 50%〜60%)に設定する。また、調湿制御部(62)は、温度入力部に希望の室 内温度が入力されていると、その希望の室内温度を目標温度 (例えば 25°C)に設定 する。
[0045] 調湿制御部(62)は、図示しな 、が演算部を備えて 、る。演算部は、目標湿度及び 目標温度力 その温度と湿度における絶対湿度を算出する。調湿制御部 (62)は、演 算部で算出した絶対湿度を目標絶対湿度に設定し、室内の絶対湿度が目標絶対湿 度に近づくように調湿装置(10)の調湿能力を調節する。
[0046] フィルタ状態検出部(63)は、風量推測部(64)で外気側フィルタ (27)を通過する空 気の風量 Qを推測し、その推測した風量 Qに基づ 、て外気側フィルタ (27)の目詰まり の状態を検出する。
[0047] 風量推測部(64)には、外気側フィルタ(27)を通過する空気の風量 Qを推測するた めに、式 1に示すデータベース関数が記憶されて 、る。
[0048] 式 l :Xsa=J (Xoa,Q,F) +K
上記式 1にお 、て、 Xsaは供給空気(SA)の絶対湿度、 Xoaは室外空気(OA)の絶 対湿度、 Qは外気側フィルタ(27)を通過する空気の風量、 Fは圧縮機 (53)の運転周 波数、 Kはダ外による圧力損失や換気装置(10)を設置する室内空間の特性を考慮 した補正値をそれぞれ表している。なお、外気側フィルタ(27)を通過する空気の風量 Qは、給気ファン (26)によって室内へ供給される風量とほぼ一致すると考えて差し支 えない。
[0049] 上記式 1のデータベース関数は、供給空気 (SA)の絶対湿度 Xsaを、室外空気(OA )の絶対湿度 Xoaと、外気側フィルタ (27)を通過する空気の風量 Qと、圧縮機 (53)の 運転周波数 Fとの関数として表現したものである。この式 1のデータベース関数は、換 気装置(10)の設計時に式 2のデータベース関数を作成し、換気装置(10)を設置す る際に Kの値を決定したものである。
[0050] 式 2 :Xsa=J (Xoa,Q,F)
式 2のデータベース関数は、外気側フィルタ (27)の初期状態 (換気装置(10)を設 置した直後や外気側フィルタ (27)を洗浄又は交換した直後の汚れが付着して 、な!/ヽ 状態)において、給気ファン (26)の風量や、圧縮機 (53)の運転周波数 Fや、外気吸 込口(23)から取り込まれる室外空気 (OA)の状態を変化させながら、内気吸込口(24 )から吹き出される供給空気 (SA)の状態を計測することにより作成して!/、る。その際、 室外空気(OA)の絶対湿度 Xoaは、風量推測部(64)が外気温度センサ(65a)及び外 気湿度センサ(65b)の検出値力 計算して 、る。供給空気 (SA)の絶対湿度 Xsaは、 風量推測部(64)が給気温度センサ (66a)及び給気湿度センサ (66b)の検出値から 計算している。
[0051] ところで、外気側フィルタ (27)を通過する空気の風量 Q (すなわち吸着熱交換器 (5 1,52)の吸着剤に接触する空気の風量)が変化すると、吸着熱交換器 (51,52)を通過 する空気の湿度変化量が変化する。具体的に、風量 Qが減少すると、それに伴って 吸着剤と接触する際の風速が低下する。風速が低下すると空気流の乱れも小さくな るため、空気と吸着剤との間で授受される水分量すなわち吸着熱交翻 (51,52)を 通過する空気の湿度変化量が減少してしまう。このように、外気側フィルタ (27)を通 過する空気の風量 Qと、吸着熱交換器 (51,52)を通過する空気の湿度変化量との間 には相関がある。また、圧縮機 (53)の運転周波数を変えても、吸着熱交翻(51,52) における冷媒の蒸発温度又は凝縮温度が変化して吸着剤に接触する空気の温度を 変化させるので、吸着熱交翻(51,52)を通過する空気の湿度変化量が変化する。 そこで、この式 2のデータベース関数では、外気側フィルタ(27)を通過する空気の風 量 Qと圧縮機 (53)の運転周波数 Fとに対する吸着熱交換器 (51,52)を通過する空気 の湿度変化量の関係をデータベース化して 、る。
[0052] また、換気装置 (10)を設置する際のダ外の長さや形状は、設置場所ごとに異なり、 ダ外の圧力損失も設置場所ごとに異なる。このため、給気ファン (26)の設定ファンタ ップが同じ設定状態でも、給気ファン (26)の風量は、設置場所ごとに異なる。また、こ の換気装置(10)では、室内から取り込む室内空気 (RA)の温度及び湿度によって室 内への供給空気 (SA)の温度又は湿度が変化する。具体的に、換気装置(10)が室 内から取り込む室内空気 (RA)の温度又は湿度が変化すると、吸着熱交換器 (51,52) での冷媒の吸熱量や吸着剤の水分の吸着量が変化し、それに応じて換気装置(10) の運転状態も変化するので、室内への供給空気 (SA)の温度又は湿度が変化する。 このため、ダクトによる圧力損失と換気装置(10)を設置する室内空間の特性とを考慮 した Kを定め、これらの影響を排除している。
[0053] 式 2のデータベース関数は、調湿装置(10)の設置状態における外気側フィルタ (27 )を通過する空気の風量 Qと圧縮機 (53)の運転周波数 Fとに対する吸着熱交換器 (5 1,52)を通過する空気の湿度変化量の関係を表している。この式 2のデータベース関 数によれば、室外空気(OA)の絶対湿度 Xoa及び供給空気 (SA)の絶対湿度 Xsaと圧 縮機 (53)の運転周波数 Fとから、外気側フィルタ (27)を通過する空気の風量 Qを推 柳』することができる。
[0054] 風量推測部(64)は、給気ファン (26)の設定ファンタップを例えば「中」に設定して、 式 1を用いて初期状態の外気側フィルタ (27)を通過する空気の風量 Q(0)を推測する 。その際、圧縮機 (53)の運転周波数 Fの情報は、調湿制御部 (62)から風量推測部( 64)へ伝達される。推測した風量 Q(0)は、フィルタ状態検出部(63)に記憶される。
[0055] フィルタ状態検出部(63)は、毎日所定の時刻(例えば午後 0時)になると、風量推 測部(64)が外気側フィルタ (27)を通過する空気の風量 Qを推測する。フィルタ状態 検出部(63)は、風量推測部(64)で推測した外気側フィルタ (27)を通過する空気の 風量 Qを上記風量 Q(0)と比較して外気側フィルタ (27)の目詰まりの状態を検出する。 そして、外気側フィルタ(27)を交換する必要がある場合には、「フィルタ交換サイン」 を表示する。フィルタ状態検出部(63)の動作にっ 、ての詳細は後述する。
[0056] 運転動作
本実施形態の調湿装置(10)では、除湿運転又は加湿運転を行うものである。除湿 運転中や加湿運転中の調湿装置(10)は、取り込んだ室外空気 (OA)を湿度調節し て力も供給空気 (SA)として室内へ供給すると同時に、取り込んだ室内空気 (RA)を排 出空気 (EA)として室外へ排出する。
[0057] 〈除湿運転〉 除湿運転中の調湿装置(10)では、後述する第 1動作と第 2動作が所定の時間間隔 (例えば 3分間隔)で交互に繰り返される。
[0058] まず、除湿運転の第 1動作について説明する。図 5に示すように、この第 1動作中に は、第 2ダンバ (42)、第 3ダンバ (43)、第 5ダンバ (45)、及び第 8ダンバ (48)だけが開 状態となり、残りのダンバ (41,44,46,47)が閉状態となる。そして、この状態で調湿装 置(10)の給気ファン (26)及び排気ファン (25)が運転される。給気ファン (26)を運転 すると、室外空気が外気吸込口(23)力 ケーシング(11)内へ第 1空気として取り込ま れる。排気ファン (25)を運転すると、室内空気が内気吸込口(24)力 ケーシング(11 )内へ第 2空気として取り込まれる。
[0059] この第 1動作中の冷媒回路 (50)では、図 3(A)に示すように、四方切換弁 (54)が第 1状態に設定される。この状態の冷媒回路 (50)では、冷媒が循環して冷凍サイクル が行われる。その際、冷媒回路 (50)では、圧縮機 (53)力 吐出された冷媒が第 1吸 着熱交翻 (51)、電動膨張弁 (55)、第 2吸着熱交翻 (52)の順に通過し、第 1吸着 熱交 (51)が凝縮器となって第 2吸着熱交 (52)が蒸発器となる。
[0060] 外気吸込口(23)から外気側流路 (32)へ流入した第 1空気は、第 2ダンバ (42)を通 つて第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過する。第 2吸着熱交換器 (52)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 2吸着熱交換器 (52)で除湿された第 1空気は、第 8 ダンバ (48)を通って給気側流路 (33)へ流入し、給気ファン室 (36)を通過後に給気 口(22)を通って室内へ供給される。
[0061] 一方、内気吸込口(24)から内気側流路 (34)へ流入した第 2空気は、第 3ダンバ (43 )を通って第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過す る。第 1吸着熱交換器 (51)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 1吸着熱交 (51)で水分を付与された 第 2空気は、第 5ダンバ (45)を通って排気側流路 (31)へ流入し、排気ファン室 (35) を通過後に排気口(21)を通って室外へ排出される。
[0062] 除湿運転の第 2動作について説明する。図 6に示すように、この第 2動作中には、 第 1ダンバ (41)、第 4ダンバ (44)、第 6ダンバ (46)、及び第 7ダンバ (47)だけが開状 態となり、残りのダンバ (42,43,45,48)が閉状態となる。
[0063] この第 2動作中の冷媒回路 (50)では、図 3(B)に示すように、四方切換弁 (54)が第 2状態に設定される。この状態の冷媒回路 (50)では、冷媒が循環して冷凍サイクル が行われる。その際、冷媒回路 (50)では、圧縮機 (53)力 吐出された冷媒が第 2吸 着熱交翻 (52)、電動膨張弁 (55)、第 1吸着熱交翻 (51)の順に通過し、第 1吸着 熱交 (51)が蒸発器となって第 2吸着熱交 (52)が凝縮器となる。
[0064] 外気吸込口(23)から外気側流路 (32)へ流入した第 1空気は、第 1ダンバ (41)を通 つて第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過する。第 1吸着熱交換器 (51)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 1吸着熱交換器 (51)で除湿された第 1空気は、第 7 ダンバ (47)を通って給気側流路 (33)へ流入し、給気ファン室 (36)を通過後に給気 口(22)を通って室内へ供給される。
[0065] 一方、内気吸込口(24)から内気側流路 (34)へ流入した第 2空気は、第 4ダンバ (44 )を通って第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過す る。第 2吸着熱交換器 (52)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 2吸着熱交換器 (52)で水分を付与された 第 2空気は、第 6ダンバ (46)を通って排気側流路 (31)へ流入し、排気ファン室 (35) を通過後に排気口(21)を通って室外へ排出される。
[0066] 〈加湿運転〉
加湿運転中の調湿装置(10)では、後述する第 1動作と第 2動作が所定の時間間隔 (例えば 3分間隔)で交互に繰り返される。
[0067] まず、加湿運転の第 1動作について説明する。図 7に示すように、この第 1動作中に は、第 1ダンバ (41)、第 4ダンバ (44)、第 6ダンバ (46)、及び第 7ダンバ (47)だけが開 状態となり、残りのダンバ (42,43,45,48)が閉状態となる。そして、この状態で調湿装 置(10)の給気ファン (26)及び排気ファン (25)が運転される。給気ファン (26)を運転 すると、室外空気が外気吸込口(23)力 ケーシング(11)内へ第 1空気として取り込ま れる。排気ファン (25)を運転すると、室内空気が内気吸込口(24)力 ケーシング(11 )内へ第 2空気として取り込まれる。 [0068] この第 1動作中の冷媒回路 (50)では、図 3(A)に示すように、四方切換弁 (54)が第 1状態に設定される。そして、この冷媒回路 (50)では、除湿運転の第 1動作中と同様 に、第 1吸着熱交 (51)が凝縮器となって第 2吸着熱交 (52)が蒸発器となる
[0069] 内気吸込口(24)から内気側流路 (34)へ流入した第 1空気は、第 4ダンバ (44)を通 つて第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過する。第 2吸着熱交換器 (52)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 2吸着熱交換器 (52)で水分を奪われた第 1空気は、 第 6ダンバ (46)を通って排気側流路 (31)へ流入し、排気ファン室 (35)を通過後に排 気口(21)を通って室外へ排出される。
[0070] 一方、外気吸込口(23)から外気側流路 (32)へ流入した第 2空気は、第 1ダンバ (41 )を通って第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過す る。第 1吸着熱交換器 (51)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 1吸着熱交 (51)で加湿された第 2空 気は、第 7ダンバ (47)を通って給気側流路 (33)へ流入し、給気ファン室 (36)を通過 後に給気口(22)を通って室内へ供給される。
[0071] 加湿運転の第 2動作について説明する。図 8に示すように、この第 2動作中には、 第 2ダンバ (42)、第 3ダンバ (43)、第 5ダンバ (45)、及び第 8ダンバ (48)だけが開状 態となり、残りのダンバ (41,44,46,47)が閉状態となる。
[0072] この第 2動作中の冷媒回路 (50)では、図 3(B)に示すように、四方切換弁 (54)が第 2状態に設定される。そして、この冷媒回路 (50)では、除湿運転の第 2動作中と同様 に、第 1吸着熱交 (51)が蒸発器となって第 2吸着熱交 (52)が凝縮器となる
[0073] 内気吸込口(24)から内気側流路 (34)へ流入した第 1空気は、第 3ダンバ (43)を通 つて第 1熱交換器室 (37)へ流入し、その後に第 1吸着熱交換器 (51)を通過する。第 1吸着熱交換器 (51)では、第 1空気中の水分が吸着剤に吸着され、その際に生じた 吸着熱が冷媒に吸熱される。第 1吸着熱交換器 (51)で水分を奪われた第 1空気は、 第 5ダンバ (45)を通って排気側流路 (31)へ流入し、排気ファン室 (35)を通過後に排 気口(21)を通って室外へ排出される。
[0074] 一方、外気吸込口(23)から外気側流路 (32)へ流入した第 2空気は、第 2ダンバ (42 )を通って第 2熱交換器室 (38)へ流入し、その後に第 2吸着熱交換器 (52)を通過す る。第 2吸着熱交換器 (52)では、冷媒で加熱された吸着剤から水分が脱離し、この 脱離した水分が第 2空気に付与される。第 2吸着熱交換器 (52)で加湿された第 2空 気は、第 8ダンバ (48)を通って給気側流路 (33)へ流入し、給気ファン室 (36)を通過 後に給気口(22)を通って室内へ供給される。
[0075] く制御部の動作〉
制御部(60)の動作にっ 、て説明する。
[0076] 制御部(60)の調湿制御部(62)は、ユーザーが希望する室内湿度になるように圧縮 機 (53)の運転周波数などを制御する。また、フィルタ状態検出部 (63)は、毎日所定 の時刻になると外気側フィルタ (27)の目詰まりの状態を検出する。
[0077] 調湿制御部(62)の動作にっ 、て説明する。調湿制御部(62)は、ユーザーが希望 の室内湿度及び室内温度を入力すると、その湿度を目標湿度に設定し、その温度を 目標温度に設定する。そして、調湿制御部 (62)は、演算部で目標温度及び目標湿 度からその温度と湿度における絶対湿度を算出し、その算出した絶対湿度を目標絶 対湿度に設定する。また、演算部は、外気温度センサ (65a)及び外気湿度センサ (65 b)の検出値から室外空気 (OA)の絶対湿度を算出する。さらに、演算部は、内気温 度センサ(67a)及び内気湿度センサ(67b)の検出値から室内空気 (RA)の絶対湿度 を算出する。さらに、演算部は、給気温度センサ(66a)及び給気湿度センサ(66b)の 検出値から供給空気 (SA)の絶対湿度を算出する。
[0078] 調湿制御部(62)は、室外空気(OA)、室内空気 (RA)及び供給空気 (SA)の絶対湿 度と上記目標絶対湿度とに基づいて、室内の絶対湿度が目標絶対湿度に近づくよう に調湿装置(10)の調湿能力を制御する。この調湿装置(10)の調湿能力の制御は、 例えば圧縮機 (63)の運転周波数を変更して冷媒循環量を変化させることによって行 われる。
[0079] フィルタ状態検出部(63)の動作について、図 9のフロー図を参照しながら説明する 。フィルタ状態検出部 (63)が外気側フィルタ (27)の目詰まりの状態を検出する際は、 ファン制御部(61)が給気ファン (26)の設定ファンタップを風量 Q(0)を推測した時と同 じ状態に設定する。
[0080] まずステップ ST1で、フィルタ状態検出部(63)の風量推測部(64)は、外気温度セン サ(65a)及び外気湿度センサ(65b)の検出値と給気温度センサ(66a)及び給気湿度 センサ(66b)の検出値とを受信し、室外空気(OA)の絶対湿度 Xoa及び給気空気 (SA )の絶対湿度 Xsaを計算する。ステップ ST1が終了するとステップ ST2に移行する。
[0081] ステップ ST2では、風量推測部(64)力 調湿制御部(62)から圧縮機 (53)の運転周 波数 Fの情報を受け取る。そして、風量推測部 (64)が、室外空気 (OA)の絶対湿度 X oa及び給気空気 (SA)の絶対湿度 Xsaと圧縮機 (53)の運転周波数 Fとから上記式 1を 用いて外気側フィルタ (27)を通過する空気の風量 Qを推測する。ステップ ST2が終了 するとステップ ST3に移行する。
[0082] ステップ ST3では、フィルタ状態検出部(63)力 推測した風量 Qを外気側フィルタ (2 7)の初期状態の風量 Q(0)と比較する。そして、フィルタ状態検出部 (63)は、式 3の条 件が成立するとステップ ST4に移行して「フィルタ交換サイン」を表示する。 Lは予め設 定された定数を表して 、る。ステップ ST3で式 3の条件が成立しな 、場合とステップ ST 4が終了した場合は、フィルタ状態検出部(63)による外気側フィルタ (27)の目詰まり の状態の検出が終了する。
[0083] ¾:3 : Q≤Q(0) X L
フィルタ状態検出部(63)は、毎日所定の時刻になると外気側フィルタ (27)の目詰ま りの状態を検出する。そして、式 3の条件が成立する場合に「フィルタ交換サイン」を 表示する。例えば L = 0.9の場合は、フィルタ状態検出部(63)によって検出される外 気側フィルタ (27)を通過する空気の風量 Qが、外気側フィルタ (27)の初期状態にお ける風量 Q(0)の 90%以下まで低下すると「フィルタ交換サイン」が表示される。
[0084] 実施形態の効果
上記実施形態では、外気側フィルタ (27)の目詰まりの状態が、吸着剤に接触する 前後における空気の湿度変化量に影響を与えるので、室外空気(OA)の絶対湿度 及び供給空気 (SA)の絶対湿度に基づ!/、て外気側フィルタ (27)の目詰まりの状態が 検出している。室外空気(OA)の絶対湿度は、外気温度センサ(65a)及び外気湿度 センサ (65b)に基づ 、て計算され、供給空気 (SA)の絶対湿度は、給気温度センサ (6 6a)及び給気湿度センサ (66b)に基づいて計算される。ところで、これらの温度又は 湿度センサ(65,66)は、調湿装置(10)の運転状態の制御に用いられている。この実 施形態では、調湿装置(10)の運転状態の制御に用いる温度又は湿度センサ(65,66 )を、外気側フィルタ (27)の目詰まりの状態の検出にも利用している。これにより、外 気側フィルタ (27)の目詰まりを検出するために別途センサを設ける必要がなくなるの で、調湿装置(10)の構成を複雑化させずにフィルタ部材 (27,28)の状態を検出する ことができる。
[0085] 実施形態の変形例 1
実施形態の変形例 1について説明する。この変形例 1では、風量推測部 (64)が室 外空気(OA)の温度及び供給空気 (SA)の温度力 外気側フィルタ(27)を通過する 空気の風量 Qを推測して!/、る。
[0086] 具体的に、風量推測部(64)には、式 4に示すデータベース関数が記憶されている 。この式 4のデータベース関数は、上記実施形態と同様に、換気装置(10)の設計時 にデータベース関数「Tsa=J (Toa,Q,F)」を作成し、換気装置(10)を設置する際に Kの値を決定したものである。
[0087] 式 4 :Tsa=J (Toa,Q,F) +K
上記式 4において、 Tsaは供給空気(SA)の温度、 Toaは室外空気(OA)の温度、 Q は外気側フィルタ(27)を通過する空気の風量、 Fは圧縮機 (53)の運転周波数、 Kは ダ外による圧力損失や調湿装置(10)を設置する室内空間の特性を考慮した補正値 をそれぞれ表している。
[0088] ところで、外気側フィルタ (27)を通過する空気の風量 Q (すなわち吸着熱交換器 (5 1,52)の吸着剤に接触する空気の風量)が変化すると、吸着熱交換器 (51,52)を通過 する空気の温度変化量が変化する。具体的に、風量 Qが減少すると、それに伴って 吸着剤と接触する際の風速が低下する。風速が低下すると空気流の乱れも小さくな るため、空気と吸着剤との間の熱交換量すなわち吸着熱交翻 (51,52)を通過する 空気の温度変化量が減少してしまう。このように、外気側フィルタ (27)を通過する空 気の風量 Qと、吸着熱交換器 (51,52)を通過する空気の温度変化量との間には相関 がある。また、圧縮機 (53)の運転周波数を変えても、吸着熱交 ^^ (51,52)における 冷媒の蒸発温度又は凝縮温度が変化するので、吸着熱交換器 (51,52)を通過する 空気の温度変化量が変化する。そこで、この式 2のデータベース関数では、外気側フ ィルタ (27)を通過する空気の風量 Qと圧縮機 (53)の運転周波数 Fとに対する吸着熱 交翻 (51,52)を通過する空気の温度変化量の関係をデータベース化している。
[0089] この式 4によれば、室外空気(OA)の温度 Toa及び供給空気(SA)の温度 Tsaと圧縮 機 (53)の運転周波数 Fとから外気側フィルタ (27)を通過する空気の風量 Qが推測さ れる。
[0090] 一実施形態の変形例 2—
実施形態の変形例 2について説明する。この変形例 2では、風量推測部 (64)は設 けられておらず、室外空気(OA)の絶対湿度 Xoaと供給空気 (SA)の絶対湿度 Xsaと に基づ!/ヽて外気側フィルタ(27)の目詰まりの状態を検出する。
[0091] 具体的に、フィルタ状態検出部(63)には、外気側フィルタ (27)の初期状態におけ る吸着熱交換器 (51,52)を通過する空気の湿度変化量が、圧縮機 (53)の運転周波 数 Fに対してデータベースとして記憶されている。このデータベースは、圧縮機 (53) の運転周波数 Fや、室外空気 (OA)の空気の状態を変化させながら供給空気 (SA) の状態を計測することにより作成している。その際、室外空気 (OA)の絶対湿度 Xoaと 供給空気 (SA)の絶対湿度 Xsaとは、上記実施形態と同様に風量推測部 (64)が計算 している。
[0092] 外気側フィルタ(27)の目詰まりが進行すると、給気ファン (26)の風量 (すなわち吸 着熱交換器 (51,52)を通過する空気の風量)が低下するので、データベース作成時 に比べて吸着熱交 (51,52)を通過する空気の湿度変化量が小さくなる。
[0093] フィルタ状態検出部(63)は、検出時点での吸着熱交換器 (51,52)を通過する空気 の湿度変化量と外気側フィルタ (27)の初期状態の湿度変化量との差が設定値を上 回ると「フィルタ交換サイン」を表示する。
[0094] 《その他の実施形態》
上記実施形態は、以下の変形例のように構成してもよ ヽ。
[0095] 第 1変形例 上記実施形態について、フィルタ交換後の換気装置 (10)の運転積算時間を計測 するタイマを設け、そのタイマの計測時間が所定の時間に達すると、フィルタ状態検 出部(63)によって検出される外気側フィルタ (27)の目詰まりの状態が「フィルタ交換 サイン」を表示するまでに至って 、なくても「フィルタ交換サイン」をようにしてもょ 、。 このタイマは、外気側フィルタ(27)の交換判定の足切りに用いられる。
[0096] 第 2変形例
上記実施形態について、全熱交換器による調湿装置(10)において、外気温度セン サ(65a)及び外気湿度センサ(65b)の検出値と給気温度センサ(66a)及び給気湿度 センサ(66b)の検出値とに基づいてフィルタ部材 (27)の目詰まりの状態を検出するよ うにしてもよい。
[0097] また、上記実施形態につ!、て、換気を行わな 、調湿装置(10)にお 、て、内気温度 センサ(67a)及び内気湿度センサ(67b)の検出値と給気温度センサ(66a)及び給気 湿度センサ(66b)の検出値とに基づいてフィルタ部材 (27)の目詰まりの状態を検出 するようにしてもょ 、。内気温度センサ(67a)及び内気湿度センサ(67b)は、本発明 に係る吸気湿度検出手段を構成し、給気温度センサ(66a)及び給気湿度センサ(66 b)は、本発明に係る給気湿度検出手段を構成している。
[0098] 第 3変形例
上記実施形態では、調湿装置(10)が次のように構成されていてもよい。図 10に示 すように、第 1変形例の調湿装置(10)は、冷媒回路(100)と 2つの吸着素子(111,112 )とを備えて 、る。冷媒回路 (100)は、圧縮機 (101)と凝縮器 (102)と膨張弁 (103)と 蒸発器 (104)が順に接続された閉回路である。冷媒回路(100)で冷媒を循環させると 、蒸気圧縮冷凍サイクルが行われる。この冷媒回路(100)は、熱源手段を構成してい る。第 1吸着素子(111)及び第 2吸着素子(112)は、ゼォライト等の吸着剤を備えてお り、それぞれ吸着部材を構成している。また、各吸着素子(111,112)には多数の空気 通路が形成されており、この空気通路を通過する際に空気が吸着剤と接触する。
[0099] この調湿装置(10)は、第 1動作と第 2動作を繰り返す。図 10(A)に示すように、第 1 動作中の調湿装置(10)は、凝縮器(102)で加熱された空気を第 1吸着素子(111)へ 供給して吸着剤を再生する一方、第 2吸着素子 (112)に水分を奪われた空気を蒸発 器(104)で冷却する。また、図 10(B)に示すように、第 2動作中の調湿装置(10)は、 凝縮器 (102)で加熱された空気を第 2吸着素子(112)へ供給して吸着剤を再生する 一方、第 1吸着素子(111)に水分を奪われた空気を蒸発器(104)で冷却する。そして 、この調湿装置(10)は、吸着素子(111,112)を通過する際に除湿された空気を室内 へ供給する除湿運転と、吸着素子(111,112)を通過する際に加湿された空気を室内 へ供給する加湿運転とを切り換えて行う。
[0100] 第 4変形例
上記実施形態では、調湿装置(10)が次のように構成されていてもよい。図 11に示 すように、第 2変形例の調湿装置(10)は、調湿ユニット(150)を備えている。この調湿 ユニット(150)は、ペルチェ素子(153)と一対の吸着フィン(151, 152)とを備えている。 吸着フィン(151,152)は、いわゆるヒートシンクの表面にゼォライト等の吸着剤を担持 させたものである。この吸着フィン(151,152)は、吸着部材を構成している。ペルチェ 素子(153)は、その一方の面に第 1吸着フィン(151)が、他方の面に第 2吸着フィン(1 52)がそれぞれ接合されている。ペルチェ素子(153)に直流を流すと、 2つの吸着フィ ン(151,152)の一方が吸熱側になって他方が放熱側になる。このペルチェ素子(153) は、熱源手段を構成している。
[0101] この調湿装置(10)は、第 1動作と第 2動作を繰り返す。第 1動作中の調湿ユニット(1 50)は、放熱側となった第 1吸着フィン(151)の吸着剤を再生して空気を加湿する一 方、吸熱側となった第 2吸着フィン(152)の吸着剤に水分を吸着させて空気を除湿す る。また、第 1動作中の調湿ユニット(150)は、放熱側となった第 2吸着フィン(152)の 吸着剤を再生して空気を加湿する一方、吸熱側となった第 1吸着フィン(151)の吸着 剤に水分を吸着させて空気を除湿する。そして、この調湿装置(10)は、調湿ユニット (150)を通過する際に除湿された空気を室内へ供給する除湿運転と、調湿ユニット(1 50)を通過する際に加湿された空気を室内へ供給する加湿運転とを切り換えて行う。
[0102] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0103] 以上説明したように、本発明は、室内の湿度調節を行うための調湿装置について 有用である。

Claims

請求の範囲
[1] 取り込んだ空気を清浄ィ匕するフィルタ部材 (27,28)と、該フィルタ部材 (27,28)を通 過した空気と接触する吸着剤とを備え、取り込んだ空気を湿度調節して室内へ供給 する調湿装置であって、
取り込む空気の湿度を計測する吸気湿度検出手段 (65)と、
室内へ供給する空気の湿度を計測する給気湿度検出手段 (66)と、
上記吸気湿度検出手段 (65)の検出値及び上記給気湿度検出手段 (66)の検出値 に基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出するフィルタ状態検出 手段 (63)とを備えて!/ヽることを特徴とする調湿装置。
[2] 請求項 1において、
上記フィルタ状態検出手段 (63)は、上記吸気湿度検出手段 (65)の検出値及び上 記給気湿度検出手段 (66)の検出値に基づ 、て上記フィルタ部材 (27,28)を通過す る空気の風量を推測する風量推測部 (64)を備え、上記フィルタ部材 (27,28)の初期 状態にお 、て上記風量推測部 (64)が推測した風量と検出時点で上記風量推測部( 64)が推測した風量とに基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出 することを特徴とする調湿装置。
[3] 取り込んだ空気を清浄ィ匕するフィルタ部材 (27,28)と、該フィルタ部材 (27,28)を通 過した空気と接触する吸着剤とを備え、取り込んだ空気を湿度調節すると共に温度 調節して室内へ供給する調湿装置であって、
取り込む空気の温度を計測する吸気温度検出手段 (65)と、
室内へ供給する空気の温度を計測する給気温度検出手段 (66)と、
上記吸気温度検出手段 (65)の検出値及び上記給気温度検出手段 (66)の検出値 に基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出するフィルタ状態検出 手段 (63)とを備えて!/ヽることを特徴とする調湿装置。
[4] 請求項 3において、
上記フィルタ状態検出手段 (63)は、上記吸気温度検出手段 (65)の検出値及び上 記給気温度検出手段 (66)の検出値に基づ 、て上記フィルタ部材 (27,28)を通過す る空気の風量を推測する風量推測部 (64)を備え、上記フィルタ部材 (27,28)の初期 状態にお 、て上記風量推測部 (64)が推測した風量と検出時点で上記風量推測部( 64)が推測した風量とに基づいて上記フィルタ部材 (27,28)の目詰まりの状態を検出 することを特徴とする調湿装置。
[5] 請求項 1乃至 4の何れか 1つにおいて、
吸着剤を担持する吸着熱交換器 (51,52)が接続されて冷凍サイクルを行う冷媒回 路 (50)を備え、該冷媒回路 (50)の冷媒により上記吸着熱交換器 (51,52)の吸着剤を 加熱し又は冷却して該吸着剤に接触する空気の湿度及び温度を調節することを特 徴とする調湿装置。
PCT/JP2006/313093 2005-06-30 2006-06-30 調湿装置 WO2007004559A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-191863 2005-06-30
JP2005191863A JP2007010231A (ja) 2005-06-30 2005-06-30 調湿装置

Publications (1)

Publication Number Publication Date
WO2007004559A1 true WO2007004559A1 (ja) 2007-01-11

Family

ID=37604424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313093 WO2007004559A1 (ja) 2005-06-30 2006-06-30 調湿装置

Country Status (2)

Country Link
JP (1) JP2007010231A (ja)
WO (1) WO2007004559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135571A1 (de) * 2008-05-08 2009-11-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugklimaanlage mit einem filterelement mit feuchtesensor sowie verfahren zu deren betrieb
WO2012087273A1 (en) * 2010-12-20 2012-06-28 Carrier Corporation Heat pump enabled desiccant dehumidification system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2680600T3 (es) 2007-10-05 2018-09-10 Daikin Industries, Ltd. Dispositivo de control de humedad y dispositivo de ventilación
JP2010272310A (ja) * 2009-05-20 2010-12-02 Aisin Seiki Co Ltd 燃料電池装置
JP2013064552A (ja) * 2011-09-16 2013-04-11 Daikin Industries Ltd 調湿装置
JP5229368B2 (ja) 2011-09-29 2013-07-03 ダイキン工業株式会社 調湿装置
JP2014085074A (ja) * 2012-10-25 2014-05-12 Daikin Ind Ltd 調湿装置
JP6196574B2 (ja) * 2014-03-28 2017-09-13 三菱日立パワーシステムズ株式会社 フィルタ監視装置、吸気ダクト及び圧縮空気供給装置
WO2020261887A1 (ja) * 2019-06-24 2020-12-30 パナソニックIpマネジメント株式会社 調湿デバイス、水分の吸収及び排出の方法、発電方法、熱交換換気システム、及び熱交換換気システムの制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153139A (en) * 1981-03-16 1982-09-21 Mitsubishi Electric Corp Controlling method of air conditioning device and device thereof
JP2003161465A (ja) * 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153139A (en) * 1981-03-16 1982-09-21 Mitsubishi Electric Corp Controlling method of air conditioning device and device thereof
JP2003161465A (ja) * 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135571A1 (de) * 2008-05-08 2009-11-12 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugklimaanlage mit einem filterelement mit feuchtesensor sowie verfahren zu deren betrieb
US8539778B2 (en) 2008-05-08 2013-09-24 Bayerische Motoren Werke Aktiengesellschaft Air filter having a moisture sensor for identifying type of filter and moisture content and method of using filter in a vehicle air conditioning system
CN101980879B (zh) * 2008-05-08 2014-06-11 宝马股份公司 包括带有湿度传感器的过滤器单元的汽车空调设备及其操作方法
US9902234B2 (en) 2008-05-08 2018-02-27 Bayerische Motoren Werke Aktiengesellschaft Vehicle air conditioning system having a filter element with a moisture sensor and a method for operating a vehicle air conditioning system
WO2012087273A1 (en) * 2010-12-20 2012-06-28 Carrier Corporation Heat pump enabled desiccant dehumidification system
US9146040B2 (en) 2010-12-20 2015-09-29 Carrier Corporation Heat pump enabled desiccant dehumidification system

Also Published As

Publication number Publication date
JP2007010231A (ja) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2007010216A (ja) 換気装置
WO2007004557A1 (ja) 換気装置
WO2007004559A1 (ja) 調湿装置
JP5018402B2 (ja) 調湿装置
WO2005098326A1 (ja) 空気調和機および空気調和機の制御方法
AU2012313765B2 (en) Humidity Control Apparatus
JP2010151337A (ja) 空調システム
AU2008320209A1 (en) Humidity control apparatus
JP2005283053A (ja) 調湿装置
JP2006349304A (ja) 調湿装置
JP6252703B1 (ja) 調湿装置
JP2010281476A (ja) 調湿装置
JP2009109124A (ja) 調湿装置
JP5104971B2 (ja) 調湿換気装置
JP5983235B2 (ja) 調湿装置
JP2008145092A (ja) 調湿装置
JP2010133612A (ja) 空調システム
JP2010078245A (ja) 調湿システム
JP2010127522A (ja) 空調システム
JP5109595B2 (ja) 調湿装置
JP5402213B2 (ja) 調湿装置
JP5082775B2 (ja) 換気装置
JP4985322B2 (ja) 換気装置
JP2009109089A (ja) 調湿装置
JP2010286197A (ja) 調湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767701

Country of ref document: EP

Kind code of ref document: A1