WO2006137462A1 - Method for manufacturing substrate for electronic device, substrate for electronic device, electronic device and electronic instrument - Google Patents

Method for manufacturing substrate for electronic device, substrate for electronic device, electronic device and electronic instrument Download PDF

Info

Publication number
WO2006137462A1
WO2006137462A1 PCT/JP2006/312452 JP2006312452W WO2006137462A1 WO 2006137462 A1 WO2006137462 A1 WO 2006137462A1 JP 2006312452 W JP2006312452 W JP 2006312452W WO 2006137462 A1 WO2006137462 A1 WO 2006137462A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
substrate
organic
general formula
following general
Prior art date
Application number
PCT/JP2006/312452
Other languages
French (fr)
Japanese (ja)
Inventor
Masamitsu Uehara
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Publication of WO2006137462A1 publication Critical patent/WO2006137462A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a method of manufacturing a substrate for an electronic device, a substrate for an electronic device, an electronic device, and an electronic device.
  • organic EL Devices organic electrowetting device
  • organic thin film transistors organic thin film transistors
  • organic EL devices are promising for use as solid-emitting low-cost large-area full-color display devices (light-emitting devices), and many developments have been made.
  • an organic EL element has a light emitting layer between a cathode and an anode, and when an electric field is applied between the cathode and the anode, electrons are injected into the light emitting layer from the cathode side, and the anode side Holes are injected from
  • This light emission is made near the light emitting layer, and the ratio of light emission within the above-mentioned excitation energy is largely influenced by the molecular structure of the organic EL material and the state of aggregation of the molecules.
  • an organic semiconductor layer composed of an organic semiconductor material having different carrier transportability of carriers (electrons or holes), a light emitting layer, and The element structure to be laminated between the cathode and Z or the anode is effective I also know.
  • the organic EL device having a configuration in which the light emitting layer and the organic semiconductor layer are laminated between the anode and the cathode, in order to obtain high luminous efficiency, the molecular structure and molecular structure of the organic EL material and the organic semiconductor material In addition, the number and position of the light emitting layer and the organic semiconductor layer to be stacked are studied!
  • Patent Document 1 Japanese Patent Application Laid-Open No. -See 2 55 774.
  • a vacuum evaporation method is mainly used between the anode and the hole transport layer (organic semiconductor layer), using a hole injection layer mainly composed of a metal complex such as copper phthalocyanine.
  • JP-A-2002-151269 discloses a method of improving carrier transport by forming it using a vapor phase deposition method such as ion beam deposition.
  • the adhesion between the anode and the hole injection layer can not be sufficiently improved, and the characteristics of the organic EL device can be improved. Not obtained enough.
  • An object of the present invention is to provide a method for producing a substrate for an electronic device capable of producing a substrate for an electronic device excellent in carrier transportability, a substrate for an electronic device excellent in carrier transportability, and the substrate for such an electronic device.
  • the purpose is to provide electronic devices with excellent characteristics and highly reliable electronic devices.
  • a method of manufacturing a substrate for an electronic device comprising: an intermediate layer which is provided so as to touch and which is mainly composed of an organic substance having a function of transporting a carrier.
  • the organic substance charged in the liquid is collected to the electrode by applying a voltage to the liquid using the electrode as one of the electrodes. Forming the intermediate layer;
  • the carrier can be smoothly delivered to the organic semiconductor layer through the intermediate layer, and a substrate for an electronic device excellent in carrier transportability can be manufactured.
  • the organic substance is a compound having a carrier transport site having a function of transporting a carrier and a chargeable site to be bound to the carrier transport site. Is preferred.
  • the organic matter when a voltage is applied to the liquid, the organic matter can be reliably collected on the electrode.
  • the chargeable portion is preferably capable of being charged near the end opposite to the carrier transport portion U,
  • the carrier transport site preferably includes a high-molecular weight structure having an affinity to the constituent material of the organic semiconductor layer.
  • the carrier transport site preferably has a function of transporting holes.
  • the intermediate layer can be provided with a function of transporting holes.
  • the organic substance preferably contains a compound represented by the following general formula (1) as a main component.
  • each of four R 1 s independently represents a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the four R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
  • R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms.
  • Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different.
  • X 1 is a single bond,
  • the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
  • the organic substance preferably contains a compound represented by the following general formula (2) as a main component.
  • three R 1 's each independently represent a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the following general formula (5) or the following general formula (6). ]
  • R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms.
  • Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different.
  • X 1 is a single bond, [Formula 7]
  • Y 1 is a single bond
  • the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
  • the organic substance preferably contains a compound represented by the following general formula (3) as a main component.
  • three R 1 's each independently represent a hydrogen atom or any of the substituents represented by the following general formula (5) or the following general formula (6), and are identical] Or they may be different. However, at least one of the three R 1 is represented by the following general formula (5) or This represents any of the substituents represented by the general formula (6). ]
  • R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms.
  • Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different.
  • X 1 is a single bond,
  • the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
  • the carrier transport site preferably has a function of transporting electrons.
  • the intermediate layer can be provided with a function of transporting electrons.
  • the organic substance preferably contains a compound represented by the following general formula (4) as a main component.
  • R 1 's each independently represent a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the two R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
  • R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms.
  • Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different.
  • X 1 is a single bond,
  • the intermediate layer obtained is excellent in electron transportability, and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
  • the substrate for electronic devices of the present invention is characterized by being manufactured by the method of manufacturing a substrate for electronic devices of the present invention.
  • carriers can be smoothly delivered to the organic semiconductor layer through the intermediate layer, and the substrate for an electronic device having excellent carrier transportability can be obtained.
  • the substrate for an electronic device of the present invention it is preferable that at least a part of the organic substance be chemically bonded to the electrode.
  • the carrier can be delivered via a chemical bond, and the adhesion between the electrode and the intermediate layer can be improved.
  • the intermediate layer preferably has an average thickness of 1 to 50 nm.
  • the electrode force via the intermediate layer can also reliably deliver the carrier to the organic semiconductor layer.
  • An electronic device of the present invention includes the substrate for an electronic device of the present invention.
  • the electronic device of the present invention is preferably an organic electroluminescent device.
  • An electronic device of the present invention includes the electronic device of the present invention.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the organic EL device.
  • FIG. 2 is a schematic view (longitudinal sectional view) for explaining the step of providing an intermediate layer.
  • FIG. 3 is a longitudinal sectional view showing an embodiment of a display device provided with the organic EL element of the first embodiment.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the organic EL device.
  • FIG. 5 is a longitudinal sectional view showing a third embodiment of the organic EL device.
  • FIG. 6 is a perspective view showing the configuration of a mopile type (or notebook type) personal computer to which the electronic device of the present invention is applied.
  • FIG. 7 is a perspective view showing the configuration of a mobile phone (including PHS) to which the electronic device of the present invention is applied.
  • FIG. 8 is a perspective view showing the configuration of a digital still camera to which the electronic device of the present invention is applied.
  • FIG. 9 is a graph showing the relationship between the change in the value of the applied voltage measured in the organic EL elements of Example 1 A and Comparative Example 1 A and the change in the value of the current flow.
  • organic EL element an organic electorite luminescent element
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the organic EL device.
  • the upper side in FIG. 1 will be described as “upper” and the lower side as “lower”.
  • the organic EL device 1 shown in FIG. 1 comprises an anode 7, a cathode 3, an intermediate layer 4 sequentially stacked from the anode 7 side between the anode 7 and the cathode 3, and a light emitting layer 5 A laminate 9 is provided.
  • the whole of the organic EL element 1 is provided on the substrate 2 and sealed with a sealing member 8.
  • the substrate for an electronic device of the present invention is constituted by the anode (electrode) 7, the intermediate layer 4 and the light emitting layer (organic semiconductor layer) 5.
  • the substrate 2 is to be a support of the organic EL element 1.
  • the organic EL element 1 has a configuration (top transmission type) for extracting light from the side opposite to the substrate 2, the substrate 2 and the anode 7 are not particularly required to have transparency.
  • the organic EL element 1 has a configuration (bottom transmission type) in which light is extracted from the substrate 2 side, the substrate 2 and the anode 7 respectively have And those substantially having transparency (colorless transparency, colored transparency, semitransparency) are used.
  • the substrate 2 for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethyl methacrylate, resin material such as polycarbonate, polyarylate, quartz glass, etc.
  • An oxide film is formed on the surface of a transparent substrate made of a glass material such as soda glass, a substrate made of a ceramic material such as alumina, or a metal substrate such as stainless steel.
  • An opaque substrate can be used, such as a substrate composed of one or more opaque resin materials.
  • the average thickness of such a substrate 2 is not particularly limited, but is preferably about 0.1 to 5 mm, preferably about 0.1 to about LO mm.
  • the anode 7 is an electrode for injecting holes into the intermediate layer 4 described later.
  • anode material As a constituent material of the anode 7 (anode material), it is preferable to use a material having excellent conductivity with a large work function from the viewpoint of injecting holes.
  • anode material for example, ITO (Indium Tin Oxide), IZO (Indium)
  • Zinc Oxide Zinc Oxide
  • InO Zinc Oxide
  • SnO Sb-containing SnO
  • Al-containing ZnO and other oxides
  • Au Pt
  • Examples of Ag, Cu, and A metals include alloys containing these, and at least one of them can be used.
  • the average thickness of such an anode 7 is not particularly limited, but about 10 to 200 nm is preferable, and about 50 to 150 nm is more preferable. If the thickness of the anode 7 is too thin, the function as the anode 7 may not be sufficiently exhibited, while if the thickness of the anode 7 is too thick
  • the light emission efficiency of the organic EL element 1 may be reduced.
  • the surface resistance of the anode 7 is preferably as low as possible, specifically, preferably not more than 100 ⁇ , and more preferably, not more than 50 ⁇ .
  • the lower limit value of the surface resistance is not particularly limited, but it is usually preferable to be about 0.1 ⁇ .
  • the cathode 3 is an electrode for injecting electrons into the light emitting layer 5 described later.
  • the cathode 3 As a constituent material of the cathode 3, for example, Li, Na, K, Be, Mg, Ca, Sr, Ba, La, Ce,
  • an alloy containing a stable metal element such as Ag, Al or Cu specifically, an alloy such as MgAg, AlLi or CuLi is used. Is preferred.
  • a powerful alloy as a constituent material of the cathode 3 the electron injection efficiency and stability of the cathode 3 can be improved.
  • the cathode 3 can also have a laminated structure of a plurality of layers.
  • the layer closer to the light emitting layer 5 is preferably made of a cathode material having a lower work function.
  • the layer far from the light emitting layer 5 is mainly composed of Ca
  • the layer near the light emitting layer 5 is Al, Ag or an alloy containing these. Can be the main material.
  • the average thickness of such a cathode 3 is not particularly limited, but it is more preferably about 100 to 400 nm, which is preferably about 1 to: LOOO nm. If the thickness of the cathode 3 is too thin, the specific resistance becomes high and a voltage drop may occur, or the electrical conductivity may be unstable due to the oxidation reaction, and the function as the cathode 3 may not be sufficiently exhibited. On the other hand, when the cathode 3 is too thick, when forming the cathode 3 using a vacuum evaporation method, sputtering method or the like, the temperature in the film rises remarkably or the residual stress increases, and it is provided as a lower layer described later. The light emitting layer 5 may be destroyed, or the cathode 3 and the light emitting layer 5 may be peeled off, so that the light emission efficiency of the organic EL element 1 may be reduced.
  • the surface resistance of the cathode 3 is preferably as low as possible. Specifically, the surface resistance is preferably 50 ⁇ or less, more preferably 20 ⁇ or less. The lower limit value of the surface resistance is not particularly limited, but in general, it is preferable to be about 0.1 ⁇ .
  • a laminate 9 in which an intermediate layer 4 and a light emitting layer (organic semiconductor layer) 5 are laminated in this order from the anode 7 side is the anode 7 and the cathode 3. It is formed to be in contact with
  • the intermediate layer 4 has a function of transporting the holes injected from the anode 7 to the light emitting layer 5.
  • the electronic device of the present invention (an electronic device provided with the substrate for an electronic device of the present invention) is characterized in the step of forming the intermediate layer 4 composed mainly of an organic substance having a function of transporting a carrier. For the formation process, configuration and constituent materials of this intermediate layer 4 The details will be described later.
  • the intermediate layer 4 is formed by the formation process described later, it exhibits excellent adhesion to both the anode 7 and the light emitting layer 5 on the side in contact with these. As a result, the injection of holes from the anode 7 to the intermediate layer 4 and the injection of holes from the intermediate layer 4 to the light emitting layer 5 can be smoothly performed.
  • the organic substance has a function of transporting carriers (in this embodiment, holes), transport of holes in the intermediate layer 4 can also be smoothly performed.
  • the intermediate layer 4 between the anode 7 and the light emitting layer 5 it is possible to smoothly deliver holes from the anode 7 to the light emitting layer 5 via the intermediate layer 4. Will be able to As a result, the substrate for electronic devices exhibits excellent hole (carrier) transport ability.
  • the thickness (average) of such an intermediate layer 4 is not particularly limited, but is preferably about 1 to 50 nm, and more preferably about 2 to 20 nm. If the thickness of the intermediate layer 4 is too thin, pin holes may occur, and there may be a possibility that the delivery of holes from the cathode 3 to the light emitting layer 5 via the intermediate layer 4 can not be performed. In addition, when the thickness of the intermediate layer 4 is too thick, the resistance value in the thickness direction of the intermediate layer 4 increases, which is not preferable because the power consumption of the organic EL element 1 increases.
  • excitons When current is applied between the anode 7 and the cathode 3 (voltage is applied!), Holes move in the intermediate layer 4 and electrons move in the light emitting layer 5, and the light emitting layer 5 is mainly In the vicinity of the interface on the intermediate layer 4 side, excitons (excitons) are generated by holes and electrons. The excitons recombine in a fixed time, and at that time, the excitation energy accumulated in the exciton formation is mainly emitted as light such as fluorescence or phosphorescence. This is electroluminescence.
  • the light emitting layer 5 As a constituent material of the light emitting layer 5, it is possible to inject holes from the anode 7 side and to inject electrons from the cathode 3 side at the time of voltage application, and to provide a field where holes and electrons recombine. As long as it is something, it may be anything.
  • light emitting materials there are various low molecular light emitting materials and various high molecular light emitting materials as described below, and at least one of them can be used.
  • the layer 5 can be easily formed by various coating methods such as the ink jet printing method because it can be easily dissolved in a solvent. Furthermore, by using a combination of a low molecular light emitting material and a high molecular light emitting material, the effect of using the low molecular light emitting material and the high molecular light emitting material is simultaneously obtained, that is, light emission is excellent in compactness and luminous efficiency. The effect is obtained that the layer 5 can be easily formed by various coating methods such as the ink jet printing method.
  • Examples of light emitting materials of low molecular weight include benzene-based compounds such as distyrylbenzene (DSB) and diaminodistyrylbenzene (DADSB), naphthalene-based compounds such as naphthalene and Nile red, phenanthrene-based compounds such as phenanthrene, talisene, 6--Talicene compounds such as trothalicene, perylene, N, N, bis (2,5-di-t-butylphenyl) -1,3,4, 9,10 perylene-dicarboximide (BPPC)
  • BPPC perylene-dicarboximide
  • Flowene-based compounds such as flowene, (8-hydroxyquinoline) aluminum (Alq 3) Tris (4-methyl 8 quinolinolate) aluminum (III) (Almq), (8-hydroxy quinoli
  • high molecular light emitting materials include trans polyacetylene, cis polyacetylene, poly (diphenyl acetylene) (PDPA), and poly (alkyl, phenyl acetylene) (PAPA).
  • PDPA diphenyl acetylene
  • PAPA poly (alkyl, phenyl acetylene)
  • Polyacetylene compounds poly (para-phen bilene) (PPV), poly (2, 5-dialkoxy mono-para-phenyl bi- lene) (RO-PPV), cyano mono substituted mono poly (nora monophenidene) ) (CN—PPV), poly (2-dimethylsilylsilyl-para-bi-biphenyl) (DMOS—PPV), poly (2-methoxy, 5- (2, 1-ethenole hexoxy) -para-few (Polyvinylbenzene) compounds such as lenvinylene (MEH-PPV), polythiophen compounds such as poly (3-alkylthiophene) (PAT), poly (oxypropylene) triol (PO PT), poly (9, 9-dialkyl full Ore) (PDAF), ⁇ , ⁇ -bis [N, N, -di (methylphenyl) aminophenyl] -poly [9,9 bis (2-ethylhexyl) fluor
  • the thickness (average) of the light emitting layer 5 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 50 to LOO nm. By setting the thickness of the light emitting layer 5 in the above range, recombination of holes and electrons can be efficiently performed, and the light emission efficiency of the light emitting layer 5 can be further improved.
  • the light emitting layer 5 is not limited to a single layer, and, for example, the light emitting layer 5 may be an electron on the side in contact with the cathode 3. It can also be a multilayer having an electron transport layer excellent in transport ability. By making the light emitting layer 5 of such a configuration, the electron transporting ability in the light emitting layer 5 can be further improved.
  • the constituent material (electron transport material) of the electron transport layer is not particularly limited, and, for example, 1,3,5 tris [(3 phenyl 1 tri tri fluoromethyl) quinoxa lin 1 2-yl] benzene (TPQ 1 Benzene compounds (star burst compounds), such as 1,3,3 tris [ ⁇ 3- (4-t-butylphenyl) -6 trisfluoromethyl ⁇ quinoxaline-2-yl] benzene (TPQ2), Naphthalene-based compounds such as naphthalene, phenanthrene-based compounds such as phenenthrene, talisene-based compounds such as talisene, perylene-based compounds such as perylene, anthracene-based compounds such as anthracene, pyrene-based compounds such as pyrene, atalidine Such as phthalene compounds such as stilbene, thiophene compounds such as BB OT, butadienes such as butadiene Die
  • complexes having a ligand such as At least one of these can be used.
  • the sealing member 8 is provided so as to cover the anode 7, the intermediate layer 4, the light emitting layer 5 and the cathode 3, and has a function of sealing these airtightly and blocking oxygen and moisture.
  • the sealing member 8 in particular, the oxidation of the cathode 3 is suppressed or prevented, and effects such as improvement in reliability of the organic EL element 1 and prevention of deterioration (deterioration in deterioration) can be obtained. .
  • Examples of the constituent material of the sealing member 8 include Al, Au, Cr, Nb, Ta, T-type alloys containing these, silicon oxide, various resin materials, and the like.
  • the sealing member 8 is formed in a flat plate shape so as to face the substrate 2 and seal between them with a sealing material such as a thermosetting resin.
  • Such an organic EL element 1 is characterized in that when a voltage of 0.5 V is applied such that the cathode 3 is negative and the anode 7 is positive, the resistance is 100 Q Zcm 2 or more. It is more preferable to have the characteristic of being 1 k ⁇ / cm 2 or more, which is preferable.
  • the strong characteristics show that the short circuit (leakage) between the cathode 3 and the anode 7 is suitably prevented or suppressed in the organic EL device 1, and the organic EL device having such characteristics is 1 has a particularly high luminous efficiency.
  • the intermediate layer 4 is provided between the anode 7 and the light emitting layer 5 so as to be in contact with both of them.
  • the present invention is not limited to such a case.
  • a hole transport layer having a function of transporting holes injected from the intermediate layer 4 to the light emitting layer 5 may be provided between the intermediate layer 4 and the light emitting layer 5.
  • the same material as the constituent material of the hole transport layer 6 described later in the second embodiment of the organic EL device can be used.
  • an electron transporting intermediate layer having a function of transporting the electrons injected from the cathode 3 to the light emitting layer 5 may be provided between the cathode 3 and the light emitting layer 5.
  • the electron transporting intermediate layer may be the same as the intermediate layer 14 described later in the second embodiment of the organic EL device.
  • Such an organic EL device 1 can be manufactured, for example, as follows.
  • the step of providing the intermediate layer 4 (intermediate layer forming step
  • step of providing a light emitting layer (organic semiconductor layer) 5 (a light emitting layer forming step) A method of manufacturing a vice substrate is applied.
  • FIG. 2 is a schematic view (longitudinal sectional view) for explaining the step of providing an intermediate layer.
  • the upper side in FIG. 2 is referred to as “upper” and the lower side as “lower”.
  • the substrate 2 is prepared, and the anode 7 is formed on the substrate 2.
  • the anode 7 may be, for example, a chemical vapor deposition method (CVD) such as plasma CVD, thermal CVD, or laser CVD, a dry plating method such as vacuum deposition, sputtering, ion plating, etc., electrolytic plating, immersion plating, electroless plating, etc. It can be formed using a wet plating method, a thermal spraying method, a sol-gel method, a MOD method, bonding of metal foil, and the like.
  • CVD chemical vapor deposition method
  • thermal CVD thermal CVD
  • laser CVD laser CVD
  • a dry plating method such as vacuum deposition, sputtering, ion plating, etc.
  • electrolytic plating immersion plating, electroless plating, etc. It can be formed using a wet plating method, a thermal spraying method, a sol-gel method, a MOD method, bonding of metal foil, and the like.
  • the electronic device (organic EL device) of the present invention is characterized in the step of forming the intermediate layer 4.
  • the intermediate layer 4 By forming the intermediate layer 4 by the pressing step, the intermediate layer 4 can be formed into the anode 7 and the subsequent step.
  • the intermediate layer 4 is formed for the purpose of transporting the holes injected from the anode 7 to the light emitting layer 5, the organic substance that transports the holes as a carrier is Selected.
  • organic substance As an organic substance having a function of transporting holes (hereinafter simply referred to as “organic substance”), it may be capable of maintaining a charged state when a voltage is applied to the liquid. Especially if it is not specified, for example, it is preferable to use one having a carrier transport site having a function of transporting holes and a chargeable site which binds to the carrier transport site. As a result, the organic substance has a configuration in which the chargeable part protrudes to the outside of the carrier transport part, and therefore, when a voltage is applied to the liquid in the later step [2A-3], the organic substance It is possible to prevent the chargeable part from becoming enclosed in the structure. As a result, the organic matter is surely influenced by the electric field due to the application of the voltage. This ensures that the organic matter is collected on the anode 7.
  • the organic substance having the carrier transport site and the chargeable site may be configured such that the carrier transport site is charged in addition to the chargeable site when a voltage is applied to the liquid. Good. As a result, the charge amount of the organic matter as a whole is increased, and the organic matter can be collected to the anode 7 more reliably.
  • the carrier transport site preferably has a structure having a high affinity to the constituent material of the light emitting layer 5, ie, the constituent material of the organic system.
  • the organic substance one that transports a hole as a carrier is selected. That is, in an organic substance having a carrier transport site and a chargeable site, one having a function of transporting holes as the carrier transport site is selected.
  • the carrier transport site one having an excellent hole transportability and having an organic structure is suitably selected.
  • examples of the carrier transport site include those having a copper phthalocyanine skeleton, a hexasulfadiene skeleton and a hexaazatrinaphthylene skeleton.
  • These frameworks like the material of the light emitting layer 5, contain a large number of conjugated bonds such as benzene rings, and are particularly preferable because they are excellent in hole transportability.
  • the chargeable site may be, for example, one that can be charged in the vicinity of the site that binds to the carrier transport site or in the vicinity of the center of the chargeable site. It is preferable to be able to be charged near the end of the.
  • the voltage is applied to the liquid! When charged, the vicinity of the charged end can be brought into contact with the anode 7. As a result, a chemical bond is relatively easily formed between the chargeable site and the anode 7. As a result, the adhesion between the intermediate layer 4 and the anode 7 can be improved, and holes can be delivered via this chemical bond.
  • a substituent represented by the following general formula (5) or the following general formula (6) is a preferable structure. Since these substituents can stably maintain the charged state even when a relatively low voltage is applied, the organic matter can be reliably collected on the anode 7. Furthermore, the excellent reactivity with the constituent material of the anode 7 ensures that a chemical bond can be formed with the anode 7.
  • R 2 represents a single bond (bond) or an alkylene group having 1 to 20 carbon atoms.
  • R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms.
  • X 1 is a bonding dash ⁇
  • R 4 's each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different.
  • the number of carbon atoms of the two R 4 are each preferably set as small as possible. By this, charging can be performed near the end opposite to the carrier transport site of the chargeable site, and the above-described effects can be obtained with certainty.
  • the force that causes the substituent to be charged represented by the general formula (5) and the general formula (6), may be, for example, the structure of the substituent in this case. The following are listed.
  • R 3 is a hydrogen atom or an alkali metal such as sodium, potassium or lithium, R 3 is released from the substituent, The substituent from which R 3 is released becomes negatively charged.
  • R 3 is an alkyl group having 1 to 20 carbon atoms
  • a hydrogen atom contained in the alkyl group is released from the substituent to thereby produce hydrogen.
  • the substituent from which the atom is released becomes negatively charged.
  • the carbon number of the alkyl group is more than ⁇ , the hydrogen atom bonded to the terminal carbon atom tends to be more easily separated.
  • R 3 is an amino group in the substituent represented by the general formula (5), or when it is a substituent represented by the general formula (6), a nitrogen atom is a hydrogen atom. As a result of bonding, a substituent to which a hydrogen atom is bonded is positively charged.
  • organic substance having a carrier transport site and a chargeable site for example, compounds represented by the following general formula (1) to the following general formula (3) are suitably used. Used. By using an organic substance having a powerful structure, the above-described effects can be reliably obtained.
  • R 1 constitutes a chargeable site
  • the portion of the main skeleton other than R 1 constitutes a carrier transport site
  • each of four R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the four R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
  • each of three R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
  • each of three R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
  • the concentration of the organic substance in the liquid is slightly different depending on the kind of the organic substance, but it is more preferably about 0.1 to 0.3 mol ZL, which is preferably about 0.1 to 0.5 mol ZL.
  • the liquid may be a solution in which an organic substance is dissolved in a solvent or a dispersion in which the organic substance is dispersed in a dispersion medium.
  • Examples of the solvent or dispersion medium used when preparing the organic substance-containing liquid include various water, methanol, ethanol, isopropyl alcohol, acetate nitrile, ethyl acetate, ether, methylene chloride, NMP (N-methyl-2 And pyrrolidone) and the like, and one or more of these may be used in combination.
  • the intermediate layer 4 of the anode 7 is formed in the liquid in the container provided with the counter electrode on the inner wall.
  • the method etc. which make the side surface contact are mentioned.
  • whether the potential of the anode 7 is positive or negative with respect to the counter electrode depends on the state in which the chargeable portion is charged, in other words, when a voltage is applied to the liquid, the charge can be charged. It may be selected according to whether the site is charged positively or negatively. That is, in the case where the chargeable portion is negatively charged like the substituent represented by the general formula (5), the anode 7 is set to a positive potential with respect to the counter electrode, and is represented by the general formula (6) If the chargeable moiety is positively charged like the substituent, the anode 7 should be set to a negative potential with respect to the counter electrode.
  • FIG. 2 shows the case where the chargeable portion (substituent R 1 ) is negatively charged and the anode 7 has a positive potential with respect to the counter electrode.
  • the intermediate layer 4 is a light emitting layer
  • the potential difference (applied voltage) between the anode 7 and the counter electrode is slightly different depending on the type of the chargeable portion, but an absolute value of about 1 to 50 V is preferred, and it is preferably 5 to 5 as an absolute value. More preferably, it is about 20V.
  • the temperature of the liquid is preferably about 20 to 90 ° C, and more preferably about 50 to 80 ° C.
  • the pH of the liquid is preferably about 2 to 10, and more preferably about 4 to 8.5.
  • the light emitting layer 5 is formed on the intermediate layer 4, that is, on the surface of the intermediate layer 4 opposite to the anode 7.
  • the light emitting material as described above is dissolved in a solvent or dispersed in a dispersion medium.
  • the light emitting layer material can be obtained by applying (supplying) the light emitting layer material onto the intermediate layer 4 and then removing the solvent or dispersion medium contained in the light emitting layer material.
  • a method of supplying the light emitting layer material on the intermediate layer 4 various methods can be used. For example, an inkjet method, a spin coating method, a liquid mist chemical volume method (LSMCD method)
  • Casting method microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexo printing method, offset printing method, micro contact printing And coating methods, etc., and one or more of them may be used in combination.
  • Casting method microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexo printing method, offset printing method, micro contact printing And coating methods, etc., and one or more of them may be used in combination.
  • solvent or dispersion medium for example, inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, carbon tetrachloride, ethylene carbonate, etc., methyl ethyl ketone (MEK), acetone, Ketone solvents such as jetyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone and the like, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohols such as glycerin, jetyl Ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-hexane, tetrahydrofuran (THF), tetrahydropyran (THP), water-sole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ether (digly
  • Solvents Cellosolve solvents such as methylseport sorb, cetylcetosolve, phenylsesolve, etc., Aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane, toluene, xylene, benzene, trimethylbenzene, Aromatic hydrocarbon solvents such as tetramethylbenzene, aromatic heterocyclic compound solvents such as pyridine, pyrazine, furan, pyrrole, thiophen, methyl pyrrolidone and the like, N, N-dimethylformamide (DMF), N, N-dimethyl ether Amide solvents such as cetoamide (DMA), halogen compound solvents such as dichloromethane, chloroform, 1,2-dichloroethane, etc.
  • Aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohex
  • ester solvents such as ethyl acetate, methyl acetate, ethyl formate, dimethylsulfoxide (DMSO) ), Sulfur-containing compound solvents such as sulfolane, acetonitrile, propio-tolyl, acrylate Le etc. - tolyl solvents, formic acid, acetic acid, trichloroacetic port acetate, various organic solvents such as an organic acid solvents such as Torifuruoro acetate, or Ru mixed solvent containing these can be mentioned.
  • Sulfur-containing compound solvents such as sulfolane, acetonitrile, propio-tolyl, acrylate Le etc. - tolyl solvents
  • formic acid acetic acid
  • trichloroacetic port acetate various organic solvents
  • an organic acid solvents such as Torifuruoro acetate, or Ru mixed solvent containing these can be mentioned.
  • the cathode 3 is formed on the light emitting layer 5.
  • the cathode 3 can be formed by using, for example, a vacuum evaporation method, a sputtering method, bonding of metal foils, or the like.
  • the sealing member 8 is formed to cover the anode 7, the intermediate layer 4, the light emitting layer 5, and the cathode 3.
  • the sealing member 8 can be formed (provided) by, for example, joining a box-shaped protective cover made of the above-described material with various curable resins (adhesives).
  • thermosetting resin thermosetting resin, photocurable resin, reactive cured resin, anaerobic cured resin!
  • the organic EL element 1 is manufactured through the above-described steps.
  • the organic EL element 1 is manufactured by sequentially laminating the intermediate layer 4, the light emitting layer 5, the hole transport layer 6 and the anode 7 on the cathode 3 has been described.
  • it is not limited. That is, for example, a laminate in which the intermediate layer 4 is formed on the anode 7 and a laminate in which the light emitting layer 5 is stacked on the cathode 3 are prepared, and the intermediate layer 4 and the light emitting layer 5 are made to face each other. It may be manufactured by bringing them into contact with each other and bonding them in a state of
  • the organic EL element 1 can be used, for example, as a light source other than a force that can be used for a display device, and can be used for various optical applications and the like.
  • the organic EL element 1 when used for a display device, the force with which a plurality of organic EL elements 1 are provided in the display device Examples of such a display device include the following.
  • FIG. 3 is a longitudinal sectional view showing a display device provided with a plurality of organic EL elements.
  • the display device 100 shown in FIG. 3 is composed of a base 20 and a plurality of organic EL elements 1 provided on the base 20 !.
  • the base 20 has a substrate 21 and a circuit section 22 formed on the substrate 21.
  • Circuit portion 22 includes a protective layer 23 formed on substrate 21 and made of, for example, an oxide silicon layer.
  • the driving TFT 24 includes a semiconductor layer 241 made of silicon, a gate insulating layer 242 formed on the semiconductor layer 241, a gate electrode 243 formed on the gate insulating layer 242, and a source electrode 244. , And drain electrode 245.
  • an organic EL element 1 is provided corresponding to each driving TFT 24. Is provided. Further, the adjacent organic EL elements 1 are partitioned by the first partition 31 and the second partition 32.
  • each organic EL element 1 constitutes a pixel electrode, and each driving TFT
  • each organic EL element 1 is a common electrode.
  • a sealing member (not shown) is joined to the base 20 so as to cover each of the organic EL elements 1, and each of the organic EL elements 1 is sealed.
  • the display apparatus 100 can also perform color display by selecting a light emitting material used for each organic EL element 1 which may be a single color display.
  • FIG. 4 is a longitudinal sectional view showing a second embodiment of the organic EL device.
  • the upper side in FIG. 3 will be described as “upper” and the lower side as “lower”.
  • the organic EL device 10 shown in FIG. 3 includes an intermediate layer 14 sequentially stacked from the cathode 3 side between the cathode 3, the anode 7, the cathode 3 and the anode 7, a light emitting layer 5, and a positive electrode.
  • a laminate 19 comprising the hole transport layer 6 is provided.
  • the organic EL element 10 is entirely sealed on the substrate 2 and sealed by the sealing member 8.
  • the cathode (electrode) 3, the intermediate layer 14, and the light emitting layer (organic semiconductor layer) 5 constitute the electronic device substrate of the present invention.
  • the substrate 2 is composed of the same one as described in the first embodiment.
  • the constituent material of the cathode 3 as described in the first embodiment, a material having a small work function is usually selected from the viewpoint of injecting electrons.
  • the interlayer 14 having the configuration as described later is provided between the cathode 3 and the light emitting layer 5 to improve the adhesion between the layers. Can.
  • the material having such a large work function the same material as the constituent material of the anode 7 described in the first embodiment can be used.
  • a conductive metal such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), InO, SnO, Sb-containing SnO, Al-containing ZnO
  • an acid salt Since these materials are particularly excellent in stability and conductivity with respect to oxygen and moisture, etc., it is possible to more surely inject electrons from the cathode 3 to the intermediate layer 14.
  • the organic EL element 1 is of the bottom emission type, as the cathode 3, one having substantially transparency is used. That is, the conductive metal oxide is selected to be substantially transparent. Thus, the light emitted from the light emitting layer 5 can be reliably extracted from the substrate 2 side.
  • the sealing member 8 is provided in the organic EL element 10.
  • the sealing member 8 is provided for the purpose of suppressing or preventing deterioration or degradation of the cathode 3 because a material having a small work function is generally a material that is easily oxidized. Therefore, when the cathode 3 is made of a material relatively stable to oxygen and moisture, such as a conductive metal oxide, the formation of the sealing member 8 may be omitted. . As a result, downsizing of the organic EL element 10 and reduction of the manufacturing cost can be achieved. Furthermore, when the substrate 2 is made of a flexible material, the organic EL element 10 can also be provided with flexibility.
  • the anode 7 is made of the same one as described in the first embodiment. As a result, the holes can be more smoothly delivered from the anode 7 to the hole transport layer 6 described later.
  • a laminate 9 in which the intermediate layer 14, the light emitting layer 5 and the hole transport layer 6 are laminated in this order from the cathode 3 side is the cathode 3 and the anode 7. It is formed to be in contact with
  • the intermediate layer 14 has a function of transporting the electrons injected from the cathode 3 to the light emitting layer 5.
  • the intermediate layer 14 is the same as the intermediate layer 4 described in the first embodiment except that one having a function of transporting electrons is selected as the organic substance which is a constituent material of this layer. It is a thing of composition. As a result, the intermediate layer 14 exhibits excellent adhesion to both the cathode 3 and the light-emitting layer 5 on the side in contact with these, so the cathode via the intermediate layer 14 can be obtained. Electron injection from 3 to the light emitting layer 5 can be performed smoothly.
  • the hole transport layer 6 has a function of transporting the holes injected from the anode 7 to the light emitting layer 5.
  • the constituent material of the hole transport layer 6 may be any material as long as it has a hole transport ability, but various low molecular weight hole transport materials as described below, various heights, etc. It is preferable to use a molecule hole transport material as a basic structure and be a compound of a conjugated system. Conjugate compounds are particularly excellent in hole transport ability because they can transport holes extremely smoothly due to the characteristic nature of the spread of electron clouds.
  • a low molecular weight hole transport material provides a dense hole transport layer 6, so that the hole transport efficiency of the hole transport layer 6 is improved.
  • a hole transport material of high molecular weight is used for the hole transport layer 6, it can be dissolved in a solvent relatively easily, so that the hole transport layer by various coating methods such as inkjet printing method or spin coat printing method 6 Can be easily formed.
  • a low molecular weight hole transporting material and a high molecular weight hole transporting material in combination that is, the hole transporting layer 6 which is dense and has excellent hole transporting efficiency, an ink jet printing method, etc.
  • the various coating methods described above have the effect of being able to be easily formed.
  • low-molecular-weight hole transport materials examples include 1,1-bis (4-di-para-tri-amino-phenyl) cyclohexane, 1,1-bis (4-di-para-tri-trifluorophenyl) -one.
  • 4 phenyl- 1-ring ring-like aryl cycloalkylene compounds such as 4, 4 ', 4 "-trimethyltriphenylamine, N, N, N, N, 1-tetraphenyl-1, 1 Biphenyl-4, 4, 1-diamine, N, N, 1-Diphenyl-1, N, N, 1-bis (3-methyl phenyl) 1, 1, 1-biphenyl-1, 4, 4, 1-diamine (TPD1 ), N, N, one diphenone, one N, N, one bis (4-methoxyphenone)-1, 1,-biphenyl-nore 4, 4, diamine (TPD2), N, N, ⁇ ', ⁇ , Tetrakis (4 methoxyphenyl) -1,1, biphenyl-1,4,4-diamine (TPD3), ⁇ , N, di- (1-naphthyl) N, N, di-diphenyl-1,1,1- Bifenil 1, 4, 1 diamin ( ⁇
  • a hole transport material of a polymer a prepolymer or polymer (hole transport of a polymer having a monomer or an oligomer (a low molecular weight hole transport material) compound in the main chain or a side chain) It can be used as a material).
  • hole transport materials include, for example, poly (thiophen Z styrene sulfonic acid) -based compounds such as poly (3,4-ethylenedioxthiophen Z styrene sulfonic acid) (PEDOTZPSS), etc.
  • PEDOTZPSS polyethylenedioxthiophen Z styrene sulfonic acid
  • a polymeric hole transport material can also be used. This one has high hole transportability.
  • the average thickness of such a hole transport layer 6 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 50 to about LOO nm. If the thickness of the hole transport layer 6 is too thin, pinholes may be generated. On the other hand, if the hole transport layer 6 is too thick, the light transmittance of the hole transport layer 6 may be deteriorated, which is an organic matter. The chromaticity (color phase) of the light emission color of the EL element 10 may be changed.
  • the light emitting layer 5 and the sealing member 8 are made of the same ones as described in the first embodiment.
  • the sealing member 8 is formed. You may omit it.
  • the present invention is not limited to such a case, and, for example, between the cathode 3 and the light emitting layer 5 A hole transporting intermediate layer having a function of transporting holes injected from the cathode 3 to the light emitting layer 5 may be provided.
  • the hole transportable intermediate layer can be the same as the intermediate layer 4 described above in the first embodiment of the organic EL device.
  • Such an organic EL device 10 can be manufactured, for example, as follows.
  • the step of providing the intermediate layer 14 (intermediate layer forming step) and the step of providing the light emitting layer (organic semiconductor layer) 5 (light emitting layer forming step) A method of manufacturing a device substrate is applied.
  • the substrate 2 is prepared, and the cathode 3 is formed on the substrate 2.
  • the formation of the cathode 3 is a carrier transport portion having a function of transporting electrons as an organic substance.
  • the process can be performed in the same manner as the process [1A] described in the first embodiment except that one having a position is used.
  • an intermediate layer 14 is formed on the cathode 3.
  • the intermediate layer 14 in place of using an organic substance having a function of transporting holes in the step [2A] described in the first embodiment, one having a function of transporting electrons is used. It can carry out by carrying out like said process [2A] except using.
  • the organic substance having a function of transporting electrons is the same as the organic substance having a function of transporting holes, except that the structure of the carrier transport site contained in the organic substance is different.
  • a carrier transport site one having an electron transport ability and having an organic structure is suitably selected, and specifically, one having a tetrathiofulvalene skeleton can be mentioned. .
  • organic substance having a function of transporting electrons for example, a compound represented by the following general formula (4) is suitably used.
  • two R 1 's each independently represent a hydrogen atom or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of two R 1 represents either of the substituents represented by the general formula (5) or the general formula (6). ]
  • the light emitting layer 5 is formed on the intermediate layer 14.
  • the formation of the intermediate layer 14 can be performed in the same manner as the step [3A] described in the first embodiment.
  • the hole transport layer 6 can be formed in the same manner as the light emitting layer 5. That is, the hole transport layer 6 can be formed using the hole transport material as described above according to the method [3A] described in the first embodiment.
  • the anode 7 is formed on the hole transport layer 6.
  • the formation of the anode 7 can be performed in the same manner as the step [1A] described in the first embodiment.
  • a sealing member 8 is formed to cover the cathode 3, the intermediate layer 14, the light emitting layer 5, the hole transport layer 6, and the anode 7.
  • the formation of the sealing member 8 can be performed in the same manner as the process [5A] described in the first embodiment.
  • the organic EL device 10 is manufactured.
  • the organic EL element 10 can be used as a display device or a light source etc., and can be used for various optical applications and the like.
  • the organic EL element 10 when used for a display device, it can be applied to a display device in the same manner as in the first embodiment.
  • FIG. 5 is a longitudinal sectional view showing a third embodiment of the organic EL device.
  • the upper side in FIG. 5 is referred to as “upper” and the lower side as “lower”.
  • a laminate comprising the intermediate layer 14 as in the second embodiment, the light emitting layer 5 and the hole transport layer 6 between the cathode 3 and the anode 7 19
  • the second embodiment is the same as the second embodiment except that a stack 19 ′ as shown in FIG. [0238]
  • This laminate 19 ' is formed on the laminate 19 of the organic EL device 10 as shown in FIG. 3, and further, on the transparent electrode 3, the intermediate layer 14', the light emitting layer 5, and the positive electrode.
  • a laminate 19 consisting of a hole transport layer 6 ′, ie, a laminate 19 and a laminate 19 ′ are connected in series.
  • the organic EL device 11 includes the cathode 3, the intermediate layer 14 and the light emitting layer 5, and further, the transparent electrode 3 ′, the intermediate layer 14 ′ and the light emitting layer 5.
  • a transparent electrode 3 ′ is provided on the laminate 19, ie, on the hole transport layer 6.
  • the transparent electrode 3 ′ is an electrode having a function of injecting holes into the hole transport layer 6 and a function of injecting electrons into the intermediate layer 14 ′.
  • the light emission of the light emitting layer 5 is on the anode 7 side, and when the organic EL element 11 is a bottom emission type, the light emission of the light emitting layer 5 ′ is Among the materials described for the material of the cathode 3, the material of the transparent electrode 3 'has substantially transparency (colorless transparency, colored transparency, translucence) because it is necessary to transmit light to the three sides. Is used.
  • transparent conductive metal oxides such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), InO, SnO, Sb-containing SnO, Al-containing ZnO, etc.
  • the intermediate layer 14 ′, the light emitting layer 5 ′ and the hole transport layer 6 ′ provided in the laminate 19 ′ are each provided in the intermediate layer 14, the light emitting layer 5 and the hole transport layer provided in the laminate 19 respectively. It has the same configuration as 6).
  • the constituent materials of the intermediate layer 14 ′, the light emitting layer 5 ′ and the hole transport layer 6 ′ are the same as the constituent materials of the intermediate layer 14, the light emitting layer 5 and the hole transport layer 6, respectively. It may be different, as long as it is included in what has been described in the first embodiment or the second embodiment.
  • the organic EL element 11 By making the organic EL element 11 be of a powerful configuration, it is possible to obtain electroluminescence from the two light emitting layers 5, 5 ', so it is possible to perform this light emission more stably. The light emission efficiency can be improved.
  • Such an organic EL device 11 performs, for example, the steps [1B] to [4B] described in the second embodiment, and the steps [1B] to [4B] are performed again, Process [5B] and Process [6B
  • This organic EL element 11 is, like the organic EL elements 1 and 10, suitable for use as a display device, a light source and the like, and can be used for various optical applications and the like.
  • the organic EL element 11 when used for a display device, it can be applied to a display device in the same manner as in the first embodiment.
  • the organic EL elements 1, 10 and 11 (the electronic device of the present invention) as described above can be incorporated into various electronic devices.
  • FIG. 6 is a perspective view showing a configuration of a mopile type (or notebook type) personal computer to which the electronic device of the present invention is applied.
  • the personal computer 1100 comprises a main unit 1104 having a keyboard 1102 and a display unit 1106 having a display unit, and the display unit 1106 is connected to the main unit 1104 via a hinge structure. It is rotatably supported.
  • the display unit included in the display unit 1106 includes the organic EL elements 1, 10, and 11 described above.
  • FIG. 7 is a perspective view showing a configuration of a mobile phone (including PHS) to which the electronic device of the present invention is applied.
  • mobile phone 1200 is equipped with a plurality of operation buttons 1202, a receiver 1204 and a mouthpiece 1206, and a display.
  • the display unit includes the organic EL elements 1, 10, and 11 described above.
  • FIG. 8 is a perspective view showing a configuration of a digital still camera to which the electronic device of the present invention is applied. Note that in this figure, the connection to an external device is also shown in a simplified manner.
  • a normal camera sensitizes a silver halide photographic film by a light image of a subject
  • a digital still camera 1300 photoelectrically converts the light image of a subject by a CCD (Charge Coupled Device) or the like. Convert to generate an imaging signal (image signal).
  • a display unit is provided on the back of case (body) 1302 in digital still camera 1300, and is configured to perform display based on an image pickup signal from a CCD, and functions as a finder for displaying an object as an electronic image.
  • this display unit includes the organic EL elements 1, 10, 11 described above.
  • the circuit board 1308 is installed inside the case.
  • the circuit board 1308 is provided with a memory capable of storing an imaging signal.
  • a light receiving unit 1304 including an optical lens (imaging optical system), a CCD, and the like is provided on the front side (the back side in the illustrated configuration) of the case 1302.
  • a video signal output terminal 1312 and an input / output terminal 1314 for data communication are provided on the side surface of the case 1302.
  • a television monitor 1430 is connected to the video signal output terminal 1312 and a personal computer 1440 is connected to the input / output terminal 1314 for data communication as required.
  • it is configured to be output to the imaging signal power television monitor 1430 stored in the memory of the circuit board 1308 or the personal computer 1440 by a predetermined operation.
  • the electronic device of the present invention is not limited to the personal computer (mopile type personal computer) shown in FIG. 6, the mobile phone shown in FIG. 7, the digital still camera shown in FIG. Viewfinder type, monitor direct view type video tape recorder, laptop type personal computer, car navigation device, pager, electronic notebook (including communication function), electronic dictionary, calculator, electronic game machine, word processor, office station , Videophones, TV monitors for crime prevention, electronic binoculars, POS terminals, devices equipped with touch panels (eg cash dispensers for financial institutions, automatic ticket vending machines), medical devices (eg electronic thermometers, sphygmomanometers, blood glucose meters, electrocardiograms Display devices, ultrasound diagnostic devices, display devices for endoscopes), fish finders, various measuring instruments, Instruments (for example, vehicles, aircraft, ships
  • the present invention can be applied to marine measuring instruments, flight simulators, various monitors, and projection display devices such as projectors.
  • the electronic device of the present invention provided with the substrate for an electronic device of the present invention can be applied to, for example, a photoelectric conversion element, a thin film transistor, etc., in addition to the organic EL element described above.
  • two transparent glass substrates having an average thickness of 1.1 mm were prepared, and an ITO electrode having an average thickness of 150 nm was formed on each of these substrates by sputtering. Note that one of the ITO electrodes was used as an electrode constituting an organic EL device, and the other ITO electrode was used as a counter electrode in the subsequent step 3A.
  • each of four R 1 s is independently a hydrogen atom, or any of the substituents represented by the following general formula (7) to the following general formula (9). However, at least one of the four R 1 s is at least one of the substituents represented by the following general formula (7) to the following general formula (9). ]
  • n is an integer of 1 to 15.
  • one of the ITO electrodes provided on the glass substrate is set as the cathode and the other as the anode, and then the cathode and the anode are immersed in the aqueous solution prepared in step 2A. Voltage was applied between
  • a derivative of a sulfonic acid ester dye of copper phthalocyanine was deposited on the ITO electrode serving as the anode, to obtain an intermediate layer having an average thickness of 8 nm containing this derivative as a main component.
  • this ITO electrode was used as an anode constituting an organic EL element.
  • poly (9, 9-di-cyl 2, 7- dibi-len-fluore) After applying a 1.7 wt% xylene solution of di-lu-ortho-co (anthracene-9,10-diyl) (weight average molecular weight 200000) by spin coating, under a nitrogen atmosphere, 100 ° CX for 10 minutes, and further under reduced pressure. Drying was performed under the conditions of 100 ° CX for 60 minutes to form a light emitting layer with an average thickness of 50 nm.
  • Ca and A1 are continuously vapor-deposited on the light emitting layer by a vacuum evaporation method to form a multilayer electrode composed of Ca having an average thickness of 1 nm and A1 having an average thickness of 300 nm.
  • the (cathode) was formed.
  • An organic EL device was manufactured in the same manner as Example 1A, except that an aqueous solution of 1.0 wt% of the compound shown in Chemical formula 1 was prepared in the step-2A.
  • the derivative of the complex compound shown in Chemical formula 26 was deposited to obtain an intermediate layer having an average thickness of 1 nm having the derivative as a main component.
  • this ITO electrode was used as an anode constituting an organic EL element.
  • step-2A a 1. ( ⁇ % water 'methanol solution of the compound shown in Chemical formula 27 is prepared, and various conditions at the time of voltage application in the above step 3A- are as follows. In the same manner as in, an organic EL device was manufactured.
  • Electrode current between electrodes 1 to 4 ⁇ A / cm 2
  • the derivative of the complex compound shown in Chemical formula 27 was deposited to obtain an intermediate layer having an average thickness of 5 nm containing this derivative as the main component.
  • this ITO electrode was used as an anode constituting an organic EL element.
  • step 2A— 2. ( ⁇ % water ′ methanol solution of the compound shown in Chemical formula 28 is prepared, and the various conditions at the time of voltage application in the above step 3A— are as follows. Similarly, an organic EL device was manufactured.
  • Electrode current between electrodes 1 to 4 ⁇ A / cm 2
  • the derivative of the complex shown in Chemical formula 28 was deposited on the ITO electrode serving as the cathode, to obtain an intermediate layer having an average thickness of 5 nm containing this derivative as the main component.
  • this ITO electrode was used as an anode constituting an organic EL element.
  • Example 1A In the same manner as in Example 1A except that a 3. Owt% water-methanol solution of the compound shown in Chemical formula 29 is prepared in the above step 2A-, and various conditions at the time of voltage application in the above step 3A- are as follows. Then, an organic EL device was manufactured.
  • Electrode current between electrodes 1 to 4 ⁇ A / cm'
  • the derivative of the complex compound shown in Chemical formula 29 was deposited to obtain an intermediate layer having an average thickness of 5 nm mainly composed of this derivative.
  • this ITO electrode was used as an anode constituting an organic EL element.
  • An organic EL device was manufactured in the same manner as in Example 1A, except that the step 2A- to the step 4A (intermediate layer forming step) was omitted.
  • two transparent glass substrates having an average thickness of 1.1 mm were prepared, and an ITO electrode having an average thickness of 150 nm was formed on each of these substrates by sputtering. Note that one of the ITO electrodes was used as an electrode constituting an organic EL element, and the other ITO electrode was used as a counter electrode in the subsequent step 3B.
  • Electrode current between electrodes 1 to 4 ⁇ A / cm'
  • a derivative of sodium carboxylate derivative of tetrathiofulvalene was deposited on the ITO electrode serving as the anode, to obtain an intermediate layer having an average thickness of 8 nm containing this derivative as a main component.
  • this ITO electrode was used as a cathode constituting an organic EL element.
  • an Al electrode (anode) having an average thickness of 300 nm was formed by vacuum evaporation.
  • a cathode, an intermediate layer, a light emitting layer and a hole transport layer were sequentially formed on a glass substrate.
  • tetrathiofulvalene is deposited by vacuum evaporation to form an intermediate layer having an average thickness of 10 nm;
  • An organic EL device was manufactured in the same manner as 1B.
  • An organic EL device was manufactured in the same manner as in Example 1B, except that the above process-2B--the above process-4B-(intermediate layer forming process) was omitted.
  • the conduction current (A), the emission luminance (cdZm 2 ), and the maximum emission efficiency (lmZW) are measured, and the emission luminance is half the initial value. The half life was measured.
  • each measured value (energized current, light emission luminance, maximum luminous efficiency, half life) measured in Comparative Example 1 A was measured in Examples 1A to 5A and Comparative Example 2A as a reference value.
  • Each measured value was evaluated according to the following four criteria.
  • Comparative Example 1 The measured value of Comparative Example 1 A was not less than 0.75 times and not more than 1.00 times. The evaluation results are shown in Table 1 below.
  • FIG. 9 shows a graph showing the relationship between the change in the value of the applied voltage measured in the organic EL elements of Example 1A and Comparative Example 1A and the change in the value of the conduction current.
  • the organic EL devices of each Example were superior to the organic EL devices of each Comparative Example in all of the conduction current, the luminance, the maximum luminous efficiency and the half life. The results were obtained.
  • the adhesion at the interface between the anode and the intermediate layer and at the interface between the intermediate layer and the light emitting layer is improved respectively. It became clear that the delivery of positive holes was suitably carried out.
  • each measured value (energized current, light emission luminance, maximum luminous efficiency, half period) measured in Comparative Example 1B is measured in Example 1B, Example 2B, and Comparative Example 2B as a reference value.
  • Each of the measured values was evaluated according to the following four criteria.
  • the organic EL device of the present invention adhesion at the interface between the cathode and the intermediate layer and at the interface between the intermediate layer and the light emitting layer is improved, so that the cathode can be changed to the light emitting layer via the intermediate layer. It became clear that the delivery of electrons was carried out favorably.
  • an electronic device (organic electroluminescence device) provided with a substrate for an electronic device manufactured by the method of manufacturing a substrate for an electronic device is a liquid containing an organic substance having a function of transporting a carrier. While the electrode formed on the substrate is in contact, by applying a voltage to the liquid using this electrode as one of the electrodes, the organic matter charged in the liquid can be collected on the electrode. It has an intermediate layer formed by
  • the intermediate layer formed by such a process exhibits excellent adhesion to both the electrode and the organic semiconductor layer on the side in contact with the electrode and the organic semiconductor layer.
  • injection of carriers from the electrode to the intermediate layer and injection of carriers from the intermediate layer to the organic semiconductor layer can be smoothly performed, whereby the efficiency of injection of carriers to the organic semiconductor layer is improved. It becomes.
  • electronic devices provided with electronic devices of a sensible configuration become highly reliable. Therefore, it has industrial applicability.

Abstract

Disclosed are a method for manufacturing a substrate for electronic devices having excellent carrier transporting ability, a substrate for electronic devices having excellent carrier transporting ability, an electronic device comprising such a substrate for electronic devices and having excellent characteristics, and a highly reliable electronic instrument. Specifically disclosed is a method for manufacturing a substrate for electronic devices which substrate comprises an organic semiconductor layer, an electrode (an anode), and an intermediate layer arranged between the organic semiconductor layer and the anode in contact with both of them and mainly composed of an organic material having carrier transporting properties. This method comprises a step wherein a voltage is applied to a liquid containing the organic material using the anode as one electrode while having the anode in contact with the liquid, thereby collecting the organic material charged in the liquid onto the anode and forming the intermediate layer, and a step wherein an organic semiconductor layer is formed on a side of the intermediate layer opposite to the anode.

Description

電子デバイス用基板の製造方法、電子デバイス用基板、電子デバイスお よび電子機器  METHOD FOR MANUFACTURING SUBSTRATE FOR ELECTRONIC DEVICE, SUBSTRATE FOR ELECTRONIC DEVICE, ELECTRONIC DEVICE AND ELECTRONIC APPARATUS
技術分野  Technical field
[0001] 本発明は、電子デバイス用基板の製造方法、電子デバイス用基板、電子デバイス および電子機器に関するものである。  The present invention relates to a method of manufacturing a substrate for an electronic device, a substrate for an electronic device, an electronic device, and an electronic device.
背景技術  Background art
[0002] 有機半導体層と電極とを備え、これらのものがお互いに接触するように設けられた 電子デバイス用基板を備える電子デバイスとして、例えば、有機エレクト口ルミネッセ ンス素子 (以下、単に「有機 EL素子」という。)や、有機薄膜トランジスタ等がある。  [0002] As an electronic device provided with an organic semiconductor layer and an electrode and provided with a substrate for an electronic device provided so as to be in contact with each other, for example, an organic electret luminescence device (hereinafter simply referred to as "organic EL Devices), organic thin film transistors, and the like.
[0003] これらのうち、有機 EL素子は、固体発光型の安価な大面積フルカラー表示素子( 発光素子)としての用途が有望視され、多くの開発が行われている。  [0003] Among these, organic EL devices are promising for use as solid-emitting low-cost large-area full-color display devices (light-emitting devices), and many developments have been made.
[0004] 一般に、有機 EL素子は、陰極と陽極との間に発光層を有する構成であり、陰極と 陽極との間に電界を印加すると、発光層に陰極側から電子が注入され、陽極側から 正孔が注入される。  Generally, an organic EL element has a light emitting layer between a cathode and an anode, and when an electric field is applied between the cathode and the anode, electrons are injected into the light emitting layer from the cathode side, and the anode side Holes are injected from
[0005] この際に、有機 EL材料 (発光層材料)の分子構造や分子の集合状態が特定の状 態である場合に、前記注入された電子と正孔とが即座に結合せず、特別の励起状態 として一定の時間保持される。そのため、通常の状態である基底状態と比較して分子 の総エネルギーは、励起エネルギー分だけ増加する。この特別な励起状態を保持し て 、る電子と正孔との対を励起子 (エキシトン)と呼ぶ。  At this time, in the case where the molecular structure of the organic EL material (light emitting layer material) and the state of aggregation of the molecules are in a specific state, the injected electrons and holes do not combine instantaneously, It is held for a fixed time as an excited state of Therefore, the total energy of the molecule is increased by the excitation energy as compared to the normal state, the ground state. Holding this special excited state, the electron-hole pair is called an exciton (exciton).
[0006] そして、前記保持された一定の時間経過後に励起子が崩壊して電子と正孔とが結 合すると、増加していた励起エネルギー分が外部に熱や光として放出される。  [0006] Then, when the excitons are decayed and electrons and holes are combined after the lapse of the held constant time, the increased excitation energy is released as heat or light to the outside.
[0007] この光放出は、発光層付近においてなされ、前記励起エネルギー分の内の光放出 する割合は、有機 EL材料の分子構造や分子の集合状態によって大きく影響される。  This light emission is made near the light emitting layer, and the ratio of light emission within the above-mentioned excitation energy is largely influenced by the molecular structure of the organic EL material and the state of aggregation of the molecules.
[0008] さらに、このような有機 EL素子において、高い発光を得るためには、キャリア(電子 または正孔)のキャリア輸送性の異なる有機半導体材料で構成される有機半導体層 を、発光層と、陰極および Zまたは陽極との間に積層する素子構造が有効であること も判っている。 Furthermore, in such an organic EL device, in order to obtain high light emission, an organic semiconductor layer composed of an organic semiconductor material having different carrier transportability of carriers (electrons or holes), a light emitting layer, and The element structure to be laminated between the cathode and Z or the anode is effective I also know.
[0009] そこで、発光層と有機半導体層とを、陽極と陰極との間に積層した構成の有機 EL 素子において、高い発光効率を得るために、有機 EL材料および有機半導体材料の 分子構造や分子の集合状態、さらには、発光層および有機半導体層の積層する数 や位置等につ!、て検討が行われて 、る。  Therefore, in the organic EL device having a configuration in which the light emitting layer and the organic semiconductor layer are laminated between the anode and the cathode, in order to obtain high luminous efficiency, the molecular structure and molecular structure of the organic EL material and the organic semiconductor material In addition, the number and position of the light emitting layer and the organic semiconductor layer to be stacked are studied!
[0010] し力しながら、このような構成の有機 EL素子においても、発光効率等の特性の向上 が期待するほど得られていないのが実情であった (例えば、特許文献 1:特開平 9— 2 55774号公報参照。)。  Under the circumstances, even in the organic EL device having such a configuration, it has not been obtained as much as expected to improve the characteristics such as the light emission efficiency (eg, Patent Document 1: Japanese Patent Application Laid-Open No. -See 2 55 774.).
[0011] そして、このことは、有機半導体材料と電極の構成材料 (金属材料)との相互作用よ りも有機半導体材料同士間の相互作用が大きぐ有機半導体材料と金属材料とが反 発するため、有機半導体層と電極との密着性が十分に得られず、有機半導体層と電 極との間でキャリアの受け渡しが円滑に行われていないことに起因していることが判 つてきた。  [0011] And, this is because the organic semiconductor material and the metal material counteract each other in which the interaction between the organic semiconductor materials is larger than the interaction between the organic semiconductor material and the constituent material of the electrode (metal material). It has been found that the adhesion between the organic semiconductor layer and the electrode is not sufficiently obtained, and carrier transfer is not smoothly performed between the organic semiconductor layer and the electrode.
[0012] このような問題を解決する方法として、陽極と正孔輸送層(有機半導体層)との間に 、銅フタロシアニンのような金属錯体を主材料とする正孔注入層を、真空蒸着法ゃィ オンビーム蒸着法のような気相成膜法を用いて形成して、キャリア輸送を向上す方法 が開示されている(例えば、特許文献 2 :特開 2002— 151269号公報参照。;)。  As a method for solving such problems, a vacuum evaporation method is mainly used between the anode and the hole transport layer (organic semiconductor layer), using a hole injection layer mainly composed of a metal complex such as copper phthalocyanine. JP-A-2002-151269 discloses a method of improving carrier transport by forming it using a vapor phase deposition method such as ion beam deposition.
[0013] し力しながら、このような方法を用いた場合においても、陽極と正孔注入層との間の 密着性を十分に向上させることができず、有機 EL素子の特性の向上は、十分に得ら れていない。  Even when such a method is used, the adhesion between the anode and the hole injection layer can not be sufficiently improved, and the characteristics of the organic EL device can be improved. Not obtained enough.
[0014] このような問題は、有機薄膜トランジスタ等にも同様に生じることが懸念されている。  It is feared that such a problem may similarly occur in organic thin film transistors and the like.
発明の開示  Disclosure of the invention
[0015] 本発明の目的は、キャリア輸送能に優れた電子デバイス用基板を製造し得る電子 デバイス用基板の製造方法、キャリア輸送能に優れた電子デバイス用基板、かかる 電子デバイス用基板を備え、特性に優れた電子デバイスおよび信頼性の高 、電子 機器を提供することにある。  An object of the present invention is to provide a method for producing a substrate for an electronic device capable of producing a substrate for an electronic device excellent in carrier transportability, a substrate for an electronic device excellent in carrier transportability, and the substrate for such an electronic device. The purpose is to provide electronic devices with excellent characteristics and highly reliable electronic devices.
[0016] 上記目的を達成するために、本発明の電子デバイス用基板の製造方法は、  In order to achieve the above object, a method of manufacturing a substrate for an electronic device of the present invention is
有機半導体層と、電極と、前記有機半導体層と前記電極との間にこれらの双方に接 触するように設けられ、キャリアを輸送する機能を有する有機物を主材料として構成さ れる中間層とを有する電子デバイス用基板の製造方法であって、 In contact with both of the organic semiconductor layer, the electrode, and the organic semiconductor layer and the electrode What is claimed is: 1. A method of manufacturing a substrate for an electronic device, comprising: an intermediate layer which is provided so as to touch and which is mainly composed of an organic substance having a function of transporting a carrier.
前記有機物を含有する液体に前記電極を接触させた状態で、当該電極を一方の 電極として前記液体に電圧を印加することにより、前記液体中において帯電した状態 の前記有機物を、前記電極に集めて前記中間層を形成する工程と、  In the state where the electrode is in contact with the liquid containing the organic substance, the organic substance charged in the liquid is collected to the electrode by applying a voltage to the liquid using the electrode as one of the electrodes. Forming the intermediate layer;
前記中間層の前記電極と反対側の面に、前記有機半導体層を設ける工程とを有 することを特徴とする。  Providing the organic semiconductor layer on the surface of the intermediate layer opposite to the electrode.
[0017] これにより、中間層を介した電極力 有機半導体層へのキャリアの受け渡しが円滑 に行われ、キャリア輸送能に優れた電子デバイス用基板を製造することができる。  Thus, the carrier can be smoothly delivered to the organic semiconductor layer through the intermediate layer, and a substrate for an electronic device excellent in carrier transportability can be manufactured.
[0018] 本発明の電子デバイス用基板の製造方法では、前記有機物は、キャリアを輸送す る機能を有するキャリア輸送部位と、該キャリア輸送部位に結合する帯電可能な部位 とを有する化合物であることが好まし 、。 [0018] In the method for producing a substrate for an electronic device of the present invention, the organic substance is a compound having a carrier transport site having a function of transporting a carrier and a chargeable site to be bound to the carrier transport site. Is preferred.
[0019] 有機物をかかる構成とすることにより、液体に電圧を印加した際に、有機物を確実 に電極に集めることができる。 By using the organic matter as such, when a voltage is applied to the liquid, the organic matter can be reliably collected on the electrode.
[0020] 本発明の電子デバイス用基板の製造方法では、前記帯電可能な部位は、前記キヤ リア輸送部位と反対側の端部付近にぉ 、て帯電し得るものであることが好ま U、。 [0020] In the method for manufacturing a substrate for an electronic device of the present invention, the chargeable portion is preferably capable of being charged near the end opposite to the carrier transport portion U,
[0021] これにより、液体に電圧を印加した際に、帯電可能な部位と電極との間に、比較的 容易に化学結合が形成されて、電極と中間層との密着性を向上させることができる。 Thus, when a voltage is applied to the liquid, a chemical bond is relatively easily formed between the chargeable portion and the electrode, and the adhesion between the electrode and the intermediate layer is improved. it can.
[0022] 本発明の電子デバイス用基板の製造方法では、前記キャリア輸送部位は、前記有 機半導体層の構成材料と親和性の高 ヽ構造を含むものであることが好まし 、。 In the method of manufacturing a substrate for an electronic device according to the present invention, the carrier transport site preferably includes a high-molecular weight structure having an affinity to the constituent material of the organic semiconductor layer.
[0023] これにより、中間層と有機半導体層との間の密着性が向上して、中間層から有機半 導体層へのキャリアの受け渡しを円滑に行うことができる。  Thereby, the adhesion between the intermediate layer and the organic semiconductor layer is improved, and carrier delivery from the intermediate layer to the organic semiconductor layer can be smoothly performed.
[0024] 本発明の電子デバイス用基板の製造方法では、前記キャリア輸送部位は、正孔を 輸送する機能を有するものであることが好ま 、。  In the method for manufacturing a substrate for an electronic device of the present invention, the carrier transport site preferably has a function of transporting holes.
[0025] これにより、中間層に正孔を輸送する機能を付与することができる。 Thereby, the intermediate layer can be provided with a function of transporting holes.
[0026] 本発明の電子デバイス用基板の製造方法では、前記有機物は、下記一般式(1)で 表される化合物を主成分とすることが好ま 、。 In the method for manufacturing a substrate for an electronic device of the present invention, the organic substance preferably contains a compound represented by the following general formula (1) as a main component.
[0027] [化 1]
Figure imgf000006_0001
[0027] [Formula 1]
Figure imgf000006_0001
[0028] [式中、 4つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 4つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, each of four R 1 s independently represents a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the four R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
[0029] [化 2] 一 R2— X1— Y1—0— R3 ( 5 ) ( 6 )[Formula 2] One R 2 — X 1 — Y 10 — R 3 (5) (6)
Figure imgf000006_0002
Figure imgf000006_0002
[0030] [各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [Wherein, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[0031] [化 3]  [Formula 3]
または 一 i—Or one i—
Figure imgf000006_0003
Figure imgf000006_0003
[0032] を表す。 Y1は、単結合、 [0032] represents Y 1 is a single bond,
[0033] [化 4]
Figure imgf000007_0001
[0033] [Formula 4]
Figure imgf000007_0001
[0034] を表す。]  [0034] is represented. ]
これにより、得られる中間層は、正孔輸送能に優れ、電極および有機半導体層に対 して優れた密着性を発揮するものとなる。  Thereby, the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
[0035] 本発明の電子デバイス用基板の製造方法では、前記有機物は、下記一般式 (2)で 表される化合物を主成分とすることが好まし 、。 [0035] In the method for manufacturing a substrate for an electronic device of the present invention, the organic substance preferably contains a compound represented by the following general formula (2) as a main component.
[0036] [化 5] [Formula 5]
Figure imgf000007_0002
Figure imgf000007_0002
[0037] [式中、 3つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, three R 1 's each independently represent a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the following general formula (5) or the following general formula (6). ]
[0038] [化 6]
Figure imgf000007_0003
[Formula 6]
Figure imgf000007_0003
[0039] [各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [0040] [化 7] [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond, [Formula 7]
またはOr
Figure imgf000008_0001
Figure imgf000008_0001
[0041] を表す。 Y1は、単結合、 [0041] is represented. Y 1 is a single bond,
[0042] [化 8] [Formula 8]
Figure imgf000008_0002
Figure imgf000008_0002
[0043] を表す。]  [0043] represents ]
これにより、得られる中間層は、正孔輸送能に優れ、電極および有機半導体層に対 して優れた密着性を発揮するものとなる。  Thereby, the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
[0044] 本発明の電子デバイス用基板の製造方法では、前記有機物は、下記一般式 (3)で 表される化合物を主成分とすることが好まし 、。 In the method for manufacturing a substrate for an electronic device of the present invention, the organic substance preferably contains a compound represented by the following general formula (3) as a main component.
[0045] [化 9] [Formula 9]
Figure imgf000008_0003
Figure imgf000008_0003
[式中、 3つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, three R 1 's each independently represent a hydrogen atom or any of the substituents represented by the following general formula (5) or the following general formula (6), and are identical] Or they may be different. However, at least one of the three R 1 is represented by the following general formula (5) or This represents any of the substituents represented by the general formula (6). ]
[0047] [化 10] 一 R2— X1— Y1—0— R3 ( 5 ) ( 6 )
Figure imgf000009_0001
[Formula 10] One R 2 — X 1 — Y 10 — R 3 (5) (6)
Figure imgf000009_0001
[0048] [各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[0049] [化 11]  [Formula 11]
Figure imgf000009_0002
Figure imgf000009_0002
[0050] を表す。 Yは、単結合、 [0050] Y is a single bond,
[0051] [化 12] [Formula 12]
Q 0 Q 0
— — たは — C—  — — Or — C —
0  0
[0052] を表す。]  [0052] is represented. ]
これにより、得られる中間層は、正孔輸送能に優れ、電極および有機半導体層に対 して優れた密着性を発揮するものとなる。  Thereby, the intermediate layer obtained is excellent in hole transportability and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
[0053] 本発明の電子デバイス用基板の製造方法では、前記キャリア輸送部位は、電子を 輸送する機能を有するものであることが好まし 、。 In the method for manufacturing a substrate for an electronic device of the present invention, the carrier transport site preferably has a function of transporting electrons.
[0054] これにより、中間層に電子を輸送する機能を付与することができる。 Thus, the intermediate layer can be provided with a function of transporting electrons.
[0055] 本発明の電子デバイス用基板の製造方法では、前記有機物は、下記一般式 (4)で 表される化合物を主成分とすることが好ま 、。 [0056] [化 13] In the method of manufacturing a substrate for an electronic device of the present invention, the organic substance preferably contains a compound represented by the following general formula (4) as a main component. [Formula 13]
Figure imgf000010_0001
Figure imgf000010_0001
[0057] [式中、 2つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 2つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein two R 1 's each independently represent a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), It may be the same or different. However, at least one of the two R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
[0058] [化 14]  [Formula 14]
— R2— X1— Y1— 0— R3 ( 5 ) oc= ( 6 )
Figure imgf000010_0002
— R 2 — X 1 — Y 1 — 0 — R 3 (5) oc = (6)
Figure imgf000010_0002
[0059] [各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[0060] [化 15]  [Formula 15]
Figure imgf000010_0003
Figure imgf000010_0003
[0061] を表す。 Yは、単結合、 [0061] represents Y is a single bond,
[0062] [化 16] [Formula 16]
または
Figure imgf000010_0004
Or
Figure imgf000010_0004
[0063」 を表す。」 これにより、得られる中間層は、電子輸送能に優れ、電極および有機半導体層に対 して優れた密着性を発揮するものとなる。 Represents [0063]. " As a result, the intermediate layer obtained is excellent in electron transportability, and exhibits excellent adhesion to the electrode and the organic semiconductor layer.
[0064] 本発明の電子デバイス用基板は、本発明の電子デバイス用基板の製造方法により 製造されたことを特徴とする。  The substrate for electronic devices of the present invention is characterized by being manufactured by the method of manufacturing a substrate for electronic devices of the present invention.
[0065] これにより、中間層を介した電極力 有機半導体層へのキャリアの受け渡しが円滑 に行われ、キャリア輸送能に優れた電子デバイス用基板とすることができる。 Thus, carriers can be smoothly delivered to the organic semiconductor layer through the intermediate layer, and the substrate for an electronic device having excellent carrier transportability can be obtained.
[0066] 本発明の電子デバイス用基板では、前記有機物のうちの少なくとも一部が、前記電 極に化学結合して 、ることが好ま 、。 [0066] In the substrate for an electronic device of the present invention, it is preferable that at least a part of the organic substance be chemically bonded to the electrode.
[0067] これにより、化学結合を介したキャリアの受け渡しを行うことができるとともに、電極と 中間層との密着性の向上を図ることができる。 Thus, the carrier can be delivered via a chemical bond, and the adhesion between the electrode and the intermediate layer can be improved.
[0068] 本発明の電子デバイス用基板では、前記中間層は、その平均厚さが l〜50nmで あることが好ましい。 In the substrate for an electronic device of the present invention, the intermediate layer preferably has an average thickness of 1 to 50 nm.
[0069] これにより、中間層の厚さ方向に対する抵抗値が増大するのを防止しつつ、中間層 を介した電極力も有機半導体層へのキャリアの受け渡しを確実に行うことができる。  Thus, while preventing the resistance value in the thickness direction of the intermediate layer from increasing, the electrode force via the intermediate layer can also reliably deliver the carrier to the organic semiconductor layer.
[0070] 本発明の電子デバイスは、本発明の電子デバイス用基板を備えることを特徴とする An electronic device of the present invention includes the substrate for an electronic device of the present invention.
[0071] これにより、特性に優れた電子デバイスが得られる。 Thereby, an electronic device having excellent characteristics can be obtained.
[0072] 本発明の電子デバイスは、有機エレクト口ルミネッセンス素子であることが好ましい。  The electronic device of the present invention is preferably an organic electroluminescent device.
[0073] これにより、発光効率等の特性に優れた有機 EL素子が得られる。 Thereby, an organic EL device excellent in characteristics such as light emission efficiency can be obtained.
[0074] 本発明の電子機器では、本発明の電子デバイスを備えることを特徴とする。 An electronic device of the present invention includes the electronic device of the present invention.
[0075] これにより、信頼性の高い電子機器が得られる。 Thus, a highly reliable electronic device can be obtained.
図面の簡単な説明  Brief description of the drawings
[0076] [図 1]図 1は、有機 EL素子の第 1実施形態を示した縦断面図である。 [FIG. 1] FIG. 1 is a longitudinal sectional view showing a first embodiment of the organic EL device.
[図 2]図 2は、中間層を設ける工程を説明するための模式図 (縦断面図)である。  [FIG. 2] FIG. 2 is a schematic view (longitudinal sectional view) for explaining the step of providing an intermediate layer.
[図 3]図 3は、第 1実施形態の有機 EL素子を備えるディスプレイ装置の実施形態を示 す縦断面図である。  [FIG. 3] FIG. 3 is a longitudinal sectional view showing an embodiment of a display device provided with the organic EL element of the first embodiment.
[図 4]図 4は、有機 EL素子の第 2実施形態を示した縦断面図である。  [FIG. 4] FIG. 4 is a longitudinal sectional view showing a second embodiment of the organic EL device.
[図 5]図 5は、有機 EL素子の第 3実施形態を示した縦断面図である。 [図 6]図 6は、本発明の電子機器を適用したモパイル型 (またはノート型)のパーソナ ルコンピュータの構成を示す斜視図である。 [FIG. 5] FIG. 5 is a longitudinal sectional view showing a third embodiment of the organic EL device. [FIG. 6] FIG. 6 is a perspective view showing the configuration of a mopile type (or notebook type) personal computer to which the electronic device of the present invention is applied.
[図 7]図 7は、本発明の電子機器を適用した携帯電話機 (PHSも含む)の構成を示す 斜視図である。  [FIG. 7] FIG. 7 is a perspective view showing the configuration of a mobile phone (including PHS) to which the electronic device of the present invention is applied.
[図 8]図 8は、本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜 視図である。  [FIG. 8] FIG. 8 is a perspective view showing the configuration of a digital still camera to which the electronic device of the present invention is applied.
[図 9]図 9は、実施例 1 Aおよび比較例 1 Aの有機 EL素子において測定された印加電 圧の値の変化と、通電電流の値の変化との関係を示すグラフである。  FIG. 9 is a graph showing the relationship between the change in the value of the applied voltage measured in the organic EL elements of Example 1 A and Comparative Example 1 A and the change in the value of the current flow.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0077] 以下、本発明の電子デバイス用基板の製造方法、電子デバイス用基板、電子デバ イスおよび電子機器を添付図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the method for manufacturing a substrate for an electronic device, the substrate for an electronic device, the electronic device and the electronic device of the present invention will be described in detail based on preferred embodiments shown in the attached drawings.
[0078] なお、以下では、本発明の電子デバイスを、有機エレクト口ルミネッセンス素子(以 下、単に「有機 EL素子」という。)に適用した場合を一例として説明する。 Hereinafter, the case where the electronic device of the present invention is applied to an organic electorite luminescent element (hereinafter simply referred to as “organic EL element”) will be described as an example.
[0079] <有機 EL素子 > <Organic EL Device>
< <第 1実施形態 > >  <First Embodiment>
まず、有機 EL素子の第 1実施形態について説明する。  First, a first embodiment of the organic EL element will be described.
[0080] 図 1は、有機 EL素子の第 1実施形態を示した縦断面図である。なお、以下では、説 明の都合上、図 1中の上側を「上」、下側を「下」として説明を行う。 FIG. 1 is a longitudinal sectional view showing a first embodiment of the organic EL device. In the following, for convenience of explanation, the upper side in FIG. 1 will be described as “upper” and the lower side as “lower”.
[0081] 図 1に示す有機 EL素子 1は、陽極 7と、陰極 3と、陽極 7と陰極 3との間に、陽極 7側 から順次積層された中間層 4と、発光層 5とからなる積層体 9を備えるものである。そし て、有機 EL素子 1は、その全体が基板 2上に設けられるとともに、封止部材 8で封止 されている。 The organic EL device 1 shown in FIG. 1 comprises an anode 7, a cathode 3, an intermediate layer 4 sequentially stacked from the anode 7 side between the anode 7 and the cathode 3, and a light emitting layer 5 A laminate 9 is provided. The whole of the organic EL element 1 is provided on the substrate 2 and sealed with a sealing member 8.
[0082] なお、本実施形態では、この有機 EL素子 1において、陽極 (電極) 7と中間層 4と発 光層(有機半導体層) 5とにより本発明の電子デバイス用基板が構成される。  In the present embodiment, in the organic EL element 1, the substrate for an electronic device of the present invention is constituted by the anode (electrode) 7, the intermediate layer 4 and the light emitting layer (organic semiconductor layer) 5.
[0083] 基板 2は、有機 EL素子 1の支持体となるものである。有機 EL素子 1が基板 2と反対 側から光を取り出す構成(トップェミッション型)である場合、基板 2および陽極 7には 、それぞれ、透明性は、特に要求されない。また、有機 EL素子 1が基板 2側から光を 取り出す構成 (ボトムェミッション型)である場合、基板 2および陽極 7には、それぞれ 、実質的に透明(無色透明、着色透明、半透明)性を有するものが用いられる。 The substrate 2 is to be a support of the organic EL element 1. When the organic EL element 1 has a configuration (top transmission type) for extracting light from the side opposite to the substrate 2, the substrate 2 and the anode 7 are not particularly required to have transparency. In the case where the organic EL element 1 has a configuration (bottom transmission type) in which light is extracted from the substrate 2 side, the substrate 2 and the anode 7 respectively have And those substantially having transparency (colorless transparency, colored transparency, semitransparency) are used.
[0084] 基板 2としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ プロピレン、シクロォレフインポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチル メタタリレート、ポリカーボネート、ポリアリレートのような榭脂材料や、石英ガラス、ソー ダガラスのようなガラス材料等で構成される透明基板や、アルミナのようなセラミックス 材料で構成された基板、ステンレス鋼のような金属基板の表面に酸ィ匕膜 (絶縁膜)を 形成したもの、不透明な榭脂材料で構成された基板のような不透明基板を用いること ができる。  [0084] As the substrate 2, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, cycloolefin polymer, polyamide, polyether sulfone, polymethyl methacrylate, resin material such as polycarbonate, polyarylate, quartz glass, etc. An oxide film (insulation film) is formed on the surface of a transparent substrate made of a glass material such as soda glass, a substrate made of a ceramic material such as alumina, or a metal substrate such as stainless steel. An opaque substrate can be used, such as a substrate composed of one or more opaque resin materials.
[0085] このような基板 2の平均厚さは、特に限定されないが、 0. 1〜: LOmm程度であるの が好ましぐ 0. l〜5mm程度であるのがより好ましい。  The average thickness of such a substrate 2 is not particularly limited, but is preferably about 0.1 to 5 mm, preferably about 0.1 to about LO mm.
[0086] 陽極 7は、後述する中間層 4に正孔を注入する電極である。 The anode 7 is an electrode for injecting holes into the intermediate layer 4 described later.
[0087] また、陽極 7の構成材料(陽極材料)としては、正孔を注入すると ヽぅ観点から、仕事 関数が大きぐ導電性に優れる材料を用いるのが好ま U、。  Further, as a constituent material of the anode 7 (anode material), it is preferable to use a material having excellent conductivity with a large work function from the viewpoint of injecting holes.
[0088] このような陽極材料としては、例えば、 ITO (Indium Tin Oxide)、 IZO (Indium As such an anode material, for example, ITO (Indium Tin Oxide), IZO (Indium)
Zinc Oxide)、 In O、 SnO、 Sb含有 SnO、 Al含有 ZnO等の酸化物、 Au、 Pt、  Zinc Oxide), InO, SnO, Sb-containing SnO, Al-containing ZnO and other oxides, Au, Pt,
3 3 2 2  3 3 2 2
Ag、 Cu、 Aほたはこれらを含む合金等が挙げられ、これらのうちの少なくとも 1種を用 いることがでさる。  Examples of Ag, Cu, and A metals include alloys containing these, and at least one of them can be used.
[0089] このような陽極 7の平均厚さは、特に限定されないが、 10〜200nm程度であるのが 好ましぐ 50〜150nm程度であるのがより好ましい。陽極 7の厚さが薄すぎると、陽 極 7としての機能が充分に発揮されなくなるおそれがあり、一方、陽極 7が厚すぎると The average thickness of such an anode 7 is not particularly limited, but about 10 to 200 nm is preferable, and about 50 to 150 nm is more preferable. If the thickness of the anode 7 is too thin, the function as the anode 7 may not be sufficiently exhibited, while if the thickness of the anode 7 is too thick
、有機 EL素子 1の発光効率が低下するおそれがある。 The light emission efficiency of the organic EL element 1 may be reduced.
[0090] また、陽極 7の表面抵抗は、低い程好ましぐ具体的には、 100 Ω Ζ口以下である のが好ましぐ 50 ΩΖ口以下であるのがより好ましい。表面抵抗の下限値は、特に限 定されないが、通常 0. 1 Ω Ζ口程度であるのが好ましい。 In addition, the surface resistance of the anode 7 is preferably as low as possible, specifically, preferably not more than 100 Ω, and more preferably, not more than 50 Ω. The lower limit value of the surface resistance is not particularly limited, but it is usually preferable to be about 0.1 Ω.
[0091] 陰極 3は、後述する発光層 5に電子を注入する電極である。この陰極 3の構成材料 としては、仕事関数の小さ!/、材料を用いるのが好ま 、。 The cathode 3 is an electrode for injecting electrons into the light emitting layer 5 described later. As a constituent material of this cathode 3, it is preferable to use a material with a small work function!
[0092] 陰極 3の構成材料としては、例えば、 Li、 Na、 K、 Be、 Mg、 Ca、 Sr、 Ba、 La、 Ce、As a constituent material of the cathode 3, for example, Li, Na, K, Be, Mg, Ca, Sr, Ba, La, Ce,
Er、 Eu、 Sc、 Y、 Yb、 Ag、 Cu、 Al、 Cs、 Rbまたはこれらを含む合金等が挙げられ、 これらのうちの 1種または 2種以上を組み合わせて用いることができる。 Er, Eu, Sc, Y, Yb, Ag, Cu, Al, Cs, Rb or alloys containing these, etc. One or two or more of these can be used in combination.
[0093] 特に、陰極 3の構成材料として合金を用いる場合には、 Ag、 Al、 Cu等の安定な金 属元素を含む合金、具体的には、 MgAg、 AlLi、 CuLi等の合金を用いるのが好まし い。力かる合金を陰極 3の構成材料として用いることにより、陰極 3の電子注入効率お よび安定性の向上を図ることができる。 In particular, in the case of using an alloy as a constituent material of the cathode 3, an alloy containing a stable metal element such as Ag, Al or Cu, specifically, an alloy such as MgAg, AlLi or CuLi is used. Is preferred. By using a powerful alloy as a constituent material of the cathode 3, the electron injection efficiency and stability of the cathode 3 can be improved.
[0094] なお、陰極 3は、複数層の積層構造とすることもできる。この場合、発光層 5に近い 側の層を、より仕事関数が低い陰極材料で構成するのが好ましい。例えば、陰極 3を 2層の積層構成とする場合、発光層 5から遠い側の層を Caを主材料として構成し、発 光層 5に近い側の層を、 Al、 Agまたはこれらを含む合金を主材料として構成すること ができる。 The cathode 3 can also have a laminated structure of a plurality of layers. In this case, the layer closer to the light emitting layer 5 is preferably made of a cathode material having a lower work function. For example, when the cathode 3 is a two-layer laminated structure, the layer far from the light emitting layer 5 is mainly composed of Ca, and the layer near the light emitting layer 5 is Al, Ag or an alloy containing these. Can be the main material.
[0095] このような陰極 3の平均厚さは、特に限定されないが、 1〜: LOOOnm程度であるのが 好ましぐ 100〜400nm程度であるのがより好ましい。陰極 3の厚さが薄すぎると比抵 抗が高くなつて電圧降下を生じたり、酸ィ匕反応により電気導電特性が不安定となり、 陰極 3としての機能が充分に発揮されなくなるおそれがある。一方、陰極 3が厚過ぎる と、真空蒸着法やスパッタリング法等を用いて陰極 3を形成する際に、膜中の温度が 著しく上昇したり、残留応力が増カロして、後述する下層として設けられている発光層 5 を破壊したり、陰極 3や発光層 5がはがれてしまい、有機 EL素子 1の発光効率が低 下するおそれがある。  The average thickness of such a cathode 3 is not particularly limited, but it is more preferably about 100 to 400 nm, which is preferably about 1 to: LOOO nm. If the thickness of the cathode 3 is too thin, the specific resistance becomes high and a voltage drop may occur, or the electrical conductivity may be unstable due to the oxidation reaction, and the function as the cathode 3 may not be sufficiently exhibited. On the other hand, when the cathode 3 is too thick, when forming the cathode 3 using a vacuum evaporation method, sputtering method or the like, the temperature in the film rises remarkably or the residual stress increases, and it is provided as a lower layer described later. The light emitting layer 5 may be destroyed, or the cathode 3 and the light emitting layer 5 may be peeled off, so that the light emission efficiency of the organic EL element 1 may be reduced.
[0096] また、陰極 3の表面抵抗も低い程好ましぐ具体的には、 50 ΩΖ口以下であるのが 好ましぐ 20 ΩΖ口以下であるのがより好ましい。表面抵抗の下限値は、特に限定さ れないが、通常 0. 1 ΩΖ口程度であるのが好ましい。  Also, the surface resistance of the cathode 3 is preferably as low as possible. Specifically, the surface resistance is preferably 50 Ω or less, more preferably 20 Ω or less. The lower limit value of the surface resistance is not particularly limited, but in general, it is preferable to be about 0.1 Ω.
[0097] さて、陽極 7と陰極 3との間には、中間層 4と発光層(有機半導体層) 5とがこの順で 陽極 7側から積層された積層体 9が陽極 7と陰極 3とに接触するように形成されている  Now, between the anode 7 and the cathode 3, a laminate 9 in which an intermediate layer 4 and a light emitting layer (organic semiconductor layer) 5 are laminated in this order from the anode 7 side is the anode 7 and the cathode 3. It is formed to be in contact with
[0098] 中間層 4は、陽極 7から注入された正孔を発光層 5まで輸送する機能を有するもの である。本発明の電子デバイス (本発明の電子デバイス用基板を備える電子デバイス )では、キャリアを輸送する機能を有する有機物を主材料として構成される中間層 4を 形成する工程に特徴を有する。この中間層 4の形成工程、構成および構成材料等に ついては、後に詳述する。 The intermediate layer 4 has a function of transporting the holes injected from the anode 7 to the light emitting layer 5. The electronic device of the present invention (an electronic device provided with the substrate for an electronic device of the present invention) is characterized in the step of forming the intermediate layer 4 composed mainly of an organic substance having a function of transporting a carrier. For the formation process, configuration and constituent materials of this intermediate layer 4 The details will be described later.
[0099] 中間層 4は、後述する形成工程により形成されることから、陽極 7および発光層 5の 双方に対し、これらと接触する側の面において、優れた密着性を発揮するものとなる 。その結果、陽極 7から中間層 4への正孔の注入、および、中間層 4から発光層 5へ の正孔の注出を円滑に行うことができる。  Since the intermediate layer 4 is formed by the formation process described later, it exhibits excellent adhesion to both the anode 7 and the light emitting layer 5 on the side in contact with these. As a result, the injection of holes from the anode 7 to the intermediate layer 4 and the injection of holes from the intermediate layer 4 to the light emitting layer 5 can be smoothly performed.
[0100] また、有機物は、キャリア (本実施形態では正孔)を輸送する機能を有することから、 中間層 4中での正孔の輸送も、円滑に行うことができる。  In addition, since the organic substance has a function of transporting carriers (in this embodiment, holes), transport of holes in the intermediate layer 4 can also be smoothly performed.
[0101] これらのこと力ら、中間層 4を陽極 7と発光層 5との間に設けることにより、中間層 4を 介した陽極 7から発光層 5への正孔の受け渡しを円滑に行うことができるようになる。 その結果、電子デバイス用基板が優れた正孔 (キャリア)輸送能を発揮するものとなる  By providing the intermediate layer 4 between the anode 7 and the light emitting layer 5, it is possible to smoothly deliver holes from the anode 7 to the light emitting layer 5 via the intermediate layer 4. Will be able to As a result, the substrate for electronic devices exhibits excellent hole (carrier) transport ability.
[0102] このような中間層 4の厚さ(平均)は、特に限定されないが、 l〜50nm程度であるの が好ましぐ 2〜20nm程度であるのがより好ましい。中間層 4の厚さが薄過ぎると、ピ ンホールが生じ、中間層 4を介した陰極 3から発光層 5への正孔の受け渡しが行われ なくなるおそれがある。また、中間層 4の厚さが厚過ぎると、中間層 4の厚さ方向に対 する抵抗値が増大し、有機 EL素子 1の消費電力が増大し好ましくない。 The thickness (average) of such an intermediate layer 4 is not particularly limited, but is preferably about 1 to 50 nm, and more preferably about 2 to 20 nm. If the thickness of the intermediate layer 4 is too thin, pin holes may occur, and there may be a possibility that the delivery of holes from the cathode 3 to the light emitting layer 5 via the intermediate layer 4 can not be performed. In addition, when the thickness of the intermediate layer 4 is too thick, the resistance value in the thickness direction of the intermediate layer 4 increases, which is not preferable because the power consumption of the organic EL element 1 increases.
[0103] 陽極 7と陰極 3との間に通電 (電圧を印力!])すると、中間層 4中を正孔が、また、発光 層 5中を電子が移動し、主に発光層 5の中間層 4側の界面付近において正孔と電子 とでエキシトン (励起子)が生成する。このエキシトンは、一定時間で再結合するがそ の際に、前記エキシトン生成で蓄積された励起エネルギー分を主として蛍光やりん光 等の光として放出する。これがエレクトロルミネセンス発光である。  When current is applied between the anode 7 and the cathode 3 (voltage is applied!), Holes move in the intermediate layer 4 and electrons move in the light emitting layer 5, and the light emitting layer 5 is mainly In the vicinity of the interface on the intermediate layer 4 side, excitons (excitons) are generated by holes and electrons. The excitons recombine in a fixed time, and at that time, the excitation energy accumulated in the exciton formation is mainly emitted as light such as fluorescence or phosphorescence. This is electroluminescence.
[0104] この発光層 5の構成材料としては、電圧印加時に陽極 7側力も正孔を、また、陰極 3 側から電子を注入することができ、正孔と電子が再結合する場を提供できるものであ れば、いかなるものであってもよい。  As a constituent material of the light emitting layer 5, it is possible to inject holes from the anode 7 side and to inject electrons from the cathode 3 side at the time of voltage application, and to provide a field where holes and electrons recombine. As long as it is something, it may be anything.
[0105] このような発光材料には、以下に示すような、各種低分子の発光材料、各種高分子 の発光材料があり、これらのうちの少なくとも 1種を用いることができる。  As such light emitting materials, there are various low molecular light emitting materials and various high molecular light emitting materials as described below, and at least one of them can be used.
[0106] なお、低分子の発光材料を用いることにより、緻密な発光層 5が得られるため、発光 層 5の発光効率が向上する。また、高分子の発光材料を用いることにより、比較的容 易に溶剤へ溶解させることができるため、インクジェット印刷法等の各種塗布法による 発光層 5の形成を容易に行うことができる。さらに、低分子の発光材料と高分子の発 光材料とを組み合わせて用いることにより、低分子の発光材料および高分子の発光 材料を用いる効果を併有すること、すなわち、緻密かつ発光効率に優れる発光層 5を 、インクジェット印刷法等の各種塗布法により、容易に形成することができるという効 果が得られる。 Note that, by using a low molecular light emitting material, the dense light emitting layer 5 is obtained, so that the light emitting efficiency of the light emitting layer 5 is improved. Also, by using a polymeric light emitting material, The light emitting layer 5 can be easily formed by various coating methods such as the ink jet printing method because it can be easily dissolved in a solvent. Furthermore, by using a combination of a low molecular light emitting material and a high molecular light emitting material, the effect of using the low molecular light emitting material and the high molecular light emitting material is simultaneously obtained, that is, light emission is excellent in compactness and luminous efficiency. The effect is obtained that the layer 5 can be easily formed by various coating methods such as the ink jet printing method.
低分子の発光材料としては、例えば、ジスチリルベンゼン(DSB)、ジァミノジスチリ ルベンゼン(DADSB)のようなベンゼン系化合物、ナフタレン、ナイルレッドのような ナフタレン系化合物、フエナントレンのようなフエナントレン系化合物、タリセン、 6— - トロタリセンのようなタリセン系化合物、ペリレン、 N, N,一ビス(2, 5 ジ一 t—ブチル フエ-ル)一 3, 4, 9, 10 ペリレン一ジ一カルボキシイミド(BPPC)のようなペリレン 系化合物、コロネンのようなコロネン系化合物、アントラセン、ビススチリルアントラセン のようなアントラセン系化合物、ピレンのようなピレン系化合物、 4 (ジーシァノメチレ ン) 2—メチル 6— (パラ一ジメチルアミノスチリル) 4H ピラン(DCM)のような ピラン系化合物、アタリジンのようなアタリジン系化合物、スチルベンのようなスチルベ ン系化合物、 2, 5 ジベンゾォキサゾールチオフェンのようなチォフェン系化合物、 ベンゾォキサゾールのようなべンゾォキサゾール系化合物、ベンゾイミダゾールのよう なべンゾイミダゾール系化合物、 2, 2,一(パラ一フエ-レンジビ-レン)一ビスべンゾ チアゾールのようなべンゾチアゾール系化合物、ビスチリル(1, 4ージフエ二ルー 1, 3—ブタジエン)、テトラフェニルブタジエンのようなブタジエン系化合物、ナフタルイミ ドのようなナフタルイミド系化合物、クマリンのようなクマリン系化合物、ペリノンのような ペリノン系化合物、ォキサジァゾールのようなォキサジァゾール系化合物、アルダジ ン系化合物、 1, 2, 3, 4, 5 ペンタフェ-ル 1, 3 シクロペンタジェン(PPCP)の ようなシクロペンタジェン系化合物、キナクリドン、キナクリドンレッドのようなキナタリド ン系化合物、ピロ口ピリジン、チアジアゾロピリジンのようなピリジン系化合物、 2, 2' , 7, 7'—テトラフエ二ルー 9, 9'ースピロビフル才レンのようなスピロ化合物、フタロシア ニン(H Pc)、銅フタロシアニンのような金属または無金属のフタロシアニン系化合物 Examples of light emitting materials of low molecular weight include benzene-based compounds such as distyrylbenzene (DSB) and diaminodistyrylbenzene (DADSB), naphthalene-based compounds such as naphthalene and Nile red, phenanthrene-based compounds such as phenanthrene, talisene, 6--Talicene compounds such as trothalicene, perylene, N, N, bis (2,5-di-t-butylphenyl) -1,3,4, 9,10 perylene-dicarboximide (BPPC) Such as perylene compounds, coronene compounds such as coronene, anthracene compounds such as anthracene and bisstyrylanthracene, pyrene compounds such as pyrene, 4 (dicyanomethylene) 2-methyl 6- (para-dimethylaminostyryl) ) Pyrane compounds such as 4H pyrane (DCM), ataridine compounds such as atarginine Stilbene compounds such as stilbene, thiophene compounds such as 2,5 dibenzoxazole thiophene, benzoxazole compounds such as benzoxazole, benzimidazole compounds such as benzimidazole, 2,2 Benzothiazole-based compounds such as mono (para-phenyl-dibenzylene) -bis-benzothiazole, bis-styryl (1, 4-diphenyl-1, 3-butadiene), butadiene-based compounds such as tetraphenylbutadiene, naphthalimime Naphthalimides such as dorsine, coumarins such as coumarins, perinones such as perinone, oxadiazoles such as oxadiazole, aldadines, 1, 2, 3, 4, 5 pentaferles Cyclopentadiene such as 1,3 cyclopentadiene (PPCP) Compounds, quinacridon compounds such as quinacridone and quinacridone red, pyridine compounds such as pyrophoric pyridine and thiadiazolopyridine, 2,2 ', 7,7'-tetraphenyleu 9,9'-spirobifurolene Such as spiro compounds, phthalocyanin (H Pc), metals such as copper phthalocyanine or metallo free phthalocyanine compounds
2 2
、フローレンのようなフローレン系化合物、(8—ヒドロキシキノリン)アルミニウム(Alq ) 、トリス(4—メチル 8キノリノレート)アルミニウム(III) (Almq )、(8—ヒドロキシキノリ , Flowene-based compounds such as flowene, (8-hydroxyquinoline) aluminum (Alq 3) Tris (4-methyl 8 quinolinolate) aluminum (III) (Almq), (8-hydroxy quinoli
3  3
ン)亜鉛(Znq )、 (1, 10 フエナント口リン)—トリス—(4, 4, 4 トリフルォロ 1— (  N) zinc (Znq), (1, 10 phenanthrin phosphorus)-tris-(4, 4, 4 trifluor 1-(
2  2
2 チェ-ル)一ブタン一 1, 3 ジォネート)ユーロピウム(III) (Eu (TTA) (phen) )  2 cells) 1 butane 1 1, 3 dianato) europium (III) (Eu (TTA) (phen))
3 3
、ファクトジス(2 フ m二ノレピリジン)イリジウム(Ir (ppy) )、 (2, 3, 7, 8, 12, 13, 17 , Fact-dis (2 f m di nore pyridine) iridium (Ir (ppy)), (2, 3, 7, 8, 12, 13, 13
3  3
, 18—オタタエチル— 21H, 23H ポルフィン)プラチナム(II)のような各種金属錯 体等が挙げられる。  , 18-Ottataethyl-21H, 23H porphine) various metal complexes such as platinum (II) and the like.
[0108] 高分子の発光材料としては、例えば、トランス型ポリアセチレン、シス型ポリアセチレ ン、ポリ(ジ—フエ-ルアセチレン)(PDPA)、ポリ(アルキル,フエ-ルアセチレン)(P APA)のようなポリアセチレン系化合物、ポリ(パラーフェンビ-レン) (PPV)、ポリ(2 , 5—ジアルコキシ一パラ一フエ-レンビ-レン)(RO— PPV)、シァノ一置換一ポリ( ノ ラ一フェンビ-レン)(CN— PPV)、ポリ(2—ジメチルォクチルシリル一パラ一フエ 二レンビ-レン)(DMOS— PPV)、ポリ(2—メトキシ, 5— (2,一ェチノレへキソキシ) -パラ フエ二レンビニレン) (MEH - PPV)のようなポリパラフエ-レンビ-レン系化 合物、ポリ(3—アルキルチオフェン)(PAT)、ポリ(ォキシプロピレン)トリオール(PO PT)のようなポリチォフェン系化合物、ポリ(9, 9ージアルキルフルオレン)(PDAF)、 α , ω—ビス [N, N,—ジ (メチルフエ-ル)アミノフヱ-ル]—ポリ [9, 9 ビス(2 ェ チルへキシル)フルオレン 2, 7 ジル] (PF2Z6am4)、ポリ(9, 9ージォクチルー 2, 7 ジビ-レンフルォレ -ル一オルト一コ(アントラセン一 9, 10 ジィル)のような ポリフルオレン系化合物、ポリ(パラーフエ-レン)(PPP)、ポリ(1, 5 ジアルコキシ —パラ一フエ-レン)(RO— PPP)のようなポリパラフエ-レン系化合物、ポリ(N ビ -ルカルバゾール)(PVK)のようなポリ力ルバゾール系化合物、ポリ(メチルフエ-ル シラン)(PMPS)、ポリ(ナフチルフエ-ルシラン)(PNPS)、ポリ(ビフエ二リルフエ二 ルシラン) (PBPS)のようなポリシラン系化合物等が挙げられる。  Examples of high molecular light emitting materials include trans polyacetylene, cis polyacetylene, poly (diphenyl acetylene) (PDPA), and poly (alkyl, phenyl acetylene) (PAPA). Polyacetylene compounds, poly (para-phen bilene) (PPV), poly (2, 5-dialkoxy mono-para-phenyl bi- lene) (RO-PPV), cyano mono substituted mono poly (nora monophenidene) ) (CN—PPV), poly (2-dimethylsilylsilyl-para-bi-biphenyl) (DMOS—PPV), poly (2-methoxy, 5- (2, 1-ethenole hexoxy) -para-few (Polyvinylbenzene) compounds such as lenvinylene (MEH-PPV), polythiophen compounds such as poly (3-alkylthiophene) (PAT), poly (oxypropylene) triol (PO PT), poly (9, 9-dialkyl full Ore) (PDAF), α, ω-bis [N, N, -di (methylphenyl) aminophenyl] -poly [9,9 bis (2-ethylhexyl) fluorene 2,7 dil] (PF2Z6am4) And polyfluorene compounds such as poly (9,9-dioctyl-2,7-divinyltoluene-ortho-one-anthracene-1,9-diyl), poly (para-phenylene) (PPP), poly (1,5) Polyparaphenyl compounds such as dialkoxy-paraphenyl (RO-PPP), polyvalent rubazole compounds such as poly (N-bicarbazole) (PVK), poly (methylphenylsilane) Examples include polysilane compounds such as (PMPS), poly (naphthylphenylsilane) (PNPS), and poly (biphenyldisilane) (PBPS).
[0109] 発光層 5の厚さ(平均)は、特に限定されないが、 10〜150nm程度であるのが好ま しぐ 50〜: LOOnm程度であるのがより好ましい。発光層 5の厚さを前記範囲とするこ とにより、正孔と電子との再結合が効率よくなされ、発光層 5の発光効率をより向上さ せることができる。  The thickness (average) of the light emitting layer 5 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 50 to LOO nm. By setting the thickness of the light emitting layer 5 in the above range, recombination of holes and electrons can be efficiently performed, and the light emission efficiency of the light emitting layer 5 can be further improved.
[0110] なお、発光層 5は、単層のものに限定されず、例えば、陰極 3と接触する側に、電子 輸送能に優れた電子輸送層を備えた複層のものとすることもできる。発光層 5をかか る構成のものとすることにより、発光層 5中における電子輸送能をより向上させることが できる。 The light emitting layer 5 is not limited to a single layer, and, for example, the light emitting layer 5 may be an electron on the side in contact with the cathode 3. It can also be a multilayer having an electron transport layer excellent in transport ability. By making the light emitting layer 5 of such a configuration, the electron transporting ability in the light emitting layer 5 can be further improved.
電子輸送層の構成材料 (電子輸送材料)としては、特に限定されないが、例えば、 1, 3, 5 トリス [ (3 フエ-ル一 6 トリ一フルォロメチル)キノキサリン一 2—ィル]ベ ンゼン(TPQ1)、 1, 3, 5 トリス [{3— (4— t—ブチルフエ-ル)— 6 トリスフルォロ メチル }キノキサリン— 2—ィル]ベンゼン (TPQ2)のようなベンゼン系化合物(スター バースト系化合物)、ナフタレンのようなナフタレン系化合物、フエナントレンのようなフ ェナントレン系化合物、タリセンのようなタリセン系化合物、ペリレンのようなペリレン系 化合物、アントラセンのようなアントラセン系化合物、ピレンのようなピレン系化合物、 アタリジンのようなアタリジン系化合物、スチルベンのようなスチルベン系化合物、 BB OTのようなチォフェン系化合物、ブタジエンのようなブタジエン系化合物、クマリンの ようなクマリン系化合物、キノリンのようなキノリン系化合物、ビスチリルのようなビスチリ ル系化合物、ピラジン、ジスチリルビラジンのようなピラジン系化合物、キノキサリンの ようなキノキサリン系化合物、ベンゾキノン、 2, 5 ジフエ-ルーパラーべンゾキノンの ようなベンゾキノン系化合物、ナフトキノンのようなナフトキノン系化合物、アントラキノ ンのようなアントラキノン系化合物、ォキサジァゾール、 2—(4ービフエ-リル)ー5—( 4 t ブチルフエ-ル)—1, 3, 4ーォキサジァゾール(PBD)、: BMD、 BND、 BD D、 BAPDのようなォキサジァゾール系化合物、トリァゾール、 3, 4, 5—トリフエ-ル - 1, 2, 4ートリアゾールのようなトリァゾール系化合物、ォキサゾール系化合物、ァ ントロンのようなアントロン系化合物、フルォレノン、 1, 3, 8 トリ-トロ一フルォレノン (TNF)のようなフルォレノン系化合物、ジフエノキノン、 MBDQのようなジフエノキノ ン系化合物、スチルペンキノン、 MBSQのようなスチルベンキノン系化合物、アントラ キノジメタン系化合物、チォピランジオキシド系化合物、フルォレニリデンメタン系化 合物、ジフエ-ルジシァノエチレン系化合物、フローレンのようなフローレン系化合物 、フタロシアニン、銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフ タロシアニン系化合物、(8—ヒドロキシキノリン)アルミニウム(Alq )、ベンゾォキサゾ  The constituent material (electron transport material) of the electron transport layer is not particularly limited, and, for example, 1,3,5 tris [(3 phenyl 1 tri tri fluoromethyl) quinoxa lin 1 2-yl] benzene (TPQ 1 Benzene compounds (star burst compounds), such as 1,3,3 tris [{3- (4-t-butylphenyl) -6 trisfluoromethyl} quinoxaline-2-yl] benzene (TPQ2), Naphthalene-based compounds such as naphthalene, phenanthrene-based compounds such as phenenthrene, talisene-based compounds such as talisene, perylene-based compounds such as perylene, anthracene-based compounds such as anthracene, pyrene-based compounds such as pyrene, atalidine Such as phthalene compounds such as stilbene, thiophene compounds such as BB OT, butadienes such as butadiene Diene compounds, coumarin compounds such as coumarins, quinoline compounds such as quinoline, bistyryl compounds such as bistyryl, pyrazines, pyrazine compounds such as distyrylvirazine, quinoxaline compounds such as quinoxaline, Benzoquinones, benzoquinones such as 2,5 diphenyl-ruparabenzoquinone, naphthoquinones such as naphthoquinone, anthraquinones such as anthraquinone, oxadiazole, 2- (4-biphenyl) -5- (4 t Butyl phenyl) -1, 3, 4-oxadiazole (PBD): BMD, BND, BD D, BAPD and other oxadiazole-based compounds, triazole, 3, 4, 5-triphenyl-1 Triazole compounds such as 2, 4-triazole, oxazole compounds, anthrone such as anthrone Fluorene compounds, Fluorenone, Fluorenone compounds such as 1,3,8 tri-tro-fluorenone (TNF), Diphenoquinone, Diphenoquinone compounds such as MBDQ, Stilpenquinone, Stilbenequinone compounds such as MBSQ, Anthra quinodimethane compounds, thiopyran dioxide compounds, fluorenylidenemethane compounds, diphenylcyanoethylene compounds, flowene compounds such as flowene, metals such as phthalocyanines, copper phthalocyanines and iron phthalocyanines Or metal free phthalocyanine compounds, (8-hydroxyquinoline) aluminum (Alq 3), benzoxazo
3  3
ールやべンゾチアゾールを配位子とする錯体のような各種金属錯体等が挙げられ、 これらのうちの少なくとも 1種を用いることができる。 And various metal complexes such as complexes having a ligand such as At least one of these can be used.
[0112] 封止部材 8は、陽極 7、中間層 4、発光層 5および陰極 3を覆うように設けられ、これ らを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材 8を設けること により、特に陰極 3の酸ィ匕を抑制または防止して,有機 EL素子 1の信頼性の向上や 、変質'劣化の防止 (耐久性向上)等の効果が得られる。  The sealing member 8 is provided so as to cover the anode 7, the intermediate layer 4, the light emitting layer 5 and the cathode 3, and has a function of sealing these airtightly and blocking oxygen and moisture. By providing the sealing member 8, in particular, the oxidation of the cathode 3 is suppressed or prevented, and effects such as improvement in reliability of the organic EL element 1 and prevention of deterioration (deterioration in deterioration) can be obtained. .
[0113] 封止部材 8の構成材料としては、例えば、 Al、 Au、 Cr、 Nb、 Ta、 Tほたはこれらを 含む合金、酸ィ匕シリコン、各種榭脂材料等を挙げることができる。  Examples of the constituent material of the sealing member 8 include Al, Au, Cr, Nb, Ta, T-type alloys containing these, silicon oxide, various resin materials, and the like.
[0114] また、封止部材 8は、平板状として、基板 2と対向させ、これらの間を、例えば熱硬 化性榭脂等のシール材で封止するようにしてもょ 、。  In addition, the sealing member 8 is formed in a flat plate shape so as to face the substrate 2 and seal between them with a sealing material such as a thermosetting resin.
[0115] このような有機 EL素子 1は、陰極 3が負、陽極 7が正となるようにして、 0. 5Vの電圧 を印加したとき、その抵抗値が、 100 Q Zcm2以上となる特性を有するのが好ましぐ lk Ω /cm2以上となる特性を有するのがより好ましい。力かる特性は、有機 EL素子 1 において、陰極 3と陽極 7との間での短絡 (リーク)が好適に防止または抑制されてい ることを示すものであり、このような特性を有する有機 EL素子 1は、発光効率が特に 高いものとなる。 Such an organic EL element 1 is characterized in that when a voltage of 0.5 V is applied such that the cathode 3 is negative and the anode 7 is positive, the resistance is 100 Q Zcm 2 or more. It is more preferable to have the characteristic of being 1 kΩ / cm 2 or more, which is preferable. The strong characteristics show that the short circuit (leakage) between the cathode 3 and the anode 7 is suitably prevented or suppressed in the organic EL device 1, and the organic EL device having such characteristics is 1 has a particularly high luminous efficiency.
[0116] なお、本実施形態では、陽極 7と発光層 5との間に、これらの双方に接触するように 中間層 4を設ける場合について説明したが、このような場合に限定されず、例えば、 中間層 4と発光層 5との間に、中間層 4から注入された正孔を発光層 5まで輸送する 機能を有する正孔輸送層を設けるようにしてもょ ヽ。  In the present embodiment, the intermediate layer 4 is provided between the anode 7 and the light emitting layer 5 so as to be in contact with both of them. However, the present invention is not limited to such a case. A hole transport layer having a function of transporting holes injected from the intermediate layer 4 to the light emitting layer 5 may be provided between the intermediate layer 4 and the light emitting layer 5.
[0117] この正孔輸送層の構成材料としては、有機 EL素子の第 2実施形態で後述する正 孔輸送層 6の構成材料と同様のものを用いることができる。 As a constituent material of the hole transport layer, the same material as the constituent material of the hole transport layer 6 described later in the second embodiment of the organic EL device can be used.
[0118] また、陰極 3と発光層 5との間に、陰極 3から注入された電子を発光層 5まで輸送す る機能を有する電子輸送性の中間層を設けるようにしてもょ 、。 In addition, an electron transporting intermediate layer having a function of transporting the electrons injected from the cathode 3 to the light emitting layer 5 may be provided between the cathode 3 and the light emitting layer 5.
[0119] この電子輸送性の中間層は、有機 EL素子の第 2実施形態で後述する中間層 14と 同様のものとすることができる。 The electron transporting intermediate layer may be the same as the intermediate layer 14 described later in the second embodiment of the organic EL device.
[0120] このような有機 EL素子 1は、例えば、次のようにして製造することができる。 Such an organic EL device 1 can be manufactured, for example, as follows.
[0121] この有機 EL素子 1の製造方法において、中間層 4を設ける工程(中間層形成工程In the method of manufacturing the organic EL device 1, the step of providing the intermediate layer 4 (intermediate layer forming step
)と発光層 (有機半導体層) 5を設ける工程 (発光層形成工程)とに本発明の電子デ バイス用基板の製造方法が適用される。 And the step of providing a light emitting layer (organic semiconductor layer) 5 (a light emitting layer forming step) A method of manufacturing a vice substrate is applied.
[0122] 図 2は、中間層を設ける工程を説明するための模式図 (縦断面図)である。  FIG. 2 is a schematic view (longitudinal sectional view) for explaining the step of providing an intermediate layer.
[0123] なお、以下の説明では、図 2中の上側を「上」、下側を「下」と言う。 In the following description, the upper side in FIG. 2 is referred to as “upper” and the lower side as “lower”.
[0124] [1A]陽極形成工程 [1A] Anode Forming Step
まず、基板 2を用意し、この基板 2上に陽極 7を形成する。  First, the substrate 2 is prepared, and the anode 7 is formed on the substrate 2.
陽極 7は、例えば、プラズマ CVD、熱 CVD、レーザー CVDのような化学蒸着法 (C VD)、真空蒸着、スパッタリング、イオンプレーティング等の乾式メツキ法、電解メツキ 、浸漬メツキ、無電解メツキ等の湿式メツキ法、溶射法、ゾル 'ゲル法、 MOD法、金属 箔の接合等を用いて形成することができる。  The anode 7 may be, for example, a chemical vapor deposition method (CVD) such as plasma CVD, thermal CVD, or laser CVD, a dry plating method such as vacuum deposition, sputtering, ion plating, etc., electrolytic plating, immersion plating, electroless plating, etc. It can be formed using a wet plating method, a thermal spraying method, a sol-gel method, a MOD method, bonding of metal foil, and the like.
[0125] [2A]中間層形成工程  [2A] Intermediate Layer Forming Step
前述したように、本発明の電子デバイス (有機 EL素子)では、この中間層 4の形成 工程に特徴を有する。  As described above, the electronic device (organic EL device) of the present invention is characterized in the step of forming the intermediate layer 4.
すなわち、正孔 (キャリア)を輸送する機能を有する有機物を含有する液体に、基板 2上に形成された陽極 7を接触させた状態で、この陽極 7を一方の電極として液体に 電圧を印加することにより、この液体中において帯電した状態の有機物を、陽極 7に 集めて、陽極 7上に中間層 4を形成する点に特徴を有する。  That is, in a state where the anode 7 formed on the substrate 2 is in contact with a liquid containing an organic substance having a function of transporting holes (carriers), voltage is applied to the liquid by using the anode 7 as one electrode. Thus, the organic substance charged in this liquid is collected at the anode 7 to form the intermediate layer 4 on the anode 7.
[0126] 力かる工程により、中間層 4を形成することにより、中間層 4は、陽極 7および次工程  By forming the intermediate layer 4 by the pressing step, the intermediate layer 4 can be formed into the anode 7 and the subsequent step.
[3A]で形成する発光層 5の双方に対し、これらと接触する側の面において、優れた 密着性を発揮するものとなる。その結果、陽極 7から中間層 4への正孔の注入、およ び、中間層 4から発光層 5への正孔の注出を円滑に行うことができる。  With respect to both of the light emitting layers 5 formed in [3A], excellent adhesion is exhibited on the side in contact with these. As a result, the injection of holes from the anode 7 to the intermediate layer 4 and the injection of holes from the intermediate layer 4 to the light emitting layer 5 can be smoothly performed.
[0127] 以下、このような中間層 4の形成工程について詳述する。  Hereinafter, the process of forming such an intermediate layer 4 will be described in detail.
[0128] [2A- 1] まず、正孔を輸送する機能を有する有機物を含有する液体を用意する  [0128] [2A-1] First, prepare a liquid containing an organic substance having a function of transporting holes.
[0129] 本実施形態では、中間層 4は、陽極 7から注入された正孔を発光層 5にまで輸送す る目的に形成することから、有機物としては、キャリアとして正孔を輸送するものが選 択される。 In the present embodiment, since the intermediate layer 4 is formed for the purpose of transporting the holes injected from the anode 7 to the light emitting layer 5, the organic substance that transports the holes as a carrier is Selected.
[0130] 正孔を輸送する機能を有する有機物(以下、単に「有機物」 、うこともある。)として は、液体に電圧を印力 tlした際に、帯電した状態を維持し得るものであれば、特に限 定されないが、例えば、正孔を輸送する機能を有するキャリア輸送部位と、このキヤリ ァ輸送部位に結合する帯電可能な部位とを有するものを用いるのが好まし 、。これ により、有機物は、帯電可能な部位がキャリア輸送部位の外側に突出したような構成 のものとなることから、後工程 [2A— 3]において、液体に電圧を印加した際に、有機 物の構造の中に帯電可能な部位が取り囲まれるようになるのを防止することができる 。その結果、有機物は、電圧が印加されたことによる電界の影響を確実に受けるよう になる。これにより、有機物を確実に陽極 7に集めることができる。 As an organic substance having a function of transporting holes (hereinafter simply referred to as “organic substance”), it may be capable of maintaining a charged state when a voltage is applied to the liquid. Especially if Although it is not specified, for example, it is preferable to use one having a carrier transport site having a function of transporting holes and a chargeable site which binds to the carrier transport site. As a result, the organic substance has a configuration in which the chargeable part protrudes to the outside of the carrier transport part, and therefore, when a voltage is applied to the liquid in the later step [2A-3], the organic substance It is possible to prevent the chargeable part from becoming enclosed in the structure. As a result, the organic matter is surely influenced by the electric field due to the application of the voltage. This ensures that the organic matter is collected on the anode 7.
[0131] なお、キャリア輸送部位と帯電可能な部位とを有する有機物は、液体に電圧を印加 した際に、帯電可能な部位の他、キャリア輸送部位が帯電するような構成のものであ つてもよい。これにより、有機物全体としての帯電量が大きくなり、有機物をより確実に 陽極 7に集めることができる。  It should be noted that the organic substance having the carrier transport site and the chargeable site may be configured such that the carrier transport site is charged in addition to the chargeable site when a voltage is applied to the liquid. Good. As a result, the charge amount of the organic matter as a whole is increased, and the organic matter can be collected to the anode 7 more reliably.
[0132] キャリア輸送部位としては、発光層 5の構成材料すなわち有機系の構成材料と親和 性の高い構造を備えるものであるのが好ましい。これにより、中間層 4上に発光層 5を 形成した際に、これらの層同士間の密着性を向上させることができる。その結果、中 間層 4から発光層 5への正孔の受け渡しを円滑に行うことができる。  The carrier transport site preferably has a structure having a high affinity to the constituent material of the light emitting layer 5, ie, the constituent material of the organic system. Thereby, when the light emitting layer 5 is formed on the intermediate layer 4, the adhesion between these layers can be improved. As a result, holes can be smoothly delivered from the intermediate layer 4 to the light emitting layer 5.
[0133] また、前述したように本実施形態では、有機物としては、キャリアとして正孔を輸送 するものが選択される。すなわち、キャリア輸送部位と帯電可能な部位とを有する構 成の有機物においては、キャリア輸送部位として、正孔を輸送する機能を有するもの が選択される。  Further, as described above, in the present embodiment, as the organic substance, one that transports a hole as a carrier is selected. That is, in an organic substance having a carrier transport site and a chargeable site, one having a function of transporting holes as the carrier transport site is selected.
[0134] 以上のことから、キャリア輸送部位としては、正孔輸送能に優れ、かつ、有機系の構 造を有するものが好適に選択される。  From the above, as the carrier transport site, one having an excellent hole transportability and having an organic structure is suitably selected.
[0135] 具体的には、キャリア輸送部位としては、銅フタロシアニン骨格、へキサァザトリフエ 二レン骨格およびへキサァザトリナフチレン骨格を有するものが挙げられる。これらの 骨格は、発光層 5の構成材料と同様に、ベンゼン環のような共役系の結合を多く含ん でおり、特に正孔輸送能に優れるものであることから好ましい。  [0135] Specifically, examples of the carrier transport site include those having a copper phthalocyanine skeleton, a hexasulfadiene skeleton and a hexaazatrinaphthylene skeleton. These frameworks, like the material of the light emitting layer 5, contain a large number of conjugated bonds such as benzene rings, and are particularly preferable because they are excellent in hole transportability.
[0136] 帯電可能な部位としては、例えば、キャリア輸送部位に結合する部位付近や、帯電 可能な部位の中央付近において帯電し得るものであってもよいが、特に、キャリア輸 送部位と反対側の端部付近にぉ 、て帯電し得るものであるのが好ま 、。これにより 、後工程 [2A— 3]において、液体に電圧を印力!]した際に、帯電した端部付近を陽極 7に接触させることができる。その結果、帯電可能な部位と陽極 7との間に比較的容 易に化学結合が形成される。これにより、中間層 4と陽極 7との密着性を向上させるこ とができるとともに、この化学結合を介して、正孔の受け渡しを行うことができるように なる。 The chargeable site may be, for example, one that can be charged in the vicinity of the site that binds to the carrier transport site or in the vicinity of the center of the chargeable site. It is preferable to be able to be charged near the end of the. By this , In the post process [2A-3], the voltage is applied to the liquid! When charged, the vicinity of the charged end can be brought into contact with the anode 7. As a result, a chemical bond is relatively easily formed between the chargeable site and the anode 7. As a result, the adhesion between the intermediate layer 4 and the anode 7 can be improved, and holes can be delivered via this chemical bond.
[0137] このことを考慮すると、帯電可能な部位としては、例えば、下記一般式(5)または下 記一般式 (6)で表される置換基が好ましい構造である。これらの置換基は、比較的低 い電圧を印カロした際においても、帯電した状態を安定的に維持することができること から、有機物を陽極 7に確実に集めることができる。さらに、陽極 7の構成材料に対し て優れた反応性を有することから、陽極 7との間に化学結合を確実に形成することが できる。  In consideration of this, as the chargeable portion, for example, a substituent represented by the following general formula (5) or the following general formula (6) is a preferable structure. Since these substituents can stably maintain the charged state even when a relatively low voltage is applied, the organic matter can be reliably collected on the anode 7. Furthermore, the excellent reactivity with the constituent material of the anode 7 ensures that a chemical bond can be formed with the anode 7.
[0138] [化 17] oc=
Figure imgf000022_0001
[Chem. 17] oc =
Figure imgf000022_0001
[0139] [各式中、 R2は、単結合 (結合手)または炭素数 1〜20のアルキレン基を表す。 R3は 、水素原子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 X1は ゝ単結合 (bonding dash)ゝ [Wherein, R 2 represents a single bond (bond) or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. X 1 is a bonding dash ゝ
[0140] [化 18]  [Formula 18]
Figure imgf000022_0002
Figure imgf000022_0002
[0141] を表す。 Y1は、単結合、 Represents [0141]. Y 1 is a single bond,
[0142] [化 19] [Chemical Formula 19]
またはOr
Figure imgf000022_0003
[0143] を表す。 2つの R4は、それぞれ独立して、水素原子または炭素数 1〜20のアルキル 基を表し、同一であっても、異なっていてもよい。 ]
Figure imgf000022_0003
[0143] represents Two R 4 's each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. ]
なお、帯電可能な部位として前記一般式 (6)で表される置換基を用いる場合、 2つ の R4の炭素数は、それぞれ、できるだけ小さく設定するのが好ましい。これにより、帯 電可能な部位のキャリア輸送部位と反対側の端部付近で帯電させることができ、前 述したような効果を確実に得ることができる。 In the case of using the substituent represented by the general formula as chargeable sites (6), the number of carbon atoms of the two R 4 are each preferably set as small as possible. By this, charging can be performed near the end opposite to the carrier transport site of the chargeable site, and the above-described effects can be obtained with certainty.
[0144] なお、液体に電圧を印加すると、前記一般式(5)および前記一般式 (6)で表される 置換基が帯電することとなる力 この際の、置換基の構造としては、例えば、次のよう なものが挙げられる。 When a voltage is applied to the liquid, the force that causes the substituent to be charged, represented by the general formula (5) and the general formula (6), may be, for example, the structure of the substituent in this case. The following are listed.
[0145] すなわち、前記一般式 (5)で表される置換基において R3が水素原子またはナトリウ ム、カリウム、リチウムのようなアルカリ金属である場合、 R3が置換基から離脱すること により、 R3が離脱した置換基は、負に帯電するものとなる。 That is, in the substituent represented by the general formula (5), when R 3 is a hydrogen atom or an alkali metal such as sodium, potassium or lithium, R 3 is released from the substituent, The substituent from which R 3 is released becomes negatively charged.
[0146] また、前記一般式(5)で表される置換基において R3が炭素数 1〜20のアルキル基 である場合、アルキル基に含まれる水素原子が置換基から離脱することにより、水素 原子が離脱した置換基は、負に帯電するものとなる。なお、このアルキル基の炭素数 力^以上である場合、末端の炭素原子に結合している水素原子がより離脱しやすい 傾向を示す。 In addition, in the substituent represented by the general formula (5), when R 3 is an alkyl group having 1 to 20 carbon atoms, a hydrogen atom contained in the alkyl group is released from the substituent to thereby produce hydrogen. The substituent from which the atom is released becomes negatively charged. When the carbon number of the alkyl group is more than ^, the hydrogen atom bonded to the terminal carbon atom tends to be more easily separated.
[0147] さらに、前記一般式(5)で表される置換基において R3がァミノ基である場合や、前 記一般式 (6)で表される置換基である場合、窒素原子に水素原子が結合することに より、水素原子が結合した置換基は、正に帯電するものとなる。 Furthermore, in the case where R 3 is an amino group in the substituent represented by the general formula (5), or when it is a substituent represented by the general formula (6), a nitrogen atom is a hydrogen atom. As a result of bonding, a substituent to which a hydrogen atom is bonded is positively charged.
[0148] これらのことを考慮すると、キャリア輸送部位と帯電可能な部位とを有する有機物と しては、例えば、下記一般式(1)〜下記一般式(3)で表される化合物が好適に用い られる。力かる構成を有する有機物を用いることにより、前述したような効果を確実に 得ることができる。  In consideration of these, as the organic substance having a carrier transport site and a chargeable site, for example, compounds represented by the following general formula (1) to the following general formula (3) are suitably used. Used. By using an organic substance having a powerful structure, the above-described effects can be reliably obtained.
[0149] なお、これらの化合物において、 R1が帯電可能な部位を構成し、 R1以外の主骨格 の部分がキャリア輸送部位を構成して 、る。 In these compounds, R 1 constitutes a chargeable site, and the portion of the main skeleton other than R 1 constitutes a carrier transport site.
[0150] [化 20] [Formula 20]
Figure imgf000024_0001
Figure imgf000024_0001
[0151] [式中、 4つの R1は、それぞれ独立して、水素原子、または、前記一般式(5)または 前記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 4つの R1のうちの少なくとも 1つは、前記一般式(5)または前記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, each of four R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the four R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
[0152] [化 21]  [Formula 21]
Figure imgf000024_0002
Figure imgf000024_0002
[0153] [式中、 3つの R1は、それぞれ独立して、水素原子、または、前記一般式(5)または 前記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、前記一般式(5)または前記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, each of three R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
[0154] [化 22] [Formula 22]
Figure imgf000025_0001
Figure imgf000025_0001
[0155] [式中、 3つの R1は、それぞれ独立して、水素原子、または、前記一般式(5)または 前記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、前記一般式(5)または前記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, each of three R 1 s independently represents a hydrogen atom, or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of the three R 1 represents any one of the substituents represented by the general formula (5) or the general formula (6). ]
液体中の有機物の濃度は、有機物の種類によっても若干異なるが、 0. 01〜0. 5 molZL程度であるのが好ましぐ 0. 1〜0. 3molZL程度であるのがより好ましい。 力かる関係を満足することにより、次工程 [2A— 3]において、有機物を陽極 7上に確 実に集めて、中間層 4を形成することができる。  The concentration of the organic substance in the liquid is slightly different depending on the kind of the organic substance, but it is more preferably about 0.1 to 0.3 mol ZL, which is preferably about 0.1 to 0.5 mol ZL. By satisfying the strong relationship, in the next step [2A-3], the organic matter can be reliably collected on the anode 7 to form the intermediate layer 4.
[0156] なお、液体は、有機物を溶媒に溶解した溶液であってもよ!/ヽし、有機物を分散媒に 分散した分散液であってもよ 、。  The liquid may be a solution in which an organic substance is dissolved in a solvent or a dispersion in which the organic substance is dispersed in a dispersion medium.
[0157] 有機物含有する液体を調整する際に用いる溶媒または分散媒としては、例えば、 各種水、メタノール、エタノール、イソプロピルアルコール、ァセトニトリル、酢酸ェチ ル、エーテル、塩化メチレン、 NMP (N—メチルー 2—ピロリドン)等が挙げられ、これ らのうちの 1種または 2種以上を組み合わせて用いることができる。  Examples of the solvent or dispersion medium used when preparing the organic substance-containing liquid include various water, methanol, ethanol, isopropyl alcohol, acetate nitrile, ethyl acetate, ether, methylene chloride, NMP (N-methyl-2 And pyrrolidone) and the like, and one or more of these may be used in combination.
[0158] なお、以下の工程では、有機物として、上記一般式(1)〜上記一般式(3)で表され る化合物を用いた場合を一例に説明する。  In the following steps, the case where the compounds represented by the above general formula (1) to the above general formula (3) are used as the organic substance will be described as an example.
[0159] [2A- 2] 次に、基板 2上に設けられた陽極 7と、導電性材料で構成される対極と をそれぞれ設置し、これらを前記工程 [2A— 1]で用意した液体に接触させる。  [2A-2] Next, the anode 7 provided on the substrate 2 and the counter electrode made of a conductive material are respectively installed, and these are used as the liquid prepared in the step [2A-1]. Make contact.
[0160] 陽極 7と対極とを液体に接触させる方法としては、これらを液体に浸漬する浸漬法 の他、例えば、対極を内壁に備える容器中の液体に、陽極 7の中間層 4を形成する 側の面を接触させる方法等が挙げられる。 As a method of bringing the anode 7 and the counter electrode into contact with the liquid, in addition to the immersion method of immersing them in a liquid, for example, the intermediate layer 4 of the anode 7 is formed in the liquid in the container provided with the counter electrode on the inner wall. The method etc. which make the side surface contact are mentioned.
[0161] ここで、陽極 7を対極に対して正電位または負電位のいずれにするかは、帯電可能 な部位が帯電する状態、換言すれば、液体に電圧を印加した際に、帯電可能な部位 が正負のいずれに帯電しているかに応じて、選択すればよい。すなわち、前記一般 式 (5)で表される置換基のように帯電可能な部位が負に帯電する場合には、陽極 7 を対極に対して正電位とし、前記一般式 (6)で表される置換基のように帯電可能な部 位が正に帯電する場合には、陽極 7を対極に対して負電位とするようにすればょ 、。  Here, whether the potential of the anode 7 is positive or negative with respect to the counter electrode depends on the state in which the chargeable portion is charged, in other words, when a voltage is applied to the liquid, the charge can be charged. It may be selected according to whether the site is charged positively or negatively. That is, in the case where the chargeable portion is negatively charged like the substituent represented by the general formula (5), the anode 7 is set to a positive potential with respect to the counter electrode, and is represented by the general formula (6) If the chargeable moiety is positively charged like the substituent, the anode 7 should be set to a negative potential with respect to the counter electrode.
[0162] なお、説明の都合上、図 2には、帯電可能な部位 (置換基 R1)が負に帯電し、陽極 7を対極に対して正電位とした場合を示す。 For convenience of explanation, FIG. 2 shows the case where the chargeable portion (substituent R 1 ) is negatively charged and the anode 7 has a positive potential with respect to the counter electrode.
[0163] [2A- 3] 次に、前記工程 [2A— 2]で設置した陽極 7と対極との間に、陽極 7が対 極に対して正電位となるように電圧を印加する。  [2A-3] Next, a voltage is applied between the anode 7 and the counter electrode placed in the step [2A-2] so that the anode 7 has a positive potential with respect to the counter electrode.
[0164] これにより、置換基 R1の帯電状態に応じて、有機物は、図 2 (a)に示すように、陽極 7側に移動することとなる。 Thus, according to the charged state of the substituent R 1 , the organic substance moves to the anode 7 side as shown in FIG. 2 (a).
[0165] そして、負に帯電した置換基 R1が、図 2 (b)に示すように、陽極 7の表面に接触する と、この置換基 R1と、陽極 7の構成材料が化学結合を形成することとなる。 Then, when the negatively charged substituent R 1 comes into contact with the surface of the anode 7 as shown in FIG. 2 (b), the constituent material of the substituent R 1 and the anode 7 chemically bond. It will be formed.
[0166] このような化学結合は、陽極 7の表面に到達した置換基 R1により、順次形成されるこ とから、キャリア輸送部位による立体障害により、陽極 7の表面に置換基 R1が接触で きなくなるまで形成される。これにより、図 2 (c)に示すように、陽極 7に置換基 R1が結 合した状態で、キャリア輸送部位が陽極 7の面方向と平行になるように一列に配列し た構成の膜が陽極 7の表面に形成されることとなる。これにより、陽極 7と有機物とが 化学的に結合しているものとなることから、陽極 7と形成される中間層 4とは、優れた 密着性を有するもとなる。 Such a chemical bond is sequentially formed by the substituent R 1 reaching the surface of the anode 7, and hence the substituent R 1 is in contact with the surface of the anode 7 by steric hindrance by the carrier transport site. It is formed until it becomes impossible. As a result, as shown in FIG. 2C, in the state where the substituent R 1 is bonded to the anode 7, a film having a configuration in which the carrier transport sites are arranged in a line so as to be parallel to the surface direction of the anode 7. Is formed on the surface of the anode 7. As a result, the anode 7 and the organic substance are chemically bonded, and the anode 7 and the intermediate layer 4 to be formed also have excellent adhesion.
[0167] そして、このような膜が形成された後、さらに電圧の印加を続けると、陽極 7上に一 列に配列したキャリア輸送部位に対して、陽極 7に接近してきたキャリア輸送部位がこ れら同士の親和性により、強い相互作用が得られることとなる。これにより、キャリア輸 送部位同士が接触した状態で有機物が積層されることとなり、図 2 (d)に示すような、 中間層 4が形成される。  Then, after such a film is formed, when voltage application is further continued, the carrier transport site approaching the anode 7 with respect to the carrier transport sites arranged in a line on the anode 7 is removed. Due to the affinity between them, a strong interaction will be obtained. As a result, the organic matter is stacked in a state in which the carrier transport sites are in contact with each other, and an intermediate layer 4 as shown in FIG. 2 (d) is formed.
[0168] このような中間層 4中において、キャリア輸送部位同士が接触した状態で存在して いることから、陽極 7から注入された正孔を、次工程 [3]で形成される発光層 5側に向 力つて円滑に輸送することができる。 [0168] In such an intermediate layer 4, the carrier transport sites exist in contact with each other. Thus, holes injected from the anode 7 can be transported smoothly toward the light emitting layer 5 side formed in the next step [3].
[0169] さらに、前述したように、前記一般式(1)〜前記一般式(3)で表される化合物に含 まれるキャリア輸送部位は、共役系の構造を多く含んでいることから、発光層 5の構成 材料に対しても優れた親和性を発揮するものとなる。その結果、中間層 4は、発光層Furthermore, as described above, since the carrier transport site contained in the compounds represented by the general formula (1) to the general formula (3) contains a large number of conjugated system structures, light emission is caused. It also exhibits excellent affinity to the constituent material of the layer 5. As a result, the intermediate layer 4 is a light emitting layer
5に対して優れた密着性を有するものとなる。 It has excellent adhesion to No. 5.
[0170] 陽極 7と対極との間の電位差(印加電圧)は、帯電可能な部位の種類によっても若 干異なるが、絶対値で 1〜50V程度であるのが好ましぐ絶対値で 5〜20V程度であ るのがより好ましい。 The potential difference (applied voltage) between the anode 7 and the counter electrode is slightly different depending on the type of the chargeable portion, but an absolute value of about 1 to 50 V is preferred, and it is preferably 5 to 5 as an absolute value. More preferably, it is about 20V.
[0171] また、液体の温度は、 20〜90°C程度であるのが好ましぐ 50〜80°C程度であるの 力 り好ましい。  [0171] The temperature of the liquid is preferably about 20 to 90 ° C, and more preferably about 50 to 80 ° C.
[0172] 液体の pHは、 2〜 10程度であるのが好ましぐ 4〜8. 5程度であるのがより好まし い。  [0172] The pH of the liquid is preferably about 2 to 10, and more preferably about 4 to 8.5.
[0173] 印加電圧および液体の温度と PHとを力かる範囲に設定することにより、陽極 7上に 確実に中間層 4を形成することができるとともに、成膜速度を比較的遅くすることがで きることから、膜厚の制御をより容易かつ確実に行うことができる。 [0173] By setting the applied voltage and temperature and P H and a force recited range of liquid reliably it is possible to form the intermediate layer 4 on the anode 7, be relatively slow deposition rate Since the film thickness can be controlled, the film thickness can be controlled more easily and reliably.
[0174] [3A]発光層形成工程  [3A] Light Emitting Layer Forming Step
次に、中間層 4上すなわち、中間層 4の陽極 7と反対側の面に発光層 5を形成する 発光層 5は、例えば、前述したような発光材料を溶媒に溶解または分散媒に分散し てなる発光層材料を、中間層 4上に塗布 (供給)した後、発光層材料に含まれる溶媒 または分散媒を除去することにより、得ることができる。  Next, the light emitting layer 5 is formed on the intermediate layer 4, that is, on the surface of the intermediate layer 4 opposite to the anode 7. For example, the light emitting material as described above is dissolved in a solvent or dispersed in a dispersion medium. The light emitting layer material can be obtained by applying (supplying) the light emitting layer material onto the intermediate layer 4 and then removing the solvent or dispersion medium contained in the light emitting layer material.
[0175] 中間層 4上に発光層材料を供給する方法としては、各種の方法を用いることができ る力 例えば、インクジェット法、スピンコート法、液体ミスト化学体積法 (LSMCD法) [0175] As a method of supplying the light emitting layer material on the intermediate layer 4, various methods can be used. For example, an inkjet method, a spin coating method, a liquid mist chemical volume method (LSMCD method)
、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロー ルコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印 刷法、フレキソ印刷法、オフセット印刷法、マイクロコンタクトプリンティング法のような 塗布法等が挙げられ、これらのうちの 1種または 2種以上を組み合わせて用いること ができる。 , Casting method, microgravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexo printing method, offset printing method, micro contact printing And coating methods, etc., and one or more of them may be used in combination. Can.
[0176] 溶媒または分散媒としては、例えば、硝酸、硫酸、アンモニア、過酸化水素、水、二 硫化炭素、四塩化炭素、エチレンカーボネイト等の無機溶媒や、メチルェチルケトン (MEK)、アセトン、ジェチルケトン、メチルイソブチルケトン(MIBK)、メチルイソプロ ピルケトン(MIPK)、シクロへキサノン等のケトン系溶媒、メタノール、エタノール、イソ プロパノール、エチレングリコール、ジエチレングリコール(DEG)、グリセリン等のァ ルコール系溶媒、ジェチルエーテル、ジイソプロピルエーテル、 1, 2—ジメトキシエタ ン(DME)、 1, 4—ジォキサン、テトラヒドロフラン (THF)、テトラヒドロピラン(THP)、 ァ-ソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコー ルェチルエーテル(カルビトール)等のエーテル系溶媒、メチルセ口ソルブ、ェチルセ 口ソルブ、フエ-ルセ口ソルブ等のセロソルブ系溶媒、へキサン、ペンタン、ヘプタン、 シクロへキサン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、トリメチ ルベンゼン、テトラメチルベンゼン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、 フラン、ピロール、チォフェン、メチルピロリドン等の芳香族複素環化合物系溶媒、 N , N—ジメチルホルムアミド(DMF)、 N, N—ジメチルァセトアミド(DMA)等のアミド 系溶媒、ジクロロメタン、クロ口ホルム、 1, 2—ジクロロェタン等のハロゲン化合物系溶 媒、酢酸ェチル、酢酸メチル、ギ酸ェチル等のエステル系溶媒、ジメチルスルホキシ ド(DMSO)、スルホラン等の硫黄ィ匕合物系溶媒、ァセトニトリル、プロピオ-トリル、ァ クリロ-トリル等の-トリル系溶媒、ギ酸、酢酸、トリクロ口酢酸、トリフルォロ酢酸等の 有機酸系溶媒のような各種有機溶媒、または、これらを含む混合溶媒等が挙げられ る。  As the solvent or dispersion medium, for example, inorganic solvents such as nitric acid, sulfuric acid, ammonia, hydrogen peroxide, water, carbon disulfide, carbon tetrachloride, ethylene carbonate, etc., methyl ethyl ketone (MEK), acetone, Ketone solvents such as jetyl ketone, methyl isobutyl ketone (MIBK), methyl isopropyl ketone (MIPK), cyclohexanone and the like, methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol (DEG), alcohols such as glycerin, jetyl Ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-hexane, tetrahydrofuran (THF), tetrahydropyran (THP), water-sole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ether (carbitol) Etc. Solvents, Cellosolve solvents such as methylseport sorb, cetylcetosolve, phenylsesolve, etc., Aliphatic hydrocarbon solvents such as hexane, pentane, heptane and cyclohexane, toluene, xylene, benzene, trimethylbenzene, Aromatic hydrocarbon solvents such as tetramethylbenzene, aromatic heterocyclic compound solvents such as pyridine, pyrazine, furan, pyrrole, thiophen, methyl pyrrolidone and the like, N, N-dimethylformamide (DMF), N, N-dimethyl ether Amide solvents such as cetoamide (DMA), halogen compound solvents such as dichloromethane, chloroform, 1,2-dichloroethane, etc. ester solvents such as ethyl acetate, methyl acetate, ethyl formate, dimethylsulfoxide (DMSO) ), Sulfur-containing compound solvents such as sulfolane, acetonitrile, propio-tolyl, acrylate Le etc. - tolyl solvents, formic acid, acetic acid, trichloroacetic port acetate, various organic solvents such as an organic acid solvents such as Torifuruoro acetate, or Ru mixed solvent containing these can be mentioned.
[0177] [4A]陰極形成工程  [0177] [4A] Cathode formation process
次に、発光層 5上に陰極 3を形成する。  Next, the cathode 3 is formed on the light emitting layer 5.
陰極 3は、例えば、真空蒸着法、スパッタリング法、金属箔の接合等を用いて形成 することができる。  The cathode 3 can be formed by using, for example, a vacuum evaporation method, a sputtering method, bonding of metal foils, or the like.
[0178] [5A]封止部材形成工程 [5A] Sealing member formation process
次に、陽極 7、中間層 4、発光層 5、および陰極 3を覆うように、封止部材 8を形成す る。 封止部材 8は、例えば、前述したような材料で構成される箱状の保護カバーを、各 種硬化性榭脂 (接着剤)で接合すること等により形成する (設ける)ことができる。 Next, the sealing member 8 is formed to cover the anode 7, the intermediate layer 4, the light emitting layer 5, and the cathode 3. The sealing member 8 can be formed (provided) by, for example, joining a box-shaped protective cover made of the above-described material with various curable resins (adhesives).
[0179] 硬化性榭脂には、熱硬化性榭脂、光硬化性榭脂、反応性硬化榭脂、嫌気性硬化 榭脂の!、ずれも使用可能である。  [0179] For the curable resin, it is also possible to use thermosetting resin, photocurable resin, reactive cured resin, anaerobic cured resin!
[0180] 以上のような工程を経て、有機 EL素子 1が製造される。  The organic EL element 1 is manufactured through the above-described steps.
[0181] なお、本実施形態では、陰極 3上に、中間層 4と発光層 5と正孔輸送層 6と陽極 7と を順次積層して、有機 EL素子 1を製造する場合について説明したが、このような場 合に限定されるものではない。すなわち、例えば、陽極 7上に中間層 4が形成された 積層体と、陰極 3上に発光層 5とが積層された積層体とをそれぞれ用意し、中間層 4 と発光層 5とを対向させた状態で、これらを接触させて貼り合せることにより製造する ようにしてもよい。  In the present embodiment, the case where the organic EL element 1 is manufactured by sequentially laminating the intermediate layer 4, the light emitting layer 5, the hole transport layer 6 and the anode 7 on the cathode 3 has been described. In this case, it is not limited. That is, for example, a laminate in which the intermediate layer 4 is formed on the anode 7 and a laminate in which the light emitting layer 5 is stacked on the cathode 3 are prepared, and the intermediate layer 4 and the light emitting layer 5 are made to face each other. It may be manufactured by bringing them into contact with each other and bonding them in a state of
[0182] この有機 EL素子 1は、例えばディスプレイ装置用として用いることができる力 その 他にも光源等としても使用可能であり、種々の光学的用途等に用いることが可能であ る。  The organic EL element 1 can be used, for example, as a light source other than a force that can be used for a display device, and can be used for various optical applications and the like.
[0183] また、有機 EL素子 1をディスプレイ装置用に用いる場合、複数の有機 EL素子 1が ディスプレイ装置に設けられる力 このようなディスプレイ装置は、例えば、次のような ものが挙げられる。  Further, when the organic EL element 1 is used for a display device, the force with which a plurality of organic EL elements 1 are provided in the display device Examples of such a display device include the following.
[0184] 図 3は、有機 EL素子を複数備えるディスプレイ装置を示す縦断面図である。  FIG. 3 is a longitudinal sectional view showing a display device provided with a plurality of organic EL elements.
[0185] 図 3に示すディスプレイ装置 100は、基体 20と、この基体 20上に設けられた複数の 有機 EL素子 1とで構成されて!、る。 The display device 100 shown in FIG. 3 is composed of a base 20 and a plurality of organic EL elements 1 provided on the base 20 !.
[0186] 基体 20は、基板 21と、この基板 21上に形成された回路部 22とを有している。 The base 20 has a substrate 21 and a circuit section 22 formed on the substrate 21.
[0187] 回路部 22は、基板 21上に形成された、例えば酸ィ匕シリコン層からなる保護層 23とCircuit portion 22 includes a protective layer 23 formed on substrate 21 and made of, for example, an oxide silicon layer.
、保護層 23上に形成された駆動用 TFT (スイッチング素子) 24と、第 1層間絶縁層 2, The driving TFT (switching element) 24 formed on the protective layer 23 and the first interlayer insulating layer 2
5と、第 2層間絶縁層 26とを有している。 5 and a second interlayer insulating layer 26.
[0188] 駆動用 TFT24は、シリコンカゝらなる半導体層 241と、半導体層 241上に形成された ゲート絶縁層 242と、ゲート絶縁層 242上に形成されたゲート電極 243と、ソース電 極 244と、ドレイン電極 245とを有している。 The driving TFT 24 includes a semiconductor layer 241 made of silicon, a gate insulating layer 242 formed on the semiconductor layer 241, a gate electrode 243 formed on the gate insulating layer 242, and a source electrode 244. , And drain electrode 245.
[0189] このような回路部 22上に、各駆動用 TFT24に対応して、それぞれ、有機 EL素子 1 が設けられている。また、隣接する有機 EL素子 1同士は、第 1隔壁部 31および第 2 隔壁部 32により区画されて 、る。 On such a circuit section 22, an organic EL element 1 is provided corresponding to each driving TFT 24. Is provided. Further, the adjacent organic EL elements 1 are partitioned by the first partition 31 and the second partition 32.
[0190] 本実施形態では、各有機 EL素子 1の陽極 7は、画素電極を構成し、各駆動用 TFTIn the present embodiment, the anode 7 of each organic EL element 1 constitutes a pixel electrode, and each driving TFT
24のドレイン電極 245に配線 27により電気的に接続されている。また、各有機 EL素 子 1の陰極 3は、共通電極とされている。 It is electrically connected to the 24 drain electrodes 245 by the wiring 27. The cathode 3 of each organic EL element 1 is a common electrode.
[0191] そして、各有機 EL素子 1を覆うように封止部材(図示せず)が基体 20に接合され、 各有機 EL素子 1が封止されている。 Then, a sealing member (not shown) is joined to the base 20 so as to cover each of the organic EL elements 1, and each of the organic EL elements 1 is sealed.
[0192] ディスプレイ装置 100は、単色表示であってもよぐ各有機 EL素子 1に用いる発光 材料を選択することにより、カラー表示も可能である。 The display apparatus 100 can also perform color display by selecting a light emitting material used for each organic EL element 1 which may be a single color display.
[0193] < <第 2実施形態 > > Second Embodiment
次に、有機 EL素子の第 2実施形態について説明する。  Next, a second embodiment of the organic EL device will be described.
[0194] 図 4は、有機 EL素子の第 2実施形態を示した縦断面図である。なお、以下では、説 明の都合上、図 3中の上側を「上」、下側を「下」として説明を行う。 FIG. 4 is a longitudinal sectional view showing a second embodiment of the organic EL device. In the following, for convenience of explanation, the upper side in FIG. 3 will be described as “upper” and the lower side as “lower”.
[0195] 以下、第 2実施形態について、前記第 1実施形態との相違点を中心に説明し、同様 の事項については、その説明を省略する。 Hereinafter, the second embodiment will be described focusing on the differences from the first embodiment, and the description of the same matters will be omitted.
[0196] 図 3に示す有機 EL素子 10は、陰極 3と、陽極 7と、陰極 3と陽極 7との間に、陰極 3 側から順次積層された中間層 14と、発光層 5と、正孔輸送層 6とからなる積層体 19を 備えるものである。そして、有機 EL素子 10は、その全体が基板 2上に設けられるとと もに、封止部材 8で封止されている。 The organic EL device 10 shown in FIG. 3 includes an intermediate layer 14 sequentially stacked from the cathode 3 side between the cathode 3, the anode 7, the cathode 3 and the anode 7, a light emitting layer 5, and a positive electrode. A laminate 19 comprising the hole transport layer 6 is provided. The organic EL element 10 is entirely sealed on the substrate 2 and sealed by the sealing member 8.
[0197] なお、本実施形態では、この有機 EL素子 10において、陰極 (電極) 3と中間層 14と 発光層(有機半導体層) 5とにより本発明の電子デバイス用基板が構成される。 In the present embodiment, in the organic EL element 10, the cathode (electrode) 3, the intermediate layer 14, and the light emitting layer (organic semiconductor layer) 5 constitute the electronic device substrate of the present invention.
[0198] 基板 2は、前記第 1実施形態で説明したのと同様のもので構成されている。 The substrate 2 is composed of the same one as described in the first embodiment.
[0199] また、陰極 3の構成材料は、前記第 1実施形態で説明したように、電子を注入すると いう観点から、通常、仕事関数の小さい材料が選択される。ところが、本実施形態の 有機 EL素子 10では、陰極 3と発光層 5との間に、後述するような構成の中間層 14が 設けられることにより、これらの層同士間の密着性を向上させることができる。これによ り、陰極 3の構成材料として、仕事関数の大きい材料を用いたとしても、陰極 3と中間 層 14との間の電子の受け渡しを円滑に行うことができる。 [0200] このような仕事関数の大きい材料としては、前記第 1実施形態で説明した陽極 7の 構成材料と同様のものを用いることができる。 Further, as the constituent material of the cathode 3, as described in the first embodiment, a material having a small work function is usually selected from the viewpoint of injecting electrons. However, in the organic EL device 10 according to the present embodiment, the interlayer 14 having the configuration as described later is provided between the cathode 3 and the light emitting layer 5 to improve the adhesion between the layers. Can. As a result, even if a material having a large work function is used as the constituent material of the cathode 3, electrons can be smoothly delivered between the cathode 3 and the intermediate layer 14. As the material having such a large work function, the same material as the constituent material of the anode 7 described in the first embodiment can be used.
[0201] なお、陰極 3の構成材料としては、特に、 ITO (Indium Tin Oxide)、 IZO (Indiu m Zinc Oxide)、 In O、 SnO、 Sb含有 SnO、 Al含有 ZnOのような導電性金属 [0201] Note that as a constituent material of the cathode 3, particularly, a conductive metal such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), InO, SnO, Sb-containing SnO, Al-containing ZnO
3 3 2 2  3 3 2 2
酸ィ匕物を用いるのが好ましい。これらは、酸素や水分等に対する安定性および導電 性に特に優れた材料であることから、陰極 3から中間層 14への電子の注入をより確 実に行うことができる。  It is preferred to use an acid salt. Since these materials are particularly excellent in stability and conductivity with respect to oxygen and moisture, etc., it is possible to more surely inject electrons from the cathode 3 to the intermediate layer 14.
[0202] なお、前述したように有機 EL素子 1がボトムェミッション型である場合、陰極 3には、 実質的に透明性を有するものが用いられる。すなわち、導電性金属酸化物は、実質 的に透明性を有するものが選択される。これにより、発光層 5で発光した光を確実に 基板 2側から取り出すことができる。  As described above, in the case where the organic EL element 1 is of the bottom emission type, as the cathode 3, one having substantially transparency is used. That is, the conductive metal oxide is selected to be substantially transparent. Thus, the light emitted from the light emitting layer 5 can be reliably extracted from the substrate 2 side.
[0203] ところで、有機 EL素子 10には、図 4に示すように、封止部材 8が設けられている。こ の封止部材 8は、仕事関数の小さい材料が一般的に酸化されやすい材料であること から、陰極 3が変質'劣化することを抑制または防止することを目的に設けられている 。そのため、陰極 3が導電性金属酸化物のように、酸素や水分に対して比較的安定 な材料により構成されて ヽる場合には、封止部材 8の形成を省略するようにしてもよ い。これにより、有機 EL素子 10の小型化および製造コストの削減等を図ることができ る。さら〖こ、基板 2が可撓性を有する材料で構成されている場合には、有機 EL素子 1 0に可撓性を付与することもできる。  By the way, as shown in FIG. 4, the sealing member 8 is provided in the organic EL element 10. The sealing member 8 is provided for the purpose of suppressing or preventing deterioration or degradation of the cathode 3 because a material having a small work function is generally a material that is easily oxidized. Therefore, when the cathode 3 is made of a material relatively stable to oxygen and moisture, such as a conductive metal oxide, the formation of the sealing member 8 may be omitted. . As a result, downsizing of the organic EL element 10 and reduction of the manufacturing cost can be achieved. Furthermore, when the substrate 2 is made of a flexible material, the organic EL element 10 can also be provided with flexibility.
[0204] また、陽極 7は、前記第 1実施形態で説明したのと同様のもので構成されている。こ れにより、陽極 7から後述する正孔輸送層 6への正孔の受け渡しをより円滑に行うこと ができる。  The anode 7 is made of the same one as described in the first embodiment. As a result, the holes can be more smoothly delivered from the anode 7 to the hole transport layer 6 described later.
[0205] さて、陰極 3と陽極 7との間には、中間層 14と発光層 5と正孔輸送層 6とがこの順で 陰極 3側から積層された積層体 9が陰極 3と陽極 7とに接触するように形成されている  Now, between the cathode 3 and the anode 7, a laminate 9 in which the intermediate layer 14, the light emitting layer 5 and the hole transport layer 6 are laminated in this order from the cathode 3 side is the cathode 3 and the anode 7. It is formed to be in contact with
[0206] 中間層 14は、陰極 3から注入された電子を発光層 5まで輸送する機能を有するもの である。この中間層 14は、この層の構成材料である有機物として、電子を輸送する機 能を有するものが選択される以外、前記第 1実施形態で説明した中間層 4と同様の 構成のものである。これにより、中間層 14は、陰極 3および発光層 5の双方に対し、こ れらと接触する側の面において、優れた密着性を発揮するものとなることから、中間 層 14を介した陰極 3から発光層 5への電子の注入を円滑に行うことができる。 The intermediate layer 14 has a function of transporting the electrons injected from the cathode 3 to the light emitting layer 5. The intermediate layer 14 is the same as the intermediate layer 4 described in the first embodiment except that one having a function of transporting electrons is selected as the organic substance which is a constituent material of this layer. It is a thing of composition. As a result, the intermediate layer 14 exhibits excellent adhesion to both the cathode 3 and the light-emitting layer 5 on the side in contact with these, so the cathode via the intermediate layer 14 can be obtained. Electron injection from 3 to the light emitting layer 5 can be performed smoothly.
[0207] また、正孔輸送層 6は、陽極 7から注入された正孔を発光層 5まで輸送する機能を 有するものである。 In addition, the hole transport layer 6 has a function of transporting the holes injected from the anode 7 to the light emitting layer 5.
[0208] 正孔輸送層 6の構成材料は、正孔輸送能力を有するものであればいかなるのもで あっても良いが、以下に示すような、各種低分子の正孔輸送材料、各種高分子の正 孔輸送材料を基本構造とし、共役系の化合物であるのが好ましい。共役系の化合物 は、その特有な電子雲の広がりによる性質上、極めて円滑に正孔を輸送できるため、 正孔輸送能力に特に優れる。  [0208] The constituent material of the hole transport layer 6 may be any material as long as it has a hole transport ability, but various low molecular weight hole transport materials as described below, various heights, etc. It is preferable to use a molecule hole transport material as a basic structure and be a compound of a conjugated system. Conjugate compounds are particularly excellent in hole transport ability because they can transport holes extremely smoothly due to the characteristic nature of the spread of electron clouds.
[0209] なお、低分子の正孔輸送材料を用いることにより緻密な正孔輸送層 6が得られるた め、正孔輸送層 6の正孔輸送効率は向上する。また、正孔輸送層 6に高分子の正孔 輸送材料を用いると比較的容易に溶剤に溶解させることができるため、インクジェット 印刷法やスピンコート印刷法等の各種塗布法による正孔輸送層 6の形成を容易に行 うことができる。さら〖こ、低分子の正孔輸送材料と高分子の正孔輸送材料とを組み合 わせて用いることにより、すなわち、緻密かつ正孔輸送効率に優れる正孔輸送層 6を 、インクジェット印刷法等の各種塗布法により、容易に形成できるという効果が得られ る。  [0209] The use of a low molecular weight hole transport material provides a dense hole transport layer 6, so that the hole transport efficiency of the hole transport layer 6 is improved. In addition, when a hole transport material of high molecular weight is used for the hole transport layer 6, it can be dissolved in a solvent relatively easily, so that the hole transport layer by various coating methods such as inkjet printing method or spin coat printing method 6 Can be easily formed. Furthermore, by using a low molecular weight hole transporting material and a high molecular weight hole transporting material in combination, that is, the hole transporting layer 6 which is dense and has excellent hole transporting efficiency, an ink jet printing method, etc. The various coating methods described above have the effect of being able to be easily formed.
[0210] 低分子の正孔輸送材料としては、 1, 1—ビス (4 ジ一パラ一トリァミノフエ-ル)シ クロへキサン、 1, 1,一ビス(4 ジ一パラ一トリルァミノフエ-ル)一 4 フエ-ル一シク 口へキサンのようなァリールシクロアルカン系化合物、 4, 4' , 4"—トリメチルトリフエ -ルァミン、 N, N, N,, N,一テトラフエ-ルー 1, 1,一ビフエ-ルー 4, 4,一ジァミン 、 N, N,一ジフエ-ル一 N, N,一ビス(3—メチルフエ-ル)一 1, 1,一ビフエ-ル一 4 , 4,一ジァミン(TPD1)、 N, N,一ジフエ二ノレ一 N, N,一ビス(4—メトキシフエ二ノレ) - 1, 1,ービフエ-ノレ 4, 4,ージァミン(TPD2)、 N, N, Ν' , Ν,ーテトラキス(4 メトキシフエ-ル)一 1, 1,一ビフエ-ル一 4, 4,一ジァミン(TPD3)、 Ν, N,一ジ(1— ナフチル) N, N,一ジフエニル一 1, 1,一ビフエニル一 4, 4,一ジァミン(α— NPD ;)、 ΤΡΤΕのようなァリールアミン系化合物、 Ν, Ν, Ν' , Ν,—テトラフエ-ルーパラ— フエ-レンジァミン、 N, N, Ν' , Ν,一テトラ(パラ一トリル)一パラ一フエ-レンジァミン 、Ν, Ν, Ν' , Ν,一テトラ(メタ一トリル)一メタ一フエ-レンジァミン(PDA)のようなフ ェ-レンジアミン系化合物、カルバゾール、 N—イソプロピルカルバゾール、 N—フエ -ルカルバゾールのような力ルバゾール系化合物、スチルベン、 4ージ—パラートリル アミノスチルベンのようなスチルベン系化合物、 O Zのようなォキサゾール系化合物、 トリフエ-ルメタン m—MTDATAのようなトリフエ-ルメタン系化合物、 1—フエ-ル一 3—(パラージメチルァミノフエ-ル)ピラゾリンのようなピラゾリン系化合物、ベンジン( シクロへキサジェン)系化合物、トリァゾールのようなトリァゾール系化合物、イミダゾ ールのようなイミダゾール系化合物、 1, 3, 4 ォキサジァゾール、 2, 5 ジ(4ージメ チルァミノフエニル) 1, 3, 4, ーォキサジァゾールのようなォキサジァゾ一ル系化 合物、アントラセン、 9一(4ージェチルアミノスチリル)アントラセンのようなアントラセン 系化合物、フルォレノン、 2, 4, 7, —トリ-トロ一 9 フルォレノン、 2, 7 ビス(2 ヒ ドロキシ 3—(2 クロ口フエ-ルカルバモイル) 1 ナフチルァゾ)フルォレノンの ようなフルォレノン系化合物、ポリア-リンのようなァ-リン系化合物、シラン系化合物 、ポリチォフェン、ポリ(チォフェンビ-レン)のようなチォフェン系化合物、ポリ(2, 2, チェ-ノレピロ一ノレ)、 1, 4ージチオケトー 3, 6 ジフエ-ノレ ピロロー(3, 4— c)ピ ロロピロールのようなピロール系化合物、フローレンのようなフローレン系化合物、ポ ルフィリン、金属テトラフエ-ルポルフィリンのようなポルフィリン系化合物、キナクリドン のようなキナクリドン系化合物、フタロシアニン、銅フタロシアニン、テトラ(tーブチル) 銅フタロシアニン、鉄フタロシアニンのような金属または無金属のフタロシア-ン系化 合物、銅ナフタロシアニン、バナジルナフタロシアニン、モノクロ口ガリウムナフタロシ ァニンのような金属または無金属のナフタロシアニン系化合物、 N, N,ージ(ナフタレ ン一 1—ィル) N, N,一ジフエ二ルーベンジジン、 N, N, Ν' , Ν,一テトラフエ-ル ベンジジンのようなベンジジン系化合物等が挙げられ、これらのうちの 1種または 2種 以上を組み合わせて用いることができる。これらのものは、いずれも、高い正孔輸送 能を有している。 Examples of low-molecular-weight hole transport materials include 1,1-bis (4-di-para-tri-amino-phenyl) cyclohexane, 1,1-bis (4-di-para-tri-trifluorophenyl) -one. 4 phenyl- 1-ring ring-like aryl cycloalkylene compounds such as 4, 4 ', 4 "-trimethyltriphenylamine, N, N, N, N, 1-tetraphenyl-1, 1 Biphenyl-4, 4, 1-diamine, N, N, 1-Diphenyl-1, N, N, 1-bis (3-methyl phenyl) 1, 1, 1-biphenyl-1, 4, 4, 1-diamine (TPD1 ), N, N, one diphenone, one N, N, one bis (4-methoxyphenone)-1, 1,-biphenyl-nore 4, 4, diamine (TPD2), N, N, Ν ', Ν, Tetrakis (4 methoxyphenyl) -1,1, biphenyl-1,4,4-diamine (TPD3), Ν, N, di- (1-naphthyl) N, N, di-diphenyl-1,1,1- Bifenil 1, 4, 1 diamin ( α- NPD;), arylamine compounds such as Ν, Ν, Ν, Ν ', Ν, テ ト ラ -tetraphenyl- レ ン ジ-レ ジ ァ ン, N, N, Ν ', ,, Ν, Ν, Ν, Ν, パ ラ, 一, Ν', ,, テ ト ラ, テ ト ラ, テ ト ラ, テ ト ラ, テ ト ラ, テ ト ラ, メ タ, メ タPDAs) Ferendylene compounds such as carbazole, N-isopropylcarbazole, N-phenylcarbazole such as N-phenylcarbazole, stilbene, stilbene such as 4-di-palatolyl aminostilbene, Oxazole compounds such as OZ, triphenylmethane compounds such as triflate methane m-MTDATA, pyrazoline compounds such as 1-phenyl-1- (para-dimethylamino) pyrazoline, benzine Cyclohexaene compounds, triazole compounds such as triazole, imidazole compounds such as imidazole, 1, 3, 4 Diazole, 2,5 di (4-dimethyaminophenyl) 1, 3, 4, oxadiazolic compounds such as oxadiazole, anthracene, 9- (4-getylaminostyryl) anthracene Such as anthracene compounds such as, fluorenone, 2,4,7,3-tri-nitro-9 fluorenone, 2,7 bis (2 hydroxy 3-(2 cloquil fur carbamoyl) 1 naphthylazo) fluorenone such as fluorenone Compounds, phosphorus-containing compounds such as poly-arrin, silane-based compounds, thiophene-type compounds such as polythiophen, poly (thiophenbi- lene), poly (2, 2, chel-nore piro nore), 1, 4-dithioketo 3 , 6 Diphene-Nole pyrrolo (3, 4-c) Pyrrole compounds such as pyropyrrole, Florene compounds such as Florene, porphyrins, metal tet Porphyrin compounds such as porphyrins, quinacridone compounds such as quinacridone, phthalocyanines, copper phthalocyanines, tetra (t-butyl) copper phthalocyanines, metal or metal-free phthalocyanine compounds such as iron phthalocyanines, Metals or metal-free naphthalocyanines such as copper naphthalocyanine, vanadyl naphthalocyanine, monochlorogallium naphthalocyanine, N, N, di (naphthalen 1-yl) N, N, mono diphenyl. Benzidine, N, N, N ', 等, benzidine compounds such as tetraphenyl benzidine, etc. may be mentioned, and one or more of these may be used in combination. All of these have high hole transportability.
高分子の正孔輸送材料としては、前記モノマーやオリゴマー (低分子の正孔輸送 材料)化合物を主鎖または側鎖に有するプレボリマーやポリマー(高分子の正孔輸送 材料)として用いることができる。 As a hole transport material of a polymer, a prepolymer or polymer (hole transport of a polymer having a monomer or an oligomer (a low molecular weight hole transport material) compound in the main chain or a side chain) It can be used as a material).
[0212] その他の正孔輸送材料としては、例えば、ポリ(3, 4—エチレンジォキシチォフェン Zスチレンスルホン酸)(PEDOTZPSS)のようなポリ(チォフェン Zスチレンスルホ ン酸)系化合物等の高分子の正孔輸送材料を用いることもできる。このものは、高い 正孔輸送能を有している。  Other hole transport materials include, for example, poly (thiophen Z styrene sulfonic acid) -based compounds such as poly (3,4-ethylenedioxthiophen Z styrene sulfonic acid) (PEDOTZPSS), etc. A polymeric hole transport material can also be used. This one has high hole transportability.
[0213] このような正孔輸送層 6の平均厚さは、特に限定されないが、 10〜150nm程度で あるのが好ましぐ 50〜: LOOnm程度であるのがより好ましい。正孔輸送層 6の厚さが 薄すぎると、ピンホールが生じるおそれがあり、一方、正孔輸送層 6が厚過ぎると、正 孔輸送層 6の光の透過率が悪くなる原因となり、有機 EL素子 10の発光色の色度 (色 相)が変化してしまうおそれがある。  The average thickness of such a hole transport layer 6 is not particularly limited, but is preferably about 10 to 150 nm, and more preferably about 50 to about LOO nm. If the thickness of the hole transport layer 6 is too thin, pinholes may be generated. On the other hand, if the hole transport layer 6 is too thick, the light transmittance of the hole transport layer 6 may be deteriorated, which is an organic matter. The chromaticity (color phase) of the light emission color of the EL element 10 may be changed.
[0214] 発光層 5および封止部材 8は、前記第 1実施形態で説明したのと同様のもので構成 されている。  [0214] The light emitting layer 5 and the sealing member 8 are made of the same ones as described in the first embodiment.
[0215] なお、前述したように、陰極 3が導電性金属酸化物のように酸素や水分に対して比 較的安定な材料により構成されて ヽる場合には、封止部材 8の形成を省略するように してちよい。  As described above, when the cathode 3 is made of a material relatively stable to oxygen and moisture, such as a conductive metal oxide, the sealing member 8 is formed. You may omit it.
[0216] なお、本実施形態では、陰極 3上に発光層 5が設けられている場合について説明し たが、このような場合に限定されず、例えば、陰極 3と発光層 5との間に、陰極 3から 注入された正孔を発光層 5まで輸送する機能を有する正孔輸送性の中間層を設ける ようにしてもよい。  Although the case where the light emitting layer 5 is provided on the cathode 3 has been described in the present embodiment, the present invention is not limited to such a case, and, for example, between the cathode 3 and the light emitting layer 5 A hole transporting intermediate layer having a function of transporting holes injected from the cathode 3 to the light emitting layer 5 may be provided.
[0217] この正孔輸送性の中間層は、有機 EL素子の第 1実施形態で前述した中間層 4と同 様のちのとすることができる。  The hole transportable intermediate layer can be the same as the intermediate layer 4 described above in the first embodiment of the organic EL device.
[0218] このような有機 EL素子 10は、例えば、次のようにして製造することができる Such an organic EL device 10 can be manufactured, for example, as follows.
この有機 EL素子 1の製造方法にぉ 、て、中間層 14を設ける工程 (中間層形成ェ 程)と発光層 (有機半導体層) 5を設ける工程 (発光層形成工程)とに本発明の電子 デバイス用基板の製造方法が適用される。  In the method of manufacturing the organic EL device 1, the step of providing the intermediate layer 14 (intermediate layer forming step) and the step of providing the light emitting layer (organic semiconductor layer) 5 (light emitting layer forming step) A method of manufacturing a device substrate is applied.
[0219] [1B]陰極形成工程 [1219] Cathode formation process
まず、基板 2を用意し、この基板 2上に陰極 3を形成する。  First, the substrate 2 is prepared, and the cathode 3 is formed on the substrate 2.
この陰極 3の形成は、有機物として、電子を輸送する機能を有するキャリア輸送部 位を備えるものを用いる以外、前記第 1実施形態で説明した工程 [1A]と同様にして 行うことができる。 The formation of the cathode 3 is a carrier transport portion having a function of transporting electrons as an organic substance. The process can be performed in the same manner as the process [1A] described in the first embodiment except that one having a position is used.
[0220] [2B]中間層形成工程 [2B] Intermediate Layer Forming Step
次に、陰極 3上に中間層 14を形成する。  Next, an intermediate layer 14 is formed on the cathode 3.
中間層 14の形成は、第 1実施形態で説明した工程 [2A]において、有機物として、 正孔を輸送する機能を有するものを用いるのに代えて、電子を輸送する機能を有す るものを用いる以外、前記工程 [2A]と同様にして行うことができる。  In the formation of the intermediate layer 14, in place of using an organic substance having a function of transporting holes in the step [2A] described in the first embodiment, one having a function of transporting electrons is used. It can carry out by carrying out like said process [2A] except using.
[0221] 以下、この電子を輸送する機能を有する有機物について説明する。 Hereinafter, the organic substance having a function of transporting the electrons will be described.
[0222] 電子を輸送する機能を有する有機物としては、この有機物に含まれるキャリア輸送 部位の構造が異なる以外、正孔を輸送する機能を有する有機物と同様である。 The organic substance having a function of transporting electrons is the same as the organic substance having a function of transporting holes, except that the structure of the carrier transport site contained in the organic substance is different.
[0223] このようなキャリア輸送部位としては、電子輸送能に優れ、かつ、有機系の構造を有 するものが好適に選択され、具体的には、テトラチォフルバレン骨格を有するものが 挙げられる。 As such a carrier transport site, one having an electron transport ability and having an organic structure is suitably selected, and specifically, one having a tetrathiofulvalene skeleton can be mentioned. .
[0224] そのため、電子を輸送する機能を有する有機物としては、例えば、下記一般式 (4) で表される化合物が好適に用いられる。  Therefore, as the organic substance having a function of transporting electrons, for example, a compound represented by the following general formula (4) is suitably used.
[0225] [化 23] [Formula 23]
Figure imgf000035_0001
Figure imgf000035_0001
[0226] [式中、 2つの R1は、それぞれ独立して、水素原子、または、前記一般式(5)または 前記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 2つの R1のうちの少なくとも 1つは、前記一般式(5)または前記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, two R 1 's each independently represent a hydrogen atom or any of the substituents represented by the general formula (5) or the general formula (6), It may be the same or different. However, at least one of two R 1 represents either of the substituents represented by the general formula (5) or the general formula (6). ]
[0227] [3B]発光層形成工程  [3B] Light Emitting Layer Forming Step
次に、中間層 14上に発光層 5を形成する。  Next, the light emitting layer 5 is formed on the intermediate layer 14.
この中間層 14の形成は、前記第 1実施形態で説明した工程 [3A]と同様にして行う ことができる。  The formation of the intermediate layer 14 can be performed in the same manner as the step [3A] described in the first embodiment.
[0228] [4B]正孔輸送層形成工程 次に、発光層 5上に正孔輸送層 6を形成する。 [4B] Hole transport layer forming step Next, the hole transport layer 6 is formed on the light emitting layer 5.
正孔輸送層 6は、発光層 5と同様にして形成することができる。すなわち、正孔輸送 層 6は、前述したような正孔輸送材料を用いて、前記第 1実施形態で説明した工程 [ 3A]のような方法により形成することができる。  The hole transport layer 6 can be formed in the same manner as the light emitting layer 5. That is, the hole transport layer 6 can be formed using the hole transport material as described above according to the method [3A] described in the first embodiment.
[0229] [5B]陽極形成工程 [0229] [5B] Anode Forming Step
次に、正孔輸送層 6上に陽極 7を形成する。  Next, the anode 7 is formed on the hole transport layer 6.
この陽極 7の形成は、前記第 1実施形態で説明した工程 [1A]と同様にして行うこと ができる。  The formation of the anode 7 can be performed in the same manner as the step [1A] described in the first embodiment.
[0230] [6B]封止部材形成工程 [6B] Sealing member formation process
次に、陰極 3、中間層 14、発光層 5、正孔輸送層 6、および陽極 7を覆うように、封止 部材 8を形成する。  Next, a sealing member 8 is formed to cover the cathode 3, the intermediate layer 14, the light emitting layer 5, the hole transport layer 6, and the anode 7.
この封止部材 8の形成は、前記第 1実施形態で説明した工程 [5A]と同様にして行 うことができる。  The formation of the sealing member 8 can be performed in the same manner as the process [5A] described in the first embodiment.
[0231] 以上のような工程を経て、有機 EL素子 10が製造される。  Through the above-described steps, the organic EL device 10 is manufactured.
[0232] この有機 EL素子 10は、有機 EL素子 1と同様に、ディスプレイ装置用としても光源 等としても使用可能であり、種々の光学的用途等に用いることが可能である。  Like the organic EL element 1, the organic EL element 10 can be used as a display device or a light source etc., and can be used for various optical applications and the like.
[0233] また、有機 EL素子 10をディスプレイ装置用に用いる場合にも、前記第 1実施形態 と同様にしてディスプレイ装置に適用することができる。 Also when the organic EL element 10 is used for a display device, it can be applied to a display device in the same manner as in the first embodiment.
[0234] < <第 3実施形態 > > <Third Embodiment>
次に、有機 EL素子の第 3実施形態について説明する。  Next, a third embodiment of the organic EL element will be described.
[0235] 図 5は、有機 EL素子の第 3実施形態を示した縦断面図である。なお、以下の説明 では、図 5中の上側を「上」、下側を「下」と言う。 [0235] FIG. 5 is a longitudinal sectional view showing a third embodiment of the organic EL device. In the following description, the upper side in FIG. 5 is referred to as “upper” and the lower side as “lower”.
[0236] 以下、第 3実施形態について、前記第 2実施形態との相違点を中心に説明し、同様 の事項については、その説明を省略する。 Hereinafter, the third embodiment will be described focusing on the differences from the second embodiment, and the description of the same matters will be omitted.
[0237] 第 3実施形態の有機 EL素子 11では、陰極 3と陽極 7との間に、第 2実施形態のよう な中間層 14と発光層 5と正孔輸送層 6とからなる積層体 19が設けられているのに代 えて、図 3に示すような積層体 19 "が設けられている以外は、第 2実施形態と同様で ある。 [0238] この積層体 19',は、図 3に示すような有機 EL素子 10が備える積層体 19の上に、さ らに、透明電極 3,と中間層 14 'と発光層 5,と正孔輸送層 6 'とからなる積層体 19,と を有するもの、すなわち、積層体 19と積層体 19'とが直列に連結されたものである。 In the organic EL device 11 according to the third embodiment, a laminate comprising the intermediate layer 14 as in the second embodiment, the light emitting layer 5 and the hole transport layer 6 between the cathode 3 and the anode 7 19 The second embodiment is the same as the second embodiment except that a stack 19 ′ as shown in FIG. [0238] This laminate 19 'is formed on the laminate 19 of the organic EL device 10 as shown in FIG. 3, and further, on the transparent electrode 3, the intermediate layer 14', the light emitting layer 5, and the positive electrode. A laminate 19 consisting of a hole transport layer 6 ′, ie, a laminate 19 and a laminate 19 ′ are connected in series.
[0239] なお、本実施形態では、この有機 EL素子 11において、陰極 3と中間層 14と発光層 5とにより、さらには、透明電極 3'と中間層 14'と発光層 5とにより本発明の電子デバ イス用基板が構成される。 In the present embodiment, the organic EL device 11 according to the present invention includes the cathode 3, the intermediate layer 14 and the light emitting layer 5, and further, the transparent electrode 3 ′, the intermediate layer 14 ′ and the light emitting layer 5. The board for electronic devices of
[0240] 以下、積層体 19' 'の構成について中心に説明する。 Hereinafter, the configuration of the laminate 19 ′ ′ will be mainly described.
[0241] 積層体 19上すなわち正孔輸送層 6上には、透明電極 3'が設けられている。 A transparent electrode 3 ′ is provided on the laminate 19, ie, on the hole transport layer 6.
[0242] この透明電極 3'は、正孔輸送層 6に正孔を注入する機能と、中間層 14'に電子を 注入する機能とを併せもつ電極である。 The transparent electrode 3 ′ is an electrode having a function of injecting holes into the hole transport layer 6 and a function of injecting electrons into the intermediate layer 14 ′.
[0243] また、有機 EL素子 11がトップェミッション型である場合、発光層 5の発光を陽極 7側 に、有機 EL素子 11がボトムェミッション型である場合、発光層 5'の発光を陰極 3側 に透過させる必要があるため、透明電極 3'の構成材料には、陰極 3の構成材料で説 明したもののうち、実質的に透明(無色透明、着色透明、半透明)性を有するものが 用いられる。 When the organic EL element 11 is a top emission type, the light emission of the light emitting layer 5 is on the anode 7 side, and when the organic EL element 11 is a bottom emission type, the light emission of the light emitting layer 5 ′ is Among the materials described for the material of the cathode 3, the material of the transparent electrode 3 'has substantially transparency (colorless transparency, colored transparency, translucence) because it is necessary to transmit light to the three sides. Is used.
[0244] 具体的には、例えば、 ITO (Indium Tin Oxide)、 IZO (Indium Zinc Oxide) 、 In O、 SnO、 Sb含有 SnO、 Al含有 ZnO等の透明性の導電性金属酸化物等が [0244] Specifically, for example, transparent conductive metal oxides such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), InO, SnO, Sb-containing SnO, Al-containing ZnO, etc.
3 3 2 2 3 3 2 2
挙げられ、これらのうちの 1種または 2種以上を組み合わせて用いることができる。  These may be used alone or in combination of two or more.
[0245] また、積層体 19'が備える中間層 14'、発光層 5'および正孔輸送層 6'は、それぞ れ、積層体 19が備える中間層 14、発光層 5および正孔輸送層 6と同様の構成のもの である。 In addition, the intermediate layer 14 ′, the light emitting layer 5 ′ and the hole transport layer 6 ′ provided in the laminate 19 ′ are each provided in the intermediate layer 14, the light emitting layer 5 and the hole transport layer provided in the laminate 19 respectively. It has the same configuration as 6).
[0246] なお、中間層 14'、発光層 5'および正孔輸送層 6'の構成材料は、それぞれ、中間 層 14、発光層 5および正孔輸送層 6の構成材料と同一のものであってもよいし、前記 第 1実施形態または前記第 2実施形態で説明したものに含まれるものであれば、異な るものであってもよい。  The constituent materials of the intermediate layer 14 ′, the light emitting layer 5 ′ and the hole transport layer 6 ′ are the same as the constituent materials of the intermediate layer 14, the light emitting layer 5 and the hole transport layer 6, respectively. It may be different, as long as it is included in what has been described in the first embodiment or the second embodiment.
[0247] 有機 EL素子 11を力かる構成のものとすることにより、 2つの発光層 5、 5'からエレク トロルミネセンス発光を得ることができることから、この発光をより安定的に行うことがで きるとともに、発光効率の向上を図ることができる。 [0248] このような有機 EL素子 11は、例えば、前記第 2実施形態で説明した、工程 [1B]〜 工程 [4B]を行い、再度工程 [1B]〜工程 [4B]を行った後に、工程 [5B]と工程 [6B[0247] By making the organic EL element 11 be of a powerful configuration, it is possible to obtain electroluminescence from the two light emitting layers 5, 5 ', so it is possible to perform this light emission more stably. The light emission efficiency can be improved. Such an organic EL device 11 performs, for example, the steps [1B] to [4B] described in the second embodiment, and the steps [1B] to [4B] are performed again, Process [5B] and Process [6B
]を行うことにより製造することができる。 ] Can be manufactured.
[0249] この有機 EL素子 11は、有機 EL素子 1、 10と同様〖こ、ディスプレイ装置用としても 光源等としても使用可能であり、種々の光学的用途等に用いることが可能である。 This organic EL element 11 is, like the organic EL elements 1 and 10, suitable for use as a display device, a light source and the like, and can be used for various optical applications and the like.
[0250] また、有機 EL素子 11をディスプレイ装置用に用いる場合にも、前記第 1実施形態 と同様にしてディスプレイ装置に適用することができる。 Also when the organic EL element 11 is used for a display device, it can be applied to a display device in the same manner as in the first embodiment.
[0251] <電子機器 > <Electronic Equipment>
前述したような、有機 EL素子 1、 10、 11 (本発明の電子デバイス)は、各種の電子 機器に組み込むことができる。  The organic EL elements 1, 10 and 11 (the electronic device of the present invention) as described above can be incorporated into various electronic devices.
[0252] 図 6は、本発明の電子機器を適用したモパイル型 (またはノート型)のパーソナルコ ンピュータの構成を示す斜視図である。 FIG. 6 is a perspective view showing a configuration of a mopile type (or notebook type) personal computer to which the electronic device of the present invention is applied.
[0253] この図において、パーソナルコンピュータ 1100は、キーボード 1102を備えた本体 部 1104と、表示部を備える表示ユニット 1106とにより構成され、表示ユニット 1106 は、本体部 1104に対しヒンジ構造部を介して回動可能に支持されている。 In this figure, the personal computer 1100 comprises a main unit 1104 having a keyboard 1102 and a display unit 1106 having a display unit, and the display unit 1106 is connected to the main unit 1104 via a hinge structure. It is rotatably supported.
[0254] このパーソナルコンピュータ 1100において、表示ユニット 1106が備える表示部が 前述の有機 EL素子 1、 10、 11を備えている。 In the personal computer 1100, the display unit included in the display unit 1106 includes the organic EL elements 1, 10, and 11 described above.
[0255] 図 7は、本発明の電子機器を適用した携帯電話機 (PHSも含む)の構成を示す斜 視図である。 FIG. 7 is a perspective view showing a configuration of a mobile phone (including PHS) to which the electronic device of the present invention is applied.
[0256] この図において、携帯電話機 1200は、複数の操作ボタン 1202、受話ロ 1204およ び送話口 1206とともに、表示部を備えている。  [0256] In this figure, mobile phone 1200 is equipped with a plurality of operation buttons 1202, a receiver 1204 and a mouthpiece 1206, and a display.
[0257] 携帯電話機 1200において、この表示部が前述の有機 EL素子 1、 10、 11を備えて いる。 In the mobile phone 1200, the display unit includes the organic EL elements 1, 10, and 11 described above.
[0258] 図 8は、本発明の電子機器を適用したディジタルスチルカメラの構成を示す斜視図 である。なお、この図には、外部機器との接続についても簡易的に示されている。  FIG. 8 is a perspective view showing a configuration of a digital still camera to which the electronic device of the present invention is applied. Note that in this figure, the connection to an external device is also shown in a simplified manner.
[0259] ここで、通常のカメラは、被写体の光像により銀塩写真フィルムを感光するのに対し 、ディジタルスチルカメラ 1300は、被写体の光像を CCD (Charge Coupled Device) などの撮像素子により光電変換して撮像信号 (画像信号)を生成する。 [0260] ディジタルスチルカメラ 1300におけるケース(ボディー) 1302の背面には、表示部 が設けられ、 CCDによる撮像信号に基づいて表示を行う構成になっており、被写体 を電子画像として表示するファインダとして機能する。 Here, a normal camera sensitizes a silver halide photographic film by a light image of a subject, whereas a digital still camera 1300 photoelectrically converts the light image of a subject by a CCD (Charge Coupled Device) or the like. Convert to generate an imaging signal (image signal). A display unit is provided on the back of case (body) 1302 in digital still camera 1300, and is configured to perform display based on an image pickup signal from a CCD, and functions as a finder for displaying an object as an electronic image. Do.
[0261] ディジタルスチルカメラ 1300において、この表示部が前述の有機 EL素子 1、 10、 1 1を備えている。  In the digital still camera 1300, this display unit includes the organic EL elements 1, 10, 11 described above.
[0262] ケースの内部には、回路基板 1308が設置されている。この回路基板 1308は、撮 像信号を格納 (記憶)し得るメモリが設置されて 、る。  Inside the case, a circuit board 1308 is installed. The circuit board 1308 is provided with a memory capable of storing an imaging signal.
[0263] また、ケース 1302の正面側(図示の構成では裏面側)には、光学レンズ (撮像光学 系)や CCDなどを含む受光ユニット 1304が設けられている。 Further, a light receiving unit 1304 including an optical lens (imaging optical system), a CCD, and the like is provided on the front side (the back side in the illustrated configuration) of the case 1302.
[0264] 撮影者が表示部に表示された被写体像を確認し、シャツタボタン 1306を押下する と、その時点における CCDの撮像信号力 回路基板 1308のメモリに転送'格納され る。 [0264] When the photographer confirms the subject image displayed on the display unit and presses the shirt button 1306, the image is transferred to and stored in the memory of the imaging signal power circuit board 1308 of the CCD at that time.
[0265] また、このディジタルスチルカメラ 1300においては、ケース 1302の側面に、ビデオ 信号出力端子 1312と、データ通信用の入出力端子 1314とが設けられている。そし て、図示のように、ビデオ信号出力端子 1312にはテレビモニタ 1430が、デ―タ通信 用の入出力端子 1314にはパーソナルコンピュータ 1440が、それぞれ必要に応じて 接続される。さらに、所定の操作により、回路基板 1308のメモリに格納された撮像信 号力 テレビモニタ 1430や、パーソナルコンピュータ 1440に出力される構成になつ ている。  Further, in the digital still camera 1300, a video signal output terminal 1312 and an input / output terminal 1314 for data communication are provided on the side surface of the case 1302. Then, as shown, a television monitor 1430 is connected to the video signal output terminal 1312 and a personal computer 1440 is connected to the input / output terminal 1314 for data communication as required. Furthermore, it is configured to be output to the imaging signal power television monitor 1430 stored in the memory of the circuit board 1308 or the personal computer 1440 by a predetermined operation.
[0266] なお、本発明の電子機器は、図 6のパーソナルコンピュータ(モパイル型パーソナ ルコンピュータ)、図 7の携帯電話機、図 8のディジタルスチルカメラの他にも、例えば 、テレビや、ビデオカメラ、ビューファインダ型、モニタ直視型のビデオテープレコーダ 、ラップトップ型パーソナルコンピュータ、カーナビゲーシヨン装置、ページャ、電子手 帳 (通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサ、ヮー クステーション、テレビ電話、防犯用テレビモニタ、電子双眼鏡、 POS端末、タツチパ ネルを備えた機器 (例えば金融機関のキャッシュディスペンサー、 自動券売機)、医 療機器 (例えば電子体温計、血圧計、血糖計、心電表示装置、超音波診断装置、内 視鏡用表示装置)、魚群探知機、各種測定機器、計器類 (例えば、車両、航空機、船 舶の計器類)、フライトシユミレータ、その他各種モニタ類、プロジェクタ一等の投射型 表示装置等に適用することができる。 The electronic device of the present invention is not limited to the personal computer (mopile type personal computer) shown in FIG. 6, the mobile phone shown in FIG. 7, the digital still camera shown in FIG. Viewfinder type, monitor direct view type video tape recorder, laptop type personal computer, car navigation device, pager, electronic notebook (including communication function), electronic dictionary, calculator, electronic game machine, word processor, office station , Videophones, TV monitors for crime prevention, electronic binoculars, POS terminals, devices equipped with touch panels (eg cash dispensers for financial institutions, automatic ticket vending machines), medical devices (eg electronic thermometers, sphygmomanometers, blood glucose meters, electrocardiograms Display devices, ultrasound diagnostic devices, display devices for endoscopes), fish finders, various measuring instruments, Instruments (for example, vehicles, aircraft, ships The present invention can be applied to marine measuring instruments, flight simulators, various monitors, and projection display devices such as projectors.
[0267] 以上、本発明の電子デバイス用基板の製造方法、電子デバイス用基板、電子デバ イスおよび電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに 限定されるものでない。  Although the method for manufacturing a substrate for an electronic device, the substrate for an electronic device, the electronic device, and the electronic device according to the present invention have been described above based on the embodiments shown in the drawings, the present invention is not limited thereto. .
[0268] 例えば、本発明の電子デバイス用基板を備える本発明の電子デバイスは、上述し た有機 EL素子に適用することができる他、例えば、光電変換素子や薄膜トランジスタ 等に適用することができる。  For example, the electronic device of the present invention provided with the substrate for an electronic device of the present invention can be applied to, for example, a photoelectric conversion element, a thin film transistor, etc., in addition to the organic EL element described above.
実施例  Example
[0269] 次に、本発明の具体的実施例について説明する。  Next, specific examples of the present invention will be described.
[0270] 1.有機 EL素子の製造  [0270] 1. Production of organic EL device
以下の各実施例および各比較例において、有機 EL素子を 5個ずつ製造した。  Five organic EL devices were manufactured in each of the following Examples and Comparative Examples.
[0271] (実施例 1A)  Example 1A
- 1A- まず、平均厚さ 1. 1mmの透明なガラス基板を 2つ用意し、これらの基板 上に、スパッタリング法により、それぞれ、平均厚さ 150nmの ITO電極を形成した。な お、いずれか一方の ITO電極は、有機 EL素子を構成する電極として使用し、他方の ITO電極は、後の工程— 3A—において、対極として使用した。  First, two transparent glass substrates having an average thickness of 1.1 mm were prepared, and an ITO electrode having an average thickness of 150 nm was formed on each of these substrates by sputtering. Note that one of the ITO electrodes was used as an electrode constituting an organic EL device, and the other ITO electrode was used as a counter electrode in the subsequent step 3A.
[0272] - 2A- 次に、化 24に示す化合物の組成物である銅フタロシアニンのスルホン酸 エステル系染料 (ダイレクトブルー 199) 1. Owt%水溶液を用意した。  [0272]-2A-Next, a sulfonic acid ester dye of copper phthalocyanine which is a composition of a compound represented by Chemical formula 24 (Direct Blue 199) 1. An Owt% aqueous solution was prepared.
[0273] [化 24]  [Formula 24]
Figure imgf000040_0001
[0274] [式中、 4つの R1は、それぞれ独立して、水素原子、または、下記一般式(7)〜下記 一般式(9)で表される置換基のうちのいずれかである。ただし、 4つの R1のうちの少な くとも 1つは、下記一般式(7)〜下記一般式(9)で表される置換基のうちの ヽずれか である。 ]
Figure imgf000040_0001
[Wherein, each of four R 1 s is independently a hydrogen atom, or any of the substituents represented by the following general formula (7) to the following general formula (9). However, at least one of the four R 1 s is at least one of the substituents represented by the following general formula (7) to the following general formula (9). ]
[0275] [化 25] ( 8 )
Figure imgf000041_0001
[Formula 25] (8)
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0002
[0276] [各式中、 nは、 1〜15の整数である。 ]  [Wherein, n is an integer of 1 to 15. ]
- 3A- 次にガラス基板に設けられた ITO電極の一方を陰極として、他方を陽極 としてそれぞれセットした後、前記工程—2A—で用意した水溶液中に浸漬させた状 態で、陰極と陽極との間に電圧を印加した。  -3A- Next, one of the ITO electrodes provided on the glass substrate is set as the cathode and the other as the anode, and then the cathode and the anode are immersed in the aqueous solution prepared in step 2A. Voltage was applied between
[0277] なお、電圧印加時の各種条件は、以下に示す通りである。 The various conditions at the time of voltage application are as follows.
[0278] '印加電圧 : 20V [0278] 'Applied voltage: 20 V
•電極間の通電電流: 2〜4 μ A/cm"  • Current between the electrodes: 2 to 4 μA / cm "
•液体の温度 :60°C  • Temperature of liquid: 60 ° C
•液体の pH : 5. 5  • pH of liquid: 5.5
•処理時間 :10分  • Processing time: 10 minutes
これにより、陽極とした ITO電極上に、銅フタロシアニンのスルホン酸エステル系染 料の誘導体を析出させて、この誘導体を主成分とする平均厚さ 8nmの中間層を得た 。なお、本実施例では、この ITO電極を有機 EL素子を構成する陽極として使用した  As a result, a derivative of a sulfonic acid ester dye of copper phthalocyanine was deposited on the ITO electrode serving as the anode, to obtain an intermediate layer having an average thickness of 8 nm containing this derivative as a main component. In this example, this ITO electrode was used as an anode constituting an organic EL element.
[0279] -4A- 次に、この中間層を水溶液中力も取り出し、純水で洗浄した後、窒素雰 囲気下で 100°C X 60分の条件で乾燥させた。 [0279] -4A- Next, the strength of the intermediate layer was also removed in an aqueous solution, washed with pure water, and then dried at 100 ° C for 60 minutes in a nitrogen atmosphere.
[0280] - 5A- 次に、中間層上に、ポリ(9, 9ージォクチルー 2, 7—ジビ-レンフルォレ 二ルーオルトーコ(アントラセン—9, 10—ジィル)(重量平均分子量 200000)の 1. 7 wt%キシレン溶液を、スピンコート法により塗布した後、窒素雰囲気下、 100°C X 10 分、さらに、減圧下、 100°C X 60分の条件で乾燥して、平均厚さ 50nmの発光層を 形成した。 [0280]-5A-Next, on the intermediate layer, poly (9, 9-di-cyl 2, 7- dibi-len-fluore After applying a 1.7 wt% xylene solution of di-lu-ortho-co (anthracene-9,10-diyl) (weight average molecular weight 200000) by spin coating, under a nitrogen atmosphere, 100 ° CX for 10 minutes, and further under reduced pressure. Drying was performed under the conditions of 100 ° CX for 60 minutes to form a light emitting layer with an average thickness of 50 nm.
[0281] -6A- 次に、発光層上に、真空蒸着法により、 Caおよび A1を連続蒸着して、平 均厚さ lnmの Caと平均厚さ 300nmの A1とで構成される複数層電極(陰極)を形成し た。  [0281] -6A-Next, Ca and A1 are continuously vapor-deposited on the light emitting layer by a vacuum evaporation method to form a multilayer electrode composed of Ca having an average thickness of 1 nm and A1 having an average thickness of 300 nm. The (cathode) was formed.
[0282] - 7A- 次に、形成した各層を覆うように、ポリカーボネート製の保護カバーを被 せ、紫外線硬化性榭脂により固定、封止して、有機 EL素子を完成した。  [0282]-7A-Next, a protective cover made of polycarbonate was placed so as to cover the formed layers, and fixed and sealed with an ultraviolet curable resin to complete an organic EL element.
[0283] (実施例 2A) Example 2A
前記工程—2A—において、化 26に示す化合物の 1. 0wt%水溶液を用意した以 外は、前記実施例 1Aと同様にして、有機 EL素子を製造した。  An organic EL device was manufactured in the same manner as Example 1A, except that an aqueous solution of 1.0 wt% of the compound shown in Chemical formula 1 was prepared in the step-2A.
[0284] これ〖こより、陽極とした ITO電極上に、化 26に示すィ匕合物の誘導体を析出させて、 この誘導体を主成分とする平均厚さ lOnmの中間層を得た。なお、本実施例では、こ の ITO電極を有機 EL素子を構成する陽極として使用した。 From this, on the ITO electrode serving as the anode, the derivative of the complex compound shown in Chemical formula 26 was deposited to obtain an intermediate layer having an average thickness of 1 nm having the derivative as a main component. In this example, this ITO electrode was used as an anode constituting an organic EL element.
[0285] [化 26] [Formula 26]
Figure imgf000043_0001
Figure imgf000043_0001
[0286] (実施例 3A) Example 3A
前記工程—2A—において、化 27に示す化合物の 1. (^%水'メタノール溶液を 用意し、前記工程 3A—における電圧印加時の各種条件を以下のようにした以外 は、前記実施例 1Aと同様にして、有機 EL素子を製造した。  In the above step-2A, a 1. (^% water 'methanol solution of the compound shown in Chemical formula 27 is prepared, and various conditions at the time of voltage application in the above step 3A- are as follows. In the same manner as in, an organic EL device was manufactured.
[0287] '印加電圧 : 20V [0287] 'Applied voltage: 20 V
'電極間の通電電流: 1〜4 μ A/cm2 'Electrode current between electrodes: 1 to 4 μA / cm 2
•液体の温度 :60°C  • Temperature of liquid: 60 ° C
•液体の pH : 5. 5〜7. 0  • pH of liquid: 5. 5 to 7. 0
•処理時間 :10分  • Processing time: 10 minutes
[0288] [化 27] [0288] [Formula 27]
Figure imgf000044_0001
Figure imgf000044_0001
[0289] これ〖こより、陽極とした ITO電極上に、化 27に示すィ匕合物の誘導体を析出させて、 この誘導体を主成分とする平均厚さ 5nmの中間層を得た。なお、本実施例では、こ の ITO電極を有機 EL素子を構成する陽極として使用した。  From this, on the ITO electrode serving as the anode, the derivative of the complex compound shown in Chemical formula 27 was deposited to obtain an intermediate layer having an average thickness of 5 nm containing this derivative as the main component. In this example, this ITO electrode was used as an anode constituting an organic EL element.
[0290] (実施例 4A) Example 4A
前記工程 2A—において、化 28に示す化合物の 2. (^%水'メタノール溶液を 用意し、前記工程 3A—における電圧印加時の各種条件を以下のようにした以外 は、前記実施例 1Aと同様にして、有機 EL素子を製造した。  In the above step 2A—, 2. (^% water ′ methanol solution of the compound shown in Chemical formula 28 is prepared, and the various conditions at the time of voltage application in the above step 3A— are as follows. Similarly, an organic EL device was manufactured.
[0291] '印加電圧 : 20V [0291] 'applied voltage: 20 V
'電極間の通電電流: 1〜4 μ A/cm2 'Electrode current between electrodes: 1 to 4 μA / cm 2
•液体の温度 :60°C  • Temperature of liquid: 60 ° C
•液体の pH : 5. 5〜7. 0  • pH of liquid: 5. 5 to 7. 0
•処理時間 :10分  • Processing time: 10 minutes
[0292] [化 28] [Formula 28]
Figure imgf000045_0001
Figure imgf000045_0001
[0293] これにより、陰極とした ITO電極上に、化 28に示すィ匕合物の誘導体を析出させて、 この誘導体を主成分とする平均厚さ 5nmの中間層を得た。なお、本実施例では、こ の ITO電極を有機 EL素子を構成する陽極として使用した。 Thus, the derivative of the complex shown in Chemical formula 28 was deposited on the ITO electrode serving as the cathode, to obtain an intermediate layer having an average thickness of 5 nm containing this derivative as the main component. In this example, this ITO electrode was used as an anode constituting an organic EL element.
[0294] (実施例 5A) (Example 5A)
前記工程 2A—において、化 29に示す化合物の 3. Owt%水·メタノール溶液を 用意し、前記工程 3A—における電圧印加時の各種条件を以下のようにした以外 は、前記実施例 1Aと同様にして、有機 EL素子を製造した。  In the same manner as in Example 1A except that a 3. Owt% water-methanol solution of the compound shown in Chemical formula 29 is prepared in the above step 2A-, and various conditions at the time of voltage application in the above step 3A- are as follows. Then, an organic EL device was manufactured.
[0295] '印加電圧 : 20V [0295] 'applied voltage: 20 V
'電極間の通電電流: 1〜4 μ A/cm"  'Electrode current between electrodes: 1 to 4 μA / cm'
•液体の温度 :60°C  • Temperature of liquid: 60 ° C
,液体の pH : 5. 5〜6. 0  , PH of liquid: 5.5-6. 0
•処理時間 :10分  • Processing time: 10 minutes
[0296] [化 29] [Chemical Formula 29]
Figure imgf000046_0001
Figure imgf000046_0001
[0297] これ〖こより、陽極とした ITO電極上に、化 29に示すィ匕合物の誘導体を析出させて、 この誘導体を主成分とする平均厚さ 5nmの中間層を得た。なお、本実施例では、こ の ITO電極を有機 EL素子を構成する陽極として使用した。 From this, on the ITO electrode serving as the anode, the derivative of the complex compound shown in Chemical formula 29 was deposited to obtain an intermediate layer having an average thickness of 5 nm mainly composed of this derivative. In this example, this ITO electrode was used as an anode constituting an organic EL element.
[0298] (比較例 1A)  (Comparative Example 1A)
中間層を前記工程 2A—〜前記工程 4A—のようにして形成したのに代えて、 真空蒸着法により銅フタロシアニンを蒸着して、平均厚さ 15nmの中間層を形成した 以外は、前記実施例 1Aと同様にして、有機 EL素子を製造した。  Instead of forming the intermediate layer as in the step 2A to the step 4A, copper phthalocyanine is deposited by vacuum evaporation to form an intermediate layer having an average thickness of 15 nm; An organic EL device was manufactured in the same manner as 1A.
[0299] (比較例 2A)  (Comparative Example 2A)
前記工程— 2A—〜前記工程— 4A— (中間層形成工程)を省略した以外は、前記 実施例 1Aと同様にして、有機 EL素子を製造した。  An organic EL device was manufactured in the same manner as in Example 1A, except that the step 2A- to the step 4A (intermediate layer forming step) was omitted.
[0300] (実施例 1B)  (Example 1B)
- 1B- まず、平均厚さ 1. 1mmの透明なガラス基板を 2つ用意し、これらの基板 上に、スパッタリング法により、それぞれ、平均厚さ 150nmの ITO電極を形成した。な お、いずれか一方の ITO電極は、有機 EL素子を構成する電極として使用し、他方の ITO電極は、後の工程 3B—において、対極として使用した。  First, two transparent glass substrates having an average thickness of 1.1 mm were prepared, and an ITO electrode having an average thickness of 150 nm was formed on each of these substrates by sputtering. Note that one of the ITO electrodes was used as an electrode constituting an organic EL element, and the other ITO electrode was used as a counter electrode in the subsequent step 3B.
[0301] - 2B- 次に、テトラチォフルバレンのカルボン酸ナトリウム塩 3. Owt%水溶液を [0301]-2B-Next, tetrathiofulvalene in carboxylic acid sodium salt 3. Owt% aqueous solution
¾总し/こ ο  3⁄4 总 / /
[0302] - 3B- 次にガラス基板に設けられた ITO電極の一方を陰極として、他方を陽極と してそれぞれセットした後、前記工程—2B—で用意した水溶液中に浸漬させた状態 で、陰極と陽極との間に電圧を印加した。 [0302]-3B-Next, after setting one of the ITO electrodes provided on the glass substrate as a cathode and the other as an anode, the state of being immersed in the aqueous solution prepared in the step-2B- Voltage was applied between the cathode and the anode.
[0303] なお、電圧印加時の各種条件は、以下に示す通りである。  The various conditions at the time of voltage application are as follows.
[0304] '印加電圧 :5〜20V [0304] 'Applied voltage: 5 to 20 V
'電極間の通電電流: 1〜4 μ A/cm"  'Electrode current between electrodes: 1 to 4 μA / cm'
•液体の温度 :60°C  • Temperature of liquid: 60 ° C
•液体の pH : 5. 5  • pH of liquid: 5.5
•処理時間 :20分  • Processing time: 20 minutes
これにより、陽極とした ITO電極上に、テトラチォフルバレンのカルボン酸ナトリウム 塩の誘導体を析出させて、この誘導体を主成分とする平均厚さ 8nmの中間層を得た 。なお、本実施例では、この ITO電極を有機 EL素子を構成する陰極として使用した  As a result, a derivative of sodium carboxylate derivative of tetrathiofulvalene was deposited on the ITO electrode serving as the anode, to obtain an intermediate layer having an average thickness of 8 nm containing this derivative as a main component. In this example, this ITO electrode was used as a cathode constituting an organic EL element.
[0305] -4B- 次に、この中間層を水溶液中から取り出し、純水で洗浄した後、窒素雰囲 気下で 60°C X 60分の条件で乾燥させた。 [0305] -4B- Next, this intermediate layer was taken out of the aqueous solution, washed with pure water, and dried under the conditions of 60 ° C x 60 minutes in a nitrogen atmosphere.
[0306] - 5B- 次に、中間層上に、ポリ(9, 9ージォクチルー 2, 7—ジビ-レンフルォレ 二ルーオルトーコ(アントラセン—9, 10—ジィル)(重量平均分子量 200000)の 1. 7 wt%キシレン溶液を、スピンコート法により塗布した後、窒素雰囲気下、 100°C X 10 分、さらに、減圧下、 100°C X 60分の条件で乾燥して、平均厚さ 50nmの発光層を 形成した。  [0306]-5B-Next, on the intermediate layer, 1. 7 wt% of poly (9, 9-dioctyl 2, 7- dibiren fluore di-orthothoco (anthracene 9, 10-diyl) (weight average molecular weight 200000) The xylene solution was applied by spin coating, and then dried under a nitrogen atmosphere at 100 ° CX for 10 minutes and further under reduced pressure at 100 ° CX for 60 minutes to form a light emitting layer with an average thickness of 50 nm.
[0307] -6B- 次に、発光層上に、銅フタロシアニンを真空蒸着し、平均厚さ lOnmの正 孔輸送層を形成した。  [0307] -6B-Next, copper phthalocyanine was vacuum deposited on the light emitting layer to form a hole transporting layer having an average thickness of lOnm.
[0308] - 7B- 次に、正孔輸送層上に、真空蒸着法により、平均厚さ 300nmの A1電極( 陽極)を形成した。  [0308]-7B-Next, on the hole transport layer, an Al electrode (anode) having an average thickness of 300 nm was formed by vacuum evaporation.
[0309] -8B- 次に、形成した各層を覆うように、ポリカーボネート製の保護カバーを被せ 、紫外線硬化性榭脂により固定、封止して、有機 EL素子を完成した。  [0309] -8B-Next, a protective cover made of polycarbonate was placed to cover the formed layers, and fixed and sealed with an ultraviolet curable resin to complete an organic EL element.
[0310] (実施例 2B)  (Example 2B)
- 1C- まず、前記工程— 1B—〜前記工程— 6B—と同様にして、ガラス基板上 に陰極と中間層と発光層と正孔輸送層とを順次形成した。  First, in the same manner as in the step-1B--the step-6B-, a cathode, an intermediate layer, a light emitting layer and a hole transport layer were sequentially formed on a glass substrate.
[0311] - 2C- 次に、正孔輸送層上に、前記工程— 1C—と同様にして、透明電極と中 間層と発光層と正孔輸送層とを順次形成した。 [0311]-2C-Next, on the hole transport layer, in the same manner as in the step-1C- An interlayer, a light emitting layer, and a hole transport layer were sequentially formed.
[0312] - 3C- 次に、前記工程— 7B—と同様にして、正孔輸送層上に陽極を形成した。  [0312]-3C-Next, in the same manner as in the above-mentioned step-7B-, an anode was formed on the hole transport layer.
[0313] -4C- 次に、前記工程—8B—と同様にして、各層を保護カバーにより封止して[0313] -4C- Next, in the same manner as in the step-8B-, seal each layer with a protective cover.
、有機 EL素子を製造した。 , Manufactured organic EL devices.
[0314] (比較例 1B) (Comparative Example 1B)
中間層を前記工程 2B 〜前記工程 4B のようにして形成したのに代えて、 真空蒸着法によりテトラチォフルバレンを蒸着して、平均厚さ 10nmの中間層を形成 した以外は、前記実施例 1Bと同様にして、有機 EL素子を製造した。  Instead of forming the intermediate layer as in the step 2B to the step 4B, tetrathiofulvalene is deposited by vacuum evaporation to form an intermediate layer having an average thickness of 10 nm; An organic EL device was manufactured in the same manner as 1B.
[0315] (比較例 2B) (Comparative Example 2B)
前記工程— 2B—〜前記工程— 4B— (中間層形成工程)を省略した以外は、前記 実施例 1Bと同様にして、有機 EL素子を製造した。  An organic EL device was manufactured in the same manner as in Example 1B, except that the above process-2B--the above process-4B-(intermediate layer forming process) was omitted.
[0316] 2.評価 [0316] 2. Evaluation
各実施例および各比較例の有機 EL素子について、それぞれ、通電電流 (A)、発 光輝度 (cdZm2)、最大発光効率 (lmZW)を測定すると共に、発光輝度が初期値 の半分になる時間(半減期)を測定した。 For each of the organic EL devices of each of the examples and the comparative examples, the conduction current (A), the emission luminance (cdZm 2 ), and the maximum emission efficiency (lmZW) are measured, and the emission luminance is half the initial value. The half life was measured.
[0317] なお、これらの測定は、陰極と陽極との間に 9Vの電圧を印加することで行った。 These measurements were performed by applying a voltage of 9 V between the cathode and the anode.
[0318] そして、比較例 1 Aで測定された各測定値 (通電電流、発光輝度、最大発光効率、 半減期)を基準値として、実施例 1A〜実施例 5Aおよび比較例 2Aで測定された各 測定値を、それぞれ、以下の 4段階の基準に従って評価した。 Then, each measured value (energized current, light emission luminance, maximum luminous efficiency, half life) measured in Comparative Example 1 A was measured in Examples 1A to 5A and Comparative Example 2A as a reference value. Each measured value was evaluated according to the following four criteria.
[0319] ◎:比較例 1Aの測定値に対し、 1. 50倍以上である :: 1. 50 times or more of the measured value of Comparative Example 1A
〇:比較例 1Aの測定値に対し、 1. 25倍以上、 1. 50倍未満である  :: 1.25 times or more and 1.50 times or less of the measured value of Comparative Example 1A
△:比較例 1Aの測定値に対し、 1. 00倍以上、 1. 25倍未満である  Δ: more than 1.00 times and less than 1.25 times the measured value of Comparative Example 1A
X:比較例 1 Aの測定値に対し、 0. 75倍以上、 1. 00倍未満である これらの評価結果を、それぞれ、以下の表 1に示す。  X: Comparative Example 1 The measured value of Comparative Example 1 A was not less than 0.75 times and not more than 1.00 times. The evaluation results are shown in Table 1 below.
[0320] また、一例として、実施例 1Aおよび比較例 1Aの有機 EL素子において測定された 印加電圧の値の変化と、通電電流の値の変化との関係を示すグラフを図 9に示す。 Further, as an example, FIG. 9 shows a graph showing the relationship between the change in the value of the applied voltage measured in the organic EL elements of Example 1A and Comparative Example 1A and the change in the value of the conduction current.
[0321] [表 1] 表 1 [Table 1] table 1
Figure imgf000049_0001
Figure imgf000049_0001
[0322] 表 1に示すように、各実施例の有機 EL素子は、いずれも、各比較例の有機 EL素子 と比較して、通電電流、発光輝度、最大発光効率および半減期ともに、優れた結果 が得られた。 As shown in Table 1, the organic EL devices of each Example were superior to the organic EL devices of each Comparative Example in all of the conduction current, the luminance, the maximum luminous efficiency and the half life. The results were obtained.
[0323] これにより、本発明の有機 EL素子では、陽極と中間層との界面および中間層と発 光層との界面における密着性がそれぞれ向上したため、中間層を介した陽極力 発 光層への正孔の受け渡しが好適に行われていることが明ら力となった。  As a result, in the organic EL device of the present invention, the adhesion at the interface between the anode and the intermediate layer and at the interface between the intermediate layer and the light emitting layer is improved respectively. It became clear that the delivery of positive holes was suitably carried out.
[0324] 次に、比較例 1Bで測定された各測定値 (通電電流、発光輝度、最大発光効率、半 減期)を基準値として、実施例 1B、実施例 2Bおよび比較例 2Bで測定された各測定 値を、それぞれ、以下の 4段階の基準に従って評価した。 [0324] Next, each measured value (energized current, light emission luminance, maximum luminous efficiency, half period) measured in Comparative Example 1B is measured in Example 1B, Example 2B, and Comparative Example 2B as a reference value. Each of the measured values was evaluated according to the following four criteria.
[0325] ◎:比較例 1Bの測定値に対し、 1. 50倍以上である :: The measured value of Comparative Example 1B is 1. 50 times or more
〇:比較例 1Bの測定値に対し、 1. 25倍以上、 1. 50倍未満である △:比較例 1Bの測定値に対し、 1. 00倍以上、 1. 25倍未満である X:比較例 1Bの測定値に対し、 0. 75倍以上、 1. 00倍未満である これらの評価結果を、それぞれ、以下の表 2に示す。  :: 1.25 times or more and 1.50 times or less of the measured value of Comparative Example 1B Δ: 1.00 or more and less than 1.25 times of the measured value of Comparative Example 1B X: These evaluation results are not less than 0.75 times and not more than 1.00 times as large as those of Comparative Example 1B, respectively, and the evaluation results are shown in Table 2 below.
[0326] [表 2] 表 2 [Table 2] Table 2
Figure imgf000050_0001
Figure imgf000050_0001
[0327] 表 2に示すように、各実施例の有機 EL素子は、いずれも、各比較例の有機 EL素子 と比較して、通電電流、発光輝度、最大発光効率および半減期ともに、優れた結果 が得られた。 [0327] As shown in Table 2, the organic EL devices of each Example were superior to the organic EL devices of each Comparative Example in all of the conduction current, the luminance, the maximum luminous efficiency and the half life. The results were obtained.
[0328] これにより、本発明の有機 EL素子では、陰極と中間層との界面および中間層と発 光層との界面における密着性がそれぞれ向上したため、中間層を介した陰極から発 光層への電子の受け渡しが好適に行われていることが明ら力となった。  Thus, in the organic EL device of the present invention, adhesion at the interface between the cathode and the intermediate layer and at the interface between the intermediate layer and the light emitting layer is improved, so that the cathode can be changed to the light emitting layer via the intermediate layer. It became clear that the delivery of electrons was carried out favorably.
産業上の利用可能性  Industrial applicability
[0329] 本発明よれば、電子デバイス用基板の製造方法により製造された電子デバイス用 基板を備える電子デバイス (有機エレクト口ルミネッセンス素子)は、キャリアを輸送す る機能を有する有機物を含有する液体に、基板上に形成された電極を接触させた状 態で、この電極を一方の電極として液体に電圧を印加することにより、この液体中に おいて帯電した状態の有機物が、電極上に集められることにより形成された中間層を 有している。 According to the present invention, an electronic device (organic electroluminescence device) provided with a substrate for an electronic device manufactured by the method of manufacturing a substrate for an electronic device is a liquid containing an organic substance having a function of transporting a carrier. While the electrode formed on the substrate is in contact, by applying a voltage to the liquid using this electrode as one of the electrodes, the organic matter charged in the liquid can be collected on the electrode. It has an intermediate layer formed by
[0330] このような工程により形成された中間層は、電極および有機半導体層の双方に対し 、これらと接触する側の面において、優れた密着性を発揮するものとなる。その結果、 電極から中間層へのキャリアの注入、および、中間層から有機半導体層へのキャリア の注入を円滑に行うことができ、これにより、有機半導体層へのキャリアの注入効率 が向上することとなる。また、カゝかる構成の電子デバイスを備える電子機器は、信頼 性の高いものとなる。したがって、産業上の利用可能性を有する。  The intermediate layer formed by such a process exhibits excellent adhesion to both the electrode and the organic semiconductor layer on the side in contact with the electrode and the organic semiconductor layer. As a result, injection of carriers from the electrode to the intermediate layer and injection of carriers from the intermediate layer to the organic semiconductor layer can be smoothly performed, whereby the efficiency of injection of carriers to the organic semiconductor layer is improved. It becomes. In addition, electronic devices provided with electronic devices of a sensible configuration become highly reliable. Therefore, it has industrial applicability.

Claims

請求の範囲 [1] 有機半導体層と、電極と、前記有機半導体層と前記電極との間にこれらの双方に接 触するように設けられ、キャリアを輸送する機能を有する有機物を主材料として構成さ れる中間層とを有する電子デバイス用基板の製造方法であって、 前記有機物を含有する液体に前記電極を接触させた状態で、当該電極を一方の 電極として前記液体に電圧を印加することにより、前記液体中において帯電した状態 の前記有機物を、前記電極に集めて前記中間層を形成する工程と、 前記中間層の前記電極と反対側の面に、前記有機半導体層を設ける工程とを有 することを特徴とする電子デバイス用基板の製造方法。 [2] 前記有機物は、キャリアを輸送する機能を有するキャリア輸送部位と、該キャリア輸送 部位に結合する帯電可能な部位とを有する化合物である請求の範囲第 1項に記載 の電子デバイス用基板の製造方法。 [3] 前記帯電可能な部位は、前記キャリア輸送部位と反対側の端部付近にお!、て帯電し 得るものである請求の範囲第 1項に記載の電子デバイス用基板の製造方法。 [4] 前記キャリア輸送部位は、前記有機半導体層の構成材料と親和性の高!ヽ構造を含 むものである請求の範囲第 1項に記載の電子デバイス用基板の製造方法。 [5] 前記キャリア輸送部位は、正孔を輸送する機能を有するものである請求の範囲第 1 項に記載の電子デバイス用基板の製造方法。 [6] 前記有機物は、下記一般式(1)で表される化合物を主成分とする請求の範囲第 5項 に記載の電子デバイス用基板の製造方法。 [1] An organic semiconductor layer, an electrode, an organic semiconductor layer provided between the organic semiconductor layer and the electrode so as to be in contact with both of them, and an organic substance having a function of transporting a carrier is mainly used. A method of manufacturing a substrate for an electronic device having an intermediate layer, wherein a voltage is applied to the liquid using the electrode as one of the electrodes in a state in which the electrode is in contact with the liquid containing the organic substance. The steps of: collecting the organic substance charged in the liquid to the electrode to form the intermediate layer; and providing the organic semiconductor layer on the surface of the intermediate layer opposite to the electrode. A manufacturing method of a substrate for electronic devices characterized by doing. [2] The substrate for an electronic device according to claim 1, wherein the organic substance is a compound having a carrier transport site having a function of transporting a carrier and a chargeable site binding to the carrier transport site. Production method. [3] The method of manufacturing a substrate for an electronic device according to claim 1, wherein the chargeable portion is capable of being charged near the end opposite to the carrier transport portion. [4] The method for producing a substrate for an electronic device according to claim 1, wherein the carrier transport site includes a structure having a high affinity to a constituent material of the organic semiconductor layer. [5] The method for producing a substrate for an electronic device according to claim 1, wherein the carrier transport site has a function of transporting holes. [6] The method for manufacturing a substrate for an electronic device according to claim 5, wherein the organic substance contains a compound represented by the following general formula (1) as a main component.
[化 1] [Formula 1]
Figure imgf000052_0001
Figure imgf000052_0001
[式中、 4つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 4つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, each of four R 1 s independently represents a hydrogen atom, or a substituent represented by the following general formula (5) or the following general formula (6), and is identical Or they may be different. However, at least one of the four R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
[化 2][Formula 2]
Figure imgf000052_0002
Figure imgf000052_0002
[各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[化 3]
Figure imgf000052_0003
を表す。 Y1は、単結合、
[Chemical 3]
Figure imgf000052_0003
Represents Y 1 is a single bond,
[化 4]
Figure imgf000053_0001
[Formula 4]
Figure imgf000053_0001
を表す。] Represents ]
前記有機物は、下記一般式 (2)で表される化合物を主成分とする請求の範囲第 5項 に記載の電子デバイス用基板の製造方法。 The method of manufacturing a substrate for an electronic device according to claim 5, wherein the organic substance contains a compound represented by the following general formula (2) as a main component.
[化 5]
Figure imgf000053_0002
[Chem. 5]
Figure imgf000053_0002
[式中、 3つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, three R 1 's each independently represent a hydrogen atom or any of the substituents represented by the following general formula (5) or the following general formula (6), and are identical] Or they may be different. However, at least one of the three R 1 represents any one of the substituents represented by the following general formula (5) or the following general formula (6). ]
[化 6][Chemical 6]
Figure imgf000053_0003
Figure imgf000053_0003
[各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[化 7] または[Chem. 7] Or
Figure imgf000054_0001
を表す。 γ1は、単結合、
Figure imgf000054_0001
Represents γ 1 is a single bond,
[化 8] または [Formula 8] or
Figure imgf000054_0002
Figure imgf000054_0002
を表す。] Represents ]
前記有機物は、下記一般式 (3)で表される化合物 ocを=主成分とする請求の範囲第 5項 に記載の電子デバイス用基板の製造方法。 The method for manufacturing an electronic device substrate according to claim 5, wherein the organic substance contains a compound oc represented by the following general formula (3) as the main component.
[化 9] [Chem. 9]
Figure imgf000054_0003
Figure imgf000054_0003
[式中、 3つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 3つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, three R 1 's each independently represent a hydrogen atom or any of the substituents represented by the following general formula (5) or the following general formula (6), and are identical] Or they may be different. However, at least one of the three R 1 represents any one of the substituents represented by the following general formula (5) or the following general formula (6). ]
[化 10] 一 R2— X1— Y1—0— R3 ( 5 ) ( 6 )
Figure imgf000055_0001
[Chemical 10] One R 2 — X 1 — Y 10 — R 3 (5) (6)
Figure imgf000055_0001
[各式中、 R2 0は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 0 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[化 11]  [Formula 11]
または
Figure imgf000055_0002
を表す。 Y1は、単結合、
Or
Figure imgf000055_0002
Represents Y 1 is a single bond,
[化 12]  [Formula 12]
Figure imgf000055_0003
を表す。]
Figure imgf000055_0003
Represents ]
[9] 前記キャリア輸送部位は、電子を輸送する機能を有するものである請求の範囲第 1 項に記載の電子デバイス用基板の製造方法。  [9] The method of manufacturing a substrate for an electronic device according to claim 1, wherein the carrier transport site has a function of transporting electrons.
[10] 前記有機物は、下記一般式 (4)で表される化合物を主成分とする請求の範囲第 9項 に記載の電子デバイス用基板の製造方法。 [10] The method of manufacturing a substrate for an electronic device according to claim 9, wherein the organic substance contains a compound represented by the following general formula (4) as a main component.
[化 13]  [Chem. 13]
Figure imgf000055_0004
Figure imgf000055_0004
[式中、 2つの R1は、それぞれ独立して、水素原子、または、下記一般式(5)または 下記一般式 (6)で表される置換基のうちのいずれかを表し、同一であっても、異なつ ていてもよい。ただし、 2つの R1のうちの少なくとも 1つは、下記一般式(5)または下記 一般式 (6)で表される置換基のうちのいずれかを表す。 ] [Wherein, two R 1 's each independently represent a hydrogen atom, or the following general formula (5) or It represents any of the substituents represented by the following general formula (6), and may be the same or different. However, at least one of the two R 1 represents any of the substituents represented by the following general formula (5) or the following general formula (6). ]
[化 14] 一 R2— X1— Y1— 0— R3 ( 5 ) ( 6 )
Figure imgf000056_0001
[Formula 14] One R 2 — X 1 — Y 1 — 0 — R 3 (5) (6)
Figure imgf000056_0001
[各式中、 R2は、単結合または炭素数 1〜20のアルキレン基を表す。 R3は、水素原 子、アルカリ金属、アミノ基または炭素数 1〜20のアルキル基を表す。 2つの R4は、そ れぞれ独立して、水素原子または炭素数 1〜20のアルキル基を表し、同一であって も、異なっていてもよい。 X1は、単結合、 [In each formula, R 2 represents a single bond or an alkylene group having 1 to 20 carbon atoms. R 3 represents a hydrogen atom, an alkali metal, an amino group or an alkyl group having 1 to 20 carbon atoms. Each of two R 4 s independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and may be the same or different. X 1 is a single bond,
[化 15]  [Formula 15]
Figure imgf000056_0002
を表す。 Y1は、単結合、
Figure imgf000056_0002
Represents Y 1 is a single bond,
[化 16]  [Chem. 16]
— — たは — C— — — Or — C —
0  0
を表す。]  Represents ]
[11] 請求の範囲第 1項に記載の電子デバイス用基板の製造方法により製造されたことを 特徴とする電子デバイス用基板。  [11] A substrate for an electronic device manufactured by the method of manufacturing a substrate for an electronic device according to claim 1.
[12] 前記有機物のうちの少なくとも一部が、前記電極に化学結合している請求の範囲第 [12] A method according to claim 1, wherein at least a part of the organic substance is chemically bonded to the electrode
11項に記載の電子デバイス用基板。 11. A substrate for an electronic device according to item 11.
[13] 前記中間層は、その平均厚さが l〜50nmである請求の範囲第 11項に記載の電子 デバイス用基板。 [13] The electron according to claim 11, wherein the intermediate layer has an average thickness of 1 to 50 nm. Device substrate.
[14] 請求の範囲第 11項に記載の電子デバイス用基板を備えることを特徴とする電子デ バイス。  [14] An electronic device comprising the substrate for an electronic device according to claim 11.
[15] 当該電子デバイスは、有機エレクト口ルミネッセンス素子である請求の範囲第 14項に 記載の電子デバイス。  [15] The electronic device according to Claim 14, wherein the electronic device is an organic electroluminescence device.
[16] 請求の範囲第 14項に記載の電子デバイスを備えることを特徴とする電子機器。  [16] An electronic device comprising the electronic device according to claim 14.
PCT/JP2006/312452 2005-06-22 2006-06-21 Method for manufacturing substrate for electronic device, substrate for electronic device, electronic device and electronic instrument WO2006137462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-181570 2005-06-22
JP2005181570A JP4715329B2 (en) 2005-06-22 2005-06-22 Manufacturing method of substrate for electronic device

Publications (1)

Publication Number Publication Date
WO2006137462A1 true WO2006137462A1 (en) 2006-12-28

Family

ID=37570490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312452 WO2006137462A1 (en) 2005-06-22 2006-06-21 Method for manufacturing substrate for electronic device, substrate for electronic device, electronic device and electronic instrument

Country Status (2)

Country Link
JP (1) JP4715329B2 (en)
WO (1) WO2006137462A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112385314A (en) * 2018-07-17 2021-02-19 夏普株式会社 Display device, method of manufacturing display device, and apparatus for manufacturing display device
DE102020201494B3 (en) 2020-02-07 2021-03-11 Volkswagen Aktiengesellschaft High-voltage battery for an electrically powered vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259940A (en) * 1995-03-08 1996-10-08 Eastman Kodak Co Organic luminescent device having high heat stability
JPH097768A (en) * 1995-06-15 1997-01-10 Nippon Paint Co Ltd Electroluminescent element, its manufacture, and display device using the element
JP2001143871A (en) * 1999-11-12 2001-05-25 Canon Inc Organic luminous element
JP2002313565A (en) * 2001-04-17 2002-10-25 Sharp Corp Method of manufacturing luminescent display element
JP2003017262A (en) * 2001-07-04 2003-01-17 Dainippon Printing Co Ltd El element covering forming defect of el layer by insulating material and method of manufacture
JP2004063363A (en) * 2002-07-31 2004-02-26 Semiconductor Energy Lab Co Ltd Material for electroluminescent element and electroluminescent element using the material
JP2004111335A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Organic electroluminescent element
WO2004054326A2 (en) * 2002-12-11 2004-06-24 Lg Chem, Ltd. Electroluminescent devices with low work function anode
JP2005063781A (en) * 2003-08-11 2005-03-10 Fuji Xerox Co Ltd Display device and its manufacturing method
JP2006203004A (en) * 2005-01-21 2006-08-03 Sony Corp Semiconductor device and its manufacturing method, optical device, and sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3941180B2 (en) * 1997-09-02 2007-07-04 セイコーエプソン株式会社 Method for manufacturing EL display element
JP2003229276A (en) * 2002-02-06 2003-08-15 Matsushita Electric Ind Co Ltd Organic light emitting element and manufacturing method of the same, display device and lighting device
JP2004288469A (en) * 2003-03-20 2004-10-14 Sharp Corp Manufacturing method of substrate with patterned thin film, substrate, manufacturing method of organic el element, and organic el element
JP3896371B2 (en) * 2004-08-05 2007-03-22 株式会社東芝 Video storage device and video playback device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259940A (en) * 1995-03-08 1996-10-08 Eastman Kodak Co Organic luminescent device having high heat stability
JPH097768A (en) * 1995-06-15 1997-01-10 Nippon Paint Co Ltd Electroluminescent element, its manufacture, and display device using the element
JP2001143871A (en) * 1999-11-12 2001-05-25 Canon Inc Organic luminous element
JP2002313565A (en) * 2001-04-17 2002-10-25 Sharp Corp Method of manufacturing luminescent display element
JP2003017262A (en) * 2001-07-04 2003-01-17 Dainippon Printing Co Ltd El element covering forming defect of el layer by insulating material and method of manufacture
JP2004063363A (en) * 2002-07-31 2004-02-26 Semiconductor Energy Lab Co Ltd Material for electroluminescent element and electroluminescent element using the material
JP2004111335A (en) * 2002-09-20 2004-04-08 Fuji Xerox Co Ltd Organic electroluminescent element
WO2004054326A2 (en) * 2002-12-11 2004-06-24 Lg Chem, Ltd. Electroluminescent devices with low work function anode
JP2005063781A (en) * 2003-08-11 2005-03-10 Fuji Xerox Co Ltd Display device and its manufacturing method
JP2006203004A (en) * 2005-01-21 2006-08-03 Sony Corp Semiconductor device and its manufacturing method, optical device, and sensor device

Also Published As

Publication number Publication date
JP4715329B2 (en) 2011-07-06
JP2007005057A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4450207B2 (en) Method for manufacturing light emitting device
JP2006302556A (en) Manufacturing method of semiconductor device, semiconductor device, electronic device, and electronic apparatus
JP4305425B2 (en) Electronic devices and electronic equipment
JP4513599B2 (en) Composition for conductive material, conductive material, hole transport layer, electronic device and electronic apparatus
JP4277816B2 (en) LIGHT EMITTING ELEMENT, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP4534875B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT MANUFACTURING METHOD, ELECTRONIC DEVICE, AND ELECTRONIC DEVICE
JP4867169B2 (en) Conductive polymer, conductive layer, electronic device and electronic equipment
JP4466290B2 (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2006245178A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP4311336B2 (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
WO2006137462A1 (en) Method for manufacturing substrate for electronic device, substrate for electronic device, electronic device and electronic instrument
JP4311335B2 (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP4457947B2 (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2007042914A (en) Electronic device and electronic apparatus
JP4311380B2 (en) Electronic device substrate, method for manufacturing electronic device substrate, electronic device and electronic apparatus
JP2006193706A (en) Composition for electroconductive material, electroconductive material, electroconductive layer, electronic device and electronic instrument
JP4432683B2 (en) Composition for conductive material, electronic device and electronic apparatus
JP2007207961A (en) Electronic device, substrate therefor, and electronic equipment
JP2006193542A (en) Electroconductive polymer, electroconductive layer, electronic device and electronic equipment
JP2006241266A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic equipment
JP2007106780A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic equipment
JP2007099960A (en) Composition for electroconductive material, electroconductive material, electroconductive layer, electronic device and electronic instrument
JP2006237442A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2006066575A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus
JP2006066574A (en) Composition for conductive material, conductive material, conductive layer, electronic device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767110

Country of ref document: EP

Kind code of ref document: A1