WO2006137385A1 - Film inspection apparatus and method - Google Patents

Film inspection apparatus and method Download PDF

Info

Publication number
WO2006137385A1
WO2006137385A1 PCT/JP2006/312293 JP2006312293W WO2006137385A1 WO 2006137385 A1 WO2006137385 A1 WO 2006137385A1 JP 2006312293 W JP2006312293 W JP 2006312293W WO 2006137385 A1 WO2006137385 A1 WO 2006137385A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inspection
voltage signal
defective portion
inspection data
Prior art date
Application number
PCT/JP2006/312293
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Uehara
Katsuhiro Hori
Koji Funazaki
Original Assignee
Gunze Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005180395A external-priority patent/JP4829542B2/en
Priority claimed from JP2005275574A external-priority patent/JP4829578B2/en
Application filed by Gunze Limited filed Critical Gunze Limited
Priority to CN2006800219313A priority Critical patent/CN101198859B/en
Publication of WO2006137385A1 publication Critical patent/WO2006137385A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined

Definitions

  • the present invention relates to a film inspection apparatus and inspection method for inspecting minute defects that can be formed in a film, such as fish eye (FE).
  • FE fish eye
  • the length of the abnormal part is calculated from the direction of film travel. If the length is long, it may be a scratch. In such a case, it is determined as a serious defect. If the length is short, it is determined whether or not it is a fisheye. If it is not fisheye, it is determined as noise. If fisheye, classify by size.
  • the conventional inspection apparatus may not be able to accurately calculate the size of the fish eye depending on the resolution of the line sensor. For example, if the fish eye is very small, it is impossible to accurately determine the size of the fish eye even if the presence of the fish can be confirmed. There is a case. In such a case, it is not possible to determine whether the force is an acceptable fish eye. In other words, the n-stage classification of the size shown in Fig. 33 may be limited by the resolution of the line sensor.
  • fish eyes are not formed on the film surface.
  • a fish eye is formed inside the film, and it can be checked with the naked eye. In such a case, it is difficult to detect defects by image processing the data obtained by the line sensor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-150429
  • Patent Document 2 Japanese Patent No. 3224623
  • Patent Document 3 Japanese Patent No. 3224624
  • Patent Document 4 JP-A-8-105842
  • Patent Document 5 JP-A-6-82385
  • Patent Document 6 Japanese Patent No. 2736521
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-109069
  • An object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting defects such as fish eyes generated during the production of a film and effectively using data after the inspection.
  • the inspection apparatus of the present invention is an apparatus for inspecting a film defect, and includes a light source that emits light to be transmitted through the film and a sensor in which a plurality of light receiving units are arranged.
  • a camera that scans the image, means for converting the charge signal obtained by scanning with the sensor into a voltage signal, and analyzing the defective portion of the film from the voltage signal, and the size of the defective portion of the voltage signal force film.
  • the inspection apparatus of the present invention includes a storage means for storing inspection data of the film obtained by scanning the film, a screen for displaying the scanned film, and a display of the displayed film.
  • Area specifying means for specifying an arbitrary area on the screen; and extraction means for extracting the inspection data of the area specified by the area specifying means from the inspection data stored in the storage means. May be included.
  • the inspection apparatus of the present invention includes a means for winding the film, a winding state designation means for designating a type of a state where the film is wound on a screen, and the storage means stored in the storage means.
  • Conversion means for reading inspection data and converting position information on the film of defects at the time of inspection of the film included in the inspection data into position information corresponding to the type specified by the winding state specifying means; May be included.
  • a polarizing plate may be disposed above and below the film between the light source and the sensor.
  • the inspection method of the present invention is a method for inspecting a defect of a film, the step of transmitting light through the film, and the step of receiving light transmitted through the film by a sensor in which a plurality of light receiving units are arranged. Generating a voltage signal according to the received light, analyzing the defective portion from the voltage signal, and determining whether the analyzed voltage signal matches a plurality of magnitude threshold values; ,including.
  • the inspection method of the present invention includes a storage step of storing the inspection data of the sheet based on image data obtained by imaging the film, and an arbitrary area on the film by an operator's input.
  • the inspection method of the present invention includes a step of winding the film, a storage step of storing inspection data of the film based on data obtained by imaging the film, and an input by an operator
  • the sheet of the defect at the time of inspecting the sheet included in the winding state designation step for designating on the screen the type of state in which the sheet is wound and the inspection data stored in the storage step are read out
  • the location information above It may include a conversion step for converting into position information corresponding to the type specified in the winding state specifying step.
  • the inspection method of the present invention may include a step of disposing a polarizing plate above and below the film between the light source and the sensor and transmitting light to the polarizing plate.
  • the fish eye of the film is used like a lens, and the presence or absence of the fish eye is detected by the difference between the data of the normal part and the defective part.
  • the size of the fish eye is determined by the difference value.
  • inspection data can be processed into a more convenient one.
  • the type of the state in which the sheet is wound is designated on the screen by the operator's input, and the positional information on the defective sheet at the time of the sheet inspection is the positional information corresponding to the designated type. Has been converted. This makes it possible to process the inspection data into a more convenient one.
  • the film (or sheet) to be inspected in the present invention is various, including a semiconductor wafer dicing sheet.
  • any film such as a cloth or a metal sheet can be inspected as long as the film transmits light.
  • the film may be wound up in a roll or may be a sheet.
  • the present invention is particularly capable of inspecting fish eye (FE) and other defects (or defects).
  • FE fish eye
  • various storage means may be shown as stored contents.
  • each waveform in and after FIG. 3 is an example, and may differ from the actual.
  • a film 3 (including a plastic film) 3 continuously formed by an extruder 1 is guided by a roller 5.
  • Film 3 is wound up by a take-up machine 7 and rolled into a roll. Is done.
  • the film 3 is cut in the width direction to complete one roll. Subsequently, production of a new roll is started.
  • a camera 12 and a light source 9 of the film inspection apparatus 10 are arranged at predetermined positions in this line. Therefore, the film is inspected in the middle of winding the film. If it is a sheet of film, inspect it during film transfer.
  • the extruder is shown in Fig. 1, the present invention can be applied to the case where a film is produced by another machine. For example, this is the case when a film is produced by heat stretching or non-stretching.
  • a film inspection apparatus 10 of the present invention shown in FIG. 2 has a light source that emits light to be transmitted through the film and a sensor in which a plurality of light receiving units are arranged, and a camera 12 that scans the film with the sensor.
  • the charge signal obtained by scanning with the sensor is converted into a voltage signal, and the analysis means 14 for analyzing the defective portion of the film from the voltage signal, and a plurality of sizes for separating the size of the defective portion of the film from the voltage signal.
  • a storage means 16 for storing the threshold value, and a comparator (comparison means) 18 for comparing the analyzed voltage signal with a plurality of magnitude threshold values and obtaining a force at which the voltage signal matches any magnitude threshold value.
  • the camera 12 is described as having a light source and a sensor, but the light source may be handled separately from the camera camera.
  • the film inspection apparatus 10 is controlled by the host computer 11 to operate as a whole. That is, the host computer 11 gives instructions to various means.
  • the inspection data obtained by the host computer can be checked for convenience, as will be described later.
  • the camera 12 is a line sensor camera and is controlled by the camera driving unit 13.
  • a plurality of photodiodes arranged in a row are used as a light receiving unit (sensor).
  • the CCD charge
  • the above-described scanning is to receive light transmitted through the film by the light receiving unit.
  • the number of cameras 12 is plural, for example, four, and these are arranged above the film 3 and linearly in the width direction of the film 3. With one camera 12, the width direction of film 3 I can't cover everything. Therefore, four cameras 12 are installed, and each camera 12 is assigned a part in the width direction of the film 3 to cover the entire width direction of the film 3.
  • the light source 9 is arranged below the film 3 so as to face the camera 12.
  • Light source 9 functions as transmitted illumination. While irradiating the light from the light source 9 onto the film 3, the transmitted light is received by the sensor of the camera 12.
  • the received data is sent to the film inspection apparatus 10.
  • the film inspection apparatus 10 generates inspection data for the film 3 based on this data. This data includes the data shown in Fig. 3.
  • the analysis means 14 is a means for obtaining a force / force that includes an abnormal signal in the voltage signal.
  • the means consists of a circuit, software, or both.
  • the light passing through the defective part becomes a protruding voltage (abnormal signal) as shown in Fig. 3. This is because, for example, the fish eye acts as a lens and collects light on the photodiode. By detecting an abnormal signal, the presence of a defective portion can be determined.
  • the storage means 16 for storing the size threshold is a means for storing data such as a hard disk or memory used in a computer or the like.
  • a comparator 18 is provided for each threshold value. Find out what magnitude threshold the analyzed voltage signal matches. As a result, the size of the defective portion of the film can be obtained. Note that the comparator 18 may be one that performs binary processing on the voltage signal and processes the voltage signal.
  • the gate is opened during length measurement, the comparison result is held by the comparator 18 and sent to the correction means 24.
  • the block of gate 19a, hold 19b, and size 19c in the figure shows the above-described data flow.
  • the size can be obtained by a voltage signal. It is also possible to classify the size of the defective part limited by the resolution of the camera 12.
  • the film inspection apparatus 10 of the present invention includes a storage means 20 for storing a reference number set to classify the size of a defective portion of a film, the number of light receiving units that have scanned the defective portion, and a reference number. And a correction means 24 for determining whether the number of light receiving parts is larger than the reference number by comparison.
  • the reference number is the number of times the light transmitted through the defective portion is scanned.
  • Fisheye is circular Even if it is elliptical, the same voltage signal may be obtained. This is thought to be because the voltage signal is proportional to the width in the scanning direction of the fishery. In that case
  • a reference number is provided. For example, if the number of times the defective portion is scanned is larger than the reference number, the size of the defective portion is increased.
  • the storage means 20 for storing the reference number is means for storing data such as a hard disk or a memory used in a computer or the like.
  • the correction means 24 is configured by a circuit, software, or both. As described above, for example, the correcting means increases the size of the defective portion if the number of times the defective portion is scanned is equal to or larger than the reference number. As an example of a method for enlarging the size of the defective portion, the size is changed to one size larger than the size obtained by the comparator 18, that is, one size larger than the threshold value.
  • the reference number is different for each size threshold. This is because the number of light-receiving portions that receive light transmitted through the fishfish differs depending on the size of the fish eye.
  • the present invention includes a film feeding device that moves a film in a drawing-out direction during manufacture when light is transmitted through the film.
  • the long axis force of the elliptical fish eye is the same direction as the film moving direction. This is because the fisheye force S flows in the direction of drawing out the film during film production. Therefore, the correction means 24 increases the size classification, for example, by increasing the size classification of the defective portion by one rank if the number of times the defective portion is scanned is equal to or larger than the reference number.
  • the analysis means 14 includes a differentiation means 26 for differentiating the voltage signal, a storage means 28 for storing a judgment threshold value for judging whether or not the film is a defective portion, and a differentiated voltage signal. And a determination means 30 for comparing the threshold value for use and determining whether the force is a film defect.
  • the differentiating means 26 is constituted by a circuit, software, or both. Differentiate voltage signals Thus, the difference between the normal part and the defective part can be made an absolute relative difference. By making the relative difference, it is not necessary to consider the difference in light transmission through the film.
  • the storage means 28 for storing the determination threshold is a means for storing data such as a hard disk and a memory used in a computer or the like, as with other storage means.
  • the determination means 30 is a means for determining that the abnormal signal in the differentiated voltage signal is larger or smaller than the determination threshold value, and that it is defective.
  • the determination means is constituted by a circuit, software, or both, like other means.
  • the film inspection apparatus 10 includes a means 32 for obtaining the number of times the defective portion of the film is scanned, the scanning time interval, and the moving speed force of the film, and the length of the defective portion, and a voltage signal differentiated from the length of the defective portion. And means 34 for classifying the type of defective portion from the waveform shape of Also included is means 31 for determining the waveform shape of one scan from the differentiated signal waveform.
  • the film inspection apparatus 10 has a constant time interval for scanning the film, and the number of times of scanning and the moving speed force of the film can determine the length of the defective portion.
  • the number of light receiving portions per unit length is the resolution in the width direction of the film.
  • the resolution in the moving direction of the film is determined by the scanning time interval and the moving speed of the film. In the present invention, the determination of the size of the defective portion is not affected by this resolution.
  • the defective part includes not only fish eyes but also defects and scratches having different colors. From the waveform of the differentiated signal, as shown in Figs. The type of defective part can be determined from this classification and the length of the defective part. Various waveforms are stored in any storage means of the film inspection apparatus 10.
  • defect image generating means 35 is provided.
  • An encoder is provided, and synchronization signals in the X and Y directions of the film are input to the defect image generating means 35, and defect images are generated in synchronization with the signals.
  • the X direction and Y direction of the film are the width direction and the traveling direction of the film.
  • means for counting the number of fish eyes detected by each of the means described above may be provided in the detection apparatus 10.
  • Number of fish eyes that have formed on the film Determine whether the number of fish eyes is within the allowable range.
  • Means (circuit and Z or program) for automatically performing this determination may be provided in the inspection apparatus 10.
  • the inspection apparatus 10 may be provided with means (circuit and Z or program) for counting the number of fish eyes per unit area.
  • the above-described counting of the number of fish eyes may be performed for each fish size, and means (circuit and Z or program) for that purpose may be provided in the inspection apparatus 10.
  • the inspection method includes the following steps (1) to (4).
  • Light transmitted through the film is received by a sensor in which a plurality of light receiving portions are arranged. (3) Generate a voltage signal according to the received light and analyze the defective part from the voltage signal. (4) Find out which of the multiple magnitude thresholds the analyzed signal matches.
  • step (1) the film is moved. This is because the sensor type is a line sensor. If the sensor scans the film sequentially, the sensor may move instead of the film.
  • step (3) If there is a defective portion on the film when light is received in step (2), a protruding portion of the voltage signal may be generated in step (3) as shown in FIG. This protruding part helps to show that the film has a defective part.
  • the analysis of (3) includes a step of differentiating the voltage signal and a step of comparing the differentiated voltage signal with a determination threshold value to determine whether the film is defective.
  • the voltage signal is differentiated to change the voltage difference between the defective portion and the normal portion, and the absolute value force is also changed to a relative value. Eliminates the effects of differences in light transmittance due to film differences.
  • the determination threshold an upper limit value and a lower limit value are set as shown in FIG. In the differentiated voltage signal, if there is a part that exceeds the upper limit of the threshold for judgment or breaks the lower limit, it is determined that there is a defective part on the film.
  • the inspection method includes the steps of obtaining the number of times the light transmitted through the defective portion of the film has been received (number of scans), the time interval for receiving the light, and the moving speed force of the film, the length of the defective portion, And classifying the type of defective portion from the differentiated voltage signal waveform.
  • the sensor receives light at regular time intervals, the number of times the defective portion is received and the moving speed of the film can determine the length of the defective portion.
  • the waveform of the differentiated voltage signal differs depending on the type of defective portion.
  • Figures 5 to 8 show the difference in waveform depending on the type of defective part.
  • Figure 5 shows that the light transmitted through the defective part is brighter and narrower. If the length of the defective part is short, fisheye is observed (see Fig. 10 (a)).
  • FIG. 10 (a) shows that the film 50 has fish eyes 52a. If it is a fish eye, perform step (4) above.
  • FIG. 6 shows that the width of darkness of the light transmitted through the defective portion is narrow. This defective part is a defective color caused on the film due to impurities mixed during film purification (see Fig. 10 (b)).
  • FIG. 10 (b) shows that the film 50 has a colored defect 52b! Even if it is such a defect, the process may move to the above step (4) to classify the size.
  • the length of the defective portion where the brightness of the light transmitted through the defective portion is bright or dark is narrow, and the length of the defective portion is long, it is determined as a streaky defect 52c as shown in FIG. 10 (c). . Do not go to step (4) above, or make the size value invalid even if it goes. This is because if it is a streak defect, it usually occurs several millimeters continuously, and the area may not be calculated.
  • FIG. 7 shows a wide range in which the light transmitted through the defective portion is bright.
  • the light transmitted through the defective part is dark and wide. If the light transmitted through the defective part is bright or dark, the width of the defective part is wide and the length of the defective part is long, it is determined that the defective part is strong (Fig. 10 (d) reference).
  • FIG. 10 (d) shows that film 50 has a major defect 52d. Do not proceed to step (4) above, or invalidate the size value even if transition is made.
  • the size of the defective portion is determined by determining which size threshold value the signal analyzed in step (4) matches. be able to. If the maximum value of the differentiated signal voltage is greater than or equal to the magnitude threshold n and less than n + 1, it is assumed that it matches the magnitude threshold n (n is an integer greater than or equal to 1). In other words, the size threshold for obtaining the size of the defective portion is a value having a certain width. In Fig. 11 (a), since there is a differentiated signal voltage between the magnitude threshold values 1 and 2, it matches the magnitude threshold 1.
  • the width of the size threshold and the number of size thresholds described above are arbitrary. The width of the size threshold and the number of size thresholds are determined according to the accuracy required for fisheye detection.
  • a plurality of magnitude threshold values are stored in the storage unit 16.
  • This magnitude threshold has a certain width as described above. As shown in Figs. 11 (a) and 11 (b), the size of the defective part can be easily obtained by determining which size threshold range the differentiated voltage signal falls within.
  • the size of the defective portion is determined using the differentiated voltage signal, and is not affected by the resolution of the sensor. It is possible to determine the size of a defective portion that could not be determined by the resolution of the sensor in the past.
  • the inspection method of the present invention includes, after the step (4), a step of comparing the number of light receiving portions that have received the light transmitted through the defective portion with the reference number. If the above number is larger than the reference number, the size is set to one larger size threshold.
  • Fig. 14 shows the flow of size classification.
  • Fig. 14 shows a new n-stage classification of the size of Fig. 33 shown in the prior art.
  • the numbers in circles indicate the number of scans
  • the vertical axis is the voltage
  • the horizontal axis is the time force.
  • the scanning direction is the direction of the arrow in the figure
  • the traveling direction of the film is the direction perpendicular to the arrow.
  • the film when light is transmitted through the film, the film is moved in the drawing direction during film production.
  • the number of times of scanning the light transmitted through the fish eye is larger than that of the circular fish eye if it is elliptical. Therefore, the size of the fish eye can be determined to be one larger by the comparing step described above.
  • the reference number is made different for each size threshold. It is also a force with different fisheye sizes.
  • the present invention can determine the size of the fish eye without being influenced by the resolution of the sensor.
  • the size can be classified even if the fish eye is oval.
  • an image of the defective portion is generated and displayed on a computer display or the like.
  • a signal obtained by differentiating the signal voltage is input to the image generation means 35 as a defect signal, and an image is generated in synchronization with synchronization signals in the X and Y directions. As will be described later, this image may be used as detected data.
  • the inspection method of the present invention may include a step of incrementing the number of fish eyes detected in the above-described steps. This is because the allowable number of fish eyes varies depending on the purpose of the film. A step of counting the number of fish eyes per unit area may be included. Furthermore, the above-described fish eye count may be performed for each fish eye size.
  • the present invention is limited to the above-described embodiments. Will never be done.
  • the film when the film is a single wafer and light is transmitted through the Finolem, the film may be moved in an oblique direction with respect to the drawing direction during heating and stretching.
  • the voltage signals of the circular and elliptical fish eyes become different. Therefore, it is not necessary to perform the step of comparing the number of light receiving parts that have received the light transmitted through the defective part with the reference number.
  • the magnitude of the signal voltage differs between the circular fish eye and the elliptical fish eye.
  • the size should be input directly to the host computer.
  • FIGS. 16 (a) and 16 (b) the material of the film 3 does not become uniform, but becomes hard as shown by the reference numeral 52e in the figure.
  • the fish eye 52e cannot be recognized by visual observation of the film 3, and there is a possibility that it cannot be detected well only by transmitting light through the film 3. Therefore, means for detecting such a fitness 52e is provided.
  • polarizing plates 60 are arranged between the light source 9 and the sensor 12s and above and below the film 3, respectively.
  • the plane of the polarizing plate 60 and the plane of the film 3 are made parallel.
  • the polarizing plate 60 any one of linearly polarized light, circularly polarized light, and elliptically polarized light is used. The same type of polarizing plate 60 is used.
  • the principle that enables inspection will be described using the linearly polarized light polarizing plate 60 as an example.
  • the arrows on the polarizing plate 60 and the film 3 in FIG. 17 indicate the vibration direction of light.
  • the light from the light source 9 becomes only light having a vibration component in the same direction as the polarization axis by the first polarizing plate 60. Only light with the same direction of vibration is applied.
  • the film 3 made of a polymer if the major axes of the polymer are aligned, the light incident on the film 3 travels while birefringing in the same direction. However, when there is a fitness, the birefringence direction differs only in that part. Therefore, the other polarizing plate 60 transmits only the light transmitted through the fisheye portion (or vice versa). Can do. Since the light is received by the sensor 12s, the fish eye can be identified.
  • At least one polarizing plate 60 is provided with a mechanism for rotating the polarizing plate 60. This is because the direction of birefringence differs depending on the film 3, and the direction of the polarization axis of the polarizing plate 60 needs to be changed.
  • Means for moving the polarizing plate 60 may be provided.
  • the necessity of the polarizing plate 60 changes.
  • polarizing plates 60 and glasses 62 are alternately arranged on a board 64.
  • the glass 62 transmits light of all wavelengths. Further, in place of the glass 62, nothing may be provided in that portion.
  • the number of force lenses 12 is four.
  • a mechanism is provided to slide the polarizing plate 60 between the position where the angle of view of the lens of the camera 12 enters and the position where it does not.
  • a sliding mechanism is also provided on the lower polarizing plate 60 of the film 3 so that the polarizing plate 60 is disposed below the film 3 as necessary.
  • a means for increasing the amount of light is provided in order to compensate for the dimming by the polarizing plate 60.
  • a mechanism for moving the light source up and down is installed.
  • the light source 9 approaches the film 3.
  • the polarizing plate 60 is not used, the light source 9 is moved away from the film 3.
  • a new light source 9 may be provided so that when the polarizing plate 60 is used, the light source 9 is slid and placed near the bottom of the film 3.
  • the means for moving the polarizing plate 60 and the means for increasing the light quantity of the light source 9 may be controlled by one button.
  • the polarizing plate 60 moves and the light source 9 approaches the film 3.
  • the polarizing plate 60 moves and the light source 9 is moved away from the film 3.
  • the film inspection apparatus 10 shown in FIG. 1 is connected to an inspection data cache apparatus 115. .
  • the inspection data is sent to the inspection data processing device 115 where it is processed into a more convenient one.
  • the film wound up by the winder 7 may be further processed at the request of the film user.
  • the film is cut and divided along the length direction of the film, and each divided film is wound up into a roll. To do. This provides the customer with the desired width of film.
  • the reason why slit processing is not performed in the line from the extruder 1 to the rewinder 7 shown in FIG. 1 is mainly due to the following reasons (1) to (3).
  • the film from the extruder is roughly wound into a roll, ignoring the winding deviation, and after aging it, the roll ends are aligned at a constant tension during slitting. It is. (3) Since the width of the film varies depending on the customer, it is more efficient to produce a film with a larger width and slit the film according to the customer's request.
  • the inspection data processing device 15 is used to check the inspection data for more convenience, and the position and distribution of defects on the film after processing. To make it easier to understand.
  • FIG. 19 is this flowchart.
  • Inspection data includes product number, lot number, inspection start and end time, film width, film length, Including original defect information, etc., created for each roll.
  • the original defect information is information regarding defects of the film before processing, that is, the film wound up by the winder 7 in FIG. Specifically, for each defect found, the time of discovery (eg, 15: 4 on February 4, 2005), size (eg, classified as one of “large, medium”, “small” or “minimal”), on the film (For example, position 125.8m in the film length direction, position 41.3mm in the film width direction).
  • the original defect information in the inspection data is stored in the array A (step S3).
  • display defect information is stored in array B (step S5).
  • the display defect information is used to display a defect map and a defect histogram described later on the screen.
  • the original defect information is stored in array B as display defect information.
  • FIG. 20 is a diagram showing an example of this screen 117.
  • the defect map 119 shows the position of the defect on the film.
  • the vertical axis is the film length direction (m)
  • the horizontal axis is the film width direction (mm).
  • the size of the defect is classified into large, medium, small, and minimal.
  • the defect histogram 121 shows the distribution of defects on the film, and is composed of a film width direction and a film length direction.
  • the defect here is a force called a fish eye.
  • Other defects for example, insects, pinholes
  • Each defect type may be displayed, or all the defects may be displayed simultaneously.
  • the fish eye is generated when the film material is completely melted during production of the film or impurities are mixed into the material (see Patent Document 1).
  • the inspection data processing (1) is so-called trimming. Generate defect maps and defect histograms for defects in any area on the film. Use Figure 20 to Figure 23 for this. And explain.
  • FIG. 21 is a flowchart of the inspection data cache (1).
  • FIG. 22 shows a screen 117 during execution of inspection data processing (1).
  • FIG. 23 is a diagram showing the screen 17 after the inspection data cache (1) is executed.
  • the initial state is the screen 17 shown in FIG.
  • the film before processing is, for example, 1200 mm wide and 150 m long.
  • this film is divided into two equal parts by slitting, the following operations are performed to obtain edit data (defect map, defect histogram, etc.) for defects on one film.
  • a trimming setting window (not shown) on the screen 117.
  • a trimming range that is, an arbitrary area is set.
  • the arbitrary area here is an area corresponding to one film. For example, if the area is 600mm to 1200mm in the film width direction and 5m to 150m in the film length direction, enter these numbers and confirm. Thereby, as shown in FIG. 22, an arbitrary area 131 is designated on the screen 117 (step Tl).
  • an arbitrary area 131 may be specified by dragging on the defect map 119 with a mouse.
  • the reason why the film length direction of 5 m or less was deleted is that it is the beginning of winding of the film, so there are many disadvantages and it cannot be used.
  • 5m is explained, but it is not necessarily limited to this.
  • step T3 It is determined whether or not the arbitrary area 131, that is, the trimming range, is displayed on the defect map 119 in full screen (step T3). If the check box 27 of the trimming range full screen display is not checked, the inspection data processing (1) ends. If it is checked, the inspection data of an arbitrary area 131 is extracted from the inspection data read in step S1 in FIG. 19 (step ⁇ 5). Specifically, the original defect information of an arbitrary area 131 is selected from the original defect information stored in the array IV described in FIG.
  • the position on the defect map 119 of each defect is recalculated in the film width direction, and the result is stored in the array B described in FIG. T7), and recalculate the position of each defect on the defect map for the film length direction, and store the result in array ((step ⁇ 9).
  • the recalculation in step ⁇ 7 is the position of the defect width stored in the array ⁇ in the film width direction. Is the lower limit of.
  • the recalculation in step T9 is the lower limit value of the position-length in the film length direction of the defects stored in the array A.
  • the film width direction is 1200 mm with a force of 60 Omm
  • the film length direction is in the range of 5 m to 150 m
  • the position of a certain defect in the film width direction is 98.5 mm and the position in the film length direction is 19. 5m.
  • the lower limit value of the width and length is set as the region can be arbitrarily selected. For example, in the region 133 as shown in FIG. The part is the lower limit of the length.
  • a defect map 119 and a defect histogram 121 which are the inspection data edited in the inspection data processing (1), are displayed on the screen 117 (step 117). Tl l).
  • a region 131 is displayed in full screen on the defect map 119, and a defect histogram 121 for defects on the region 131 is displayed.
  • the content displayed on screen 117 may be output on paper.
  • the inspection data processing (1) by processing the inspection data into a more convenient one, the position and distribution of defects on the film can be detected even for the slit-processed film. It can be easily grasped.
  • the defects of the parts that are not used as films here, the part with a film length of 0 to 5m
  • the defects of the parts that are not used as films have been deleted by processing. Therefore, more accurate editing data can be obtained.
  • the force of displaying the arbitrary area 131 in full screen on the defect map 119 is not necessarily limited to this.
  • an arbitrary region 131 may be designated, and the defect map 119 may be left as it is, and a defect histogram 121 may be created for defects existing on the arbitrary region 131.
  • a plurality of arbitrary areas can be set on the screen. For example, when four arbitrary areas are set, clicking the tab 123 corresponding to each area switches to the screen related to that area.
  • the shape of an arbitrary region can be freely set.
  • the region 135 may be circular.
  • the inspection data processing (2) will be described.
  • the position information on the defect film is corrected in accordance with the type of the wound state of the film, and a defect map or defect histogram is generated.
  • film winding states There are two types of film winding states: lower winding, upper winding, inverted upper winding, and inverted lower winding. First, these will be described.
  • FIG. 26 is a view showing the film 3 wound up by the winder 7 of FIG. 1, and FIG. 27 is a view showing a defect map 119 of the film 3.
  • a film 3 having a width of 1200 mm and a length of 150 m is wound with the core 137 on the film 3, and the defect 139 indicated by the coordinates (1000 mm, 149 m) of the defect map 119 is present on the film 3
  • This is the positional information on the film at the time of film 3 inspection, and is included in the inspection data.
  • the film 3 shown in FIG. 26 is referred to as “bottom winding”.
  • the film 3 of FIG. 28 (a) When the “bottom winding” film 3 of FIG. 28 (a) is unwound, the film 3 is developed as shown in FIG. 28 (b). Since the position of the defect 139 (1000 mm, 149 m) on the film 3 corresponds to the position of the defect appearing on the defect map 119 in FIG. 27, the defect map 119 shown in FIG. 27 can be used as it is.
  • the state in which the “bottom winding” film 3 is repeated so that the front and back of the film 3 are reversed is the “upper winding” film 3 shown in FIG. 28 (c).
  • the film 3 is developed as shown in FIG. 28 (d).
  • Disadvantage 139 is located at (200mm, 149m). Compared to Figure 28 (b), the position of defect 139 has changed. Therefore, the position of the defect 139 on the film 3 in FIG. 28 (d) does not correspond to the position of the defect appearing on the defect map 119 in FIG. It is necessary to process the defect map 119 shown in Fig. 27.
  • FIG. 30 (a) As shown in FIG. 30 (a), a film 3 of "reverse winding" with the core 141 facing up is wound up. When this is developed from the state shown in Fig. 30 (b) as shown in Fig. 30 (c), the position of the defect 139 (200mm, lm) is different from before. Again, it is necessary to check the defect map 119 shown in FIG. [0116] In addition to “bottom winding”, there are “upper winding”, “inverted upper winding”, and “inverted lower winding” for the following reasons. For example, the user's device may not support “bottom winding” but may support “upper winding”. When a new layer is formed on the film, “inverted upper winding” or “inverted lower winding” is selected according to the characteristics of the layer.
  • FIG. 31 is a flowchart of inspection data processing (2).
  • Inspection data processing (2) is based on “bottom winding” film. When the film is “upper winding”, “inverted upper winding”, or “inverted lower winding”, the positional information on the defective film is converted so as to correspond to these.
  • step U7 the film width value—the position in the film width direction of the defects stored in array A.
  • step U13 the same processing as step U7 is performed, and in step U15, step U11 is performed. After performing the same process, the defect map and defect histogram are displayed on the screen (step U9).
  • the “bottom winding” film can be changed into “upper winding”, “inversion”.
  • the defect map and defect histogram can be matched even for “upper” and “inverted lower” films, and the position and distribution of defects on the film can be easily grasped.
  • the image data of the film which is the basis of the inspection data covered in inspection data processing (1) and (2), is imaged in a process in which the film is continuously formed and wound by an extruder. It was obtained. In this step, imaging is generally performed. Because after the above process, the film is processed according to the application, such as slit processing, film formation processing, processing to change the winding length (for example, rewinding a film with a total length of 100 m to 20 m as required), image data This is because the use of image data is better if the source of the image is unified.
  • the image data may be captured after the above process. For example, imaging is performed during the process of forming a film on a film to form a multilayer film. Even when slitting multi-layer film, by applying inspection data processing (1) and (2), the position and distribution of defects on the film can be easily grasped even after film slitting. .
  • 32 includes a storage unit 151, a communication unit 153, an input unit 155, a processing unit 157, and an output unit 159.
  • the storage unit 151 stores the inspection data of the film based on the image data obtained by imaging the film, which is sent from the film inspection apparatus 10 of Fig. 1 via the communication unit 153. .
  • the storage unit 151 stores a program necessary for processing and editing inspection data.
  • the arrays A and B described with reference to FIGS. 18, 21, and 31 are included in the storage unit 151.
  • the storage unit 151 is realized by a hard disk, a memory, or the like.
  • the communication unit 153 is realized by a communication hard wafer or a program.
  • the input unit 155 is realized by a mouse, a keyboard, or the like. In the input unit 155, an input for designating an arbitrary area on the film on the screen or designating the type of the state where the film is wound on the screen is performed.
  • the processing unit 157 is realized by, for example, a CPU, and executes processing for an inspection data cache. It is. Processing of the inspection data cache (1) is executed by the area specifying unit 161 and the extracting unit 163 of the processing unit 157.
  • the area designation unit 161 designates an arbitrary area on the film on the screen by an operator's input.
  • the extracting unit 163 extracts the inspection data of the area specified by the area specifying unit 161 from the inspection data stored in the storage unit 151.
  • the inspection data processing (2) is executed by the winding state designation unit 165 and the conversion unit 167 of the processing unit 157.
  • the winding state designation unit 165 designates the type of the state in which the film is wound on the screen by the operator's input.
  • the conversion unit 167 reads the inspection data stored in the storage unit 151. The position information on the defective film at the time of inspection of the film included in this data is converted into position information corresponding to the type designated by the winding state designation unit 165.
  • the output unit 159 includes an image display unit 169 and a paper output unit 171.
  • the image display unit 169 is a monitor on which a screen 117 shown in FIGS. 20, 22, and 23 is displayed.
  • the image display unit 169 displays edited data (defect map, defect histogram, etc.) obtained by editing the inspection data processed in the inspection data processing (1) and (2).
  • the paper output unit 171 prints out the contents displayed on the image display unit 169.
  • the image display unit 169 is realized by an LCD, a CRT, or the like.
  • the paper output unit 171 is realized by a printer.
  • the inspection data cache program causes the computer to execute the steps shown in FIG. 19, FIG. 21, and FIG. Then, by causing the computer to function as each block shown in FIG. 32, it is possible to obtain the same effect as the above-described inspection data processing apparatus and inspection data processing method according to the present embodiment.
  • the program may be distributed by being stored in a computer-readable storage medium such as an optical disc, or may be distributed over the Internet.
  • inspection data can be processed without the inspection data processing device being connected to the film inspection device via a network.
  • FIG. 1 About plastic film inspection and processing of inspection data according to this embodiment. It is a figure which shows an outline.
  • FIG. 10 A diagram showing a defective part of the film, (a) is a fish eye diagram, (b) is a defective image with a colored film, and (c) is a film attached to the film. It is a figure of a line-like wound, and (d) is a figure of a big fault made in a film.
  • FIG. 11 is a diagram for determining the size of a fish eye, (a) is a diagram in the case of a size threshold 1, and (b) is a diagram in the case of a size threshold 2.
  • FIG. 12 This figure shows that the signal voltage varies depending on the size of the fish eye.
  • A shows the case where three light receiving parts receive the light transmitted through the fish eye, and
  • B shows five light receiving parts. This is the case where the part receives the light transmitted through the fish eye.
  • FIG. 14 is a diagram showing a flow for determining the size of a fish eye.
  • FIG. 15 This figure shows a case where fish eyes are scanned obliquely.
  • (A) shows the case where five light receiving parts receive light that has passed through the fish eye, and
  • (b) shows that seven light receiving parts have fish eyes. This is the case where the light transmitted through is received.
  • FIG. 16 is a view showing fish eyes formed in the film, where (a) is a cross-sectional view and (b) is a front view.
  • FIG. 17 is a diagram in which polarizing plates are arranged above and below the film.
  • FIG. 18 is a diagram showing a configuration in which a polarizing plate can be arranged, (a) is a diagram showing a board on which a polarizing plate is arranged, and (b) is a cross-sectional view showing the positional relationship between the board and the camera. .
  • FIG. 19 is a flowchart of inspection data strength according to the present embodiment.
  • FIG. 20 is a diagram showing an example of a screen displayed on the display of the inspection data processing apparatus according to the present embodiment.
  • FIG. 21 is a flowchart of an inspection data cache (1) according to the present embodiment.
  • FIG. 22 is a diagram showing a screen during execution of the inspection data cache (1).
  • FIG. 23 is a diagram showing a screen after inspection data processing (1) is executed.
  • FIG. 24 is a diagram showing an example of an arbitrary area designated on the defect map.
  • FIG. 25 is a diagram showing another example of an arbitrary area designated on the defect map.
  • FIG. 26 is a view showing a film wound up by the winder of FIG. 1.
  • FIG. 27 is a diagram showing a defect map of the film of FIG. 9.
  • FIG. 28 is a diagram for explaining “lower winding” and “upper winding” among the types of states in which the film is wound.
  • FIG. 29 is a diagram for explaining “inversion upper winding” among types of states in which a film is wound.
  • FIG. 30 is a diagram for explaining “reverse bottom winding” among the types of states in which the film is wound.
  • FIG. 31 is a flowchart of an inspection data cache (2) according to the present embodiment.
  • FIG. 32 is a diagram showing functional blocks of the inspection data processing apparatus according to the present embodiment.
  • FIG. 33 is a diagram showing a flow of a conventional fisheye inspection method.
  • Judgment threshold storage means Judgment means
  • Means for measuring length Means for judging type of defective part 5: Inspection data processing device 7: Screen
  • Image display unit 171 Paper output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

[PROBLEMS] To provide an apparatus and a method for inspecting flaws occurring during production of a film and utilizing data effectively after inspection. [MEANS FOR SOLVING PROBLEMS] A film inspection apparatus (10) comprises cameras (12) each having a light source and a sensor arranged with a plurality of light receiving portions to scan a film, a means (14) for converting a charge signal obtained by scanning into a voltage signal and analyzing a defective part of the film from the voltage signal, a means (16) for storing a plurality of thresholds of magnitude for discriminating the size at the defective part of the film, and a comparator (18) for comparing an analyzed voltage signal with the plurality of thresholds of magnitude and determining with which threshold of magnitude the voltage signal matches.

Description

フィルム検査装置およびフィルム検査方法  Film inspection apparatus and film inspection method
技術分野  Technical field
[0001] 本発明は、フィルムにできる微小な不良、例えばフィッシュアイ (FE)などを検査す るフィルム検査装置および検査方法に関するものである。  The present invention relates to a film inspection apparatus and inspection method for inspecting minute defects that can be formed in a film, such as fish eye (FE).
背景技術  Background art
[0002] フィルムの製造時にフィッシュアイと呼ばれる微小な不良が発生する場合がある。フ イツシュアィは、フィルムの製造時にフィルムの材料が完全に溶融されなかったり、そ の材料に不純物が混入したりすることによって発生するものである(特許文献 1参照)  [0002] During production of a film, a minute defect called fish eye may occur. Fishery occurs when the film material is not completely melted during production of the film or when impurities are mixed into the material (see Patent Document 1).
[0003] フィルムの使用用途によっては、フィッシュアイがフィルムの機能および外観を損ね る場合がある。例えば、半導体ウェハーのダイシング用のシートとして使用するフィル ムがある。そのフィルムにフィッシュアイがある場合、フィルムの上に半導体ウェハーを 平坦に載置できな 、。半導体ウェハーのダイシングを失敗するおそれがある。 [0003] Depending on the intended use of the film, fish eyes may impair the function and appearance of the film. For example, there is a film used as a sheet for dicing a semiconductor wafer. If the film has fish eyes, the semiconductor wafer cannot be placed flat on the film. There is a risk that dicing of the semiconductor wafer may fail.
[0004] フィルムの使用用途によって許容されるフィッシュアイの大きさや単位面積当たりの 数を決めるのが一般的である。そこでフィッシュアイを検査する装置が種々開発され 、開示されている(特許文献 2〜7参照)。これらの装置は、フィルムをラインセンサで 撮影し、ラインセンサで得られたデータを 2値ィ匕等の画像処理してフィッシュアイを検 出するものである。  [0004] It is common to determine the size of fish eyes and the number per unit area that are allowed depending on the intended use of the film. Accordingly, various apparatuses for inspecting fish eyes have been developed and disclosed (see Patent Documents 2 to 7). These devices take a film with a line sensor and detect the fish eye by processing the data obtained by the line sensor using a binary image or the like.
[0005] 画像処理のフローの一例を図 33に示す。ラインセンサのデータ力 異常を検出す ると、フィルムの進行方向から異常部分の長さを計算する。その長さが長ければひつ 力き傷などである。このような場合、重大な欠点と判定する。長さが短ければ、フイツシ ュアイであるか否かの判定をおこなう。フィッシュアイでなければ、ノイズと判定する。 フィッシュアイであれば、大きさを求めて分類をおこなう。  An example of the flow of image processing is shown in FIG. When the data force of the line sensor is detected, the length of the abnormal part is calculated from the direction of film travel. If the length is long, it may be a scratch. In such a case, it is determined as a serious defect. If the length is short, it is determined whether or not it is a fisheye. If it is not fisheye, it is determined as noise. If fisheye, classify by size.
[0006] しかし、従来の検査装置は、ラインセンサの分解能によってフィッシュアイの大きさを 正確に算出できない場合がある。例えば、フィッシュアイが微小であると、フィッシュァ ィの存在を確認できても、フィッシュアイの大きさまでを正確に求めることができない 場合がある。このような場合、許容できるフィッシュアイである力否かの判断ができな い。すなわち、図 33の大きさの n段階分類がラインセンサの分解能に制約されるおそ れがある。 [0006] However, the conventional inspection apparatus may not be able to accurately calculate the size of the fish eye depending on the resolution of the line sensor. For example, if the fish eye is very small, it is impossible to accurately determine the size of the fish eye even if the presence of the fish can be confirmed. There is a case. In such a case, it is not possible to determine whether the force is an acceptable fish eye. In other words, the n-stage classification of the size shown in Fig. 33 may be limited by the resolution of the line sensor.
[0007] また、フィルムの種類によっては、フィッシュアイがフィルム表面に形成されない。フ イルムの内部にフィッシュアイが形成され、肉眼でもフィッシュアイを確認しに《なる。 このような場合、ラインセンサで得られたデータを画像処理し、欠点を発見するのは 困難である。  Further, depending on the type of film, fish eyes are not formed on the film surface. A fish eye is formed inside the film, and it can be checked with the naked eye. In such a case, it is difficult to detect defects by image processing the data obtained by the line sensor.
[0008] フィッシュアイに関するデータを得ることができれば、そのデータを種々利用するこ とも望まれる。すなわち、単なる欠点の発見だけではなぐフィルムの使用時に欠点 の位置を使用者が簡単に認識できるようにすると便利である。  [0008] If data on fisheye can be obtained, it is also desired to use the data in various ways. In other words, it is convenient to allow the user to easily recognize the position of the defect when using the film rather than just finding the defect.
[0009] 特許文献 1 :特開 2001— 150429号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2001-150429
特許文献 2:特許第 3224623号公報  Patent Document 2: Japanese Patent No. 3224623
特許文献 3:特許第 3224624号公報  Patent Document 3: Japanese Patent No. 3224624
特許文献 4:特開平 8 - 105842号公報  Patent Document 4: JP-A-8-105842
特許文献 5:特開平 6— 82385号公報  Patent Document 5: JP-A-6-82385
特許文献 6 :特許第 2736521号公報  Patent Document 6: Japanese Patent No. 2736521
特許文献 7:特開 2004— 109069号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-109069
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明は、フィルムの製造時に発生するフィッシュアイなどの欠点を検査し、検査後 のデータを有効利用できる検査装置および検査方法を提供することにある。 An object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting defects such as fish eyes generated during the production of a film and effectively using data after the inspection.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の検査装置は、フィルムの不良を検査する装置であって、前記フィルムに透 過させる光を発光する光源および複数の受光部が並んだセンサを有し、該センサで 前記フィルムをスキャンするカメラと、前記センサでスキャンして得た電荷信号を電圧 信号に変換し、該電圧信号からフィルムの不良部分を分析する手段と、前記電圧信 号力 フィルムの不良部分の大きさを分別するための複数の大きさ閾値を記憶する 手段と、分析された前記電圧信号と複数の大きさ閾値を比較し、該電圧信号がいず れの大きさ閾値に一致するかを求める手段と、を含む。 [0011] The inspection apparatus of the present invention is an apparatus for inspecting a film defect, and includes a light source that emits light to be transmitted through the film and a sensor in which a plurality of light receiving units are arranged. A camera that scans the image, means for converting the charge signal obtained by scanning with the sensor into a voltage signal, and analyzing the defective portion of the film from the voltage signal, and the size of the defective portion of the voltage signal force film. Means for storing a plurality of magnitude thresholds for classification; comparing the analyzed voltage signal with a plurality of magnitude thresholds; And a means for determining whether or not the size threshold value is met.
[0012] 本発明の検査装置は、前記フィルムをスキャンして得られた前記フィルムの検査デ ータを記憶する記憶手段と、スキャンされた前記フィルムを表示する画面と、表示され た前記フィルムの任意の領域を前記画面で指定する領域指定手段と、前記領域指 定手段で指定された前記領域の検査データを、前記記憶手段に記憶された前記検 查データの中から抽出する抽出手段とを含めてもよい。  [0012] The inspection apparatus of the present invention includes a storage means for storing inspection data of the film obtained by scanning the film, a screen for displaying the scanned film, and a display of the displayed film. Area specifying means for specifying an arbitrary area on the screen; and extraction means for extracting the inspection data of the area specified by the area specifying means from the inspection data stored in the storage means. May be included.
[0013] さらに本発明の検査装置は、前記フィルムを巻き取る手段と、前記フィルムが巻か れた状態の種類を画面上で指定する巻き状態指定手段と、前記記憶手段に記憶さ れた前記検査データを読み出して、該検査データに含まれる前記フィルムの検査時 における欠点の前記フィルム上の位置情報を、前記巻き状態指定手段で指定された 種類に対応した位置情報に変換する変換手段とを含めてもよい。  [0013] Further, the inspection apparatus of the present invention includes a means for winding the film, a winding state designation means for designating a type of a state where the film is wound on a screen, and the storage means stored in the storage means. Conversion means for reading inspection data and converting position information on the film of defects at the time of inspection of the film included in the inspection data into position information corresponding to the type specified by the winding state specifying means; May be included.
[0014] さらに本発明の検査装置は、前記光源とセンサとの間において、前記フィルムの上 方および下方にそれぞれに偏光板を配置してもよい。  [0014] Further, in the inspection apparatus of the present invention, a polarizing plate may be disposed above and below the film between the light source and the sensor.
[0015] 本発明の検査方法は、フィルムの不良を検査する方法であって、前記フィルムに光 を透過させるステップと、複数の受光部が並んだセンサで前記フィルムを透過した光 を受光するステップと、受光した前記光に応じて電圧信号を生成し、該電圧信号から 不良部分を分析するステップと、分析された前記電圧信号が複数の大きさ閾値のい ずれに一致するかを求めるステップと、を含む。  [0015] The inspection method of the present invention is a method for inspecting a defect of a film, the step of transmitting light through the film, and the step of receiving light transmitted through the film by a sensor in which a plurality of light receiving units are arranged. Generating a voltage signal according to the received light, analyzing the defective portion from the voltage signal, and determining whether the analyzed voltage signal matches a plurality of magnitude threshold values; ,including.
[0016] 本発明の検査方法は、前記フィルムを撮像して得られた画像データを基にした前 記シートの検査データを記憶する記憶ステップと、操作者の入力により前記フィルム 上の任意の領域を画面上で指定する領域指定ステップと、前記領域指定ステップで 指定された前記領域の検査データを、前記記憶ステップで記憶された前記検査デー タの中力も抽出する抽出ステップとを含んでもよい。  [0016] The inspection method of the present invention includes a storage step of storing the inspection data of the sheet based on image data obtained by imaging the film, and an arbitrary area on the film by an operator's input. An area designating step for designating the area on the screen, and an extraction step for extracting the inspection data of the area designated in the area designating step also from the intermediate force of the inspection data stored in the storing step.
[0017] さらに本発明の検査方法は、前記フィルムを巻き取るステップと、前記フィルムを撮 像して得られたデータを基にした前記フィルムの検査データを記憶する記憶ステップ と、操作者の入力により前記シートが巻かれた状態の種類を画面上で指定する巻き 状態指定ステップと、前記記憶ステップで記憶された前記検査データを読み出して、 これに含まれる前記シートの検査時における欠点の前記シート上の位置情報を、前 記巻き状態指定ステップで指定された種類に対応した位置情報に変換する変換ステ ップとを含んでもよい。 [0017] Further, the inspection method of the present invention includes a step of winding the film, a storage step of storing inspection data of the film based on data obtained by imaging the film, and an input by an operator The sheet of the defect at the time of inspecting the sheet included in the winding state designation step for designating on the screen the type of state in which the sheet is wound and the inspection data stored in the storage step are read out The location information above It may include a conversion step for converting into position information corresponding to the type specified in the winding state specifying step.
[0018] さらに本発明の検査方法は、前記光源とセンサとの間において、前記フィルムの上 方および下方にそれぞれ偏光板を配置し、該偏光板に光を透過させるステップを含 んでもよい。  [0018] Further, the inspection method of the present invention may include a step of disposing a polarizing plate above and below the film between the light source and the sensor and transmitting light to the polarizing plate.
発明の効果  The invention's effect
[0019] 本発明によると、フィルムのフィッシュアイをレンズのようにして利用し、正常部分と 不良部分のデータの差でフィッシュアイの有無を検出している。その差の値によって フィッシュアイの大きさがわかる。また、フィッシュアイの部分を透過した光をスキャンし た回数によってフィッシュアイが楕円形になっている力否力も判別できる。  According to the present invention, the fish eye of the film is used like a lens, and the presence or absence of the fish eye is detected by the difference between the data of the normal part and the defective part. The size of the fish eye is determined by the difference value. In addition, it is also possible to determine the power / power of the fish eye having an elliptical shape based on the number of times the light transmitted through the fish eye is scanned.
[0020] また、操作者の入力によりシート上の任意の領域を画面上で指定し、検査データの 中力 この指定された領域の検査データを抽出している。したがって、検査データを より利便性の高いものに加工することができる。  [0020] Further, an arbitrary area on the sheet is designated on the screen by an operator's input, and the inspection data of the designated area is extracted. Therefore, inspection data can be processed into a more convenient one.
[0021] さらに、操作者の入力によりシートが巻かれた状態の種類を画面上で指定し、シー トの検査時における欠点のシート上の位置情報を、上記指定された種類に対応した 位置情報に変換している。これにより、検査データをより利便性の高いものに加工す ることがでさる。  [0021] Further, the type of the state in which the sheet is wound is designated on the screen by the operator's input, and the positional information on the defective sheet at the time of the sheet inspection is the positional information corresponding to the designated type. Has been converted. This makes it possible to process the inspection data into a more convenient one.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明に係るフィルム検査装置および検査方法の実施形態について図面を使用し て説明する。本発明で検査されるフィルム (またはシートと言う)は半導体ウェハーの ダイシングシートをはじめ種々のものである。榭脂などで形成されるフィルム以外にも 光を透過させるフィルムであれば布や金属シートなどの任意のフィルムが検査できる 。フィルムはロール状に巻き取られるものであってもよいし、枚葉であってもよい。本 発明は特にフィッシュアイ (FE)を検査する力 他の欠点(または不良と言う)も検査で きるものである。なお、図中、種々の記憶手段を記憶される内容で示している場合が ある。また、図 3以降の各波形は一例であり、実際と異なる場合がある。  Embodiments of a film inspection apparatus and inspection method according to the present invention will be described with reference to the drawings. The film (or sheet) to be inspected in the present invention is various, including a semiconductor wafer dicing sheet. In addition to a film formed of a resin or the like, any film such as a cloth or a metal sheet can be inspected as long as the film transmits light. The film may be wound up in a roll or may be a sheet. The present invention is particularly capable of inspecting fish eye (FE) and other defects (or defects). In the figure, various storage means may be shown as stored contents. In addition, each waveform in and after FIG. 3 is an example, and may differ from the actual.
[0023] 図 1に示すように、押出機 1で連続成形されたフィルム (プラスチックフィルム等を含 む) 3はローラ 5でガイドされる。そして、フィルム 3は卷取機 7で巻き取られてロールに される。フィルム 3が所定の長さだけ巻かれたら、フィルム 3を幅方向に切断して一つ のロールが完成する。引き続き、新たなロールの作製が開始される。このラインの所 定箇所には、フィルム検査装置 10のカメラ 12と光源 9が配置されている。したがって 、フィルムを巻き取る途中にフィルムを検査することとなる。枚葉のフィルムであれば、 フィルム移送中に検査する。 As shown in FIG. 1, a film 3 (including a plastic film) 3 continuously formed by an extruder 1 is guided by a roller 5. Film 3 is wound up by a take-up machine 7 and rolled into a roll. Is done. When the film 3 is wound for a predetermined length, the film 3 is cut in the width direction to complete one roll. Subsequently, production of a new roll is started. A camera 12 and a light source 9 of the film inspection apparatus 10 are arranged at predetermined positions in this line. Therefore, the film is inspected in the middle of winding the film. If it is a sheet of film, inspect it during film transfer.
[0024] なお、図 1には押出機が示されるが、他の機械でフィルムを製作するものにも当発 明は適用可能である。例えば、加熱延伸、無延伸などでフィルムを製作する場合で ある。 [0024] Although the extruder is shown in Fig. 1, the present invention can be applied to the case where a film is produced by another machine. For example, this is the case when a film is produced by heat stretching or non-stretching.
[0025] 図 2に示す本発明のフィルム検査装置 10は、フィルムに透過させる光を発光する光 源および複数の受光部が並んだセンサを有し、センサでフィルムをスキャンするカメ ラ 12と、センサでスキャンして得た電荷信号を電圧信号に変換し、電圧信号からフィ ルムの不良部分を分析する分析手段 14と、電圧信号からフィルムの不良部分の大き さを分別するための複数の大きさ閾値を記憶する記憶手段 16と、分析された電圧信 号と複数の大きさ閾値を比較し、電圧信号がいずれの大きさ閾値に一致する力を求 めるコンパレータ (比較手段) 18とを含む。なお、上の記載では、カメラ 12が光源とセ ンサとを有するように記載したが、光源をカメラカゝら別個独立のものとして取り扱っても よい。  A film inspection apparatus 10 of the present invention shown in FIG. 2 has a light source that emits light to be transmitted through the film and a sensor in which a plurality of light receiving units are arranged, and a camera 12 that scans the film with the sensor. The charge signal obtained by scanning with the sensor is converted into a voltage signal, and the analysis means 14 for analyzing the defective portion of the film from the voltage signal, and a plurality of sizes for separating the size of the defective portion of the film from the voltage signal. A storage means 16 for storing the threshold value, and a comparator (comparison means) 18 for comparing the analyzed voltage signal with a plurality of magnitude threshold values and obtaining a force at which the voltage signal matches any magnitude threshold value. Including. In the above description, the camera 12 is described as having a light source and a sensor, but the light source may be handled separately from the camera camera.
[0026] フィルム検査装置 10は、ホストコンピュータ 11によって全体が制御されて動作する 。すなわち、ホストコンピュータ 11が種々の手段に旨令を与える。ホストコンピュータ で得た検査データは、後で説明するように、利便性の高いものにカ卩ェすることができ る。  The film inspection apparatus 10 is controlled by the host computer 11 to operate as a whole. That is, the host computer 11 gives instructions to various means. The inspection data obtained by the host computer can be checked for convenience, as will be described later.
[0027] カメラ 12はラインセンサカメラであり、カメラ駆動部 13によって制御される。例えば受 光部(センサ)として 1列に並んだ複数のフォトダイオードが用いられる。これらのフォト ダイオードに蓄積された電荷を順次取り出すため〖こ CCD (charge  The camera 12 is a line sensor camera and is controlled by the camera driving unit 13. For example, a plurality of photodiodes arranged in a row are used as a light receiving unit (sensor). In order to sequentially extract the charges accumulated in these photodiodes, the CCD (charge
coupled device)を用いる。上述のスキャンは、フィルムを透過した光を受光部で受光 することである。  coupled device). The above-described scanning is to receive light transmitted through the film by the light receiving unit.
[0028] カメラ 12の数は複数、例えば 4台であり、これらはフィルム 3の上方であってフィルム 3の幅方向に直線状に配置されている。カメラ 12が 1つでは、フィルム 3の幅方向の 全部をカバーできない。そこで、 4台のカメラ 12を設置し、各カメラ 12にフィルム 3の 幅方向の一部を分担させて、フィルム 3の幅方向の全部をカバーしている。 The number of cameras 12 is plural, for example, four, and these are arranged above the film 3 and linearly in the width direction of the film 3. With one camera 12, the width direction of film 3 I can't cover everything. Therefore, four cameras 12 are installed, and each camera 12 is assigned a part in the width direction of the film 3 to cover the entire width direction of the film 3.
[0029] 光源 9はカメラ 12と対向して、フィルム 3の下方に配置されている。光源 9は透過照 明として機能する。光源 9からの光をフィルム 3に照射しながら、透過した光をカメラ 1 2のセンサで受光する。受光したデータはフィルム検査装置 10へ送られる。フィルム 検査装置 10は、このデータを基にしてフィルム 3の検査データを生成する。なお、こ のデータは、図 3などに示すデータを含む。  The light source 9 is arranged below the film 3 so as to face the camera 12. Light source 9 functions as transmitted illumination. While irradiating the light from the light source 9 onto the film 3, the transmitted light is received by the sensor of the camera 12. The received data is sent to the film inspection apparatus 10. The film inspection apparatus 10 generates inspection data for the film 3 based on this data. This data includes the data shown in Fig. 3.
[0030] 分析手段 14は、電圧信号の中に異常信号がある力否力を求める手段である。その 手段は、回路、ソフト、またはその両方で構成する。不良部分を透過する光は、図 3の ように突出した電圧 (異常信号)になる。これは、例えばフィッシュアイがレンズとして 働き、フォトダイオードに集光したりするためである。異常信号を検出することによって 、不良部分の存在を求めることができる。  [0030] The analysis means 14 is a means for obtaining a force / force that includes an abnormal signal in the voltage signal. The means consists of a circuit, software, or both. The light passing through the defective part becomes a protruding voltage (abnormal signal) as shown in Fig. 3. This is because, for example, the fish eye acts as a lens and collects light on the photodiode. By detecting an abnormal signal, the presence of a defective portion can be determined.
[0031] 大きさ閾値を記憶する記憶手段 16は、コンピュータなどで使用されるハードディスク やメモリなどのデータを記憶する手段である。  [0031] The storage means 16 for storing the size threshold is a means for storing data such as a hard disk or memory used in a computer or the like.
[0032] コンパレータ 18は、各閾値に対して設けられる。分析された電圧信号がどの大きさ 閾値と一致するかを求める。これによつて、フィルムの不良部分の大きさを求めること ができる。なお、コンパレータ 18は電圧信号を 2値ィ匕して、その電圧信号を処理する ものであっても良い。  A comparator 18 is provided for each threshold value. Find out what magnitude threshold the analyzed voltage signal matches. As a result, the size of the defective portion of the film can be obtained. Note that the comparator 18 may be one that performs binary processing on the voltage signal and processes the voltage signal.
[0033] 1スキャン形状判断にて欠点と判断すれば、長さ計測中にゲートを開き、コンパレー タ 18で比較の結果をホールドして補正手段 24に送る。図中のゲート 19a、ホールド 1 9b、大きさ 19cのブロックは、上述したデータの流れを示している。  [0033] If it is determined that the one-scan shape determination is a defect, the gate is opened during length measurement, the comparison result is held by the comparator 18 and sent to the correction means 24. The block of gate 19a, hold 19b, and size 19c in the figure shows the above-described data flow.
[0034] 従来と異なり電圧信号によって大きさを求めることができる。カメラ 12の分解能によ つて制限される不良部分の大きさの分類も可能である。  Unlike the conventional case, the size can be obtained by a voltage signal. It is also possible to classify the size of the defective part limited by the resolution of the camera 12.
[0035] 本発明のフィルム検査装置 10は、フィルムの不良部分の大きさを分別するために 設定された基準数を記憶する記憶手段 20と、不良部分をスキャンした受光部の数と 基準数とを比較する手段 22と、比較によって受光部の数が基準数より多 、か否かを 求める補正手段 24とを含む。  [0035] The film inspection apparatus 10 of the present invention includes a storage means 20 for storing a reference number set to classify the size of a defective portion of a film, the number of light receiving units that have scanned the defective portion, and a reference number. And a correction means 24 for determining whether the number of light receiving parts is larger than the reference number by comparison.
[0036] 基準数は、不良部分を透過した光をスキャンした回数である。フィッシュアイが円形 であっても楕円形であっても同じ電圧信号となる場合がある。これは、電圧信号が、フ イツシュアィをスキャンする方向の幅に比例するためであると考えられる。その場合にThe reference number is the number of times the light transmitted through the defective portion is scanned. Fisheye is circular Even if it is elliptical, the same voltage signal may be obtained. This is thought to be because the voltage signal is proportional to the width in the scanning direction of the fishery. In that case
、不良部分の大きさが異なっても大きさが同じと判定してしまうこととなる。このため、 基準数を設け、例えば、不良部分をスキャンした回数が基準数より多ければ、不良部 分の大きさを大きくするようにする。 Even if the size of the defective portion is different, it is determined that the size is the same. For this reason, a reference number is provided. For example, if the number of times the defective portion is scanned is larger than the reference number, the size of the defective portion is increased.
[0037] 基準数を記憶する記憶手段 20は、コンピュータなどで使用されるハードディスクや メモリなどのデータを記憶する手段である。  [0037] The storage means 20 for storing the reference number is means for storing data such as a hard disk or a memory used in a computer or the like.
[0038] 補正手段 24は、回路、ソフト、またはその両方で構成する。補正手段は、上述した ように、例えば、不良部分をスキャンした回数が基準数以上であれば、不良部分の大 きさを大きくするようにする。不良部分の大きさを大きくする方法の一例としては、コン パレータ 18で求められた大きさよりも 1つ大きな大きさ、すなわち 1つ大きな大きさ閾 値の大きさに変更するようにする。 [0038] The correction means 24 is configured by a circuit, software, or both. As described above, for example, the correcting means increases the size of the defective portion if the number of times the defective portion is scanned is equal to or larger than the reference number. As an example of a method for enlarging the size of the defective portion, the size is changed to one size larger than the size obtained by the comparator 18, that is, one size larger than the threshold value.
[0039] フィルムの製造時にフィッシュアイがフィルムの引き出し方向に流れても(楕円形の 長軸が引き出し方向を向いても)、フィッシュアイを適正な大きさに分類することができ る。 [0039] Even if fish eyes flow in the film drawing direction during film production (even if the major axis of the ellipse faces the drawing direction), the fish eyes can be classified into appropriate sizes.
[0040] 大きさ閾値ごとに基準数が異なるようにする。フィッシュアイの大きさによってそのフ イツシュアィを透過した光を受光する受光部の数が異なるからである。  [0040] The reference number is different for each size threshold. This is because the number of light-receiving portions that receive light transmitted through the fishfish differs depending on the size of the fish eye.
[0041] 本発明は、フィルムに光を透過させるときに、フィルムを製造時のフィルムの引き出 し方向に移動させるフィルム送り装置を含む。楕円形のフィッシュアイの長軸力 フィ ルムの移動方向に対して同じ方向になる。これは、フィルムの製造時にフィッシュアイ 力 Sフィルムの引き出し方向に流れるためである。したがって、補正手段 24は、不良部 分をスキャンした回数が基準数以上であれば、不良部分の大きさ分類を 1ランク上げ るなど、大きさの分類を大きくする。  [0041] The present invention includes a film feeding device that moves a film in a drawing-out direction during manufacture when light is transmitted through the film. The long axis force of the elliptical fish eye is the same direction as the film moving direction. This is because the fisheye force S flows in the direction of drawing out the film during film production. Therefore, the correction means 24 increases the size classification, for example, by increasing the size classification of the defective portion by one rank if the number of times the defective portion is scanned is equal to or larger than the reference number.
[0042] 分析手段 14は、電圧信号を微分する微分手段 26と、フィルムの不良部分であるか 否かを判定するための判断用閾値を記憶する記憶手段 28と、微分された電圧信号 と判断用閾値とを比較し、フィルムの不良である力否かを判定する判定手段 30とを含 む。  [0042] The analysis means 14 includes a differentiation means 26 for differentiating the voltage signal, a storage means 28 for storing a judgment threshold value for judging whether or not the film is a defective portion, and a differentiated voltage signal. And a determination means 30 for comparing the threshold value for use and determining whether the force is a film defect.
[0043] 微分手段 26は、回路、ソフト、またはその両方で構成する。電圧信号を微分するこ とによって、正常部分と不良部分との差を絶対的な差力 相対的な差にすることがで きる。相対的な差になることにより、フィルムによる光の透過の違いを考慮しなくてもよ い。 [0043] The differentiating means 26 is constituted by a circuit, software, or both. Differentiate voltage signals Thus, the difference between the normal part and the defective part can be made an absolute relative difference. By making the relative difference, it is not necessary to consider the difference in light transmission through the film.
[0044] 判断用閾値を記憶する記憶手段 28は、他の記憶手段と同様に、コンピュータなど で使用されるハードディスクやメモリなどのデータを記憶する手段である。  [0044] The storage means 28 for storing the determination threshold is a means for storing data such as a hard disk and a memory used in a computer or the like, as with other storage means.
[0045] 判定手段 30は、微分された電圧信号の中の異常信号が判定用閾値よりも大き!、ま たは小さければ不良と判定する手段である。判定手段は、他の手段と同様に、回路、 ソフト、またはその両方で構成する。  [0045] The determination means 30 is a means for determining that the abnormal signal in the differentiated voltage signal is larger or smaller than the determination threshold value, and that it is defective. The determination means is constituted by a circuit, software, or both, like other means.
[0046] フィルム検査装置 10は、フィルムの不良部分をスキャンした回数、スキャンの時間 間隔、およびフィルムの移動速度力 不良部分の長さを求める手段 32と、不良部分 の長さと微分された電圧信号の波形形状とから不良部分の種類を分類する手段 34と を含む。また、微分された信号の波形から 1スキャンの波形形状を判断する手段 31を 含む。  [0046] The film inspection apparatus 10 includes a means 32 for obtaining the number of times the defective portion of the film is scanned, the scanning time interval, and the moving speed force of the film, and the length of the defective portion, and a voltage signal differentiated from the length of the defective portion. And means 34 for classifying the type of defective portion from the waveform shape of Also included is means 31 for determining the waveform shape of one scan from the differentiated signal waveform.
[0047] フィルム検査装置 10は、フィルムのスキャンする時間間隔が一定であり、スキャンし た回数およびフィルムの移動速度力も不良部分の長さを求めることができる。なお、 単位長さ当たりの受光部の数がフィルムの幅方向の分解能となる。また、スキャンの 時間間隔とフィルムの移動速度によってフィルムの移動方向の分解能が求められる。 本発明は、この分解能によっても不良部分の大きさの判定に影響されることはない。  The film inspection apparatus 10 has a constant time interval for scanning the film, and the number of times of scanning and the moving speed force of the film can determine the length of the defective portion. The number of light receiving portions per unit length is the resolution in the width direction of the film. Also, the resolution in the moving direction of the film is determined by the scanning time interval and the moving speed of the film. In the present invention, the determination of the size of the defective portion is not affected by this resolution.
[0048] 不良部分はフィッシュアイだけではなく色が異なる欠点や傷も含まれる。微分された 信号の波形から、図 5〜8に示すように 1スキャンの信号よりわ力る不良を 4つに分類 することができる。この分類と不良部分の長さとから不良部分の種類を判断することが できる。なお、種々の波形はフィルム検査装置 10の任意の記憶手段に記憶しておく  [0048] The defective part includes not only fish eyes but also defects and scratches having different colors. From the waveform of the differentiated signal, as shown in Figs. The type of defective part can be determined from this classification and the length of the defective part. Various waveforms are stored in any storage means of the film inspection apparatus 10.
[0049] また、最終的に不良部分の形状をコンピュータのディスプレイなどに表示するので あれば、欠点画像生成手段 35を設ける。エンコーダを設け、フィルムの X方向および Y方向の同期信号を欠点画像生成手段 35に入力し、その信号に同期して欠点画像 を生成する。フィルムの X方向および Y方向は、フィルムの幅方向および進行方向で ある。 [0050] フィルム上の欠点の位置を記憶するようにしてもょ 、。フィルムの移動速度、欠点を 検出した時間、どのセンサで欠点を検出したかによつて、欠点の位置が求められる。 このデータの利用については後で説明する。 [0049] Further, if the shape of the defective portion is finally displayed on a computer display or the like, defect image generating means 35 is provided. An encoder is provided, and synchronization signals in the X and Y directions of the film are input to the defect image generating means 35, and defect images are generated in synchronization with the signals. The X direction and Y direction of the film are the width direction and the traveling direction of the film. [0050] Remember the location of the defect on the film. The position of the defect is determined depending on the moving speed of the film, the time when the defect is detected, and which sensor detects the defect. The use of this data will be described later.
[0051] さらに、上述した各手段によって検出したフィッシュアイの数をカウントする手段を検 查装置 10に設けても良い。フィルムに形成されてしまったフィッシュアイの数力 許容 範囲のフィッシュアイ数である力否かを判別する。この判別を自動的におこなう手段( 回路および Zまたはプラグラム)を検査装置 10に設けても良い。また、フィッシュアイ の数を単位面積当たりでカウントする手段(回路および Zまたはプラグラム)を検査装 置 10に設けても良い。さらには、上記のフィッシュアイの数のカウントは、フィッシュァ ィの大きさごとにおこなうようにしても良ぐそのための手段(回路および Zまたはブラ グラム)を検査装置 10に設けても良い。  [0051] Further, means for counting the number of fish eyes detected by each of the means described above may be provided in the detection apparatus 10. Number of fish eyes that have formed on the film Determine whether the number of fish eyes is within the allowable range. Means (circuit and Z or program) for automatically performing this determination may be provided in the inspection apparatus 10. Further, the inspection apparatus 10 may be provided with means (circuit and Z or program) for counting the number of fish eyes per unit area. Furthermore, the above-described counting of the number of fish eyes may be performed for each fish size, and means (circuit and Z or program) for that purpose may be provided in the inspection apparatus 10.
[0052] 次に、上述したフィルム検査装置 10を使用したフィルム検査方法について説明す る。 [0052] Next, a film inspection method using the above-described film inspection apparatus 10 will be described.
[0053] 検査方法は、次の(1)〜(4)のステップを含む。(1)フィルムに光を透過させる。 (2 [0053] The inspection method includes the following steps (1) to (4). (1) Light is transmitted through the film. (2
)複数の受光部が並んだセンサでフィルムを透過した光を受光する。 (3)受光した光 に応じて電圧信号を生成し、電圧信号から不良部分を分析する。(4)分析された信 号が複数の大きさ閾値のいずれに一致するかを求める。 ) Light transmitted through the film is received by a sensor in which a plurality of light receiving portions are arranged. (3) Generate a voltage signal according to the received light and analyze the defective part from the voltage signal. (4) Find out which of the multiple magnitude thresholds the analyzed signal matches.
[0054] (1)のステップでは、フィルムを移動させながらおこなう。センサの種類がラインセン サであるからである。センサが順次フィルムをスキャンするのであれば、フィルムの代 わりにセンサが移動してもよ 、。 [0054] In step (1), the film is moved. This is because the sensor type is a line sensor. If the sensor scans the film sequentially, the sensor may move instead of the film.
[0055] (2)のステップで光を受光したときにフィルムに不良部分があると、(3)のステップで 図 3に示すように電圧信号に突出した部分が発生したりする。この突出した部分によ つてフィルムに不良部分があることがわ力る。 [0055] If there is a defective portion on the film when light is received in step (2), a protruding portion of the voltage signal may be generated in step (3) as shown in FIG. This protruding part helps to show that the film has a defective part.
[0056] (3)の分析は、電圧信号を微分するステップと、微分された電圧信号と判断用閾値 とを比較し、フィルムの不良であるカゝ否かを判定するステップとを含む。 [0056] The analysis of (3) includes a step of differentiating the voltage signal and a step of comparing the differentiated voltage signal with a determination threshold value to determine whether the film is defective.
[0057] 図 3に示すように、電圧信号を微分することにより不良部分と正常部分との電圧の 差を、絶対値力も相対値に変更している。フィルムの違いによる光の透過率などの違 いの影響を除去している。 [0058] 判断用閾値は、図 4に示すように、上限値と下限値を設定する。微分された電圧信 号において、判断用閾値の上限値を超える又は下限値を割る箇所があればフィルム に不良部分があると判定する。 As shown in FIG. 3, the voltage signal is differentiated to change the voltage difference between the defective portion and the normal portion, and the absolute value force is also changed to a relative value. Eliminates the effects of differences in light transmittance due to film differences. As the determination threshold, an upper limit value and a lower limit value are set as shown in FIG. In the differentiated voltage signal, if there is a part that exceeds the upper limit of the threshold for judgment or breaks the lower limit, it is determined that there is a defective part on the film.
[0059] フィルムの不良部分はフィッシュアイだけではないため、不良の種類を分類する必 要もある。そこで、検査方法は、フィルムの不良部分を透過した光を受光した回数 (ス キャン回数)、受光した時間間隔、およびフィルムの移動速度力 不良部分の長さを 求めるステップと、不良部分の長さと微分された電圧信号の波形とから不良部分の種 類を分類するステップとを含む。  [0059] Since the defective part of the film is not limited to fish eyes, it is also necessary to classify the type of defect. Therefore, the inspection method includes the steps of obtaining the number of times the light transmitted through the defective portion of the film has been received (number of scans), the time interval for receiving the light, and the moving speed force of the film, the length of the defective portion, And classifying the type of defective portion from the differentiated voltage signal waveform.
[0060] センサは一定時間ごとに光を受光するため、不良部分を受光した回数とフィルムの 移動速度力も不良部分の長さを求めることができる。  [0060] Since the sensor receives light at regular time intervals, the number of times the defective portion is received and the moving speed of the film can determine the length of the defective portion.
[0061] 不良部分の種類によって微分された電圧信号の波形が異なる。例えば、図 5〜8に 不良部分の種類による波形の違いを示す。図 5は不良部分を透過した光が明るぐ 幅が狭いことを示し、不良部分の長さが短ければフィッシュアイである(図 10 (a)参照 )。図 10 (a)はフィルム 50にフィッシュアイ 52aがあることを示している。フィッシュアイ であれば、上記(4)のステップをおこなう。  [0061] The waveform of the differentiated voltage signal differs depending on the type of defective portion. For example, Figures 5 to 8 show the difference in waveform depending on the type of defective part. Figure 5 shows that the light transmitted through the defective part is brighter and narrower. If the length of the defective part is short, fisheye is observed (see Fig. 10 (a)). FIG. 10 (a) shows that the film 50 has fish eyes 52a. If it is a fish eye, perform step (4) above.
[0062] 図 6は不良部分を透過した光が暗ぐ幅が狭いことを示す。この不良部分は、フィル ムの精製時に混入した不純物によってフィルムに発生した着色による不良である(図 10 (b)参照)。図 10 (b)はフィルム 50に着色された不良 52bがあることを示して!/、る。 このような不良であっても上記 (4)のステップに移行し、大きさの分類をおこなっても よい。  FIG. 6 shows that the width of darkness of the light transmitted through the defective portion is narrow. This defective part is a defective color caused on the film due to impurities mixed during film purification (see Fig. 10 (b)). FIG. 10 (b) shows that the film 50 has a colored defect 52b! Even if it is such a defect, the process may move to the above step (4) to classify the size.
[0063] 不良部分を透過した光の明るさが明るいまたは暗ぐ不良部分の幅が狭ぐ不良部 分の長さが長ければ、図 10 (c)のような筋状の不良 52cと判定する。上記 (4)のステ ップに移行しないか、移行したとしても大きさの値は無効にする。これは、筋状の不良 であれば数 mm連続で発生することがほとんどであり、面積算出ができない場合があ るためである。  [0063] If the length of the defective portion where the brightness of the light transmitted through the defective portion is bright or dark is narrow, and the length of the defective portion is long, it is determined as a streaky defect 52c as shown in FIG. 10 (c). . Do not go to step (4) above, or make the size value invalid even if it goes. This is because if it is a streak defect, it usually occurs several millimeters continuously, and the area may not be calculated.
[0064] 図 7は不良部分を透過した光が明るぐ幅が広い。図 8は不良部分を透過した光が 暗ぐ幅が広い。不良部分を透過した光の明るさが明るいまたは暗ぐ不良部分の幅 が広ぐ不良部分の長さが長ければ、不良部分が力なり大きいと判定する(図 10 (d) 参照)。図 10 (d)はフィルム 50に大きな欠点 52dがあることを示している。上記(4)の ステップに移行しないか、移行したとしても大きさの値は無効にする。 FIG. 7 shows a wide range in which the light transmitted through the defective portion is bright. In Fig. 8, the light transmitted through the defective part is dark and wide. If the light transmitted through the defective part is bright or dark, the width of the defective part is wide and the length of the defective part is long, it is determined that the defective part is strong (Fig. 10 (d) reference). FIG. 10 (d) shows that film 50 has a major defect 52d. Do not proceed to step (4) above, or invalidate the size value even if transition is made.
[0065] 図 l l (a)、(b)に示すように、上記 (4)のステップで分析された信号がどの大きさ閾 値に一致するかを求めることによって、不良部分の大きさを求めることができる。なお 、微分された信号電圧の値の最大値が大きさ閾値 n以上 n+ 1未満にある場合、大き さ閾値 nに一致するとする(nは 1以上の整数)。すなわち、不良部分の大きさを求める ときの大きさ閾値は一定の幅を有する値となっている。図 11 (a)であれば、大きさ閾 値 1と 2との間に微分された信号電圧があるため、大きさ閾値 1と一致していることとな る。上述した大きさ閾値の幅および大きさ閾値の数は任意である。フィッシュアイの検 查に求められる精度などによって大きさ閾値の幅および大きさ閾値の数を決定する。  [0065] As shown in FIGS. Ll (a) and (b), the size of the defective portion is determined by determining which size threshold value the signal analyzed in step (4) matches. be able to. If the maximum value of the differentiated signal voltage is greater than or equal to the magnitude threshold n and less than n + 1, it is assumed that it matches the magnitude threshold n (n is an integer greater than or equal to 1). In other words, the size threshold for obtaining the size of the defective portion is a value having a certain width. In Fig. 11 (a), since there is a differentiated signal voltage between the magnitude threshold values 1 and 2, it matches the magnitude threshold 1. The width of the size threshold and the number of size thresholds described above are arbitrary. The width of the size threshold and the number of size thresholds are determined according to the accuracy required for fisheye detection.
[0066] なお、光の明るさが明るいまたは暗ぐ不良部分の幅が広ぐ不良部分の長さが短 い場合は発生しない。また、図 9のような波形であればノイズと判定し、この信号は無 視して、以降の処理はおこなわないようにする。ノイズは 1スキャンのみで判定するこ とができる力 数スキャンの信号力 判定し、ノイズと判定する精度を上げても良い。  [0066] It does not occur when the defective portion is light or bright or dark, and the defective portion is wide. If the waveform is as shown in Fig. 9, it is determined as noise, and this signal is ignored and the subsequent processing is not performed. Noise can be judged with only one scan. The power of the power scan can be judged to improve the accuracy of judging it as noise.
[0067] 上記 (4)のステップは複数の大きさ閾値を記憶手段 16に記憶させおく。この大きさ 閾値は、上述したように一定の幅を有する。図 11 (a)、(b)に示すように、微分された 電圧信号がいずれの大きさ閾値の範囲に入るかを求めることによって、簡単に不良 部分の大きさが求められる。  In the step (4), a plurality of magnitude threshold values are stored in the storage unit 16. This magnitude threshold has a certain width as described above. As shown in Figs. 11 (a) and 11 (b), the size of the defective part can be easily obtained by determining which size threshold range the differentiated voltage signal falls within.
[0068] 以上のように、微分された電圧信号を用いて不良部分の大きさを判定しており、セ ンサの分解能に影響されな 、。従来ではセンサの分解能によって判定できな力つた 不良部分の大きさを判定することができる。  [0068] As described above, the size of the defective portion is determined using the differentiated voltage signal, and is not affected by the resolution of the sensor. It is possible to determine the size of a defective portion that could not be determined by the resolution of the sensor in the past.
[0069] フィルムを加熱延伸で製造したときにフィッシュアイが楕円形になる場合がある。こ の場合、上述した工程だけでは大きさの判定を誤る可能性がある。図 12 (a)、(b)に 示すように、センサがスキャンするフィッシュアイ 52aの幅に応じて電圧信号が変化す る。図 13 (a)、(b)に示すように、センサがスキャンする方向に同じ幅のフィッシュアイ 52aであれば、円形であっても楕円形であっても最大の信号電圧が同じとなってしま う。これは、信号電圧の大きさがフィッシュアイ 52aのスキャンする幅方向に影響され ているためであると考えられる。したがって、楕円形のフィッシュアイ 52aが実際の大 きさよりも小さく判定される。そこで本発明の検査方法は、上記 (4)のステップの後、 不良部分を透過した光を受光した受光部の数と基準数と比較するステップを含める。 上記の数が基準数よりも多ければ、 1つ大きな大きさ閾値の大きさになるようにする。 大きさの分類のフローを簡単に示すと、図 14に示すようになる。図 14は、従来技術で 示した図 33の大きさの n段階分類を新たに示していることとなる。なお、図 12、 13に おいて、丸で囲んだ数字はスキャン回数を示し、縦軸は電圧であり、横軸は時間とな る力 各受光部がどのように変化するのか並べて示している。スキャンする方向は図 中の矢印の方向であり、フィルムの進行方向は矢印に対して垂直の方向である。 [0069] Fish eyes may become elliptical when the film is produced by heat stretching. In this case, there is a possibility that the size may be erroneously determined only by the steps described above. As shown in Figs. 12 (a) and 12 (b), the voltage signal changes according to the width of the fish eye 52a scanned by the sensor. As shown in Figs. 13 (a) and 13 (b), if the fisheye 52a has the same width in the scanning direction of the sensor, the maximum signal voltage is the same regardless of whether it is circular or elliptical. Let's do it. This is considered to be because the magnitude of the signal voltage is influenced by the scanning direction of the fish eye 52a. Therefore, the oval fisheye 52a It is determined to be smaller than the size. Therefore, the inspection method of the present invention includes, after the step (4), a step of comparing the number of light receiving portions that have received the light transmitted through the defective portion with the reference number. If the above number is larger than the reference number, the size is set to one larger size threshold. Fig. 14 shows the flow of size classification. Fig. 14 shows a new n-stage classification of the size of Fig. 33 shown in the prior art. In FIGS. 12 and 13, the numbers in circles indicate the number of scans, the vertical axis is the voltage, and the horizontal axis is the time force. . The scanning direction is the direction of the arrow in the figure, and the traveling direction of the film is the direction perpendicular to the arrow.
[0070] また、フィルムに光を透過させるときに、フィルムをフィルム製造時の引き出し方向に 移動させる。長軸とフィルムの移動方向が一致することにより、楕円形であれば円形 のフィッシュアイよりもフィッシュアイを透過した光をスキャンする回数が多くなる。した がって、上述した比較するステップによってフィッシュアイの大きさを 1つ大きな大きさ と判定することができる。  [0070] Further, when light is transmitted through the film, the film is moved in the drawing direction during film production. By matching the long axis and the moving direction of the film, the number of times of scanning the light transmitted through the fish eye is larger than that of the circular fish eye if it is elliptical. Therefore, the size of the fish eye can be determined to be one larger by the comparing step described above.
[0071] 大きさ閾値ごとに基準数が異なるようにする。フィッシュアイの大きさが異なる力もで ある。  [0071] The reference number is made different for each size threshold. It is also a force with different fisheye sizes.
[0072] 上述したように、本発明はセンサの分解能に影響されずにフィッシュアイの大きさを 判定することができる。フィッシュアイが楕円形であっても大きさを分類することができ る。  [0072] As described above, the present invention can determine the size of the fish eye without being influenced by the resolution of the sensor. The size can be classified even if the fish eye is oval.
[0073] 最後に必要に応じて不良部分の画像を生成し、コンピュータのディスプレイなどに 表示する。信号電圧を微分した信号が欠点信号として画像生成手段 35に入力され、 X方向および Y方向の同期信号に同期して画像を生成する。この画像は、後に説明 するように、検出したデータとして利用してもよい。  [0073] Finally, if necessary, an image of the defective portion is generated and displayed on a computer display or the like. A signal obtained by differentiating the signal voltage is input to the image generation means 35 as a defect signal, and an image is generated in synchronization with synchronization signals in the X and Y directions. As will be described later, this image may be used as detected data.
[0074] また、本発明の検査方法は、上述したステップで検出されたフィッシュアイの数を力 ゥントするステップを含めても良い。フィルムの使用目的などによってフィッシュアイの 許容数が異なるからである。フィッシュアイの数を単位面積当たりでカウントするステツ プを含めても良い。さらには、上述のフィッシュアイのカウントは、フィッシュアイの大き さごとにおこなっても良い。  [0074] The inspection method of the present invention may include a step of incrementing the number of fish eyes detected in the above-described steps. This is because the allowable number of fish eyes varies depending on the purpose of the film. A step of counting the number of fish eyes per unit area may be included. Furthermore, the above-described fish eye count may be performed for each fish eye size.
[0075] 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定 されることはない。例えば、フィルムが枚葉であり、フイノレムに光を透過させるときに、 フィルムを加熱延伸時の引き出し方向に対して斜め方向に移動させてもょ 、。斜め 方向にフィルムを移動させることにより、円形と楕円形のフィッシュアイの電圧信号が 異なるようになる。したがって、不良部分を透過した光を受光した受光部の数と基準 数と比較するステップをおこなわなくても良くなる。この場合、図 15 (a)、(b)に示すよ うに、円形のフィッシュアイと楕円形のフィッシュアイとで信号電圧の大きさが異なるた め、比較する手段や補正手段は含めずに、直接ホストコンピュータに大きさが入力さ れるようにする。 [0075] While the embodiments of the present invention have been described above, the present invention is limited to the above-described embodiments. Will never be done. For example, when the film is a single wafer and light is transmitted through the Finolem, the film may be moved in an oblique direction with respect to the drawing direction during heating and stretching. By moving the film in an oblique direction, the voltage signals of the circular and elliptical fish eyes become different. Therefore, it is not necessary to perform the step of comparing the number of light receiving parts that have received the light transmitted through the defective part with the reference number. In this case, as shown in Figs. 15 (a) and 15 (b), the magnitude of the signal voltage differs between the circular fish eye and the elliptical fish eye. The size should be input directly to the host computer.
[0076] また、フィルムをロールに巻く場合であっても、カメラの受光部の並びをフィルムの 移動方向に対して相対的に傾けることによって、図 15と同じになる。  Further, even when the film is wound on a roll, it becomes the same as FIG. 15 by tilting the arrangement of the light receiving portions of the camera relative to the moving direction of the film.
[0077] フィルムの種類または製造方法によってはフィッシュアイがフィルムの内部に埋もれ てしまう場合がある。すなわち、図 16 (a)、(b)のように、フィルム 3の材料が均一にな らずに、図中の符号 52eの部分のように、ごく一部に固まってしまう場合である。この ような場合、フィルム 3の目視ではフィッシュアイ 52eを認識できず、かつフィルム 3に 光を透過させるだけでは上手く検出できないおそれがある。そこで、このようなフイツ シュアィ 52eを検出する手段を設ける。  [0077] Depending on the type of film or the manufacturing method, fish eyes may be buried in the film. That is, as shown in FIGS. 16 (a) and 16 (b), the material of the film 3 does not become uniform, but becomes hard as shown by the reference numeral 52e in the figure. In such a case, the fish eye 52e cannot be recognized by visual observation of the film 3, and there is a possibility that it cannot be detected well only by transmitting light through the film 3. Therefore, means for detecting such a fitness 52e is provided.
[0078] 次に、その検出するための手段を説明する。図 17のように、その手段としては、光 源 9とセンサ 12sとの間で且つフィルム 3の上方および下方のそれぞれに偏光板 60を 配置する。偏光板 60の平面とフィルム 3の平面とが平行になるようにする。偏光板 60 は、直線偏光、円偏光、楕円偏光をおこなうもののいずれかを使用する。 2枚の偏光 板 60の種類は同じものを使用する。  Next, a means for detecting this will be described. As shown in FIG. 17, as the means, polarizing plates 60 are arranged between the light source 9 and the sensor 12s and above and below the film 3, respectively. The plane of the polarizing plate 60 and the plane of the film 3 are made parallel. As the polarizing plate 60, any one of linearly polarized light, circularly polarized light, and elliptically polarized light is used. The same type of polarizing plate 60 is used.
[0079] 直線偏光の偏光板 60を例に、検査が可能となる原理を説明する。図 17の偏光板 6 0およびフィルム 3の矢印は光の振動方向である。光源 9の光は、 1枚目の偏光板 60 によって、偏光軸と同方向の振動成分の光のみとなる。振動方向のそろった光のみ 力 Sフィルム 3に照射される。高分子で構成されたフィルム 3は、高分子の長軸がそろつ ていると、フィルム 3に入射した光は同方向に複屈折しながら進行する。しかし、フイツ シュアィがあると、その部分だけ複屈折する方向が異なる。したがって、もう 1枚の偏 光板 60は、フィッシュアイの部分を透過した光のみ(またはその逆)を透過させること ができる。その光をセンサ 12sで受光するため、フィッシュアイを判別することができる The principle that enables inspection will be described using the linearly polarized light polarizing plate 60 as an example. The arrows on the polarizing plate 60 and the film 3 in FIG. 17 indicate the vibration direction of light. The light from the light source 9 becomes only light having a vibration component in the same direction as the polarization axis by the first polarizing plate 60. Only light with the same direction of vibration is applied. In the film 3 made of a polymer, if the major axes of the polymer are aligned, the light incident on the film 3 travels while birefringing in the same direction. However, when there is a fitness, the birefringence direction differs only in that part. Therefore, the other polarizing plate 60 transmits only the light transmitted through the fisheye portion (or vice versa). Can do. Since the light is received by the sensor 12s, the fish eye can be identified.
[0080] 少なくとも一方の偏光板 60に、偏光板 60を回転させる機構を設ける。これは、フィ ルム 3によって複屈折する方向が異なり、偏光板 60の偏光軸の方向を変更する必要 があるからである。 [0080] At least one polarizing plate 60 is provided with a mechanism for rotating the polarizing plate 60. This is because the direction of birefringence differs depending on the film 3, and the direction of the polarization axis of the polarizing plate 60 needs to be changed.
[0081] 偏光板 60を移動させる手段を設けてもよい。フィルム 3の種類によって、偏光板 60 の必要の有無が変わる力もである。例えば、図 18 (a)のようにボード 64に偏光板 60 とガラス 62を交互に配列させる。ガラス 62は、全ての波長の光を透過させるものであ る。また、ガラス 62の代わりに、その部分に何も設けなくてもよい。図 18 (b)のように力 メラ 12の数は 4台である。カメラ 12のレンズの画角に入る位置と入らない位置に偏光 板 60をスライドさせる機構を設ける。また、フィルム 3の下側の偏光板 60にもスライド する機構を設けて、必要に応じて偏光板 60をフィルム 3の下方に配置するようにする  [0081] Means for moving the polarizing plate 60 may be provided. Depending on the type of film 3, the necessity of the polarizing plate 60 changes. For example, as shown in FIG. 18 (a), polarizing plates 60 and glasses 62 are alternately arranged on a board 64. The glass 62 transmits light of all wavelengths. Further, in place of the glass 62, nothing may be provided in that portion. As shown in Fig. 18 (b), the number of force lenses 12 is four. A mechanism is provided to slide the polarizing plate 60 between the position where the angle of view of the lens of the camera 12 enters and the position where it does not. In addition, a sliding mechanism is also provided on the lower polarizing plate 60 of the film 3 so that the polarizing plate 60 is disposed below the film 3 as necessary.
[0082] 光は偏光板 60を透過すると光量が減少する。したがって、偏光板 60による減光分 を補うために、光量を上げるための手段を設ける。例えば、光源が上下する機構を設 ける。偏光板 60の使用時は光源 9がフィルム 3に近づく。偏光板 60を使用しないとき は、光源 9はフィルム 3から遠ざかる。また、新たな光源 9を設け、偏光板 60の使用時 に、その光源 9がフィルム 3の下の近傍にスライドされて配置されるようにしてもょ 、。 [0082] When light passes through the polarizing plate 60, the amount of light decreases. Therefore, a means for increasing the amount of light is provided in order to compensate for the dimming by the polarizing plate 60. For example, a mechanism for moving the light source up and down is installed. When the polarizing plate 60 is used, the light source 9 approaches the film 3. When the polarizing plate 60 is not used, the light source 9 is moved away from the film 3. Also, a new light source 9 may be provided so that when the polarizing plate 60 is used, the light source 9 is slid and placed near the bottom of the film 3.
[0083] 偏光板 60を移動させる手段と光源 9の光量を上げるための手段とが 1つのボタンに よって制御されるようにしてもよい。偏光板 60を利用するとき、偏光板 60が移動する と共に光源 9がフィルム 3に近づく。偏光板 60を利用しないときは、偏光板 60が移動 すると共に光源 9がフィルム 3から遠ざ力るようにする。  [0083] The means for moving the polarizing plate 60 and the means for increasing the light quantity of the light source 9 may be controlled by one button. When the polarizing plate 60 is used, the polarizing plate 60 moves and the light source 9 approaches the film 3. When the polarizing plate 60 is not used, the polarizing plate 60 moves and the light source 9 is moved away from the film 3.
[0084] 偏光板 60を利用することによって、検査のできな力つたフィルムも検査可能となる。  [0084] By using the polarizing plate 60, it is possible to inspect a film that cannot be inspected.
また、偏光板 60の有無を選択できるようにすることによって、汎用性の高い検査装置 となる。  In addition, by making it possible to select the presence or absence of the polarizing plate 60, it becomes a highly versatile inspection apparatus.
[0085] さらに、上述した行程で検出したデータを種々利用できると便利である。以下、その データの利用につ 、て説明する。  [0085] Further, it is convenient if various data detected in the above-described process can be used. The use of the data will be described below.
[0086] 図 1に示したフィルム検査装置 10には検査データカ卩ェ装置 115が接続されて 、る 。検査データは検査データ加工装置 115へ送られて、そこでより利便性の高いもの に加工される。 [0086] The film inspection apparatus 10 shown in FIG. 1 is connected to an inspection data cache apparatus 115. . The inspection data is sent to the inspection data processing device 115 where it is processed into a more convenient one.
[0087] ところで、卷取機 7で巻き取られたフィルムは、フィルムの利用者の要請に応じてさ らに処理される場合がある。例えば、スリット処理で説明すると、ロール〖こされたフィル ムを卷き出しながら、フィルムの長さ方向に沿ってフィルムを切断して分割し、分割さ れた各フィルムをそれぞれ巻き取ってロールにする。これにより顧客に所望の幅のフ イルムを提供するのである。  [0087] By the way, the film wound up by the winder 7 may be further processed at the request of the film user. For example, in the case of the slit processing, while rolling out the film rubbed, the film is cut and divided along the length direction of the film, and each divided film is wound up into a roll. To do. This provides the customer with the desired width of film.
[0088] 図 1に示す押出機 1から卷取機 7までのラインでスリット処理しないのは、主に次の( 1)〜(3)の理由力もである。 (1)定テンションでロール端がそろうように巻かれたロー ルを顧客に提供するためである。このためには多数のローラや巻き取りを止めた状態 が必要であるが、押出機からはフィルムが連続成形されており、フィルムの巻き取りを 止めることができない。(2)フィルムがだれるのを防止するためである。押出機から出 た直後のフィルムを定テンションでロール端がそろうように巻き取ると、フィルムの巻き 締まり等が原因でフィルムがだれる。これを防止するために、押出機から出たフィルム については、巻きズレを無視して大雑把に巻いてロールにし、これをエージングした 後、スリット処理の際に定テンションでロール端がそろうように卷くのである。(3)フィル ムの幅は顧客に応じて異なるため、大きめの幅のフィルムを作製し、顧客の要請に応 じてフィルムをスリット処理する方が効率的である。  The reason why slit processing is not performed in the line from the extruder 1 to the rewinder 7 shown in FIG. 1 is mainly due to the following reasons (1) to (3). (1) To provide the customer with a roll wound at a constant tension so that the roll ends are aligned. For this purpose, it is necessary to stop a large number of rollers and winding, but since the film is continuously formed from the extruder, the winding of the film cannot be stopped. (2) This is to prevent the film from dripping. If the film immediately after coming out of the extruder is wound at a constant tension so that the roll ends are aligned, the film will sag due to the tightness of the film. In order to prevent this, the film from the extruder is roughly wound into a roll, ignoring the winding deviation, and after aging it, the roll ends are aligned at a constant tension during slitting. It is. (3) Since the width of the film varies depending on the customer, it is more efficient to produce a film with a larger width and slit the film according to the customer's request.
[0089] フィルムの処理としてスリット処理を説明した力 他に例えば、フィルム上に新たな層 を形成して多層フィルムを形成する処理がある。  [0089] The power for explaining the slit treatment as the film treatment In addition, there is a treatment for forming a multilayer film by forming a new layer on the film, for example.
[0090] 検査データは処理前のフィルムに関するものなので、それをそのまま処理後のフィ ルムに適用すると、処理後のフィルムについては、フィルム上の欠点の位置や分布を 容易に把握できないことになる。そこで、本実施形態では、検査データ加工装置 15 を用いて検査データをより利便性の高 、ものにカ卩ェして、処理後のフィルムにつ 、て も、フィルム上の欠点の位置や分布を容易に把握できるようにして 、る。  [0090] Since the inspection data relates to the film before processing, if it is directly applied to the film after processing, the position and distribution of defects on the film cannot be easily grasped for the film after processing. Therefore, in the present embodiment, the inspection data processing device 15 is used to check the inspection data for more convenience, and the position and distribution of defects on the film after processing. To make it easier to understand.
[0091] フィルムをロール状に巻き取る場合を例に、検査データの加工について詳細に説 明する。図 19は、このフローチャートである。まず、検査データを読み込む (ステップ Sl)。検査データは、品番、ロット No、検査開始'終了時刻、フィルム幅、フィルム長、 オリジナル欠点情報等を含み、各ロールにっ 、て作成される。 [0091] Processing of inspection data will be described in detail, taking as an example the case where a film is wound into a roll. FIG. 19 is this flowchart. First, test data is read (Step Sl). Inspection data includes product number, lot number, inspection start and end time, film width, film length, Including original defect information, etc., created for each roll.
[0092] オリジナル欠点情報とは、処理前のフィルム、つまり図 1の卷取機 7で巻き取られた フィルムについての欠点に関する情報である。具体的には、発見された各欠点につ いて、発見時刻(例えば 2005年 2月 4日 15時 4分)、大きさ(例えば大 '中 '小 '極小 のいずれかに分類)、フィルム上の位置(例えばフィルム長さ方向の位置 125. 8m、 フィルム幅方向の位置 41. 3mm)等により構成される。  [0092] The original defect information is information regarding defects of the film before processing, that is, the film wound up by the winder 7 in FIG. Specifically, for each defect found, the time of discovery (eg, 15: 4 on February 4, 2005), size (eg, classified as one of “large, medium”, “small” or “minimal”), on the film (For example, position 125.8m in the film length direction, position 41.3mm in the film width direction).
[0093] 次に、検査データのうちオリジナル欠点情報を配列 Aに格納する (ステップ S3)。そ して、表示用欠点情報を配列 Bに格納する (ステップ S5)。表示用欠点情報とは、後 述する欠点マップや欠点ヒストグラムを画面に表示するために用いるものである。検 查データを読み込んだ直後の初期状態では、オリジナル欠点情報がそのまま表示用 欠点情報として配列 Bに格納される。  [0093] Next, the original defect information in the inspection data is stored in the array A (step S3). Then, display defect information is stored in array B (step S5). The display defect information is used to display a defect map and a defect histogram described later on the screen. In the initial state immediately after the detection data is read, the original defect information is stored in array B as display defect information.
[0094] そして、図 1の検査データ加工装置 115のモニターに、検査データを編集したもの である欠点マップや欠点ヒストグラムを含む画面が表示される (ステップ S7)。図 20は 、この画面 117の一例を示す図である。欠点マップ 119は、欠点のフィルム上の位置 を示している。縦軸がフィルム長さ方向(m)、横軸がフィルム幅方向(mm)である。欠 点の大きさは、大、中、小、極小に分類されている。欠点ヒストグラム 121は、フィルム 上の欠点の分布を示しており、フィルム幅方向のものと、フィルム長さ方向のものとで 構成される。  Then, a screen including a defect map and a defect histogram obtained by editing the inspection data is displayed on the monitor of inspection data processing apparatus 115 in FIG. 1 (step S7). FIG. 20 is a diagram showing an example of this screen 117. The defect map 119 shows the position of the defect on the film. The vertical axis is the film length direction (m), and the horizontal axis is the film width direction (mm). The size of the defect is classified into large, medium, small, and minimal. The defect histogram 121 shows the distribution of defects on the film, and is composed of a film width direction and a film length direction.
[0095] ここでの欠点はフィッシュアイと称されるものである力 これ以外の欠点(例えば虫、 ピンホール)について表示してもよい。欠点の種類毎に表示してもよいし、全ての欠 点を同時に表示してもよい。フィッシュアイは、フィルムの製造時にフィルムの材料が 完全に溶融されな力つたり、その材料に不純物が混入したりすることによって発生す るものである (特許文献 1参照)。  [0095] The defect here is a force called a fish eye. Other defects (for example, insects, pinholes) may be displayed. Each defect type may be displayed, or all the defects may be displayed simultaneously. The fish eye is generated when the film material is completely melted during production of the film or impurities are mixed into the material (see Patent Document 1).
[0096] 画面上のタブ 123、ボタン 125及びチェックボックス 127は、検査データ加工(1)で 利用され (ステップ S9)、アイコン 129は検査データカ卩ェ(2)で利用される(ステップ S 11)。次に、検査データ加工(1) , (2)について説明する。  [0096] The tab 123, button 125, and check box 127 on the screen are used in the inspection data processing (1) (step S9), and the icon 129 is used in the inspection data cache (2) (step S11). . Next, inspection data processing (1) and (2) will be described.
[0097] 検査データ加工(1)は、いわゆるトリミングである。フィルム上の任意の領域の欠点 について、欠点マップや欠点ヒストグラムを生成する。これについて図 20〜図 23を用 いて説明する。図 21は、検査データカ卩ェ(1)のフローチャートである。図 22は検査 データ加工(1)の実行中の画面 117を示す図である。図 23は検査データカ卩ェ( 1 )が 実行された後の画面 17を示す図である。 The inspection data processing (1) is so-called trimming. Generate defect maps and defect histograms for defects in any area on the film. Use Figure 20 to Figure 23 for this. And explain. FIG. 21 is a flowchart of the inspection data cache (1). FIG. 22 shows a screen 117 during execution of inspection data processing (1). FIG. 23 is a diagram showing the screen 17 after the inspection data cache (1) is executed.
[0098] 初期状態は図 20に示す画面 17である。処理前のフィルムは、例えば幅 1200mm 、長さ 150mである。このフィルムをスリット処理で二等分した場合、一方のフィルム上 の欠点についての編集データ (欠点マップ、欠点ヒストグラム等)を得るには、以下の 操作をする。 [0098] The initial state is the screen 17 shown in FIG. The film before processing is, for example, 1200 mm wide and 150 m long. When this film is divided into two equal parts by slitting, the following operations are performed to obtain edit data (defect map, defect histogram, etc.) for defects on one film.
[0099] まず、操作者はボタン 125をクリックし、画面 117上にトリミング設定ウィンドウ(図示 せず)を表示させる。このウィンドウでトリミング範囲、つまり任意の領域を設定する。こ こでの任意の領域は、一方のフィルムに対応する領域である。例えば、領域がフィル ム幅方向 600mmから 1200mm、フィルム長さ方向 5mから 150mの場合、これらの 数字を入力し、確定する。これにより、図 22に示すように、画面 117上で任意の領域 131を指定する (ステップ Tl)。  First, the operator clicks the button 125 to display a trimming setting window (not shown) on the screen 117. In this window, a trimming range, that is, an arbitrary area is set. The arbitrary area here is an area corresponding to one film. For example, if the area is 600mm to 1200mm in the film width direction and 5m to 150m in the film length direction, enter these numbers and confirm. Thereby, as shown in FIG. 22, an arbitrary area 131 is designated on the screen 117 (step Tl).
[0100] 数字を入力する替わりに、欠点マップ 119上をマウスでドラッグして、任意の領域 13 1を指定してもよい。フィルム長さ方向 5m以下を削除したのは、フィルムの巻き始め の部分であるため欠点が多ぐ使用できないからである。ここでは 5mで説明したが、 必ずしもこれに限らない。  [0100] Instead of inputting a number, an arbitrary area 131 may be specified by dragging on the defect map 119 with a mouse. The reason why the film length direction of 5 m or less was deleted is that it is the beginning of winding of the film, so there are many disadvantages and it cannot be used. Here, 5m is explained, but it is not necessarily limited to this.
[0101] 任意の領域 131、つまりトリミング範囲を欠点マップ 119に全画面表示する力判断さ れる(ステップ T3)。トリミング範囲全画面表示のチェックボックス 27にチェックが入つ ていないと、検査データ加工(1)は終了する。チェックが入っていると、図 19のステツ プ S 1で読み込まれた検査データの中から任意の領域 131の検査データを抽出する (ステップ Τ5)。具体的には、図 19で説明した配列 Αに格納されたオリジナル欠点情 報の中から任意の領域 131のオリジナル欠点情報を選択する。  [0101] It is determined whether or not the arbitrary area 131, that is, the trimming range, is displayed on the defect map 119 in full screen (step T3). If the check box 27 of the trimming range full screen display is not checked, the inspection data processing (1) ends. If it is checked, the inspection data of an arbitrary area 131 is extracted from the inspection data read in step S1 in FIG. 19 (step Τ5). Specifically, the original defect information of an arbitrary area 131 is selected from the original defect information stored in the array IV described in FIG.
[0102] 選択されたオリジナル欠点情報に関し、フィルム幅方向にっ 、て、各欠点の欠点マ ップ 119上の位置を再計算し、その結果を図 19で説明した配列 Bに格納し (ステップ T7)、そしてフィルム長さ方向について、各欠点の欠点マップ上の位置を再計算し、 その結果を配列 Βに格納する (ステップ Τ9)。  [0102] With respect to the selected original defect information, the position on the defect map 119 of each defect is recalculated in the film width direction, and the result is stored in the array B described in FIG. T7), and recalculate the position of each defect on the defect map for the film length direction, and store the result in array ((step Τ9).
[0103] ステップ Τ7の再計算とは、配列 Αに格納された欠点のフィルム幅方向の位置一幅 の下限値である。一方、ステップ T9の再計算とは、配列 Aに格納された欠点のフィル ム長さ方向の位置—長さの下限値である。例えば領域 131は、フィルム幅方向が 60 Omm力ら 1200mm、フィルム長さ方向が 5mから 150mの範囲とし、ある欠点のフィ ルム幅方向の位置が 980. 5mm、フィルム長さ方向の位置が 19. 5mとする。 [0103] The recalculation in step Τ7 is the position of the defect width stored in the array Α in the film width direction. Is the lower limit of. On the other hand, the recalculation in step T9 is the lower limit value of the position-length in the film length direction of the defects stored in the array A. For example, in region 131, the film width direction is 1200 mm with a force of 60 Omm, the film length direction is in the range of 5 m to 150 m, and the position of a certain defect in the film width direction is 98.5 mm and the position in the film length direction is 19. 5m.
[0104] 再計算された欠点のフィルム幅方向の位置は、 980. 5mm-600mm= 380. 5m mであり、フィルム長さ方向の位置は、 19. 5m- 5m= 14. 5mとなる。なお、幅や長 さの下限値としたのは、領域は任意にとれるので、例えば、図 24に示すような領域 13 3では、符号 Aで示す部分が幅の下限値となり、符号 Bで示す部分が長さの下限値と なる。 The position of the recalculated defect in the film width direction is 98.5 mm-600 mm = 380. 5 mm, and the position in the film length direction is 19.5 m-5 m = 14.5 m. Note that the lower limit value of the width and length is set as the region can be arbitrarily selected. For example, in the region 133 as shown in FIG. The part is the lower limit of the length.
[0105] ステップ T9後、図 23に示すように、検査データ加工(1)でカ卩ェされた検査データを 編集したものである欠点マップ 119、欠点ヒストグラム 121が画面 117に表示される ( ステップ Tl l)。図 23の画面 117では、欠点マップ 119に領域 131が全画面表示さ れ、領域 131上の欠点についての欠点ヒストグラム 121が表示されている。なお、画 面 117に表示する替わりに、画面 117に表示する内容を紙で出力してもよ 、。  [0105] After step T9, as shown in FIG. 23, a defect map 119 and a defect histogram 121, which are the inspection data edited in the inspection data processing (1), are displayed on the screen 117 (step 117). Tl l). In the screen 117 of FIG. 23, a region 131 is displayed in full screen on the defect map 119, and a defect histogram 121 for defects on the region 131 is displayed. Instead of displaying on screen 117, the content displayed on screen 117 may be output on paper.
[0106] 以上のように、検査データ加工(1)によれば、検査データをより利便性の高いもの に加工することにより、スリット処理後のフィルムについても、フィルム上の欠点の位置 や分布を容易に把握することができる。また、フィルムとして利用しない部分 (ここでは フィルム長さ 0〜5mの部分)の欠点については加工により削除されている。したがつ て、より正確な編集データを得ることができる。  [0106] As described above, according to the inspection data processing (1), by processing the inspection data into a more convenient one, the position and distribution of defects on the film can be detected even for the slit-processed film. It can be easily grasped. In addition, the defects of the parts that are not used as films (here, the part with a film length of 0 to 5m) have been deleted by processing. Therefore, more accurate editing data can be obtained.
[0107] 任意の領域 131を欠点マップ 119上に全画面表示させている力 必ずしもこれに 限定されない。例えば、図 22において、任意の領域 131を指定し、欠点マップ 119 はこのままで、任意の領域 131上に存在する欠点について、欠点ヒストグラム 121を 作成するようにしてもよ ヽ。  [0107] The force of displaying the arbitrary area 131 in full screen on the defect map 119 is not necessarily limited to this. For example, in FIG. 22, an arbitrary region 131 may be designated, and the defect map 119 may be left as it is, and a defect histogram 121 may be created for defects existing on the arbitrary region 131.
[0108] なお、複数の任意の領域を画面上で設定することもできる。例えば、任意の領域を 四つ設定した場合、各領域と対応するタブ 123をクリックすると、その領域に関する画 面に切り替わる。  [0108] A plurality of arbitrary areas can be set on the screen. For example, when four arbitrary areas are set, clicking the tab 123 corresponding to each area switches to the screen related to that area.
[0109] 任意の領域の形状は自由に設定できる。例えば、図 25に示すように、領域 135が 円状でもよい。 [0110] 次に、検査データ加工(2)について説明する。検査データ加工(2)は、フィルムが 巻かれた状態の種類に応じて、欠点のフィルム上の位置情報を補正して、欠点マツ プゃ欠点ヒストグラムを生成する。フィルムが巻かれた状態の種類には、下巻き、上巻 き、反転上巻き、反転下巻きがあり、まず、これらについて説明する。 [0109] The shape of an arbitrary region can be freely set. For example, as shown in FIG. 25, the region 135 may be circular. Next, the inspection data processing (2) will be described. In the inspection data processing (2), the position information on the defect film is corrected in accordance with the type of the wound state of the film, and a defect map or defect histogram is generated. There are two types of film winding states: lower winding, upper winding, inverted upper winding, and inverted lower winding. First, these will be described.
[0111] 図 26は図 1の卷取機 7で巻き取られたフィルム 3を示す図であり、図 27はこのフィル ム 3の欠点マップ 119を示す図である。卷取機 7において、例えば幅 1200mm、長さ 150mのフィルム 3がコア 137をフィルム 3の上にして巻き取られ、欠点マップ 119の 座標(1000mm, 149m)で示す欠点 139がフィルム 3上に存在したとする。これはフ イルム 3の検査時における欠点のフィルム上の位置情報であり、検査データに含まれ ている。図 26に示すフィルム 3を「下巻き」と称する。  FIG. 26 is a view showing the film 3 wound up by the winder 7 of FIG. 1, and FIG. 27 is a view showing a defect map 119 of the film 3. In the take-up machine 7, for example, a film 3 having a width of 1200 mm and a length of 150 m is wound with the core 137 on the film 3, and the defect 139 indicated by the coordinates (1000 mm, 149 m) of the defect map 119 is present on the film 3 Suppose that This is the positional information on the film at the time of film 3 inspection, and is included in the inspection data. The film 3 shown in FIG. 26 is referred to as “bottom winding”.
[0112] 図 28 (a)の「下巻き」のフィルム 3を巻き出すと、フィルム 3は図 28 (b)に示すように 展開される。フィルム 3上の欠点 139の位置(1000mm, 149m)は、図 27の欠点マ ップ 119上に表れている欠点の位置と対応するので、図 27に示す欠点マップ 119を そのまま使用できる。  When the “bottom winding” film 3 of FIG. 28 (a) is unwound, the film 3 is developed as shown in FIG. 28 (b). Since the position of the defect 139 (1000 mm, 149 m) on the film 3 corresponds to the position of the defect appearing on the defect map 119 in FIG. 27, the defect map 119 shown in FIG. 27 can be used as it is.
[0113] フィルム 3の表裏が逆になるように「下巻き」のフィルム 3を引っ繰り返した状態が図 2 8 (c)に示す「上巻き」のフィルム 3である。「上巻き」のフィルム 3を巻き出すと、フィル ム 3は図 28 (d)のように展開される。欠点 139は(200mm, 149m)に位置している。 図 28 (b)と比べて欠点 139の位置が変わっている。よって、図 28 (d)のフィルム 3上 の欠点 139の位置は、図 27の欠点マップ 119上に表れている欠点の位置と対応し ない。図 27に示す欠点マップ 119を加工する必要がある。  The state in which the “bottom winding” film 3 is repeated so that the front and back of the film 3 are reversed is the “upper winding” film 3 shown in FIG. 28 (c). When the “upper roll” film 3 is unwound, the film 3 is developed as shown in FIG. 28 (d). Disadvantage 139 is located at (200mm, 149m). Compared to Figure 28 (b), the position of defect 139 has changed. Therefore, the position of the defect 139 on the film 3 in FIG. 28 (d) does not correspond to the position of the defect appearing on the defect map 119 in FIG. It is necessary to process the defect map 119 shown in Fig. 27.
[0114] 図 29 (a)に示すように、コア 141を下にして「下巻き」のフィルム 3を巻き取ると、「反 転上巻き」のフィルム 3となる。このフィルム 3を図 29 (b)の状態から図 29 (c)に示すよ うに展開すると、欠点 139の位置(1000mm, lm)がこれまでと異なるため、図 27に 示す欠点マップ 119をカ卩ェする必要がある。  As shown in FIG. 29 (a), when the “bottom winding” film 3 is wound with the core 141 facing down, the “inversion winding” film 3 is obtained. When this film 3 is unfolded from the state shown in Fig. 29 (b) as shown in Fig. 29 (c), the position of the defect 139 (1000mm, lm) is different from the previous position. It is necessary to
[0115] 図 30 (a)に示すように、コア 141を上にして「下巻き」のフィルム 3を巻き取ったもの が「反転下巻き」のフィルム 3である。これを図 30 (b)に示す状態から図 30 (c)に示す ように展開すると、欠点 139の位置(200mm, lm)がこれまでと異なる。これについ ても、図 27に示す欠点マップ 119をカ卩ェする必要がある。 [0116] なお、「下巻き」の他に、「上巻き」、「反転上巻き」、「反転下巻き」があるのは、以下 の理由力 である。例えば、使用者の装置が「下巻き」に対応せず、「上巻き」に対応 していることもある。また、フィルム上に新たに層を形成する場合、層の特性に応じて「 反転上巻き」又は「反転下巻き」が選択される。 [0115] As shown in FIG. 30 (a), a film 3 of "reverse winding" with the core 141 facing up is wound up. When this is developed from the state shown in Fig. 30 (b) as shown in Fig. 30 (c), the position of the defect 139 (200mm, lm) is different from before. Again, it is necessary to check the defect map 119 shown in FIG. [0116] In addition to "bottom winding", there are "upper winding", "inverted upper winding", and "inverted lower winding" for the following reasons. For example, the user's device may not support “bottom winding” but may support “upper winding”. When a new layer is formed on the film, “inverted upper winding” or “inverted lower winding” is selected according to the characteristics of the layer.
[0117] 図 31は、検査データ加工(2)のフローチャートである。検査データ加工(2)では、「 下巻き」のフィルムを基準にする。フィルムが「上巻き」、「反転上巻き」、「反転下巻き」 の場合、これらに対応するように、欠点のフィルム上の位置情報を変換する。  FIG. 31 is a flowchart of inspection data processing (2). Inspection data processing (2) is based on “bottom winding” film. When the film is “upper winding”, “inverted upper winding”, or “inverted lower winding”, the positional information on the defective film is converted so as to correspond to these.
[0118] まず、操作者は、図 20に示す画面 117で、「下巻き」、「上巻き」、「反転上巻き」、「 反転下巻き」のアイコン 129の中力もフィルムが巻かれた状態の種類に対応するアイ コン 129をクリックして、画面 17上でフィルムが巻かれた状態の種類を指定する (ステ ップ Ul, U3, U5)。  [0118] First, on the screen 117 shown in FIG. 20, the operator is in a state where the film is wound with the middle force of the “lower winding”, “upper winding”, “inverted upper winding”, “inverted lower winding” icons 129. Click the icon 129 corresponding to the type of film and specify the type of film roll on screen 17 (Steps Ul, U3, U5).
[0119] 「上巻き」の場合、以下のように処理される。図 28 (d)に示す「上巻き」の展開図を、 図 28 (b)に示す「下巻き」の展開図と比較すると、欠点 139のフィルム長さ L方向の位 置は同じである力 フィルム幅 W方向の位置は異なっている。したがって、フィルム幅 W方向について、各欠点の欠点マップ上の位置を再計算し (位置情報の変換)、そ の結果を図 19で説明した配列 Bに格納する(ステップ U7)。ステップ U7の再計算と は、フィルム幅の値—配列 Aに格納された欠点のフィルム幅方向の位置である。ステ ップ U7後、画面に欠点マップ、欠点ヒストグラムが表示される(ステップ U9)。  [0119] In the case of "upper winding", the following processing is performed. Comparing the development of “upper winding” shown in FIG. 28 (d) with the development of “lower winding” shown in FIG. 28 (b), the film length of defect 139 is the same force in the position in the L direction. Film width The position in the W direction is different. Therefore, the position of each defect on the defect map in the film width W direction is recalculated (conversion of position information), and the result is stored in the array B described in FIG. 19 (step U7). The recalculation in step U7 is the film width value—the position in the film width direction of the defects stored in array A. After step U7, the defect map and defect histogram are displayed on the screen (step U9).
[0120] 「反転上巻き」の場合、次のように処理される。図 29 (c)の「反転上巻き」の展開図と 図 28 (b)の「下巻き」の展開図を比較すると、欠点 139のフィルム幅 W方向の位置は 変化していないが、フィルム長さ L方向の位置は変化している。よって、フィルム長さ L 方向について、各欠点の欠点マップ上の位置を再計算し (位置情報の変換)、その 結果を図 18で説明した配列 Bに格納する (ステップ Ul l)。ステップ U11の再計算と は、フィルム長さの値 配列 Aに格納された欠点のフィルム長さ方向の位置である。 ステップ U11後、画面に欠点マップ、欠点ヒストグラムが表示される(ステップ U9)。  [0120] In the case of "inverted upper winding", the following processing is performed. Comparing the development of “Reverse top winding” in Fig. 29 (c) with the development of “Bottom winding” in Fig. 28 (b), the film width of defect 139 has not changed, but the film length The position in the L direction has changed. Therefore, the position on the defect map of each defect is recalculated in the film length L direction (position information conversion), and the result is stored in the array B described in FIG. 18 (step Ul l). The recalculation in Step U11 is the position in the film length direction of the defect stored in the film length value array A. After step U11, the defect map and defect histogram are displayed on the screen (step U9).
[0121] 「反転下巻き」の場合、図 30 (c)の展開図に示すように、図 28 (b)の「下巻き」の場 合と、欠点 39のフィルム幅 W方向、フィルム長さ L方向のいずれも異なっている。した がって、ステップ U13でステップ U7と同じ処理をし、ステップ U15でステップ U11と 同じ処理をした後、画面に欠点マップ、欠点ヒストグラムが表示される (ステップ U9)。 [0121] In the case of “reverse bottom winding”, as shown in the development view of FIG. 30 (c), the case of “bottom winding” in FIG. 28 (b) and the film width W direction and film length of defect 39 All of the L directions are different. Therefore, in step U13, the same processing as step U7 is performed, and in step U15, step U11 is performed. After performing the same process, the defect map and defect histogram are displayed on the screen (step U9).
[0122] 以上説明したように、検査データ加工(2)によれば、検査データをより利便性の高 いものに加工することにより、「下巻き」のフィルムを、「上巻き」、「反転上巻き」、「反転 下巻き」のフィルムにしても、欠点マップや欠点ヒストグラムを整合させることができ、フ イルム上の欠点の位置や分布を容易に把握できる。  [0122] As explained above, according to the inspection data processing (2), by processing the inspection data into a more convenient one, the “bottom winding” film can be changed into “upper winding”, “inversion”. The defect map and defect histogram can be matched even for “upper” and “inverted lower” films, and the position and distribution of defects on the film can be easily grasped.
[0123] 検査データ加工(1) , (2)でカ卩ェされる検査データの基礎となるフィルムの画像デ ータは、フィルムが押出機で連続成形されて巻き取られる工程で撮像して得られたも のである。この工程で一般に撮像が行われる。なぜなら上記工程後、スリット処理、膜 形成処理、巻き長を変える処理 (例えば、全長 100mのフィルムを要望に応じて 20m に巻き直す)等、フィルムは用途に応じた処理がされるので、画像データを得る箇所 を源流に統一した方が画像データの使 、勝手がょ 、からである。  [0123] The image data of the film, which is the basis of the inspection data covered in inspection data processing (1) and (2), is imaged in a process in which the film is continuously formed and wound by an extruder. It was obtained. In this step, imaging is generally performed. Because after the above process, the film is processed according to the application, such as slit processing, film formation processing, processing to change the winding length (for example, rewinding a film with a total length of 100 m to 20 m as required), image data This is because the use of image data is better if the source of the image is unified.
[0124] なお、画像データは、上記工程後に撮像されたものでもよい。例えば、フィルム上に 膜を形成して多層フィルムにする工程中に撮像するのである。多層フィルムをスリット 処理しても、検査データ加工(1) , (2)を適用することにより、スリット処理後のフィル ムについても、フィルム上の欠点の位置や分布を容易に把握することができる。  [0124] The image data may be captured after the above process. For example, imaging is performed during the process of forming a film on a film to form a multilayer film. Even when slitting multi-layer film, by applying inspection data processing (1) and (2), the position and distribution of defects on the film can be easily grasped even after film slitting. .
[0125] 次に、本実施形態に係る検査データ加工装置 15の構成の一例について説明する 。図 32の検査データカ卩ェ装置 115は、記憶部 151、通信部 153、入力部 155、処理 部 157及び出力部 159により構成される。  Next, an example of the configuration of the inspection data processing apparatus 15 according to the present embodiment will be described. 32 includes a storage unit 151, a communication unit 153, an input unit 155, a processing unit 157, and an output unit 159.
[0126] 記憶部 151には、通信部 153を介して図 1のフィルム検査装置 10から送られてくる 、フィルムを撮像して得られた画像データを基にしたフィルムの検査データが記憶さ れる。また、記憶部 151には、検査データの加工や編集に必要なプログラムが記憶さ れる。図 18、図 21及び図 31で説明した配列 Aや配列 Bは、記憶部 151に含まれる。 記憶部 151は、ハードディスク、メモリ等により実現される。通信部 153は、通信用ハ 一ドウェハやプログラムにより実現される。  [0126] The storage unit 151 stores the inspection data of the film based on the image data obtained by imaging the film, which is sent from the film inspection apparatus 10 of Fig. 1 via the communication unit 153. . In addition, the storage unit 151 stores a program necessary for processing and editing inspection data. The arrays A and B described with reference to FIGS. 18, 21, and 31 are included in the storage unit 151. The storage unit 151 is realized by a hard disk, a memory, or the like. The communication unit 153 is realized by a communication hard wafer or a program.
[0127] 入力部 155は、マウス、キーボード等により実現される。入力部 155において、フィ ルム上の任意の領域を画面上で指定したり、フィルムが巻かれた状態の種類を画面 上で指定したりするための入力が行われる。  [0127] The input unit 155 is realized by a mouse, a keyboard, or the like. In the input unit 155, an input for designating an arbitrary area on the film on the screen or designating the type of the state where the film is wound on the screen is performed.
[0128] 処理部 157は例えば CPUにより実現され、検査データカ卩ェのための処理が実行さ れる。処理部 157の領域指定部 161と抽出部 163で検査データカ卩ェ(1)の処理が実 行される。領域指定部 161は、操作者の入力によりフィルム上の任意の領域を画面 上に指定するものである。抽出部 163は、領域指定部 161で指定された領域の検査 データを、記憶部 151に記憶された検査データの中から抽出するものである。 [0128] The processing unit 157 is realized by, for example, a CPU, and executes processing for an inspection data cache. It is. Processing of the inspection data cache (1) is executed by the area specifying unit 161 and the extracting unit 163 of the processing unit 157. The area designation unit 161 designates an arbitrary area on the film on the screen by an operator's input. The extracting unit 163 extracts the inspection data of the area specified by the area specifying unit 161 from the inspection data stored in the storage unit 151.
[0129] 処理部 157の巻き状態指定部 165と変換部 167で検査データ加工(2)の処理が実 行される。巻き状態指定部 165は、操作者の入力によりフィルムが巻かれた状態の種 類を画面上で指定するものである。変換部 167は、記憶部 151に記憶された検査デ ータを読み出す。このデータに含まれるフィルムの検査時における欠点のフィルム上 の位置情報を、巻き状態指定部 165で指定された種類に対応した位置情報に変換 するものである。 The inspection data processing (2) is executed by the winding state designation unit 165 and the conversion unit 167 of the processing unit 157. The winding state designation unit 165 designates the type of the state in which the film is wound on the screen by the operator's input. The conversion unit 167 reads the inspection data stored in the storage unit 151. The position information on the defective film at the time of inspection of the film included in this data is converted into position information corresponding to the type designated by the winding state designation unit 165.
[0130] 出力部 159は、画像表示部 169と紙出力部 171で構成される。画像表示部 169は 、図 20、図 22や図 23に示す画面 117が表示されるモニターである。画像表示部 16 9には、検査データ加工(1) , (2)で加工された検査データを編集した編集データ( 欠点マップ、欠点ヒストグラム等)が表示される。紙出力部 171は、画像表示部 169に 表示された内容をプリントアウトするものである。画像表示部 169は LCD、 CRT等によ り実現される。紙出力部 171はプリンタにより実現される。  The output unit 159 includes an image display unit 169 and a paper output unit 171. The image display unit 169 is a monitor on which a screen 117 shown in FIGS. 20, 22, and 23 is displayed. The image display unit 169 displays edited data (defect map, defect histogram, etc.) obtained by editing the inspection data processed in the inspection data processing (1) and (2). The paper output unit 171 prints out the contents displayed on the image display unit 169. The image display unit 169 is realized by an LCD, a CRT, or the like. The paper output unit 171 is realized by a printer.
[0131] なお、本実施形態に係る検査データカ卩ェプログラムは、コンピュータに、図 19、図 2 1及び図 31に示す各ステップを実行させる。そして、コンピュータを図 32に示す各ブ ロックとして機能させることにより、上述した本実施形態に係る検査データ加工装置や 検査データ加工方法と同様の効果を得ることができる。上記プログラムは、光ディスク 等のコンピュータ読み取り可能な記憶媒体に記憶して配布してもよ 、し、インターネッ ト等で配信してもよい。  Note that the inspection data cache program according to the present embodiment causes the computer to execute the steps shown in FIG. 19, FIG. 21, and FIG. Then, by causing the computer to function as each block shown in FIG. 32, it is possible to obtain the same effect as the above-described inspection data processing apparatus and inspection data processing method according to the present embodiment. The program may be distributed by being stored in a computer-readable storage medium such as an optical disc, or may be distributed over the Internet.
[0132] このプログラムに検査データを含めれば、検査データ加工装置がフィルム検査装置 とネットワーク接続されて 、なくても、検査データの加工が可能である。  [0132] If inspection data is included in this program, inspection data can be processed without the inspection data processing device being connected to the film inspection device via a network.
[0133] その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の 改良、修正、変更を加えた態様で実施できるものである。  [0133] In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are made based on the knowledge of those skilled in the art without departing from the spirit of the present invention.
図面の簡単な説明  Brief Description of Drawings
[0134] [図 1]本実施形態に係るプラスチックフィルム検査及び検査データの加工についての 概略を示す図である。 [0134] [FIG. 1] About plastic film inspection and processing of inspection data according to this embodiment. It is a figure which shows an outline.
圆 2]本発明の検査装置の構成を示すブロック図である。 2] It is a block diagram showing the configuration of the inspection apparatus of the present invention.
圆 3]フィルムに不良部分があった場合に信号電圧に異常部分が発生している図で ある。 圆 3] This is a figure where an abnormal part occurs in the signal voltage when there is a defective part in the film.
圆 4]信号電圧を微分した図である。 [4] It is a diagram showing the differentiation of the signal voltage.
圆 5]不良部分を透過した光が明るぐ不良部分の幅が狭い場合の信号電圧を微分 した図である。 [5] This is a differentiation of the signal voltage when the light transmitted through the defective part is bright and the width of the defective part is narrow.
圆 6]不良部分を透過した光が暗ぐ不良部分の幅が狭い場合の信号電圧を微分し た図である。 [6] This is a diagram showing the differentiation of the signal voltage when the light transmitted through the defective part is dark and the width of the defective part is narrow.
圆 7]不良部分を透過した光が明るぐ不良部分の幅が広い場合の信号電圧を微分 した図である。 [7] This is a differentiation of the signal voltage when the width of the defective part where the light transmitted through the defective part is bright and the width is wide.
圆 8]不良部分を透過した光が暗ぐ不良部分の幅が広い場合の信号電圧を微分し た図である。 [8] This is a diagram showing the differentiation of the signal voltage when the light transmitted through the defective part is dark and the width of the defective part is wide.
圆 9]ノイズが発生した場合の信号電圧を微分した図である。 [9] This is a diagram showing the differentiation of the signal voltage when noise occurs.
[図 10]フィルムの不良部分を示す図であり、(a)はフィッシュアイの図であり、(b)はフ イルムに色が付いた不良の図であり、(c)はフィルムに付いた筋状の傷の図であり、 ( d)はフィルムにできた大きな欠点の図である。  [Fig. 10] A diagram showing a defective part of the film, (a) is a fish eye diagram, (b) is a defective image with a colored film, and (c) is a film attached to the film. It is a figure of a line-like wound, and (d) is a figure of a big fault made in a film.
[図 11]フィッシュアイの大きさを判定する図であり、 (a)は大きさ閾値 1の場合の図であ り、(b)は大きさ閾値 2の場合の図である。  FIG. 11 is a diagram for determining the size of a fish eye, (a) is a diagram in the case of a size threshold 1, and (b) is a diagram in the case of a size threshold 2.
[図 12]フィッシュアイの大きさによって信号電圧が異なることを示す図であり、 (a)は 3 つの受光部がフィッシュアイを透過した光を受光する場合であり、 (b)は 5つの受光部 がフィッシュアイを透過した光を受光する場合である。  [Fig. 12] This figure shows that the signal voltage varies depending on the size of the fish eye. (A) shows the case where three light receiving parts receive the light transmitted through the fish eye, and (b) shows five light receiving parts. This is the case where the part receives the light transmitted through the fish eye.
圆 13]フィッシュアイの大きさが異なっても信号電圧が同じになることを示す図であり、圆 13] It shows that the signal voltage is the same even if the fisheye size is different.
(a)は円形のフィッシュアイであり、 (b)は楕円形のフィッシュアイである。 (a) is a circular fish eye, and (b) is an elliptical fish eye.
[図 14]フィッシュアイの大きさを判定するためのフローを示す図である。  FIG. 14 is a diagram showing a flow for determining the size of a fish eye.
[図 15]フィッシュアイを斜めにスキャンした場合の図であり、 (a)は 5つの受光部がフィ ッシュアィを透過した光を受光する場合であり、 (b)は 7つの受光部がフィッシュアイを 透過した光を受光する場合である。 [図 16]フィルムの内部に形成されたフィッシュアイを示す図であり、 (a)は断面図であ り、(b)は正面図である。 [Fig. 15] This figure shows a case where fish eyes are scanned obliquely. (A) shows the case where five light receiving parts receive light that has passed through the fish eye, and (b) shows that seven light receiving parts have fish eyes. This is the case where the light transmitted through is received. FIG. 16 is a view showing fish eyes formed in the film, where (a) is a cross-sectional view and (b) is a front view.
[図 17]フィルムの上方および下方に偏光板を配置した図である。  FIG. 17 is a diagram in which polarizing plates are arranged above and below the film.
[図 18]偏光板を配置できる構成を示す図であり、 (a)は偏光板が配置されたボードを 示す図であり、 (b)はそのボードとカメラの位置関係を示す断面図である。  FIG. 18 is a diagram showing a configuration in which a polarizing plate can be arranged, (a) is a diagram showing a board on which a polarizing plate is arranged, and (b) is a cross-sectional view showing the positional relationship between the board and the camera. .
[図 19]本実施形態に係る検査データ力卩ェのフローチャートである。  FIG. 19 is a flowchart of inspection data strength according to the present embodiment.
[図 20]本実施形態に係る検査データ加工装置のディスプレイに表示される画面の一 例を示す図である。  FIG. 20 is a diagram showing an example of a screen displayed on the display of the inspection data processing apparatus according to the present embodiment.
[図 21]本実施形態に係る検査データカ卩ェ(1)のフローチャートである。  FIG. 21 is a flowchart of an inspection data cache (1) according to the present embodiment.
[図 22]検査データカ卩ェ(1)の実行中の画面を示す図である。  FIG. 22 is a diagram showing a screen during execution of the inspection data cache (1).
[図 23]検査データ加工(1)が実行された後の画面を示す図である。  FIG. 23 is a diagram showing a screen after inspection data processing (1) is executed.
[図 24]欠点マップ上で指定された任意の領域の一例を示す図である。  FIG. 24 is a diagram showing an example of an arbitrary area designated on the defect map.
[図 25]欠点マップ上で指定された任意の領域の他の例を示す図である。  FIG. 25 is a diagram showing another example of an arbitrary area designated on the defect map.
[図 26]図 1の卷取機で巻き取られたフィルムを示す図である。  FIG. 26 is a view showing a film wound up by the winder of FIG. 1.
[図 27]図 9のフィルムの欠点マップを示す図である。  FIG. 27 is a diagram showing a defect map of the film of FIG. 9.
[図 28]フィルムが巻かれた状態の種類のうち、「下巻き」と「上巻き」について説明する 図である。  FIG. 28 is a diagram for explaining “lower winding” and “upper winding” among the types of states in which the film is wound.
[図 29]フィルムが巻かれた状態の種類のうち、「反転上巻き」について説明する図で ある。  FIG. 29 is a diagram for explaining “inversion upper winding” among types of states in which a film is wound.
[図 30]フィルムが巻かれた状態の種類のうち、「反転下巻き」について説明する図で ある。  FIG. 30 is a diagram for explaining “reverse bottom winding” among the types of states in which the film is wound.
[図 31]本実施形態に係る検査データカ卩ェ(2)のフローチャートである。  FIG. 31 is a flowchart of an inspection data cache (2) according to the present embodiment.
[図 32]本実施形態に係る検査データ加工装置の機能ブロックを示す図である。  FIG. 32 is a diagram showing functional blocks of the inspection data processing apparatus according to the present embodiment.
[図 33]従来のフィッシュアイの検査方法のフローを示す図である。  FIG. 33 is a diagram showing a flow of a conventional fisheye inspection method.
符号の説明 Explanation of symbols
1 :押出機 1: Extruder
3:プラスチックフイノレム(シートの一例)  3: Plastic Finolem (an example of a sheet)
5 :ローフ :卷取機5: Loaf : Tearing machine
:光源:light source
:検査装置 : Inspection equipment
1:ホストコンピュータ1: Host computer
:カメラ :camera
:カメラ駆動部 : Camera drive
:分析手段 : Analytical means
:大きさ閾値の記憶手段 :コンパレータ : Size threshold storage means: Comparator
:基準数の記憶手段 : Reference number storage means
:比較器 : Comparator
:補正手段 : Correction method
:微分手段 : Differentiation means
:判定用閾値の記憶手段 :判定手段 : Judgment threshold storage means: Judgment means
:長さを計測する手段 :不良部分の種類の判定手段 5:検査データ加工装置 7:画面 : Means for measuring length: Means for judging type of defective part 5: Inspection data processing device 7: Screen
9:欠点マップ 9: defect map
1:欠点ヒストグラム 1: Defect histogram
3:タブ 3: Tab
5:ボタン 5: Button
7:チェックボックス 7: Check box
9:アイコン 9: Icon
1, 133, 135:任意の領域 7:コア 1, 133, 135: Any area 7: Core
9:欠点 141:コア 9: Disadvantages 141: Core
151:記憶部 151: Memory
153:通信部 153: Communication Department
155:入力部 155: Input section
157:処理部 157: Processing unit
159:出力部 159: Output section
161:領域指定部 163:抽出部 161: Area specification part 163: Extraction part
165:巻き状態指定部 167:変換部 165: Winding state designation part 167: Conversion part
169:画像表示部 171:紙出力部 169: Image display unit 171: Paper output unit

Claims

請求の範囲 The scope of the claims
[1] フィルムの不良を検査する装置であって、 [1] A device for inspecting film defects,
前記フィルムに透過させる光を発光する光源および複数の受光部が並んだセンサを 有し、該センサで前記フィルムをスキャンするカメラと、  A light source that emits light transmitted through the film and a sensor in which a plurality of light receiving units are arranged; a camera that scans the film with the sensor;
前記センサでスキャンして得た電荷信号を電圧信号に変換し、該電圧信号力 フィ ルムの不良部分を分析する手段と、  Means for converting a charge signal obtained by scanning with the sensor into a voltage signal, and analyzing a defective portion of the voltage signal force film;
前記電圧信号力 フィルムの不良部分の大きさを分別するための複数の大きさ閾値 を記憶する手段と、  Means for storing a plurality of size thresholds for classifying the size of the defective portion of the voltage signal force film;
分析された前記電圧信号と前記複数の大きさ閾値を比較し、該電圧信号がいずれ の大きさ閾値に一致する力を求める手段と、  Means for comparing the analyzed voltage signal with the plurality of magnitude thresholds to determine a force at which the voltage signal matches any magnitude threshold;
を含むフィルム検査装置。  Including film inspection equipment.
[2] 前記フィルムの不良部分の大きさを分別するための基準数を記憶する手段と、 前記不良部分をスキャンした回数と基準数とを比較し、該回数が基準数以上である か否力を求める手段と、 [2] The means for storing a reference number for separating the size of the defective portion of the film, the number of times the defective portion was scanned and the reference number are compared, and whether or not the number is equal to or greater than the reference number A means of seeking
を含む請求項 1のフィルム検査装置。  The film inspection apparatus according to claim 1, comprising:
[3] 前記分析する手段が、 [3] The means for analyzing is
前記電圧信号を微分する手段と、  Means for differentiating the voltage signal;
前記フィルムの不良部分である力否かを判定するための判断用閾値を記憶する手段 と、  Means for storing a judgment threshold for judging whether or not the force is a defective part of the film;
微分された前記電圧信号と判断用閾値とを比較し、フィルムの不良であるカゝ否かを 判定する手段と、  Means for comparing the differentiated voltage signal with a threshold for determination and determining whether the film is defective or not;
を含む請求項 2のフィルム検査装置。  The film inspection apparatus according to claim 2 comprising:
[4] 前記フィルムの不良部分をスキャンした回数、スキャン間隔、およびフィルムの移動 速度力 不良部分の長さを求める手段と、 [4] The number of times the defective portion of the film has been scanned, the scanning interval, and the moving speed of the film, the means for obtaining the length of the defective portion,
前記不良部分の長さと前記微分された電圧信号の波形とから不良部分の種類を分 類する手段と、  Means for classifying the type of the defective portion from the length of the defective portion and the waveform of the differentiated voltage signal;
を含む請求項 3のフィルム検査装置。  The film inspection apparatus according to claim 3.
[5] 前記フィルムをスキャンして得られた前記フィルムの検査データを記憶する記憶手段 と、 [5] Storage means for storing inspection data of the film obtained by scanning the film When,
スキャンされた前記フィルムを表示する画面と、  A screen displaying the scanned film;
表示された前記フィルムの任意の領域を前記画面で指定する領域指定手段と、 前記領域指定手段で指定された前記領域の検査データを、前記記憶手段に記憶さ れた前記検査データの中から抽出する抽出手段と、  An area designating unit for designating an arbitrary area of the displayed film on the screen; and inspection data of the area designated by the area designating unit are extracted from the inspection data stored in the storage unit Extraction means to
を含む請求項 4のフィルム検査装置。  5. The film inspection apparatus according to claim 4, comprising:
[6] 前記フィルムを巻き取る手段と、  [6] means for winding the film;
前記フィルムが巻かれた状態の種類を画面上で指定する巻き状態指定手段と、 前記記憶手段に記憶された前記検査データを読み出して、該検査データに含まれる 前記フィルムの検査時における欠点の前記フィルム上の位置情報を、前記巻き状態 指定手段で指定された種類に対応した位置情報に変換する変換手段と、 を含む請求項 5のフィルム検査装置。  A winding state designating unit for designating a type of a state in which the film is wound on a screen; and reading out the inspection data stored in the storage unit, and the defect of the film included in the inspection data at the time of inspection 6. The film inspection apparatus according to claim 5, further comprising: conversion means for converting position information on the film into position information corresponding to the type specified by the winding state specifying means.
[7] 前記光源とセンサとの間において、前記フィルムの上方および下方にそれぞれ配置 された偏光板を含む請求項 6のフィルム検査装置。  7. The film inspection apparatus according to claim 6, further comprising polarizing plates respectively disposed above and below the film between the light source and the sensor.
[8] フィルムの不良を検査する方法であって、  [8] A method for inspecting a film for defects,
前記フィルムに光を透過させるステップと、  Transmitting light through the film;
複数の受光部が並んだセンサで前記フィルムを透過した光を受光するステップと、 受光した前記光に応じて電圧信号を生成し、該電圧信号力 不良部分を分析するス テツプと、  A step of receiving light transmitted through the film by a sensor in which a plurality of light receiving portions are arranged; a step of generating a voltage signal according to the received light and analyzing the defective portion of the voltage signal force;
分析された前記電圧信号が複数の大きさ閾値のいずれに一致するかを求めるステツ プと、  A step of determining which of the plurality of magnitude thresholds the analyzed voltage signal matches;
を含むフィルム検査方法。  A film inspection method including:
[9] 前記大きさ閾値ごとに異なる基準数が設けられ、前記不良部分を透過した光を受光 した受光部の数と基準数とを比較するステップを含む請求項 8のフィルム検査方法。 9. The film inspection method according to claim 8, further comprising the step of comparing the reference number with a reference number that is different for each size threshold and receives the light transmitted through the defective portion.
[10] 前記フィルムが加熱延伸によって製造されたものであり、フィルムに光を透過させると きに、フィルムを加熱延伸時の弓 Iき出し方向またはその斜め方向に移動させるステツ プを含む請求項 9のフィルム検査方法。 [10] The film is manufactured by heat stretching, and includes a step of moving the film in the direction of protrusion of the bow I during heat stretching or in an oblique direction when transmitting light through the film. 9 film inspection methods.
[11] 前記分析するステップが、 前記電圧信号を微分するステップと、 [11] The analyzing step comprises: Differentiating the voltage signal;
微分された前記電圧信号と判断用閾値とを比較し、フィルムの不良であるカゝ否かを 判定するステップと、  Comparing the differentiated voltage signal with a threshold for determination, and determining whether the film is defective or not;
を含む請求項 10のフィルム検査方法。  The film inspection method according to claim 10.
[12] 前記フィルムの不良部分を透過した光を受光した回数、受光間隔、およびフィルムの 移動速度力 不良部分の長さを求めるステップと、 [12] determining the number of times the light transmitted through the defective portion of the film is received, the light receiving interval, and the moving speed force of the film; the length of the defective portion;
前記不良部分の長さと前記微分された電圧信号の波形とから不良部分の種類を分 類するステップと、  Classifying the type of defective portion from the length of the defective portion and the waveform of the differentiated voltage signal;
を含む請求項 11のフィルム検査方法。  The film inspection method according to claim 11, comprising:
[13] 前記フィルムを撮像して得られた画像データを基にした前記シートの検査データを記 憶する記憶ステップと、 [13] A storage step for storing inspection data of the sheet based on image data obtained by imaging the film;
操作者の入力により前記フィルム上の任意の領域を画面上で指定する領域指定ステ ップと、  An area designation step for designating an arbitrary area on the film on the screen by an operator's input;
前記領域指定ステップで指定された前記領域の検査データを、前記記憶ステップで 記憶された前記検査データの中から抽出する抽出ステップと、  An extraction step for extracting the inspection data of the region specified in the region specifying step from the inspection data stored in the storage step;
を含む請求項 12のフィルム検査方法。  The film inspection method according to claim 12, comprising:
[14] 前記フィルムを巻き取るステップと、 [14] winding up the film;
前記フィルムを撮像して得られたデータを基にした前記フィルムの検査データを記憶 する記憶ステップと、  A storage step for storing inspection data of the film based on data obtained by imaging the film;
操作者の入力により前記シートが巻かれた状態の種類を画面上で指定する巻き状態 指定ステップと、  A winding state designation step for designating on the screen the type of state in which the sheet is wound by an operator's input;
前記記憶ステップで記憶された前記検査データを読み出して、これに含まれる前記 シートの検査時における欠点の前記シート上の位置情報を、前記巻き状態指定ステ ップで指定された種類に対応した位置情報に変換する変換ステップと、  The inspection data stored in the storage step is read out, and the position information on the sheet of the defect at the time of inspection of the sheet included in the inspection data is a position corresponding to the type specified in the winding state specifying step. A conversion step for converting to information;
を含む請求項 13のフィルム検査方法。  The film inspection method according to claim 13.
[15] 前記光源とセンサとの間において、前記フィルムの上方および下方にそれぞれ偏光 板を配置し、該偏光板に光を透過させるステップを含む請求項 14のフィルム検査方 法。 15. The film inspection method according to claim 14, further comprising a step of disposing a polarizing plate above and below the film between the light source and the sensor and transmitting the light to the polarizing plate.
PCT/JP2006/312293 2005-06-21 2006-06-20 Film inspection apparatus and method WO2006137385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800219313A CN101198859B (en) 2005-06-21 2006-06-20 Film inspection device and film inspection method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005180395A JP4829542B2 (en) 2005-06-21 2005-06-21 Film inspection apparatus and film inspection method
JP2005-180395 2005-06-21
JP2005275574A JP4829578B2 (en) 2005-09-22 2005-09-22 Inspection data processing apparatus, inspection data processing method, inspection data processing program, and computer-readable storage medium storing inspection data processing program
JP2005-275574 2005-09-22

Publications (1)

Publication Number Publication Date
WO2006137385A1 true WO2006137385A1 (en) 2006-12-28

Family

ID=37570414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312293 WO2006137385A1 (en) 2005-06-21 2006-06-20 Film inspection apparatus and method

Country Status (3)

Country Link
KR (1) KR101211352B1 (en)
CN (1) CN101198859B (en)
WO (1) WO2006137385A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398435B (en) * 2007-09-29 2013-08-28 深圳市比克电池有限公司 Method for monitoring coiling material quality of winding machine
WO2019176903A1 (en) * 2018-03-15 2019-09-19 東レ株式会社 Foreign body inspecting method, inspecting device, film roll, and method for manufacturing film roll
CN113758426A (en) * 2021-08-17 2021-12-07 深圳新视智科技术有限公司 Method and device for determining width of cloth, electronic equipment and readable storage medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148790A1 (en) * 2010-05-25 2011-12-01 東レ株式会社 Film defect inspection device, defect inspection method, and release film
CN104359501A (en) * 2014-10-17 2015-02-18 成都聚智工业设计有限公司 Semi-automatic film quality testing mechanism
KR101733017B1 (en) * 2015-02-25 2017-05-24 동우 화인켐 주식회사 Apparatus and method for detecting defect of optical film
JP2017215277A (en) * 2016-06-02 2017-12-07 住友化学株式会社 Defect inspection system, film manufacturing device and defect inspection method
CN108362703A (en) * 2017-12-14 2018-08-03 北京木业邦科技有限公司 A kind of veneer detection method and detection device based on artificial intelligence
CN108982530A (en) * 2018-05-24 2018-12-11 京东方科技集团股份有限公司 A kind of detection system of backlight coiled strip
KR102342697B1 (en) * 2021-09-30 2021-12-24 주식회사 엔비컨스 Device for detecting pin hole

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269680A (en) * 1975-12-08 1977-06-09 Asahi Chemical Ind Device for detecting defects of nonnwaven fabric
JPS6222051A (en) * 1985-07-22 1987-01-30 Mitsui Petrochem Ind Ltd Fish eye measuring method for thermoplastic resin
JPS62202286A (en) * 1986-03-03 1987-09-05 Hitachi Ltd Illustrating device for image processor
JPH0460449A (en) * 1990-06-28 1992-02-26 Toshiba Mach Co Ltd Detecting apparatus of defect of sheet-shaped molded body
JPH0829145A (en) * 1994-07-16 1996-02-02 Ricoh Co Ltd Inspection of surface defect
JPH09105723A (en) * 1995-10-11 1997-04-22 Futec Inc Inspection setting value input displaying method in defect inspection and device therefor
JPH09210658A (en) * 1996-02-01 1997-08-12 Shin Etsu Chem Co Ltd Defect detection method for cover ray film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042949A (en) * 1989-03-17 1991-08-27 Greenberg Jeffrey S Optical profiler for films and substrates
JP2577651B2 (en) 1990-06-22 1997-02-05 富士写真フイルム株式会社 Defect inspection equipment
KR100437024B1 (en) * 2001-10-18 2004-06-23 엘지전자 주식회사 The inspection method of thin film and the same apparatus
JP2003344302A (en) * 2002-05-31 2003-12-03 Sumitomo Chem Co Ltd Method and equipment for inspecting polarization film
JP4403777B2 (en) * 2003-11-07 2010-01-27 ウシオ電機株式会社 Wiring pattern inspection apparatus and method
CN100394166C (en) * 2004-12-20 2008-06-11 华中科技大学 On-line datecting device for printed matter quality

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269680A (en) * 1975-12-08 1977-06-09 Asahi Chemical Ind Device for detecting defects of nonnwaven fabric
JPS6222051A (en) * 1985-07-22 1987-01-30 Mitsui Petrochem Ind Ltd Fish eye measuring method for thermoplastic resin
JPS62202286A (en) * 1986-03-03 1987-09-05 Hitachi Ltd Illustrating device for image processor
JPH0460449A (en) * 1990-06-28 1992-02-26 Toshiba Mach Co Ltd Detecting apparatus of defect of sheet-shaped molded body
JPH0829145A (en) * 1994-07-16 1996-02-02 Ricoh Co Ltd Inspection of surface defect
JPH09105723A (en) * 1995-10-11 1997-04-22 Futec Inc Inspection setting value input displaying method in defect inspection and device therefor
JPH09210658A (en) * 1996-02-01 1997-08-12 Shin Etsu Chem Co Ltd Defect detection method for cover ray film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398435B (en) * 2007-09-29 2013-08-28 深圳市比克电池有限公司 Method for monitoring coiling material quality of winding machine
WO2019176903A1 (en) * 2018-03-15 2019-09-19 東レ株式会社 Foreign body inspecting method, inspecting device, film roll, and method for manufacturing film roll
JPWO2019176903A1 (en) * 2018-03-15 2021-02-04 東レ株式会社 Foreign matter inspection method, inspection equipment, film roll and film roll manufacturing method
JP7218723B2 (en) 2018-03-15 2023-02-07 東レ株式会社 Foreign matter inspection method, inspection device, film roll, and film roll manufacturing method
CN113758426A (en) * 2021-08-17 2021-12-07 深圳新视智科技术有限公司 Method and device for determining width of cloth, electronic equipment and readable storage medium

Also Published As

Publication number Publication date
KR20080028922A (en) 2008-04-02
CN101198859A (en) 2008-06-11
CN101198859B (en) 2012-03-28
KR101211352B1 (en) 2012-12-11

Similar Documents

Publication Publication Date Title
WO2006137385A1 (en) Film inspection apparatus and method
JP5825278B2 (en) Defect inspection apparatus and defect inspection method
JP5619348B2 (en) Mold sheet inspection system
JP4793266B2 (en) Defect inspection method and apparatus for transparent plate
TWI484161B (en) Defect inspection system and filming device for defect inspection, image processing device for defect inspection, image processing program for defect inspection, recording media, and image processing method for defect inspection used therein
JP4930748B2 (en) Film inspection apparatus and method
CN105745523B (en) System and method for inspecting wound optical fiber
US20060203229A1 (en) Method and apparatus for inspecting defect in surface of metal roll
JP2017215277A (en) Defect inspection system, film manufacturing device and defect inspection method
WO2006108137A2 (en) Glass inspection systems and methods for using same
JP2007192660A (en) Surface flaw detecting method and detector of film
JP2005005619A (en) Inspection device of film carrier tape for electronic component mounting, and method for confirming pattern failure
JP7151469B2 (en) Sheet defect inspection device
JP2002365225A (en) Method and apparatus for inspecting sheet material
WO2013038972A1 (en) Plate glass inspection device, plate glass inspection method, plate glass manufacturing device, and plate glass manufacturing method
JP2011106995A (en) Substrate inspection apparatus and measuring operation system thereof
TWI435069B (en) An apparatus for inspecting defects of sheetfed film and a method for inspecting defects of sheetfed film
JP4534877B2 (en) Optical sensor device
JP3357968B2 (en) Lenticular lens sheet defect inspection method
TW201425910A (en) Defect inspection method of optical layer part of display device
KR102295669B1 (en) Appearance inspection management system, appearance inspection management device, appearance inspection management method, and appearance inspection management program
WO2020208981A1 (en) Testing device, testing method, and manufacturing method for film
JP2000019064A (en) Film evaluation method and film evaluation apparatus
JP3845958B2 (en) Periodic defect detection method and apparatus
JP4012371B2 (en) Defect inspection apparatus and method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021931.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087000756

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06766954

Country of ref document: EP

Kind code of ref document: A1