WO2006134711A1 - セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法 - Google Patents

セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法 Download PDF

Info

Publication number
WO2006134711A1
WO2006134711A1 PCT/JP2006/307258 JP2006307258W WO2006134711A1 WO 2006134711 A1 WO2006134711 A1 WO 2006134711A1 JP 2006307258 W JP2006307258 W JP 2006307258W WO 2006134711 A1 WO2006134711 A1 WO 2006134711A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
anhydrous gypsum
mass
cement admixture
natural anhydrous
Prior art date
Application number
PCT/JP2006/307258
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Watanabe
Kazuhiro Aizawa
Original Assignee
Denki Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kabushiki Kaisha filed Critical Denki Kagaku Kogyo Kabushiki Kaisha
Priority to JP2007521176A priority Critical patent/JP4954068B2/ja
Priority to CN2006800210003A priority patent/CN101198562B/zh
Publication of WO2006134711A1 publication Critical patent/WO2006134711A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2038Resistance against physical degradation
    • C04B2111/2053Earthquake- or hurricane-resistant materials

Definitions

  • the present invention relates to a cement admixture that defines the dissolution rate of natural anhydrous gypsum in a cement admixture, a cement composition using the admixture, and a method for producing a mortar or concrete product using the admixture.
  • Anhydrite is widely used as an admixture for atmospheric steam curing.
  • Anhydrous gypsum varies greatly depending on its heat treatment conditions and formation process, and natural anhydrous gypsum, depending on the production area.
  • Patent Document 1 Japanese Examined Patent Publication No. Sho 5 6-4 0 1 0 4
  • natural anhydrous gypsum has a high dissolution rate, and it is considered that the use of naphthalene-based melamine-based high-performance water reducing agents used in the manufacture of high-strength concrete causes inconveniences such as false coagulation.
  • O.OSQ / oN & HPC water A polycarboxylate-based water reducing agent that has a setting retarding property when SO ion concentration in an aqueous solution is 0.15 to 1.5 mass% when lg natural anhydrite is brought into contact with lOOg for 1 hour.
  • Patent Document 2 There has also been proposed a concrete blended together with and a method for producing a high strength concrete molded body using the same.
  • Patent Document 2 Japanese Patent No. 3 3 4 3 1 6 3
  • Patent Document 3 Japanese Patent Publication No. 5 7-4 9 5 04
  • hydrous acid-generated by-product gypsum has been found to be a cause of the destruction of the ozone layer by the use of chlorofluorocarbon gas, and an alternative technology has been developed to suppress the production of hydrofluoric acid.
  • anhydrous gypsum is drastically decreasing, making it difficult to use.
  • Natural anhydrous gypsum basically has a high dissolution rate, and the dissolution rate varies depending on the origin, the depth of the vein, and the impurities contained, and the solubility varies greatly depending on the powder conditions, so stable high strength development performance is achieved. It is difficult to secure.
  • the dissolution rate and reactivity differ depending on the temperature, so even if it is used in combination with a polycarboxylate-based water reducing agent, there are problems such as the occurrence of false coagulation and sudden slump loss depending on the type and amount of addition. Is inherent.
  • cement-mixed materials containing silica fume, silicate white clay, fly ash, etc. is usually used with silica fume, silicate white clay, fly ash, etc., for use with hydrofluoric acid by-product anhydrous gypsum that originally had a low dissolution rate. It is expected to have a pozzolanic reaction due to pressurized steam, and there is no technical idea to increase the strength with anhydrous gypsum by controlling the dissolution rate of natural anhydrous gypsum with a high dissolution rate as in the present invention. The effect is not shown either.
  • “a cement admixture containing anhydrous gypsum and thiocyanate is not shown either.
  • J's invention and “cement containing 3CaO ⁇ S1O2 content of 60% or more Portland cement, anhydrous gypsum, and formic acids.
  • natural anhydrous gypsum naturally anhydrous gypsum
  • silica fine powder is contained together with natural anhydrous gypsum (see Patent Documents 4 and 5).
  • Patent Document 4 Japanese Patent Laid-Open No. 9 1 5 6 9 7 7
  • Patent Document 5 Japanese Patent Application Laid-Open No. 9-012045
  • Patent Document 6 Japanese Patent Laid-Open No. 1 1 1 1 7 1 6 2 8
  • blast furnace slag fine powder is a material with latent hydraulic property that self-hardens in an alkaline atmosphere and has a property of more hydrating in the presence of gypsum. It ’s a must-have thing ”(paragraph [0 From 0 1 4 3), blast furnace slag fine powder and gypsum are essential, and ⁇ lime is not fixed to phosphoric acid eluted in water when using polymer flocculant-based incineration ash of sewage sludge. (Paragraph [0 0 1 6]) It is only used by force, and natural anhydrite is combined with lime, and the solubility of natural anhydrite is controlled for steam curing and high strength is expressed. It is not intended to be an admixture. '
  • the present invention is not limited to the type of water reducing agent, and improves the pseudo-caking property caused by the high dissolution rate of natural anhydrous gypsum and can stably maintain high strength expression performance. It is an object of the present invention to provide a material, a cement composition using the admixture, and a method for producing a monoletal or concrete product using the admixture.
  • the present invention employs the following means.
  • the amount of natural anhydrous gypsum in the cement admixture is equivalent to 1 g. made as samples, when contacted 0.05% Na 2 HPO 4 aqueous solution 100g and 1 hour at 20, in which the SC ion concentration in the aqueous solution shows the dissolution rate of from 0.027 to 0.30 mass 0/0 / hr It is a cement admixture characterized by being.
  • a cement composition wherein the cement admixture according to any one of (1) to (5) is added to cement.
  • a method for producing a mortar or concrete product characterized by subjecting the mortar or concrete material to which the cement admixture according to any one of (1) to (5) above is added to atmospheric steam curing.
  • the part and% which show the mixture ratio and addition amount which are used by this invention are a mass unit. It is preferable that the SC ionic concentration in the aqueous solution exhibits a dissolution rate of 0.04 to 0.30 mass% hr when it is contacted for 1 hour with stirring to such an extent that lg of natural anhydrous gypsum does not precipitate to the liquid lOOg.
  • the dissolution rate of the natural anhydrite in the cement admixture is The rate of dissolution of natural anhydrous gypsum in cement admixture is defined based on the finding that it is smaller than that of anhydrous gypsum alone. That is, a sample of natural anhydrite in a cement admixture containing calcined clay minerals, equivalent to 1 g, was sampled for 1 hour per 100 g of ° . ⁇ ⁇ / ⁇ ⁇ aqueous solution at 20 ° C. when contacted, S0 4 ion concentration in the aqueous solution is a cement admixture showing a dissolution rate of 0.027 to 0.30 wt% hr.
  • the S0 4 ion was quantified by taking a sample so that CaS0 4 of natural anhydrous gypsum in the cement admixture was lg, and performing the dissolution operation, followed by suction filtration using No. 5A filter paper. Dilute the filtrate to 200 ml with pure water. 'Cover with a watch glass and bring to a boil. Boiling is continued for 30 minutes while the aqueous solution of salty barium (lOOg / 1) is added dropwise with stirring and precipitated as BaSC. Then, after aging for 3 hours, filter with No.
  • the present inventor has found that calcined clay minerals and clay minerals do not have the strength-increasing effect due to their own pozzolanic activity, but have the effect of suppressing the dissolution rate of natural anhydrous gypsum, resulting in high strength. It has been found that. In addition, slaked lime and quicklime have been found to have the effect of suppressing the dissolution rate of natural anhydrous gypsum, resulting in high strength.
  • the calcined clay mineral of the present invention is a soil mainly composed of an aluminosilicate such as acid clay, activated clay (acid-treated acid clay), bentonite, strong orinite, chlorite, sericite, or rhodolite.
  • Clay minerals are non-fired acid clay, activated clay (acid clay treated with acid), force orinite, chlorite, sericite, wollastonite, and other aluminosilicates.
  • the amount of one or more admixture ingredients selected from calcined clay minerals, clay minerals, slaked lime, and quick lime is preferably 80. parts or less in a total of 100 parts of natural anhydrous gypsum and these admixture ingredients. 70 parts is more preferred. Even if it exceeds 80 parts, the effect of suppressing the dissolution rate of natural anhydrous gypsum reaches its peak, and the high strength development performance may not change, and in addition, the blending ratio of natural anhydrous gypsum decreases. In order to obtain the same strength, the amount of cement admixture added to the cement increases, which is not economical.
  • natural anhydrous gypsum When natural anhydrous gypsum is combined with calcined clay mineral and Z or clay mineral with slaked lime and Z or quick lime, 40 to 80 parts natural anhydrous gypsum, 30 to 10 parts calcined clay mineral and / or clay mineral, and The slaked lime and Z or quick lime are preferably 30 to 10 parts.
  • the amount of the cement admixture of the present invention is preferably 15 parts or less, more preferably 210 parts in terms of natural anhydrite relative to 100 parts of cement. Even if it exceeds 15 parts, the strength effect may reach its peak.
  • the normal pressure steam curing method is not particularly limited, but it must be maintained at a maximum temperature of 40 to 90 ° C for 4 to 6 hours, and the time from the start of steam curing (temperature rise) to the stop of steam curing should be 5 to 5 hours. 10 hours is preferred.
  • a necessary amount of a high-performance water reducing agent or a high-performance AE water reducing agent is used in combination.
  • polyalkylaryl sulfonate are based on any one of the above-mentioned systems, aromatic amino sulfonate systems, and melamine formalin resin sulfonate systems, and one or more of them are used.
  • Polyalkylaryl sulfonate-based high-performance water reducing agents include methyl naphthalene sulfonate formalin condensate, naphthalene sulfonic acid formalin condensate and anthracene sulfonic acid formalin condensate.
  • Setting delay is a small water reducing agent.
  • the amount of the above-mentioned high-performance water reducing agent added is preferably 4% by mass or less, more preferably 1.0 to 3.0% by mass with respect to cement in the form of a commercial product.
  • High-performance AE water reducing agents include improved types of high-performance water reducing agents, which can be used, but are usually referred to as polycarboxylate-based water reducing agents.
  • Copolymers derived from copolymers of acrylic acid and acrylic acid methacrylic acid salts and monomers that can be copolymerized with these monomers are the mainstream, and the amount added is lower than that of high-performance water reducing agents.
  • the water reduction rate is large. In addition, it has air entrainment properties and large delay in setting and curing, but it has the property of having slump retention.
  • the addition amount of the high-performance AE water reducing agents as described above is preferably 4 mass 0/0 or less with respect to the cement in the form of a commercial product, more preferably from 0.7 to 3.0 wt%.
  • the cement used in the present invention is usually a mixed cement mixed with various Portland cements such as early strength, moderate heat, low heat, sulfate resistance, white, or blast furnace slag fly ash.
  • various Portland cements such as early strength, moderate heat, low heat, sulfate resistance, white, or blast furnace slag fly ash.
  • it can be a cement with any combination of various Portland cements and mixed cements, or it can be a cement containing fly ash blast furnace slag or fly ash.
  • the method for adding the admixture of the present invention is not particularly limited.
  • Mortar or concrete When mixing, together with other mortar or concrete materials, you may add a mixture of natural anhydrous gypsum and calcined clay minerals, or a mixture of powdered and mixed powder. It may be added. Also, a cement composition obtained by mixing an admixture may be used.
  • Fine aggregate River sand from Himekawa, Niigata (5mm below)
  • Coarse aggregate Crushed stone from Himekawa, Niigata (13-5mm),
  • Water reducing agent Polyalkylaryl sulfonate high-performance water reducing agent (liquid)
  • Clay mineral A Acid white clay powder, plain specific surface area 7520cm 2 / g
  • Baked clay mineral B ground product of activated clay after filtering edible oil, calcined at 800 ° C, Blaine specific surface area 5510 cm 2 / g
  • Quick Lime C Gas-fired quick lime, purity 99%, powdered rice cake, plain specific surface area 8550cm 2 / g Slaked lime D: Quick Lime C digested and powdered, plain specific surface area lOOOOcmVg or more
  • Natural anhydrous gypsum was adjusted by adjusting the powder level while changing the feed amount with a vibratory mill with two cylinders (inner diameter of 15 cm). When calcined clay minerals were blended, they were simply mixed.
  • cement admixture with adjusted dissolution rate of only natural anhydrous gypsum in Table 1, concrete was mixed at 10 ° C or less to reduce false setting.
  • the basic composition of concrete is: unit cement amount 450kg / m 3 , water amount 130kg / m 3 , fine aggregate amount 710kg / m 3 , coarse aggregate amount 1150kg / m 3 , water reducing agent amount 9kg / m 3
  • 3L5kg / m 3 of cement admixture (7 parts by mass with respect to 100 parts by mass of cement) was replaced with fine aggregate to produce slump 1-8 cm concrete, and a specimen was molded.
  • the dissolution rate is 0.04 to 0.30 mass% / hr, and the effect of increasing the strength is recognized, and it is preferably 0.04 to 0.20 mass% hr. It was also found that when the dissolution rate exceeds 0.3% by mass / hr, pseudo-condensation was shown even at low temperatures, and workability deteriorated.
  • Table 3 shows the dissolution rates of natural anhydrous gypsum in cement admixtures in which 70% by mass of mineral B is mixed with the cement admixtures in Table 1. Table 3 shows that when calcined clay minerals are added, the dissolution rate of natural anhydrous gypsum in the cement admixture decreases. Table 3
  • Example i A similar test was conducted. The pre-curing was set at 20 ° C, and for comparison, concrete containing only 13.5kg / m 3 of calcined clay mineral was also added. The results are shown in Table 4.
  • Table 5 shows the cement admixture in which the dissolution rate of natural anhydrous gypsum in the cement admixture is adjusted by mixing the clay admixture of sample No. 4 in Table 1 with an arbitrary ratio. It is shown that the dissolution rate of natural anhydrous gypsum in cement admixture decreases as the amount of calcined clay mineral increases.
  • the figures in parentheses are parts by mass of natural anhydrous cocoon per 100 parts by mass of cement. From Table 6, when the admixture of the present invention is added in an amount equivalent to natural anhydrous gypsum with respect to 100 parts by mass of cement. When added so that the mass is constant (Experiment No.3-1 to No.3-15) In the case of fired clay clay and clay minerals (experiment ⁇ .3-1 to ⁇ ⁇ 3-9), the pozzolanic activity is low and the strength enhancement effect by the pozzolanic reaction is not Not accepted Therefore, the lower the dissolution rate of natural anhydrous gypsum in cement admixture, the higher the strength.
  • the ratio of natural anhydrous gypsum and calcined clay mineral is 30/70 and 20 Z 80, the strength reaches its peak, so even if natural anhydrous gypsum is less than 20 parts by mass, no increase in strength can be expected (Experiment No. 3 -8 and No.3-9).
  • the ratio of natural anhydrous gypsum and calcined clay minerals shows a strong effect from 95 Z 5, but as the ratio of calcined clay minerals is increased, the strength gradually increases and becomes remarkable from 90/10. ' become (Experiment No.3-2 to No.3-9). Therefore, the blending ratio of the natural anhydrous gypsum Z calcined clay mineral of the present invention is 95 Z 5-20 / 80, more preferably 90-10-3070.
  • Table 7 shows the dissolution rate of natural anhydrous gypsum in cement admixture in which two or more kinds of calcined clay minerals are mixed with cement admixture Sampnore No.5 in Table 1. In this case as well, it is shown that the dissolution rate of natural anhydrous gypsum in the cement admixture decreases as the blending amount of calcined clay mineral increases.
  • the ratio of natural anhydrite calcined clay mineral is 80/20 (calcined clay mineral ⁇ clay mineral 10: quick lime ⁇ slaked lime 10) ⁇ 40/60 (calcined clay mineral ⁇ clay mineral 30: quick lime ⁇ slaked lime 30)
  • the range shows a remarkable strength enhancement effect (Experiment No. 4-4 to No. 4-10).
  • Table 9 shows that even when a polycarboxylate-based water reducing agent is used, the same strength as when a polyalkylaryl sulfonate-based water reducing agent is used is obtained, and the higher the blended amount of the calcined clay mineral, the higher the strength. As shown, the strength tends to decrease when the absolute amount of natural anhydrous gypsum decreases even if it is too much, and the ratio of natural hydrous gypsum / calcined clay mineral, etc. The range of 40 Z 60. shows a remarkable strength enhancement effect (Experiment No. 5-4 to No. 5-10). Industrial applicability
  • the present invention provides a cement admixture mainly comprising at least one selected from natural anhydrous gypsum and calcined clay mineral, clay mineral, slaked lime, and quicklime, and the natural anhydrite in the cement admixture. It is a cement composition that regulates the dissolution rate and can achieve high strength using these admixtures. Therefore, it is necessary to increase the strength of civil engineering structures, concrete piles, poles, fume pipes, and other steam. Used for concrete products produced by curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

減水剤の種類に限定することなく、天然無水石膏の溶解速度が速いことに起因する偽凝結性を改善し、高強度発現性能を安定して確保することができるセメント混和材、その混和材を用いたセメント組成物、その混和材を用いたモルタル又はコンクリート製品の製造方法を提供することを課題とする。 天然無水石膏と、焼成粘土鉱物、粘土鉱物、消石灰、及び生石灰から選ばれる一種以上を主成分とするセメント混和材において、該セメント混和材中の天然無水石膏が1g相当量となるようにサンプリングし、20℃の0.05%Na2HPO4水溶液100gと1時間接触させたとき、該水溶液中のSO4イオン濃度が0.027~0.30質量%/hrの溶解速度を示すものであることを特徴とする。また、セメント組成物において、セメントに上記セメント混和材を添加することを特徴とする。さらに、モルタル又はコンクリート製品の製造方法において、上記セメント混和材を添加したモルタル又はコンクリート材料を常圧蒸気養生することを特徴とする。

Description

明細書 セメント混和材、 セメント組成物、 並びに、 モルタル又はコンクリート製品の 製造方法 技術分野
本発明は、 セメント混和材中の天然無水石膏の溶解速度を規定したセメント混 和材、 その混和材を用いたセメント組成物、 並びに、 その混和材を用いたモルタ ル又はコンクリート製品の製造方法に関する。 背景技術
無水石膏は常圧蒸気養生用の混和材として一般に普及している。 無水石膏はそ の熱処理条件や生成過程及び天然無水石膏では産地によっても大きく溶解速度が 異なる。
また、 常圧蒸気養生用の高強度混和材としての無水石膏の溶解速度は小さい方 が良いことも知られている。
このような性質に着目して、 0.05%Na2HPO4水溶液 100gに対して lgのフッ酸 発生副生無水石膏を 1時間接触させたとき、 該水溶液中の S04イオン濃度が 0.02 〜 0.14%の溶解量を呈するものが高強度化に卓効を示すとして、 これを用いた高 強度コンクリ一ト又はモルタル部材の製造方法が提案されている(特許文献 1参 照)。
特許文献 1 :特公昭 5 6— 4 0 1 0 4号公報
また、 天然無水石膏は溶解速度が速いので高強度コンクリートの製造に使用さ れるナフタレン系ゃメラミン系の高性能減水剤との併用では偽凝結性が生じるな どの不都合が生ずるとして、 タイ産の天然無水石膏を用いて、 O.OSQ/oN&HPC 水 溶液 lOOgに対して lgの天然無水石膏を 1 時間接触させたとき、 該水溶液中の SOイオン濃度が 0.15 〜 1.5質量ひ の溶解量を示すものを凝結遅延性のあるポリ カルボン酸塩系減水剤と一緒に配合するコンクリート及ぴこれを用いた髙強度コ ンクリート成形体の製造方法も提案されている(特許文献 2参照)。
特許文献 2 :特許第 3 3 4 3 1 6 3号公報
さらに、 フッ酸発生副生無水石膏を用いて常圧蒸気養生したコンクリート強度 をより増大させるために、 フッ酸発生副生無水石膏とシリカフラワー(シリカフ ユーム)、 珪酸白土、 フライアッシュ等を配合するセメント混和材も提案されて いる(特許文献 3参照)。
特許文献 3 :特公昭 5 7— 4 9 5 0 4号公報
しかしながら、 フッ酸発生副生無水石膏はフロンガスがオゾン層を破壊する原 因であることが判明してから代替技術が開発され、 フッ酸の製造が抑制されると 共に副生するフク酸副生無水石膏の発生量が激減しているという課題があり、 利 用することが困難となっている。
また、 天然無水石膏は基本的に溶解速度が速く、 産地や鉱脈の深さ、 含まれる 不純物によっても溶解速度は異なり、 また、 粉碎条件によっても大きく溶解度は 異な ¾ので安定した高強度発現性能が確保でき難いのが課題である。 また、 温度 によっても溶解速度や反応性が異なるのでポリカルボン酸塩系減水剤と併用して も、 その種類や添加量によつては偽凝結性や急なスランプロスが生ずるなどの課 題は内在している。
さら 、 シリカフューム、 珪酸白土、 フライアッシュ等を配合するセメント混 和材の塲合は、元々溶解速度の小さいフッ酸発生副生無水石膏と使用するために、 シリカフューム、 珪酸白土、 フライアッシュ等の常圧蒸気義生によるポゾラン反 応を期待するものであり、 本発明のような溶解速度の大きい天然無水石膏の溶解 '速度をコントロールして無水石膏による強度増進を図るという技術的思想は入つ ていなし、 効果も示されていないものである。 また、 「無水セッコゥとチォシァン酸塩とを含有してなるセメント混和材。 J の発明や 「3CaO · S1O2含有量 60重量%以上のポルトランドセメント、 無水セッ コゥ、 及びギ酸類を含有してなるセメント組成物。 j の発明において、 無水セッ コゥとして天然無水セッコゥ (天然無水石膏) を使用し、 天然無水石膏と共にシ リカ微粉末を含有させたものが公知である(特許文献 4及び 5参照)。
特許文献 4 :特開平 9一 1 5 6 9 7 7号公報
特許文献 5 :特開平 9一 2 0 5 4 5号公報
しかしながら、 これらの発明は、 高強度発現のために無水石膏にチォシアン酸 塩ゃギ酸類を併用することを必須とするものであり、蒸気養生するものではなく、 さらに潜在水硬性を期待した強度増進のためのシリカ微粉末として、 「シリカフ ユーム、 シリカダスト、 珪藻土、 珪酸白土、 フライアッシュ、 及ぴ髙炉スラグ等 の微粉末」 (段落 [ 0 0 1 1 ] ) が挙げられているが、 具体的に示されているの は、 天然無水石膏とシリカフューム、 珪藻土、 フライアッシュ、 及び高炉スラグ との組合せ (実施例参照) だけであり、 天然無水石膏を粘土鉱物等の潜在水硬性 の低い物質と組合せ、 しかも天然無水石膏の獰解性を蒸気養生用にコントロール して高強度発現させる混和材は示されていないし、 そのような発明思想も示され ていない。
さらに、 「下水汚泥焼却灰 5〜 3 0重量%、 塩素を含有したダスト 0〜 1 0重 量。/。、 高炉スラグ微粉末 1 0〜 5 0重量0 /。、 石膏 3〜 1 5重量%、 石灰 0〜 8重 量0 /0およびセメント 8 2〜 2 0重量%からなることを特徴とするセメント組成 物。」 の発明において、 石膏として天然無水石膏を俾用し、 天然無水石膏と共に 石灰を含有させたものも公知である(特許文献 6参照)。
特許文献 6 :特開平 1 1一 1 7 1 6 2 8号公報
しかしながら、 この発明は、 「高炉スラグ微粉末は、 アルカリ雰囲気で自硬す る潜在水硬性を有する材料で、 石膏の存在下でより水和反応する性質があり、 石 膏とともに本発明のセメント組成物になくてはならないものである」 (段落 [ 0 0 1 4 3) から、 高炉スラグ微粉末と石膏を必須とし、 「石灰は、 下水汚泥焼却 灰のうち高分子凝集剤系の焼却灰を使用するときには水に溶出するリン酸の固定 になくてはならないものである」 (段落 [ 0 0 1 6 ]) 力 ら使用するだけであり、 天然無水石膏を石灰と組合せ、 しかも天然無水石膏の溶解性を蒸気養生用にコン トロールして高強度発現させる混和材とするものではない。'
発明の開示
発明が解決しょうとする課題
本発明は、 減水剤の種類を限定することなく、 天然無水石膏の溶解速度が速い ことに起因する偽凝結性を改善し、 高強度発現性能を安定して確保することがで きるセメ ト混和材、 その混和材を用いたセメント組成物、 その混和材を用いた モノレタル又はコンクリート製品の製造方法を提供することを課題とする。
課題を解決するための手段
本発明は、 上記課題を解決するために、 以下の手段を採用する。
( 1 ) 天然無水石膏と、 焼成粘土鉱物、 粘土鉱物、 消石灰、 及び生石灰から選ば れる一種以上を主成分とするセメント混和材において、 該セメント混和材中の天 然無水石膏が 1 g相当量となるようにサンプリングし、 20での 0.05%Na2HPO4水 溶液 100gと 1時間接触させたとき、該水溶液中の SC イオン濃度が 0.027〜 0.30 質量0 /0/hrの溶解速度を示すものであることを特徴とするセメント混和材である。
( 2 ) 焼成粘土鉱物、 粘土鉱物、 消石灰、 及び生石灰から選ばれる一種以上を 80 質量%以下含有することを特@:とする前記 (1 ) のセメント混和材である。
( 3 ) 焼成粘土鉱物及び 又は粘土鉱物と消石灰及び Z又は生石灰とを組み合わ せて含有することを特徴とする前記 (1 ) のセメント混和材である。
( 4 ) 天然無水石膏を 40〜 80質量部、 焼成粘土鉱物及び/又は粘土鉱物を 30 (4) 天然無水石膏を 40〜 80質量部、 焼成粘土鉱物及び 又は粘土鉱物を 30 〜 10質量部、 消石灰及ぴ Z又は生石灰を 30〜 10質量部含有することを特徴と する前記 (3) のセメント混和材である。
(5) 常圧蒸気養生用であることを特徴とする前記 (1) 〜 (4) のいずれか一 項のセメント混和材である。
(6) セメントに前記 (1) 〜 (5) のいずれか一項のセメント混和材を添加す ることを特徴とするセメント組成物である。
(7)セメント 100質量部に対して、前記セメント混和材を天然無水石膏換算で 15 質量部以下添加することを特徴とする前記 (6) のセメント組成物である。
(8) 前記 (1) 〜 (5) のいずれか一項のセメント混和材を添加したモルタル 又はコンクリート材料を常圧蒸気養生することを特徴とするモルタル又はコンク リート製品の製造方法である。 発明の効果
本発明のセメント混和材を使用することによって、 特に蒸気養生で容易に高強 度が得られるので高い軸力の高強度コンクリートパイルやポール、 推進管等のコ ンクリート製品が製造できる、 脱型時に高 、強度が得られるのでプレテンション 方式及ぴポストテンション方式を問わず、 大きなプレストレスが導入できるので 耐震†生や高靱性が得られる、 並びに、 一回の常圧蒸気養生で、 蒸気養生と 10気 圧、 180 °Cのオートクレープ養生と併用した場合と同等の強度が得られるので、 経済的であると同時に環境に対する負荷も軽減するなどの効果を奏する。 発明を実施するための最良の形態
以下、 本発明を詳しく説明する。
なお、 本発明で使用する配合割合や添加量を示す部や%は質量単位である。 液 lOOgに対して lgの天然無水石膏を沈殿しない程度に撹拌しながら 1時間接触 させたとき、 該水溶液中の SC ィオン濃度が 0.04〜 0.30質量% hrの溶解速度 を示すものが好ましい。
本発明においては、 後述する実施例に示されるように、 天然無水石膏に焼成粘 土鉱物などを配合してセメント混和材にすると、 セメント混和材中の天然無水石 膏の溶解速度が、 上記天然無水石膏のみの場合よりも小さくなるという知見に基 づいて、 セメント混和材中の天然無水石膏の溶解速度を規定したものである。 すなわち、 焼成粘土鉱物などを配合したセメント混和材中の天然無水石膏が 1 g相当量となるようにサンプリングしたものを、 20 °Cの Ο.ί^ο/οΝ ΗΡΟ 水溶液 100g に対して 1時間接触させたとき、 該水溶液中の S04イオン濃度が 0.027 〜 0.30質量%hrの溶解速度を示すセメント混和材である。
なお、 S04イオンの定量方法は、 セメント混和材中の天然無水石膏の CaS04が lg となるようにサンプルを採取し、 前記溶解操作を行った後、 No.5A濾紙を用 いて吸引濾過し、 その濾液を純水で 200ml に希釈する。 '時計皿で蓋をして煮沸 状態にする。 塩ィヒバリウム水溶液(lOOg/1)を撹拌しながら過剰に滴下して BaSC として沈殿させながら煮沸を 30分継続する。 その後、 3時間熟成してから No.6A 濾紙で濾過して温水で 8〜 10回洗浄してから重量既知のルツボに濾紙毎入れ、 電気炉で 1000 °Cで 30分加熱して取り出し冷却して重量を測定する。 S04イオン 溶解量は-強熱残分 (g) X 0.411 X 100 (%)で計算する。
本発明者は、 焼成粘土鉱物及ぴ粘土鉱物は、 それら自身のポゾラン活性による 強度増進効果は認められないが、 天然無水石膏の溶解速度を抑制する作用効果が 認められ、 結果として高い強度が得られることを知見したものである。 また、 消 石灰及び生石灰の場合も天然無水石膏の溶解速度を抑制する作用効果が認めら れ、 結果として高い強度が得られることを知見したものである。
かつ、 焼成粘土鉱物及び/又は粘土鉱物と消石灰及びノ又は生石灰とを併用す ると、 さらに溶解速度は抑制され、 より高い強度が られることも知見したもの ると、 さらに溶解速度は抑制され、 より高い強度が得られることも知見したもの であり、 これらの併用が好ましい。
本発明の焼成粘土鉱物は、 酸性白土、 活性白土(酸性白土を酸処理したもの)、 ベントナイト、 力オリナイ ト類、 緑泥石類、 絹雲母、 ロウ石などのアルミノ珪酸 塩を主成分とする土状混合物を焼成したものであり、 粘土鉱物は、 焼成しない酸 性白土、 活性白土 (酸性白土を酸処理したもの)、 力オリナイト類、 緑泥石類、 絹雲母、 口ゥ石などのアルミノ珪酸塩を主成分とする土状混合物である。
焼成粘土鉱物、 粘土鉱物、 消石灰、 及び生石灰から選ばれる一種以上の混和材 成分の使用量は、 天然無水石膏とこれらの混和材成分との合計 100部中、 80 .部 以下が好ましく、 10 〜 70部がより好ましい。 80部を超えて配合しても天然無水 石膏の溶解速度を抑える効果は頭打ちとな.り、 高強度発現性能も変わらなくなる 場合があり、 加えて、 天然無水石膏の配合率が少なくなるので、 同様の強度を得 るためにはセメントに対するセメント混和材の添加量が多くなり、 経済的にも好 ましくない。
天然無水石膏と、 焼成粘土鉱物及び Z又は粘土鉱物と消石灰及び Z又は生石灰 とを組合わせる場合は、 天然無水石膏を 40 〜 80部、 焼成粘土鉱物及び 又は粘 土鉱物を 30 〜 10部、 並びに、 消石灰及び Z又は生石灰を 30 〜 10部とすること が好ましい。
本発明のセメント混和材の使用量は、 セメント 100部に対して、 天然無水石膏' 換算で 15部以下が好ましく、 2 10部がより好ましい。 15部を超えて使用し ても強度的効果は頭打ちとなる場合がある。
常圧蒸気養生方法は特に制限を受けないが、 40 〜 90 °Cの最高温度で 4 〜 6時 間保持することと、 蒸気養生開始 (昇温) から蒸気養生を止めるまでの時間は 5 〜 10時間が好ましい。
本発明において高性能減水剤や高性能 A E減水剤を必要量併用する。
高性能減水剤として市販されているものはポリアルキルァリルスルホン酸塩 系、 芳香族アミノスルホン酸塩系、 及びメラミンホルマリン樹脂スルホン酸塩系 のいずれかを主成分とするものであり、 これらのうちの一種又は二種以上を使用 するものである。
ポリアルキルァリルスルホン酸塩系高性能減水剤にはメチルナフタレンスルホ ン酸ホルマリン縮合物、 ナフタレンスルホン酸ホルマリン縮合物、 アントラセン スルホン酸ホルマリン縮合物などがあり、 減水率が大きくて空気連行性がなく、 凝結遅延性は小さい減水剤である。
上記のような高性能減水剤の添加量は、 市販品の形でセメントに対して 4質量 %以下が好ましく、 より好ましくは 1.0〜 3.0質量%である。
高性能 A E減水剤の市販品には高性能減水剤の改良型もあり、 これらも使用可 能であるが、 通常はポリカルボン酸塩系減水剤とも呼称されるように、 不飽和力 ルボン酸モノマーを一成分として含む共重合体又はその塩であり、 例えばポリア ノレキレングリコーノレモノアクリノレ酸エステノレ、 ポリァ /レキレングリコーノレモノメ タクリル酸エステル、 無水マレイン酸及ぴスチレンの共重合体やアクリル酸ゃメ タクリル酸塩の共重合体及ぴこれらの単量体と共重合可能な単量体から導かれた 共重合体などが主流であ 、 高性能減水剤系よりも少ない添加量で減水率は大き い。 そして空気連行性を有し、 凝結硬化の遅延性も大きい反面、 スランプ保持性 を有するという性質がある。
上記のような高性能 A E減水剤の添加量は、 市販品の形でセメントに対して 4 質量0 /0以下が好ましく、 より好ましくは 0.7〜 3.0質量%である。
本発明で使用されるセメントは普通、 早強、 中庸熱、 低熱、 耐硫酸塩性、 白色 などの各種ポルトランドセメント又は高炉スラグゃフライアツシュを混合した混 合セメントゃェコセメントである。 また、 各種ポルトランドセメントと混合セメ ントを任意に配合したセメントでもよく、 早強ポルトランドセメントに高炉スラ グゃフライアッシュを配合したセメントでもよレヽ。
本発明の混和材の添加方法は特に制限されない。 モルタル又はコンクリートの 練混ぜ時に他のモルタル又はコンクリート材料と一緒に、 天然無水石膏と焼成粘 土鉱物などを混合したもの及び混合して粉碎したものを添加してもよいし、 それ - ぞれの成分を別々に添加してもよい。 また、 混和材を混合してセメント組成物と したものを用いてもよいものである。
練混ぜ方法も特別な方法は必要でなく、 通常行われている練混ぜ方法で良い。 以下、本発明を実施例にて詳細に説明するが、これらに限られるものではない。 本発明の実施例で使用する材料と試験項目と'その方法を以下にまとめて示す。 <使用材料 >
セメント :普通ポルトランドセメント
細骨材 :新潟県姫川産川砂 (5mm下)
粗骨材 :新潟県姫川産砕石 (13〜 5mm) ,
減水剤 :ポリアルキルァリルスルホン酸塩系高性能減水剤 (液体)
天然無水石膏: 5 mm下に粗碎したもの、 CaS04純度 98 %
粘土鉱物 A:酸性白土粉碎品、 プレーン比表面積 7520cm2/g
焼成粘土鉱物 B :食用油を濾過した後の活性白土を 800 °Cで焼成したものの粉砕 品、 ブレーン比表面積 5510cm2/g
生石灰 C :ガス焼き生石灰、 純度 99 %、 粉碎品、 プレーン比表面積 8550cm2/g 消石灰 D:生石灰 Cを消化し、 粉碎したもの、 プレーン比表面積 lOOOOcmVg以 上
<試験項目とその方法 >
(1〉天然無水石膏の溶解速度の調節方法 .
天然無水石膏を 2筒(筒の内径 15cm)式振動ミルでフィード量を変えながら粉 末度を調整することで行った。 また、 焼成粘土鉱物などを配合する場合は単に混 合した。
(2)プレーン比表面積の測定
JIS R 5201による。 (3)圧縮強度の測定
JIS A 1132, JTS A 1108に準じた。 なお、 コンクリ一トの練混ぜは、 セメン ト、 セメント混和材、 細骨材、 粗骨材を 20秒間空練りした後、 水に減水剤を溶 解した練混ぜ水を添加して 3分間、 二軸強制練りミキサで練混ぜた。 参考例 ' 粉碎調整した本発明の天然無水石膏を主成分としたセメント混和材の溶解速度 などの物性値を表 1に示す。
表 1
Figure imgf000011_0001
表 1の天然無水石膏のみの溶解速度を調整したセメント混和材を用いて偽凝結 が軽減される 10 °C以下でコンクリートを練混ぜた。 コンクリートの基本配合は、 単位セメント量 450kg/m3、水量 130kg/m3、細骨材量 710kg/m3、粗骨材量 1150kg/m3、 減水剤量 9kg/m3 (水に内割り添加)であ 、 セメント混和材は 3L5kg/m3 (セメント 100質量部に対して 7質量部)を細骨材と置き換えて、 スランプ 1〜 8cmのコン クリートを作製し、 供試体を成形した。 成形した供試体を. 10 °cの室温で凝結始 発程度に硬化するまで前置きした後、 昇温速度 20 °C hrで 65 °Cまで上げて、 そ のまま 4時間保持してから蒸気バルブを止めて翌日まで蒸気養生槽中で徐冷し 材齢 1日の圧縮強度を測定した。 その結果を表 2に示す。
表 2
Figure imgf000012_0001
(註) ※:コンクリートは偽凝結気味
表 2より、 天然無水石膏のブレーン比表面積が大きく溶解速度が速くても、 ま た、 ブレーン比表面積が小さく溶解速度が遅くても高強度発現性能は失われるこ とが分かる。
そして、 溶解速度が 0.04〜 0.30質量%/hrで強度增進効果が認められ、 好まし くは 0.04〜 0.20質量%hrであることが示される。また、溶解速度が 0.3り質量%/hr を超えると低温でも偽凝結性が示され、 作業性が悪くなることも分かった。 実施例 1
表 1のセメント混和材に焼成粘; h鉱物 Bを 70:30質量部に混合したセメント混 和材中の天然無水石膏の溶解速度を表 3に示す。 表 3より、 焼成粘土鉱物を配合 すると、 セメント混和材中の天然無水石膏の溶解速度は小さくなることが示され る。 表 3
Figure imgf000013_0001
表 3のセメント混和材を用いて 20 。Cでコンクリートを練混ぜた。 コンクリー トの基本配合は参考例と同様とし、 セメント混和材は天然無水石膏の量が 31.5kg/m3一定となるように 45kg/m3を細骨材と置き換えて添加し、 実施例 iと同 様の試験を行った。なお、 前置き養生は 20 °Cとし、 比較のために焼成粘土鉱物の みを 13.5kg/m3添加したコンクリートも加えた。 その結果を表 4に示す。
表 4
Figure imgf000013_0002
(註) ※: コンクリ一トは偽凝結気味 表 4より、 焼成粘土鉱物を添加した場合にも、 セメント混和材中の天然無水石 膏の溶解速度が速くても遅くても高強度発現性能は失われることが分かる。特に、 溶解速度が 0.010質量%/hrと遅くても天然無水石膏の粉末度が小さいと、 より反 応量は少なくなるので強度増進効果が認められなくなることが示される(実験 No.2-10)。また、焼成粘土鉱物単独(Bのみ)では強度增進効果は僅力、 (実験 No.2-1 と実験 No.2-2の比較)であるが、 天然無水石膏との併用では粉末度と溶解速度が 適度であれば相乗的な強度增進も示される(例えば、 実験 No.l-4,No.l-5,No.l-7と 実験 No.2-5,No.2-6,No.2-8の比較)。 なお、'溶解速度が 0.30質量%hrを超えると 焼成粘土鉱物が含まれていても偽凝結性が示され、 作業性が悪くなることも分か つた。 ■ また、 天然無水石膏のみの溶解速度 0.040質量%/hrのセメント混和材 (表 1 のサンプル No.7) に焼成粘土鉱物などを配合することによって、 セメント混和 材中の天然無水石膏の溶解速度は 0.027質量%¾ (表 3のサンプル: ο.15〉 に低 下するが、 圧縮強度は 70.8N/mmz (表 2の実験 No.1-8) に対して、 72.7N/nmi2 (表 4の実験 No.2-9) に増大することが示され、 焼成粘土鉱物などを配合した場合 のセメント混和材中の天然無水 膏の溶解速度が 0.027質量%/hr以上が好ま.し いことが示される。 実施例 2
表 1のサンプル No.4のセメント混和材に焼成粘土鉱物などを任意の割合で混 合して、 セメント混和材中の天然無水石膏の溶解速度を調整したセメント混和材 を表 5に示す。 セメント混和材中の天然無水石膏の溶解速度は焼成粘土鉱物など の配合量が多くなるほど抑制されることが示される。 表 5
Figure imgf000015_0001
表 5のセメント混和材を用いて 20 °Cでコンクリートを練混ぜた。 コンクリー トの基本配合は参考例と同様とし、 セメント混和材はセメント 100質量部に対し て任意の割合で細骨材と置き換えて添加し、参考例と同様の試験を行った(但し、' 前置き養生は 20 °C)。 その結果を表 6に示す。
表 6
Figure imgf000016_0001
)内数値はセメント 100質量部に対する天然無水石齊の質量部。 表 6より、 本発明の混和材をセメント 100質量'部に対する天然無水石膏換算量. がつ質量と一定になるように添カ卩した場合 (実験 No.3-1〜 No.3-15) は、 焼成.粘 土鉱物などの中の成分が焼成粘土鉱物や粘土鉱物 (実験 Νο.3-1〜Νο·3-9) では、 ポゾラン活性が低くポゾラン反応による強度増進効果は短期材齢では認められな いことから、 セメント混和材中の天然無水石膏の溶解速度の小さい方が高い強度 を示している。
そして、 天然無水石膏と焼成粘土鉱物などの比率が 30 / 70と 20 Z 80の比較 では強度は頭打ちとなるので天然無水石膏は 20質量部未満としても強度の伸び は期待できない (実験 No.3-8と No.3-9)。 また、 天然無水石膏と焼成粘土鉱物な どの比率が 95 Z 5から強度的効果は示されるが、 焼成粘土鉱物などの比率を大' きくしていくと順次強度は増進し、 90 / 10 から顕著と'なる (実験 No.3-2 〜 No.3-9)。 したがって、本発明の天然無水石膏 Z焼成粘土鉱物などの配合比率は 95 Z 5〜 20 / 80であり、 より好ましくは 90ノ 10〜 30 70である。
なお、 焼成粘土鉱物などの中の成分が生石灰や消石灰の場合 (実験 No.3-10〜 No.3-15) では、 生石灰や消石灰によるセメントの凝結促進及ぴ水和箄の増大効 果から焼成粘土鉱物よりも強度は高くなる傾向が示ざれる。
天然無水石膏ノ焼成粘土鉱物などの配合比率を 50 / 50と一定にしてセメシト に対する天然無水石膏の添加量を変えていく (実験 No.3-17 〜 No.3-27) と、 強 度の向上は 2質量。/。以上で顕著となるが、 10〜 15質量%を超えて添加しても強 度は頭打ちとなり、 1 質量%未満では強度増進効果は小さいことが予測さ.れる。 したがって、 本発明のセメント混和材の添加量は天然無水石膏換算で 15質量% 以下であり、 好ましくは 2〜 10質量%であることが示される。 実施例 3
表 1のセメント混和材サンプノレ No.5 に焼成粘土鉱物などを 2種以上混合した セメント混和材中の天然無水石膏の溶解速度を表 7に示す。 この場合も焼成粘土 鉱物など配合量が多くなるほど、 セメント混和材中の天然無水石膏の溶解速度は 小さくなることが示される。 表 7
Figure imgf000018_0001
表 7のセメント混和材を用いて 30 °Cでコンクリートを練混ぜた。 コンクリー トの基本配合は参考例と同様とし、 セメント混和材は 45kg/m3—定量を細骨材と 置き換えて添加して参考例と同様の試験を行った (但し、 前置き養生は 30 °C)。 その結果を表 8に示す。
表 8
Figure imgf000018_0002
表 8より、 本発明の混和材をセメント 100質量部に対して 10質量部と一定に なるように添加した場合は、 焼成粘土鉱物などの配合量が多ぐなると、 セメント 混和材中の天然無水石膏の溶解速度も小さくなることから、 配合量が多くなるほ ど高い強度を示すが、 多くなりすぎても天然無水石膏の絶対量が少なくなると強 度は低下する傾向を示し、 3成分系では、 特に、 天然無水石膏ノ焼成粘土鉱物な どの比率が 80 / 20 (焼成粘土鉱物 ·粘土鉱物 10:生石灰 ·消石灰 10)〜 40 / 60 (焼成粘土鉱物 ·粘土鉱物 30:生石灰 ·消石灰 30) の範囲が顕著に強度増進効 果が示される (実験 No.4-4〜No.4-10)。 実施例 4
表 7のセメント混和材を使用して、 実施例 3と同様の試験を行った ς 但し、 減 水剤の種類を、 高性能減水剤であるポリアルキルァリルスルホン酸塩系減水剤か ら高性能 A E減水剤であるポリ力ルポン酸塩系減水剤に変更し、 その添加量を 5.85kg/m3 (この添加量でスランプ 1 〜 8cmが得られる) とした。 その結果を表 9に示す。
表 9
Figure imgf000019_0001
表 9より、 ポリカルボン酸塩系減水剤を使用した場合にも、 ポリアルキルァリ ルスルホン酸塩系減水剤を使用した場合と同等の強度が得られ、 焼成粘土鉱物な どの配合量が多くなるほど高い強度を示すが、 多くなりすぎても天然無水石膏の 絶対量が少なくなると強度は低下する傾向を示し、 3成分系で:は、 特に、 天然無 水石膏/焼成粘土鉱物などの比率が 80 Z 20〜 40 Z 60.の範囲が顕著に強度増進 効果が示される (実験 No.5-4〜 No.5-10)。 産業上の利用可能性
本発明は、 以上のように、 天然無水石膏と焼成粘土鉱物、 粘土鉱物、 消石灰、 及ぴ生石灰から選ばれる一種以上を主成分するセメント混和材において、 該セメ ント混和材中の天然無水石膏の溶解速度を規定したものであり、 並びにそれらの 混和材を用いた高強度を達成し得るセメント組成物であるから、 土木建築構造物 の高強度化やコンクリートパイルやポール、 ヒューム管、 その他の蒸気養生によ つて製造されるコンクリート製品に使用される。

Claims

請求の.範囲
1 . 天然無水石膏と、 焼成粘土鉱物、 粘土鉱物、 消石灰、 及び生石灰から選ばれ る一種以上を主成分とするセメント混和材において、 該セメント混和材中の天然 無水石膏が 1 g相当量となるようにサンプリングし、 20 °Cの 0.05%Na HPO4水溶 液 100gと 1時間接触させたとき、 該水溶液中の SC イオン濃度が 0.027〜 0.30 質量%/hrの溶解速度を示すことを特徴とするセメント混和材。
2 . 焼成粘土鉱物、 粘土鉱物、 消石灰、 及ぴ生石灰から選ばれる一種以上を 80 質量%以下含有することを特徴とする請求の範囲第 1項に記載のセメント混和 材。
3 . 焼成粘土鉱物及び /又は粘土鉱物と消石灰及び/又は生石灰とを靼み合わせ て含有するこ.とを特徴とする請求の範囲第 1項に記載のセメント混和材。
4 .天然無水石膏を 40〜 80質量部、焼成粘土鉱物及ぴ Z又は粘土鉱物を 30〜 10 質量部、 並びに、 消石灰及び/又は生石灰を 30〜 10質量部含有することを特徴 とする請求の範囲第 3項に記載のセメント混和材。
5 . 常圧蒸気養生用であることを特徴とする請求の範囲第 1項〜第 4項のいずれ か一項に記載のセメント混和材。
6 . セメントに請求の範囲第 1項〜第 5項のいずれか一項に記載のセメント混和 材を添加することを特徴とするセメント組成物。
7 . セメント 100質量部に対して、 前記セメント混和材を天然無水石膏換算で 15 質量部以下添加することを特徴とする請求の範囲第 6項に記載のセメント組成 物。
8 . 請求の範囲第 1項〜第 5項のいずれか一項に記載のセメント混和材を添: ¾口し たモルタル又はコンクリート材料を常圧蒸気養生することを特徴とするモルタル 又はコンクリート製品の製造方法。
PCT/JP2006/307258 2005-06-14 2006-03-30 セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法 WO2006134711A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007521176A JP4954068B2 (ja) 2005-06-14 2006-03-30 セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法
CN2006800210003A CN101198562B (zh) 2005-06-14 2006-03-30 水泥混合材料、水泥组合物以及灰浆或混凝土制品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2005/011203 2005-06-14
PCT/JP2005/011203 WO2006134670A1 (ja) 2005-06-14 2005-06-14 セメント混和材及びセメント組成物

Publications (1)

Publication Number Publication Date
WO2006134711A1 true WO2006134711A1 (ja) 2006-12-21

Family

ID=37532042

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/011203 WO2006134670A1 (ja) 2005-06-14 2005-06-14 セメント混和材及びセメント組成物
PCT/JP2006/307258 WO2006134711A1 (ja) 2005-06-14 2006-03-30 セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011203 WO2006134670A1 (ja) 2005-06-14 2005-06-14 セメント混和材及びセメント組成物

Country Status (5)

Country Link
KR (1) KR100947808B1 (ja)
CN (1) CN101198562B (ja)
MY (1) MY163157A (ja)
TW (1) TWI403484B (ja)
WO (2) WO2006134670A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275157A (ja) * 2009-05-29 2010-12-09 Sumitomo Osaka Cement Co Ltd セメント硬化体の作製方法
CN111410488A (zh) * 2020-04-25 2020-07-14 遂宁安通商品混凝土有限公司 C80高强混凝土及其制备方法
JP2020183339A (ja) * 2019-05-09 2020-11-12 宇部興産株式会社 モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
JP2021116195A (ja) * 2020-01-23 2021-08-10 デンカ株式会社 セメント混和材
CN113800789A (zh) * 2021-11-19 2021-12-17 山东绿达建设发展集团有限公司 一种高速公路路基缓凝水泥及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4954068B2 (ja) * 2005-06-14 2012-06-13 電気化学工業株式会社 セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法
GB2470401A (en) 2009-05-22 2010-11-24 Bpb Ltd Calcium sulphate-based products having enhanced water resistance
GB201019841D0 (en) * 2010-11-23 2011-01-05 Bpb Ltd Calcium sulphate-bases products and methods for the manufacture thereof
CN102172979A (zh) * 2011-02-12 2011-09-07 嘉兴学院管桩应用技术研究所 一种提高水泥制品混凝土强度的方法
CN103880374A (zh) * 2014-03-13 2014-06-25 安徽理工大学 一种利用脱硫石膏和聚丙烯纤维的新型水泥土搅拌桩
DE102015118391A1 (de) * 2015-10-28 2017-05-04 Thyssenkrupp Ag Verfahren zur Herstellung eines Zementklinkersubstituts, das vorrangig aus kalziniertem Ton besteht
CN106007649A (zh) * 2016-05-25 2016-10-12 句容联众科技开发有限公司 耐酸水泥混合材
TWI700258B (zh) * 2019-04-23 2020-08-01 王武添 乾式預拌混合粉料組成物
TWI700264B (zh) * 2019-04-23 2020-08-01 王武添 粉料預鑄式建材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640104B2 (ja) * 1976-10-15 1981-09-18
JPH0375254A (ja) * 1989-08-10 1991-03-29 Osaka Cement Co Ltd セメント組成物
JPH07206492A (ja) * 1994-01-25 1995-08-08 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH0920545A (ja) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk セメント組成物、それを用いたセメント硬化体、及びその製造方法
JPH09156977A (ja) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH11171628A (ja) * 1997-12-05 1999-06-29 Kawasaki City 下水汚泥焼却灰を用いたセメント組成物およびこのセメ ント組成物の使用方法とこの組成物を用いた成形物およ び構造物
JP3343163B2 (ja) * 1993-12-27 2002-11-11 太平洋セメント株式会社 コンクリート及びこれを用いた高強度コンクリート成形体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950007707B1 (ko) * 1992-04-23 1995-07-14 덴끼가가꾸고오교 가부시끼가이샤 시멘트 혼화재 및 이를 함유하는 시멘트 조성물

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640104B2 (ja) * 1976-10-15 1981-09-18
JPH0375254A (ja) * 1989-08-10 1991-03-29 Osaka Cement Co Ltd セメント組成物
JP3343163B2 (ja) * 1993-12-27 2002-11-11 太平洋セメント株式会社 コンクリート及びこれを用いた高強度コンクリート成形体の製造方法
JPH07206492A (ja) * 1994-01-25 1995-08-08 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH0920545A (ja) * 1995-07-05 1997-01-21 Denki Kagaku Kogyo Kk セメント組成物、それを用いたセメント硬化体、及びその製造方法
JPH09156977A (ja) * 1995-12-11 1997-06-17 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JPH11171628A (ja) * 1997-12-05 1999-06-29 Kawasaki City 下水汚泥焼却灰を用いたセメント組成物およびこのセメ ント組成物の使用方法とこの組成物を用いた成形物およ び構造物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275157A (ja) * 2009-05-29 2010-12-09 Sumitomo Osaka Cement Co Ltd セメント硬化体の作製方法
JP2020183339A (ja) * 2019-05-09 2020-11-12 宇部興産株式会社 モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
JP2021116195A (ja) * 2020-01-23 2021-08-10 デンカ株式会社 セメント混和材
JP7444619B2 (ja) 2020-01-23 2024-03-06 デンカ株式会社 セメント混和材
CN111410488A (zh) * 2020-04-25 2020-07-14 遂宁安通商品混凝土有限公司 C80高强混凝土及其制备方法
CN113800789A (zh) * 2021-11-19 2021-12-17 山东绿达建设发展集团有限公司 一种高速公路路基缓凝水泥及其制备方法

Also Published As

Publication number Publication date
TWI403484B (zh) 2013-08-01
KR100947808B1 (ko) 2010-03-15
TW200710061A (en) 2007-03-16
KR20080025680A (ko) 2008-03-21
WO2006134670A1 (ja) 2006-12-21
MY163157A (en) 2017-08-15
CN101198562B (zh) 2012-10-17
CN101198562A (zh) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2006134711A1 (ja) セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法
JP4392765B2 (ja) セメント添加材及びセメント組成物
US20030188669A1 (en) Complex admixture and method of cement based materials production
JP5931317B2 (ja) 水硬性組成物および該水硬性組成物を用いたコンクリート
JP5732690B2 (ja) 水硬性組成物および該水硬性組成物を用いたコンクリート
WO2008015767A1 (en) Cement admixture and cement composition making use of the same
JP2014148434A (ja) 水硬性組成物
Reddy et al. Study on effect of alccofine and nano silica on properties of concrete-A review
JP4954068B2 (ja) セメント混和材、セメント組成物、並びに、モルタル又はコンクリート製品の製造方法
JP4982332B2 (ja) 急硬性セメント組成物用混和材、並びにこれを含有する急硬性セメント組成物、急硬性セメント混練物及び吹付材料
JP2009227549A (ja) セメント添加材及びセメント組成物
WO2003043947A2 (en) High performance concretes that do not contain additions with latent hydraulic activity
JP5688069B2 (ja) セメント組成物、それを用いたモルタル又はコンクリート
JP2010195622A (ja) 減水剤組成物及びそれを用いたモルタル又はコンクリート
JPH11116306A (ja) セメント混和材及びそれを含有したセメント組成物
JP4538108B2 (ja) 高性能減水剤組成物及びセメント組成物
JP2010030862A (ja) セメント添加材及びセメント組成物
JP4745259B2 (ja) セメント組成物
JP2009234890A (ja) セメント組成物、それを用いたモルタル又はコンクリート
Pagé et al. The role of superplasticizers in the development of environmentally-friendly concrete
JP2002104852A (ja) 高強度セメント混和材及びそれを用いたセメント組成物
JP2824287B2 (ja) セメント混和材
JP2019123650A (ja) 高強度セメント及び高強度コンクリート
JP2006182614A (ja) セメント用減水剤及び水硬性組成物
KR100658965B1 (ko) 시멘트 혼화재 및 그것을 사용한 시멘트 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021000.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521176

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1200702679

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1020077029330

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06731206

Country of ref document: EP

Kind code of ref document: A1