WO2006134178A1 - Dispositivo de control/protección para redes de distribución eléctrica - Google Patents

Dispositivo de control/protección para redes de distribución eléctrica Download PDF

Info

Publication number
WO2006134178A1
WO2006134178A1 PCT/ES2005/000334 ES2005000334W WO2006134178A1 WO 2006134178 A1 WO2006134178 A1 WO 2006134178A1 ES 2005000334 W ES2005000334 W ES 2005000334W WO 2006134178 A1 WO2006134178 A1 WO 2006134178A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
voltage
protection device
distribution networks
networks according
Prior art date
Application number
PCT/ES2005/000334
Other languages
English (en)
French (fr)
Inventor
Hugo Baroja Fernandez
Juan Antonio Sanchez Ruiz
Estibaliz NUÑEZ GONZALEZ
Original Assignee
Ormazabal Protection & Automation, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ormazabal Protection & Automation, S.L. filed Critical Ormazabal Protection & Automation, S.L.
Priority to AT05759364T priority Critical patent/ATE420368T1/de
Priority to DE602005012322T priority patent/DE602005012322D1/de
Priority to ES05759364T priority patent/ES2319670T3/es
Priority to PCT/ES2005/000334 priority patent/WO2006134178A1/es
Priority to EP05759364A priority patent/EP1906190B1/en
Publication of WO2006134178A1 publication Critical patent/WO2006134178A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/142Arrangements for simultaneous measurements of several parameters employing techniques covered by groups G01R15/14 - G01R15/26
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/16Measuring asymmetry of polyphase networks

Definitions

  • the present invention has as its object the control / protection of the electrical distribution networks, based on means for capturing voltage and intensity and electronic control and protection devices integrated in the electrical equipment that make up the electrical distribution network.
  • the purpose of the device is to provide voltage and intensity measurement functions, presence / absence of voltage detection, fault passage detection, protection functions based on voltage and intensity measurement, control, automation, etc., as well as a function of communications that together with the digital inputs and outputs available to the device, allows the control, protection and supervision of each of the electrical equipment of the installation to be incorporated, which incorporates it both locally and remotely.
  • the electrical equipment, cells or switchgear, transformers, etc., used in maneuvering and / or protection facilities of the transformation centers, distribution centers or substations, are capable of incorporating electronic devices that allow the automation of functions, control and monitoring of parameters or values, the communication between equipment both locally and remotely, etc. This allows to perform functions of supervision and control of the distribution network that are more necessary and required every day, given the growing need for automation in the distribution networks, as a consequence of a greater demand for the quality of supply.
  • the electrical equipment that makes up the distribution network to incorporate electronic relays that can, for example, perform the presence and absence of voltage detection, overcurrent and fault or short circuit protection, intensity and voltage measurement, control local, automatisms, etc.
  • each of these electronic relays can be linked to a data concentrator and equipment controller, which includes the possibility of registering the status of each of the electrical equipment that integrates the installation (data acquisition system and supervision control), programming sequences of action or maneuver etc. Therefore, the transformation or distribution centers can be equipped with different electronic relays, each of them fulfilling a certain function and these, in turn, can be accompanied by a data concentrator and equipment controller for the automation of the installation.
  • Each of these electronic relays can be mounted in a control cabinet independent of the corresponding electrical equipment or can be integrated into its metal enclosure, together with the rest of the switchgear.
  • the inclusion of electronic equipment in the enclosure of each electrical equipment allows the whole of the transformation or distribution center to have a smaller size, simplicity of installation, higher quality and avoid field work.
  • the number of transformation or distribution centers is very high in a distribution network, which poses a series of requirements as are the standardization of facilities to facilitate their engineering, assembly, maintenance, future extensions, control, automation, etc.
  • One way to achieve this purpose is the use of integrated control and protection devices.
  • control and protection devices consist of electronic equipment that covers the functions of protection, measurement, control and automation of the various components or electrical equipment.
  • These control and protection devices are constituted by different functional modules, among which there is a module corresponding to the analog inputs, directly connected to high voltage transformers measuring / protecting current and voltage.
  • the voltage transformers are installed in the base of the corresponding electrical equipment and their assembly is carried out on site. They are shielded plug-in transformers. Given its volume, one cannot be installed for each phase because the base of the switchgear lacks space for it. When installed, adjusted and checked on site, installation errors of the transformers can occur. These transformers can also be the origin of explosions that lead to the destruction of the switchgear and its connections, due to ferroeresonance problems.
  • This capacitive voltage signal is usually used for the indication or detection of presence / absence of voltage and allows, as said, obtain voltage measurements, using a measurement circuit that is placed in parallel with the device for indicating or detecting the presence of voltage.
  • some designs take advantage of the accessible points in the voltage presence detection devices to drive the voltage signal to a measuring device.
  • this voltage measurement system is not reliable, since the signal obtained from the bushing is very weak, so that the measurement is influenced by any parasitic capacity that arises between the voltage presence detector and the measurement circuit
  • These parasitic capacities are basically due to the cables that connect the detection device and the measuring equipment. Since this connection is made in the field, without control over the kind of cable used, nor over the layout thereof, these parasitic capacities are unpredictable and usually variable in time.
  • the above solution presents the risk that due to a defect in the measurement circuit a defect occurs in the indication or detection circuit of presence / absence of voltage and this provides an erroneous diagnosis of the indication of presence of voltage, presenting itself in this way, a risk for operators.
  • This fault location system causes defects to occur until the exact location of the damaged section, causing the number of maneuvers necessary to identify the area in defect and replace the service in the Healthy sections are high, with the consequent damage to customers due to the time taken to get the replacement of the service. For this reason, more and more, we resort to solutions of centers with remote control and motorized equipment, so that the maneuvers can be performed from the checkpoint instead of going to the centers to maneuver the network, thus shortening the service replacement times.
  • the location of defects based on the test / error system causes inconvenience to customers, voltage that appears briefly to disappear again, and an accelerated aging of the equipment connected to that network. Therefore, for the identification of a missing section, sometimes the fault passage detection is used.
  • the header switch of the substation opens and clears the fault.
  • the electronic devices provided with fault passage detection installed in the transformation or distribution centers through which the fault current has passed indicate the passage thereof, facilitating the operator the identification of the damaged network section.
  • This intensity is not the product of a defect, but of the behavior usual of the transformer in its connection, and yet the intensity that appears in the network can be detected as a fault current by the analog devices.
  • all the fault passage detectors indicate the passage of the same and confuse the operator to identify the damaged section.
  • the transformer connection current together with the absence of voltage, causes all the fault passage indicators to signal its passage.
  • the fault passage detectors erroneously indicate sections without fail as if they did, not helping the operators in the replacement of the service.
  • the length of the line The value of these currents depends on the voltage, the length of the line, the relative position of the conductors and the type of cables, insulated or bare conductors. During normal operation, the capacitive current is small. In the electrical distribution network, and especially with underground cables and an isolated neutral regime, when a defect occurs between a phase and earth, in the lines parallel to the line in defective discharge currents appear on the distributed capacities of the line, called capacitive return currents. These return currents can cause the fault passage indicators to signal incorrectly. Thus, there is a network configuration in which the detection of the presence of voltage is not sufficient together with the detection of an overcurrent or intensity of failure to correctly indicate a fault.
  • Figure 5 illustrates the case in which a branch is produced from a line that starts from the substation, that is, the switch of the substation protects two lines.
  • the circuit breaker opens the circuit, both lines remain without voltage, so that the fault steps of both lines will indicate the existence of a fault.
  • Some fault steps will indicate it correctly and others erroneously because the intensity they have detected is a capacitive return intensity.
  • the fault steps that combine absence of voltage and high intensity step do not always correctly indicate the existence of a fault.
  • the integrated control / protection device must be able to receive orders and in turn operate on the switchgear.
  • errors may occur in the transmission of the order, or it may not be executed due to a failure in the drive mechanism of the switchgear to which the order is transmitted.
  • the operator can interpret that the equipment in the network is arranged in a way (closed, sectioned or grounded) and yet the reality is very different, so that the replacement of the electrical service is complicated when unknown The real situation of the network.
  • the control / protection device object of the present invention deals with a set formed by means for capturing voltage and intensity and a three-phase electronic numerical device, which is integrated into the electrical equipment of the electrical distribution facilities as transformation centers , distribution centers or substations, so that the use of cabinets on equipment or wall cabinets as an added element is avoided.
  • Numeric and three-phase means a device capable of measuring and treating instantaneous and discrete values of intensity and / or voltage of each phase by calculation. This allows to calculate effective values of voltage and intensity, values of the intensities and homopolar tensions, energies, powers, etc.
  • the control / protection device allows to perform both locally and remotely, maneuver applications, local control, automatisms, interlocks, presence / absence of voltage detection, anomaly detection, intensity measurements, temperature of a transformer, Ia pressure of a gas, of the oil level, etc., as well as of implementing, in coordination with the header protection curves, the function of fault passage detection in those networks where the capacitive return currents can become of a magnitude greater than the nominal magnitude of adjustment of the protection curve in the electronic header device.
  • there is a single control / protection device that performs the functions of several electronic equipment, reducing the dimensions of each of the electrical equipment in which it is integrated, achieving more compact, simple and reliable electrical installations to put in operation
  • control / protection device object of the invention is based on
  • the voltage measurement circuit is placed in series with the indication or detection circuit of presence / absence of voltage.
  • the voltage measurement circuit is disposed between the capacitive voltage socket provided by the bushing screen and the indication or detection circuit of presence / absence of voltage or after the indication or detection circuit of presence / absence of voltage and comprises elements that do not affect or interrupt the voltage presence indication / detection circuit, such as a low voltage transformer, so that a possible failure in the measurement circuit would allow the voltage presence detection circuit to be maintained, a circuit that constitutes a Security element for operators. In this way, it is possible to avoid the use of two differentiated voltage signals for both applications, which means avoiding the two screens mentioned in the bushing of the patent EP 0851442.
  • the device of. Control / protection object of the invention incorporates an intensity measurement based on intensity sensors integrated in the electrical equipment itself, which are installed, adjusted and checked at the factory, so that assembly and connection work on site are eliminated, eliminating Installation errors of the collectors and reducing the time and cost of the labor of the installation.
  • the integrated control system becomes operative. This way of installing the intensity sensors is described in patent ES2174754.
  • the control / protection device object of the invention allows the identification of the section in the absence of a line by means of a fault passage detection function, with the characteristic that said fault step detection function identifies the permanent defects by combining the functions of overcurrent or fault intensity together with a three-phase voltage detection logic. In this way, the defect zone is immediately identified to replace the service in the healthy sections, the number of maneuvers on the elements of the network is reduced and consequently the number of solicitations in it, extending the useful life of the teams.
  • the detection of the intensity is carried out by calculating the effective values thereof, so that the circulation of transformer connection intensities, which contain a continuous current transient, does not cause them to be perceived as fault intensities, avoiding incorrect detections.
  • the fault step function is It implements using the voltage detection in case of failure and if a prolonged absence of voltage occurs the fault step is indicated.
  • the control / protection device has been provided with the possibility of coordinating its operation with other devices by means of what are called trigger curves.
  • the intensity must circulate a time that is a function of the value of said intensity. Therefore, for very high intensities, the time needed to indicate the fault step is reduced, since if the intensity has a high value it is because there is really a lack in that network section.
  • the switch of the substation will have already opened the circuit, the fault passage indicator through which the capacitive return intensity circulates has not had time to indicate the fault, so that only the indicators by which really The fault has passed signal correctly.
  • the previous system is applicable to several isolated neutral systems, however when the neutral regime is compensated, in the line in which the fault occurs, the intensity may be lower than that of the adjacent lines.
  • the directionality of the intensities must be established, that is, it must be determined if the circulation of a high intensity is due to the presence of a fault in the line (circulation of the intensity towards the points of electrical consumption) or if it is a capacitive return intensity (circulation of the intensity towards the point of electrical supply). In this way the incorrect detection of faults is avoided due to the capacitive return currents in the lines parallel to the defective line.
  • This discrimination is made using not only the presence or absence of tension, but the measure of tension provided by the new circuit of measurement / detection of presence of voltage along with the detection of the intensity.
  • the measurement of the three phase voltages of the network allows to determine the so-called polarization voltage, which allows to determine the direction of the intensity.
  • the control / protection device is associated with a sectioning element that disconnects the defective section of a line after a programmable number of connection-disconnection sequences of the header switch. Taking advantage of the periods in which the header switch is open, due to the detection of a fault, and therefore there is no voltage in the circuit, the control / protection device orders the sectioning element to open, in such a way that on the next occasion in which the header switch closes the circuit, the line opened by the disconnector has been removed from it. If the defect was in the sectioned line, the service is permanently replaced in the rest of the circuit without the need for operator intervention.
  • the integrated control / protection device is able to provide the status of this equipment thanks to a series of records in which it stores data and historical calculations of events and magnitudes, as well as digital inputs that inform you of the status of said equipment.
  • the equipment has a communications port that allows you to receive orders and transmit information about equipment, electrical quantities, temperatures, etc. DESCRIPTION OF THE FIGURES
  • Figure 1. It is a basic representation of the single-line scheme according to the state of the art regarding the measurement circuit (B) and indication or detection of presence / absence of voltage (A), where the indication and / or detection circuit of voltage presence (A) is connected in parallel with the voltage measurement circuit (B).
  • FIG. 2 a and 2 b, - Represents the single-line diagram referring to the measurement and voltage presence detection circuit according to the preferred embodiment of the invention, where the voltage measurement circuit (B) obtains the voltage signal from the sensors / screens (2 ') through a low voltage transformer, toroidal or not, connected in series with the voltage presence indication circuit (A), without interrupting it.
  • Figure 3. Represents the voltage sensor (2 '), a uniform screen for the electric field, integrated in the bushing itself (3) and the current sensor (5).
  • Figure 4. Represents a form of installation of the ultrasensitive intensity sensors for earth faults (22) on the bushing (3) to which the cables of the distribution network are connected.
  • Figure 5. Represents the single-line scheme of an electrical distribution network, typically underground, showing a main line (11) and the leads (10, 33) that leave it. Each branch is equipped with a header switch (6). In turn, in these branches are the transformation centers (13, 15).
  • Figure 6. Represents the single-line diagram of an aerial electrical distribution network, where one of the main power lines (8) with a header switch (6) and the branches (9, 11) that leave it is shown. , equipped with a sectioning element (7) and control / protection device.
  • Figure 7. Represents the diagram of an installation of a transformation / distribution center in which the equipment is installed in accordance with the preferred embodiment of the invention.
  • Figures 8-11. They represent the defined time curves, usually inverse, very inverse and extremely inverse implemented for the function of overcurrent or fault intensity between phases and phase and earth.
  • Figure 12. Represents the uniform scheme corresponding to an electrical distribution network where the transformation center or distribution center (27) has two input lines (23, 26).
  • Figure 13 Represents the header protection curve (28), the instantaneous ground fault curve (29), the capacitive return currents curve (31) and the protection curve (30) that can be implemented to the device control / protection (14).
  • Figure 14 Represents a high / medium voltage line in which there is an open phase
  • Figure 15. Represents the electrical scheme in a transformer powered by a line like the one represented in Figure 14.
  • the invention relates to a control / protection device that is installed in electrical equipment comprising an electrical distribution installation, such as a transformation center or a distribution center for electrical energy or substation.
  • the control / protection device (14), as shown in Figure 7, is integrated in the electrical equipment itself (4), so that the use of independent cabinets on the electrical equipment (4) or of Wall cabinets as an added item.
  • the control / protection device (14) is an electronic, numerical and three-phase device, capable of measuring instantaneous values of intensity and voltage of each of the phases and determining and measuring homopolar intensities and voltages, energies, powers, etc.
  • Each of the electrical equipment (4) is equipped with a control / protection device (14) capable of processing the voltage and intensity measurement signals, without the need for auxiliary converters.
  • the voltage measurement is preferably carried out by means of the circuit of Figures 2a-2b, through a capacitive voltage socket (2) of the bushing (3) of the electrical equipment (4), as observed in Figure 3, taking advantage of the electric screen (2 ') for the control of the electric field of the bushing (3) as a capacitive coupling to extract the voltage signal, avoiding the need to use conventional voltage transformer systems.
  • control / protection device (14) implements a circuit comprising a capacitive voltage socket ( 2), a voltage limiter (32), a voltage measurement circuit (B) and a voltage presence / absence detection circuit (A) respectively connected in series.
  • the voltage measurement is characterized in that the circuit obtains the voltage signal directly from the electrical display (2 '), that is, directly from the line itself. Due to the direct measurement of the voltage signal from the electric display (2 1 ), the voltage values obtained are more precise than if they were obtained from the circuit of Figure 1.
  • the voltage pick-up for the measurement could be carried out by placing an impedance in series with the voltage presence detection circuit, however, this involves interrupting the circuit between the capacitive voltage socket (2) and the voltage presence detection ( A) by entering an item that could be damaged.
  • the voltage measurement has been carried out by means of the insertion of a low voltage transformer placed in series with the indication or detection circuit of presence / absence of voltage (A). In this way, a fault in the measuring circuit (located in the secondary of the transformer) does not affect the primary circuit, where the voltage presence indication / detection circuit (A) is located.
  • the transformer allows conditioning the voltage provided by the display electrical (2 ') at a convenient value for your measurement.
  • the transformer used in circuit (B) is no longer a high voltage transformer, but a low voltage transformer, so its size is very small.
  • the realization of the transformer can vary, it can be a voltage transformer or a toroidal transformer / collector, which means not interrupting the indication / detection circuit of presence / absence of voltage (A).
  • Continuity in the circuit occurs because the only thing that separates the capacitive voltage socket (2) from the circuit (A) is a conductive element, there are no passive elements in the intermediate as resistors or capacitors, nor any active element as transistors, amplifiers, etc.
  • This circuit configuration avoids the need to integrate a second voltage sensor into the bushing, so that standard bushing is achieved that facilitates its engineering, simplifying and favoring a planned and relatively regular manufacturing of equipment.
  • the presence / absence and voltage measurement function is implemented for each and every one of the phases that comprise the installation, so that both the presence / absence of voltage indication and the instantaneous measurement of the Ia are obtained at all times. same in each of the phases.
  • the system is capable of being implemented only in one of the phases, since both the sensors and the electronics can be made in a modular way.
  • the intensity measurement is carried out by means of toroidal intensity sensors (5), as shown in Figure 3, which are installed outside the bushings (3) and at the base thereof, so that said Toroidal intensity sensors (5) are integrated in the electrical equipment (4), installed and checked at the factory, thus eliminating errors in the installation of the sensors and detecting earth faults or between phases in the connection of the cell.
  • a toroidal transformer (22) can be used, installed as indicated in Figure 4, with the advantages explained above or in medium voltage cables in case of not having space enough.
  • the control / protection device (14) comprises a fault passage detection function that allows the identification of the section of the defective line due to a fault between phases or between phase and earth in all the circumstances described above. This function allows identifying the missing section in a fast and reliable way to replenish the service to other customers.
  • the header switch (6) opens the defective line.
  • the control / protection device (14) installed in the transformation center (15) that depends on the line (33) in default indicates the fault step.
  • the fault passage indications can be observed from the control center and from said center the corresponding switchgear order (21) can be issued.
  • the fault step function that implements the control / protection device (14) performs it by combining the functions of overcurrent or fault intensity together with a logic of detection / measurement of voltage. In this way it allows to differentiate the sections of line (33) in defect from the lines (10) that are not in defect, but through which a capacitive return current (12) circulates.
  • This correct operation is achieved by making the control / protection device (14) work well combined the intensity step together with the presence / absence of voltage, either by coordinating the firing curves or determining the directionality of The fault based on the measurement of the voltage, according to the complexity of the network in which the device (14) is to be installed.
  • the control / protection devices (14) of the parallel lines (10) through which a capacitive return current (12) circulates detects said current as a fault current but does not act because in the lines (10) of the Ia that depend on there is no absence of tension.
  • the device (14) implements an operating curve (30) in coordination with the header protection curve (28) , so that when a defect occurs in a branch and open header, other derivations have been passing a current "return capacitive high not indicate the fault passage even though they have been disconnected.
  • the device (14) performs the calculation of the effective currents, distinguishing the transformer connection currents (composed of the fundamental component and its harmonics) from the fault currents, avoiding erroneous indications of the connection currents such as missing steps.
  • Another way to discriminate if the overcurrent or intensity of fault that is detected is due to a fault in the line or to a capacitive return intensity is to use a function that determines the direction of the fault currents detected by calculating between the intensity and the magnitude of polarization.
  • voltage sensors or preferably the circuit indicated in Figure 2a-2b is used.
  • the combination between the homopolar voltage, used as the magnitude of polarization, and the intensity I 0 detected allows to discriminate if this is a fault current with water direction below or if it is a capacitive return current with upstream direction, as shown in Figure 5.
  • the overcurrent or fault intensity function that includes the control / protection device (14) is complemented for each of the phases and for ground, performing the fault detection between phases and
  • the overcurrent or fault intensity function is associated with some defined time detection curves (see Figure 8) for detection of phase-to-phase faults and to the defined time curves, usually inverse, very inverse and extremely inverse, ( see Figures 8, 9, 10 and 11 respectively) for the detection of faults between phase and earth.
  • the device control / protection (14) can implement a fault detection functionality between phase and ultrasensitive earth, using a toroidal transformer (22) that covers all phases, as shown in Figure 4, so that it becomes independent of the intensity of the phases avoiding the errors of the toroidal intensity sensors (5) of phase and guarantees
  • phase-earth defect currents below 10% of the nominal phase intensity is guaranteed.
  • the control / protection device (14) integrates a control function that, by means of digital inputs and outputs, allows to receive control and measurement signals of temperature, pressure, liquid level, etc., to receive and / or transmit an order to maneuver the switch, disconnector or disconnector for grounding the equipment (4) in which it is installed. You can also perform monitoring functions, since you can receive the state in which the switch, disconnector or earthing switch is located.
  • the integrated control device controls that the maneuver of the earthing switch, disconnector or disconnector is carried out within the time allowed by the motorization of the electrical equipment (4). If the order is not executed in the pre-established time, it is cut
  • the power supply of the motorization of the drive Since the integrated control device has information on the state of the electrical equipment (4), it is possible to avoid erroneous maneuvers, such as, for example, the grounding of a live line. Thus, by detecting the presence of voltage in a line, and before an earthing order of the same, which would cause a short circuit, the integrated control device can block said action, avoiding the accident.
  • control / protection device (14) has an event log where the last defects detected by it are stored. In addition, the total number of faults detected is stored, as well as the different configuration parameters.
  • the • integrated control device can inform the dispatch about all available data and allows remote control applications of transformation and distribution centers, implementing the control and supervision of each electrical equipment (4) .
  • the use of integrated control devices (14) and a data concentrator and equipment controller (28), allows to visualize and operate each position of the switchgear that integrate the electrical equipment (4 ) locally or remotely.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

El dispositivo de control/protección para redes de distribución eléctrica consiste en un dispositivo numérico y trifásico, capaz de medir valores instantáneos de intensidad y de tensión de cada una de las fases y determinar las intensidades y tensiones homopolares, energías, potencias, etc., así como de desempeñar aplicaciones como seccionamiento automático de líneas en falta, control local, maniobras mediante telemando, automatismos, enclavamientos, etc., disponiendo a su vez, de una función de comunicaciones que junto con las entradas y salidas digitales que dispone el dispositivo, permite realizar el control y la supervisión de cada uno de los equipos eléctricos de la instalación tanto de forma local como remota.

Description

DISPOSITIVO DE CONTROL/PROTECCIÓN PARA REDES DE DISTRIBUCIÓN ELÉCTRICA
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención tiene por objeto el control/protección de las redes de distribución eléctrica, en base a medios de captación de tensión e intensidad y a dispositivos electrónicos de control y protección integrados en los equipos eléctricos que componen Ia red de distribución eléctrica.
El dispositivo tiene por objeto proporcionar funciones de medida de tensión e intensidad, detección de presencia/ausencia de tensión, detección de paso de falta, funciones de protección basadas en medida de tensión e intensidad, control, automatización, etc., así como una función de comunicaciones que junto con las entradas y salidas digitales que dispone el dispositivo, permite realizar el control, protección y Ia supervisión de cada uno de los equipos eléctricos de Ia instalación que Io incorporan tanto de forma local como remota.
ANTECEDENTES DE LA INVENCIÓN
Los equipos eléctricos, celdas o aparamenta, transformadores, etc., empleados en instalaciones de maniobra y/o protección de los centros de transformación, centros de distribución o subestaciones, son susceptibles de incorporar dispositivos electrónicos que permiten Ia automatización de funciones, el control y supervisión de parámetros o valores, Ia comunicación entre equipos tanto localmente como por vía remota, etc. Esto permite realizar funciones de supervisión y control de Ia red de distribución que cada día son mas necesarias y requeridas, dada Ia creciente necesidad de automatización en las redes de distribución, como consecuencia de una mayor exigencia de Ia calidad de suministro.
Por ejemplo, es habitual que los equipos eléctricos que componen Ia red de distribución incorporen relés electrónicos que pueden, por ejemplo, realizar Ia detección de presencia y ausencia de tensión, protección de sobrecorriente y faltas o cortocircuitos, medida de intensidad y de tensión, control local, automatismos, etc. A su vez, en el caso de que Ia instalación sea automatizada, tanto para Ia automatización local como para telecontrol, cada uno de estos relés electrónicos puede estar ligado a un concentrador de datos y controlador de equipos, el cuál incluye Ia posibilidad de registrar el estado de cada uno de los equipos eléctricos que integra Ia instalación (sistema de adquisición de datos y control de supervisión), programar secuencias de actuación o maniobra etc. Por Io tanto los centros de transformación o de distribución pueden estar equipados con diferentes relés electrónicos, cumpliendo cada uno de ellos con una determinada función y éstos a su vez, pueden ir acompañados de un concentrador de datos y controlador de equipos para Ia automatización de Ia instalación.
Cada uno de estos relés electrónicos, puede estar montado en un armario de control independiente al equipo eléctrico correspondiente o puede estar integrado dentro de su envolvente metálica, junto con el resto de Ia aparamenta. La inclusión del equipamiento electrónico en Ia envolvente de cada equipo eléctrico permite que el conjunto del centro de transformación o distribución tenga un menor tamaño, sencillez de instalación, mayor calidad y se eviten trabajos en campo.
El número de centros de transformación o de distribución es muy elevado en una red de distribución, Io que plantea una serie de exigencias como son Ia estandarización de las instalaciones para facilitar su ingeniería, montaje, mantenimiento, ampliaciones futuras, control, automatización, etc. Una forma de conseguir este propósito es Ia utilización de dispositivos de control y protección integrados.
Estos dispositivos de control y protección, consisten en unos equipos electrónicos que cubren las funciones de protección, medida, control y automatismo de los diversos componentes o equipos eléctricos. Estos dispositivos de control y protección están constituidos por diferentes módulos funcionales, entre los cuales se encuentra un módulo correspondiente a las entradas analógicas, directamente conectadas a unos transformadores de alta tensión de medida/protección de intensidad y de tensión.
Ocasionalmente, los transformadores de tensión se instalan en Ia base de los equipos eléctricos correspondientes y su montaje se realiza en obra. Se tratan de transformadores enchufables apantallados. Dado su volumen, no se llegan a instalar uno por cada fase por carecer Ia base de Ia aparamenta de espacio para ello. Al ser instalados, ajustados y comprobados en obra, se pueden producir errores de instalación de los transformadores. Estos transformadores pueden ser origen, además, de explosiones que dan lugar a Ia destrucción de Ia aparamenta y sus conexiones, debido a problemas de ferrorresonancia.
Con el objeto de evitar los problemas citados en el párrafo anterior, en lugar de utilizar transformadores para Ia medida de tensión se utiliza una señal capacitiva de tensión obtenida a través de una pantalla, uniformizadora del campo eléctrico, prevista en los pasatapas de conexión de los equipos eléctricos.
Esta señal capacitiva de Ia tensión se utiliza habitualmente para Ia indicación o detección de presencia/ausencia de tensión y permite, como se ha dicho, obtener medidas de tensión, utilizando para ello un circuito de medida que se coloca en paralelo con el dispositivo de indicación o detección de presencia de tensión. Así, algunos diseños aprovechan los puntos accesibles en los dispositivos de detección de presencia de tensión para conducir Ia señal de tensión a un equipo de medida. Sin embargo, este sistema de obtención de medida de tensión no es fiable, debido a que Ia señal obtenida del pasatapas es muy débil, por Io que Ia medida se encuentra influenciada por cualquier capacidad parásita que surge entre el detector de presencia de tensión y el circuito de medida. Estas capacidades parásitas se deben básicamente a los cables que unen el dispositivo de detección y el equipo de medida. Puesto que esta conexión se realiza en campo, sin un control sobre Ia clase de cable empleado, ni sobre el trazado de los mismos, estas capacidades parásitas son impredecibles y habitualmente variables en el tiempo. Así pues, Ia señal obtenida a partir de los indicadores no es fiable para aplicaciones como las que se describen en esta patente. Finalmente, esta forma de obtención de Ia medida de tensión provoca que el sistema de detección de presencia de tensión incumpla Ia normativa internacional IEC 61243-5 y IEC 61958, Ia cuál se trata de una normativa de seguridad para las personas y los bienes.
Además, Ia solución anterior presenta el riesgo de que debido a un defecto en el circuito de medida se produzca un defecto en el circuito de indicación o detección de presencia/ausencia de tensión y éste proporcione un diagnóstico erróneo de Ia indicación de presencia de tensión, presentándose de esta manera, un riesgo para los operarios.
Al objeto de evitar este tipo de errores, en ocasiones se emplea una segunda pantalla eléctrica embebida en los pasatapas para Ia medida de tensión, con Io que se constituyen dos circuitos independientes, uno para Ia medida de tensión y el otro para Ia detección de tensión, asociando cada uno de los circuitos con su correspondiente pantalla eléctrica. Este tipo de solución es Ia que se describe en Ia patente EP 0851442.
Sin embargo, esta solución supone Ia utilización de un pasatapas especial, de diseño complejo, debido a Ia integración de dos pantallas eléctricas embebidas en el mismo, Io que supone además, un encarecimiento de dicho pasatapas. La mayor complejidad técnica del pasatapas obliga a instalarlos sólo en aquellos equipos en los que se vaya a instalar un equipo de medida de tensión. Por Io tanto, desde el punto de vista de fabricación supone Ia personalización de los equipos, quebrantando Ia estandarización de los mismos, Io que conlleva a Ia necesidad de fabricar y almacenar diferentes tipos de pasatapas y equipos, encareciendo y complicando su gestión, con el añadido de poder quedar sin existencias por una mayor demanda de equipos de un tipo a las previsiones realizadas.
La utilización de Ia detección y/o medida de tensión de forma simple y estandarizada posibilita Ia realización de equipos de control integrado con multitud de prestaciones. Entre estas aplicaciones se encuentra, por ejemplo, el establecimiento de Ia direccionalidad de las faltas, el seccionamiento automático de tramos de líneas o Ia realización de pasos de falta avanzados. Todas estas prestaciones son necesarias debido a que las líneas de distribución no se encuentran libres de defectos (fallo en el aislamiento) entre fases, y entre fase y tierra, los cuáles suelen ser despejados por el interruptor de cabecera de Ia subestación. Cuando esto ocurre, se debe delimitar el tramo en falta de Ia manera más rápida posible, para reponer el servicio del resto de clientes. Para localizar y delimitar el tramo en falta, normalmente se seccionan tramos de Ia red de distribución y a continuación se cierra el interruptor de cabecera. Este sistema de localización de faltas hace que se produzcan defectos hasta Ia localización exacta del tramo dañado, provocando que el número de maniobras necesarias para identificar Ia zona en defecto y reponer el servicio en los tramos sanos sea elevado, con el consiguiente perjuicio para los clientes debido al tiempo empleado para conseguir Ia reposición del servicio. Por esta razón, cada vez más, se acude a soluciones de centros con telemando y equipos motorizados, de forma que las maniobras se puedan realizar desde el puesto de control en lugar de acudir a los centros a maniobrar Ia red, acortando de esta manera los tiempos de reposición de servicio. Sin embargo, Ia localización de defectos en base al sistema de prueba/error origina inconvenientes a los clientes, tensión que aparece fugazmente para volver a desaparecer, y un envejecimiento acelerado a los equipos conectados a esa red. Por ello, para Ia identificación de un tramo en falta, en ocasiones se emplea Ia detección de paso de falta. Cuando ocurre un defecto entre fases o entre fase y tierra, el interruptor de cabecera de Ia subestación abre y despeja Ia falta. Los dispositivos electrónicos dotados de detección de paso de falta instalados en los centros de transformación o de distribución por los que ha pasado Ia corriente de falta indican el paso de Ia misma, facilitando al operario Ia identificación del tramo de red dañado.
La funcionalidad de estos dispositivos de control/protección electrónicos, sin embargo, no se encuentra exenta de errores en su funcionamiento, dando lugar, en ocasiones, a señalizaciones incorrectas.
Una de las causas de este mal funcionamiento se debe a que en ocasiones se tratan de equipos analógicos, y por Io tanto señalizan cuando detectan un pico de intensidad elevado. Este pico de intensidad se puede producir en situaciones en las que no existe una falta en el tramo de red controlado por el dispositivo electrónico. Así, en el caso de que se produzca una falta en un tramo de Ia red, el interruptor de cabecera abre el circuito y Io vuelve a cerrar automáticamente, Io que se denomina reenganche, por si Ia falta que se ha producido se ha eliminado sola. Al cerrar el circuito el interruptor de cabecera, en Ia red aparece una intensidad transitoria con un máximo elevado, debido a Ia corriente de conexión de los transformadores de Ia red.
Esta intensidad no es producto de un defecto, sino del comportamiento habitual del transformador en su conexión, y sin embargo Ia intensidad que aparece en Ia red puede ser detectada como una corriente de falta por los dispositivos analógicos. Lógicamente, tras este primer reenganche, todos los detectores de paso de falta indican el paso de Ia misma y confunden al operario a identificar el tramo dañado.
Al objeto de evitar este tipo de errores, los dispositivos de control/protección electrónicos en ocasiones además de Ia detección de presencia de tensión incorporan medios para Ia detección de una sobreintensidad o intensidad de falta. En estos casos sólo se indica el paso de falta cuando se detecta el paso de una corriente elevada y a continuación Ie sucede un período sin tensión en Ia línea. Esta solución es válida para el caso en el que, tras el primer reenganche, no exista una nueva apertura de cabecera. Por el contrario, en el caso de que exista una nueva apertura y ésta se mantenga ya definitivamente, debido a que Ia falta sigue existiendo,
Ia corriente de conexión de los transformadores, junto con Ia ausencia de tensión, hace que todos los indicadores de paso de falta señalicen el paso de Ia misma. De este modo, los detectores de paso de falta indican erróneamente tramos sin falta como si Ia tuvieran, no ayudando a los operarios en Ia reposición del servicio.
Otro fenómeno que puede dar lugar a una señalización incorrecta del paso de falta se produce debido al paso de corrientes capacitivas. En cualquier línea por Ia que circula una corriente alterna monofásica o trifásica existen unas corrientes de carga debidas a Ia capacidad distribuida en toda
Ia longitud de Ia línea. El valor de estas corrientes depende de Ia tensión, de Ia longitud de Ia línea, posición relativa de los conductores y del tipo de cables, aislados o conductores desnudos. Durante el funcionamiento normal, Ia corriente capacitiva es pequeña. En Ia red de distribución eléctrica, y sobretodo con cables subterráneos y un régimen de neutro aislado, cuando ocurre un defecto entre una fase y tierra, en las líneas paralelas a Ia línea en defecto aparecen corrientes de descarga de las capacidades distribuidas de Ia línea, denominadas corrientes de retorno capacitivas. Estas corrientes de retorno pueden hacer que los indicadores de paso de falta señalicen de forma incorrecta. Así, existe una configuración de red en Ia que no es suficiente Ia detección de Ia presencia de tensión junto a Ia detección de una sobreintensidad o intensidad de falta para indicar correctamente una falta. En Ia figura 5 se ilustra el caso en el que de una línea que parte de Ia subestación se produce una derivación, es decir el interruptor de Ia subestación protege a dos líneas. En este caso, cuando el interruptor abre el circuito, ambas líneas quedan sin tensión, por Io que los pasos de falta de ambas líneas indicarán Ia existencia de una falta. Unos pasos de falta Io indicarán correctamente y otros erróneamente debido a que Ia intensidad que han detectado es una intensidad de retorno capacitiva. De esta forma, en caso de redes con intensidades de retorno capacitivas elevadas y derivaciones que provienen de Ia misma subestación los pasos de falta que combinan ausencia de tensión y paso de intensidad elevada no siempre indican correctamente Ia existencia de una falta.
Finalmente, para poder reponer el servicio de forma rápida desde un puesto de telecontrol el dispositivo de control/protección integrado debe ser capaz de recibir órdenes y a su vez operar sobre Ia aparamenta. Sin embargo, en ocasiones se pueden producir errores en Ia transmisión de Ia orden, o ésta no ejecutarse debido a un fallo en el mecanismo de accionamiento de Ia aparamenta a Ia que se Ie transmite Ia orden. De esta manera, el operario puede interpretar que los equipos en Ia red se encuentran dispuestos de una manera (cerrados, seccionados o puestos a tierra) y sin embargo Ia realidad es muy diferente, por Io que Ia reposición del servicio eléctrico se complica al desconocerse Ia situación real de Ia red.
DESCRIPCIÓN DE LA INVENCIÓN El dispositivo de control/protección objeto de Ia presente invención trata de un conjunto formado por unos medios de captación de tensión e intensidad y un dispositivo electrónico numérico trifásico, que se integra en los propios equipos eléctricos de las instalaciones de distribución eléctrica como centros de transformación, centros de distribución o subestaciones, de manera que se evita Ia utilización de armarios sobre los equipos o de armarios murales como un elemento añadido. Se entiende por numérico y trifásico un dispositivo capaz de medir y tratar mediante cálculo valores instantáneos y discretos de intensidad y/o de tensión de cada una de las fases. Esto permite calcular valores eficaces de tensión e intensidad, valores de las intensidades y tensiones homopolares, energías, potencias, etc.
El dispositivo de control/protección permite realizar tanto de forma local como remota, aplicaciones de maniobra, control local, automatismos, enclavamientos, detección de presencia/ausencia de tensión, detección de anomalías, medidas de intensidad, de temperatura de un transformador, de Ia presión de un gas, del nivel de aceite, etc., así como de implementar en coordinación con las curvas de protección de cabecera Ia función de detección de paso de falta en aquellas redes donde las corrientes de retorno capacitivas puedan llegar a ser de una magnitud superior a Ia magnitud nominal de ajuste de Ia curva de protección en el dispositivo electrónico de cabecera. De esta forma, se dispone de un único dispositivo de control/protección que desempeña las funciones de varios equipos electrónicos, reduciendo las dimensiones de cada uno de los equipos eléctricos en los que se integra, consiguiendo instalaciones eléctricas más compactas, sencillas y fiables de poner en explotación.
El dispositivo de control/protección objeto de Ia invención se basa en
Ia utilización de un nuevo circuito de medida de tensión, que utiliza una señal de tensión capacitiva proporcionada por una única pantalla inserta en los pasatapas y que habitualmente se emplea para Ia indicación o detección de presencia/ausencia de tensión.
El circuito de medida de tensión se encuentra colocado en serie con el circuito de indicación o detección de presencia/ausencia de tensión. El circuito de medida de tensión se dispone entre Ia toma de tensión capacitiva proporcionada por Ia pantalla del pasatapas y el circuito de indicación o detección de presencia/ausencia de tensión o después del circuito de indicación o detección de presencia/ausencia de tensión y comprende elementos que no afectan o interrumpen al circuito de indicación/detección de presencia de tensión, como por ejemplo un transformador de baja tensión, Io que un eventual fallo en el circuito de medida permitiría mantener el circuito de detección de presencia de tensión, circuito que constituye un elemento de seguridad para los operarios. De esta manera, es posible evitar Ia utilización de dos señales de tensión diferenciadas para ambas aplicaciones, Io que supone evitar las dos pantallas mencionadas en los pasatapas de Ia patente EP 0851442. Así pues, para esta aplicación se emplean unos pasatapas estándar que facilitan su ingeniería, que permiten Ia personalización de ¡as celdas en su etapa final de fabricación, simplificando y favoreciendo una fabricación planificada y relativamente regular de equipos. Además, debido a Ia particularidad de que Ia señal de tensión se obtiene directamente de Ia señal proporcionada por Ia pantalla del pasatapas, se incrementa mucho Ia precisión de los valores de tensión obtenidos. A su vez, debido a que el dispositivo de control/protección y los pasatapas son instalados en fábrica y son fijos e inalterables en el tiempo, se pueden calibrar y ajustar para conseguir medidas de tensión muy precisas.
Por otra parte, al tratarse de un dispositivo electrónico que va integrado en los propios equipos eléctricos de Ia instalación y calibrado en fábrica, se evita tener que realizar el cableado en obra entre el dispositivo de control/protección y los elementos asociados al mismo, como puede ser el cableado entre el dispositivo de control/protección y el circuito de indicación o detección de presencia/ausencia de tensión, a través del cual se obtiene Ia señal de tensión capacitiva, evitando capacidades parásitas incontroladas que desvirtúan Ia precisión de Ia medida.
Como se ha dicho, el dispositivo de . control/protección objeto de Ia invención incorpora una medida de intensidad basada en captadores de intensidad integrados en los propios equipos eléctricos, que son instalados, ajustados y comprobados en fábrica, de manera que se eliminan las labores de montaje y conexionado en obra, eliminando los errores de instalación de los captadores y reduciendo el tiempo y el coste de Ia mano de obra de Ia instalación. De este modo, una vez se conectan los cables de Ia red de distribución, el sistema de control integrado queda operativo. Esta forma de instalar los captadores de intensidad se describe en Ia patente ES2174754.
El dispositivo de control/protección objeto de Ia invención permite Ia identificación del tramo en falta de una línea mediante una función de detección de paso de falta, con Ia característica de que dicha función de detección de paso de falta identifica los defectos permanentes combinando las funciones de sobreintensidad o intensidad de falta junto con una lógica de detección de tensión trifásica. De esta manera, se identifica de forma inmediata Ia zona de defecto para reponer el servicio en los tramos sanos, se reduce el número de maniobras sobre los elementos de Ia red y en consecuencia el número de solicitaciones en Ia misma, alargando Ia vida útil de los equipos.
La detección de Ia intensidad se realiza calculando los valores eficaces de Ia misma, por Io que Ia circulación de intensidades de conexión de transformadores, que contienen un transitorio de intensidad continua, no hacen que se perciban como intensidades de falta, evitando detecciones incorrectas. A su vez, debido a que Ia función de paso de falta se implementa empleando la detección de tensión en caso de falta y si se produce una ausencia prolongada de tensión se indica el paso de falta.
Para evitar los problemas de indicación de paso de falta en el caso de dos líneas que comparten un mismo interruptor automático en Ia subestación, se ha dotado al dispositivo de control/protección de Ia posibilidad de coordinar su funcionamiento con otros dispositivos mediante Io que se denominan curvas de disparo. Así, para producir Ia indicación de falta, Ia intensidad debe circular un tiempo que es función del valor de dicha intensidad. Por Io tanto, para intensidades muy elevadas, el tiempo necesario para indicar el paso de falta es reducido, ya que si Ia intensidad tiene valor elevado es debido a que existe realmente una falta en ese tramo de red. Sin embargo, puesto que el interruptor de Ia subestación ya habrá abierto el circuito, el indicador de paso de falta por el que circula Ia intensidad de retorno capacitiva no ha tenido tiempo para señalar Ia falta, con Io que sólo los indicadores por los que realmente ha pasado Ia falta señalizan correctamente.
El sistema anterior es aplicable a varios sistemas de neutro aislado, sin embargo cuando el régimen de neutro es compensado, en Ia línea en Ia que se produce Ia falta Ia intensidad puede ser inferior a Ia de las líneas adyacentes. En este caso para Ia detección del paso de falta se debe establecer Ia direccionalidad de las intensidades, es decir, se debe determinar si Ia circulación de una intensidad elevada es debido a Ia presencia de una falta en Ia línea (circulación de Ia intensidad hacia los puntos de consumo eléctrico) o si se trata de una intensidad de retorno capacitiva (circulación de Ia intensidad hacia el punto de suministro eléctrico). De esta manera se evita Ia incorrecta detección de faltas debido a las corrientes de retorno capacitivas en las líneas paralelas a Ia línea en defecto. Esta discriminación se realiza empleando no ya Ia presencia o ausencia de tensión, sino Ia medida de tensión proporcionada por el nuevo circuito de medida/detección de presencia de tensión junto con Ia detección de Ia intensidad. La medida de las tres tensiones de fase de Ia red permite determinar Ia denominada tensión de polarización, Ia cuál permite determinar Ia dirección de Ia intensidad.
Otra aplicación de este dispositivo es el seccionamiento automático de tramos de línea en defecto empleando seccionadores en lugar de interruptores automáticos (mucho más costosos que los primeros). Para ello, el dispositivo de control/protección está asociado a un elemento de seccionamiento que desconecta el tramo en defecto de una línea tras un número programable de secuencias de conexión-desconexión del interruptor de cabecera. Aprovechando los períodos en los que el interruptor de cabecera se encuentra abierto, debido a Ia detección de una falta, y por Io tanto no hay tensión en el circuito,el dispositivo de control/protección ordena al elemento de seccionamiento su apertura, de forma tal que en Ia próxima ocasión en Ia que el interruptor de cabecera cierre el circuito, se haya eliminado del mismo Ia línea abierta por el seccionador. Si el defecto se encontraba en Ia línea seccionada, se repone el servicio de forma permanente en el resto del circuito sin necesidad de intervención de los operarios.
Finalmente para que el supervisor de Ia red pueda conocer en todo momento Ia situación de los interruptores, seccionadores y seccionadores de puesta a tierra de Ia red, el dispositivo de control/protección integrado es capaz de proporcionar el estado de estos equipos gracias a una serie de registros en los que almacena datos y cálculos históricos de eventos y magnitudes, así como de entradas digitales que Ie informan de Ia situación de dichos equipos. Para poder informar, el equipo dispone de un puerto de comunicaciones que Ie permite recibir órdenes y transmitir información sobre equipos, magnitudes eléctricas, temperaturas, etc. DESCRIPCIÓN DE LAS FIGURAS
Para complementar Ia descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de Ia invención, de acuerdo con un ejemplo preferente de realización práctica de Ia misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado Io siguiente:
Figura 1.- Es una representación básica del esquema unifilar según el estado de Ia técnica referente al circuito de medida (B) y de indicación o detección de presencia/ausencia de tensión (A), donde el circuito de indicación y/o detección de presencia de tensión (A) está conectado en paralelo con el circuito de medida de tensión (B).
Figura 2 a y 2 b,- Representa el esquema unifilar referente al circuito de medida y de detección de presencia de tensión de acuerdo con Ia realización preferente de Ia invención, donde el circuito de medida de tensión (B) obtiene Ia señal de tensión de los captadores/pantallas (2') a través de un transformador de baja tensión, toroidal o no, conectado en serie con el circuito de indicación de presencia de tensión (A), sin interrumpir a éste.
Figura 3.- Representa el captador de tensión (2'), pantalla uniformizadora del campo eléctrico, integrado en el propio pasatapas (3) y el captador de intensidad (5).
Figura 4.- Representa una forma de instalación de los captadores de intensidad ultrasensible para faltas a tierra (22) sobre los pasatapas (3) a los que se conectan los cables de Ia red de distribución. Figura 5.- Representa el esquema unifilar de una red de distribución eléctrica, típicamente subterránea, donde se muestra una línea principal (11) y las derivaciones (10, 33) que salen de Ia misma. Cada derivación está dotada de un interruptor de cabecera (6). A su vez, en dichas derivaciones se encuentran los centros de transformación (13, 15).
Figura 6.- Representa el esquema unifilar de una red de distribución eléctrica aérea, donde se muestra una de las líneas eléctricas principales (8) dotada de un interruptor de cabecera (6) y las derivaciones (9, 11 ) que salen de Ia misma, dotadas de un elemento de seccionamiento (7) y del dispositvo de control/protección.
Figura 7.- Representa el esquema de una instalación de un centro de transformación/distribución en el que se instalan los equipos de acuerdo con Ia realización preferente de Ia invención.
Figuras 8-11.- Representan las curvas a tiempo definido, normalmente inversa, muy inversa y extremadamente inversa implementadas para Ia función de sobreintensidad o intensidad de falta entre fases y fase y tierra.
Figura 12.- Representa el esquema unifiiar correspondiente a una red de distribución eléctrica donde el centro de transformación o centro de distribución (27) dispone de dos líneas de entrada (23, 26).
Figura 13.- Representa Ia curva de protección de cabecera (28), Ia curva instantánea de falta a tierra (29), Ia curva de corrientes de retorno capacitivas (31 ) y Ia curva de protección (30) que pueden ser implementadas al dispositivo de control/protección (14).
Figura 14.- Representa una línea de alta/media tensión en Ia que existe una fase abierta Figura 15.- Representa el esquema eléctrico en un transformador alimentado por una línea como Ia representada en Ia figura 14.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La invención trata sobre un dispositivo de control/protección que se instala en los equipos eléctricos que comprende una instalación eléctrica de distribución, como por ejemplo, un centro de transformación o un centro de distribución de energía eléctrica o subestación. El dispositivo de control/protección (14), tal y como se muestra en Ia figura 7, va integrado en el propio equipo eléctrico (4), de manera que se evita Ia utilización de armarios independientes sobre el equipo eléctrico (4) o de armarios murales como un elemento añadido. El dispositivo de control/protección (14) es un dispositivo electrónico, numérico y trifásico, capaz de medir valores instantáneos de intensidad y de tensión de cada una de las fases y determinar y medir las intensidades y tensiones homopolares, energías, potencias, etc., así como de desempeñar aplicaciones como seccionamiento automático de líneas en falta, control local, maniobras mediante telemando, automatismos, enclavamientos, etc., relacionadas con las necesidades actuales y futuras de automatización de los centros de transformación, distribución y subestaciones. De esta forma, se dispone de un único dispositivo de control/protección (14) que desempeña las funciones de varios equipos electrónicos, reduciendo las dimensiones globales de Ia instalación.
Cada uno de los equipos eléctricos (4) está dotado de un dispositivo de control/protección (14) capaz de realizar un tratamiento de las señales de medida de tensión y de ¡ntensidad,sin necesidad de convertidores auxiliares.
La medida de tensión se realiza preferentemente por medio del circuito de las figuras 2a-2b, a través de una toma de tensión capacitiva (2) de los pasatapas (3) de los equipos eléctricos (4), tal y como se observa en Ia figura 3, aprovechando Ia pantalla eléctrica (2') para el control del campo eléctrico de los pasatapas (3) como acoplo capacitivo para extraer Ia señal de tensión, evitando Ia necesidad de utilizar los sistemas convencionales de transformadores de tensión.
Para Ia función correspondiente a Ia indicación o detección de presencia/ausencia y medida de tensión, tal y como se muestra en las figuras 2a-2b, el dispositivo de control/protección (14) implementa un circuito que comprende una toma de tensión capacitiva (2), un limitador de tensión (32), un circuito de medida de tensión (B) y un circuito de detección de presencia/ausencia de tensión (A) respectivamente conectados en serie.
La medida de tensión se caracteriza porque el circuito obtiene Ia señal de tensión directamente de Ia pantalla eléctrica (2'), es decir, directamente de Ia propia línea. Debido a Ia medida directa de Ia señal de tensión desde Ia pantalla eléctrica (21), los valores de tensión obtenidos son más precisos que si se obtuvieran del circuito de Ia figura 1.
La captación de tensión para Ia medida se podría realizar colocando una impedancia en serie con el circuito de detección de presencia de tensión, sin embargo, esto supone interrumpir el circuito entre Ia toma de tensión capacitiva (2) y Ia detección de presencia de tensión (A) al introducir un elemento que podría dañarse. Por otro lado, y al objeto de conseguir un aislamiento galvánico entre el circuito de medida de tensión (B) y Ia toma de tensión capacitiva (2), Ia medida de tensión se ha llevado a cabo mediante Ia inserción de un transformador de baja tensión puesto en serie con el circuito de indicación o detección de presencia/ausencia de tensión (A). De esta manera, un fallo en el circuito de medida (situado en el secundario del transformador) no afecta al circuito primario, donde se encuentra el circuito de indicación/detección de presencia de tensión (A). Además, el transformador permite acondicionar Ia tensión proporcionada por Ia pantalla eléctrica (2') a un valor conveniente para su medida. Se debe de destacar que el transformador empleado en el circuito (B) ya no es un transformador de alta tensión, sino de baja tensión, por Io que su tamaño es muy reducido. La realización del transformador puede variar, pudiendo ser un transformador de tensión o bien un transformador/captador toroidal, Io que supone no interrumpir el circuito de indicación/detección de presencia/ausencia de tensión (A). La continuidad en el circuito se produce ya que Io único que separa Ia toma de tensión capacitiva (2) del circuito (A) es un elemento conductor, no existen en el intermedio elementos pasivos como resistencias o condensadores, ni elemento activo alguno como transistores, amplificadores, etc. Esta configuración de circuitos evita Ia necesidad de integrar un segundo captador de tensión en los pasatapas, de forma que se logran unos pasatapas estándar que facilitan su ingeniería, simplificando y favoreciendo una fabricación planificada y relativamente regular de equipos.
La función de detección de presencia/ausencia y medida de tensión está implementada para todas y cada una de las fases que comprende Ia instalación, de forma que se obtiene en todo momento tanto Ia indicación de presencia/ausencia de tensión como Ia medida instantánea de Ia misma en cada una de las fases. Obviamente, el sistema es susceptible de ser implementado sólo en alguna de las fases, ya que tanto los captadores como la electrónica se pueden realizar de forma modular.
La medida de intensidad se realiza mediante unos captadores de intensidad toroidales (5), tal y como se muestra en Ia figura 3, que se instalan por el exterior de los pasatapas (3) y en la base de los mismos, de manera que dichos captadores de intensidad toroidales (5) van integrados en los propios equipos eléctricos (4), instalados y comprobados en fábrica, eliminando de esta forma errores de instalación de los captadores y detectando faltas a tierra o entre fases en Ia conexión de Ia celda. Para la detección de faltas a tierra de valores muy pequeños se puede emplear un transformador toroidal (22) instalado tal y como se indica en Ia figura 4, con las ventajas antes explicadas o en los cables de media tensión en caso de no disponer de espacio suficiente.
El dispositivo de control/protección (14) comprende una función de detección de paso de falta que permite Ia identificación del tramo de Ia línea en defecto debido a una falta entre fases o entre fase y tierra en todas las circunstancias antes descritas. Está función permite identificar el tramo en falta de una manera rápida y fiable para reponer el servicio al resto de clientes. En este sentido, tal y como muestra Ia figura 5, cuando ocurre un defecto en un punto (C) de una línea (33), el interruptor de cabecera (6) abre Ia línea en defecto. Al mismo tiempo, el dispositivo de control/protección (14) instalado en el centro de transformación (15) que depende de Ia línea (33) en defecto indica el paso de falta. En centros de transformación o de distribución automatizados, las indicaciones de paso de falta pueden ser observadas desde el centro de control y desde dicho centro se puede emitir Ia orden de maniobra de Ia aparamenta (21) correspondiente.
Para garantizar Ia correcta indicación del paso de falta en todas las circunstancias, tal y como se muestra en Ia figura 5, Ia función de paso de falta que implementa el dispositivo de control/protección (14), Io realiza mediante Ia combinación de las funciones de sobreintensidad o intensidad de falta junto con una lógica de detección/medida de tensión. De esta forma permite diferenciar los tramos de línea (33) en defecto de las líneas (10) que no se encuentran en defecto, pero por las cuales circula una corriente de retorno capacitiva (12). Este correcto funcionamiento se consigue haciendo que el dispositivo de control/protección (14) funcione bien combinado el paso de intensidad junto con Ia presencia/ausencia de tensión, bien mediante Ia coordinación de las curvas de disparo o determinando Ia direccionalidad de Ia falta en base a Ia medida de Ia tensión, de acuerdo con Ia complejidad de Ia red en Ia que se vaya a instalar el dispositivo (14).
Los dispositivos de control/protección (14) de las líneas paralelas (10) por las que circula una corriente de retorno capacitiva (12) detectan dicha corriente como una corriente de falta pero no actúan debido a que en las líneas (10) de Ia que dependen no se produce una ausencia de tensión. Para corrientes de retorno capacitivas elevadas y derivaciones que provienen de Ia misma línea de subestación, tal y como muestra Ia figura 13, el dispositivo (14) implementa una curva de funcionamiento (30) en coordinación con Ia curva de protección de cabecera (28), de tal manera que cuando se produce un defecto en una derivación y cabecera abre, el resto de derivaciones que hayan visto pasar una corriente" de retorno capacitiva elevada no indican el paso de falta aunque se hayan quedado sin tensión. A su vez, dado que el dispositivo (14) es numérico, éste realiza el cálculo de las corrientes eficaces, distinguiendo las corrientes de conexión del transformador (compuestas por la componente fundamental y sus armónicos) de las corrientes de falta, evitando indicaciones erróneas de las corrientes de conexión como pasos de falta.
Finalmente, otra forma de discriminar si Ia sobreintensidad o intensidad de falta que se detecta es debida a una falta en Ia línea o a una intensidad de retorno capacitiva es emplear una función que determina Ia dirección de las corrientes de falta detectadas realizando los cálculos entre Ia intensidad y Ia magnitud de polarización. Para Ia determinación de Ia magnitud de polarización, se emplea bien captadores de tensión o preferentemente el circuito indicado en Ia figura 2a-2b. Por ejemplo, para su aplicación en faltas a tierra, Ia combinación entre Ia .tensión homopolar, utilizada como magnitud de polarización, y Ia intensidad I0 detectada permite discriminar si ésta se trata de una corriente de falta con dirección aguas abajo o si se trata de una corriente de retorno capacitiva con dirección aguas arriba, tal y como se muestra en Ia figura 5.
Una aplicación de especial relevancia para redes de distribución, tal y como se muestra en Ia figura 6, es que el dispositivo de control/protección
(14) permite desconectar el tramo en defecto de una línea (9) a través de un seccionalizador automático (7). Su funcionamiento es similar al de Ia función de detección de paso de falta, complementando con Ia apertura automática del seccionador (7) una vez que el interruptor automático de cabecera (6) ha despejado Ia falta. Esta apertura se realiza en los períodos en los que no existe tensión en Ia línea debido a cualquiera de los reenganches que pueda efectuar el interruptor de cabecera (6). Así por ejemplo, un defecto en Ia línea (9) implica el disparo del interruptor (6) de Ia subestación o centro de distribución, seguido de un reenganche. Si éste no tiene éxito, ocurre otro disparo del interruptor de cabecera (6). El seccionalizador (7) que ha detectado el paso de sobreintensidad o intensidad de falta comprueba que no hay tensión, y procede a abrir Ia línea (9) por el tramo donde está instalado. El segundo reenganche del interruptor (6) consigue alimentar de nuevo Ia línea (8) sin el tramo en el que se encuentra el defecto. Esta misma operación se puede programar para que se realice después del segundo o sucesivos reenganches.
La función de sobreintensidad o intensidad de falta que incluye el dispositivo de control/protección (14) se encuentra ¡mplementada para cada una de las fases y para tierra, realizando Ia detección de faltas entre fases y
Ia detección de faltas entre fase y tierra. Para ello, Ia función de sobreintensidad o intensidad de falta está asociada a unas curvas de detección a tiempo definido (véase Ia figura 8) para detección de faltas entre fases y a las curvas de tiempo definido, normalmente inversa, muy inversa y extremadamente inversa, (véanse las figuras 8, 9, 10 y 11 respectivamente) para Ia detección de faltas entre fase y tierra. Asimismo, el dispositivo de control/protección (14) puede implementar una funcionalidad de detección de faltas entre fase y tierra ultrasensible, empleando para ello un transformador toroidal (22) que abarca todas las fases, tal y como se muestra en Ia figura 4, de modo que se independiza de Ia intensidad de las fases evitando los errores de los captadores de intensidad toroidales (5) de fase y se garantiza
Ia detección de corrientes entre fase y tierra que tienen un valor muy pequeño como puede ocurrir en redes con neutro aislado, neutro compensado o terrenos muy resistivos. Como norma general se garantiza Ia detección de corrientes de defecto fase-tierra inferiores al 10% de Ia intensidad nominal de fase.
Otra de las aplicaciones del dispositivo de control/protección (14) es Ia detección de fases abiertas en líneas eléctricas figura 14. En este caso, un indicador/detector de presencia de tensión instalado en un centro de transformación observaría que existe tensión en Ia fase abierta (V), ya que el transformador del centro de transformación, con el circuito primario conectado en triángulo, figura 15, tendría en Ia fase V una tensión comprendida entre Ia fase U y W. Dado que esta tensión es superior al umbral de indicación de tensión, se detectaría/indicaría presencia de tensión, Io cuál es correcto, pero no se produciría una alarma de que Ia línea tiene una fase (V) abierta. Con el sistema de medida de tensión empleado en el dispositivo de control/protección (14) se produciría una medida real de Ia tensión en Ia fase y por Io tanto al ser inferior a Ia tensión nominal de las otras dos fases se detecta el problema.
El dispositivo de control/protección (14) integra una función de control que mediante las entradas y salidas digitales, permite recibir señales de control y medida de temperatura, presión, nivel de líquido, etc., recibir y/o transmitir una orden para maniobrar el interruptor, seccionador o seccionador de puesta a tierra del equipo (4) en el que se encuentra instalado. Además puede realizar funciones de supervisión, ya que puede recibir el estado en el que se encuentra el interruptor, seccionador o seccionador de puesta a tierra. El dispositivo de control integrado controla que Ia maniobra del interruptor, seccionador o seccionador de puesta a tierra se realiza dentro del tiempo que permite Ia motorización del equipo eléctrico (4). En caso de no ejecutarse Ia orden en el tiempo pre-establecido, se corta
Ia alimentación de Ia motorización del accionamiento. Puesto que el dispositivo de control integrado dispone de información sobre el estado del equipo eléctrico (4), es posible evitar maniobras erróneas, como por ejemplo, Ia puesta a tierra de una línea con tensión. Así al detectar Ia presencia de tensión en una línea, y ante una orden de puesta a tierra de Ia misma, Io cuál causaría un cortocircuito, el dispositivo de control integrado puede bloquear dicha acción, evitando el accidente.
Por otro lado, el dispositivo de control/protección (14) dispone de un registro de eventos donde se almacenan los últimos defectos detectados por el mismo. Además, se almacena el número total de faltas detectadas, así como los diferentes parámetros de configuración. Mediante el puerto de comunicaciones, el • dispositivo de control integrado puede informar al despacho de maniobra sobre todos los datos disponibles y permite realizar aplicaciones de telecontrol de centros de transformación y de distribución, implementando el control y Ia supervisión de cada equipo eléctrico (4). Tal y como se muestra en Ia figura 7, Ia utilización de los dispositivos de control integrado (14) y un concentrador de datos y controlador de equipos (28), permite visualizar y operar cada posición de Ia aparamenta que integran los equipos eléctricos (4) de forma local o remota.

Claims

REIVINDICACIONES
1a Dispositivo de control/protección para redes de distribución eléctrica basado en Ia captación/medición de señales provenientes de Ia red eléctrica y/o de sus equipos eléctricos, mediante Ia incorporación, en todos o parte de los citados equipos eléctricos, de un circuito eléctrico que comprende una toma de tensión capacitiva (2) del citado equipo eléctrico (4), un limitador de tensión (32), un circuito de medida de tensión (B) y un circuito de indicación o detección de presencia/ausencia de tensión (A), caracterizado porque el circuito de medida de tensión (B) está conectado en serie con Ia toma de tensión capacitiva (2) y el circuito de indicación o detección de presencia/ausencia de tensión (A).
2a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque Ia toma de tensión capacitiva
(2) se obtiene de unas pantallas (2') uniformizadoras del campo eléctrico integradas en unos pasatapas (3) de conexión de los cables de alimentación al equipo eléctrico (4).
3a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque el circuito de medida de tensión (B) se dispone entre el circuito de indicación o detección de presencia/ausencia de tensión (A) y Ia toma de tensión capacitiva (2).
4a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 2a, caracterizado porque el circuito de medida de tensión (B) comprende un transformador de baja tensión para Ia medida de tensión.
5a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 4a, caracterizado porque el circuito de medida de tensión (B) se encuentra aislado galvánicamente de Ia toma de tensión capacitiva (2).
6a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 5a, caracterizado porque comprende un circuito de medida de tensión (B) independiente para cada una de las fases del equipo eléctrico (4).
7a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque adicionalmente comprende medios para Ia medida de intensidad, del equipo eléctrico (4).
8a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 7a, caracterizado porque los medios para Ia medida de intensidad comprenden al menos un transformador o captador toroidal (5) instalado por el exterior, y en Ia base, de un pasatapas (3) de conexión de los cables de alimentación del equipo eléctrico (4).
9a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 7a, caracterizado porque los medios para Ia medida de intensidad comprenden al menos un transformador o captador toroidal (5) dispuesto en el interior de un pasatapas (3) de conexión de los cables de alimentación del equipo eléctrico (4).
10a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 9a, caracterizado porque adicionalmente comprende curvas de protección que son del mismo tipo que las curvas de protección de cabecera de Ia red de distribución para Ia detección de paso de falta.
11a Dispositivo de control/protección para redes de distribución eléctrica según Ia reivindicación 7a, caracterizado porque Ia medida de intensidad, junto con las medidas obtenidas del circuito de medida de tensión (B) y del circuito de indicación o detección de presencia/ausencia de tensión (A), permite determinar el paso de falta.
12a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 7a, caracterizado porque Ia medida de intensidad, junto con Ia medida obtenida del circuito de medida de tensión (B), permite determinar Ia direccionalidad del paso de falta.
13a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 10a, caracterizado porque Ia detección de paso de falta permite el seccionamiento automático de líneas.
14a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque adicionalmente comprende medios para Ia detección de Ia posición del interruptor, seccionador o seccionador de puesta a tierra del equipo eléctrico (4) en el que se encuentra instalado.
15a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado, porque adicionalmente comprende medios para recibir y/o transmitir una orden de maniobra del interruptor, seccionador, seccionador de puesta a tierra.
16a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque adicionalmente comprende medios para Ia recepción de señales de control y medida de temperatura, presión, nivel de líquido, etc.
17a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque comprende adicionalmente medios de registro para el almacenamiento de los defectos detectados, así como de los diferentes parámetros de configuración.
18a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 7a, caracterizado porque el circuito de indicación o detección de presencia/ausencia de tensión (A) permite realizar un enclavamiento de prevención de puesta a tierra que impide Ia puesta a tierra del interruptor (21) del equipo eléctrico (4) cuando se detecta tensión en Ia línea.
19a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 7a, caracterizado porque el dispositivo (14) permite Ia detección de faltas a tierra para cada una de las fases.
20a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque adicionalmente comprende un transformador toroidal (22) que abraza todas las fases para Ia detección de faltas a tierra.
21a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 19a, caracterizado porque Ia detección de faltas a tierra permite detectar corrientes de defecto inferiores al 10% de Ia intensidad nominal de fase.
22a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque comprende medios para Ia medida de los valores instantáneos de tensión e intensidad y medios para el cálculo de los valores eficaces de las intensidades y tensiones de cada fase y medios para determinar las intensidades y tensiones homopolares, energías, potencias, etc. 23a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 1a, caracterizado porque adicionalmente comprende una serie de entradas y salidas digitales que permite realizar aplicaciones de telecontrol de los centros de transformación y de distribución, implementando el control y Ia supervisión de cada equipo eléctrico (4).
24a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación 6a, caracterizado porque la medida de tensión individualizada en cada una de las fases permite Ia detección de una fase abierta en algún punto de Ia línea.
25a Dispositivo de control/protección para redes de distribución eléctrica según reivindicación cualquiera de las reivindicaciones anteriores, caracterizado porque el dispositivo de control/protección es un dispositivo trifásico.
26a.- Dispositivo de control/protección para redes de distribución eléctrica según cualquiera de las reivindicaciones anteriores, caracterizado porque el dispositivo de control/protección esta integrado en el propio equipo eléctrico (4).
PCT/ES2005/000334 2005-06-13 2005-06-13 Dispositivo de control/protección para redes de distribución eléctrica WO2006134178A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT05759364T ATE420368T1 (de) 2005-06-13 2005-06-13 Steuer-/schutzeinrichtung für elektrische verteilernetze
DE602005012322T DE602005012322D1 (de) 2005-06-13 2005-06-13 Steuer-/schutzeinrichtung für elektrische verteilernetze
ES05759364T ES2319670T3 (es) 2005-06-13 2005-06-13 Dispositivo de control/proteccion para redes de distribucion electrica.
PCT/ES2005/000334 WO2006134178A1 (es) 2005-06-13 2005-06-13 Dispositivo de control/protección para redes de distribución eléctrica
EP05759364A EP1906190B1 (en) 2005-06-13 2005-06-13 Control/protection device for electrical distribution networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/000334 WO2006134178A1 (es) 2005-06-13 2005-06-13 Dispositivo de control/protección para redes de distribución eléctrica

Publications (1)

Publication Number Publication Date
WO2006134178A1 true WO2006134178A1 (es) 2006-12-21

Family

ID=37531968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/000334 WO2006134178A1 (es) 2005-06-13 2005-06-13 Dispositivo de control/protección para redes de distribución eléctrica

Country Status (5)

Country Link
EP (1) EP1906190B1 (es)
AT (1) ATE420368T1 (es)
DE (1) DE602005012322D1 (es)
ES (1) ES2319670T3 (es)
WO (1) WO2006134178A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2388962A1 (es) * 2010-03-12 2012-10-22 Ormazabal Protection & Automation, S.L. Dispositivo de control/protección para redes de distribución de energía eléctrica.

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009043596A1 (de) * 2009-09-25 2011-03-31 Siemens Aktiengesellschaft Messwandler mit einem elektrischen Wandler
CN105004983A (zh) * 2015-08-11 2015-10-28 珠海格力电器股份有限公司 用于空调机组的电容故障检测方法、装置和***
FR3062921B1 (fr) * 2017-02-13 2019-06-07 Schneider Electric Industries Sas Circuit de surveillance d'un reseau d'alimentation electrique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074193A (en) * 1973-12-20 1978-02-14 Siemens Aktiengesellschaft Combined current and voltage measuring apparatus
US5432438A (en) * 1991-06-29 1995-07-11 Asea Brown Boverti Ltd. Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station
EP0851442A2 (en) * 1996-12-31 1998-07-01 ABB Transmit Oy Lead-in insulator
EP0917157A2 (en) * 1997-11-12 1999-05-19 ABB Transmit Oy Insulator
ES2174754A1 (es) * 2001-03-30 2002-11-01 Gripo Ormazabal S A Sistema modular de conexion aislada de alta tension con captacion de intensidad y tension.
US20020180459A1 (en) * 2001-05-31 2002-12-05 Veselin Skendzic Three-phase voltage sensor with active crosstalk cancellation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074193A (en) * 1973-12-20 1978-02-14 Siemens Aktiengesellschaft Combined current and voltage measuring apparatus
US5432438A (en) * 1991-06-29 1995-07-11 Asea Brown Boverti Ltd. Combined current and voltage transformer for a metal-enclosed gas-insulated high-voltage switching station
EP0851442A2 (en) * 1996-12-31 1998-07-01 ABB Transmit Oy Lead-in insulator
EP0917157A2 (en) * 1997-11-12 1999-05-19 ABB Transmit Oy Insulator
ES2174754A1 (es) * 2001-03-30 2002-11-01 Gripo Ormazabal S A Sistema modular de conexion aislada de alta tension con captacion de intensidad y tension.
US20020180459A1 (en) * 2001-05-31 2002-12-05 Veselin Skendzic Three-phase voltage sensor with active crosstalk cancellation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2388962A1 (es) * 2010-03-12 2012-10-22 Ormazabal Protection & Automation, S.L. Dispositivo de control/protección para redes de distribución de energía eléctrica.

Also Published As

Publication number Publication date
DE602005012322D1 (de) 2009-02-26
ES2319670T3 (es) 2009-05-11
EP1906190A1 (en) 2008-04-02
ATE420368T1 (de) 2009-01-15
EP1906190B1 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
US9246325B2 (en) Connection device for transformer substation modules
KR100903149B1 (ko) 차단기 트립회로 감시장치
US9263217B2 (en) Protective switch with status detection
KR102057494B1 (ko) 스마트 전기사고 예방 및 에너지 관리 시스템
US11187750B2 (en) Method for detecting the state of an electrical protection appliance in an electrical installation and detection device implementing said method
ES2319670T3 (es) Dispositivo de control/proteccion para redes de distribucion electrica.
KR20180003978A (ko) 수배전반 내에서 스스로 정확한 동작 여부를 진단하고 및 동작이 부정확하면 경보를 울리는 자가진단모듈, 및 이를 포함하는 수배전반
KR20190128908A (ko) 배전선로 보호기기 동작상태 검증용 진단장치
KR101302068B1 (ko) 통합형 전철제어반 glds
KR102155203B1 (ko) 다중 입력 개폐가 가능한 고전압 dc 스위치
KR101084058B1 (ko) 차단기 자동 제어 기능을 구비한 특고전압 수전설비
BRPI1002181A2 (pt) dispositivo e processo para sinalizar falhas elÉtricas, unidade, e painel elÉtrico compreendendo este dispositivo
KR101422420B1 (ko) 누전차단기의 자동복귀장치를 포함하는 리셋형 전원 스위치
KR20140057720A (ko) 변전 설비 보호 제어 시스템
KR102579941B1 (ko) 스마트 파력원격제어기를 이용하여 원격에서 결상위치 검출 및 차단이 용이한 전력설비 보호용 수배전반
KR101964375B1 (ko) 송출 전력의 전자제어 차단을 통한 주상변압기의 소손 방지 장치
KR200305335Y1 (ko) 옥외형 써지분전함
ES2388962A1 (es) Dispositivo de control/protección para redes de distribución de energía eléctrica.
KR20100058443A (ko) 접지상태를 식별할 수 있는 수배전장치
JP2021100355A (ja) 漏電量検知システム、自動保守点検システム及び漏電量検知方法
KR101631992B1 (ko) 프리즘을 이용한 아크 플래시 검출 시스템
KR102649248B1 (ko) 차단기 직접 연결 설치 구조의 지능형 서지보호기
KR100351744B1 (ko) 배전선로의 고장구간 자동개폐 제어방법
CN220137355U (zh) 位置反馈回路断线检测装置
KR101187728B1 (ko) 분전반 감시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005759364

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005759364

Country of ref document: EP