WO2006129862A1 - 車両の走行制御装置 - Google Patents

車両の走行制御装置 Download PDF

Info

Publication number
WO2006129862A1
WO2006129862A1 PCT/JP2006/311365 JP2006311365W WO2006129862A1 WO 2006129862 A1 WO2006129862 A1 WO 2006129862A1 JP 2006311365 W JP2006311365 W JP 2006311365W WO 2006129862 A1 WO2006129862 A1 WO 2006129862A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
speed
vehicle
angle
self
Prior art date
Application number
PCT/JP2006/311365
Other languages
English (en)
French (fr)
Inventor
Takaaki Oba
Shunichi Nakazawa
Futoshi Kobayashi
Yukio Yoshida
Motoaki Suda
Original Assignee
Kabushiki Kaisha Aichi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005158738A external-priority patent/JP4800667B2/ja
Priority claimed from JP2005223863A external-priority patent/JP2007038778A/ja
Application filed by Kabushiki Kaisha Aichi Corporation filed Critical Kabushiki Kaisha Aichi Corporation
Priority to US10/590,903 priority Critical patent/US7957866B2/en
Priority to KR1020067017572A priority patent/KR101094534B1/ko
Priority to EP06747201A priority patent/EP1914140B1/en
Publication of WO2006129862A1 publication Critical patent/WO2006129862A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07568Steering arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • B60W2030/043Control of vehicle driving stability related to roll-over prevention about the roll axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/121Fork lift trucks, Clarks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps

Definitions

  • the present invention relates to a travel control device for a wheel-driven vehicle.
  • an aerial work vehicle in which a vehicle is attached to a vehicle body via a lifting means is known.
  • a vertical lifting device e.g. telescopic post and scissor mechanism
  • an operator who has boarded the work table can operate the vehicle and raise / lower the work table from the top of the work table (for example, see Japanese Patent Laid-Open No. Heisei 10-101). 1 5 8 0 0 0 publication, Japanese Unexamined Patent Publication No. 2 0 0 1-1 8 0 8 9 9 publication).
  • the vehicle travel operation includes a travel stop operation means (for example, lever and diamond! ⁇ ) That switches between start and stop of the vehicle and forward and backward movement, steering of the traveling vehicle,
  • the user operates the steering operation means (for example, levers, dials, etc.) for performing the steering operation of the steering wheel of the vehicle.
  • the controller provided on the workbench or the vehicle detects the steering angle of the steered wheels detected by the steering angle detector.
  • the steering actuator normal hydraulic cylinder
  • the steering angle of the steered wheel refers to the deflection angle of the steered wheel with respect to the front-rear central axis of the vehicle.
  • the vehicle travel speed is restricted only while the target rudder angle is set to a large V and value, so the target rudder angle is not changed when turning from turning to straight running.
  • the speed was increased to return to the original speed. For this reason, if the direction of turning is reversed, for example, turning from left turning to turning
  • the thigh control means In the case of a ' ⁇ ' traveling operation, the thigh control means is moved from the operating position of the left turn traveling command to the neutral position: 3 ⁇ 4 Although it is operated to the operating position of the regular traveling command, Since the change in rudder angle is delayed with respect to the change in the target rudder angle, the vehicle will be accelerated even though it is turning. In addition, if the vehicle is a high-altitude vehicle, the worker may lose his posture on the table due to the inertial force caused by the increased speed during turning.
  • the actuator is actuated (in the case of a hydraulic cylinder, the amount of change in the length) in a region where the steered wheel has a large steering angle.
  • the amount of change in the steering angle of the steered wheel is larger than in the region where the steered angle of the steered wheel is small.
  • the operating speed of the actuator is always constant, the change speed of the steering angle of the steering wheel becomes larger in the region where the steering angle of the steering wheel is large than in the region where the steering angle of the steering wheel is small.
  • the steering angle of the steered wheels is small in the region, and the steered wheels are less likely to stop at the target rudder angle position than in the region, making accurate steering angle control difficult.
  • such a steering apparatus generally includes a pair of knuckle arms that support the steered wheel so as to be swingable around a kingpin shaft, and a tie pad that connects the pair of knuckle arms and a cup. And the steering actuator connected to this rolling mechanism, and the steering actuator can drive the snake mechanism to change the angle of the steering wheel. It has become.
  • the steering mechanism used in the above-mentioned type of vehicle is generally called the Atskerman link mechanism, and has a rolling characteristic when a difference occurs in the steering angle of the inner and outer wheels during turning.
  • the steering angle of a steering wheel that becomes an outer wheel (or inner wheel) at the time of turning is detected by a steering angle detection means', and this detected value is determined by the operation state of the operating device.
  • the steering actuator was controlled so that the target rudder angle was set according to the situation.
  • the steering angle detection means it is necessary to attach the steering angle detection means to both the pair of left and right steering wheels. Also, in each of the rudder angle detection means attached to the pair of left and right steered wheels, complicated adjustment work must be performed to match the detected rudder angle, the operating state of the operating device, and the amount of the steering actuator. It took time and effort. Furthermore, every time the steered wheels that become outer wheels (or inner wheels) change when turning, the rudder angle detection means that refers to the rudder angle must also be changed, resulting in a problem that the control force becomes unpleasant. .
  • the present invention has been made in view of the above-described problems. Even when the direction of turning travel is reversed, the travel control of the vehicle is configured such that the movement of the vehicle can follow the target $ W.
  • the purpose is to install the device.
  • Another object of the present invention is to provide a traveling control device for a work vehicle that can accurately stop the steering wheel at the target steering angle position even in a region where the steering wheel has a large steering angle. It is another object of the present invention to provide a travel control device including a steering device that can change a steered wheel to a desired steering angle with a simple structure and control. Means for solving the problem
  • the vehicle running fT l! ⁇ apparatus is a drive-type vehicle running device, and performs a steering operation for operating a steering wheel of the vehicle (for example, the front wheel 11a in the embodiment).
  • Means for example, the steering dial 4 2 in the embodiment
  • rudder angle detecting means for detecting the rudder angle of the steered wheel (for example, the rudder angle detector 6 2 in the embodiment)
  • the steering angle of the steered wheel The steering angle of the steering wheel detected by the steering actuator (for example, the steering cylinder 17 in the embodiment) to be changed and the steering angle detection means is set according to the operation command output from the steering operation means.
  • Operation control means for controlling the steering actuator so as to achieve the target steering angle of the Iff! Self-steering wheel (for example, the controller 50 and the steering control valve in the embodiment)
  • the rudder angle of the steered wheel refers to the deflection angle of the steered wheel with respect to the longitudinal center axis of the vehicle.
  • the travel speed regulating means includes the operation tat The target steering angle of the fitif self-steering wheel set according to the operation state of the means is compared with the detected steering angle of the steering wheel detected by the ⁇ 5 steering angle detection means.
  • the travel speed of the tin vehicle is regulated so that the travel speed of the tin vehicle is equal to or less than the predetermined speed.
  • the travel speed regulating means includes a target rudder angle of the steered wheel set in accordance with an operation state of the self-maneuvering means and the steered wheel detected by the rudder angle detecting means.
  • the detected steering angle may be compared, and control may be performed to gradually reduce the traveling speed of the Fujimi vehicle as the Fujimi difference increases.
  • the selfish traveling speed regulating means sets a deceleration that increases as the knitting self difference increases, and performs control to gradually reduce the traveling speed of the knitting vehicle based on the set deceleration. Is preferred.
  • the travel control device further includes a steering operation speed detecting means for obtaining an operation speed of the steering operation means, and the tiff self-running speed regulating means is a tin self-operating speed obtained by the self-operation speed detecting means.
  • the traveling speed of the vehicle may be regulated so that the traveling speed of the vehicle is equal to or lower than the predetermined speed.
  • the travel control device further includes a steering operation speed detection unit that determines an operation speed of the steering operation unit, and the self-running speed regulation unit includes the tiff self-steering operation obtained by the self-maneuvering speed detection unit.
  • control may be performed to gradually decelerate the traveling speed of the tin vehicle as the operation speed increases.
  • a deceleration that increases as the ttrt self-operation speed increases it is preferable to set a deceleration that increases as the ttrt self-operation speed increases, and to perform a control to gradually reduce the traveling speed of the Lanki vehicle based on the set deceleration.
  • a steering actuating tie 1 ⁇ 3 ⁇ 4 speed detecting means for obtaining a 3 ⁇ 43 ⁇ 4 speed of the self-steering actuator, and the key self-running speed restricting means is controlled by the braided steering actuator «speed detecting means.
  • the driving speed of the own vehicle may be regulated so that the driving speed force S of the own vehicle becomes equal to or lower than a predetermined speed.
  • the travel control device further includes a steering actuator working speed detecting means for obtaining a working speed of the steering actuator, and the self-running speed regulating means is the steering actuator speed detecting means obtained by the steering actuator speed detecting means.
  • Steering actuator ⁇ »Speed force S When the speed is greater than or equal to a predetermined value, control to gradually decrease the running speed of the vehicle as the speed increases. Can be configured to do.
  • the travel speed regulation means regulates the travel speed of the vehicle according to the operation state of the operation means and the steering state of the rudder actuator. Therefore, it is easy to control the moving vehicle to match the target trajectory as if the direction of turning was reversed.
  • the difference between the target steering angle of the steered wheel set in accordance with the steering state of the steering operation means and the steered wheel steering angle (detected steering angle) detected by the rudder angle detecting means is not less than a predetermined value.
  • the vehicle travel speed force S is regulated to be below a predetermined speed (forced deceleration depending on the travel speed before steering)
  • the traveling speed is kept low. For this reason, the traveling speed of the vehicle does not become excessive, and the moving vehicle dew of the vehicle can be set to the target #.
  • the steering operation means is operated quickly (at this time, the difference between the target steering angle of the steering wheel and the detected steering angle of the steering wheel becomes large) ⁇
  • the vehicle traveling speed is regulated to be below the predetermined speed (forced deceleration depending on the traveling speed before steering). If configured, the direction of turning is reversed.
  • the actual angle of the steering wheel sufficiently follows the target angle! /!
  • the traveling speed is kept at ffig between /. For this reason, the traveling speed of the vehicle does not become excessive, and the moving vehicle of the vehicle can follow the target.
  • the steering operation means when the steering operation means is operated quickly, the difference between the target rudder angle of the steered wheel and the detected steered angle of the steered wheel becomes large.)
  • the steering action is attempted to make the detected steered angle of the steered wheel coincide with the target rudder angle.
  • the speed of the actuator exceeds the predetermined value, the vehicle speed is limited to the predetermined speed. Or less (forced deceleration depending on the driving speed before steering) while the speed of the steering actuator is higher than the predetermined value. If the direction of turning is reversed, the actual rudder angle of the steered wheel sufficiently follows the target rudder angle, so that the travel speed is between Is kept on.
  • the steering control means detects from the tirf self-steering angle detection means When the size of the tiff self-steering angle obtained based on the information is less than a predetermined reference amount, the Sir! Self-steering actuator is set to the first f3 ⁇ 43 ⁇ 4 speed, and the size of the steering angle is The force S is preferably configured such that when the reference amount is exceeded, the Mi speed for the same operation command is set to a second speed that is slower than the first speed.
  • the steering control means is configured to detect a leakage when the target rudder angle force s is set so that the rudder angle size is equal to or smaller than the knitting self reference amount from a state where the self rudder angle size exceeds the self reference amount. Even when the size of the angle exceeds the reference amount, it is preferable to configure the tin steering actuator so that it sifts at the first speed.
  • the braided steering control means is configured to make the self-steering actuator run at a lower speed as the rudder angle with respect to the straight traveling direction of the steered wheel detected by the braided steering angle detecting means increases. .
  • the steering angle of the steering wheel is less than the reference amount. Since the steering actuator is turned at a slower speed than when the steering wheel is turned, the steering angle of the steering wheel exceeds the reference amount. It is possible to stop the steered wheel accurately at the target rudder angle position even in the region where the amount of change of the wheel is large (the region where the steered wheel's rudder angle exceeds the reference amount).
  • the rudder angle size is set to the reference amount. Even when the steering angle exceeds, it is preferable to configure the steering actuator to operate at the same speed as when the rudder angle is below the reference amount. Until the rudder angle becomes below the reference amount, unnecessary operating speed limitation of the steering actuator is not made, so that the delay of the steered wheel with respect to the maneuvering operation can be eliminated accordingly.
  • the steerable actuator is configured to be delayed and 3 ⁇ 4 speed as the steering angle of the steered wheel is larger.
  • steering with respect to the working amount of the steerable actuator is performed. It is possible to accurately stop the steered wheel at the target rudder angle position even in areas where the amount of change in the steered angle of the wheel is large (the steered angle of the steered wheel is relatively large).
  • a pair of knuckle arms that support the braided steering wheel so as to be swingable around the kingpin shaft, and the pair of knuckle arms are connected.
  • a steering mechanism comprising a tie rod that is connected to the steering wheel, and the steering lever actuator is configured to change the steering angle of the steered wheel by driving a self-sustaining steering mechanism.
  • the steering control means is attached to either one of the pair of left and right steering wheels, and the self steering control means determines whether the steering angle of one of the pair of left and right steering wheels detected by the braided steering angle detection means is tiff It is preferable that the steering actuator is controlled so as to obtain the steering angle set by an operation f ⁇ command from the own steering operation means.
  • a steering angle detector is attached to either one of the left and right steering wheels, and the operation control of the steering actuator is performed based on the steering angle detected by the detector.
  • the steered wheel can be changed to a desired rudder angle. In this way, a travel control device that is simpler in structure and control than in the prior art can be obtained.
  • the structure has a characteristic that the steering angle of the pair of left and right steering wheels is different when the self-turning vehicle turns, depending on the direction and amount of operation of the tiff self-steering means.
  • One of the pair of left and right steering wheels to which the detection means is attached is set to the tirt self-target steering angle, and the operation control means is the right pair of steerings of the SiifEfc detected by the ⁇ 3 steering angle detection means.
  • Steering angle of one of the wheels ⁇ l The tfffs steering actuator is adjusted based on the characteristics of the self-rotating wheel so that the grt self-steering rudder angle is set according to the direction and amount of operation of the self-steering operation means. It is desirable to be configured to perform control to be activated.
  • the travel control device has the steering angle detector attached to one of the left and right steering wheels, and the detection is based on the characteristic that the steering angle of the inner and outer wheels is different during turning. It is possible to correlate the detection result of the detector with the operation direction of the steering operation means and the operation amount, control the steering actuator, and change the steered wheel to a desired steering angle. In this way, a travel control device with simpler structure-control can be obtained.
  • Fig. 1 is a view of the above-mentioned aerial work vehicle as viewed obliquely from behind the vehicle.
  • FIG. 2 is a block diagram showing a transmission path for signals and power relating to the traveling operation of the vehicle and the raising / lowering operation of the work platform in the high-altitude vehicle including the vehicle traveling control apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a plan view showing a configuration of a traveling device provided in a vehicle in the aerial work vehicle.
  • ' Figure 4 shows the relationship between the amount of extension of the steering cylinder and the rudder angle of the front wheels in the above-mentioned high altitude vehicle.
  • A shows the state in which the extension amount of the steering cylinder is zero
  • B shows the state in which the extension amount of the steering cylinder is positive
  • C shows the state in which the extension amount of the steering cylinder is negative.
  • FIG. 5 is a woven diagram of the operation box provided on the work platform of the aerial work platform.
  • FIG. 6 is a graph showing the deceleration set according to the difference between the target rudder angle and the detected rudder angle.
  • (A) shows the details of the moving vehicle when the aerial work platform shifts from straight running to left turning
  • (B) shows the target rudder angle and the target rudder angle corresponding to (A). It is a graph of the time change of the difference ⁇ with respect to the detected steering angle (top) and a graph of the time change of the running speed (bottom).
  • Figure 8 shows the details of the moving vehicle when the aerial work vehicle moves from a left turn to a 3 ⁇ 4 turn, and (B) shows the target rudder shown corresponding to (A).
  • the difference between the angle and the detected rudder angle is a graph of time change of ⁇ (upper) and a graph of time change of travel speed (lower).
  • FIG. 9 shows that the above aerial work vehicle is weaker than straight-running, and left-turned: ⁇ , and (B) shows corresponding to (A) The graph of the time change of the difference between the target rudder angle and the detected rudder angle (upper row) and the graph of the time variation of the running speed (lower row).
  • FIG. 10 is a second embodiment of the present invention, where (A) is the movement of the vehicle of the aerial work platform from a left turn; A graph of the change in time of the operation dial of the steering dial (top) and the graph of the change in travel speed over time (lower), corresponding to A).
  • FIG. 11 is a block diagram showing a transmission path of signals and repulsive forces related to the traveling operation of the vehicle and the lifting / lowering operation of the platform in an aerial work vehicle equipped with the traveling control device for a vehicle according to the second embodiment of the present invention.
  • FIG. 11 is a block diagram showing a transmission path of signals and repulsive forces related to the traveling operation of the vehicle and the lifting / lowering operation of the platform in an aerial work vehicle equipped with the traveling control device for a vehicle according to the second embodiment of the present invention.
  • FIG. 12 shows a third embodiment of the present invention, in which (A) is a difference in the moving vehicle of the vehicle where the above-mentioned aerial work vehicle has made a steady turn from a left turn, and (B) is (A) These are a graph of the time variation of the operating speed V of the steering cylinder (top) and a graph of the time variation of the travel speed (bottom) shown in FIG. '
  • Fig. 13 ( ⁇ ) is a graph showing the operating speed of the steering cylinder relative to the steering angle of the front wheels.
  • Fig. 14 is a graph showing the change in the steering angle with respect to when a target steering angle with a size larger than the reference amount is set from the state of the steering angle with a size smaller than the reference amount. (Upper) and graph (lower) showing the change of the speed of the steering cylinder with respect to time.
  • Fig. 13 ( ⁇ ) is a graph showing the operating speed of the steering cylinder relative to the steering angle of the front wheels.
  • Fig. 14 is a graph showing the change in the steering angle with respect to when a target
  • Figure 16 is a graph showing changes in rudder angle with respect to time when a target rudder angle with a size smaller than the reference amount is set from a rudder angle state with a size larger than the reference amount.
  • Figure 17 shows that the larger the rudder angle of the front wheel, the steered wheel, the slower the steering cylinder and the speed
  • FIG. 6 is a graph showing the operating speed of the operating cylinder with respect to the rudder angle of the front wheels in the case where the configuration is set to «.
  • Fig. 18 is a diagram showing the relationship between the extension amount of the snake cylinder and the snake angle of the front wheel in the above-mentioned high altitude vehicle.
  • Fig. 18 ( ⁇ ) is the state where the extension amount of the steering cylinder is zero.
  • ( ⁇ ) shows a state in which the steering cylinder has a positive extension
  • Fig. 18 (C) shows a state in which the steering cylinder has a negative extension force S.
  • FIG. 19 is a diagram showing the relationship between the maximum twisting operation amount of the steering dial and the rudder angle of the left front wheel in the above-mentioned high altitude vehicle.
  • FIG. 20 is a diagram showing the relationship between the movement of the left front wheel and the right front wheel in accordance with the steering dial operation state in the above-mentioned high altitude vehicle, and the steering angle of these left front wheel and right front wheel.
  • FIG. 1 shows the first aspect of the present invention.
  • This aerial work vehicle 1 is a so-called vertical elevating type altitude 1 ⁇
  • a telescopic board 20 that is supported by the telescopic post 20 and that is supported by the telescopic post 20.
  • the vehicle 10 includes tires 3 ⁇ 43 ⁇ 4 1 1 on the front, rear, left and right and a traveling motor (hydraulic motor) 1 2 inside (see FIG. 3).
  • Wheel referred to as wheel 1 1 b
  • front tire ⁇ 3 ⁇ 4 1 1 hereinafter referred to as front wheel 1 1 a
  • front wheel 1 1 a can be steered to run.
  • the telescopic post 20 has a lower post 2 1 that extends vertically upward on the vehicle 10
  • the upper post 2 2 which is nested with respect to the post 2 1, works together with the built-in lifting cylinder (hydraulic cylinder) 2 3 (see Fig. 2) to expand and contract vertically (upper post 2 2 can be raised and lowered.
  • the base 30 is attached to the upper post 22 and can be moved up and down by the vertical expansion / contraction 13 ⁇ 4 of the expansion / contraction post 20.
  • a travel stop operation lever 41 that switches between start / stop and forward / backward movement of the vehicle 10, and steering of the traveling vehicle 10, that is, steering operation of the front wheels 1 1 a as steering wheels.
  • An operation pox 40 having a steering dial 4 2 and an elevating operation lever 4 3 for elevating the table 30 is provided (see FIGS. 1 and 5), and the operator has boarded the work table 30. «The person operates these traveling stop operation lever 41, steering dial 4 2 and elevating operation lever 4 3 to move the vehicle 10 and elevate the table 30 while staying on the work table 30. Can be done.
  • the steering mechanism of the front wheel 1 1 a which is a steering wheel, is composed of the steering link f structure 1 3 connected to the front wheel 1 1 a and the steering link mechanism 1 3 i3 ⁇ 43 ⁇ 4.
  • the deflection angle of the front wheel 1 1 a with respect to the longitudinal axis of the vehicle 1 0. (See Fig. 4)
  • Steering cylinder (hydraulic cylinder) 1 7 that changes and the operation control of the steering cylinder 1 7 according to the steering dial 4 2 operation It consists of a controller 50 to perform.
  • the steering link mechanism 1 3 has left and right front wheel support members 14 that rotatably support the front wheel 1 1 a and tie rods 16 that connect the left and right front wheel support brackets 14. Configured.
  • the left and right front wheel support members 14 are attached to the vehicle 10 via king pins 15 extending in the vertical direction, and can swing around the king pins 15.
  • each of the left and right front wheel supporting sound attachments 14 is provided with an arm portion 14 a extending rearward of the vehicle 10, and both ends of the tie rod 16 are connected to the left and right arm portions 14 a. Connected by connecting pin P1. .
  • One end of the steering cylinder 1 7 is connected to the arm portion 1 4 a of the left front wheel support member 1 4 constituting the steering link mechanism 1 3 by a connecting pin P 2, and the other end of the steering cylinder 1 7 is It is connected to a cylinder connecting portion of the vehicle 10 (not shown) by a connecting pin P3.
  • the left front wheel support member 14 can be swung around the pin 15 by operating the snake cylinder 17 to extend and retract, and the right front wheel support member 1 4 via the tie rod 16. Can be swung in the same direction as the left front wheel support member 14 simultaneously.
  • the left and right front wheels 1 1 a can be directed to the right by extending the steering cylinder 1 7 1 ⁇ 3 ⁇ 4J, and the left and right front wheels 1 1 a can be directed to the left by retracting the steering cylinder 17 Can
  • FIG. 2 shows a signal relating to the traveling operation of the vehicle 10 and the raising / lowering operation of the platform 30 and the transmission path of the J force.
  • the operation stop operation lever 4 1 provided in the operation pox 4 0 of the tower 30 is located in the neutral position (vertical position as shown in FIG. 5) in the non-operation state, and forward or on the basis of this neutral position. It can be tilted backward.
  • the advance stop operating lever 41 is configured to automatically return to the neutral position by the force of the built-in spring when the hand is released from the tilting operation state.
  • the operation imm (operation direction and operation amount based on the neutral position) of the advance / stop operation lever 4 1 should be detected by the advance / stop operation detector 4 1 a consisting of a potentiometer or the like provided in the operation box 40.
  • the information on the operation state of the operation stop operation lever 4 1 detected by the operation stop operation detector 4 1 a is input to the controller 5 0 (provided in the private stand 30 or the vehicle 10). It has become.
  • the tilting operation forward from the neutral position of the advance control lever 4 1 corresponds to the forward travel command of the vehicle 10, and the greater the tilt operation amount, the more forward the controller 50 can travel forward.
  • the target travel speed is set to a large value.
  • the tilting operation backward from the neutral position of the travel stop operating lever 41 corresponds to the backward traveling command of the vehicle 10.
  • the speed is set to a large value.
  • the operation of returning the progress stop operation lever 41 to the neutral position corresponds to a stop command of the vehicle 10.
  • the steering dial 42 is in the neutral position in the non-operating state (as shown in FIG. 5, the mark M 1 marked on the steering dial 42 and the mark M 2 marked on the control box 40 are located). With this neutral position as a reference, it can be twisted clockwise (clockwise) or counterclockwise (counterclockwise). And this steering dial 4 2 is in the twisting operation state. When the hand is released, the built-in spring force automatically returns to the neutral position.
  • the operation state of the steering dial 4 2 (the operation direction and the operation amount with reference to the neutral position) should be detected by the operation detector 4 2 a consisting of a potentiometer or the like provided in the operation box 40.
  • the operation state information of the steering dial 42 detected by the operation detector 4 2 a is input to the controller 50.
  • the twisting operation of the steering dial 4 in the clockwise direction corresponds to the steering command of the front wheel 1 1 a in the clockwise direction
  • the controller 5 increases the amount of twisting operation in the clockwise direction from the neutral position.
  • the target rudder angle in the right direction is set to a large value.
  • the counterclockwise twisting operation of the steering dial 4 2 corresponds to a left steering command for the front wheel 1 1 a, and the greater the amount of counterclockwise twisting operation from the neutral position, the more The target rudder angle in the direction is set to a large value.
  • the elevating lever 43 is in a neutral position (in a vertical position as shown in FIG. 5) in a non-operating state, and can be tilted forward or backward with reference to this neutral position. .
  • the lifting operation lever 43 is configured to automatically return to the neutral position by the force of the built-in spring when the hand is released from the tilting operation state.
  • the operation state of the lift control lever 4 3 (the operation direction and the operation amount with reference to the neutral position) can be detected by the lift operation detector 4 3 a composed of a potentiometer or the like provided in the operation box 40. Information on the operating state of the lifting operation lever 4 3 detected by the lifting operation detector 4 3 a is input to the controller 50.
  • the tilting operation forward from the neutral position of the lifting control lever 4 3 corresponds to a lowering command of the ⁇ 3 table 30.
  • the target speed at is set to a large value.
  • the tilting operation to the rear of the lift control lever 4 3 from the neutral position corresponds to the raising command of the platform 30, and the larger the tilting operation amount, the higher the work table 30 is raised by the controller 50.
  • the target speed is set to a large value.
  • the operation to return the lifting control lever 43 to the neutral position corresponds to the stop command for the base 30.
  • the vehicle 10 is provided with a hydraulic pump P (see FIG. 2) provided by a power source (not shown) such as an electric motor or a small engine, and the pressure oil discharged from the hydraulic pump P Is supplied to the traveling motor 12 via the progress stop control valve 51.
  • a hydraulic pump P such as an electric motor or a small engine
  • the left and right rear wheels, which are the driving wheels of the vehicle 10 are separated by the travel motor 1 2 into the gearbox 1 Left and right driven via 8; attached to «1 9 (see Fig.
  • the controller 50 is controlled to stop and move in the direction and amount according to the operation state of the stop and operation lever 4 1 Since the spunole (not shown) of the valve 5 1 is electromagnetically driven, the operator on the base 30 is operated by the operation stop operation lever 4 1 to stop and start the vehicle 10 and move forward (reverse) Can be switched and the travel speed can be set.
  • the pressure oil discharged from the hydraulic pump P is supplied to the steering cylinder 17 via the steering control anolev 52 (see also FIG. 4), and the controller 50 is connected to the steering dial 42. Since the spool (not shown) of the steering control norp 5 2 is electromagnetically driven in the direction and amount according to the operating state, the work on the work table 30!
  • Is the force S to steer the front wheel 1 1 a by operating the steering dial 4 2 to extend and retract the steering cylinder 17.
  • the hydraulic oil discharged from the hydraulic pump P is supplied to the lifting cylinder 23 through the lifting control valve 53, and the controller 50 responds to the operating state of the lifting control lever 43. Because the spool (not shown) of the lifting control norb 53 is electromagnetically driven in the direction and amount, the operator on the table 30 should move the table 30 up and down by operating the lifting control lever 43. Touch with power.
  • Vehicle 1 0 has a rear wheel lib axle 1 9 From the number of revolutions of vehicle 9 Detecting the traveling speed of vehicle 10 0 and front wheel support member 1 4 kingpin 1 4 There is a rudder angle detector (for example, potentiometer) 6 2 that detects the rudder angle of the front wheel 1 1 a.
  • a lift speed detector 63 is provided (see Fig. 2). Information on the traveling speed of the vehicle 10 detected by the traveling speed detector 61, information on the rudder angle detected by the rudder angle detector 62, and the platform 3 detected by the ascending / descending speed detector 63. The information about the lifting speed of 0 is input to the controller 50 as well.
  • the controller 50 When the controller 50 receives information on the operation state (operation direction and operation amount with reference to the neutral position) of the operation stop operation lever 41 detected by the operation stop operation detector 4 1 a, the controller 50 The target travel speed of the vehicle 10 is set according to the detected operation state of the progress stop operation lever 4 1 so that the travel speed of the vehicle 10 detected by the travel speed detector 61 becomes the target travel speed. Then, the spool of the travel stop control valve 51 is driven to control the rotational speed of the travel motor 12. Further, the controller 50 detects when the information on the operation state (the operation direction and the operation amount with reference to the neutral position) of the elevating operation lever 4 3 detected by the elevating operation detector 4 3 a is detected.
  • the controller 50 detects when the operation state information (operation direction and operation amount with reference to the neutral position) of the steering dial 42 detected by the operation IS operation detector 4 2 a is input. Set the target rudder angle of the front wheel 1 1 a according to the operating state of the steering dial 4 2 and steer control so that the rudder angle of the front wheel 1 1 a detected by the rudder angle detector 6 2 becomes the target rudder angle Drive the norb 5 2 to control the extension of the steering cylinder 17.
  • the operation state information operation direction and operation amount with reference to the neutral position
  • the controller 50 will extend the steering cylinder 1 7 until the rudder angle detected by the rudder angle detector 62 is equal to the target rudder angle (30 degrees). .
  • the controller 50 compares the target rudder angle of the front wheel 11a set according to the operation state of the steering dial 42 and the rudder angle of the front wheel 11a detected by the rudder angle detector 62.
  • the difference between the target rudder angle and the detected rudder angle is equal to or greater than a predetermined value
  • the traveling speed of the vehicle 10 is less than the predetermined speed.
  • the vehicle 10 is restricted to travel speed (forced deceleration depending on the travel speed before steering). For this reason, even if the direction of turning is reversed (case shown in Fig.
  • the traveling speed is reduced while the actual steering angle of the steered wheels does not sufficiently follow the target steering angle. Since the traveling speed of the vehicle 10 is not excessively increased, the vehicle 10 can move along the target vehicle.
  • the travel speed of the vehicle 10 is regulated by, for example, the controller 50 reducing the spun amount of the travel stop control valve 51 and reducing the rotational speed of the travel motor 12. Done.
  • a predetermined speed is set in advance, and when the vehicle is traveling beyond the predetermined speed, control to decelerate to the predetermined speed or a target rudder angle as shown in FIG.
  • a deceleration is set in advance, and there is a regulation control that can obtain this deceleration.
  • FIG. 7 and 8 show an example in which the speed restriction of the vehicle 10 is performed as described above.
  • Figure 7 shifts from straight ahead to left turn? This is an example of hesitation.
  • vehicle 1 is traveling straight (from dredging point to dredging point.
  • the target rudder angle and the actual rudder angle are both 0 degrees.
  • the steering wheel 4 2 was twisted counterclockwise from the neutral position while the front wheel 1 1 a actually steered in the left turn direction.
  • the target rudder angle ⁇ of the set front wheel 1 1 a until it reaches a corner (points B to D).
  • the traveling speed S of the vehicle 10 is regulated (forced deceleration) below a predetermined speed.
  • the detected rudder angle 7 is the target rudder angle in balance with the vehicle 10 0 s left turn. Approaching the target rudder angle ⁇ .
  • the traveling speed S of the vehicle 10 is set according to the operation amount of the progress stop operation lever 4 1 Original running speed S. The traveling speed S of the vehicle 10 has been increased (increased) to return to
  • Fig. 8 shows an example of a case where the driver turns from a left turn to a turn (when the direction of the turn is reversed).
  • turn left points A to B.
  • the steering dial 4 2 has been largely twisted to the left of the neutral position, but the actual steering angle follows this, and the difference between the two is almost the same.
  • the steering wheel 4 2 was twisted to the right in the middle and moved to the right beyond the neutral position, but the front wheel 1 1 a actually traveled immediately after the steering dial 4 2 operation.
  • the target rudder angle ⁇ of the set front wheel 1 1 a until it reaches an appropriate rudder angle (from point B to point F).
  • the traveling speed S of the vehicle 10 is regulated (forced deceleration) below a predetermined speed.
  • the vehicle 10 0 power 3 ⁇ 4 & 1 ⁇ 2 times travel is made, the detected rudder angle approaches the target rudder angle, and the difference ⁇ between the target rudder angle ⁇ 0 and the detected rudder angle ⁇ becomes smaller than the threshold ⁇ .
  • the traveling speed S of the vehicle 10 is the original traveling speed S set according to the amount of operation of the progress stop operating lever 41.
  • the traveling speed S of the vehicle 1.0 has been increased (increased) so that it can return to.
  • Fig. 9 shows an example of ⁇ from straight running to weak steering and left steering: the case where the steering dial 4 2 is operated but the vehicle 10 is not restricted as described above. It is.
  • vehicle 10 is traveling straight ahead ( ⁇ ⁇ ya point ⁇ ⁇ point.
  • the target snake angle and the actual rudder angle are both 0 degrees, and the difference ⁇ between them is almost 0)
  • Steering dial 4 2 was twisted counterclockwise, but it was also set between the point immediately after the steering dial 4 2 operation and the front wheel 1 1 a actually reached the rudder angle equivalent to the left turning direction (points B to D).
  • the difference between the target rudder angle of the front wheel 1 1 a and the detected rudder angle ⁇ of the front wheel 1 1 a detected by the rudder angle detector 6 2 ⁇ did not become larger than the threshold value ⁇ , and therefore the traveling speed of the vehicle 10 is not regulated.
  • the steering dial 4 2 is turned from a neutral position (equivalent to straight travel of the vehicle 10) to a small twisting operation (when the target rudder angle is small)
  • the travel speed is not particularly restricted.
  • the controller 50 detects (calculates) the operation speed (operation change amount per unit time) of the steering dial 42 based on the output from the steering operation detector 4 2a.
  • the vehicle 10 is controlled so that the traveling speed of the vehicle 10 is equal to or lower than a predetermined speed.
  • a predetermined speed is set in advance, and when the vehicle is traveling beyond the predetermined speed, the speed is reduced to the predetermined speed, or the operation speed of the steering dial 42 is increased.
  • a speed regulation control that sets a deceleration that increases according to the speed, and decelerates based on this deceleration to a predetermined speed.
  • the vehicle travels to the left (from dredging point to dredging point. During this time, the steering dial 42 is twisted to the left side from the neutral position.
  • the steering dial 4 2 is quickly twisted clockwise in the middle to change from left-turning to constant-running (when the direction of turning is reversed).
  • the vehicle 10 is decelerated (forced deceleration) so as to be equal to or less than the traveling speed S force S of the predetermined speed, After that, this deceleration state force S is maintained for a certain time ⁇ 0 (from ⁇ to F).
  • the operation speed V of the steering dial 42 is a predetermined value V. A certain amount of time has passed since then. After the lapse of time (point F), the traveling speed S of the vehicle 10 is originally set according to the operation amount of the stop / stop operation lever 4 ⁇ Travel speed of s.
  • the traveling speed S of the vehicle 10 is increased (accelerated) so as to return to Here, the above-mentioned time T when the travel speed regulation of the vehicle 10 is restricted.
  • the steering dial 42 is operated quickly (at this time, the difference between the target rudder angle ⁇ 0 of the front wheel 11a and the detected rudder angle ⁇ of the front wheel 11a).
  • the operation speed V of the steering dial 42 calculated by the controller 50 is a predetermined value ⁇ .
  • the traveling speed S of the vehicle 10 is regulated to a predetermined speed or less (forced deceleration depending on the traveling speed before steering).
  • the actual rudder angle (detected rudder angle y) of the front wheels 1 1 a is the target rudder angle ⁇ .
  • the traveling speed is kept low as long as the vehicle is not following sufficiently. Therefore, the same effect as that of the vehicle travel control apparatus according to the first aspect of the present invention can be obtained.
  • the above-mentioned travel speed regulation is performed to steer the left and right front wheels 1 1 a from the straight direction (neutral position) to the left and right.
  • the travel speed restriction described above may not be performed in the case of returning to the straight traveling direction (neutral position) from the state in which it has been performed.
  • the travel control apparatus according to the third embodiment includes a cylinder operating speed detector 64 that detects the operating speed of the steering cylinder 17 (see FIG. 11), and is detected by the cylinder ⁇ 3 ⁇ 4 speed detector 64.
  • the controller 50 regulates the travel speed of the vehicle 10 so that the travel speed force S of the vehicle 10 is less than the predetermined speed.
  • the cylinder operating speed detector 6 4 may not directly detect the «speed of the steering cylinder 17, but may be a physical quantity proportional to the speed of the steering cylinder 17 (eg, a unit flowing into the steering cylinder 17). It may be one that detects the flow rate of pressure oil per hour or the spool drive amount of the operation control norb 52 (or the magnitude of the spool drive signal)).
  • the steering cylinder 17 operates at a high operating speed immediately after the steering dial 4 is quickly operated (the operating speed of the steering cylinder 17 increases rapidly).
  • the target steering angle ⁇ of the front wheels 1 1 a is achieved by quickly operating the steering dial 4 2.
  • the difference between the detected steering angle y of the front wheel 1 1 a and the steering cylinder 17 becomes the target steering angle ⁇ as soon as possible. This is because the operation tries to match.
  • a predetermined speed is set in advance, and when traveling beyond the predetermined speed, the speed is reduced to the predetermined speed, or the maximum speed V of the steering cylinder 17 is increased.
  • a speed regulation control that sets a deceleration that increases according to the speed, and decelerates based on the deceleration to a predetermined speed.
  • the steering dial 4 2 is quickly operated (at this time, the difference between the target rudder angle ⁇ of the front wheel 11a and the detected rudder angle y of the front wheel 11a).
  • the detected steering angle ⁇ of the front wheel 1 1 a is the target steering angle ⁇ . 13 ⁇ 4 speed V force S predetermined value V.
  • the working speed V of the steering cylinder 17 is a predetermined value V.
  • the traveling speed of the vehicle 10 is controlled to be equal to or less than the predetermined speed S '(forced deceleration depending on the traveling speed before steering), so the direction of turning is reversed.
  • the actual rudder angle (detected rudder angle ⁇ ) of the front wheel 1 1 a is the target rudder angle y.
  • the traveling speed is kept low as long as the vehicle is not following sufficiently. Therefore, it is possible to obtain the same effect as the vehicle travel control device according to the first aspect of the present invention.
  • the steering wheel H that is, the left and right front wheels 1 1 a are steered from the straight direction (neutral position) to the left / right lateral displacement force ⁇ : It may be configured so that the above-described travel speed restriction is not performed in the operation of returning to the straight traveling direction (neutral position) from the state of being steered slightly. '' In the above, the travel speed control accompanying the steering operation was explained. Wheel steering speed control will be described.
  • the amount of change in the steering angle ⁇ which is the amount of change in the length of the steering cylinder 17 (extension amount ⁇ ) increases rapidly. This is because if the operating speed of the steering cylinder 17 is the same, in the steering angle region iy> y 'or ⁇ / kui region where the magnitude of the steering angle y is larger than the reference amount, the steering angle ⁇ This means that the change speed of the rudder angle ⁇ ⁇ ⁇ is larger than the rudder angle range iy ' ⁇ 7 ⁇ 7), and the rudder angle ⁇ is larger than the reference amount. In the corner region, it is difficult to stop the front wheel 11a at the target nose position.
  • the controller 50 determines the magnitude (absolute value) of the rudder angle ⁇ of the front wheel 1 1 a based on the detection information from the rudder angle detector 62. If the steering angle ⁇ is within the rudder angle region (region of ⁇ y ⁇ y 'in Fig. 13 (A)), the magnitude of the rudder angle ⁇ is less than the predetermined reference amount y'. Is at the first 3 ⁇ 4l speed V 1 and is within the rudder angle range where the magnitude of the rudder angle 7 exceeds the reference amount (in the range of V> ⁇ / or ⁇ minus ⁇ 'in Fig. 13 ( ⁇ )) Sometimes the steering cylinder 11 is driven at a second speed V 2 that is slower than the first speed VI (see FIG. 13 (1)). For example, ⁇ steering angle with a size smaller than the reference amount as shown in Fig. 14 '''
  • the steering cylinder 17 When the steering wheel 42 is twisted rightward from the state (> 0) and the target rudder angle ⁇ 0 larger than the reference amount is set, the steering cylinder 17 is initially set at 3 ⁇ 4 speed VI 1 ⁇ »(Extension force After the steering angle y reaches the reference value y f , the steering cylinder 17 ⁇ 1 ⁇ 3 ⁇ 4speed V is limited to a slower speed 3 ⁇ 4 speed V 2 than V 1.
  • the controller 50 reduces the speed of the steering cylinder 17 by reducing the spool driving amount of the steering control knob 52. Also, as shown in Fig. 15, it is larger than the reference amount.
  • Fig. 13 (B) shows the magnitude of the operating speed V of the steering cylinder 17 with respect to the steering angle ⁇ .
  • the steering cylinder 1 When the steering cylinder 1 is extended, it means the extension operating speed of the steering cylinder 17.
  • the steering cylinder 17 is contracted, it means the contraction speed of the steering cylinder 17.
  • the magnitude (absolute value) of the rudder angle ⁇ of the front wheel 11a detected by the rudder angle detector 6 2 exceeds the reference amount (Fig. 13 (A), ( ⁇ ) ⁇ > ⁇ 'or ⁇ ⁇ — ⁇ ' in the state)
  • the target rudder angle ⁇ 0 is set so that the rudder angle y of the front wheel 1 1 a is less than the reference amount y '
  • the ⁇ tb speed of the steering cylinder 17 is not limited to the speed V 2 (the steering angle y of the front wheel 1 1 a (The speed is equal to the speed V 1 when the magnitude of is less than the reference value y ').
  • the control dial 42 is twisted to the left to operate the reference amount
  • the target rudder angle ⁇ having a size smaller than.
  • the steering cylinder 17 is not limited in speed from the beginning to the end, and is set at the speed V 1.
  • the steering device provided in the high altitude vehicle 1, when the magnitude (absolute value) of the rudder angle ⁇ of the front wheel 1 1 a which is the steered wheel exceeds the predetermined reference amount y ′ If the rudder angle ⁇ of the front wheel 1 1 a is less than the reference amount ', the steering cylinder 1 7 is moved at a speed of ft slower than the wheel.
  • the change in the rudder angle ⁇ of the front wheel 1 1 a with respect to the amount of change in the length of the steering cylinder 17 (the amount of change in the extension ⁇ ) when the rudder angle ⁇ of the front wheel 1 1 a exceeds the reference amount ' Even in a region where the amount increases (region where the steering angle ⁇ of the front wheel 1 1 a exceeds the reference amount '), the front wheel 1 1 a can be accurately stopped at the target steering angle position.
  • the target steering angle y is such that the magnitude of the steering angle ⁇ is less than or equal to the reference quantity from the state in which the magnitude (absolute value) of the steering angle y of the front wheel 1 1 a exceeds the reference quantity ⁇ '.
  • the steering cylinder 17 when the magnitude of the steering angle ⁇ is equal to or smaller than a predetermined reference amount, the steering cylinder 17 is moved at the first «speed (VI),
  • a plurality of reference amounts are provided.
  • the f3 ⁇ 4 speed of the steering actuator may be determined corresponding to each reference amount.
  • the steering cylinder 17 may be configured to rotate at a slower speed as the rudder angle ⁇ of the front wheel 11a, which is the steered wheel, is larger (see FIG. 17).
  • the front wheel 1 1 a which is the steering wheel, and the steering dial 4 2 are linked and linked via a steering device.
  • the steering device has several boats 1 3 connected to the front wheels 1 1 a, and this steering wheel 1 3 is driven so that the steering angle ⁇ of the front wheels 1 1 a (the front wheels 1 1 a relative to the longitudinal center axis of the vehicle 1 0 Deflection angle (see Fig.
  • a controller 50 that performs control.
  • the rotating ⁇ structure 13 connects a pair of knuckle arms 14 that support a front wheel 1 1 a so as to be swingable around a kingpin shaft 15, and the pair of knuckle arms 14. It consists of 16 tie rods connected by pin P1.
  • the rudder angle detector 6 2 is attached to the left knuckle arm 14 and detects the rudder angle of the left front wheel 1 1 a from the turning around the left kingpin shaft 15.
  • One end of the steering cylinder 17 ' is connected to the left knuckle arm 14 constituting the rolling mechanism 13 by a connecting pin P2, and the other end is connected to a cylinder connecting portion (not shown) of the vehicle 10 Connected by P3.
  • the left front wheel 1 1 a is swung around the kingpin shaft 15 by extending and retracting the steering cylinder 17, and the right side wheel is connected via the tie rod 16.
  • the front wheel 1 1 a is swung simultaneously and in the same direction as the left front wheel 1 1 a so that the steering angle ⁇ of the front wheel (steering wheel) 1 1 a can be changed. That is, the steering cylinder 17, the left and right front wheels 1 1 a can be directed to the right by the extension operation, and the left and right front wheels 1 1 a can be directed to the left by the contraction operation.
  • the pair of left and right front wheels 1 1 a has a difference in the steering angle when the vehicle 10 turns by the steering mechanism 13 (specifically, the inner wheel has a constant steering angle at a constant ratio). Is set to be larger than the rudder angle).
  • the extension amount ⁇ is a positive value ( When ⁇ > 0), the steering angle y R 3 ⁇ 4Hit (y L > 0, 7 r > 0) of the left and right front wheels 11a is obtained (see FIG. 18 (B)).
  • the relationship between the steering angle y L and the right front wheel steering angle y R of the left front wheel 1 1 a is,
  • the rudder angles 7 L and y R of the front wheels 1 1 a become negative (y L ⁇ 0, y R ⁇ 0) (Fig. 18). (See (C)).
  • the characteristics possessed by the steering mechanism 13 ', the relationship between the front wheel steering angle y R of the steering angle y L and Migyisoku the left front wheel 1 1 a is, I y L
  • the maximum twisting operation amount of the steering dial 42 is set to 40 degrees in each of the counterclockwise and clockwise directions, and the maximum steering angle of the left front wheel 1 1 a is 90
  • the operation state of the steering dial 42 and the target steering angle of the left front wheel 1 1 a are proportional to each other.
  • the right front wheel 1 1 a has a maximum steering angle of 70 degrees leftward and 90 degrees rightward. Because it is connected to a, the rudder angle of the right front wheel 1 1 a can be determined from the rudder angle (detected value) of the left front wheel 1 1 a.
  • the steering dial 42 force S is operated by the maximum twisting operation amount (40 degrees) in the clockwise direction, and the vehicle 10 force S makes the largest turn in the clockwise direction, and the steering angle detector 62 as the steering angle of the left front wheel 1 1 L
  • the relationship with the above-mentioned rotation mechanism 1 3 indicates that the rudder angle of the right front wheel 1 1R is 90 degrees in the ⁇ direction (see Fig. 20).
  • 42 is operated in the counterclockwise direction with the maximum twisting operation amount (40 degrees), and the vehicle 10 turns the most in the counterclockwise direction, and the left front wheel 1 1 L is steered by the rudder angle detector 62 to the left 90 degrees.
  • the controller 50 for example, is traveling straight ahead of the vehicle 10 (at this time, the steering dial 42 is in the neutral position, and the target steering angle and the actual steering angle are both 0 degrees).
  • the target rudder angle is set to 45 degrees leftward
  • the left front wheel 1 1 a detected by the rudder angle detector 6 2 Extend the steering cylinder 17 until the rudder angle is equal to the target rudder angle (45 degrees leftward) (see Fig. 19).
  • the steering angle of the right front wheel 11a is 35 degrees to the left (see Fig. 20).
  • the controller 50 adjusts the target rudder angle to the right 52.5 degrees based on the characteristics of the steering mechanism 13.
  • the steering cylinder 17 is extended until the rudder angle of the left front wheel Ha detected by the rudder angle detector 62 is equal to the target rudder angle (52.5 degrees in the right direction).
  • the rudder angle of the right front wheel 11a is 67.5 degrees in the right direction (see FIG. 20).
  • the front wheel 11a can be rotated in a desired direction by performing the I control of the steering cylinder so that the target steering angle set according to the operation amount) is about 1 / 1-1.
  • the steering device can be configured with a simple structure and control.
  • the steering operation means for performing the steering operation on the steering wheel (front wheel 1 1 a) of the vehicle is a dial (steering dial 4 2). There may be.
  • the steering actuator for driving the link mechanism (steering link mechanism 1 3) connected to the steering wheel (front wheel 1 la) of the vehicle does not necessarily have to be a hydraulic cylinder, either a hydraulic motor or an H3 ⁇ 4 motor and a rack pinion. It can be a combination of the mechanism and the like.
  • the power of the 1 ⁇ travel motor 12 is transmitted to the left and right rear wheels lib, which are drive wheels, via the gear bottas 18 and the left and right axles 19, that is, one travel motor 1 Power that was configured to drive the left and right rear wheels 1 1 b simultaneously by 2 Vehicle 1 0 has two traveling motors, and these two traveling motors drive the left and right rear wheels 1 1 b separately. It may be configured.
  • the vehicle to which the present invention is applied is an aerial work vehicle equipped with a platform that can be raised on the vehicle.
  • the vehicle is provided on the vehicle.
  • It may be an aerial work vehicle.
  • a work vehicle is not necessarily an aerial work vehicle as long as it is a work vehicle equipped with a work device on a wheel drive type vehicle.
  • the present invention is applied to an aerial vehicle, thus, an effect of effectively preventing an unsafe situation in which the person loses his / her posture on the work table due to the inertial force due to the acceleration during the turning is obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

 舵角検出器62により検出された前輪11a(操舵輪)の舵角が操舵ダイヤル42の操作状態に応じて設定された前輪11aの目標舵角になるように操舵シリンダ17を作動させる制御を行う構成において、操舵ダイヤル42の操作状態に応じて設定された前輪11a(操舵輪)の目標舵角と舵角検出器62により検出された前輪11aの検出舵角とを比較し、目標舵角と検出舵角との差が所定値以上であるとき、車両10の走行速度が所定速度以下となるように車両10の走行速度規制を行う。

Description

糸田 車両の走籠卸装置 技術分野
本発明は、 車輪駆動式の車両の走行制御装置に関する。 背景技術
車輪駆動式の車両として、 例えば車体に昇降手段を介して^!台を取り付けた高所作業 車が知られている。 このような高所作業車には種々の形態のものがあるが、 その中には比 較的小型の車両に垂直昇降装置 (伸縮ポストゃシザース機構等).を設け、 この垂直昇降装 置に 台を取り付けたものがある。 このような高所 車では、 作業台に搭乗した作業 者が^!台上から車両の走行操作及び作業台の昇降操作を行うことができるようになって' いる (例えば、 特開平 1 0—1 5 8 0 0 0号公報、 特開 2 0 0 1— 1 8 0 8 9 9号公報参 照) 。
上記タイプの賤車における車両の走行操作は、 車両の発進停止及ひ前進後退の切り換 えを行う進行停止操作手段 (例えばレバーやダイヤノ!^からなる) と、 走行中の車両の舵 取り、 すなわち車両の操舵輪の操舵操作を行う操舵操作手段 (例えばレバーやダイヤル等 カゝらなる) とを^!者が操作して行うようになっている。 そして、 車両の走行中に 者 によつて車両の舵取りがなされると、 作業台若しくは車両に備えられたコントローラは、 舵角検出器により検出された操舵輪の舵角が操 #at作手段の操ィ 状態に応じて設定された 操舵輪の目標舵角になるように操舵ァクチユエータ (通常油圧シリンダ) を作動させ、 リ ンク機構 (ステアリングリンク機構) を介して操舵輪の舵角を変化させる。 なお、 ここで 操舵輪の舵角とは、 操舵輪の車両の前後中心軸に対する偏向角をいう。
また、 上記のような «車では、 進行停止操作手段の操作状態を調節することによって 車両の走行速度設定を行うことができる力 車両の直進走行中に目標舵角を大きくとって
(目標舵角を大きい値に設定して) 曲率雜の小さい旋回走行に樹 したときには、 i 者が意識的に走行速度を減速させる操作をしなければ操舵輪の舵角が目標舵角に追従しに くくなり、 車両の走行勒潘が目標軌跡から大きく外れてしまうケースが出てくる。 このた め現状の^!車では、 車両の走行中に目標舵角が大き/、値に変更されたときには車両の走 行速度が所定速度以下に規制 (操舵前の走行速度によっては強制減速) されるようになつ ている。 発明の開示
しかしながら、 上記 ϋ車において車両の走行速度規制がなされるのは目標舵角が大き V、値に設定されている間のみであるため、 旋回走行から直進走行に移行する際等に目標舵 ' 角が直進相当蛇角近くまで戻されたときには走行速度を本来の速度に戻すべく増速されて いた。 このため旋回走行の方向を反転させた場合、 例えば左旋回走行から 回走行に移
'ίϊΐ "る走行操作をしたような場合には、 操腿作手段は左旋回走行指令の操作位置から一 旦中立位置を経て: ¾定回走行指令の操作位置へ操作されるが、 実際の舵角の変化は目標舵 角の変化に対して遅れることから、 車両は旋回走行中であるにも拘わらず増速されること となり、 車両の走行軌跡が目標 から大きく外れてしまうとレヽぅ問題が生じて 、た。 ま た、 賤車が高所體車である には、 旋回走行中の増速による慣性力を受けて、 作業 者が 台上で姿勢を崩してしまうこともあった。
ところで、 上記ステアリングリンク機構を介して操舵輪の操舵を行うステアリング装置 では、 一般に、 操舵輪の舵角が大きい領域においてはァクチユエータの作動量 (油圧シリ ンダであれば長さの変化量) に る操舵輪の舵角の変化量は操舵輪の舵角が小さレヽ領域 よりも大きくなる。 このためァクチユエータの作動速度が常に一定であれば、 操舵輪の舵 角が大きい領域では操舵輪の舵角が小さい領域よりも操舵輪の舵角の変化速度が大きくな つてしまい、 操舵輪の舵角が大き 、領域では操舵輪の舵角が小さレ、領域に比べて操舵輪を 目標舵角位置に停止させにくく、 正確な舵角制御が難しいという問題があった。
なお、 このようなステアリング装置は、 一般的には、 前記操舵輪をキングピン軸の周り に揺動可能に支持する一対のナックノレアーム及び一対のナックノレアームを連結するタイ口 ッドとカゝらなる転纖構と、 この転纖構に繋がる操舵ァクチユエ一タとを備え、 操舵ァ クチユエ一タの により転蛇機構を駆動して、 操能輪の舟它角を変化させることができる ようになっている。
ところで、 上記のようなタイプの 車に用いられる転舵機構は、 一般にアツカーマン リンク機構と呼ばれるものであり、 旋回時の内外輪の舵角に差が生じるとレヽぅ特性を持つ ている。 従来、 ステアリング装置では、 この特性を踏まえ、 旋回時に外輪 (若しくは内 輪) となる操舵輪の舵角を舵角検出手段により検出し'、 この検出値が、 操作装置の操作状 態に応じて設定された目標舵角になるように、 操舵ァクチユエータの 制御を行ってい た。
これに伴い、 従来のステアリング装置では、 左右一対の操舵輪のどちらにも、 舵角検出 手段を取り付ける必要があった。 また、 左右一対の操舵輪に取り付けた舵角検出手段のそ れぞれにおいて、 検出した舵角、 操作装置の操作状態、 操舵ァクチユエータの «)量を一 致させる煩雑な調整作業を行わねばならず、 手間がかかった。 さらに、 旋回時に外輪 (若 しくは内輪) となる操舵輪がこれら左右で変わる度に、 舵角を参照する舵角検出手段も変 えなければならず、 制御力 嫌になるという問題があつた。
本発明は上記のような問題に鑑みてなされたものであり、 旋回走行の方向を反転した場 合においても、 車両の移動 «を目標 $Wに沿わせることが可能な構成の車両の走行制御 装置を »することを目的としている。
本発明はまた、 操舵輪の舵角が大きい領域においても操舵輪を目標舵角位置に正確に停 止させることが可能な構成の作業車の走行制御装置を樹共することを目的としている。 本発明はさらに、 簡単な構造及び制御により、 操舵輪を所望の舵角に変化させることが できるステアリング装置を備えた走行制御装置を することを目的とする。 課題を解決するための手段
本発明に係る車両の走 fT l!卿装置は、 駆動式の車両の走 御装置であって、 前記 車両の操舵輪 (例えば、 実施形態における前輪 1 1 a ) の操¾¾作を行う操舵操作手段 (例えば、 実施形態における操舵ダイヤル 4 2 ) と、 前記操舵輪の舵角を検出する舵角検 出手段 (例えば、 実施形態における舵角検出器 6 2 ) と、 前記操舵輪の舵角を変化させる 操舵ァクチユエータ (例えば、 実施形態における操舵シリンダ 1 7 ) と、 編己舵角検出手 段により検出された前記操舵輪の舵角が前記操 iat作手段から出力される操作指令に応じ て設定された Iff!己操舵輪の目標舵角になるように前記操舵ァクチユエータを させる制 御を行う操能制御手段 (例えば、 実施形態におけるコントローラ 5 0及び操舵制御バルブ
52) と、 前記操 tat作手段の操 状態および I己操舵ァクチユエータの 状態に応じ て前記車両の走行速度規制を行う走行速度規制手段 (例えば、 実施形態におけるコント口 ーラ 5 0及び進行停止制御バルブ 5 1 ) とを備える。 ここで操舵輪の舵角とは、 操舵輪の 車両の前後中心軸に対する偏向角を言う。
- このように構成される走行制御装置において、 前記走行速度規制手段は、 前記操 tat作 手段の操 状態に応じて設定された fitif己操舵輪の目標舵角と觸5舵角検出手段により検出 された前記操舵輪の検出舵角とを比較し、 l己目標舵角と前記検出舵角との差が所定値以 上であるとき、 tin己車両の走行速度が所定速度以下となるように tin己車両の走行速度規制 を行うように構成するのが好ましい。
また、 上記走行制御装置において、 前記走行速度規制手段は、 廳己操腿作手段の操作 状態に応じて設定された前記操舵輪の目標舵角と前記舵角検出手段により検出された前記 操舵輪の検出舵角とを比較し、 藤己差が大きくなるに応じて藤己車両の走行速度を漸次減 速させる制御を行うように構成しても良い。
この 、 嫌己走行速度規制手段は、 編己差が大きくなるに応じて大きくなる減速度を 設定し、 この設定された減速度に基づいて編己車両の走行速度を漸次減速させる制御を行 うのが好ましい。
また、 上記走行制御装置において、 前記操舵操作手段め操作速度を求める操舵操作速度 検出手段を有し、 tiff己走行速度規制手段は、 廳己操«作速度検出手段により求められた tin己操 ta¾作手段の操ィ乍速度が所定ィ直以上となったとき、 前記車両の走行速度が所定速度 以下となるように S ?己車両の走行速度規制を行うように構成しても良い。
また、 上記走行制御装置において、 前記操舵操作手段の操作速度を求める操舵操作速度 検出手段を有し、 歸己走行速度規制手段は、 歸己操腿作速度検出手段により求められた tiff己操舵操作手段の操作速度が所定値以上となったとき、 前記操作速度が大きくなるに応 じて tin己車両の走行速度を漸次減速させる制御を行うように構成しても良い。
この場合、 ttrt己操作速度が大きくなるに応じて大きくなる減速度を設定し、 この設定さ れた減速度に基づいて蘭己車両の走行速度を漸次減速させる制御を行うのが好ましい。 さらに、 上記走行制御装置において、 l己操舵ァクチユエータの ¾¾速度を求める操舵 ァクチユエ一タイ 1≡¾速度検出手段を有し、 鍵己走行速度規制手段は、 編己操舵ァクチユエ ータ «速度検出手段により求められた前記操舵ァクチユエータの 速度が所定値以上 であるとき、 tiff己車両の走行速度力 S所定速度以下となるように l己車両の走行速度規制を 行うように構成しても良い。
また、 上記走行制御装置において、前記操舵ァクチユエ一タの働速度を求める操舵ァ クチユエータ働速度検出手段を有し、 廳己走行速度規制手段は、 前記操舵ァクチユエ一 タ 速度検出手段により求められた前記操舵ァクチユエータの^ »速度力 S所定値以上で あるとき、 前記 速度が大きくなるに応じて ΙίίΙ己車両の走行速度を漸次低下させる制御 を行うように構成しても良レ、。
この場合に、 編己 ¾J速度が大きくなるに応じて大きくなる減速度を設定し、 この設定 された減速度に基づいて前記車両の走行速度を漸次減速させる制御を行うのが好ましい。 このように構成された本発明に係る車両の走行制御装置によれば、 操觸作手段の操作 状態およ Ό骤舵ァクチユエータの «状態に応じて走行速度規制手段により車両の走行速 度規制を行うので、 旋回走行の方向を反転したような に、 走行体の移動車 を目標軌 跡に合わせる制御が容易である。
なお、 操舵操作手段の操ィ像態に応じて設定された操舵輪の目標舵角と舵角検出手段に より検出された操舵輪の舵角 (検出舵角) との差が所定値以上であるときには車両の走行 速度力 S所定速度以下に規制 (操舵前の走行速度によっては強制減速) されるようにネ冓成し た場合には、 旋回走行の方向を反転させた場合であっても、 操舵輪の実際の舵角が目標舵 角に十分に追従していなレ、間は走行速度が低速に保たれる。 このため車両の走行速度が過 大となることがなく、 車両の移動車露を目標 #に沿わせることが可能である。
また、 操舵操作手段が素早く操作され (このとき操舵輪の目標舵角と操舵輪の検出舵角 との差は大きくなる) 、 操!^作速度検出手段により検出された操舵操作手段の操作速度 が所定値以上となったときには、 車両の走行速度が所定速度以下に規制 (操舵前の走行速 度によっては強制減速) されるように構成すれば、 旋回走行の方向を反転させた場合にお
V、て、 操蛇輪の実際の它角が目標蛇角に十分に追従して!/、な!/、間は走行速度が ffigに保た れる。 このため車両の走行速度が過大となることがなく、 車両の移動車 を目標 、に沿 わせることが可能である。
さらに、 操舵操作手段が素早く操作され にのとき操舵輪の目標舵角と操舵輪の検出舵 角との差は大きくなる) 、 操舵輪の検出舵角を目標舵角に一致させようとして操舵ァクチ ユエータめ 速度が所定値以上となったときには、 その操舵ァクチユエータの 速度 が所定値以上となっている間、 車両の走行速度力 S所定速度.以下に規制 (操舵前の走行速度 によっては強制減速) されるように構成すれば、 旋回走行の方向を反転させたような場合 におレ、て、 操舵輪の実際の舵角が目標舵角に十分に追従して 、な!、間は走行速度が に 保たれる。 このため車両の走行速度力 s過大となることがなく、 車両の移動車 を目標 # に沿わせることが可能である。 · 上言 E†冓成の走 fi¾卿装置において、 前記操舵制御手段は、 tirf己舵角検出手段からの検出 情報に基づいて得られた tiff己舵角の大きさが予め定めた基準量以下であるときには Sir!己操 舵ァクチユエ一タを第 1の f¾¾速度で させ、 前記舵角の大きさが鍵己基準量を超えて いるときには前記操蛇ァクチユエータを同一の操作指令に対する Mi速度が前記第 1の作 動速度よりも遅い第 2のィ働速度で させるように構成するの力 S好ましい。
なお、 前記操舵制御手段は、 廳己舵角の大きさが廳己基準量を超えている状態から前記 舵角の大きさが編己基準量以下となる目標舵角力 s設定されたときには、 漏 a它角の大きさ が前記基準量を超えているときであっても、 tin己操舵ァクチユエータを sift己第 1の «速 度で ^¾させるように構成するの力 s好ましい。
また、 編己操舵制御手段は、 編己舵角検出手段により検出された前記操舵輪の直進方向 に対する舵角が大きいときほど l己操舵ァクチユエータを遅い «速度で させるよう に構成するの力 s好ましい。
このように構成された本発明に係る走行制御装置では、 操舵輪の舵角の大きさ (絶対 値) が予め定めた基準量を超えているときには操舵輪の舵角の大きさが基準量以下である ときよりも遅い 速度で操舵ァクチユエータを «させるようになっているので、 操舵 輪の舵角の大きさが基準量を超えて操舵ァクチユエ一タのイ 1≡»量に対する操舵輪の舵角の 変化量が大きくなる領域 (操舵輪の舵角の大きさが基準量を超える領域) においても、 操 舵輪を目標舵角位置に正確に停止させることが可能である。
ここで、 操舵輪の舵角の大きさが基準量を超えて 、る状態から舵角の大きさが基準量以 下となる目標舵角力 S設定されたときには、 舵角の大きさが基準量を超えているときであつ ても、 舵角の大きさが基準量以下であるときと同等の■速度で操舵ァクチユエ一タを作 動させるように構成するのが好ましい、 このように構成すれば、 舵角の大きさが基準量以 下になるまでの間、 操舵ァクチユエータの不必要な作動速度制限がなされないので、 その 分、 操觸作に対する操舵輪の御遅れを解消することができる。
また、 操舵輪の舵角が大きいときほど操舵ァクチユエータを遅レ、 ¾速度で させる ように構成するのが好ましく、 このように構成すれば、 上記構成と同様、 操舵ァクチユエ 一タの働量に対する操舵輪の舵角の変化量が大きくなる領域 (操舵輪の舵角が比較的大 きレ、領域) におレ、ても、 操舵輪を目標舵角位置に正確に停止させることが可能である。 さらに、 上言 冓成の本発明に係る走行制御装置において、 編己操舵輪をキングピン軸の 周りに揺動可能に支持する一対のナックルアーム、 及び、 前記一対のナックルアームを連 結するタイロッドからなる転舵機構を備え、 謝己操舵ァクチユエータは、 嫌己転猶幾構を 駆動して前記操舵輪の舵角を変化させるように構成されており、 Ml己舵角検出手段が前記 左右一対の操舵輪のどちらカゝ一方に取り付けられ、 l己操舵制御手段は、 編己舵角検出手 段により検出された前記左右一対の操舵輪のどちらカゝ一方の舵角が、 tiff己操舵操作手段か らの操 f ^令により設定された編己目標舵角となるように前記操舵ァクチユエータを ¾b させる制御を行う構成であることが好ましい。
以上のように構成された本発明に係る走行制御装置では、 左右の操舵輪のどちらか一方 に舵角検出器を取り付け、 この検出器が検出した舵角をもとに操舵ァクチユエータの作動 制御をし、 操舵輪を所望の舵角に変化させることができる。 このように、 従来と比べ、 構 造.制御がより簡単な走行制御装置を得ることができる。
なお、 嫌己転! "纖構は、 廳己車両の旋回時に、 前記左右一対の操舵輪の舵角に差が生じ る特生を持ち、 tiff己操舵操作手段の操作方向と操作量に応じて、 l己能角検出手段が取り 付けられた前記左右一対の操 輪のどちらカゝ一方の tirt己目標舵角を設定し、 前記操能制御 手段は、 廳3舵角検出手段により検出された SiifEfc右一対の操舵輪のどちらか一方の舵角 ι l己操舵操作手段の操作方向と操作量に応じて設定された grt己目標舵角となるように、 廳己転 «構の特性に基づいて tfffs操舵ァクチユエータを作動させる制御を行うように構 成されることが望ましい。
このような構成により、 本発明に係る走行制御装置は、 左右の操舵輪のどちら力一方に 舵角検出器を取り付け、 旋回時に内外輪の舵角に差が生じる特性に基づレヽて前記検出器の 検出結果と操舵操作手段の操作方向■操作量とを関係付け、 操舵ァクチユエータの 制 御をし、 操舵輪を所望の舵角に変化させることができる。 このように、 構造-制御がより 簡単な走行制御装置を得ることができる。 図面の簡単な説明
図 1は、 上記高所作業車を車両の斜め後方から見た図である。
図 2は、 本発明の第 1実施形態に係る車両の走行制御装置を備えた高所 車における 車両の走行動作及び作業台の昇降動作に関する信号及び動力の伝達経路を示すブロック図 である。
図 3は、 上記高所作業車における車両に備えられた走行装置の構成を示す平面図である。 '図 4は、 上記高所^車における操舵シリンダの伸長量と前輪の舵角との関係を示す図 であり、 (A) は操舵シリンダの伸長量が零の状態、 (B) は操舵シリンダの伸長量が正 値の状態、 (C) は操舵シリンダの伸長量力負値の状態を示している。
図 5は、 上記高所作業車の作業台に備えられた操作ボックスの織図である。
図 6は、 目標舵角と検出舵角との差に応じて設定される減速度を示すグラフである。 図 7は、 (A) は上記高所作業車が直進走行から左旋回走行に移行した場合の車両の移 動車細であり、 (B) は (A) に対応して示す、 目標舵角と検出舵角との差 Δの時間変 化のグラフ (上段) と走行速度の時間変化のグラフ (下段) である。
図 8は、 (A) は上記高所作業車が左旋回走行から; ¾回走行に移行した場合の車両の 移動車細であり、 (B) は (A) に対応して示す、 目標舵角と検出舵角との差 Δの時間 変化のグラフ (上段) と走行速度の時間変化のグラフ (下段) である。
図 9は、 (A) は上記高所作業車が直進走行から弱 、左方舵取り走行に銜した:^の 車両の移動車 Γ、であり、 (B) は (A) に対応して示す、 目標舵角と検出舵角との差厶 の時間変化のグラフ (上段) と走行速度の時間変ィヒのグラフ (下段) である。
図 1 0は、 本発明の第 2実施形態において、 (A) は上記高所作業車が左旋回走行から ; ¾定回走行に樹亍した^の車両の移動 であり、 (B) は (A) に対応して示す、 操 舵ダイヤルの操作 mitvの時間変化のグラフ (上段) と走行速度の時間変化のグラフ (下 段) である。
図 1 1は、 本発明の第 2実施形態に係る車両の走行制御装置を備えた高所作業車におけ る車両の走行動作及び 台の昇降動作に関する信号及ひ葡力の伝達経路を示すプロック 図である。
図 1 2は、 本発明の第 3実施形態において、 (A) は上記高所作業車が左旋回走行から 定回走行に樹 した の車両の移動車違であり、 (B) は (A) に対応して示す、 操 舵シリンダの作動速度 Vの時間変化のグラフ (上段) と走行速度の時間変化のグラフ (下 段) である。 '
図 1 3 (A) は上記高所ィ镜車における前輪の舵角が零 (γ = 0 ) であるときの操舵シ リンダの長さを基準 (伸長量 Δ = 0) としたときの伸長量 Δ と舵角 γ との関係を示し たグラフであり、 図 1 3 (Β) は前輪の舵角に対する操舵シリンダの作動速度を示すダラ フである。 . 図 1 4は、 基準量よりも小さい大きさを有する舵角の状態から、 基準量よりも大きい大 きさを有する目標舵角が設定されたときにおける、 に対する舵角の変化を示すダラフ (上段) と、 時間に対する操舵シリンダの 速度の変化を示すグラフ (下段) である。 図 1 5は、 基準量よりも大きい大きさを有する舵角の状態から、 基準量よりも大きい大 きさを有する目標舵角が設定されたときにおける、 時間に対する舵角の変ィ匕を示すダラフ (上段) と、 時間に対する操舵シリンダの β速度の変ィ匕を示すグラフ (下段) である。
図 1 6は、 基準量よりも大きい大きさを有する舵角の状態から、 基準量よりも小さい 大きさを有する目標舵角が設定されたときにおける、 時間に対する舵角の変化を示すダラ フ (上段) と、 時間に対する操舵シリンダの 速度の変化を示すグラフ (下段) である。
図 1 7は、 操舵輪である前輪の舵角が大きいときほど操舵シリンダを遅 、 速度で
«させる構成とした場合における、 前輪の舵角に対する操能シリンダの作動速度を示す グラフである。
図 1 8は、 上記高所 車における操蛇シリンダの伸長量と前輪の蛇角との関係を示す 図であり、 図 1 8 (Α) は操舵シリンダの伸長量が零の状態、 図 1 8 (Β) は操舵シリン ダの伸長量が正値の状態、 図 1 8 (C) は操舵シリンダの伸長量力 S負値の状態を示してい る。
図 1 9は、 上記高所ィ權車における操舵ダイヤルの最大捻り操作量と左前輪の舵角との 関係を示す図である。
図 2 0は、 上記高所^ 車における操舵ダイヤルの操 状態に応じた左側前輪及び右側 前輪の動きと、 これら左側前輪及び右側前輪における舵角の関係を示す図である。 発明を実施するための最良の形態
以下、 図面を参照して本発明の好ましい実施形態について説明する。 図 1は本発明の第
1実施形態に係る車両の走行制御装置を備えた高所^ 車 1を示している。 この高所作業 車 1はレ、わゆる垂直昇降式の高所ィ 1≡|車であり、 車輪駆動式の車両 1 0と、 この車両 1 0 に垂直上方に延びて設けられた垂直昇降装置としての伸縮ボスト 2 0と、 この伸縮ボスト 2 0に支持された作^ 搭乗用の賤台 3 0とを有して構成されている。 車両 1 0は前後 左右にタイヤ ¾¾ 1 1を備えるとともに内部に走行モータ(油圧モータ) 1 2を備えており (図 3参照) 、 この走行モータ 1 2により後部のタイヤ輔 1 1 (以下、 後輪 1 1 bと称 する) を駆動し、 また前部のタイヤ ΐ¾ 1 1 (以下、 前輪 1 1 aと称する) を操舵して走 行することができるようになつている。
'伸縮ポスト 2 0は車両 1 0に垂直上方に延びて設けちれた下部ポスト 2 1と、 この下部 ポスト 2 1に対して入れ子式に設けられた上部ポスト 2 2と力らなり、 内蔵された昇降シ リンダ (油圧シリンダ) 2 3 (図 2参照) の伸縮作動により上下方向に伸縮 (上部ポスト 2 2を昇降) させることができるようになつている。 ィ 台 3 0は上部ポスト 2 2に取り 付けられており、 伸縮ボスト 2 0の上下方向の伸縮1¾により昇 |»動させることができ るようになっている。
作業台 3 0には車両 1 0の発進停止及び前進後退の切り換えを行う進行停止操作レバー 4 1と、 走行中の車両 1 0の舵取り、 すなわち操舵輪である前輪 1 1 aの操舵操作を行う 操舵ダイャル 4 2と、 台 3 0の昇降操作を行う昇降操作レバー 4 3とが備えられた操 作ポックス 4 0が設けられており (図 1及び図 5参照) 、 作業台 3 0に搭乗した «者は これら進行停止操作レバー 4 1、 操舵ダイャル 4 2及び昇降操作レバー 4 3を操作するこ とにより、 作業台 3 0に居ながらにして車両 1 0の走行操作と 台 3 0の昇降操作とを 行うことができるようになつている。
操蛇輪である前輪 1 1 aのステアリング機構は、 前輪 1 1 aの繋がるステアリングリン ク f幾構 1 3と、 このステアリングリンク機構 1 3を i¾¾して前輪 1 1 aの舟它角 γ (前輪 1 1 aの車両 1 0の前後中心軸に対する偏向角。 図 4参照) を変化させる操舵シリンダ (油圧シリンダ) 1 7と、 操舵ダイャル 4 2の操作に応じて操舵シリンダ 1 7の働制御 を行うコントローラ 5 0とから構成されている。
ステアリングリンク機構 1 3は、 図 3に示すように、 前輪 1 1 aを回転自在に支承する 左右の前輪支持部材 1 4と、 左右の前輪支持き附 1 4を連結するタイロッド 1 6とを有し て構成されている。 左右の前輪支持部材 1 4はそれぞれ上下方向に延びたキングピン 1 5 を介して車両 1 0に取り付けられており、 そのキングピン 1 5まわりに揺動できるように なっている。 また、 左右の前輪支持音附 1 4それぞれにはアーム部 1 4 aが車両 1 0の後 方に延びて設けられており、 タイロッド 1 6の両端部はこれら左右のアーム部 1 4 aに連 結ピン P 1によって連結されている。 .
ステアリングリンク機構 1 3を構成する左側の前輪支持部材 1 4のアーム部 1 4 aには 操舵シリンダ 1 7の一端部が連結ピン P 2によって連結されており、 操舵シリンダ 1 7の 他端部は図示しない車両 1 0のシリンダ連結部に連結ピン P 3によって連結されている。 このため、 操蛇シリンダ 1 7を伸縮作動させることにより左側の前輪支持部材 1 4をキン グピン 1 5回りに揺動させることができ、 またタイロッド 1 6を介して右側の前輪支持部 材 1 4を左側の前輪支持部材 1 4と同時力つ同方向に揺動させることができる。 そして、 操蛇シリンダ 1 7を伸長ィ 1≡¾Jさせることによって左右の前輪 1 1 aを右方向に向けること ができ、操舵シリンダ 1 7を収縮作動させることによって左右の前輪 1 1 aを左方向に向 けることができる。 また、 図 4に示すように、 前輪 1 1 aの舵角 γが零 (γ = 0 ) であ るときの操能シリンダ 1 7の長さを操舵シリンダ 1 7の伸縮量 Δが零 ( Δ = 0 ) の状態 であり (図 4 (Α) 参照) 、 また前輪 1 1 a力右方向に偏向した状態の舵角 γの符号を 正、 前輪 1 1 aが左方向に偏向した状態の舵角 yの符号を負と定義すると、 操舵シリン ダ 1 7の伸長量 Δが正値 ( Δ > 0 ) のときには前輪 1 1 aの舵角 yは正値 ( y > 0 ) と なり (図 4 (B) 参照) 、 操舵シリンダ 1 7の伸縮量 Δ力負値 (Δく 0 ) のときには前 輪 1 1 aの舵角 γは負値 ( γ < 0 ) となる (図 4 (C) 参照) 。
図 2は車両 1 0の走行動作及 台 3 0の昇降動作に関する信号及ひ ¾J力の伝達経路 を示している。 ィ楼台 3 0の操作ポックス 4 0内に備えられた進行停止操作レバー 4 1は 非操作状態において中立位置 (図 5に示すよう垂直姿勢の位置) に位置し、 この中立位置 を基準に前方或いは後方へ傾動操作することができるようになっている。 そして、 この進 行停止操作レバー 4 1は、 傾動操ィ 状態から手を放したときには、 内蔵されたスプリング の力によって自動で中立位置に復帰する構成となっている。 進行停止操作レバー 4 1の操 imm (中立位置を基準とした操作方向と操作量) は操作ボックス 4 0内に設けられたポ テンショメータ等からなる進行停止操作検出器 4 1 aによって検出することができ、 進行 停止操作検出器 4 1 aが検出した進行停止操作レバー 4 1の操ィ 状態の情報はコントロー ラ 5 0 (ィ僕台 3 0若しくは車両 1 0に備えられる) に入力されるようになっている。 こ こで、 進 fi亭止操作レバー 4 1の中立位置よりも前方への傾動操作は車両 1 0の前進走行 指令に相当し、 その傾動操作量が大きいときほどコントローラ 5 0において前進走行時に おける目標走行速度が大きい値に設定される。 また、 進行停止操作レバー 4 1の中立位置 よりも後方への傾動操作は車両 1 0の後退走行指令に相当し、 その傾動操作量が大きいと きほどコントローラ 5 0において後退走行時における目標幸行速度が大きい値に設定され る。 また、 進行停止操作レバー 4 1を中立位置に復帰させる操作は車両 1 0の停止指令に 相当する。
操舵ダイヤノレ 4 2は非操作状態において中立位置 (図 5に示すように、 操舵ダイヤノレ 4 2に記されたマーク M 1と操作ボックス 4 0に記されたマーク M 2とが一 る位置) 位置し、 この中立位置を基準に右回り (時計回り) 或いは左回り (反時計回り) に捻り操 作することができるようになつている。 そして、 この操舵ダイヤル 4 2は、 捻り操 状態 力 手を放したときには、 内蔵されたスプリングの力によって自動で中立位置に復帰する 構成となっている。 操舵ダイヤル 4 2の操ィ像態 (中立位置を基準とした操作方向と操作 量) は操作ボックス 4 0内に設けられたポテンショメータ等からなる操! 作検出器 4 2 aによつて検出することができ、 操 作検出器 4 2 aが検出した操舵ダイャル 4 2の操 状態の情報はコントローラ 5 0に入力されるようになっている。 ここで、 操舵ダイヤノレ 4 2の右回り方向への捻り操作は前輪 1 1 aの右方向への操舵指令に相当し、 中立位置か ら右回り方向への捻り操作量が大きレヽときほどコントローラ 5 0にお 、て右方向への目標 舵角が大きい値に設定される。 また、操舵ダイヤル 4 2の左回り方向への捻り操作は前輪 1 1 aの左方向への操舵指令に相当し、 中立位置から左回り方向への捻り操作量が大きい ときほどコントローラ 5 0において左方向への目標舵角が大きい値に設定される。 また、 操蛇ダイヤル 4 2を中立位置に復帰させる操作は前輪 1 1 aを舵角零の状態 (γ = 0の状 態。 図 4 (Α) 参照) にする指令に相当する。 .
昇降操作レバー 4 3は非操作状態において中立位置 (図 5に示すように垂直姿勢の位 置) に位置し、 この中立位置を基準に前方或いは後方へ傾動操作することができるように なっている。 そして、 この昇降操作レバー 4 3は、 傾動操作状態から手を放したときには、 内蔵されたスプリングの力によって自動で中立位置に復帰する構成となっている。 昇降操 作レバー 4 3の操 状態 (中立位置を基準とした操作方向と操作量) は操作ボックス 4 0 内に設けられたポテンショメータ等からなる昇降操作検出器 4 3 aによって検出すること ができ、 昇降操作検出器 4 3 aが検出した昇降操作レバー 4 3の操作状態の情報はコント ローラ 5 0に入力されるようになっている。 ここで、 昇降操作レバー 4 3の中立位置より も前方への傾動操作は^ ¾台 3 0の下降指令に相当し、 その傾動操作量が大きいときほど コントローラ 5 0において ϋ台 3 0の下降時における目標 速度が大きい値に設定さ れる。 また、 昇降操作レバー 4 3の中立位置よりも後方への傾動操作は條台 3 0の上昇 指令に相当し、 その傾動操作量が大きい時ほどコントローラ 5 0において作業台 3 0の上 昇時における目標イ權速度が大きい値に設定される。 また、 昇降操作レバー 4 3を中立位 置に復帰させる操作は ^台 3 0の停止指令に相当する。
車両 1 0の内部には電動モータや小型エンジン等からなる動力源 (図示せず) によって »される油圧ポンプ P (図 2参照) が設けられており、 この油圧ポンプ Pから吐出され た圧油は進行停止制御バルブ 5 1経由で走行モータ 1 2に供給されるようになっている。 ここで、 車両 1 0の駆動輪である左右の後輪 l i bは走行モータ 1 2によりギヤボックス 1 8を介して駆動される左右の; « 1 9に取り付けられており (図 3参照) 、 コントロー ラ 5 0は、 進行停止操作レバー 4 1の操 状態に応じた方向及び量で進行停止制御バルブ 5 1のスプーノレ (図示せず) を電磁駆動するので、 台 3 0上の作業者は、 進行停止操 作レバー 4 1の操作によつて車両 1 0の発進停止及び進行方向 (前進後退) の切り換えと 走行速度の設定とを行うことができる。 また、 油圧ポンプ Pから吐出された圧油は操舵制 御バノレブ 5 2経由で操舵シリンダ 1 7に供給されるようになっており (図 4も参照) 、 コ ントローラ 5 0は操舵ダイヤル 4 2の操伊状態に応じた方向及び量で操舵制御ノルプ 5 2 のスプール (図示せず) を電磁駆動するので、 作業台 3 0上の作!^は、 操舵ダイヤノレ 4 2の操作によつて操舵シリンダ 1 7の伸縮操作を行って、 前輪 1 1 aの操舵を行うこと力 S できる。 また、 油圧ポンプ Pから吐出された圧油は昇降制御バルブ 5 3経由で昇降シリン ダ 2 3に供給されるようになつており、 コントローラ 5 0は昇降操作レバー 4 3の操作状 態に応じた方向及び量で昇降制御ノルブ 5 3のスプール (図示せず) を電磁駆動するので、 台 3 0上の作業者は、 昇降操作レバー 4 3の操作によって作業台 3 0の昇降移動を行 うこと力でさる。
車両 1 0には後輪 l i bの車軸 1 9の回転数から車両 1 0の走行速度を検出する走行速 度検出器 6 1.と前輪支持部材 1 4のキングピン 1 5回りの回車≤ ^から前輪 1 1 aの舵角を 検出する舵角検出器 (例えばポテンショメータ) 6 2とが設けられており、 伸縮ボスト 2 0内には昇降シリンダ 2 3の作動速度等から 台 3 0の昇降速度を検出する昇降速度検 出器 6 3が設けられている (図 2参照) 。 そして、 これら走行速度検出器 6 1により検出 された車両 1 0の走行速度の情報、 舵角検出器 6 2により検出された舵角の情報及び昇降 速度検出器 6 3により検出された錢台 3 0の昇降速度の情報はレ、ずれもコントローラ 5 0に入力されるようになっている。
コントローラ 5 0は、 進行停止操作検出器 4 1 aにより検出された進行停止操作レバー 4 1の操ィ 状態 (中立位置を基準とした操作方向及び操作量) の情報が入力されると、 そ の検出された進行停止操作レバー 4 1の操 状態に応じた車両 1 0の目標走行速度を設定 し、 走行速度検出器 6 1により検出された車両 1 0の走行速度がその目標走行速度になる ように進行停止制御バルブ 5 1のスプールを,駆動して走行モータ 1 2の回転数をコント口 ールする。 また、 コントローラ 5 0は、 昇降操作検出器 4 3 aにより検出された昇降操作 レバー 4 3の操 状態 (中立位置を基準とした操作方向及び操作量) の情報が入力される と、 その検出された昇降操作レバー 4 3の操ィ 状態に応じた車両 1 0の目標昇 β度を設 定し、 昇降速度検出器 6 3により検出された «台 3 0の昇降速度がその目標昇降速度に なるように昇降制御バルブ 5 3のスプ一/レを駆動して昇降シリンダ 2 3の作動速度をコン トロールする。
またコントローラ 5 0は、 操 IS 作検出器 4 2 aにより検出された操舵ダイヤル 4 2の 操作状態 (中立位置を基準とした操作方向及び操作量) の情報が入力されると、 その検出 された操舵ダイヤル 4 2の操作状態に応じた前輪 1 1 aの目標舵角を設定し、 舵角検出器 6 2により検出される前輪 1 1 aの舵角がその目標舵角になるように操舵制御ノルブ 5 2 を駆動して操舵シリンダ 1 7の伸長量をコント口ールする。 例えば、 車両 1 0の直進走行 中 (このとき目標舵角と実際の舵角はともに 0度である) に猶它ダイヤル 4 2を右回り方 向に捻り操作してこれにより目標舵角力 S右方向 3 0度に設定されたとすると、 コントロー ラ 5 0は舵角検出器 6 2により検出される舵角が目標舵角 (3 0度) と一 ¾ΤΤるまで操舵 シリンダ 1 7を伸長ィ 1¾させる。
ここで、 コントローラ 5 0は、 操舵ダイャル 4 2の操 状態に応じて設定した前輪 1 1 aの目標舵角と舵角検出器 6 2により検出された前輪 1 1 aの舵角とを比較し、 目標舵角 と検出舵角 (舵角検出器 6 2により検出された前輪 1 1 aの舵角) との差が所定値以上で あるときには車両 1 0の走行速度が所定速度以下となるように車両 1 0の走行速度規制を 行う (操蛇前の走行速度によっては強制減速) ようになつている。 このため、 旋回走行の 方向を反転させた (後述する図 7に示すケース) であっても、 操舵輪の実際の舵角が 目標舵角に十分に追従していない間は走行速度が低速に保たれ、 車両 1 0の走行速度が過 大となることがな 、ので、 車両 1 0の移動 を目標車 に沿わせることが可能である。 なお、 このような車両 1 0の走行速度の規制は、 例えば、 コントローラ 5 0が進行ィ亭止制 御バルブ 5 1のスプーノレ 量を小さくして、 走行モータ 1 2の回転数を小さくすること によって行われる。
このように走行速度規制を行う方法としては、 予め所定速度を設定しておき、 この所定 速度を超えて走行しているときには所定速度まで減速させる制御や、 図 6に示すように、 目標舵角と検出舵角との差に応じて減速度を設定しておき、 この減速度が得られるような 規制制御等がある。
図 7及び図 8は、 上記のように車両 1 0の速度規制がなされる の例を示している。 . 先ず、 図 7は直進走行から左旋回走行に移?亍した場合の例である。 ここでは、 車両 1 0は 直進走行 (Α地点〜 Β地点。 この間目標舵角と実際の'舵角はともに 0度であり、 両者の差 Δもほぼ 0である) の途中で、 操舵ダイヤル 4 2を中立位置から左回りに大きく捻り操 作したが、 操舵ダイヤル 4 2の操作直後から前輪 1 1 aが実際に左旋回方向相当の舵角に なるまでの間 (B地点〜 D地点) 、 設定された前輪 1 1 aの目標舵角 γ。と、 舵角検出器 6 2により検出された前輪 1 1 aの検出舵角 γ との間の差 Δ (= γ 0- γ ) が大きくなつ て予め定めた閾値 δ を上回ってしまったため、 その間、 車両 1 0の走行速度 Sが所定速 度 以下に規制 (強制減速) されている。 なお、 この例では、 車両 1 0力 s左旋回走行に 衡し、 検出舵角 7が目標舵角 。に近づいて目標舵角 γ。と検出舵角 γ との差 Δが閾 値 δ よりも小さくなつた後は (D¾点〜) 、 車両 1 0の走行速度 Sは進行停止操作レバ 一 4 1の操作量に応じて設定された本来の走行速度 S。まで復帰するよう、 車両 1 0の走 行速度 Sが上昇 (増速) されている。
図 8は、 左旋回走行から 回走行に樹亍した場合 (旋回走行の方向を反転させた場 合) の例である。 ここでは、 左旋回走行 (A地点〜 B地点。 この間操舵ダイヤル 4 2は中 立位置よりも左側に大きく捻り操作されているが実際の舵角もこれに追従していて両者の 差厶はほぼ 0である) の途中で操舵ダイヤル 4 2を右回りに大きく捻り、 中立位置を超 えて右側に大きく位置させる操作をしたが、 操舵ダイヤノレ 4 2の操作直後から前輪 1 1 a が実際に 回走行相当の舵角になるまでの間 (B地点〜 F地点) 、 設定された前輪 1 1 aの目標舵角 γ。と、 舵角検出器 6 2により検出された前輪 1 1 aの検出舵角 γ との間 の差 Δ (= Ύ ο- γ ) は大きくなつて予め定めた閾値 δ を上回ってしまったため、 その間、 車両 1 0の走行速度 Sが所定速度 以下に規制 (強制減速) されている。 なお、 この例 においても、 車両 1 0力 ¾&½回走行に移行し、 検出舵角 が目標舵角 に近づいて目 標舵角 γ 0と検出舵角 γ との差 Δが閾値 δ よりも小さくなつた後は (F地点〜) 、 車 両 1 0の走行速度 Sは進行停止操作レバー 4 1の操作量に応じて設定された本来の走行速 度 S。まで復帰するよう、 車両 1 .0の走行速度 Sが上昇 (増速) されている。
図 9は、 直進走行から弱レ、左方舵取り走行に した:^の例であり、操舵ダイャル 4 2の操作は行うものの、 上記のような車両 1 0の走行速度規制がなされなレ、ケースである。 ここでは、 車両 1 0は直進走行 (Α±也点〜 Β地点。 この間目標蛇角と実際の舵角はともに 0度であり、 両者の差 Δもほぼ 0である) の途中で操舵ダイャル 4 2を左回りに小さく 捻り操作したが、 操舵ダイャル 4 2の操作直後から前輪 1 1 aが実際に左旋回方向相当の 舵角になるまでの間 (B地点〜 D地点) においても、 設定された前輪 1 1 aの目標舵角 と、 舵角検出器 6 2により検出された前輪 1 1 aの検出舵角 γ との間の差 Δ (= γ 0 一 γ ) は閾値 δ以上には大きくならなかったため、 車両 1 0の走行速度規制は行われて いない。 このように、 操舵ダイヤル 4 2を中立 { 置 (車両 1 0の直進に相当) から小さく 捻り操作し 場合 (目標舵角が小さい場合) には特に走行速度規制は行われないので、 操 舟它ダイヤノレ 4 2をその中立位置を挟んで往復するように操作した場合 (スラローム走行の 場合) であっても、 強制減速されることなく走行することが可能である。
なお、操舵輪すなわち左右の論 1 1 aを直進方向 (中立位置) カゝら左右いずれかに操 舵する には上述した走行速度規制を行う力 左右レ、ずれかに操舵した状態から直進方 向 (中立位置) に戻す操作のときには、 上述した走行速度規制を行わないように構成して も良い。 次に、 本発明に係る走行制御装置の第 2実施形態について説明する。 この第 2実施形態 に係る走行制御装置では、 コントローラ 5 0が操舵操作検出器 4 2 aからの出力に基づい て操舵ダイヤル 4 2の操作速度 (単位時間当たりの操作変化量) を検出 (算出) し、 これ により得られた操舵ダイヤル 4 2の操作速度が予め定めた所定値以上となったときには、 その後一定時間の間 (目標蛇角 y 0と検出蛇角 γ との差が所定値以下になるまでの間な ど、 その他の基準によってもよい) 、 車両 1 0の走行速度が所定速度以下となるように車 両 1 0の走行速度規制を行うようになっている。
このように走行速度規制を行う方法としては、 予め所定速度を設定しておき、 この所定 速度を超えて走行しているときには所定速度まで減速させる制御や、 操舵ダイャル 4 2の 操作速度が大きくなるに応じて増加する関係となる減速度を設定しておき、 この減速度に 基づく減速を行わせて所定速度とするような速度規制制御等がある。
この第 2実膨態に係る走行制御装置において、 例えば、 図 1 0に示すように、 左旋回 走行 (Α地点〜 Β地点。 この間操舵ダイヤノレ 4 2は中立位置よりも左側に捻り操作された 状態で停止されている) の途中で操舵ダイヤル 4 2を右回りに素早く捻り操作して左旋回 走行から 定回走行に した場合 (旋回走行の方向を反転させた場合) を考える。 この において、操舵ダイヤル 4 2の操作速度 V力 S所定値 ν 0以上となったときには (Β地 点) 車両 1 0の走行速度 S力 S所定速度 以下になるように減速 (強制減速) され、 その 後一定時間 Τ0の間、 この減速状態力 S持続される (Β地点〜 F地点) 。 そして、 操舵ダイ . ャル 4 2の操作速度 Vが所定値 V。以上となつてから一定時間 Τ。が経過した後は (F地点 ) 、 車両 1 0の走行速度 Sは進行停止操作レバー 4 Ίの操作量に応じて設定された本来 の走行速度 s。まで復帰するよう、 車両 1 0の走行速度 Sが上昇 (増速) される。 ここで、 車両 1 0の走行速度規制が赚される上記時間 T。の設定は任意であるが、 前輪 1 1 aの · 検出舵角 γ力 S操舵ダイヤル 4 2の操作によって設定される目標舵角 γ。に一 るよう に操作シリンダ 1 7が を継続する時間を見越した値とすることが好ましい。
このように、 第 2実施形態に係る走行制御装置では、 操舵ダイヤノレ 4 2が素早く操作さ れ (このとき前輪 1 1 aの目標舵角 γ 0と前輪 1 1 aの検出舵角 γ との差は大きくな る) 、 コントローラ 5 0において算出された操舵ダイヤル 4 2の操作速度 Vが所定値 ν。 以上となったときには、 車両 1 0の走行速度 Sが所定速度 以下に規制 (操舵前の走行 速度によっては強制減速) されるようになっているので、 旋回走行の方向を反転させた場 合において、 前輪 1 1 aの実際の舵角 (検出舵角 y ) が目標舵角 γ。に十分に追従してい ない間は走行速度が低速に保たれる。 このため上記第 1の本発明に係る車両の走行制御装 置と同様の効果を得ることができる。
この実施形態においても、 '操舵 なわち左右の前輪 1 1 aを直進方向 (中立位置) か ら左右レヽずれかに操舵する^には上述した走行速度規制を行うが、 左右 ヽずれかに操舵 した状態から直進方向 (中立位置) に戻 lit作のときには、 上述した走行速度規制を行わ ないように構成しても良い。 . 続いて、 本発明に係る走 ί 1 ^御装置の第 3実施形態について説明する。 この第 3実施形 態に係る走行制御装置は、 操舵シリンダ 1 7の作動速度を検出するシリンダ作動速度検出 器 6 4を備えるとともに (図 1 1参照) 、 シリンダ^ ¾速度検出器 6 4により検出された 操舵シリンダ 1 7の が所定値以上であるとき、 コントローラ 5 0は、 車両 1 0の 走行速度力 S所定速度以下となるように車両 1 0の走行速度規制を行うようになっている。 ここで、 シリンダイ働速度検出器 6 4は、 操舵シリンダ 1 7の «速度を直接検出するも のでなくてもよく、 操舵シリンダ 1 7の 速度に比例する物理量 (例えば操舵シリンダ 1 7に流入する単位時間当たりの圧油の流量或いは操作制御ノルブ 5 2のスプールの駆動 量 (若しくはスプールの駆動信号の大きさ) ) を検出するもの等であってもよい。
この第 3実施形態に係る車両の走行制御装置において、 例えば、 図 1 2に示すように、 左旋回走行 (Α地点〜 Β地点。 この間操舵ダイヤル 4 2は中立位置よりも左側に捻り操作 された状態で停止されている) の途中で操舵ダイャル 4 2を右回りに素早く捻り操作して '左旋回走行から; &¾回走行に移行した場合 (旋回走行の方向を反転させた:^) を考える。 この において、 操舵シリンダ 1 7の 速度 Vが所定値 V0以上となったときには
(B地点) 車両 1◦の走行速度 Sが所定速度 S' 以下になるように減速 (強制減速) され、 その後、 操舵シリンダ 1 7の作動速度 Vが所定値 V。以上となっている間、 この減速状態 が持続される (B地点〜 F地点) 。 そして、 操舵シリンダ 1 7のィ1≡¾速度 Vが所定値 V。 を下回った後は ( F地点〜) 、 車両 1 0の走行速度 Sは進行停止操作レバー 4 1の操作量 に応じて設定された本来の走行速度 S。まで復帰するよう、 車両 1 0の走行速度 Sが上昇
(増速) される。 なお、 図 1 2に示すように、 操舵ダイヤノレ 4 2を素早く操作した直後に 操舵シリンダ 1 7が大きな作動速度で作動するのは (操舵シリンダ 1 7の作動速度が急激 に大きくなるのは) 、 操舵ダイヤル 4 2が素早く操作されることによって前輪 1 1 aの目 標舵角 γ。と前輪 1 1 aの検出舵角 y との差が大きくなり、 操舵シリンダ 1 7はできる だけ早く検出舵角 7を目標舵角 γ。に一致させようと動作するためである。
なお、 走行速度規制を行う方法としては、 予め所定速度を設定しておき、 この所定速度 を超えて走行しているときには所定速度まで減速させる制御や、 操舵シリンダ 1 7の « 速度 Vが大きくなるに応じて増加する関係となる減速度を設定しておぎ、 この減速度に基 づく減速を行わせて所定速度とするような速度規制制御等がある。
このように、 第 3実施形態に係る走行制御装置では、 操舵ダイヤル 4 2が素早く操作さ れ (このとき前輪 1 1 aの目標舵角 γ。と前輪 1 1 aの検出舵角 y との差は大きなる) 、 前輪 1 1 aの検出舵角 γを目標舵角 γ。に一致させようとして操舵シリンダ 1 7のィ 1¾ 速度 V力 S所定値 V。以上であるときには、 その操舵シリンダ 1 7のィ働速度 Vが所定値 V。 以上となっている間、 車両 1 0の走行速度 S力 S所定速度 S' 以下に規制 (操舵前の走行速 度によっては強制減速) されるようになっているので、 旋回走行の方向を反転させたよう な場合において、 前輪 1 1 aの実際の舵角 (検出舵角 γ ) が目標舵角 y。に十分に追従し ていない間は走行速度が低速に保たれる。 このため上記第 1の本発明に係る車両の走行制 御装置と同様の効果を得ることができる。
この実施形態においても、 操舵 H ^なわち左右の前輪 1 1 aを直進方向 (中立位置) か ら左右レヽずれ力ゝに操蛇する:^には上述した走行速度規制を行うが、 左右レヽずれかに操蛇 した状態から直進方向 (中立位置) に戻す操作のときには、 上述した走行速度規制を行わ ないように構成しても良い。 ' 以上においては、 操舵操作に伴う走行速度制御を説明したが、 次に操舵操作に伴う操舵 輪の操舵速度制御について説明する。 図 1 3 (A) は、 前輪 1 1 aの舵角 γが零 (γ = 0) であるときの操舵シリンダ 17の長さを基準に、 その長さからの伸長量 Δ と前輪 1 1 aの舵角 γ (右方向操舵時 γ > 0 ) との関係を示したダラフである。 前述のように本 実施形態に係るステアリングリンク機構 13では、 操舵シリンダ 17の伸長量 Δが正値 のとき舵角 γの符号は正 (γ>0) となり、 伸長量 Δ力 S負値のとき舵角 yの符号は負 (y<0) となる。 このグラフから分かるように、 操舵シリンダ 17の長さの (伸長量 厶) の変化量に文 る舵角 7の変化量は舵角 yの大きさとは無関係に常に同じなのでは なく、 舵角 γ の大きさ (絶対値) が或る基準量 を超えて大きくなると、 操舵シリン ダ 1 7の長さの (伸長量 Δの) 変化量に る舵角 Ύの変化量は急激に大きくなる。 こ れは、操舵シリンダ 1 7の作動速度が同じであれば、 舵角 y の大きさが基準量 より も大きい舵角領域 iy >y' 又は τ /く一 の領域) では、 舵角 γ の大きさが基準量 Ί' 以下の舵角領域 i-y' ≤7≤7の領域) よりも舵角 Ύの変化速度が大きいことを 意味し、 舵角 γの大きさが基準量 よりも大きレヽ舵角領域では前輪 11 aを目標能角 位置に停止させにくいことになる。
このため本高所イ^!車 1に備えられたステアリング装置では、 コントローラ 50が、 舵 角検出器 62からの検出情報に基づいて前輪 1 1 aの舵角 γの大きさ (絶対値) を算出 し、 その舵角 γの大きさが予め定めた基準量 y' 以下となる舵角領域 (図 1 3 (A) に おいてー ≤y≤y' の領域) 内にあるときには操舵シリンダ 17を第 1の ¾l速度 V 1で «させ、 舵角 7 の大きさが基準量 を超える舵角領域 (図 1 3 (Α) において V > τ / 又は γく一 γ ' の領域) 内にあるときには操舵シリンダ 1 1を上記第 1の 速度 VIよりも遅い第 2の 速度 V 2で させるようになつている (図 1 3 (Β) 参 照) 。 例えば、''図 14に示すように、 基準量 よりも小さい大きさを有する舵角 "
(>0) の状態から操舵ダイヤル 42を右方向に捻り操作して基準量 よりも大きい 大きさを有する目標舵角 γ0を設定したときには、 初め操舵シリンダ 1 7は ¾速度 VI でィ1≡» (伸長 される力 舵角 yが基準量 yf に達した後は、 操舵シリンダ 1 7の ィ 1≡¾速度 Vは V 1よりも遅レヽ ¾速度 V 2に制限される。 なお、 このような操舵シリンダ 17の f¾¾速度制限は、 例えば、 コントローラ 50が操舵制御ノ ルブ 52のスプール駆動 量を小さくすることによって行う。 また、 図 15に示すように、 基準量 よりも大き . い大きさを有する舵角 Ύ, (>0) の状態から、 操舵ダイヤル 42を左方向に捻り操作し て基準量 よりも大きい大きさを有する目標舵角 γ'。を設定したときには、 最初から最 後まで操舵シリンダ 1 7は制限された^ ¾速度 V 2でィ 1≡¾される。 なお、 図 1 3 (B) は 舵角 γ に対する操舵シリンダ 1 7の作動速度 Vの大きさを示しており、 操舵シリンダ 1 が伸長作動しているときには操舵シリンダ 1 7の伸長作動速度を意味し、 操舵シリンダ 1 7が収縮作動しているときには操舵シリンダ 1 7の収縮ィ働速度を意味する。
一方、 コントローラ 5 0は、 舵角検出器 6 2により検出された前輪 1 1 aの舵角 γの 大きさ (絶対値) が基準量 を超えている (図 1 3 (A) , (Β) においては γ > Ί ' 又は γ <— γ ' である) 状態から前輪 1 1 aの舵角 yの大きさが基準量 y ' 以下と なる目標舵角 γ 0が設定されたときには、 前輪 1 1 aの舵角 yの大きさが基準量 y ' を 超えている間であっても、操舵シリンダ 1 7の^tb速度を速度 V 2に制限を行うことなく (前輪 1 1 aの舵角 yの大きさが基準量 y ' 以下であるときと同等の 速度 V 1で) 操舵シリンダ 1 7を させる。 例えば、 図 1 6に示すように、 .基準量 y ' よりも大き い大きさを有する舵角 γ , (> 0 ) の状態から、 操跎ダイヤル 4 2を左方向に捻り操作し て基準量 よりも小さい大きさを有する目標舵角 γ。を設定したときには、 最初から最 後まで操舵シリンダ 1 7は速度制限されない «速度 V 1で される。
このように高所ィ懂車 1に備えられたステアリング装置では、 操舵輪である前輪 1 1 a の舵角 γの大きさ (絶対値).が予め定めた基準量 y ' を超えているときには前輪 1 1 a の舵角 γの大きさが基準量 ' 以下であると,きよりも遅い^ ft速度で操舵シリンダ 1 7 を^ ¾させるようになつている。 このため、 前輪 1 1 aの舵角 γの大きさが基準量 ' を超えて操舵シリンダ 1 7の長さの変化量 (伸長量 Δの変化量) に対する前輪 1 1 aの 舵角 γ の変化量が大きくなる領域 (前輪 1 1 aの舵角 γの大きさが基準量 ' を超え る領域) においても、 前輪 1 1 aを目標舵角位置に正確に停止させることが可能である。 また、 このステアリング装置では、 前輪 1 1 aの舵角 yの大きさ (絶対値) が基準量 Ί ' を超えている状態から舵角 γの大きさが基準量 以下となる目標舵角 y。が設定 されたときには、 舵角 γの大きさが基準量 を超えているときであっても、 舵角 γ の大きさが基準量 γ ' 以下であるときと同等の^ ¾速度で操舵シリンダ 1 7を させ るようになっているので、 舵角 γの大きさが基準量 y ' 以下になるまでの間、 操舵シリ ンダ 1 7の不必要な «速度制限がなされず、 その分、 操舵操作に対する前輪 1 1 aの作 動遅れを解消することができる。
また、 本発明に係るステアリング装置では、 上記のように、 舵角 γの大きさが予め定 めた基準量以下であるときには操舵シリンダ 1 7を第 1の«速度 (V I ) で«させ、 舵角 γの大きさが基準量を超えているときには操舵シリンダ 1 7を第 1の 速度より も遅い第 2の 速度 (V 2 ) で^ ¾させる構成とする代わりに、 基準量を複数設けてそ れぞれの基準量に対応して操舵ァクチユエータの f¾]速度を決めるようにしてもよい。 或 いは単純に、 操舵輪である前輪 1 1 aの舵角 γが大きいときほど操舵シリンダ 1 7を遅 い 速度で «3させる構成としてもよい (図 1 7参照) 。 これらの構成であっても、 操 舵シリンダ 1 7の作動量に対する前輪 1 1 aの舵角 γ の変ィヒ量が大きくなる領域 (前輪 1 1 aの舵角 yが大きレ、領域) において、 前輪 1 1 aを目標舵角位置に正確に停止させ ることが可能となる。 次に、 操舵ダイャル 4 2の操作に応じて操舵輪すなわち前輪 1 1 aの操舵を行わせる上 記操舟機置の構成および について詳しく説明する。
操舵輪である前輪 1 1 aと、 操舵ダイヤル 4 2とは、 ステアリング装置を介して連動連 結されている。 ステアリング装置は、 前輪 1 1 aに繋がる転舟 幾構 1 3と、 この転 «構 1 3を駆動して前輪 1 1 aの舵角 γ (前輪 1 1 aの車両 1 0の前後中心軸に対する偏向 角。 図 1 8参照) を変ィ匕させる操舵シリンダ (油圧シリンダ) 1 7と、 左右一対の前輪 1 1 aのどちら力、一方に取り付けられこの前輪 1 1 aの舵角を検出する舵角検出器 6 2と、 舵角検出器 6 2が取り付けられた前輪 1 1 aの目標舵角を設定する操舵ダイヤル 4 2と、 操舵ダイャル 4 2の操作に応じて操舵シリンダ 1 7の^ ¾制御を行うコントローラ 5 0と を備えて構成されている。
転 β構 1 3は、 図 3に示すように、 前輪 1 1 aをキングピン軸 1 5の周りに揺動可能 に支持する一対のナックルアーム 1 4、 及び、 前記一対のナックルアーム 1 4を連結ピン P 1により連結するタイロッド 1 6カ らなる。 舵角検出器 6 2は、 左側のナックルアーム 1 4に取り付けられており、 左側のキングピン軸 1 5回りの回車 から、 左側の前輪 1 1 aの舵角を検出する。 操舵シリンダ 1 7'は、 一端が転 «構 1 3を構成する左側のナック ルアーム 1 4に連結ピン P 2により連結され、 他端が車両 1 0のシリンダ連結部 (図示せ ず) に連結ピン P 3により連結されている。
このため、 本発明に係るステアリング装置では、 操舵シリンダ 1 7を伸縮作動させるこ とにより、 左側の前輪 1 1 aをキングピン軸 1 5の周りを揺動させ、 タイロッド 1 6を介 して右側の前輪 1 1 aを左側の前輪 1 1 aと同時且つ同方向に揺動させ、 前輪 (操舵輪) 1 1 aの舵角 γ を変化させることができるようになづている。 すなわち、操舵シリンダ 17は、 伸長作動により左右の前輪 1 1 aを右方向に向けることができ、 収縮作動により 左右の前輪 1 1 aを左方向に向けることができる。 このとき、 左右一対の前輪 1 1 aは、 転舵機構 13によって車両 10の旋回時に舵角に差が生じるように (具体的には、 内輪の 舵角の大きさが常に一定の比率で外輪の舵角の大きさよりも大きくなるように) 設定され ている。
図 18を用いて説明すると、 操舵シリンダ 17は、 伸縮量 Δ が零 (Δ = 0) のときは、 左右の前輪 1 1 aの舵角 γ L, yRがともに零 (yL=0, yR=0) となる (図 18
(A) 参照) 。 また、 前輪 1 1 a力右方向に偏向した状態の舵角の符号を正、 前輪 1 1 a が左方向に偏向した状態の舵角の符号を負と定義すると、 伸長量 Δが正値 (Δ>0) の ときには、 左右の前輪 1 1 aの舵角 yR¾Hit (yL>0, 7 r>0) となる (図 1 8 (B) 参照) 。 このとき、 詳細は後述する力 転舟 幾構 1 3が持つ特性により、 左側の 前輪 1 1 aの舵角 yLと右側の前輪の舵角 yRとの関係は、 | yL | < | yR | となる。 ま た、 伸縮量 Δ力 S負値 (Δく 0) のときには、 前輪 1 1 aの舵角 7L, yRは負ィ直 (yL< 0, yR<0) となる (図 18 (C) 参照) 。 このとき、 転舵機構 13'が持つ特性により、 左側の前輪 1 1 aの舵角 yLと右ィ則の前輪の舵角 yRとの関係は、 I yL | > I yR I とな る。
本実施形態では、 図 19に示すように、 操舵ダイャル 42の最大捻り操作量は左回り及 び右回りの各々において 40度に設定され、 左側の前輪 1 1 aの最大舵角は左方向 90度、 右方向 70度に設定され、 操舵ダイヤル 42の操作状態と、 舵角検出に用いる側である) 左側の前輪 1 1 aの目標舵角とは、 比例関係にある。 また、 右側の前輪 1 1 aは、 図 20 に示すように、 最大舵角が左方向 70度、右方向 90度に設定されており、 転! ¾構 1 3 を介して左側の前輪 1 1 aと繋がっているため、 右側前輪 1 1 aの舵角は左側前輪 1 1 a の舵角 (の検出値) から割り出すことができるようになっている。
すなわち、 操舵ダイヤル 42力 S右回り方向に最大捻り操作量 (40度) 操作され、 車両 10力 S右回り方向に最も大きく旋回し、 左前輪 1 1 Lの舵角として舵角検出器 62により 右方向 70度が検出された場合は、 上記転! "纖構 1 3との関係より、 右前輪 1 1Rの舵角 ί 方向 90度であることが分かる (図 20参照) 。 また、 操舵ダイヤル 42が左回り方 向に最大捻り操作量 (40度) 操作され、 車両 10が左回り方向に最も大きく旋回し、 左 前輪 1 1 Lの舵角として舵角検出器 62により左方向 90度が検出された は、 上記転 β構 13との関係で、 右前輪 1 1Rの舵角が左方向 70度であることが分かる。 このような構成により、 コントローラ 5 0は、 例えば、 車両 1 0の直進走行中 (このと き操舵ダイヤル 4 2は中立位置にあり、 目標舵角と実際の舵角はともに 0度である) に、 操舵ダイヤノレ 4 2が左回り方向に 2 0度捻り操作されると、 目標舵角が左方向 4 5度に設 定され、 舵角検出器 6 2により検出される左側の前輪 1 1 aの舵角が目標舵角 (左方向 4 5度) と一 ¾rfるまで、 操舵シリンダ 1 7を伸長 させる (図 1 9参照) 。 なお、 この ときの右側の前輪 1 1 aの舵角は、 左方向 3 5度である (図 2 0参照) 。
また、 コ トローラ 5 0は、 操舵ダイヤル 4 2が右回り方向に 3 0度捻り操作されると、 転舵機構 1 3の特性に基づレ、て目標舵角を右方向 5 2 . 5度に設定し、 舵角検出器 6 2に より検出される左側の前輪 H aの舵角が目標舵角 (右方向 5 2 . 5度) と一 ¾ΤΤるまで、 操舵シリ.ンダ 1 7を伸長 させる。 なお、 このときの右側の前輪 1 1 aの舵角は、 右方 向 6 7 . 5度である (図 2 0参照) 。 - 以上のような構成により、 本発明では、 左右一対の操舵輪 (前輪 1 1 a ) のどちら力ー 方の舵角のみを検出し、 この検出ィ直が操舵ダイヤルの操ィ 状態 (操作方向及び操作量) に 応じて設定された目標舵角と一¾1~るように、 操舵シリンダの «I制御を行うことで、 前 輪 1 1 aを所望の方向に回転させることができる。 このように、 ステアリング装置を簡単 な構造及び制御で構成することができる。 これまで本発明の好ましい実施形態について説明してきたが、 本発明の範囲は上述の実 施形態に示したものに限定されない。 例えば、 上述の実施形態では、 車両の操舵輪 (前輪 1 1 a ) の操舵操作を行う操舵操作手段はダイヤル (操舵ダイヤゾレ 4 2 ) であったが、 こ れは他の手段、 例えばレバー等であってもよい。 また、 車両の操舵輪 (前輪 1 l a ) に繋 がるリンク機構 (ステアリングリンク機構 1 3 ) を駆動する操舵ァクチユエータは必ずし も油圧シリンダでなくてもよく、 油圧モータ或いは H¾モータとラック■ピニオン機構と を組み合わせたもの等であつてもよレ、。 また、 上述の実施形態では、 1 ^の走行モータ 1 2の動力をギヤボッタス 1 8及び左右の車軸 1 9を介して駆動輪である左右の後輪 l i b に伝達させる構成、 すなわち 1つの走行モータ 1 2によって左右の後輪 1 1 bを同時に駆 動する構成となっていた力 車両 1 0に 2つの走行モータを備え、 これら 2つの走行モー タによって左右の後輪 1 1 bを別々に駆動する構成となっていてもよい。 また、 上述の実 施形態では、 本発明が適用される対象の^!車は、 車両に昇 動自在な 台を備えた 高所作業車であつたが、 これは一例であり、 車両に設けたブーム等の先端部に^!台を備 えた高所作業車であってもよい。 また、 作業車は車輪駆動式の車両に作業装置を備えた作 業車であれば、 必ずしも高所作業車でなくてもよいが、 本発明が高所イ^車に適用された 場合には、 旋回走行中の増速による慣性力を受けて «者が作業台上で姿勢を崩してしま うような不安全な事態を効果的に防止する効果が得られる。

Claims

請 求 の 範 囲
1 . ΐ¾駆動式の車両の走行制御装置であって、
i己車両の操舵輪の操 tat作を行う操! 作手段と、
前記操舵輪の舵角を検出する舵角検出手段と、
編己操舵輪の舵角を変ィ匕させる操舵ァクチユエータと、
l己舵角検出手段により検出された ήΐΠ己操舵輪の舵角が tirt己操舵操作手段から出力さ れる操僧旨令に応じて設定された Sfif己操舵輪の目標舵角になるように l己操舵ァクチ ユエータを させる制御を行う操舵制御手段と、
tiff己操舵操作手段の操作状態および前記操舵ァクチュエータの作動状 IIに応じて前記 車両の走行速度規制を行う走行速度規制手段とを備えたことを特徴とする車両の走行 制御装置。
2. 藤己走行速度規制手段は、 ΙίίΙ己操舵操作手段の操伊状態に応じて設定された編己操舵 輪の目標舵角と前記舵角検出手段により検出された前記操舵輪の検出舵角とを比較し、 前記目標舵角と tins検出舵角との差が所定値以上であるとき、 tin己車両の走行速度が 所定速度以下となるように編己車両の走行 ¾g規制を行うことを特徴とする請求項 1
' に記載の車両の走行制御装置。
3 . 魔己走行速度規制手段は、 前記操舵操作手段の操伊状態に応じて設定された廳己操舵 輪の目標舵角と前記舵角検出手段により検出された前記操舵輪の検出舵角とを比較し、 肅己目標舵角と藤己検出舵角との差が大きくなるに応じて前記車両の走行速度を漸次 減速させる制御を行うことを特徴とする請求項 1に記載の車両の走行制御装置。
4. 藤己走行速度規制手段は、 編己差が大きくなるに応じて大きくなる減速度を設定し、 この設定された減速度に基づいて tiff己車両の走行速度を漸次減速させる制御を行うこ とを特徴とする請求項 3に記載の車両の走行制御装置。
5. 前記操舵操作手段の操作速度を求める操舟¾¾作速度検出手段を有し、
' 爾己走行速度規制手段は、 嫌己操舵操作速度検出手段により求められた前記操舵操作 手段の操作速度が所定値以上となったとき、 ΒίίΙ己車両の走行速度が所定速度以下とな るように嫌己車両の走行速度規制を行うことを特徴とする請求項 1に記載の車両の走 行制御装置。
6. 前記操舵操作手段の操作速度を求める操舵操作速度検出手段を有し、
編己走行速度規制手段は、 藤己操舵操作速度検出手段により求められた前記操腿作 手段の操作速度が所定値以上となったとき、 前記操作速度が大きくなるに応じて l己 車両の走行速度を漸次低下させる制御を行うことを特徴とする請求項 1に記載の車両 の走行制御装置。
7 . 廳己走行速度規制手段は、 藤己操作速度が大きくなるに応じて大きくなる減速度を設 定し、 この設定された減速度に基づいて SUt己車両の走行速度を漸次減速させる制御を 行うことを特徴とする請求項 6に記載の車両の走行制御装置。
8 . 前記操舵ァクチユエータの ί1≡¾速度を求める操舵ァクチユエータ f¾速度検出手段を 有し、
藤己走行速度規制手段は、 編己操舵ァクチユエ一タイ働速度検出手段により求められ た前記操舵ァクチユエータの ^速度が所定値以上であるとき、 前記車両の走行速度 が所定速度以下となるように前記車両の走行速度規制を行うことを特徴とする請求項 1に記載の車両の走行制御装置。
9. 前記操舵ァクチユエータの «速度を求める操舵ァクチユエータ作動速度検出手段を 有し、
鐘走行速度規制手段は、 編己操舵ァクチユエータ f¾J速度検出手段により求められ た前記操舵ァクチユエータの «速度が所定値以上であるとき、 ΙίίΙ己 fM)速度が大き くなるに応じて tiff己車両の走行速度を漸次低下させる制御を行うことを特徴とする請 求項 1に記載の車両の走行制御装置。
1 0 . 編己走行速度規制手段は、 鍵己{«速度が大きくなるに応じて大きくなる減速度を 設定し、 この設定された減速度に基づいて Sift己車両の走行速度を漸次減速させる制御 を行うことを特徴とする請求項 9に記載の車両の走行制御装置。
1 1 . 編己操舵制御手段は、 前記舵角検出手段からの検出情報に基づいて得られた籠己舵 角の大きさが予め定めた基準量以下であるときには前記操舵ァクチユエ一タを第 1の 速度で «させ、 tiff己舵角の大きさが編己基準量を超えているときには前記操舵 ァクチユエータを同一の操作指令に対する作動速度が前記第 1の作動速度よりも遅い 第 2の »速度で させることを特徴とする請求項 1〜: L 0の 、ずれかに記載の車 両の走行制御装置。
1 2 . 編己操舵制御手段は、 前記舵角の大きさが前記基準量を超えている状態から嫌己舵 角の大きさが廳己基準量以下となる目標舵角力 S設定されたときには、 前記舵角の大き さが Sir?己基準量を超えて 、るときであっても、 tin己操舵ァクチユエータを編己第 1の ィ働速度で «させることを特徴とする請求項 1 1に記載の車両の走行制御装置。
1 3 . 編己操能制御手段は、 前記舵角検出手段により検出された藤己操舵輪の直進方向に 対する舵角が大きいときほど前記操舵ァクチユエータを遅レヽ«]速度で^!]させるこ とを特徴とする請求項 1〜; L 0の!/、ずれかに記載の車両の走行制御装置。
1 4 . 前記操蛇輪をキングピン軸の周りに揺動可能に支持する一対のナックルアーム、 及び、 藤己一対のナックルアームを連結するタイ口ッドからなる転舵機構を備え、 編己操舵ァクチユエータは、 IS転舵機構を駆動して前記操舵輪の舵角を変ィ匕させる ように構成されており、
編己舵角検出手段が tif!Bfe右一対の操舵輪のどちらカ、一方に取り付けられ、 前記操舵制御手段は、 歯 3舵角検出手段により検出された tiifSfe右一対の操舵輪のど ちら力—方の舵角が、 鍵己操舵操作手段からの操作指令により設定された編己目標舵 角となるように、 歯己操舵ァクチユエータを «Iさせる制御を行うことを特徴とする 請求項 1〜 1 3の!/ヽずれかに記載の車両の走行制御装置。
1 5 . 嫌己転舵機構は、 編己車両の旋回時に、 髓己左右一対の操舵輪の舵角に差が生じる · 特性を持ち、 歯己操舵操作手段の操作方向と操作量に応じて、 前記舵角検出手段が取り付けられた tin己左右一対の操舵輪のどちらか一方の I己目標舵角を設定し、
前記操舵制御手段は、 前記舵角検出手段により検出された I己左右一対の操舵輪のど ちら力一方の舵角が、 編己操舵操作手段の操作方向と操作量に応じて設定された Sirf己 目標舵角となるように、 ttrt己転舟纖構の特性に基づいて前記操舵ァクチユエ一タを作 動させる制御を行うことを特徴とする請求項 1 4に記載の走行制御装置。
PCT/JP2006/311365 2005-05-31 2006-05-31 車両の走行制御装置 WO2006129862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/590,903 US7957866B2 (en) 2005-05-31 2006-05-31 Travel control apparatus for a vehicle
KR1020067017572A KR101094534B1 (ko) 2005-05-31 2006-05-31 차량의 주행제어장치
EP06747201A EP1914140B1 (en) 2005-05-31 2006-05-31 Traveling control device of vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005158737 2005-05-31
JP2005-158738 2005-05-31
JP2005-158737 2005-05-31
JP2005158738A JP4800667B2 (ja) 2005-05-31 2005-05-31 作業車のステアリング装置
JP2005-223863 2005-08-02
JP2005223863A JP2007038778A (ja) 2005-08-02 2005-08-02 作業車のステアリング装置

Publications (1)

Publication Number Publication Date
WO2006129862A1 true WO2006129862A1 (ja) 2006-12-07

Family

ID=37481771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311365 WO2006129862A1 (ja) 2005-05-31 2006-05-31 車両の走行制御装置

Country Status (4)

Country Link
US (1) US7957866B2 (ja)
EP (1) EP1914140B1 (ja)
KR (1) KR101094534B1 (ja)
WO (1) WO2006129862A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335482A (ja) * 2005-05-31 2006-12-14 Aichi Corp 作業車の走行装置
US9580103B2 (en) 2010-08-31 2017-02-28 Michael R. Schramm Rollover prevention apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186392B1 (en) * 2007-01-15 2011-10-26 Kanzaki Kokyukoki Mfg. Co., Ltd. Riding lawn mower
WO2009020034A1 (ja) * 2007-08-06 2009-02-12 Kabushiki Kaisha Aichi Corporation 作業車の走行制御装置
US20110224872A1 (en) * 2010-03-10 2011-09-15 Genie Industries, Inc. System And Method To Control Vehicle Steering
JP6080458B2 (ja) * 2012-09-28 2017-02-15 株式会社アイチコーポレーション クローラ式走行車両
WO2014128889A1 (ja) * 2013-02-21 2014-08-28 三菱重工業株式会社 軌道式車両、および、その車体傾斜制御方法
US9139223B2 (en) * 2013-05-23 2015-09-22 Caterpillar Inc. Managing steering with short from battery to ground
KR20160105425A (ko) * 2014-01-02 2016-09-06 마이클 알. 슈람 전복 방지 장치
EP3114075B1 (en) * 2014-03-03 2021-08-11 Xtreme Manufacturing, LLC Method and system for a lift device control system
US9238477B2 (en) * 2014-03-03 2016-01-19 Xtreme Manufacturing, Llc Method and system for a lift device having independently steerable wheels
US9169922B1 (en) * 2014-06-11 2015-10-27 Ford Global Technologies, Llc System and method for improving fuel economy of a vehicle powertrain
US9296411B2 (en) * 2014-08-26 2016-03-29 Cnh Industrial America Llc Method and system for controlling a vehicle to a moving point
EP3115332B1 (de) * 2015-07-08 2018-09-12 OM Carrelli Elevatori S.p.A. Verfahren zur steuerung eines flurförderzeugs
WO2018051474A1 (ja) * 2016-09-15 2018-03-22 住友精密工業株式会社 航空機のステアリング制御装置
KR102019539B1 (ko) * 2016-09-28 2019-09-06 르노삼성자동차 주식회사 속도 조정이 편리한 크루즈 컨트롤 장치 및 이의 제어 방법
CN110035944B (zh) 2017-01-13 2021-09-17 克朗设备公司 高速直行的操纵杆脱敏
WO2018132169A1 (en) * 2017-01-13 2018-07-19 Crown Equipment Corporation Traction speed recovery based on steer wheel dynamic
EP3724125B1 (en) * 2017-12-11 2024-01-24 Jacques Tranchero Crane comprising a steering system
WO2019130421A1 (ja) * 2017-12-26 2019-07-04 北越工業株式会社 高所作業車の走行制御方法及び走行制御装置
JP6874731B2 (ja) * 2018-04-11 2021-05-19 トヨタ自動車株式会社 車両制御装置
JP7189060B2 (ja) 2019-03-27 2022-12-13 トヨタ自動車株式会社 車両走行制御システム
US11518404B2 (en) * 2020-03-23 2022-12-06 Baidu Usa Llc Static-state curvature error compensation control logic for autonomous driving vehicles
KR102158449B1 (ko) 2020-06-08 2020-09-21 (주)한성티앤아이 고소작업차의 조향장치
CN112722064B (zh) * 2021-01-19 2022-01-07 英博超算(南京)科技有限公司 一种智能车辆方向盘转角抑制***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113532A (ja) * 1987-10-26 1989-05-02 Mazda Motor Corp エンジンの制御装置
JPH0446268A (ja) * 1990-06-06 1992-02-17 Kubota Corp 作業車
JPH10158000A (ja) 1996-11-29 1998-06-16 Aichi Corp ステアリング装置
JP2001030933A (ja) 1999-07-16 2001-02-06 Toyota Autom Loom Works Ltd 電気式パワーステアリング装置
JP2001180899A (ja) 1999-12-27 2001-07-03 Aichi Corp 高所作業車の安全装置
JP2002079816A (ja) 2000-09-08 2002-03-19 Sumitomonacco Materials Handling Co Ltd 産業車両の揺動制御装置
DE10163330A1 (de) 2000-12-26 2002-07-25 Nippon Yusoki Co Ltd Servolenkungssystem
JP2003327150A (ja) 2002-05-16 2003-11-19 Amitec:Kk パワーステアリング装置用制御ユニット及びハンドル角補正システム
JP2004175230A (ja) 2002-11-27 2004-06-24 Toyota Motor Corp 車両制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175412A (ja) 1994-12-21 1996-07-09 Toyo Umpanki Co Ltd パワーステアリング装置
JP3532672B2 (ja) * 1995-08-29 2004-05-31 本田技研工業株式会社 操舵装置の電動機制御装置
JP3982011B2 (ja) 1997-06-24 2007-09-26 三菱ふそうトラック・バス株式会社 車両の横転防止装置
JP4063088B2 (ja) * 2003-01-23 2008-03-19 株式会社豊田自動織機 ステアリング装置
SE0301345L (sv) 2003-05-08 2004-06-22 Bt Ind Ab Anordning vid plocktruck
JP2005096894A (ja) 2003-09-22 2005-04-14 Toyota Industries Corp 産業車両の走行制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113532A (ja) * 1987-10-26 1989-05-02 Mazda Motor Corp エンジンの制御装置
JPH0446268A (ja) * 1990-06-06 1992-02-17 Kubota Corp 作業車
JPH10158000A (ja) 1996-11-29 1998-06-16 Aichi Corp ステアリング装置
JP2001030933A (ja) 1999-07-16 2001-02-06 Toyota Autom Loom Works Ltd 電気式パワーステアリング装置
JP2001180899A (ja) 1999-12-27 2001-07-03 Aichi Corp 高所作業車の安全装置
JP2002079816A (ja) 2000-09-08 2002-03-19 Sumitomonacco Materials Handling Co Ltd 産業車両の揺動制御装置
DE10163330A1 (de) 2000-12-26 2002-07-25 Nippon Yusoki Co Ltd Servolenkungssystem
JP2003327150A (ja) 2002-05-16 2003-11-19 Amitec:Kk パワーステアリング装置用制御ユニット及びハンドル角補正システム
JP2004175230A (ja) 2002-11-27 2004-06-24 Toyota Motor Corp 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1914140A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335482A (ja) * 2005-05-31 2006-12-14 Aichi Corp 作業車の走行装置
US9580103B2 (en) 2010-08-31 2017-02-28 Michael R. Schramm Rollover prevention apparatus
US10259494B2 (en) 2010-08-31 2019-04-16 Michael R. Schramm Rollover prevention apparatus
US11077877B1 (en) 2010-08-31 2021-08-03 Michael R. Schramm Rollover prevention apparatus
US11565747B1 (en) 2010-08-31 2023-01-31 Michael R. Schramm Rollover prevention apparatus
US11926379B1 (en) 2010-08-31 2024-03-12 Michael R. Schramm Rollover prevention apparatus

Also Published As

Publication number Publication date
US20080097666A1 (en) 2008-04-24
EP1914140B1 (en) 2012-07-18
EP1914140A4 (en) 2009-04-08
EP1914140A1 (en) 2008-04-23
US7957866B2 (en) 2011-06-07
KR20080012735A (ko) 2008-02-12
KR101094534B1 (ko) 2011-12-19

Similar Documents

Publication Publication Date Title
WO2006129862A1 (ja) 車両の走行制御装置
US6378653B1 (en) Travel and rotation control device for boom lift
EA019662B1 (ru) Подвеска кабины самоходного валкоукладчика
CN108699803B (zh) 机动平路机的控制方法以及机动平路机
EA015995B1 (ru) Трактор с устройством автоматического управления направлением движения
IT201800004096A1 (it) Motor grader provvisto di ausilio alla sterzata
JP4624307B2 (ja) 作業車の走行制御装置
CN108699804B (zh) 机动平路机的控制方法以及机动平路机
JP2007153024A (ja) 車両
JP4800667B2 (ja) 作業車のステアリング装置
JP4249197B2 (ja) 走行クローラの旋回機構
JP3663095B2 (ja) 高所作業車の安全装置
JP2007038778A (ja) 作業車のステアリング装置
CN113250056A (zh) 具有液压阻尼***的铣刨机
JP7448459B2 (ja) 作業車の操舵制御装置
JP4313802B2 (ja) 走行クローラの制御機構
JP4890790B2 (ja) 作業車の走行装置
JP4848602B2 (ja) 動力車両
US11999416B2 (en) Steering control device for a work vehicle
JP2002034422A (ja) 薬剤散布装置の水平制御装置
JPH05193515A (ja) 自走車
JP2017051158A (ja) 作業車輌
JP2023092324A (ja) 草刈機
JP5379961B2 (ja) 高所作業車
CN116892145A (zh) 用于操作地面加工机的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006747201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067017572

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10590903

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU