WO2006126346A1 - Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane - Google Patents

Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane Download PDF

Info

Publication number
WO2006126346A1
WO2006126346A1 PCT/JP2006/308271 JP2006308271W WO2006126346A1 WO 2006126346 A1 WO2006126346 A1 WO 2006126346A1 JP 2006308271 W JP2006308271 W JP 2006308271W WO 2006126346 A1 WO2006126346 A1 WO 2006126346A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
proton
proton conductive
polymer
porous
Prior art date
Application number
PCT/JP2006/308271
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Suzuki
Takato Chiba
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007517743A priority Critical patent/JPWO2006126346A1/en
Publication of WO2006126346A1 publication Critical patent/WO2006126346A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • PROTON CONDUCTIVE ELECTROLYTE MEMBRANE MANUFACTURING METHOD THEREOF, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
  • the present invention relates to a proton conductive electrolyte membrane and a method for producing a proton conductive electrolyte membrane, and further relates to a solid polymer fuel cell using the proton conductive electrolyte membrane as an electrolyte membrane for a fuel cell.
  • a fuel cell is a power generation device that generates electricity by reacting hydrogen and oxygen, and only water is generated by the power generation reaction. It has excellent properties! It is attracting attention as an energy-saving technology that deals with environmental problems such as the destruction of the ozone layer and V.
  • the polymer electrolyte fuel cell has the advantage of low operating temperature.
  • the polymer electrolyte fuel cell is a direct hydrogen type that uses hydrogen directly, a reformed type that converts methanol into hydrogen using a reformer, or a direct methanol type that uses methanol directly without using a reformer (DMFC).
  • DMFC Direct Methanol Fuel Cell
  • the basic structural unit of a fuel cell is a single cell, that is, a single cell, but the single-cell voltage of the single cell is as small as about 0.7V. Therefore, for practical use, several cells are stacked and assembled. The battery needs to be configured. Thus, various types of unit cell assembly suitable for practical use of small fuel cells have been proposed.
  • Patent Document 1 Discloses a set of a unit cell for the purpose of obtaining a fuel cell, such as choice in mind (flat stacked) (e.g., see Patent Document 2.) 0
  • the main components of the polymer electrolyte fuel cell are an electrode catalyst, an electrolyte, and a separator.
  • a polymer proton-conducting electrolyte membrane is used as the electrolyte.
  • Proton-conducting electrolyte membranes are used for applications such as ion exchange membranes and humidity sensors, but in recent years, they have also attracted attention as electrolytes in polymer electrolyte fuel cells.
  • a sulfonic acid group-containing fluororesin membrane typified by DuPont's Nafion (registered trademark) is being investigated for use as an electrolyte in portable fuel cells.
  • An electrolyte membrane For the purpose of providing an electrolyte membrane that suppresses methanol permeation (crossover) as much as possible and can withstand use in a high-temperature (about 130 degrees Celsius) environment, it is substantially free from methanol and water.
  • An electrolyte membrane is disclosed in which pores of a porous substrate that does not swell are filled with a polymer having proton conductivity (see, for example, Patent Document 3).
  • porous substrates include glass and alumina.
  • the ceramic inorganic material, polytetrafluoroethylene, polyimide or the like may be used.
  • Patent Document 1 Japanese Patent Laid-Open No. 62-200666 (Claims)
  • Patent Document 2 Japanese Patent Laid-Open No. 63-2264 (Claims)
  • Patent Document 3 Pamphlet of International Publication No. 00Z54351 (Claims)
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-31133 (Claims)
  • Non-Patent Document 1 Electrochemistry, 70, 934 (2002)
  • a first object of the present invention is to provide a proton conductive electrolyte membrane for a small fuel cell that is thin and capable of extracting a predetermined voltage, and a method for producing a proton conductive electrolyte membrane having such excellent performance Is to provide.
  • the second object of the present invention is to provide a proton conductive electrolyte membrane having sufficiently high proton conductivity and sufficiently low methanol permeability, and a proton conductive electrolyte having such excellent performance. It is to provide a method for producing a membrane.
  • a third object of the present invention is to provide a polymer electrolyte fuel cell having, as an electrolyte, a proton conductive electrolyte membrane having excellent performance as described above.
  • the ceramic thin film substrate has a plurality of porous portions and through-hole portions, the porous portions contain a proton conductive polymer, and the through-hole portions contain an electron conductive material.
  • a proton conducting electrolyte membrane characterized by:
  • a plurality of porous portions and through-hole portions are installed in a ceramic thin film substrate, the porous portions are filled with a proton conductive polymer, and the through-hole portions are filled with an electron conductive material.
  • the porous part is obtained by laminating the inorganic particles and the organic particles using a dispersion liquid containing inorganic particles and organic particles, and then firing the laminate.
  • the step of installing the porous portion is based on an application step.
  • a proton conductive electrolyte membrane for a small fuel cell that is thin and capable of extracting a predetermined voltage, and has a sufficiently high proton conductivity and a sufficiently low methanol permeability, and a proton conductive electrolyte membrane thereof It was possible to provide a production method and a solid polymer fuel cell using a proton conductive electrolyte membrane.
  • FIG. 1 is a schematic view showing one embodiment of a direct methanol solid polymer fuel cell of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a fuel cell configuration in which a plurality of single cells according to the present invention are arranged.
  • FIG. 3 is a schematic view of an H-type cell for evaluating methanol permeability.
  • the proton conductive electrolyte membrane of the present invention has a plurality of porous portions and through-hole portions in a ceramic thin film substrate, the porous portion contains a proton-conductive polymer, and the through-hole portions have an electron. It is characterized by containing a conductive material.
  • the production method is not particularly limited, the proton conductive electrolyte membrane of the present invention is first provided with a step of installing a plurality of large and small through holes in a ceramics thin film substrate, and a plurality of large through holes in the substrate are inorganic.
  • the part is an electrolyte membrane that can be manufactured through a process of filling an electron conductive material.
  • the porous portion containing a plurality of proton conductive polymers formed on the ceramic thin film substrate can be configured as a single fuel cell.
  • the through hole filled with the electron conductive material can be used for electrically connecting a plurality of fuel cell single cells as an electron conduction path. Further, by arranging the porous portion and the through-hole portion alternately, the anode electrode (fuel electrode) and the force sword electrode (air electrode) of adjacent fuel cell single cells can be connected in series.
  • the ceramic thin film substrate is an insulating material for electrically connecting the electron conductive material filled in the through hole, and can withstand heating when forming the porous portion.
  • a material is preferred.
  • a ceramic thin film substrate for example, silica Thin film substrate of ceramic sintered body such as oxides such as force, anolemina, mullite, cordierite, magnesia, zircon, spinel, steatite, nitrides such as aluminum nitride and nitride nitride, carbides such as carbide carbide Glass films such as soda-lime glass, borosilicate glass, lead glass, quartz glass, alkali-free glass containing 0.1% or less of alkali oxide, low alkali glass, Nyrex (registered trademark) glass, crystallized glass, etc. Examples include a substrate. In the present invention, a sintered ceramic substrate of silica or alumina is preferred.
  • Preferred processing techniques used in the step of installing a plurality of large and small through-hole portions in the ceramic thin film substrate include laser processing, EB, punching, sandblasting, etching, and the like.
  • laser processing method a hole is made in a ceramic substrate by a carbon dioxide laser or the like.
  • the punching method is a method of mechanically making a hole in a green sheet before firing using a mold and then firing.
  • sandblasting method as disclosed in, for example, JP-A-62-210773 and JP-A-1-295764, a ceramic substrate is perforated by spraying abrasive particles.
  • a punching method is used to make a through hole for forming a porous portion larger
  • a laser processing method is used for a small through hole for an electron conduction path. Can be used.
  • a support may be used in the step of forming a porous portion by pouring a dispersion liquid containing inorganic particles and organic particles into a plurality of through-hole portions of the substrate and laminating and firing the particles.
  • a support made of any material can be used as long as it eventually burns out or melts away, or can be peeled off.
  • paper such as filter paper, cloth such as nonwoven cloth
  • a support formed of an arbitrary material such as a polymer film such as polyethylene terephthalate can be used.
  • the surface of the support is preferably smooth, the surface of the proton-conducting electrolyte membrane obtained is also smooth, and when it is used as an electrolyte for a polymer electrolyte fuel cell, the electrode and the proton-conducting electrolyte Close contact at the interface with the membrane.
  • the surface roughness of the support is not particularly limited, but the surface roughness Rz of the surface on which the dispersion liquid containing inorganic particles and organic particles is laminated is preferably 3 ⁇ m or less.
  • Surface roughness Rzi is the ten-point average surface roughness Rz of IS.
  • a stylus type three-dimensional roughness meter (Surfcom 570A) manufactured by Tokyo Seimitsu Co., Ltd. can be used.
  • inorganic particles and organic particles In order to prevent warping (curl), deflection, etc. of the support by laminating dispersions containing
  • a backing layer on the surface opposite to the surface on which the dispersion liquid is laminated.
  • the inorganic particles used for forming the porous portion include silica (SiO 2), alumina (A1
  • silica SiO 2
  • silica SiO 2
  • the average particle size of the inorganic particles is preferably 10 nm or more, more preferably 10 to 100 nm, and still more preferably 10 to 50 nm.
  • the average particle size of the inorganic particles can be determined by, for example, observing with a scanning electron microscope and measuring the major axis of 200 particles randomly.
  • the organic particles organic particles of any material can be used as long as they are eventually burned out or dissolved, but those that do not swell in the solvent as a dispersion medium used in the dispersion liquid.
  • the dispersion medium is preferably an aqueous solvent
  • the organic particles include, for example, acrylic resin, styrene resin, styrene Z acrylic resin, styrene Z dibutene benzene resin, polyester resin, Polymer beads such as urethane-based resin can be used.
  • the average particle size of the organic particles is preferably 10 to 450 nm, more preferably 100 to 300 nm.
  • the porous portion of the electrolyte membrane of the present invention is formed through a process of laminating a dispersion liquid containing inorganic particles and organic particles and then firing, the inorganic particles are fixed and sintered together to form a thin film. At the same time, the portion occupied by the organic particles mainly forms pores in the thin film.
  • the average pore diameter of the porous portion is preferably 10 to 450 nm, and more preferably the average pore diameter is 100 to 300 nm.
  • the average pore diameter can be determined by mercury porosimetry using, for example, a pore sizer 9320 manufactured by Shimadzu Corporation.
  • the proton conductive electrolyte membrane obtained by filling the porous portion formed in this way with a proton conductive polymer was found to have high proton conductivity and low methanol permeability. It was.
  • the porosity of the porous portion is preferably 40 to 95%, more preferably 50 to 80%.
  • the porosity can be calculated from the mass W (g) per unit area S (cm 2 ), the average thickness t (m) and the density d (gZcm 3 ) of the porous portion by the following formula.
  • the use ratio of the inorganic particles and the organic particles is as described above, but the dispersion is prepared so that the solid content concentration is 5 to 80% by mass, preferably 10 to 40% by mass.
  • an aqueous solvent is preferable.
  • aqueous solvent various known solvents such as water and alcohols can be used, but water or a mixed solvent containing water as a main component is preferably used.
  • Examples of the dispersion aid for dispersing inorganic particles and organic particles include higher fatty acid salts, alkyl sulfates, alkyl ester sulfates, alkyl sulfonates, sulfosuccinates, naphthalene sulfonates, and alkyl phosphates.
  • Various surfactants such as salts, polyoxyalkylene alkyl ether phosphates, polyoxyalkylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene glycols, glycerin esters, sorbitan esters, polyoxyethylene fatty acid amides, amine oxides may be used. it can.
  • Examples of the dispersion method include a ball mill, a sand mill, an attritor, a roll mill, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, and a paint shaker. They can be used in appropriate combinations.
  • the substrate is placed on the membrane filter. Then, the dispersion is poured into the through hole, suction filtered using a vacuum suction filter, a layer containing inorganic particles and organic particles is deposited on the membrane filter, dried, and the membrane filter is peeled off.
  • a substrate is placed on the support, and the dispersion is applied to the through hole and dried.
  • a method in which a substrate is placed on a support and the dispersion is applied to the through hole is preferable.
  • a coating method for example, a doctor blade method, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, an etching method, etc., which are known in the past are employed. be able to.
  • the dispersion containing inorganic particles and organic particles is poured into the through-hole portion of the substrate, and the particles are laminated and dried.
  • the support may be fired by heating in an electric furnace in a nitrogen atmosphere with the support attached.
  • the heat treatment can be performed using, for example, an electric furnace equipped with a heating element such as caged molybdenum, and is performed at 1500 ° C. or less, more preferably at 400 to 1300 ° C.
  • the time for heating can be appropriately set according to the size of the target porous membrane. Specifically, for example, a heating time of about 5 to 24 hours can be used.
  • the temperature increase rate and temperature decrease rate in the heat treatment for obtaining the porous portion can be appropriately set. It is preferable that both the temperature raising rate and the temperature lowering rate be 100 to 300 ° CZ time. It is also preferable to perform heat treatment in two steps, pre-baking and main baking.
  • the proton conductive polymer filled in the pores of the porous part of the electrolyte membrane of the present invention is not particularly limited.
  • Polyelectrolyte into which phonic acid group and Z or phosphonic acid group are introduced (B) Introducing sulfonic acid group and Z or phosphonic acid group into polymer with aliphatic hydrocarbon power whose main chain is substituted with fluorine (C) a polymer electrolyte in which a sulfonic acid group and a Z or phosphonic acid group are introduced into a polymer having an aromatic ring in the main chain; (D) a polysiloxane substantially free of carbon atoms in the main chain.
  • “the sulfonic acid group and Z or phosphonic acid group are introduced into the polymer” means that “the sulfonic acid group and Z or phosphonic acid group are introduced into the polymer skeleton via chemical bonds”. Means.
  • Examples of the polymer electrolyte (A) include polybulusulfonic acid, polystyrene sulfonic acid, poly (a-methylstyrene) sulfonic acid, and the like.
  • Examples of the polymer electrolyte (B) include perfluorocarbon sulfonic acid and perfluoroalkyl polymer having a phosphonic acid group (for example, J. Fluorine Chem., 8 2, 13 (1997). )), Polytrifluorostyrenesulfonic acid, polytrifluorostyrenephosphonic acid (for example, J. New. Mater. Electrochem. Syst., 3, 43 (2000)) and the like.
  • the polymer electrolyte (C) may be one in which the main chain is interrupted by a hetero atom such as an oxygen atom.
  • a hetero atom such as an oxygen atom.
  • Examples of the polymer electrolyte (D) include polysiloxanes having a phosphonic acid group described in PolymerPrep., 41, No. 1, 70 (2000).
  • a sulfonic acid group and Z or phosphonic acid group are introduced into a random copolymer, but the sulfonic acid group and Z or phosphonic acid group are incorporated into an alternating copolymer. It may be a group having a group introduced therein or a block copolymer having a sulfonic acid group and Z or phosphonic acid group introduced.
  • the sulfonic acid group introduced into the random copolymer include sulfonated polyethersulfone-dihydroxybiphenyl.
  • sulfonic acid group and Z or phosphonic acid group are introduced into the block copolymer
  • the main chain of all blocks is included.
  • block copolymers composed of aliphatic hydrocarbons for example, styrene mono (ethylene-butylene) -styrene triblock copolymers having sulfonic acid groups and Z or phosphonic acid groups introduced therein.
  • a polymer obtained by copolymerizing or reacting a compound having one or more proton dissociable groups and (b) a compound represented by the following general formula (1) as an essential component is preferable. Further, it may be copolymerized with other unsaturated compounds that can be copolymerized therewith, and it is also preferable that the polymer is a copolymer obtained by adding a reactive emulsifier in addition to the above essential components.
  • the "proton dissociable group” means a functional group from which protons can be separated by ionization, and this dissociable group is represented by the formula XH, where X represents a divalent bond. Any atom or atomic group may be used. Specifically, —OH, —OSO H, —COOH, —SO
  • R 1 represents an alkyl group having 4 or less carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • R 2 of the compound represented by the general formula (1) represents a copolymerizable or reactive organic group, preferably an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an aminoalkyl group or a bur group.
  • Specific examples of the compound represented by the general formula (1) include butyltrimethoxysilane, vinyltril. Ethoxysilane, 2- (3,4 Epoxycyclohexenole) ethinoretrimethoxysilane, 3 g
  • the compound having one or more proton dissociable groups in the molecule is preferably a compound having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds in the molecule.
  • a haloalkylated and sulfonated polymer compound is preferred, in particular, a polymer having an aromatic ring in the molecule.
  • Haloalkylated and sulfonated ones are preferred.
  • a polymer compound known as an engineering plastic is haloalkylated and sulfonated.
  • Engineering plastic has no general definition, and refers to a highly elastic, high-strength plastic that can be used as a structural material, such as metal.
  • the elastic modulus is 2.45 X 10 9 Pa or more and the heat distortion temperature is 100 ° C or more (see, for example, “Engineering Plastics” by Rikio Kobayashi and Makio).
  • Natural rosin such as carbonate and polyarylate has an elastic modulus of 1.96 X 10 9 to 2.45 X 10 9 Pa, but it is treated as an engineering plastic (edited by Engineering Engineers Office, Suzuki Engineering Office) reference).
  • the polymer compound includes, for example, polybenzazole (PBZ), polyaramid (PAR or Kevlar (registered trademark)), polybenzoxazole (PBO), polybenzothiazole (PBT). , Polybenzimidazole (PBI), polyparaphenylene-terephthalimide (PPTA), polysulfone (PSU), polyimide (PI), polyphenylene-oxide (PPO), polyphenylene-sulfoxide (PPSO), polyphenylene sulfide (PPS), Polyphenol-sulfursulfone (PPSZS02), polyparaphenylene (PPP), polyphenol quinoxaline (PPQ), polyaryl ketone (PK), polyether ketone (PEK), polyether sulfone (PES), polyether ether sulfone (PEES), polyarylsulfone, polyarylethersulfone (PAS), polyphenylsulfone (PPSU), polyphenylsulf
  • polymer compounds may be used alone or in combination of two or more. Particularly preferably, at least selected from polyether ketone, polyether ether ketone, polysulfone, polyether sulfone, polyether ether sulfone, polyphenylene noride, polyparaphenylene, polyphenylene oxide, polyimide, and polybenzimidazole.
  • polyether ketone polyether ether ketone
  • polysulfone polyether sulfone
  • polyether sulfone polyether ether sulfone
  • polyphenylene noride polyparaphenylene oxide
  • polyimide polyimide
  • polybenzimidazole polybenzimidazole
  • the polymer compound has a molecular weight of OOOO to 100,000, preferably S, and any conventionally known compound can be used without any limitation.
  • the method of the haloalkyl or sulfone of the polymer compound is, for example, by first dissolving the polymer compound in 90% or more, preferably 95% or more of sulfuric acid with stirring, and then adding it to the haloalkyl reagent. To carry out sulfone and haloalkyl.
  • the polymer compound is uniformly dissolved in the range of 0 to 100 ° C.
  • the temperature is high, the introduction ratio of the haloalkyl group is high, and the introduction ratio of the haloalkyl group is low. Conversely, when the temperature is low, the introduction of the sulfonic acid group is limited.
  • the introduction ratio of haloalkyl groups increases.
  • haloalkylating reagents to be used include chloromethyl methyl ether, brommethinoremethinoreatenore, odomethinolemethinoleatenore, chronoetinoreethinoreteol, chloroethylmethyl.
  • examples include ether. This method is a reaction in which sulfuric acid as a solvent is present in a large excess as a solvent, and the reaction rate is extremely fast. Therefore, the haloalkylating reagent is sufficiently stirred while stirring the sulfuric acid solution of the polymer compound sufficiently. It is necessary to add.
  • the amount of the haloalkyl group introduced into the polymer compound can also be controlled by the ratio between the number of moles of the haloalkylating reagent to be added and the number of moles of the moiety into which the haloalkyl group of the polymer compound is introduced.
  • the reaction time is usually selected between 10 minutes and 16 hours.
  • the remaining haloalkyl reagent is removed and removed by a nitrogen stream, and then poured into a large amount of water, precipitated and precipitated, and then washed thoroughly with water.
  • Molecular compounds can be obtained.
  • the presence of haloalkyl groups and sulfonic acid groups can be confirmed by NMR analysis, elemental analysis, and the like.
  • the reactive haloalkyl group can react with the compound represented by the general formula (1) described later, and is the same type of haloalkyl group and the sulfonated polymer compound. Two or more haloalkyl derivatives and sulfonated polymer compounds can form a crosslinked structure. Such a polymer can improve the performance of the proton conducting polymer.
  • the compound having one or more proton dissociable groups in the molecule is preferably a compound having one or more phosphate groups and one or more ethylenically unsaturated bonds in the molecule.
  • a compound represented by the general formula (2) can be exemplified.
  • R ° represents a hydrogen atom or a methyl group
  • X represents a divalent organic group, Tylene group or propylene group
  • p represents an integer of 1 or more, preferably an integer of 1 to 10.
  • Specific examples of the compound represented by the general formula (2) include methacryloyloxetyl phosphate, methacryloyl di (oxyethylene) phosphate, methacryloyl tri (oxyshethylene) phosphate, methacryloyl tetra (oxyethylene) phosphate, Tallyloyl penta (oxyethylene) phosphate, methacryloylhexa (oxyethylene) phosphate, methacryloyloleoxypropinorephosphate, methacryloyl di (oxypropyl) phosphate, methacryloyl tri (oxypropyl) phosphate, methacryloyltetra (oxypropyl) phosphate, meta Tallyloyl penta (oxypropyl) phosphate, methacryloyl hexa (oxypropyl) phosphate, ataliroyloxie Cyl phosphate, Ataridiyl (oxyethylene) phosphate, Ataliloyl
  • all of the unsaturated compounds having one or more ethylenically unsaturated bonds in the molecule are (meth) acrylonitrile, (Meth) acrylic acid esters and substituted or unsubstituted styrenes are preferred.
  • Butylbenzene, N, N-methylenebisatyramide, etc. form a cross-linked structure and are preferably used to improve the durability of the electrolyte membrane.
  • an ionic and Z or nonionic emulsifier having at least one unsaturated double bond in the molecule is preferably used.
  • the reactive emulsifier is preferably a compound having at least one hydrophobic group, hydrophilic group and reactive group in the molecule.
  • the hydrophobic group is an aliphatic or aromatic hydrocarbon group
  • the hydrophilic group Contains a nonionic group typified by a polyoxyalkylene ether group, a sulfonic acid salt, a strong sulfonate, and a ionic group typified by a phosphate
  • the reactive group is a vinyl ether group
  • Preferred are those containing a allylic ether group, a bulufer group, a allyl group, an ester or amide group of acrylic acid or methacrylic acid, or an ester or amide group of an unsaturated dibasic acid such as maleic acid.
  • Examples of the reactive whey agent include, for example, JP-A-62-22803, 62-104802, 62-104803, 62-221431, 62-221432 No. 62-225237, 62-244430, 62-286528, 62-289228, 62-289229, 63-12334, 63-54 No. 930, No. 63-77530, No. 63-77531, No. 63-77532, No. 63-84624, No. 63-84625, No. 63-126535, No. 63-126536 No. 63, No. 63-147530, No. 63-319035, No. 1-11 630, No. 1-22338, No. 1-22627, No.
  • Examples of the compound of the reactive emulsifier include, for example, 1- (meth) aryloxy-2-hydroxypropane, (meth) acryloyloxy-2-hydroxypropane, (meth) alkyloxymethyl 3 Alkoxy (polyoxyalkylenoxy) 2-hydroxypropan, alkylphenoxy (polyoxyalkylenoxy) 2-hydroxypropane or acyloxy (polyoxyalkylenoxy) 2-hydroxypropane or its alkylene oxide adducts or these Sulfuric acid or phosphoric acid ester or salt thereof, alkylene oxide adduct of bisphenol compound or glycol compound or sulfuric acid or phosphoric acid ester or salt thereof, alkyl of bull or arylphenol compound Examples include lenoxide adducts or their sulfuric or phosphoric acid esters or salts thereof, monoaryl mono-monoalkyl esters or salts thereof of sulfosuccinic acid, mono (3-aryloxy-2
  • “Adekalia Soap NE”, “Adekalia Soap SE”, “Adekalia Soap ER”, “Adekalia Soap SR”, “Adekalia Soap PP”, “Adekalia Soap PPE” Product name, manufactured by Asahi Denki Co., Ltd.), “AQUALON KH”, “AQUALON HS”, “AQUALON BC”, “AQUALON RN”, “New Frontier” (trade name, Daiichi Kogyo Seiyaku Co., Ltd.) ), “Eleminol ES”, “Eleminol JS”, “Eleminol RS”, “Eleminol MON”, “Eleminol HA” (trade name, manufactured by Sanyo Chemical Industries), “Latemul” (trade name, Kao Corporation) But not limited to these). These reactive emulsifiers may be used alone or in combination of two or more.
  • the method for filling the proton conductive polymer into the pores of the porous part of the electrolyte membrane of the present invention is not particularly limited.
  • the method of applying the proton conductive polymer solution to the porous part The pores of the porous part can be filled with the proton conductive polymer by a method of immersing the porous part in the proton conductive polymer solution. At this time, it is possible to easily fill the pores with the proton conductive polymer by using ultrasonic waves or reducing the pressure.
  • a precursor of a proton conductive polymer (the compound (a) having one or more proton dissociable groups in the molecule, the compound (b)-a compound represented by the general formula (1),
  • Other known compounds such as thermal polymerization and photopolymerization are prepared by filling a solution containing another unsaturated compound that can be polymerized, a reactive emulsifier, etc.) and a polymerization initiator into the pores of the porous portion. According to the method, In-situ polymerization or In-situ reaction is carried out to obtain a proton conductive polymer.
  • the solution containing the precursor of the proton conductive polymer and the polymerization initiator After hydrophilizing the pore surface of the porous part, the solution containing the precursor of the proton conductive polymer and the polymerization initiator is filled in the pores of the porous part, and In-situ polymerization or In— A sit u reaction method is also preferable.
  • the precursor of the proton conductive polymer and the polymerization opening It is also preferable to adjust the viscosity of the solution containing the initiator appropriately so that the pores are easily filled.
  • a part of the monomer may be prepolymerized in order to increase the viscosity, or a small amount of an appropriate polymer may be added and dissolved.
  • a suitable solvent may be prepared and diluted.
  • Examples of the method of reacting the haloalkylated and sulfonated polymer compound, the compound represented by the general formula (1), the reactive emulsifier, and the like include a method of cleaving haloalkyl and reacting, A method of reacting an unsaturated bond with an agent and a method of reacting a silyl group are preferably used.
  • Methods for cleaving and reacting haloalkyl groups include Lewis acids, HF, and H 2 SO
  • the polymerization initiator those conventionally known in the art may be appropriately used.
  • a thermal polymerization initiator or a photopolymerization initiator is preferable, and the thermal polymerization initiator is a compound capable of generating a polymerizable radical by applying thermal energy.
  • Such compounds include, for example, 2,2'-azobisisobutyoritol-tolyl, 2,2'-azobispropio-tolyl and other azobis-tolyl compounds, benzoyl peroxide, lauryl peroxide, acetylyl peroxide, T-Butyl perbenzoate, a cumyl hydroperoxide, di-t-butyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, peracids, alkyl peroxyl rubamates, nitro sularyl acyla Organic peracids such as amines, potassium persulfate, ammonium persulfate, inorganic peroxides such as potassium perchlorate, diazoaminobenzene, p-trobenzenediazome, azobis substitution Azo or diazo compounds such as alkanes, diazothioethers, and arylazosulfone
  • compounds particularly preferable are compounds having excellent stability at room temperature and a high decomposition rate upon heating, and the initiator is usually 0.1 to 30% by mass in the total polymerizable composition. Like 0 A range of 5 to 20% by mass is more preferable.
  • the amount of the photopolymerization initiator used is in the range of 0.5 to 5% by mass, preferably in the range of 1 to 3% by mass, based on the total mass of the unsaturated compounds.
  • the ion-conducting capacity of the proton conducting polymer is preferably 0.5 to 5.0 milliequivalent Zg dry resin, more preferably 1.0 to 4.5 milliequivalent Zg dry resin. is there.
  • the ion exchange capacity is smaller than 0.5 meq Zg dry resin, the ion conduction resistance increases, and when it is greater than 4.5 meq Zg dry resin, it becomes easier to dissolve in water.
  • the ion exchange capacity can be determined by the following measurement method. First, the proton conductive polymer is immersed in a 2 mol ZL salt / sodium aqueous solution for about 5 minutes to replace the proton of the acidic group with sodium. Neutralization titration with sodium hydroxide and sodium hydroxide of known concentration is performed on protons liberated in the solution by sodium substitution. Then, the dry weight (W) of the proton-conducting polymer and the volume of sodium hydroxide (V) force proton (H +) required for neutralization titration were calculated, and the ion exchange capacity (meqZg ) The following formula shows an example of neutralization titration with 0.05 mol ZL NaOH aqueous solution.
  • the average film thickness of the proton conductive electrolyte membrane of the present invention is not particularly limited, but is usually 500 m or less, preferably 300 ⁇ m or less, more preferably 50 to 200 ⁇ m.
  • the film thickness can be measured with a 1Z10000 thickness gauge.
  • the average film thickness can be obtained by measuring five points at any point and calculating the average.
  • the through hole of the electrolyte membrane of the present invention is filled with an electron conductive material.
  • the through hole filled with this electron conductive material is used to electrically connect a plurality of single cells formed on the same substrate. Filling the through hole with the electron conductive material can be performed by a method of drawing with a nozzle, a screen printing method, plating, or the like.
  • the electron conductive material in the through hole portion of the thin film substrate In order to electrically connect the electron conductive material in the through hole portion of the thin film substrate, at least one of the front and back surfaces of the substrate must be filled with the electron conductive material in the through hole. It is preferable that the filled electron conductive material protrudes from the surface of the thin film substrate.
  • the electron conductive material metal powders such as Au, Ag, Cu, Pt, Pd, Ni, Cr, Pb, Sn, Al, and Ti are preferable, and Au and Pt are particularly preferable.
  • a flux component such as ceramic fine powder or glass fine powder may be added within a range in which necessary wiring resistance can be obtained according to adjustment of the sintering shrinkage rate or adhesion to a thin film substrate.
  • the method for electrically connecting the electron conductive material in the through hole is not particularly limited. For example, by heating the thin film substrate filled with the electron conductive material in the through hole, When the electron conductive material in the through hole is sintered or melted, the electrical connection between the upper and lower through holes can be made denser. This step can also be performed simultaneously with the heat treatment at the time of forming the porous portion.
  • the proton conductive electrolyte membrane of the present invention can be used in a fuel cell.
  • fuel cells methanol fuel cells are preferred, and direct methanol fuel cells are particularly preferred.
  • FIG. 1 is a schematic diagram showing an embodiment of a direct methanol fuel cell using the proton conductive electrolyte membrane of the present invention as an electrolyte membrane.
  • reference numeral (1) indicates an electrolyte membrane
  • reference numeral (2) indicates an anode electrode (fuel electrode)
  • reference numeral (3) indicates a force sword electrode (air electrode)
  • reference numeral (4) indicates an external circuit.
  • Methanol aqueous solution A is used as the fuel.
  • the overall reaction of the fuel cell is as follows:
  • the structure of the anode (2) can be a known structure. For example, it is composed of a catalyst layer and a support that supports the catalyst layer from the electrolyte (1) side.
  • the structure of the force sword pole (3) can also be a structure with which the conventional force is known. For example, it comprises a catalyst layer and a support that supports the catalyst layer from the electrolyte (1) side.
  • a known catalyst can be used.
  • noble metal catalysts such as platinum, palladium, ruthenium, iridium, and gold, and alloys such as white gold ruthenium, iron, nickel, cobalt, molybdenum, and platinum are used.
  • the catalyst layer preferably contains an electron conductor (conductive material) material for the purpose of improving conductivity.
  • the electron conductor is not particularly limited, but an inorganic conductive material is preferably used in terms of electron conductivity and touch resistance.
  • carbon black, graphite and carbonaceous carbon materials, and metals and metalloids are mentioned.
  • carbon black such as channel black, thermal black, furnace black, and acetylene black is preferably used in view of electron conductivity and specific surface area.
  • an electron conductor carrying a catalyst such as a platinum carrying power of 1 bon is preferably used.
  • MEA membrane electrode assembly
  • the same electrolyte solution as the electrolyte membrane should be A method of coating platinum catalyst powder, a method of applying a catalyst paste to an electrolyte membrane, a method of electrolessly plating an electrode on the electrolyte membrane, a method of reducing the metal complex ion of white metal after it is adsorbed on the electrolyte membrane Etc.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a fuel cell configuration in which a plurality of single cells according to the present invention are arranged.
  • (11) is a ceramic thin film electrolyte substrate, which is provided with a porous portion (12) filled with a plurality of proton conductive polymers and a through hole portion (13) filled with an electron conductive material. It has been.
  • (14) is the anode electrode (fuel electrode)
  • (15) is the power sword electrode (air electrode)
  • (16) is the anode electrode (fuel electrode) (14) and force sword electrode (air electrode) (15).
  • (17) is a conductive circuit connected to the current collector plate (16)
  • (18) is a fuel distributor plate
  • (19) is an air distributor plate.
  • These fuel flow plate (18), anode electrode (fuel electrode) (14), porous part filled with proton conductive polymer (12), force sword electrode (air electrode) (15), and air flow plate (19 ) Constitutes each single cell (20).
  • the fuel flows through the fuel distribution plate (18) and the air flows through the air distribution plate (19).
  • the electromotive force generated by the reaction can be taken out from the current collector plate (16), the conductive circuit (17), and the like.
  • planar laminated electrolyte bases may be laminated in the thickness direction via a cooling plate or the like.
  • a green sheet was prepared.
  • the green sheet was mechanically drilled with three large and small through holes using a mold.
  • the through holes were 20 x 20 mm square through holes and 2 mm diameter circular through holes.
  • This green sheet was placed on a polyethylene terephthalate support, and the following dispersion was poured into the square through holes by a coating method.
  • the dispersion of polystyrene fine particles Motex Corporation 5008B, average particle size 80 nm
  • colloidal silica manufactured by Nissan Chemical Industries, Ltd. Snowtex 50, an average primary particle size 20 nm
  • concentration of the dispersion was set to 20% by mass.
  • the coating was performed using a bar coater and dried.
  • a commercially available gold paste was filled into the circular through hole by a method of drawing with a nozzle and dried. After drying, the polyethylene terephthalate support is peeled off, heated to 600 ° C at a heating rate of 60 ° CZ, pre-fired at 600 ° C for 3 hours, and then increased to 1000 ° C at a heating rate of 120 ° CZ. Heated and fired at 1000 ° C. for 3 hours to produce partially porous substrate No. 1.
  • Partially porous substrates Nos. 2 to 6 were prepared in the same manner as the substrate No. 1 except that the polystyrene fine particles and the colloidal silica in the substrate No. 1 were changed as shown in Table 1.
  • 5022B, 5043B, and 5093B manufactured by Moritex Corporation were used for polystyrene fine particles having an average particle size of 220 nm, 430 nm, and 930 nm, respectively.
  • colloidal silica whose primary average particle size is 50 nm, 100 nm, and 200 nm, use Nissan Snowtech YL, Snowtex MP, and Snowtex MP2040, respectively, and those with an alumina primary average particle size of lOOnm.
  • Alumina sol 100 manufactured by Nissan Chemical Co., Ltd. was used.
  • Table 1 shows the average pore diameter and porosity of the substrates Nos. 1 to 6.
  • the porosity was calculated from the mass W per unit area S (cm 2 ), average thickness t ( ⁇ m), and density d (g / cm 3 ) by the following formula.
  • Porosity (%) (1— (10 4 'WZ (S't'd))) X 100
  • the average pore diameter was measured, for example, by a mercury intrusion method using a pore sizer 9320 manufactured by Shimadzu Corporation.
  • a proton conductive polymer (electrolyte membrane No. 1) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
  • Isopropyl alcohol: water 2: 1, acrylic acid, 3-glycidoxypropyltrimethoxysilane, "Aqualon KH-05" (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and crosslinking agent N, N-methylenebisacrylamide and AIBN (2,2'-azobisisobutyronitrile) as a polymerization initiator are mixed at a mass ratio of 100: 20: 20: 5: 1, and the mixture is mixed under reduced pressure.
  • the partially porous substrate was immersed therein.
  • the partially porous substrate thus treated was sandwiched and heated between polyethylene terephthalate films, held at 60 ° C. for 2 hours, and further held at 80 ° C. for 2 hours to produce a proton conductive electrolyte membrane. .
  • the average thickness of the proton conducting electrolyte membrane was 150 ⁇ m. The average film thickness was obtained by measuring five points at any point with a thickness gauge and calculating the average.
  • the proton conductive polymer (electrolyte membrane No. 4) was manufactured by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
  • Isopropyl alcohol: water 2: 1 in 2-acrylamido-2-methylpropanesulfur Phosphonic acid, 3-glycidoxypropyltrimethoxysilane, “AQUALON KH-05” (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and N, N-methylenebisacrylamide as a crosslinking agent and ⁇ as a polymerization initiator (2, 2′-azobisisobuty-to-tolyl) was mixed at a mass ratio of 100: 15: 5: 5: 1, and the partially porous substrate was immersed in the mixture under reduced pressure.
  • the partially porous substrate thus treated was sandwiched between polyethylene terephthalate films, heated, held at 60 ° C for 2 hours, and further held at 80 ° C for 2 hours to produce a proton-conducting electrolyte membrane. .
  • the average film thickness of the proton conductive electrolyte membrane was 150 / zm. The average film thickness was determined by measuring five points at any point with a thickness gauge and calculating the average.
  • Proton conductive electrolyte membranes No. 5-10 are prepared in the same manner as proton conductive electrolyte membrane No. 4 except that the reactive emulsifier and other unsaturated compounds that can be copolymerized are changed as shown in Table 3. did.
  • a proton conductive polymer (electrolyte membrane No. 11) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
  • proton conductive electrolyte membrane No. 11 partially porous substrate, chloromethylated and sulfonated polymer compound, compound represented by general formula (1), reactive emulsifier and other unsaturated compounds capable of copolymerization
  • Proton conductive electrolyte membranes Nos. 12 to 16 were produced in the same manner as the proton conductive electrolyte membrane No. 11 except that the compounds were changed as shown in Table 4.
  • a proton conductive polymer (electrolyte membrane No. 17) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
  • Isopropyl alcohol: water 2: 1, "PhosmerM” (trade name, manufactured by New Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane, 2-acrylamido-2-methylpropaline Sulfonic acid, “AQUALON KH-05” (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and N, N-methylenebisacrylamide as a crosslinking agent and AIBN (2, 2 '—azobisisobuti-mouth as a polymerization initiator) Trill) was mixed at a mass ratio of 100: 15: 100: 5: 5: 1, and the partially porous substrate was immersed in the mixture under reduced pressure.
  • PhosmerM trade name, manufactured by New Chemical Co., Ltd.
  • 3-glycidoxypropyltrimethoxysilane 2-acrylamido-2-methylpropaline Sulfonic acid
  • AQUALON KH-05 trade name, manufactured by Daiichi Kogyo Se
  • the partially porous substrate thus treated was sandwiched between polyethylene terephthalate films, heated, held at 60 ° C for 2 hours, and further held at 80 ° C for 2 hours to produce a proton conductive electrolyte membrane. .
  • the average thickness of the proton conductive electrolyte membrane was 150 ⁇ m.
  • the average film thickness was obtained by measuring five points at any point with a thickness gauge and calculating the average.
  • proton conductive electrolyte membrane No. 17 a partially porous substrate, a compound having one or more phosphate groups and one or more ethylenically unsaturated bonds in the molecule, a compound represented by the general formula (1), Except that the compounds having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds, reactive emulsifiers, and other unsaturated compounds capable of copolymerization in the molecule were changed as shown in Table 5.
  • Proton conductive electrolyte membranes Nos. 18 to 22 were produced in the same manner as proton conductive electrolyte membrane No. 17.
  • the entire surface is formed as a porous material, and the porous substrate is filled with silica so that the porous material is divided into three cells.
  • No. 7 is formed, and a compound having one or more proton dissociable groups in the molecule and / or a compound represented by the general formula (1), a reactive emulsifier, and a co-polymer are formed on the substrate.
  • Comparative proton conductive electrolyte membranes Nos. 23 to 25 were prepared in the same manner as proton conductive electrolyte membrane No. 1 except that other unsaturated compounds capable of polymerization were changed as shown in Table 6.
  • Proton-conducting electrolyte membranes Nos. 1 to 22 that were produced and any porous part of proton-conducting electrolyte membranes No. 23 to 25 as a comparative sample were hydrated in water (25 ° C), and then applied to two platinum electrodes. The impedance was measured using a Hewlett Packard LCR meter HP4284A, and proton conductivity was calculated.
  • Proton-conducting electrolyte membranes Nos. 1 to 22 fabricated in the H-type cell in Fig. 3 and an arbitrary porous part of proton-conducting electrolyte membranes No. 23 to 25 as a comparative sample are sandwiched between 2 mol /
  • the amount of methanol permeating from the L methanol aqueous solution into the pure water of the B cell was measured by gas chromatography (GC-14B) manufactured by Shimadzu Corporation. The results are shown in Table 7.
  • the proton-conducting electrolyte membrane of the present invention has a high methanol conductivity. It can be seen that the permeability of the tool is low. It can be seen that the proton-conducting electrolyte membrane for comparison has a high methanol permeability as soon as the insulating material that separates the single cells is insufficiently filled.
  • Membrane-electrode assemblies using the produced proton conductive electrolyte membranes Nos. 1 to 22 and the proton conductive electrolyte membranes Nos. 23 to 25 as comparative samples were produced and evaluated by the following methods.
  • the carbon fiber cloth substrate was subjected to water repellent treatment with polytetrafluoroethylene (PTFE), and then a carbon black dispersion containing 20% by mass of PTFE was applied and baked to produce an electrode substrate.
  • PTFE polytetrafluoroethylene
  • an anode electrode catalyst coating solution comprising a Pt—Ru-supported carbon and naphthion (DuPont) solution was applied and dried to form an anode electrode, and Pt-supported carbon and naphthion (DuPont) solution. consists force cathode electrode catalyst coating solution coated and dried to cathode - were prepared cathode electrode 0

Abstract

Disclosed is a proton conductive electrolyte membrane for small fuel cells which are thin and capable of outputting a certain voltage. Also disclosed are a proton conductive electrolyte membrane which is sufficiently high in proton conductivity while being sufficiently low in methanol permeability, a method for producing such a proton conductive electrolyte membrane, and a solid polymer fuel cell using a proton conductive electrolyte membrane. The proton conductive electrolyte membrane is characterized in that it comprises a ceramic thin film base having a plurality of porous portions and through hole portions, and the porous portions contain a proton conducting polymer while the through hole portions contain an electron conducting material.

Description

明 細 書  Specification
プロトン伝導性電解質膜とその製造方法、及び該プロトン伝導性電解質 膜を用いた固体高分子型燃料電池  PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
技術分野  Technical field
[0001] 本発明は、プロトン伝導性電解質膜及びプロトン伝導性電解質膜の製造方法に関 し、更にはそれらプロトン伝導性電解質膜を燃料電池用電解質膜として用いる固体 高分子型燃料電池に関する。  The present invention relates to a proton conductive electrolyte membrane and a method for producing a proton conductive electrolyte membrane, and further relates to a solid polymer fuel cell using the proton conductive electrolyte membrane as an electrolyte membrane for a fuel cell.
背景技術  Background art
[0002] 燃料電池は水素と酸素を反応させて電気を発生させる発電装置であり、発電反応 で水しか生成されな!ヽと ヽぅ優れた性質を有して!/ヽるので、温暖化やオゾン層破壊と V、つた地球環境問題に対処する省エネルギーの技術として注目されて 、る。  [0002] A fuel cell is a power generation device that generates electricity by reacting hydrogen and oxygen, and only water is generated by the power generation reaction. It has excellent properties! It is attracting attention as an energy-saving technology that deals with environmental problems such as the destruction of the ozone layer and V.
[0003] 燃料電池には固体高分子型燃料電池、りん酸型燃料電池、溶融炭酸塩型燃料電 池、固体酸化物型燃料電池の 4種類がある。これらの中でも、固体高分子型燃料電 池は作動温度が低いという利点がある。固体高分子型燃料電池は、水素を直接用い る直接水素型、メタノールを改質器を用いて水素に変換する改質型、改質器を用い ずに直接メタノールを使用する直接メタノール型(DMFC、 Direct Methanol Fu el Cell)の三つに大別される。 DMFCは改質器が不要であるため小型、軽量化が 可能であり、来るべきュビキタス社会に向けた個人用の携帯情報端末 (PDA、 Perso nal Digital Assistance)等の電池や専用バッテリーとして、その実用化が期待さ れている。  [0003] There are four types of fuel cells: solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells. Among these, the polymer electrolyte fuel cell has the advantage of low operating temperature. The polymer electrolyte fuel cell is a direct hydrogen type that uses hydrogen directly, a reformed type that converts methanol into hydrogen using a reformer, or a direct methanol type that uses methanol directly without using a reformer (DMFC). , Direct Methanol Fuel Cell). Since DMFC does not require a reformer, it can be reduced in size and weight, and it can be used as a battery or a dedicated battery for personal digital assistants (PDAs) for the upcoming ubiquitous society. Is expected.
[0004] 燃料電池の基本構成単位は単電池すなわち単セルであるが、単電池の単子電圧 は 0. 7V程度と小さいため、実用化のためには、単電池を数セル積層して集合電池 を構成する必要がある。そこでこれまでに小型燃料電池の実用化に適した単電池の 集合構成にっ 、て種々提案されてきて 、る。  [0004] The basic structural unit of a fuel cell is a single cell, that is, a single cell, but the single-cell voltage of the single cell is as small as about 0.7V. Therefore, for practical use, several cells are stacked and assembled. The battery needs to be configured. Thus, various types of unit cell assembly suitable for practical use of small fuel cells have been proposed.
[0005] 例えば、厚みを増さずに所定の電圧を得ることができ、小型軽量でコンパクトな燃 料電池を得ることを目的とした単電池の集合構成 (平面積層型)について開示されて いる(例えば、特許文献 1参照。 ) oまた小型軽量でし力も出力電流と出力電圧を任 意に選べるような燃料電池を得ることを目的とした単電池の集合構成 (平面積層型) について開示されている(例えば、特許文献 2参照。 )0 [0005] For example, there is disclosed a collective structure of single cells (planar stacked type) for the purpose of obtaining a small, light and compact fuel battery that can obtain a predetermined voltage without increasing the thickness. (For example, see Patent Document 1.) Discloses a set of a unit cell for the purpose of obtaining a fuel cell, such as choice in mind (flat stacked) (e.g., see Patent Document 2.) 0
[0006] また、固体高分子型燃料電池の主な構成要素は、電極触媒、電解質、セパレータ である。電解質として、高分子のプロトン伝導性電解質膜を使用する。プロトン伝導性 電解質膜はイオン交換膜や湿度センサー等の用途に用いられているが、近年、固体 高分子型燃料電池における電解質としての用途においても注目を集めている。例え ば、デュポン社のナフイオン (登録商標)を代表とするスルホン酸基含有フッ素榭脂膜 は、携帯用燃料電池における電解質としての利用が検討されている。  [0006] The main components of the polymer electrolyte fuel cell are an electrode catalyst, an electrolyte, and a separator. A polymer proton-conducting electrolyte membrane is used as the electrolyte. Proton-conducting electrolyte membranes are used for applications such as ion exchange membranes and humidity sensors, but in recent years, they have also attracted attention as electrolytes in polymer electrolyte fuel cells. For example, a sulfonic acid group-containing fluororesin membrane typified by DuPont's Nafion (registered trademark) is being investigated for use as an electrolyte in portable fuel cells.
[0007] 従来力も知られているこれらのフッ素榭脂系プロトン伝導性膜は、メタノール透過性 が大き!/、と 、う欠点がある。プロトン伝導性膜を DMFC等の固体高分子型燃料電池 の新たな用途において実用化を図るには、プロトン伝導性が高ぐメタノール透過性 が低い膜の開発が不可欠である。また、特に DMFCとしての性能向上を図る上では 薄膜化が必須であり、膜の物理的強度も要求される。  [0007] These fluorine-resin proton-conducting membranes, which are also known in the past, have the disadvantage of high methanol permeability. In order to put proton conductive membranes to practical use in new applications of polymer electrolyte fuel cells such as DMFC, it is essential to develop membranes with high proton conductivity and low methanol permeability. In addition, thinning is essential for improving the performance of DMFC, and the physical strength of the film is also required.
[0008] そこで、空孔を有する部分多孔質基体にプロトン伝導性ポリマーを含浸させて、プ 口トン伝導性膜を得る方法が種々提案されて ヽる。  [0008] Therefore, various methods for obtaining a proton conductive membrane by impregnating a partially porous substrate having pores with a proton conductive polymer have been proposed.
[0009] メタノールの透過(クロスオーバー)をできるだけ抑制し、且つ高温 (摂氏約 130度 以上)環境下での使用にも耐える電解質膜を提供することを目的に、メタノール及び 水に対して実質的に膨潤しない多孔性基材の細孔に、プロトン伝導性を有するポリ マーを充填した電解質膜が開示されている (例えば、特許文献 3参照。 )0多孔性基 材としては、ガラス、アルミナ等のセラミックス系の無機材料、またはポリテトラフルォロ エチレン、ポリイミド等を用いてもょ 、と記載されて 、る。 [0009] For the purpose of providing an electrolyte membrane that suppresses methanol permeation (crossover) as much as possible and can withstand use in a high-temperature (about 130 degrees Celsius) environment, it is substantially free from methanol and water. An electrolyte membrane is disclosed in which pores of a porous substrate that does not swell are filled with a polymer having proton conductivity (see, for example, Patent Document 3). 0 Examples of porous substrates include glass and alumina. The ceramic inorganic material, polytetrafluoroethylene, polyimide or the like may be used.
[0010] また、その他にも、メタノールの透過(クロスオーバー)をできるだけ抑制することを 目的に、無機多孔性基材の細孔にプロトン伝導性を有するポリマーを充填した電解 質膜が開示されている (例えば、特許文献 4、及び非特許文献 1参照。 ) o 特許文献 1:特開昭 62— 200666号公報 (特許請求の範囲)  [0010] In addition, for the purpose of suppressing methanol permeation (crossover) as much as possible, an electrolyte membrane in which pores of an inorganic porous substrate are filled with a polymer having proton conductivity is disclosed. (For example, refer to Patent Document 4 and Non-Patent Document 1.) o Patent Document 1: Japanese Patent Laid-Open No. 62-200666 (Claims)
特許文献 2:特開昭 63— 2264号公報 (特許請求の範囲)  Patent Document 2: Japanese Patent Laid-Open No. 63-2264 (Claims)
特許文献 3 :国際公開第 00Z54351号パンフレット (特許請求の範囲)  Patent Document 3: Pamphlet of International Publication No. 00Z54351 (Claims)
特許文献 4:特開 2004 - 31133号公報 (特許請求の範囲) 非特許文献 1 : Electrochemistry, 70, 934 (2002) Patent Document 4: Japanese Patent Laid-Open No. 2004-31133 (Claims) Non-Patent Document 1: Electrochemistry, 70, 934 (2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 小型燃料電池として実用化するためには所定の電圧が取り出せることが重要な因 子となる。従って、本発明の第 1の目的は薄型で所定の電圧を取り出せる小型燃料 電池用のプロトン伝導性電解質膜を提供すること、及びこのような優れた性能を持つ たプロトン伝導性電解質膜の製造方法を提供することにある。  [0011] For practical use as a small fuel cell, it is an important factor that a predetermined voltage can be taken out. Accordingly, a first object of the present invention is to provide a proton conductive electrolyte membrane for a small fuel cell that is thin and capable of extracting a predetermined voltage, and a method for producing a proton conductive electrolyte membrane having such excellent performance Is to provide.
[0012] また、プロトン伝導性電解質膜を固体高分子型燃料電池の電解質として実用に耐 えるためには、少なくともプロトン伝導性が十分に高いこと、メタノール透過性が十分 に低いことも重要な因子となる。従って、本発明の第 2の目的はプロトン伝導性が十 分に高ぐメタノール透過性が十分に低いプロトン伝導性電解質膜を提供すること、 及びこのような優れた性能を持ったプロトン伝導性電解質膜の製造方法を提供する ことにある。  [0012] In addition, in order to withstand practical use of the proton conductive electrolyte membrane as an electrolyte of a polymer electrolyte fuel cell, it is also important that at least proton conductivity is sufficiently high and methanol permeability is sufficiently low. It becomes. Accordingly, the second object of the present invention is to provide a proton conductive electrolyte membrane having sufficiently high proton conductivity and sufficiently low methanol permeability, and a proton conductive electrolyte having such excellent performance. It is to provide a method for producing a membrane.
[0013] 本発明の第 3の目的は、上記のような優れた性能を持ったプロトン伝導性電解質膜 を電解質として有する固体高分子型燃料電池を提供することにある。  [0013] A third object of the present invention is to provide a polymer electrolyte fuel cell having, as an electrolyte, a proton conductive electrolyte membrane having excellent performance as described above.
課題を解決するための手段  Means for solving the problem
[0014] 本発明の上記目的は、以下の構成により達成することができる。 [0014] The above object of the present invention can be achieved by the following configurations.
[0015] (1)セラミックス薄膜基体に複数個の多孔質部及び貫通穴部を有し、該多孔質部 にはプロトン伝導性ポリマーを含有し、該貫通穴部には電子伝導性材料を含有する ことを特徴とするプロトン伝導性電解質膜。 [0015] (1) The ceramic thin film substrate has a plurality of porous portions and through-hole portions, the porous portions contain a proton conductive polymer, and the through-hole portions contain an electron conductive material. A proton conducting electrolyte membrane characterized by:
[0016] (2)前記多孔質部の平均細孔径が 10〜450nmであることを特徴とする前記(1)に 記載のプロトン伝導性電解質膜。 [0016] (2) The proton conductive electrolyte membrane according to (1) above, wherein the porous portion has an average pore diameter of 10 to 450 nm.
[0017] (3)力ソード極、アノード極及び該両極に挟まれた電解質カゝらなる燃料電池セルが 複数個形成されてなる固体高分子型燃料電池にぉ ヽて、該電解質として前記(1)ま たは (2)に記載のプロトン伝導性電解質膜を用いることを特徴とする固体高分子型 燃料電池。 [0017] (3) In a polymer electrolyte fuel cell in which a plurality of fuel cell cells such as a force sword electrode, an anode electrode, and an electrolyte cell sandwiched between both electrodes are formed, 1) or a polymer electrolyte fuel cell using the proton conducting electrolyte membrane according to (2).
[0018] (4)セラミックス薄膜基体に複数個の多孔質部及び貫通穴部を設置し、該多孔質 部にはプロトン伝導性ポリマーを充填し、該貫通穴部には電子伝導性材料を充填す ることを特徴とするプロトン伝導性電解質膜の製造方法。 [0018] (4) A plurality of porous portions and through-hole portions are installed in a ceramic thin film substrate, the porous portions are filled with a proton conductive polymer, and the through-hole portions are filled with an electron conductive material. You A method for producing a proton conductive electrolyte membrane.
[0019] (5)前記多孔質部が、無機粒子及び有機粒子を含む分散液を用いて該無機粒子 と有機粒子を積層させた後、焼成することにより得られることを特徴とする前記 (4)に 記載のプロトン伝導性電解質膜の製造方法。  [0019] (5) The porous part is obtained by laminating the inorganic particles and the organic particles using a dispersion liquid containing inorganic particles and organic particles, and then firing the laminate. The method for producing a proton-conducting electrolyte membrane as described in 1).
[0020] (6)前記多孔質部へプロトン伝導性ポリマーを充填する方法力 少なくとも分子内 に 1個以上のプロトン解離性基を含有するモノマーを多孔質部に充填後、 In— situ 重合する方法であることを特徴とする前記 (4)または(5)に記載のプロトン伝導性電 解質膜の製造方法。  [0020] (6) Method power for filling the porous part with a proton-conductive polymer At least one monomer containing at least one proton-dissociable group in the molecule is charged into the porous part and then subjected to in-situ polymerization. The method for producing a proton-conducting electrolyte membrane according to the above (4) or (5), wherein
[0021] (7)前記多孔質部を設置する工程が、塗布工程によることを特徴とする前記 (4)〜  [0021] (7) The step of installing the porous portion is based on an application step.
(6)のいずれか 1項に記載のプロトン伝導性電解質膜の製造方法。  6. The method for producing a proton conductive electrolyte membrane according to any one of (6).
発明の効果  The invention's effect
[0022] 本発明により、薄型で所定の電圧を取り出せる小型燃料電池用のプロトン伝導性 電解質膜であり、またプロトン伝導性が十分に高ぐメタノール透過性が十分に低い プロトン伝導性電解質膜とその製造方法、及びプロトン伝導性電解質膜を用いた固 体高分子型燃料電池を提供することができた。  [0022] According to the present invention, a proton conductive electrolyte membrane for a small fuel cell that is thin and capable of extracting a predetermined voltage, and has a sufficiently high proton conductivity and a sufficiently low methanol permeability, and a proton conductive electrolyte membrane thereof It was possible to provide a production method and a solid polymer fuel cell using a proton conductive electrolyte membrane.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明の直接メタノール型固体高分子燃料電池の一実施形態を示す概略図 である。  FIG. 1 is a schematic view showing one embodiment of a direct methanol solid polymer fuel cell of the present invention.
[図 2]本発明の複数の単セルを配置した燃料電池構成の一実施形態を示す概略断 面図である。  FIG. 2 is a schematic cross-sectional view showing one embodiment of a fuel cell configuration in which a plurality of single cells according to the present invention are arranged.
[図 3]メタノール透過性を評価するための H型セルの概略図である。  FIG. 3 is a schematic view of an H-type cell for evaluating methanol permeability.
符号の説明  Explanation of symbols
[0024] (1) 電解質膜 [0024] (1) Electrolyte membrane
(2) アノード極 (燃料極)  (2) Anode electrode (fuel electrode)
(3) 力ソード極 (空気極)  (3) Force sword pole (air pole)
(4) 外部回路  (4) External circuit
(11) セラミックス薄膜基体  (11) Ceramic thin film substrate
(12) プロトン伝導性ポリマーが充填された多孔質部 (13) 電子伝導性材料が充填された貫通穴部 (12) Porous part filled with proton conductive polymer (13) Through hole filled with electron conductive material
(14) アノード極 (燃料極)  (14) Anode electrode (fuel electrode)
(15) 力ソード極(空気極)  (15) Force sword pole (air pole)
(16) 集電板  (16) Current collector
(17) 導電回路  (17) Conductive circuit
(18) 燃料配流板  (18) Fuel distribution plate
(19) 空気配流板  (19) Air distribution plate
(20) 単セノレ  (20) Simple Senore
(21) 燃料電池  (21) Fuel cell
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明を更に詳しく説明する。本発明のプロトン伝導性電解質膜は、セラミックス薄 膜基体に複数個の多孔質部及び貫通穴部を有し、前記、多孔質部にはプロトン伝導 性ポリマーを含有し、貫通穴部には電子伝導性材料を含有することを特徴とする。製 造方法は特に限定されないが、本発明のプロトン伝導性電解質膜は、まずセラミック ス薄膜基体に大小複数個の貫通穴部を設置する工程、前記基体の複数個の大きな 貫通穴部には無機粒子及び有機粒子を含む分散液を流し込み粒子を積層し焼成 することにより多孔質部を形成する工程、該焼成する工程により得られた多孔質部に プロトン伝導性ポリマーを充填する工程、小さな貫通穴部には電子伝導性材料を充 填する工程を経て製造することができる電解質膜である。  [0025] The present invention will be described in more detail. The proton conductive electrolyte membrane of the present invention has a plurality of porous portions and through-hole portions in a ceramic thin film substrate, the porous portion contains a proton-conductive polymer, and the through-hole portions have an electron. It is characterized by containing a conductive material. Although the production method is not particularly limited, the proton conductive electrolyte membrane of the present invention is first provided with a step of installing a plurality of large and small through holes in a ceramics thin film substrate, and a plurality of large through holes in the substrate are inorganic. A step of forming a porous part by pouring a dispersion liquid containing particles and organic particles and laminating and baking the particles, a step of filling the porous part obtained by the baking step with a proton conductive polymer, and a small through hole The part is an electrolyte membrane that can be manufactured through a process of filling an electron conductive material.
[0026] なおセラミックス薄膜基体に形成された複数個のプロトン伝導性ポリマーを含有した 多孔質部はそれぞれ燃料電池単セルとして構成できる。また電子伝導性材料を充填 された貫通穴は、電子伝導経路として複数の燃料電池単セルを電気的に接続する ために用いることができる。また多孔質部と貫通穴部の配置は交互に配置することに より、隣り合った燃料電池単セルのアノード極 (燃料極)と力ソード極 (空気極)を直列 に接続することができる。  [0026] The porous portion containing a plurality of proton conductive polymers formed on the ceramic thin film substrate can be configured as a single fuel cell. The through hole filled with the electron conductive material can be used for electrically connecting a plurality of fuel cell single cells as an electron conduction path. Further, by arranging the porous portion and the through-hole portion alternately, the anode electrode (fuel electrode) and the force sword electrode (air electrode) of adjacent fuel cell single cells can be connected in series.
[0027] 前記、セラミックス薄膜基体としては、前記貫通穴に充填された電子伝導性材料の 電気的接続をとるために絶縁性の材料で、多孔質部を形成する際の加熱にも耐えら れる材料であることが好ましい。このようなセラミックス薄膜基体としては、例えば、シリ 力、ァノレミナ、ムライト、コージエライト、マグネシア、ジルコ -ァ、スピネル、ステアタイ ト等の酸化物や、窒化アルミ、窒化ケィ素等の窒化物、炭化ケィ素等の炭化物などの セラミック焼結体の薄膜基体、ソーダ石灰ガラス、ホウケィ酸ガラス、鉛ガラス、石英ガ ラス、アルカリ酸化物が 0. 1%以下の無アルカリガラス、低アルカリガラス、ノ ィレック ス (登録商標)ガラス、結晶化ガラスなどのガラス薄膜基体などが挙げられる。本発明 にお 、てはシリカ、アルミナの焼結セラミックス基体が好まし 、。 [0027] The ceramic thin film substrate is an insulating material for electrically connecting the electron conductive material filled in the through hole, and can withstand heating when forming the porous portion. A material is preferred. As such a ceramic thin film substrate, for example, silica Thin film substrate of ceramic sintered body such as oxides such as force, anolemina, mullite, cordierite, magnesia, zircon, spinel, steatite, nitrides such as aluminum nitride and nitride nitride, carbides such as carbide carbide Glass films such as soda-lime glass, borosilicate glass, lead glass, quartz glass, alkali-free glass containing 0.1% or less of alkali oxide, low alkali glass, Nyrex (registered trademark) glass, crystallized glass, etc. Examples include a substrate. In the present invention, a sintered ceramic substrate of silica or alumina is preferred.
[0028] セラミックス薄膜基体に大小複数個の貫通穴部を設置する工程で用いる好ましい 加工技術としては、レーザー加工法、 EB法、パンチング法、サンドブラスト法、エッチ ング法等が挙げられる。レーザー加工法は、炭酸ガスレーザーなどによりセラミック基 体に穴を開けるものである。パンチング法は、焼成前のグリーンシートに金型を用い て機械的に穴を開け、その後焼成するものである。サンドブラスト法は、例えば特開 昭 62— 251073号および特開平 1― 295764号に開示されたように、研削性の粒子 を吹き付けることによりセラミック基体に穿孔するものである。本発明では前記加工法 を組み合わせてもよぐ例えば、多孔質部形成用の貫通穴は大きめに開けるために パンチング法を用いて、電子伝導経路用の小さ!/、貫通穴はレーザー加工法を用い て製造することができる。 [0028] Preferred processing techniques used in the step of installing a plurality of large and small through-hole portions in the ceramic thin film substrate include laser processing, EB, punching, sandblasting, etching, and the like. In the laser processing method, a hole is made in a ceramic substrate by a carbon dioxide laser or the like. The punching method is a method of mechanically making a hole in a green sheet before firing using a mold and then firing. In the sandblasting method, as disclosed in, for example, JP-A-62-210773 and JP-A-1-295764, a ceramic substrate is perforated by spraying abrasive particles. In the present invention, the above-described processing methods may be combined.For example, a punching method is used to make a through hole for forming a porous portion larger, and a laser processing method is used for a small through hole for an electron conduction path. Can be used.
[0029] 前記、基体の複数個の貫通穴部に無機粒子及び有機粒子を含む分散液を流し込 み粒子を積層し焼成することにより多孔質部を形成する工程では支持体を用いても よぐ支持体としては最終的には焼失または溶けて無くなるもの、あるいは剥がし取れ るものであれば任意の素材の支持体を用いることができ、例えば、濾紙などの紙、不 織布などの布、ポリエチレンテレフタレートなどの高分子フィルム等、任意の素材で形 成した支持体を用いることができる。支持体の表面は平滑であることが好ましぐ平滑 であれば得られるプロトン伝導性電解質膜の面も平滑となり、固体高分子型燃料電 池の電解質とした場合に、電極とプロトン伝導性電解質膜との界面での接触が密とな る。支持体の表面粗さは特に制限はないが、無機粒子及び有機粒子を含む分散液 を積層する面の表面粗さ Rzが 3 μ m以下であることが好ましい。表面粗さ Rziお ISの 十点平均面粗さ Rzのことをいう。測定には、例えば、東京精密社製の触針式の 3次 元粗さ計 (サーフコム 570A)等を用いることができる。また、無機粒子及び有機粒子 を含む分散液を積層することによる支持体の反り(カール)、たわみなどを防ぐために[0029] A support may be used in the step of forming a porous portion by pouring a dispersion liquid containing inorganic particles and organic particles into a plurality of through-hole portions of the substrate and laminating and firing the particles. As the support, a support made of any material can be used as long as it eventually burns out or melts away, or can be peeled off. For example, paper such as filter paper, cloth such as nonwoven cloth, A support formed of an arbitrary material such as a polymer film such as polyethylene terephthalate can be used. If the surface of the support is preferably smooth, the surface of the proton-conducting electrolyte membrane obtained is also smooth, and when it is used as an electrolyte for a polymer electrolyte fuel cell, the electrode and the proton-conducting electrolyte Close contact at the interface with the membrane. The surface roughness of the support is not particularly limited, but the surface roughness Rz of the surface on which the dispersion liquid containing inorganic particles and organic particles is laminated is preferably 3 μm or less. Surface roughness Rzi is the ten-point average surface roughness Rz of IS. For example, a stylus type three-dimensional roughness meter (Surfcom 570A) manufactured by Tokyo Seimitsu Co., Ltd. can be used. In addition, inorganic particles and organic particles In order to prevent warping (curl), deflection, etc. of the support by laminating dispersions containing
、分散液を積層する面とは反対側の面にバッキング層を設けることが好まし 、場合も ある。 In some cases, it is preferable to provide a backing layer on the surface opposite to the surface on which the dispersion liquid is laminated.
[0030] 前記、多孔質部形成に用いられる無機粒子としては、シリカ(SiO )、アルミナ (A1  [0030] The inorganic particles used for forming the porous portion include silica (SiO 2), alumina (A1
2 2 twenty two
O )、酸化ジルコニウム(ZrO )、酸化ホウ素(B O )、チタニア(TiO )等や、 Ti、 A1O), zirconium oxide (ZrO), boron oxide (B 2 O), titania (TiO 2), Ti, A1
3 2 2 3 2 3 2 2 3 2
、 B、 Zrの水酸ィ匕物が挙げられる。これらは一種類でもいくつかの種類のものを混合 して用いてもよい。本発明においては、シリカ(SiO )が好ましい。また、シリカ(SiO )  , B and Zr hydroxides. These may be used alone or as a mixture of several kinds. In the present invention, silica (SiO 2) is preferable. Silica (SiO 2)
2 2 の中でも非晶質シリカが好ましぐ乾式法、湿式法、エア口ゲル法いずれの製法によ るものでもよ 、が、湿式法のコロイダルシリカは更に好まし!/、。  Of these, any of the dry, wet, and air-mouthed gel processes, where amorphous silica is preferred, are preferred, but wet colloidal silica is even more preferred! /.
[0031] 前記、無機粒子の粒径としては平均粒径が一次平均粒径で 10nm以上のものが好 ましぐより好ましくは 10〜100nm、更に好ましくは 10〜50nmである。なお、無機粒 子の平均粒径は、例えば、走査型電子顕微鏡により観察して無作為に粒子 200個の 長径を測定し、平均粒径を求めることができる。  [0031] The average particle size of the inorganic particles is preferably 10 nm or more, more preferably 10 to 100 nm, and still more preferably 10 to 50 nm. The average particle size of the inorganic particles can be determined by, for example, observing with a scanning electron microscope and measuring the major axis of 200 particles randomly.
[0032] 前記、有機粒子としては、最終的には焼失または溶けて無くなるものであれば任意 の素材の有機粒子を用いることができるが、分散液に用いる分散媒としての溶媒に 膨潤しないものが好ましい。本発明においては、分散媒としては水系溶媒が好ましく 、有機粒子としては、例えば、アクリル榭脂、スチレン榭脂、スチレン Zアクリル系榭 脂、スチレン Zジビュルベンゼン系榭脂、ポリエステル系榭脂、ウレタン系榭脂等の ポリマービーズを用いることができる。本発明においては、有機粒子の平均粒径は 1 0〜450nm力 S好ましく、更に好ましく ίま 100〜300nmである。  [0032] As the organic particles, organic particles of any material can be used as long as they are eventually burned out or dissolved, but those that do not swell in the solvent as a dispersion medium used in the dispersion liquid. preferable. In the present invention, the dispersion medium is preferably an aqueous solvent, and the organic particles include, for example, acrylic resin, styrene resin, styrene Z acrylic resin, styrene Z dibutene benzene resin, polyester resin, Polymer beads such as urethane-based resin can be used. In the present invention, the average particle size of the organic particles is preferably 10 to 450 nm, more preferably 100 to 300 nm.
[0033] 本発明の電解質膜の多孔質部は、無機粒子と有機粒子を含む分散液を積層させ た後、焼成する工程を経て形成されるので、無機粒子同志が固着、焼結して薄膜を 形成するのと同時に、主には有機粒子が占有していた部分が薄膜内で細孔を形成 する。本発明においては、多孔質部の平均細孔径は 10〜450nmが好ましぐ更に 好ましくは平均細孔径が 100〜300nmである。平均細孔径は、例えば、島津製作所 社製ポアサイザ一 9320等を用い、水銀圧入法により求めることができる。このように して形成された多孔質部にプロトン伝導性ポリマーを充填させて得られたプロトン伝 導性電解質膜は、高いプロトン伝導性、低いメタノール透過性を有することが判明し た。 [0033] Since the porous portion of the electrolyte membrane of the present invention is formed through a process of laminating a dispersion liquid containing inorganic particles and organic particles and then firing, the inorganic particles are fixed and sintered together to form a thin film. At the same time, the portion occupied by the organic particles mainly forms pores in the thin film. In the present invention, the average pore diameter of the porous portion is preferably 10 to 450 nm, and more preferably the average pore diameter is 100 to 300 nm. The average pore diameter can be determined by mercury porosimetry using, for example, a pore sizer 9320 manufactured by Shimadzu Corporation. The proton conductive electrolyte membrane obtained by filling the porous portion formed in this way with a proton conductive polymer was found to have high proton conductivity and low methanol permeability. It was.
[0034] 本発明においては、多孔質部の空隙率は 40〜95%であることが好ましぐより好ま しくは 50〜80%である。  [0034] In the present invention, the porosity of the porous portion is preferably 40 to 95%, more preferably 50 to 80%.
[0035] 空隙率は多孔質部の単位面積 S (cm2)当たりの質量 W(g)、平均厚み t ( m)及 び密度 d (gZcm3)から次式により算出することができる。 The porosity can be calculated from the mass W (g) per unit area S (cm 2 ), the average thickness t (m) and the density d (gZcm 3 ) of the porous portion by the following formula.
[0036] 空隙率(%) = (1— (104'WZ (S 't'd) ) ) X 100 [0036] Porosity (%) = (1— (10 4 'WZ (S't'd))) X 100
無機粒子を 5〜60体積0 /0、有機粒子を 40〜95体積%の割合で用いる(無機粒子 と有機粒子の体積の総和を 1とする)ことにより、多孔質部の空隙率を上記範囲に調 整することができる。 Inorganic particles 5 to 60 volume 0/0, by using the organic particles in a proportion of 40 to 95 vol% (to 1 the sum of the volume of inorganic particles and organic particles), the range the porosity of the porous portion Can be adjusted.
[0037] 次に、本発明に係る無機粒子及び有機粒子を含む分散液の調製方法につ!、て説 明する。  [0037] Next, a method for preparing a dispersion containing inorganic particles and organic particles according to the present invention will be described.
[0038] 無機粒子と有機粒子の使用割合は上記の通りであるが、分散液の濃度としては固 形分濃度として 5〜80質量%、好ましくは 10〜40質量%となるように調製する。  [0038] The use ratio of the inorganic particles and the organic particles is as described above, but the dispersion is prepared so that the solid content concentration is 5 to 80% by mass, preferably 10 to 40% by mass.
[0039] 分散媒としては水系溶媒が好ましい。水系溶媒としては水及びアルコール類など各 種既知のものが使用できるが、水または水を主成分とする混合溶媒が好ましく使用さ れる。  [0039] As the dispersion medium, an aqueous solvent is preferable. As the aqueous solvent, various known solvents such as water and alcohols can be used, but water or a mixed solvent containing water as a main component is preferably used.
[0040] 無機粒子と有機粒子を分散する分散助剤としては、例えば、高級脂肪酸塩、アル キル硫酸塩、アルキルエステル硫酸塩、アルキルスルホン酸塩、スルホコハク酸塩、 ナフタレンスルホン酸塩、アルキルリン酸塩、ポリオキシアルキレンアルキルエーテル リン酸塩、ポリオキシアルキレンアルキルフエニルエーテル、ポリオキシエチレンポリオ キシプロピレングリコール、グリセリンエステル、ソルビタンエステル、ポリオキシェチレ ン脂肪酸アミド、アミンォキシド等の各種の界面活性剤を用いることができる。  [0040] Examples of the dispersion aid for dispersing inorganic particles and organic particles include higher fatty acid salts, alkyl sulfates, alkyl ester sulfates, alkyl sulfonates, sulfosuccinates, naphthalene sulfonates, and alkyl phosphates. Various surfactants such as salts, polyoxyalkylene alkyl ether phosphates, polyoxyalkylene alkyl phenyl ethers, polyoxyethylene polyoxypropylene glycols, glycerin esters, sorbitan esters, polyoxyethylene fatty acid amides, amine oxides may be used. it can.
[0041] 分散方法としては、例えば、ボールミル、サンドミル、アトライター、ロールミル、アジ テータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジ エツトミル、ペイントシェーカー等が挙げられ、これらは単独であるいは適宜組み合わ せて用いることができる。  [0041] Examples of the dispersion method include a ball mill, a sand mill, an attritor, a roll mill, an agitator, a Henschel mixer, a colloid mill, an ultrasonic homogenizer, a pearl mill, a wet jet mill, and a paint shaker. They can be used in appropriate combinations.
[0042] セラミックス薄膜基体の複数個の貫通穴部に無機粒子及び有機粒子を含む分散 液を流し込み、粒子を積層する工程においては、メンブレンフィルタ上に基体を設置 し、貫通穴部に分散液を流し込み、減圧吸引濾過器を用いて吸引ろ過を行い、メン プレンフィルタ上に無機粒子及び有機粒子を含む層を堆積させ乾燥し、メンブレンフ ィルタを剥ぎ取る方法、あるいは前記、支持体上に基体を設置し、分散液を貫通穴 部に塗布して乾燥する方法などがある。本発明においては、支持体上に基体を設置 し、分散液を貫通穴部に塗布する方式が好ましい。塗布方式としては、例えば、ドク ターブレード法、ロールコーティング法、ロッドバーコーティング法、エアナイフコーテ イング法、スプレーコーティング法、カーテン塗布方法、エタストルージョン法等、従来 力も知られた塗布方式を採用することができる。 [0042] In the step of pouring a dispersion liquid containing inorganic particles and organic particles into a plurality of through-hole portions of the ceramic thin film substrate and laminating the particles, the substrate is placed on the membrane filter. Then, the dispersion is poured into the through hole, suction filtered using a vacuum suction filter, a layer containing inorganic particles and organic particles is deposited on the membrane filter, dried, and the membrane filter is peeled off. Alternatively, there is a method in which a substrate is placed on the support, and the dispersion is applied to the through hole and dried. In the present invention, a method in which a substrate is placed on a support and the dispersion is applied to the through hole is preferable. As a coating method, for example, a doctor blade method, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a curtain coating method, an etching method, etc., which are known in the past are employed. be able to.
[0043] 本発明の電解質膜の多孔質部を形成するには、前記のように無機粒子及び有機 粒子を含む分散液を基体の貫通穴部に流し込み、粒子を積層し、乾燥したもの、ま たは支持体が焼失または溶けて無くなるものであれば支持体を付けたまま、窒素雰 囲気中で電気炉で加熱処理して焼成すればよい。加熱処理は、例えば、ケィ化モリ ブデンといった発熱体を備えた電気炉を用いて行うことができ、 1500°C以下、より好 ましくは 400〜1300°Cで行われる。加熱のための時間は目的とする質多孔膜の大き さにより適宜設定することが可能であり、具体的には、例えば、 5〜24時間程度の加 熱時間を用いることができる。加熱時間が長いと焼結が進行して、平均細孔径が小さ くなることがある。多孔質部を得るための加熱処理における昇温速度及び降温速度 は、適宜設定することができる。昇温速度及び降温速度の双方について、 100〜30 0°CZ時間とすることが好ましい。また仮焼成、本焼成と 2回に分けて、加熱処理を行 うことも好まし 、。  [0043] In order to form the porous portion of the electrolyte membrane of the present invention, as described above, the dispersion containing inorganic particles and organic particles is poured into the through-hole portion of the substrate, and the particles are laminated and dried. Alternatively, if the support is burnt out or melts away, it may be fired by heating in an electric furnace in a nitrogen atmosphere with the support attached. The heat treatment can be performed using, for example, an electric furnace equipped with a heating element such as caged molybdenum, and is performed at 1500 ° C. or less, more preferably at 400 to 1300 ° C. The time for heating can be appropriately set according to the size of the target porous membrane. Specifically, for example, a heating time of about 5 to 24 hours can be used. If the heating time is long, the sintering proceeds and the average pore diameter may become small. The temperature increase rate and temperature decrease rate in the heat treatment for obtaining the porous portion can be appropriately set. It is preferable that both the temperature raising rate and the temperature lowering rate be 100 to 300 ° CZ time. It is also preferable to perform heat treatment in two steps, pre-baking and main baking.
[0044] 本発明の電解質膜の多孔質部の細孔中に充填されるプロトン伝導性ポリマーとし ては、特に制限はなぐ例えば、(A)主鎖が脂肪族炭化水素からなる高分子にスル ホン酸基および Zまたはホスホン酸基を導入した高分子電解質、(B)主鎖が、フッ素 で置換された脂肪族炭化水素力 なる高分子にスルホン酸基および Zまたはホスホ ン酸基を導入した高分子電解質、 (C)主鎖が芳香環を有する高分子にスルホン酸基 および Zまたはホスホン酸基を導入した高分子電解質; (D)主鎖に実質的に炭素原 子を含まないポリシロキサン、ポリフォスファゼンなどの高分子に、スルホン酸基およ び Zまたはホスホン酸基を導入した高分子電解質、 (E) (A)〜(D)のスルホン酸基 および zまたはホスホン酸基導入前の高分子を構成する繰り返し単位力 選ばれる いずれか 2種以上の繰り返し単位力 なる共重合体にスルホン酸基および Zまたは ホスホン酸基を導入した高分子電解質等が挙げられる。ここに「高分子にスルホン酸 基および Zまたはホスホン酸基を導入した」とは、「高分子骨格にスルホン酸基およ び Zまたはホスホン酸基をィ匕学結合を介して導入した」ことを意味する。 [0044] The proton conductive polymer filled in the pores of the porous part of the electrolyte membrane of the present invention is not particularly limited. For example, (A) a polymer having a main chain composed of aliphatic hydrocarbons is not limited. Polyelectrolyte into which phonic acid group and Z or phosphonic acid group are introduced, (B) Introducing sulfonic acid group and Z or phosphonic acid group into polymer with aliphatic hydrocarbon power whose main chain is substituted with fluorine (C) a polymer electrolyte in which a sulfonic acid group and a Z or phosphonic acid group are introduced into a polymer having an aromatic ring in the main chain; (D) a polysiloxane substantially free of carbon atoms in the main chain. A polymer electrolyte in which a sulfonic acid group and a Z or phosphonic acid group are introduced into a polymer such as polyphosphazene, (E) (A) to (D) sulfonic acid groups And z or repeating unit force constituting the polymer before introduction of the phosphonic acid group is selected. Any two or more kinds of repeating unit forces may be used as a polymer electrolyte in which a sulfonic acid group and Z or phosphonic acid group are introduced into the copolymer. Can be mentioned. Here, “the sulfonic acid group and Z or phosphonic acid group are introduced into the polymer” means that “the sulfonic acid group and Z or phosphonic acid group are introduced into the polymer skeleton via chemical bonds”. Means.
[0045] 上記 (A)の高分子電解質としては、例えば、ポリビュルスルホン酸、ポリスチレンス ルホン酸、ポリ( aーメチルスチレン)スルホン酸、等が挙げられる。  [0045] Examples of the polymer electrolyte (A) include polybulusulfonic acid, polystyrene sulfonic acid, poly (a-methylstyrene) sulfonic acid, and the like.
[0046] 上記(B)の高分子電解質としては、例えば、パーフルォロカーボンスルホン酸、ホ スホン酸基を有するパーフルォロアルキルポリマー(例えば、 J. FluorineChem. , 8 2, 13 (1997) )、ポリトリフルォロスチレンスルホン酸、ポリトリフルォロスチレンホスホ ン酸(例えば、 J. New. Mater. Electrochem. Syst. , 3, 43 (2000) )等が挙げら れる。  [0046] Examples of the polymer electrolyte (B) include perfluorocarbon sulfonic acid and perfluoroalkyl polymer having a phosphonic acid group (for example, J. Fluorine Chem., 8 2, 13 (1997). )), Polytrifluorostyrenesulfonic acid, polytrifluorostyrenephosphonic acid (for example, J. New. Mater. Electrochem. Syst., 3, 43 (2000)) and the like.
[0047] 上記 (C)の高分子電解質としては、主鎖が酸素原子等のへテロ原子で中断されて いるものであってもよぐ例えば、ポリエーテルエーテルケトン、ポリスルホン、ポリエー テルスルホン、ポリ(ァリーレン.エーテル)、ポリフォスファゼン、ポリイミド、ポリ(4—フ エノキシベンゾィル 1, 4 フエ-レン)、ポリフエ-レンスルフイド、ポリフエ-ルキノ キサレン等の単独重合体のそれぞれにスルホン酸基が導入されたもの、ァリールス ルホン化ポリべンズイミダゾール、アルキルスルホン化ポリべンズイミダゾール、アルキ ルホスホン化ポリべンズイミダゾール(例えば、特開平 9 110982)、ホスホン化ポリ( フエ-レンエーテル)(例えば、】. Appl. Polym. Sci. , 18, 1969 (1974) )等力挙 げられる。  [0047] The polymer electrolyte (C) may be one in which the main chain is interrupted by a hetero atom such as an oxygen atom. For example, polyether ether ketone, polysulfone, polyethersulfone, poly ( Arylene ether), polyphosphazene, polyimide, poly (4-phenoxybenzoyl 1,4 phenol), polyphenylene sulfide, polyphenylene quinoxalen, and other homopolymers. , Arylsulfonated polybenzimidazole, alkylsulfonated polybenzimidazole, alkylphosphonated polybenzimidazole (for example, JP-A-9 110982), phosphonated poly (phenylene ether) (for example,. Appl. Polym. Sci., 18, 1969 (1974)).
[0048] 上記(D)の高分子電解質としては例えば、 PolymerPrep. , 41, No. 1 , 70 (200 0)に記載の、ホスホン酸基を有するポリシロキサン等が挙げられる。  [0048] Examples of the polymer electrolyte (D) include polysiloxanes having a phosphonic acid group described in PolymerPrep., 41, No. 1, 70 (2000).
[0049] 上記 (E)の高分子電解質としては、ランダム共重合体にスルホン酸基および Zまた はホスホン酸基が導入されたものでも、交互共重合体にスルホン酸基および Zまた はホスホン酸基が導入されたものでも、ブロック共重合体にスルホン酸基および Zま たはホスホン酸基が導入されたものでもよ ヽ。ランダム共重合体にスルホン酸基が導 入されたものとしては、例えば、スルホン化ポリエーテルスルホンージヒドロキシビフエ -ル共重合体が挙げられる(例えば、特開平 11— 116679号公報。)ブロック共重合 体にスルホン酸基および Zまたはホスホン酸基が導入されたものとしては、全てのブ ロックの主鎖が脂肪族炭化水素で構成されるブロック共重合体、例えばスチレン一( エチレン—ブチレン)—スチレントリブロック共重合体にスルホン酸基および Zまたは ホスホン酸基を導入したもの等が挙げられる。 [0049] As the polymer electrolyte of (E) above, a sulfonic acid group and Z or phosphonic acid group are introduced into a random copolymer, but the sulfonic acid group and Z or phosphonic acid group are incorporated into an alternating copolymer. It may be a group having a group introduced therein or a block copolymer having a sulfonic acid group and Z or phosphonic acid group introduced. Examples of the sulfonic acid group introduced into the random copolymer include sulfonated polyethersulfone-dihydroxybiphenyl. (For example, Japanese Patent Application Laid-Open No. 11-116679.) In the case where a sulfonic acid group and Z or phosphonic acid group are introduced into the block copolymer, the main chain of all blocks is included. Examples thereof include block copolymers composed of aliphatic hydrocarbons, for example, styrene mono (ethylene-butylene) -styrene triblock copolymers having sulfonic acid groups and Z or phosphonic acid groups introduced therein.
[0050] 好ましくは、少なくとも分子内に 1個以上のプロトン解離性基を含有するモノマーを 多孔質部に充填後、 In— situ重合されたポリマーが好ましい、更に好ましくは (a)分 子内に 1個以上のプロトン解離性基を有する化合物、(b)下記一般式(1)で表される 化合物、を必須構成成分として共重合または反応してなるポリマーが好ましい。更に 、これらと共重合しうる他の不飽和化合物とも共重合されていてもよぐまた上記必須 構成成分に加えて反応性乳化剤を添加して共重合してなるポリマーであることも好ま しい態様の 1つである。 [0050] Preferably, an in-situ polymerized polymer after filling the porous portion with a monomer containing at least one proton dissociable group in the molecule, more preferably (a) in the molecule. A polymer obtained by copolymerizing or reacting a compound having one or more proton dissociable groups and (b) a compound represented by the following general formula (1) as an essential component is preferable. Further, it may be copolymerized with other unsaturated compounds that can be copolymerized therewith, and it is also preferable that the polymer is a copolymer obtained by adding a reactive emulsifier in addition to the above essential components. One of the
[0051] ここで、前記「プロトン解離性の基」とは、プロトンが電離により離脱し得る官能基を 意味し、この解離性の基は式 XHで表され、 Xは 2価の結合手を有する任意の原子 若しくは原子団であればよい。具体的には、—OH、 -OSO H、—COOH、 -SO  [0051] Here, the "proton dissociable group" means a functional group from which protons can be separated by ionization, and this dissociable group is represented by the formula XH, where X represents a divalent bond. Any atom or atomic group may be used. Specifically, —OH, —OSO H, —COOH, —SO
3 3 3 3
H、 -OPO (OH) 、 -PO (OH) 、—PH (OH)等が挙げられる。特に好ましくは— H, -OPO (OH), -PO (OH), -PH (OH) and the like. Especially preferably-
2 2  twenty two
SO H、 -OPO (OH) である。  SO H, -OPO (OH).
3 2  3 2
[0052] [化 1] 一般式《1 >  [0052] [Chemical formula 1] General formula << 1>
( R'O^Si—  (R'O ^ Si—
[0053] 式中、 R1は炭素数 4以下のアルキル基を表し、例えば、メチル基、ェチル基、プロピ ル基、ブチル基等が挙げられる。一般式(1)で表される化合物の R2は共重合または 反応可能な有機基を表し、好ましくはエポキシ基、スチリル基、メタクリロキシ基、ァク リロキシ基、アミノアルキル基またはビュル基のうちの少なくとも 1種を含有する有機基 である。 m、 nはいずれも 1〜3の整数である。但し、 m+n=4であり、 mが 2または 3の とき、 R2は同じでも異なっていてもよい。 In the formula, R 1 represents an alkyl group having 4 or less carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group. R 2 of the compound represented by the general formula (1) represents a copolymerizable or reactive organic group, preferably an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an aminoalkyl group or a bur group. An organic group containing at least one species. m and n are both integers of 1 to 3. However, when m + n = 4 and m is 2 or 3, R 2 may be the same or different.
[0054] 一般式(1)で表される化合物の具体例としては、ビュルトリメトキシシラン、ビニルトリ エトキシシラン、 2- (3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 3 グ [0054] Specific examples of the compound represented by the general formula (1) include butyltrimethoxysilane, vinyltril. Ethoxysilane, 2- (3,4 Epoxycyclohexenole) ethinoretrimethoxysilane, 3 g
、 3—グリシドキシプロピルトリエトキシシラン、 p—スチリルトリメトキシシラン、 3—メタク リロキシプロピルメチルジメトキシシラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロキシプロピルトリェトキ シシラン、 3—アタリロキシプロピルトリメトキシシラン、 N— 2 (アミノエチル) 3 アミノプ 口ピルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリメトキシシラ ン、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 3 ァミノプロピルトリメ トキシシラン、 3—ァミノプロピルトリエトキシシラン、 N—フエニル一 3—ァミノプロピル トリメトキシシラン等が挙げられる。前記一般式(1)で表される化合物のアルコキシシリ ル基が反応して、架橋構造を形成したり、前記多孔質部中に含有する無機粒子の表 面に吸着あるいは結合することもできる。 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyljetoxysilane, 3-methacrylic Roxypropyltriethoxysilane, 3-Ataryloxypropyltrimethoxysilane, N-2 (aminoethyl) 3 Aminopropylmethyldimethoxysilane, N-2 (Aminoethyl) 3 Aminopropyltrimethoxysilane, N-2 ( Aminoamino) 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-1-3-aminopropyltrimethoxysilane, and the like. The alkoxysilyl group of the compound represented by the general formula (1) can react to form a crosslinked structure, or can be adsorbed or bonded to the surface of the inorganic particles contained in the porous part.
[0055] 前記、分子内に 1個以上のプロトン解離性基を有する化合物として、分子内に 1個 以上のスルホン酸基及び 1個以上のエチレン性不飽和結合を有する化合物が好まし く、例えば、ァリルスルホン酸、メタァリルスルホン酸、ビュルスルホン酸、 p—スチレン スルホン酸、 (メタ)アクリル酸ブチル—4—スルホン酸、 (メタ)アタリロキシベンゼンス ルホン酸、 t ブチルアクリルアミドスルホン酸、 2—アクリルアミドー 2—メチルプロパ ンスルホン酸、イソプレンスルホン酸等が挙げられる。これらの分子内に 1個以上のス ルホン酸基及び 1個以上のエチレン性不飽和結合を有する化合物は単独でもよいし 、 2種以上を併用してもよい。  [0055] The compound having one or more proton dissociable groups in the molecule is preferably a compound having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds in the molecule. , Aryl sulfonic acid, methallyl sulfonic acid, butyl sulfonic acid, p-styrene sulfonic acid, butyl (meth) acrylate-4-sulfonic acid, (meth) talyloxybenzene sulfonic acid, t-butylacrylamide sulfonic acid, 2- Examples include acrylamide-2-methylpropanesulfonic acid and isoprenesulfonic acid. These compounds having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds in the molecule may be used alone or in combination of two or more.
[0056] また前記分子内に 1個以上のプロトン解離性基を有する化合物として、ハロアルキ ル化及びスルホン化された高分子化合物が好ましぐ特に、分子内に芳香族環を有 する重合体をハロアルキル化及びスルホン化したものが好まし 、。更に好ましくは、 エンジニアリングプラスチックとして知られて 、る高分子化合物を、ハロアルキル化及 びスルホンィ匕したものである。エンジニアリングプラスチックは一般的な定義はなく、 金属のように構造材として使用可能な高弾性、高強度のプラスチックをいう。おおよ その概念としては、弾性率が 2. 45 X 109Pa以上、熱変形温度が 100°C以上といわ れている(例えば、小林力夫、牧廣著『エンジニアリングプラスチック』参照)。但し、ポ リカーボネート、ポリアリレート等のナチュラル榭脂は弾性率が 1. 96 X 109〜2. 45 X 109Paであるが、エンジニアリアングプラスチックとして扱う(鈴木技術士事務所編『 エンジニアリングプラスチック便覧』参照)。 [0056] Further, as the compound having one or more proton dissociable groups in the molecule, a haloalkylated and sulfonated polymer compound is preferred, in particular, a polymer having an aromatic ring in the molecule. Haloalkylated and sulfonated ones are preferred. More preferably, a polymer compound known as an engineering plastic is haloalkylated and sulfonated. Engineering plastic has no general definition, and refers to a highly elastic, high-strength plastic that can be used as a structural material, such as metal. As a general concept, it is said that the elastic modulus is 2.45 X 10 9 Pa or more and the heat distortion temperature is 100 ° C or more (see, for example, “Engineering Plastics” by Rikio Kobayashi and Makio). However, Natural rosin such as carbonate and polyarylate has an elastic modulus of 1.96 X 10 9 to 2.45 X 10 9 Pa, but it is treated as an engineering plastic (edited by Engineering Engineers Office, Suzuki Engineering Office) reference).
[0057] 好ま 、、前記高分子化合物としては、例えば、ポリベンザゾール (PBZ)、ポリアラ ミド(PARまたはケブラー(Kevlar) (登録商標))、ポリべンズォキサゾール(PBO)、 ポリべンゾチアゾール(PBT)、ポリべンズイミダゾール(PBI)、ポリパラフエ-レンテレ フタルイミド(PPTA)、ポリスルホン(PSU)、ポリイミド(PI)、ポリフエ-レンォキシド(P PO)、ポリフエ-レンスルホキシド(PPSO)、ポリフエ-レンスルフイド(PPS)、ポリフエ -レンスルフイドスルホン(PPSZS02)、ポリパラフエ-レン(PPP)、ポリフエ-ルキノ キサリン(PPQ)、ポリアリールケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテル スルホン(PES)、ポリエーテルエーテルスルホン(PEES)、ポリアリールスルホン、ポ リアリールエーテルスルホン(PAS)、ポリフエ-ルスルホン(PPSU)、ポリフエ-レン スルホン(PPS02)、ポリエーテルイミド、フッ素化ポリイミド、ポリエーテルエーテルケ トン(PEEK)、ポリエーテルケトン—ケトン(PEKK)、ポリエーテルエーテルケトン— ケトン(PEEKK)、ポリエーテルケトンエーテルケトン—ケトン(PEKEKK)、及びポリ スチレン (PS)が挙げられる。これらの高分子化合物は単独でもよいし、 2種以上を併 用してもよい。特に好ましくはポリエーテルケトン、ポリエーテルエーテルケトン、ポリス ルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリフエ二レンスノレフ イド、ポリパラフエ-レン、ポリフェンレンォキシド、ポリイミド、ポリべンズイミダゾールか ら選ばれる少なくとも 1種である。  Preferably, the polymer compound includes, for example, polybenzazole (PBZ), polyaramid (PAR or Kevlar (registered trademark)), polybenzoxazole (PBO), polybenzothiazole (PBT). , Polybenzimidazole (PBI), polyparaphenylene-terephthalimide (PPTA), polysulfone (PSU), polyimide (PI), polyphenylene-oxide (PPO), polyphenylene-sulfoxide (PPSO), polyphenylene sulfide (PPS), Polyphenol-sulfursulfone (PPSZS02), polyparaphenylene (PPP), polyphenol quinoxaline (PPQ), polyaryl ketone (PK), polyether ketone (PEK), polyether sulfone (PES), polyether ether sulfone (PEES), polyarylsulfone, polyarylethersulfone (PAS), polyphenylsulfone (PPSU), polyphenylsulfone -Len sulfone (PPS02), polyetherimide, fluorinated polyimide, polyetheretherketone (PEEK), polyetherketone-ketone (PEKK), polyetheretherketone-ketone (PEEKK), polyetherketoneetherketone-ketone (PEKEKK), and polystyrene (PS). These polymer compounds may be used alone or in combination of two or more. Particularly preferably, at least selected from polyether ketone, polyether ether ketone, polysulfone, polyether sulfone, polyether ether sulfone, polyphenylene noride, polyparaphenylene, polyphenylene oxide, polyimide, and polybenzimidazole. One type.
[0058] 上記高分子化合物は、分子量力 OOOO〜100000力 S好ましく、従来公知のもので あれば何ら制限なく用いることができる。  [0058] The polymer compound has a molecular weight of OOOO to 100,000, preferably S, and any conventionally known compound can be used without any limitation.
[0059] 高分子化合物のハロアルキルィヒ及びスルホンィヒの方法は、例えば、先ず高分子化 合物を 90%以上、好ましくは 95%以上の硫酸に攪拌下に溶解し、次いでこれにハロ アルキルィ匕試剤を添加してスルホンィ匕及びハロアルキルィ匕を実施する。高分子化合 物にスルホン酸基の導入を制御するために、一般に 0〜100°Cの範囲で均一に溶解 することが好ましい。温度が高い場合はスルホン酸基の導入比率が高ぐハロアルキ ル基の導入比率は低くなり、逆に温度を低くすればスルホン酸基の導入が制限され 、ハロアルキル基の導入比率が多くなる。 [0059] The method of the haloalkyl or sulfone of the polymer compound is, for example, by first dissolving the polymer compound in 90% or more, preferably 95% or more of sulfuric acid with stirring, and then adding it to the haloalkyl reagent. To carry out sulfone and haloalkyl. In order to control the introduction of sulfonic acid groups into the polymer compound, it is generally preferable that the polymer compound is uniformly dissolved in the range of 0 to 100 ° C. When the temperature is high, the introduction ratio of the haloalkyl group is high, and the introduction ratio of the haloalkyl group is low. Conversely, when the temperature is low, the introduction of the sulfonic acid group is limited. The introduction ratio of haloalkyl groups increases.
[0060] 用いられるハロアルキル化試薬としては、例えば、クロルメチルメチルエーテル、ブ ロムメチノレメチノレエーテノレ、ョードメチノレメチノレエーテノレ、クロノレエチノレエチノレエーテ ル、クロルェチルメチルエーテル等が挙げられる。なお、この方法は溶媒である硫酸 が溶媒として大過剰に存在する状態での反応であり、極めて反応速度が早いため、 充分に高分子化合物の硫酸溶液を均一に攪拌しながら、ハロアルキル化試薬を添 加する必要がある。また、ハロアルキル基の高分子化合物への導入量は、添加する ハロアルキル化試薬のモル数と高分子化合物のハロアルキル基が導入されるュ-ッ トのモル数との比で制御することもできる。反応は非常に早く進行するが、反応時間 は通常 10分〜 16時間の間で選定される。反応後は残余のハロアルキルィ匕試薬を窒 素気流によって除去し、除外した後、大量の水中に投入し、沈澱析出させ、次いで充 分に水洗することによって、ハロアルキルイ匕及びスルホン化された高分子化合物を得 ることができる。なお、ハロアルキル基、スルホン酸基の存在は NMR分析、元素分析 等によって確認できる。  [0060] Examples of the haloalkylating reagent to be used include chloromethyl methyl ether, brommethinoremethinoreatenore, odomethinolemethinoleatenore, chronoetinoreethinoreteol, chloroethylmethyl. Examples include ether. This method is a reaction in which sulfuric acid as a solvent is present in a large excess as a solvent, and the reaction rate is extremely fast. Therefore, the haloalkylating reagent is sufficiently stirred while stirring the sulfuric acid solution of the polymer compound sufficiently. It is necessary to add. The amount of the haloalkyl group introduced into the polymer compound can also be controlled by the ratio between the number of moles of the haloalkylating reagent to be added and the number of moles of the moiety into which the haloalkyl group of the polymer compound is introduced. Although the reaction proceeds very quickly, the reaction time is usually selected between 10 minutes and 16 hours. After the reaction, the remaining haloalkyl reagent is removed and removed by a nitrogen stream, and then poured into a large amount of water, precipitated and precipitated, and then washed thoroughly with water. Molecular compounds can be obtained. The presence of haloalkyl groups and sulfonic acid groups can be confirmed by NMR analysis, elemental analysis, and the like.
[0061] 反応活性なハロアルキル基は、後述する前記一般式(1)で表される化合物と反応 することができ、また同一種のハロアルキルイ匕及びスルホン化された高分子化合物同 士で架橋構造を形成することができ、 2種以上のハロアルキルイ匕及びスルホンィ匕され た高分子化合物が架橋構造を形成することもできる。このようなポリマーによりプロトン 伝導性ポリマーの性能を向上させることができる。  [0061] The reactive haloalkyl group can react with the compound represented by the general formula (1) described later, and is the same type of haloalkyl group and the sulfonated polymer compound. Two or more haloalkyl derivatives and sulfonated polymer compounds can form a crosslinked structure. Such a polymer can improve the performance of the proton conducting polymer.
[0062] 更に前記分子内に 1個以上のプロトン解離性基を有する化合物として、分子内に 1 個以上のリン酸基及び 1個以上のエチレン性不飽和結合を有する化合物が好ましく 、更に好ましくは一般式(2)で表される化合物を挙げることができる。  [0062] Further, the compound having one or more proton dissociable groups in the molecule is preferably a compound having one or more phosphate groups and one or more ethylenically unsaturated bonds in the molecule. A compound represented by the general formula (2) can be exemplified.
[0063] [化 2] 一般式 (2)  [0063] [Chemical 2] General formula (2)
R3 R 3
I II I \ \\  I II I \ \\
H2c =c --C— 0— t- X-O — P— OH H 2 c = c --C— 0— t- XO — P— OH
OH  OH
[0064] 式中、 R°は水素原子またはメチル基を表し、 Xは 2価の有機基を表し、好ましくはェ チレン基、またはプロピレン基である。 pは 1以上の整数を表し、好ましくは 1〜 10の 整数である。 [0064] In the formula, R ° represents a hydrogen atom or a methyl group, X represents a divalent organic group, Tylene group or propylene group. p represents an integer of 1 or more, preferably an integer of 1 to 10.
[0065] 一般式(2)で表される化合物の具体例としては、メタクリロイルォキシェチルホスフ エート、メタクリロイルジ(ォキシエチレン)ホスフェート、メタクリロイルトリ(ォキシェチレ ン)ホスフェート、メタクリロイルテトラ(ォキシエチレン)ホスフェート、メタタリロイルペン タ(ォキシエチレン)ホスフェート、メタクリロイルへキサ(ォキシエチレン)ホスフェート、 メタクリロイノレオキシプロピノレホスフェート、メタクリロイルジ(ォキシプロピル)ホスフエ ート、メタクリロイルトリ(ォキシプロピル)ホスフェート、メタクリロイルテトラ(ォキシプロ ピル)ホスフェート、メタタリロイルペンタ(ォキシプロピル)ホスフェート、メタクリロイル へキサ(ォキシプロピル)ホスフェート、アタリロイルォキシェチルホスフェート、アタリ口 ィルジ(ォキシエチレン)ホスフェート、アタリロイルトリ(ォキシエチレン)ホスフェート、 アタリロイルテトラ(ォキシエチレン)ホスフェート、アタリロイルペンタ(ォキシエチレン) ホスフェート、アタリロイルへキサ(ォキシエチレン)ホスフェート、アタリロイルォキシプ ロピノレホスフェート、アタリロイルジ(ォキシプロピル)ホスフェート、アタリロイルトリ(ォ キシプロピル)ホスフェート、アタリロイルテトラ(ォキシプロピル)ホスフェート、アタリ口 ィルペンタ(ォキシプロピル)ホスフェート、アタリロイルへキサ(ォキシプロピル)ホスフ エート、 4ースチリルメトキシブチルホスフェート等を挙げることができる。  [0065] Specific examples of the compound represented by the general formula (2) include methacryloyloxetyl phosphate, methacryloyl di (oxyethylene) phosphate, methacryloyl tri (oxyshethylene) phosphate, methacryloyl tetra (oxyethylene) phosphate, Tallyloyl penta (oxyethylene) phosphate, methacryloylhexa (oxyethylene) phosphate, methacryloyloleoxypropinorephosphate, methacryloyl di (oxypropyl) phosphate, methacryloyl tri (oxypropyl) phosphate, methacryloyltetra (oxypropyl) phosphate, meta Tallyloyl penta (oxypropyl) phosphate, methacryloyl hexa (oxypropyl) phosphate, ataliroyloxie Cyl phosphate, Ataridiyl (oxyethylene) phosphate, Ataliloyl tri (oxyethylene) phosphate, Ataliloyl tetra (oxyethylene) phosphate, Ataliloyl penta (oxyethylene) phosphate, Ataliloylhexa (oxyethylene) phosphate, Ataliloyloxypropylino Phosphate, Ataliloyldi (oxypropyl) phosphate, Ataliloyltri (oxypropyl) phosphate, Ataliloyltetra (oxypropyl) phosphate, Atalioxypenta (oxypropyl) phosphate, Atalyloxyhexa (oxypropyl) phosphate, 4-styrylmethoxybutyl phosphate, etc. Can be mentioned.
[0066] 具体的には「PhosmerM」、「PhosmerCL」、「PhosmerA」、「PhosmerPE」、「P hosmerPPj (商品名、ュ-ケミカル (株)製)等が挙げられるが、これらに限られるも のではない。これらの化合物は単独でもよいし、 2種以上を併用してもよい。  [0066] Specific examples include “PhosmerM”, “PhosmerCL”, “PhosmerA”, “PhosmerPE”, “PhosmerPPj” (trade name, manufactured by U-Chemical Co., Ltd.), and the like. These compounds may be used alone or in combination of two or more.
[0067] 前記共重合しうる他の不飽和化合物としては、分子内に 1個以上のエチレン性不飽 和結合を有する不飽和化合物は全てこの不飽和化合物に含まれる力 中でも (メタ) アクリロニトリル、(メタ)アクリル酸エステル類や置換または無置換のスチレン類が好 適である。更には 1分子内に複数個のエチレン性不飽和結合を含有する、エチレン グリコールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、へキサメ チレンジオールジ(メタ)アタリレートゃジビュルベンゼン、 N, N—メチレンビスアタリ ルアミド等は架橋構造を形成し、電解質膜の耐久性向上のために使用するのが好ま しい。 [0068] 前記反応性乳化剤としては、分子内に不飽和二重結合を少なくとも 1種以上有する ァ-オン性及び Zまたはノ-オン性の乳化剤が好ましく用いられる。反応性乳化剤 は、分子内に疎水性基、親水性基及び反応性基を各々少なくとも 1個有する化合物 が好ましぐ上記疎水性基は脂肪族または芳香族炭化水素基力 なり、上記親水性 基はポリオキシアルキレンエーテル基に代表されるノ-オン性基、スルホン酸塩、力 ルボン酸塩、燐酸塩に代表されるァ-オン性基を含有し、上記反応性基はビニルェ 一テル基、ァリルエーテル基、ビュルフエ-ル基、ァリルフエ-ル基、アクリル酸また はメタクリル酸のエステルまたはアミド基、マレイン酸等の不飽和二塩基酸のエステル またはアミド基を含有するものが好ま 、。 [0067] As other unsaturated compounds that can be copolymerized, all of the unsaturated compounds having one or more ethylenically unsaturated bonds in the molecule are (meth) acrylonitrile, (Meth) acrylic acid esters and substituted or unsubstituted styrenes are preferred. Furthermore, ethylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, hexamethyl diol di (meth) acrylate which contains multiple ethylenically unsaturated bonds in one molecule. Butylbenzene, N, N-methylenebisatyramide, etc. form a cross-linked structure and are preferably used to improve the durability of the electrolyte membrane. [0068] As the reactive emulsifier, an ionic and Z or nonionic emulsifier having at least one unsaturated double bond in the molecule is preferably used. The reactive emulsifier is preferably a compound having at least one hydrophobic group, hydrophilic group and reactive group in the molecule. The hydrophobic group is an aliphatic or aromatic hydrocarbon group, and the hydrophilic group Contains a nonionic group typified by a polyoxyalkylene ether group, a sulfonic acid salt, a strong sulfonate, and a ionic group typified by a phosphate, and the reactive group is a vinyl ether group, Preferred are those containing a allylic ether group, a bulufer group, a allyl group, an ester or amide group of acrylic acid or methacrylic acid, or an ester or amide group of an unsaturated dibasic acid such as maleic acid.
[0069] 上記反応性乳ィ匕剤としては、例えば、特開昭 62— 22803号公報、同 62— 10480 2号公報、同 62— 104803号公報、同 62— 221431号公報、同 62— 221432号公 報、同 62— 225237号公報、同 62— 244430号公報、同 62— 286528号公報、同 62— 289228号公報、同 62— 289229号公報、同 63— 12334号公報、同 63— 54 930号公報、同 63— 77530号公報、同 63— 77531号公報、同 63— 77532号公報 、同 63— 84624号公報、同 63— 84625号公報、同 63— 126535号公報、同 63— 126536号公報、同 63— 147530号公報、同 63— 319035号公報、特開平 1— 11 630号公報、同 1— 22338号公報、同 1— 22627号公報、同 1— 22628号公報、同 1— 30632号公報、同 1— 34430号公報、同 1— 34431号公報、同 1— 34432号公 報、同 1— 99638号公報、同 1— 99639号公報、同 4— 50204号公報、同 4— 5380 2号公報、同 4— 55401号公報に記載されたものが挙げられる。  [0069] Examples of the reactive whey agent include, for example, JP-A-62-22803, 62-104802, 62-104803, 62-221431, 62-221432 No. 62-225237, 62-244430, 62-286528, 62-289228, 62-289229, 63-12334, 63-54 No. 930, No. 63-77530, No. 63-77531, No. 63-77532, No. 63-84624, No. 63-84625, No. 63-126535, No. 63-126536 No. 63, No. 63-147530, No. 63-319035, No. 1-11 630, No. 1-22338, No. 1-22627, No. 1-22628, No. 1— Publication No. 30632, Publication No. 1-334430, Publication No. 1-334431, Publication No. 1-334432, Publication No. 1-99638, Publication No. 1-99639, Publication No. 4-50204, Publication No. 4- No. 5380 No. 2 and No. 4-55401 Those mounting the like.
[0070] また、上記反応性乳化剤の化合物例としては、例えば、 1 - (メタ)ァリロキシ— 2— ヒドロキシプロパン、 (メタ)アタリロイルォキシ— 2—ヒドロキシプロパン、 (メタ)ァリロキ シカルボ-ルメチル 3 アルコキシ(ポリオキシアルキレノキシ) 2 ヒドロキシプロ パン、アルキルフエノキシ(ポリオキシアルキレノキシ) 2—ヒドロキシプロパンまたは ァシロキシ(ポリオキシアルキレノキシ) 2—ヒドロキシプロパンまたはそのアルキレン ォキシド付加物あるいはこれらの硫酸または燐酸エステルまたはその塩、ビスフエノ ール化合物またはグリコール化合物のアルキレンォキシド付加物あるいはこれらの硫 酸または燐酸エステルまたはその塩、ビュルまたはァリルフ ノール化合物のアルキ レンォキシド付加物あるいはこれらの硫酸または燐酸エステルまたはその塩、スルホ コハク酸のモノァリル一モノアルキルエステルまたはその塩、スルホコハク酸のモノ(3 ーァリロキシー 2—ヒドロキシプロピル) モノアルキルエステルまたはその塩等が挙 げられる。 [0070] Examples of the compound of the reactive emulsifier include, for example, 1- (meth) aryloxy-2-hydroxypropane, (meth) acryloyloxy-2-hydroxypropane, (meth) alkyloxymethyl 3 Alkoxy (polyoxyalkylenoxy) 2-hydroxypropan, alkylphenoxy (polyoxyalkylenoxy) 2-hydroxypropane or acyloxy (polyoxyalkylenoxy) 2-hydroxypropane or its alkylene oxide adducts or these Sulfuric acid or phosphoric acid ester or salt thereof, alkylene oxide adduct of bisphenol compound or glycol compound or sulfuric acid or phosphoric acid ester or salt thereof, alkyl of bull or arylphenol compound Examples include lenoxide adducts or their sulfuric or phosphoric acid esters or salts thereof, monoaryl mono-monoalkyl esters or salts thereof of sulfosuccinic acid, mono (3-aryloxy-2-hydroxypropyl) monoalkyl esters or salts thereof of sulfosuccinic acid. .
[0071] 具体的には、「アデカリアソープ NE」、「アデカリアソープ SE」、「アデカリアソープ E R」、「アデカリアソープ SR」、「アデカリアソープ PP」、「アデカリアソープ PPE」(商品 名、旭電ィ匕 (株)製)、「アクアロン KH」、 「アクアロン HS」、 「アクアロン BC」、 「アクア口 ン RN」、 「ニューフロンティア」(商品名、第一工業製薬 (株)製)、「エレミノール ES」、 「エレミノール JS」、 「エレミノール RS」、 「エレミノール MON」、 「エレミノール HA」(商 品名、三洋化成工業 (株)製)、「ラテムル」(商品名、花王 (株)製)等が挙げられるが 、これらに限られるものではない。これらの反応性乳化剤は一種または二種以上を組 み合わせて使用してもよい。  [0071] Specifically, “Adekalia Soap NE”, “Adekalia Soap SE”, “Adekalia Soap ER”, “Adekalia Soap SR”, “Adekalia Soap PP”, “Adekalia Soap PPE” ( Product name, manufactured by Asahi Denki Co., Ltd.), “AQUALON KH”, “AQUALON HS”, “AQUALON BC”, “AQUALON RN”, “New Frontier” (trade name, Daiichi Kogyo Seiyaku Co., Ltd.) ), "Eleminol ES", "Eleminol JS", "Eleminol RS", "Eleminol MON", "Eleminol HA" (trade name, manufactured by Sanyo Chemical Industries), "Latemul" (trade name, Kao Corporation) But not limited to these). These reactive emulsifiers may be used alone or in combination of two or more.
[0072] 本発明の電解質膜の多孔質部の細孔中にプロトン伝導性ポリマーを充填する方法 は特に限定されるものでなぐ例えば、多孔質部に前記プロトン伝導性ポリマー溶液 を塗布する方法、多孔質部を前記プロトン伝導性ポリマー溶液に浸漬する方法など により、多孔質部の細孔中にプロトン伝導性ポリマーを充填することができる。その際 、超音波を使用したり、減圧にすることによりプロトン伝導性ポリマーを細孔中に充填 し易くすることがでさる。  [0072] The method for filling the proton conductive polymer into the pores of the porous part of the electrolyte membrane of the present invention is not particularly limited. For example, the method of applying the proton conductive polymer solution to the porous part, The pores of the porous part can be filled with the proton conductive polymer by a method of immersing the porous part in the proton conductive polymer solution. At this time, it is possible to easily fill the pores with the proton conductive polymer by using ultrasonic waves or reducing the pressure.
[0073] 好ましくは、プロトン伝導性ポリマーの前駆体 (前記 (a)分子内に 1個以上のプロトン 解離性基を有する化合物、前記 (b)—般式(1)で表される化合物、共重合しうる他の 不飽和化合物、反応性乳化剤等)及び重合開始剤を含有する溶液を多孔質部の細 孔中に充填し、熱重合や光重合等、従来より知られている適宜の方法により、 In- si tu重合または In— situ反応させプロトン伝導性ポリマーとする方法である。その際、 超音波を使用したり、減圧にすることにより前記プロトン伝導性ポリマーの前駆体及 び重合開始剤を含有する溶液を細孔中に充填し易くすることができる。多孔質部の 細孔表面を親水化処理した後に、前記プロトン伝導性ポリマーの前駆体及び重合開 始剤を含有する溶液を多孔質部の細孔中に充填させ、 In— situ重合または In— sit u反応する方法も好ましい。また、前記プロトン伝導性ポリマーの前駆体及び重合開 始剤を含有する溶液の粘度を適宜に調整して、細孔中に充填し易くすることも好まし い。即ち、粘度を高めるためにモノマーの一部を予備重合させてもよぐまた適宜の ポリマーを少量添加し、溶解させてもよい。反対に粘度を下げるために適当な溶剤を カロえて、希釈してもよい。 [0073] Preferably, a precursor of a proton conductive polymer (the compound (a) having one or more proton dissociable groups in the molecule, the compound (b)-a compound represented by the general formula (1), Other known compounds such as thermal polymerization and photopolymerization are prepared by filling a solution containing another unsaturated compound that can be polymerized, a reactive emulsifier, etc.) and a polymerization initiator into the pores of the porous portion. According to the method, In-situ polymerization or In-situ reaction is carried out to obtain a proton conductive polymer. At that time, it is possible to easily fill the pores with the solution containing the precursor of the proton conductive polymer and the polymerization initiator by using ultrasonic waves or reducing the pressure. After hydrophilizing the pore surface of the porous part, the solution containing the precursor of the proton conductive polymer and the polymerization initiator is filled in the pores of the porous part, and In-situ polymerization or In— A sit u reaction method is also preferable. In addition, the precursor of the proton conductive polymer and the polymerization opening. It is also preferable to adjust the viscosity of the solution containing the initiator appropriately so that the pores are easily filled. That is, a part of the monomer may be prepolymerized in order to increase the viscosity, or a small amount of an appropriate polymer may be added and dissolved. On the contrary, in order to reduce the viscosity, a suitable solvent may be prepared and diluted.
[0074] 前記ハロアルキル化及びスルホン化された高分子化合物、前記一般式(1)で表さ れる化合物、前記反応性乳化剤等を反応させる方法としては、ハロアルキルを開裂さ せ反応させる方法、重合開始剤を用いて不飽和結合を反応させる方法、シリル基を 反応させる方法等が好ましく用いられる。ハロアルキル基を開裂させ反応させる方法 としては、ルイス酸や HF、 H SO  [0074] Examples of the method of reacting the haloalkylated and sulfonated polymer compound, the compound represented by the general formula (1), the reactive emulsifier, and the like include a method of cleaving haloalkyl and reacting, A method of reacting an unsaturated bond with an agent and a method of reacting a silyl group are preferably used. Methods for cleaving and reacting haloalkyl groups include Lewis acids, HF, and H 2 SO
2 4、 H POなどのプロトン酸によりイオン的に開裂さ  2 4, ionically cleaved by protonic acid such as H 3 PO
3 4  3 4
せる方法、あるいは紫外線、電子線などの光、あるいは熱によりラジカル的に開裂さ せる方法などが用いられるが、光あるいは熱を用いる方法が好適である。  Or a method of radically cleaving with light such as ultraviolet rays or electron beams, or heat, but a method using light or heat is preferred.
[0075] 前記重合開始剤としては、従来力も知られているものを適宜に用いればよい。好ま しくは熱重合開始剤または光重合開始剤が好ましく、熱重合開始剤とは熱エネルギ 一を与えることにより重合性のラジカルを発生することが可能な化合物である。このよ うな化合物としては、例えば、 2, 2' —ァゾビスイソブチ口-トリル、 2, 2' —ァゾビス プロピオ-トリル等のァゾビス-トリル系化合物、過酸化べンゾィル、過酸化ラウロイ ル、過酸化ァセチル、過安息香酸 tーブチル、 a クミルヒドロパーオキサイド、ジー t ブチルパーオキサイド、ジイソプロピルパーォキシジカーボネート、 t ブチルパー ォキシイソプロピルカーボネート、過酸類、アルキルパーォキシ力ルバメート類、ニトロ ソァリールァシルァミン類等の有機過酸ィ匕物、過硫酸カリウム、過硫酸アンモ-ゥム、 過塩素酸カリウム等の無機過酸化物、ジァゾァミノベンゼン、 p -トロベンゼンジァ ゾ-ゥム、ァゾビス置換アルカン類、ジァゾチォエーテル類、ァリールァゾスルフォン 類等のァゾまたはジァゾ系化合物、ニトロソフエ-ル尿素、テトラメチルチウラムジスル フイド、ジァリールジスルフイド類、ジベンゾィルジスルフイド、テトラアルキルチウラム ジスルフイド類、ジアルキルキサントゲン酸ジスルフイド類、ァリールスルフィン酸類、 ァリールアルキルスルフォン類、 1 アルカンスルフィン酸類等を挙げることができる。  [0075] As the polymerization initiator, those conventionally known in the art may be appropriately used. Preferably, a thermal polymerization initiator or a photopolymerization initiator is preferable, and the thermal polymerization initiator is a compound capable of generating a polymerizable radical by applying thermal energy. Such compounds include, for example, 2,2'-azobisisobutyoritol-tolyl, 2,2'-azobispropio-tolyl and other azobis-tolyl compounds, benzoyl peroxide, lauryl peroxide, acetylyl peroxide, T-Butyl perbenzoate, a cumyl hydroperoxide, di-t-butyl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxyisopropyl carbonate, peracids, alkyl peroxyl rubamates, nitro sularyl acyla Organic peracids such as amines, potassium persulfate, ammonium persulfate, inorganic peroxides such as potassium perchlorate, diazoaminobenzene, p-trobenzenediazome, azobis substitution Azo or diazo compounds such as alkanes, diazothioethers, and arylazosulfones, nitrosof -Lurea, Tetramethylthiuram disulfide, Diaryl disulfides, Dibenzoyl disulfide, Tetraalkylthiuram disulfides, Dialkylxanthogenic disulfides, Arylsulfinic acids, Arylalkylsulfones, 1 Examples include alkanesulfinic acids.
[0076] これらの中で特に好ましいものは常温での安定性に優れ、加熱時の分解速度が速 い化合物であり、開始剤は全重合性の組成物中通常 0. 1〜30質量%が好ましぐ 0 . 5〜20質量%の範囲がより好ましい。 [0076] Among these, compounds particularly preferable are compounds having excellent stability at room temperature and a high decomposition rate upon heating, and the initiator is usually 0.1 to 30% by mass in the total polymerizable composition. Like 0 A range of 5 to 20% by mass is more preferable.
[0077] 光重合開始剤としては、 R— (CO) X— (R、 =水素または炭化水素基、 x = 2〜3)により表される隣接ポリケトンィ匕合物類 (例えば、ジァセチル、ジベンジル等)、 R-CO-CHOH-R' (R、 =水素または炭化水素基)により表されるカルボ- ルアルコール類(例えば、ベンゾイン等)、 R— CH (ORグ )— CO— R' (R、 R' 、 R " =炭化水素基)により表されるァシロイン'エーテル類 (例えば、ベンゾインメチルェ 一テル等)、 Ar-CR (OH)—CO—Ar (Ar=7リール基、 R=炭化水素基)により表 される置換ァシロイン類 (例えば、 α—アルキルべンゾイン等)、及び多核キノン類( 例えば、 9, 10—アンスラキノン等)等を挙げることができる。これらの光重合開始剤 は、それぞれ単独でまたは併用して使用することができる。  [0077] Photopolymerization initiators include adjacent polyketone compounds represented by R— (CO) X— (R, = hydrogen or hydrocarbon group, x = 2 to 3) (for example, diacetyl, dibenzyl, etc.) ), R-CO-CHOH-R '(R, = hydrogen or hydrocarbon group) carboalcohols (for example, benzoin, etc.), R—CH (OR group) — CO— R ′ (R , R ', R "= hydrocarbon group) acyloin' ethers (eg, benzoin methyl ether, etc.), Ar-CR (OH) -CO-Ar (Ar = 7 reel group, R = carbonized) Substituted acyloynes represented by (hydrogen group) (for example, α-alkylbenzoin) and polynuclear quinones (for example, 9, 10-anthraquinone, etc.), etc. These can be used alone or in combination.
[0078] 光重合開始剤の使用量は、不飽和化合物の合計質量に対して 0. 5〜5質量%の 範囲、好ましくは 1〜3質量%の範囲である。  [0078] The amount of the photopolymerization initiator used is in the range of 0.5 to 5% by mass, preferably in the range of 1 to 3% by mass, based on the total mass of the unsaturated compounds.
[0079] なお、前記プロトン伝導 ¾ポリマーのイオン交換容量としては、 0. 5〜5. 0ミリ当量 Zg乾燥樹脂が好ましぐより好ましくは 1. 0〜4. 5ミリ当量 Zg乾燥榭脂である。ィォ ン交換容量が 0. 5ミリ当量 Zg乾燥樹脂より小さい場合はイオン伝導抵抗が大きくな り、 4. 5ミリ当量 Zg乾燥樹脂より大きい場合には水に溶解しやすくなる。  [0079] The ion-conducting capacity of the proton conducting polymer is preferably 0.5 to 5.0 milliequivalent Zg dry resin, more preferably 1.0 to 4.5 milliequivalent Zg dry resin. is there. When the ion exchange capacity is smaller than 0.5 meq Zg dry resin, the ion conduction resistance increases, and when it is greater than 4.5 meq Zg dry resin, it becomes easier to dissolve in water.
[0080] 前記イオン交換容量は次の測定方法により求めることができる。まず、前記プロトン 伝導性ポリマーを 2molZLの塩ィ匕ナトリウム水溶液に 5分間程度浸漬し、酸性基の プロトンをナトリウムに置換する。ナトリウム置換により溶液中に遊離してきたプロトンに 対し、濃度既知の水酸ィ匕ナトリウムによる中和滴定を行う。そして、前記プロトン伝導 性ポリマーの乾燥質量 (W)と中和滴定に要した水酸ィ匕ナトリウムの容量 (V)力 プロ トンの量 (H+)を算出し、次式によりイオン交換容量 (meqZg)を求める。なお次式は 、 0. 05molZLの NaOH水溶液で中和滴定を行った場合の例を示している。  [0080] The ion exchange capacity can be determined by the following measurement method. First, the proton conductive polymer is immersed in a 2 mol ZL salt / sodium aqueous solution for about 5 minutes to replace the proton of the acidic group with sodium. Neutralization titration with sodium hydroxide and sodium hydroxide of known concentration is performed on protons liberated in the solution by sodium substitution. Then, the dry weight (W) of the proton-conducting polymer and the volume of sodium hydroxide (V) force proton (H +) required for neutralization titration were calculated, and the ion exchange capacity (meqZg ) The following formula shows an example of neutralization titration with 0.05 mol ZL NaOH aqueous solution.
[0081] イオン交換容量(meq/g) =H+/W= (0. 05V X 10"3/W) X 103 [0081] Ion exchange capacity (meq / g) = H + / W = (0. 05V X 10 " 3 / W) X 10 3
本発明のプロトン伝導性電解質膜の平均膜厚は特に制限はないが、通常は 500 m以下であり、好ましくは 300 μ m以下、より好ましくは 50〜200 μ mである。膜厚は 1Z10000シックネスゲージで測定できる。平均膜厚は任意の箇所 5点を測定し、そ の平均を算出することにより求めることができる。 [0082] 本発明の電解質膜の貫通穴部には電子伝導性材料が充填される。この電子伝導 性材料を充填された貫通穴は同一基体上に形成された複数の単セルを電気的に接 続するために用いられる。貫通穴への電子伝導性材料の充填は、ノズルにより描画 する方法、スクリーン印刷法、めっき等で行うことができる。なお、薄膜基体の貫通穴 部の電子伝導性材料の電気的接続をとるためには、貫通穴への電子伝導性材料の 充填にお!、て基体の表裏面のうち少なくとも一方の面で、充填された電子伝導性材 料が薄膜基体面より突出していることが好ましい。電子伝導性材料としては、 Au, Ag , Cu, Pt, Pd, Ni, Cr, Pb, Sn, Al, Ti等の金属粉末が好ましぐ特に好ましくは A u、 Ptである。また焼結収縮率調節や薄膜基体への接着などに応じ必要な配線抵抗 が得られる範囲内でセラミック微粉末やガラス微粉末等のフラックス成分を添加しても よい。前記、貫通穴部の電子伝導性材料の電気的接続をとる方法は、特に制限はな いが、例えば、前記、貫通穴部へ電子伝導性材料を充填した薄膜基体を加熱するこ とによって、貫通穴の電子伝導性材料が焼結または溶融することによって上下の貫 通孔の電気的接続がより緻密にできる。この工程は、前記、多孔質部形成時の加熱 処理と同時に行うこともできる。 The average film thickness of the proton conductive electrolyte membrane of the present invention is not particularly limited, but is usually 500 m or less, preferably 300 μm or less, more preferably 50 to 200 μm. The film thickness can be measured with a 1Z10000 thickness gauge. The average film thickness can be obtained by measuring five points at any point and calculating the average. [0082] The through hole of the electrolyte membrane of the present invention is filled with an electron conductive material. The through hole filled with this electron conductive material is used to electrically connect a plurality of single cells formed on the same substrate. Filling the through hole with the electron conductive material can be performed by a method of drawing with a nozzle, a screen printing method, plating, or the like. In order to electrically connect the electron conductive material in the through hole portion of the thin film substrate, at least one of the front and back surfaces of the substrate must be filled with the electron conductive material in the through hole. It is preferable that the filled electron conductive material protrudes from the surface of the thin film substrate. As the electron conductive material, metal powders such as Au, Ag, Cu, Pt, Pd, Ni, Cr, Pb, Sn, Al, and Ti are preferable, and Au and Pt are particularly preferable. Further, a flux component such as ceramic fine powder or glass fine powder may be added within a range in which necessary wiring resistance can be obtained according to adjustment of the sintering shrinkage rate or adhesion to a thin film substrate. The method for electrically connecting the electron conductive material in the through hole is not particularly limited. For example, by heating the thin film substrate filled with the electron conductive material in the through hole, When the electron conductive material in the through hole is sintered or melted, the electrical connection between the upper and lower through holes can be made denser. This step can also be performed simultaneously with the heat treatment at the time of forming the porous portion.
[0083] 本発明のプロトン伝導性電解質膜は燃料電池に用いることができる。燃料電池の 中でもメタノール燃料電池が好ましぐ特に直接メタノール型燃料電池が好ま Uヽ。  [0083] The proton conductive electrolyte membrane of the present invention can be used in a fuel cell. Among fuel cells, methanol fuel cells are preferred, and direct methanol fuel cells are particularly preferred.
[0084] 次に、直接メタノール型燃料電池について、図 1を参照して説明する。図 1は、本発 明のプロトン伝導性電解質膜を電解質膜して用いた直接メタノール型燃料電池の一 実施形態を示す概略図である。  Next, the direct methanol fuel cell will be described with reference to FIG. FIG. 1 is a schematic diagram showing an embodiment of a direct methanol fuel cell using the proton conductive electrolyte membrane of the present invention as an electrolyte membrane.
[0085] 図 1において、それぞれ符号(1)は電解質膜、符号 (2)はアノード極 (燃料極)、符 号 (3)は力ソード極 (空気極)、符号 (4)は外部回路を表す。燃料としてはメタノール 水溶液 Aを用いる。 [0085] In FIG. 1, reference numeral (1) indicates an electrolyte membrane, reference numeral (2) indicates an anode electrode (fuel electrode), reference numeral (3) indicates a force sword electrode (air electrode), and reference numeral (4) indicates an external circuit. To express. Methanol aqueous solution A is used as the fuel.
[0086] アノード極 (2)では、メタノールは水と反応して二酸ィ匕炭素と水素イオン (H+)を生 成して電子 (e_)を放出する。水素イオン (H+)は、電解質 1を通って力ソード極(3)に 向い、電子 (e_)は外部回路 (4)に流れる。一方、二酸ィ匕炭素を含むメタノール成分 が減少した水溶液 A' は系外に排出される。アノード極(2)での反応は下記式で表 される。 [0087] CH OH + H 0→CO + 6H+ + 6e" [0086] At the anode electrode (2), methanol reacts with water to generate carbon dioxide and hydrogen ions (H +) to emit electrons (e_). Hydrogen ions (H +) pass through electrolyte 1 to the force sword pole (3), and electrons (e_) flow to the external circuit (4). On the other hand, the aqueous solution A ′ containing a reduced amount of methanol containing diacid and carbon dioxide is discharged out of the system. The reaction at the anode (2) is expressed by the following formula. [0087] CH OH + H 0 → CO + 6H + + 6e "
3 2 2  3 2 2
力ソード極 (3)では、空気 B中の酸素と電解膜(1)を通ってきた水素イオン (H+)と 外部回路 (4)からきた電子 (e_)とが反応して水を生成する。一方、水を含む酸素が 減少した空気 は系外に排出される。力ソード極(3)での反応は下記式で表される  At the force sword electrode (3), oxygen in air B reacts with hydrogen ions (H +) that have passed through the electrolyte membrane (1) and electrons (e_) from the external circuit (4) to produce water. On the other hand, air with reduced oxygen, including water, is discharged out of the system. The reaction at the force sword pole (3) is expressed by the following formula.
[0088] 3/20 + 6H+ + 6e"→3H O [0088] 3/20 + 6H + + 6e "→ 3H O
2 2  twenty two
燃料電池の全体の反応としては次式のようになる。  The overall reaction of the fuel cell is as follows:
[0089] CH OH + 3/20→CO + 2H O  [0089] CH OH + 3/20 → CO + 2H O
3 2 2 2  3 2 2 2
アノード極(2)の構造は従来力 知られている構造とすることができる。例えば、電 解質 (1)側から触媒層及び触媒層を支持する支持体から構成される。また、力ソード 極 (3)の構造も従来力も知られている構造とすることができる。例えば、電解質(1)側 から触媒層及び触媒層を支持する支持体から構成される。  The structure of the anode (2) can be a known structure. For example, it is composed of a catalyst layer and a support that supports the catalyst layer from the electrolyte (1) side. Moreover, the structure of the force sword pole (3) can also be a structure with which the conventional force is known. For example, it comprises a catalyst layer and a support that supports the catalyst layer from the electrolyte (1) side.
[0090] アノード極(2)及び力ソード極(3)の触媒としては、公知の触媒を用いることができ る。例えば、白金、パラジウム、ルテニウム、イリジウム、金などの貴金属触媒、また白 金 ルテニウム、鉄 ニッケル コバルト モリブデン 白金などの合金が用いられ る。 [0090] As the catalyst for the anode electrode (2) and the force sword electrode (3), a known catalyst can be used. For example, noble metal catalysts such as platinum, palladium, ruthenium, iridium, and gold, and alloys such as white gold ruthenium, iron, nickel, cobalt, molybdenum, and platinum are used.
[0091] 触媒層は導電性を改善する目的で電子伝導体 (導電材)材料を含むことが好まし い。電子伝導体としては、特に限定されるものではないが、電子伝導性と耐触性の点 カゝら無機導電性物質が好ましく用いられる。中でもカーボンブラック、黒鉛質や炭素 質の炭素材、あるいは金属や半金属が挙げられる。ここで炭素材としては、チャネル ブラック、サーマルブラック、ファーネスブラック、アセチレンブラックなどのカーボンブ ラックが、電子伝導性と比表面積の大きさから好ましく用いられる。特に、白金担持力 一ボンなどのように触媒を担持した電子伝導体が好ましく用いられる。  [0091] The catalyst layer preferably contains an electron conductor (conductive material) material for the purpose of improving conductivity. The electron conductor is not particularly limited, but an inorganic conductive material is preferably used in terms of electron conductivity and touch resistance. Among these, carbon black, graphite and carbonaceous carbon materials, and metals and metalloids are mentioned. Here, as the carbon material, carbon black such as channel black, thermal black, furnace black, and acetylene black is preferably used in view of electron conductivity and specific surface area. In particular, an electron conductor carrying a catalyst such as a platinum carrying power of 1 bon is preferably used.
[0092] 電解質膜と電極とを接合して膜 電極接合体(MEA: Membrane Electrode A ssembly)を製造する方法としては、例えば、カーボン粒子に担持させた白金触媒粉 をポリテトラフルォロエチレン懸濁液と混合し、カーボンペーパーに塗布し、熱処理し て触媒層を形成後、電解質膜と同一の電解質溶液を触媒層に塗布し、電解質膜とホ ットプレスして一体ィ匕する方法がある。この他、電解質膜と同一の電解質溶液を予め 白金触媒粉にコーティングする方法、触媒ペーストを電解質膜へ塗布する方法、電 解質膜に電極を無電解メツキする方法、電解質膜に白金属の金属錯イオンを吸着さ せた後、還元する方法等がある。 [0092] As a method for producing a membrane electrode assembly (MEA) by joining an electrolyte membrane and an electrode, for example, a platinum catalyst powder supported on carbon particles is suspended in polytetrafluoroethylene. There is a method of mixing with a turbid liquid, applying to carbon paper, heat-treating to form a catalyst layer, applying the same electrolyte solution as the electrolyte membrane to the catalyst layer, and hot-pressing the electrolyte membrane together. In addition, the same electrolyte solution as the electrolyte membrane should be A method of coating platinum catalyst powder, a method of applying a catalyst paste to an electrolyte membrane, a method of electrolessly plating an electrode on the electrolyte membrane, a method of reducing the metal complex ion of white metal after it is adsorbed on the electrolyte membrane Etc.
[0093] 以上の様にして作製した電解質膜と電極との接合体の外側に、燃料流路と空気流 路を形成する溝が形成された燃料配流板と、空気配流板とを配したものを単セルとし 、本発明ではこの単セル構成を本発明の電解質膜の複数個のプロトン伝導性ポリマ 一が充填された多孔質部に形成し、複数個の電子伝導性材料が充填された貫通穴 部でアノード極 (燃料極)と力ソード極 (空気極)が直列に接続される。本発明の複数 の単セルを配置した燃料電池構成の一実施形態を示す概略断面図を図 2に示す。 図 2において(11)はセラミック薄膜電解質基体であって、複数個のプロトン伝導性ポ リマーが充填された多孔質部(12)と電子伝導性材料が充填された貫通穴部(13)が 設けられている。(14)はアノード極 (燃料極)、(15)は力ソード極 (空気極)であり、 (1 6)はアノード極 (燃料極)(14)及び力ソード極 (空気極)(15)に接続された集電板、 (17)はこの集電板(16)に接続される導電回路、(18)は燃料配流板、(19)は空気 配流板である。これら燃料配流板(18)、アノード極 (燃料極)(14)、プロトン伝導性 ポリマーが充填された多孔質部(12)、力ソード極 (空気極)(15)、及び空気配流板( 19)によって各単セル(20)が構成される。  [0093] A fuel flow distribution plate in which grooves for forming a fuel flow path and an air flow path are formed outside the joined body of an electrolyte membrane and an electrode manufactured as described above, and an air flow distribution plate In the present invention, this single cell structure is formed in a porous portion filled with a plurality of proton conductive polymers of the electrolyte membrane of the present invention, and a through-hole filled with a plurality of electron conductive materials. The anode (fuel electrode) and force sword electrode (air electrode) are connected in series at the hole. FIG. 2 is a schematic cross-sectional view showing an embodiment of a fuel cell configuration in which a plurality of single cells according to the present invention are arranged. In FIG. 2, (11) is a ceramic thin film electrolyte substrate, which is provided with a porous portion (12) filled with a plurality of proton conductive polymers and a through hole portion (13) filled with an electron conductive material. It has been. (14) is the anode electrode (fuel electrode), (15) is the power sword electrode (air electrode), and (16) is the anode electrode (fuel electrode) (14) and force sword electrode (air electrode) (15). (17) is a conductive circuit connected to the current collector plate (16), (18) is a fuel distributor plate, and (19) is an air distributor plate. These fuel flow plate (18), anode electrode (fuel electrode) (14), porous part filled with proton conductive polymer (12), force sword electrode (air electrode) (15), and air flow plate (19 ) Constitutes each single cell (20).
[0094] 上記のように構成された燃料電池(21)にお ヽては、燃料を燃料配流板(18)を通 して流し、空気を空気配流板(19)を通して流すことによって、これらの反応により生 じた起電力は集電板(16)、導電回路(17)等から取り出すことができる。  [0094] In the fuel cell (21) configured as described above, the fuel flows through the fuel distribution plate (18) and the air flows through the air distribution plate (19). The electromotive force generated by the reaction can be taken out from the current collector plate (16), the conductive circuit (17), and the like.
[0095] 上記のような平面積層型の構成にすることにより、実用化に適した所定の電圧を取 り出すことができる。また、冷却板等を介して、前記、平面積層型電解質基体が厚さ 方向に複数枚積層されて 、てもよ 、。  [0095] By adopting the planar stacked configuration as described above, a predetermined voltage suitable for practical use can be taken out. Further, a plurality of the planar laminated electrolyte bases may be laminated in the thickness direction via a cooling plate or the like.
実施例  Example
[0096] 本発明を実施例に基づき更に詳しく説明するが、本発明は実施例に限定されるも のではない。  [0096] The present invention will be described in more detail based on examples, but the present invention is not limited to the examples.
[0097] 実施例 1 [0097] Example 1
〈基体の作製〉 〈部分多孔質基体 No. 1の作製〉 <Preparation of substrate> <Preparation of partially porous substrate No. 1>
粒径 500nm以下の高純度シリカ原料粉に分散剤とバインダーと可塑剤を加え、混 合、分散、粘度調整した後、焼成後の膜厚が 150 /z mとなるように、ドクターブレード 法を用いてグリーンシートを作製した。このグリーンシートに金型を用いて機械的に大 小の貫通穴を交互に 3つ開けた。貫通穴は 20 X 20mmの正方形貫通穴、及び直径 2mmの円形貫通穴を開けた。  Add a dispersant, binder and plasticizer to high-purity silica raw material powder with a particle size of 500 nm or less, mix, disperse, adjust the viscosity, and then use the doctor blade method so that the film thickness after firing is 150 / zm. A green sheet was prepared. The green sheet was mechanically drilled with three large and small through holes using a mold. The through holes were 20 x 20 mm square through holes and 2 mm diameter circular through holes.
[0098] このグリーンシートをポリエチレンテレフタレート支持体上に配置し、前記、正方形 の貫通穴に下記分散液を塗布法で流し込んだ。前記、分散液はポリスチレン微粒子 (モリテックス社製 5008B、平均粒径 80nm)とコロイダルシリカ(日産化学社製スノー テックス 50、一次平均粒径 20nm)の混合物(ポリスチレン微粒子 80体積0 /0、コロイ ダルシリカ 20体積%)を、希薄界面活性剤水溶液中に高速ホモジナイザーを用いて 撹拌、分散させた。分散液の濃度は 20質量%となるようにした。塗布は、バーコータ 一を用いて塗布、乾燥した。更に、前記、円形貫通穴に市販の金ペーストをノズルで 描画する方法で充填し乾燥した。乾燥後、ポリエチレンテレフタレート支持体を剥離 し、昇温スピード 60°CZ時間で 600°Cまで昇温させ、 600°Cで 3時間仮焼成後、昇 温スピード 120°CZ時間で 1000°Cまで昇温させ、 1000°Cで 3時間焼成し、部分多 孔質基体 No. 1を作製した。 [0098] This green sheet was placed on a polyethylene terephthalate support, and the following dispersion was poured into the square through holes by a coating method. Wherein, the dispersion of polystyrene fine particles (Moritex Corporation 5008B, average particle size 80 nm) and colloidal silica (manufactured by Nissan Chemical Industries, Ltd. Snowtex 50, an average primary particle size 20 nm) mixture (polystyrene particles 80 vol 0/0, colloidal Darushirika 20 Volume%) was stirred and dispersed in a dilute surfactant aqueous solution using a high-speed homogenizer. The concentration of the dispersion was set to 20% by mass. The coating was performed using a bar coater and dried. Further, a commercially available gold paste was filled into the circular through hole by a method of drawing with a nozzle and dried. After drying, the polyethylene terephthalate support is peeled off, heated to 600 ° C at a heating rate of 60 ° CZ, pre-fired at 600 ° C for 3 hours, and then increased to 1000 ° C at a heating rate of 120 ° CZ. Heated and fired at 1000 ° C. for 3 hours to produce partially porous substrate No. 1.
[0099] 〈部分多孔質基体 No. 2〜6の作製〉  <Preparation of Partially Porous Substrate Nos. 2 to 6>
基体 No. 1において、ポリスチレン微粒子とコロイダルシリカを表 1のように代えた以 外は、基体 No. 1と同様にして部分多孔質基体 No. 2〜6を作製した。  Partially porous substrates Nos. 2 to 6 were prepared in the same manner as the substrate No. 1 except that the polystyrene fine particles and the colloidal silica in the substrate No. 1 were changed as shown in Table 1.
[0100] 但し、ポリスチレン微粒子の平均粒径が 220nm、 430nm、 930nmのものは、それ ぞれモリテックス社製 5022B、 5043B、 5093Bを使用した。また、コロイダルシリカの 一次平均粒径が 50nm、 100nm、 200nmのものはそれぞれ日産化学社製スノーテ ックス YL、スノーテックス MP、スノーテックス MP2040を使用し、アルミナの一次平 均粒径が lOOnmのものは日産化学社製アルミナゾル 100を使用した。  [0100] However, 5022B, 5043B, and 5093B manufactured by Moritex Corporation were used for polystyrene fine particles having an average particle size of 220 nm, 430 nm, and 930 nm, respectively. For colloidal silica whose primary average particle size is 50 nm, 100 nm, and 200 nm, use Nissan Snowtech YL, Snowtex MP, and Snowtex MP2040, respectively, and those with an alumina primary average particle size of lOOnm. Alumina sol 100 manufactured by Nissan Chemical Co., Ltd. was used.
[0101] 基体 No. 1〜6の多孔質の平均細孔径及び空隙率を表 1に記した。空隙率は単位 面積当 S (cm2)あたりの質量 W (g)、平均厚み t ( μ m)及び密度 d (g/cm3)から次式 により算出した。 [0102] 空隙率(%) = (1— (104'WZ (S 't'd) ) ) X 100 [0101] Table 1 shows the average pore diameter and porosity of the substrates Nos. 1 to 6. The porosity was calculated from the mass W per unit area S (cm 2 ), average thickness t (μm), and density d (g / cm 3 ) by the following formula. [0102] Porosity (%) = (1— (10 4 'WZ (S't'd))) X 100
平均細孔径の測定は、例えば、島津製作所社製ポアサイザ一 9320を用い、水銀 圧入法により測定した。  The average pore diameter was measured, for example, by a mercury intrusion method using a pore sizer 9320 manufactured by Shimadzu Corporation.
[0103] [表 1] [0103] [Table 1]
Figure imgf000025_0001
Figure imgf000025_0001
[0104] 〔プロトン伝導性電解質膜の製造〕 [Production of proton conducting electrolyte membrane]
〔プロトン伝導性電解質膜 No. 1の製造〕  [Manufacture of proton conductive electrolyte membrane No. 1]
上記で作製した部分多孔質基体 No. 1の多孔質部に下記の方法でプロトン伝導性 ポリマーを充填し、プロトン伝導性電解質膜 (電解質膜 No. 1)を製造した。  A proton conductive polymer (electrolyte membrane No. 1) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
[0105] イソプロピルアルコール:水 = 2 : 1中に、アクリル酸、 3—グリシドキシプロピルトリメト キシシラン、「アクアロン KH— 05」(商品名、第一工業製薬 (株)製)、及び架橋剤とし て N, N—メチレンビスアクリルアミドと重合開始剤として AIBN (2, 2' —ァゾビスイソ ブチロニトリル)とを質量比で 100: 20: 20: 5 : 1となるよう混合し、減圧下で混合液の 中に部分多孔質基体を浸漬させた。このように処理した部分多孔質基体をポリェチ レンテレフタレート製フィルムに挟んで加熱し、 60°Cで 2時間保持し、更に 80°Cで 2 時間保持することにより、プロトン伝導性電解質膜を作製した。プロトン伝導性電解質 膜の平均膜厚は 150 μ mであった。平均膜厚はシックネスゲージで任意の箇所を 5 点測定し、その平均を算出して求めた。  [0105] Isopropyl alcohol: water = 2: 1, acrylic acid, 3-glycidoxypropyltrimethoxysilane, "Aqualon KH-05" (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and crosslinking agent N, N-methylenebisacrylamide and AIBN (2,2'-azobisisobutyronitrile) as a polymerization initiator are mixed at a mass ratio of 100: 20: 20: 5: 1, and the mixture is mixed under reduced pressure. The partially porous substrate was immersed therein. The partially porous substrate thus treated was sandwiched and heated between polyethylene terephthalate films, held at 60 ° C. for 2 hours, and further held at 80 ° C. for 2 hours to produce a proton conductive electrolyte membrane. . The average thickness of the proton conducting electrolyte membrane was 150 μm. The average film thickness was obtained by measuring five points at any point with a thickness gauge and calculating the average.
[0106] 〔プロトン伝導性電解質膜 No. 2〜3の製造〕  [Production of Proton Conducting Electrolyte Membrane Nos. 2-3]
プロトン伝導性電解質膜 No. 1において、部分多孔質基体、分子内に 1個以上の プロトン解離性基を有する化合物、一般式 (1)で表される化合物、反応性乳化剤、及 び共重合しうる他の不飽和化合物を表 2のように代えた以外は、プロトン伝導性電解 質膜 No. 1と同様にしてプロトン伝導性電解膜 No. 2〜3を作製した。 [0107] [表 2] In the proton conductive electrolyte membrane No. 1, a partially porous substrate, a compound having one or more proton dissociable groups in the molecule, a compound represented by the general formula (1), a reactive emulsifier, and a copolymer Proton conductive electrolyte membranes Nos. 2 to 3 were prepared in the same manner as proton conductive electrolyte membrane No. 1 except that the other unsaturated compounds were changed as shown in Table 2. [0107] [Table 2]
Figure imgf000026_0001
Figure imgf000026_0001
[0108] 〔プロトン伝導性電解質膜 No. 4の製造〕 [Production of proton conductive electrolyte membrane No. 4]
上記で作製した部分多孔質基体 No. 1の多孔質部に下記の方法でプロトン伝導性 ポリマーを充填し、プロトン伝導性電解質膜 (電解質膜 No. 4)を製造した。  The proton conductive polymer (electrolyte membrane No. 4) was manufactured by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
[0109] イソプロピルアルコール:水 = 2 : 1中に、 2—アクリルアミドー 2—メチルプロパンスル ホン酸、 3—グリシドキシプロピルトリメトキシシラン、 「アクアロン KH— 05」(商品名、 第一工業製薬 (株)製)、及び架橋剤として N, N—メチレンビスアクリルアミドと重合 開始剤として ΑΙΒΝ (2, 2' —ァゾビスイソブチ口-トリル)とを質量比で 100 : 15 : 5 : 5 : 1となるよう混合し、減圧下で混合液の中に部分多孔質基体を浸漬させた。このよ うに処理した部分多孔質基体をポリエチレンテレフタレート製フィルムに挟んで加熱 し、 60°Cで 2時間保持し、更に 80°Cで 2時間保持することにより、プロトン伝導性電解 質膜を作製した。プロトン伝導性電解質膜の平均膜厚は 150 /z mであった。平均膜 厚はシックネスゲージで任意の箇所を 5点測定し、その平均を算出して求めた。 [0109] Isopropyl alcohol: water = 2: 1 in 2-acrylamido-2-methylpropanesulfur Phosphonic acid, 3-glycidoxypropyltrimethoxysilane, “AQUALON KH-05” (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and N, N-methylenebisacrylamide as a crosslinking agent and ΑΙΒΝ as a polymerization initiator (2, 2′-azobisisobuty-to-tolyl) was mixed at a mass ratio of 100: 15: 5: 5: 1, and the partially porous substrate was immersed in the mixture under reduced pressure. The partially porous substrate thus treated was sandwiched between polyethylene terephthalate films, heated, held at 60 ° C for 2 hours, and further held at 80 ° C for 2 hours to produce a proton-conducting electrolyte membrane. . The average film thickness of the proton conductive electrolyte membrane was 150 / zm. The average film thickness was determined by measuring five points at any point with a thickness gauge and calculating the average.
[0110] 〔プロトン伝導性電解質膜 No. 5〜10の製造〕  [Production of Proton Conducting Electrolyte Membrane Nos. 5 to 10]
プロトン伝導性電解質膜 No. 4において、部分多孔質基体、分子内に 1個以上の スルホン酸基及び 1個以上のエチレン性不飽和結合を有する化合物、一般式(1)で 表される化合物、反応性乳化剤、及び共重合しうる他の不飽和化合物を表 3のように 代えた以外は、プロトン伝導性電解質膜 No. 4と同様にしてプロトン伝導性電解膜 N o. 5〜10を作製した。  In the proton conductive electrolyte membrane No. 4, a partially porous substrate, a compound having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds in the molecule, a compound represented by the general formula (1), Proton conductive electrolyte membranes No. 5-10 are prepared in the same manner as proton conductive electrolyte membrane No. 4 except that the reactive emulsifier and other unsaturated compounds that can be copolymerized are changed as shown in Table 3. did.
[0111] [表 3] [0111] [Table 3]
Figure imgf000028_0001
Figure imgf000028_0001
[0112] 〔プロトン伝導性電解質膜 No. 11の製造〕 [0112] [Production of proton conducting electrolyte membrane No. 11]
上記で作製した部分多孔質基体 No. 1の多孔質部に下記の方法でプロトン伝導性 ポリマーを充填し、プロトン伝導性電解質膜 (電解質膜 No. 11)を製造した。  A proton conductive polymer (electrolyte membrane No. 11) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
[0113] N, N—ジメチルァセトアミド中に、クロロメチル化及びスルホン化ポリエーテルエー テルケトン、 3—グリシドキシプロピルトリメトキシシランを質量比で 100 : 15となるよう混 合し、減圧下で混合液の中に部分多孔質基体を浸漬させた。このように処理した部 分多孔質基体をポリエチレンテレフタレート製フィルムに挟んで加熱し、 100°Cで 5時 間保持することにより、プロトン伝導性電解質膜を作製した。プロトン伝導性電解質膜 の平均膜厚は 150 mであった。平均膜厚はシックネスゲージで任意の箇所を 5点 測定し、その平均を算出して求めた。 [0113] In N, N-dimethylacetamide, chloromethylated and sulfonated polyether ether ketone and 3-glycidoxypropyltrimethoxysilane were mixed at a mass ratio of 100: 15. The partially porous substrate was immersed in the mixed solution under reduced pressure. The partially porous substrate thus treated was sandwiched between polyethylene terephthalate films, heated, and held at 100 ° C. for 5 hours to produce a proton conductive electrolyte membrane. The average thickness of the proton conducting electrolyte membrane was 150 m. The average film thickness was obtained by measuring five points at any point with a thickness gauge and calculating the average.
[0114] 〔プロトン伝導性電解質膜 No. 12〜16の製造〕  [Production of Proton Conducting Electrolyte Membrane Nos. 12 to 16]
プロトン伝導性電解質膜 No. 11において、部分多孔質基体、クロロメチル化及び スルホン化された高分子化合物、一般式 (1)で表される化合物、反応性乳化剤及び 共重合しうる他の不飽和化合物を表 4のように代えた以外は、プロトン伝導性電解質 膜 No. 11と同様にしてプロトン伝導性電解膜 No. 12〜16を作製した。  In proton conductive electrolyte membrane No. 11, partially porous substrate, chloromethylated and sulfonated polymer compound, compound represented by general formula (1), reactive emulsifier and other unsaturated compounds capable of copolymerization Proton conductive electrolyte membranes Nos. 12 to 16 were produced in the same manner as the proton conductive electrolyte membrane No. 11 except that the compounds were changed as shown in Table 4.
[0115] [表 4] [0115] [Table 4]
Figure imgf000030_0001
Figure imgf000030_0001
[0116] 〔プロトン伝導性電解質膜 No. 17の製造〕  [0116] [Production of proton conducting electrolyte membrane No. 17]
上記で作製した部分多孔質基体 No. 1の多孔質部に下記の方法でプロトン伝導性 ポリマーを充填し、プロトン伝導性電解質膜 (電解質膜 No. 17)を製造した。  A proton conductive polymer (electrolyte membrane No. 17) was produced by filling the porous portion of the partially porous substrate No. 1 produced above with a proton conductive polymer by the following method.
[0117] イソプロピルアルコール:水 = 2 : 1中に、「PhosmerM」(商品名、ュ-ケミカル(株) 製)、 3—グリシドキシプロピルトリメトキシシラン、 2—アクリルアミド一 2—メチルプロパ ンスルホン酸、「アクアロン KH— 05」(商品名、第一工業製薬 (株)製)、及び架橋剤 として N, N—メチレンビスアクリルアミドと重合開始剤として AIBN (2, 2' —ァゾビス イソブチ口-トリル)とを質量比で 100 : 15 : 100 : 5 : 5 : 1となるよう混合し、減圧下で混 合液の中に部分多孔質基体を浸漬させた。このように処理した部分多孔質基体をポ リエチレンテレフタレート製フィルムに挟んで加熱し、 60°Cで 2時間保持し、更に 80 °Cで 2時間保持することにより、プロトン伝導性電解質膜を作製した。プロトン伝導性 電解質膜の平均膜厚は 150 μ mであった。平均膜厚はシックネスゲージで任意の箇 所を 5点測定し、その平均を算出して求めた。 [0117] Isopropyl alcohol: water = 2: 1, "PhosmerM" (trade name, manufactured by New Chemical Co., Ltd.), 3-glycidoxypropyltrimethoxysilane, 2-acrylamido-2-methylpropaline Sulfonic acid, “AQUALON KH-05” (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and N, N-methylenebisacrylamide as a crosslinking agent and AIBN (2, 2 '—azobisisobuti-mouth as a polymerization initiator) Trill) was mixed at a mass ratio of 100: 15: 100: 5: 5: 1, and the partially porous substrate was immersed in the mixture under reduced pressure. The partially porous substrate thus treated was sandwiched between polyethylene terephthalate films, heated, held at 60 ° C for 2 hours, and further held at 80 ° C for 2 hours to produce a proton conductive electrolyte membrane. . The average thickness of the proton conductive electrolyte membrane was 150 μm. The average film thickness was obtained by measuring five points at any point with a thickness gauge and calculating the average.
[0118] 〔プロトン伝導性電解質膜 No. 18〜22の製造〕  [0118] [Production of proton conducting electrolyte membrane No. 18-22]
プロトン伝導性電解質膜 No. 17において、部分多孔質基体、分子内に 1個以上の リン酸基及び 1個以上のエチレン性不飽和結合を有する化合物、一般式(1)で表さ れる化合物、分子内に 1個以上のスルホン酸基及び 1個以上のエチレン性不飽和結 合を有する化合物、反応性乳化剤、及び共重合しうる他の不飽和化合物を表 5のよう に代えた以外は、プロトン伝導性電解質膜 No. 17と同様にしてプロトン伝導性電解 膜 No. 18〜22を作製した。  In the proton conductive electrolyte membrane No. 17, a partially porous substrate, a compound having one or more phosphate groups and one or more ethylenically unsaturated bonds in the molecule, a compound represented by the general formula (1), Except that the compounds having one or more sulfonic acid groups and one or more ethylenically unsaturated bonds, reactive emulsifiers, and other unsaturated compounds capable of copolymerization in the molecule were changed as shown in Table 5. Proton conductive electrolyte membranes Nos. 18 to 22 were produced in the same manner as proton conductive electrolyte membrane No. 17.
[0119] [表 5] [0119] [Table 5]
Figure imgf000032_0001
Figure imgf000032_0001
〔プロトン伝導性電解質膜 No. 23〜25の製造〕  [Production of proton conducting electrolyte membrane No. 23-25]
比較として前記、部分多孔質基体 No. 1の多孔質部形成方法と同様にして、全面 を多孔質として形成し、多孔質を 3つのセルに区切るようにシリカを充填して絶縁した 比較の基体 No. 7を形成し、前記基体に、分子内に 1個以上のプロトン解離性基を 有する化合物、及び または一般式(1)で表される化合物、反応性乳化剤、及び共 重合しうる他の不飽和化合物を表 6のように代えた以外は、プロトン伝導性電解質膜 No. 1と同様にして比較のプロトン伝導性電解膜 No. 23〜25を作製した。 For comparison, in the same manner as the method for forming the porous portion of the partial porous substrate No. 1, the entire surface is formed as a porous material, and the porous substrate is filled with silica so that the porous material is divided into three cells. No. 7 is formed, and a compound having one or more proton dissociable groups in the molecule and / or a compound represented by the general formula (1), a reactive emulsifier, and a co-polymer are formed on the substrate. Comparative proton conductive electrolyte membranes Nos. 23 to 25 were prepared in the same manner as proton conductive electrolyte membrane No. 1 except that other unsaturated compounds capable of polymerization were changed as shown in Table 6.
[表 6] [Table 6]
Figure imgf000033_0001
Figure imgf000033_0001
〔プロトン伝導性電解質膜の評価〕 [Evaluation of proton conducting electrolyte membrane]
〈プロトン伝導度〉 作製したプロトン伝導性電解質膜 No.1〜22及び比較試料としてプロトン伝導性 電解質膜 No.23〜25の任意の多孔質部を水中(25°C)で含水させ、その後 2枚の 白金電極に挟んで、ヒューレットパッカード社製 LCRメーター HP4284Aを用いて、 インピーダンス測定を行い、プロトン伝導度を算出した。 <Proton conductivity> Proton-conducting electrolyte membranes Nos. 1 to 22 that were produced and any porous part of proton-conducting electrolyte membranes No. 23 to 25 as a comparative sample were hydrated in water (25 ° C), and then applied to two platinum electrodes. The impedance was measured using a Hewlett Packard LCR meter HP4284A, and proton conductivity was calculated.
[0123] 〈メタノール透過性〉  [0123] <Methanol permeability>
図 3の H型セルに作製したプロトン伝導性電解質膜 No.1〜22及び比較試料とし てプロトン伝導性電解質膜 No.23〜25の任意の多孔質部を挟み、 Aセルに入れた 2mol/Lメタノール水溶液から Bセルの純水中に透過してくるメタノール量を、島津 製作所社製ガスクロマトグラフィー(GC— 14B)で測定した。結果を表 7に示す。  Proton-conducting electrolyte membranes Nos. 1 to 22 fabricated in the H-type cell in Fig. 3 and an arbitrary porous part of proton-conducting electrolyte membranes No. 23 to 25 as a comparative sample are sandwiched between 2 mol / The amount of methanol permeating from the L methanol aqueous solution into the pure water of the B cell was measured by gas chromatography (GC-14B) manufactured by Shimadzu Corporation. The results are shown in Table 7.
[0124] [表 7] プロトン伝導度 メタノー -ル透過量  [0124] [Table 7] Proton conductivity Methanol penetration
電解質膜 No. 備 考  Electrolyte membrane No. Remarks
S/cm μ mol/isiin-cm2) S / cm μ mol / isiin-cm 2 )
1 2 • 5X10 0 .67 本発明  1 2 • 5X10 0.67 The present invention
2 2 .3X10"2 0 .58 本発明 2 2 .3X10 " 2 0 .58 The present invention
3 6 -OX10"2 0 .75 本発明 3 6 -OX10 " 2 0 .75 The present invention
4 5 -OX10"2 0 .67 本発明 4 5 -OX10 " 2 0 .67 The present invention
5 5 ■ 7X !0— 2 0 .72 本発明 5 5 ■ 7X! 0— 2 0.72 The present invention
6 5 .5X10"2 0 68 本発明 6 5 .5X10 " 2 0 68 The present invention
7 5 .3X10 0 71 本発明  7 5 .3X10 0 71 The present invention
8 6.0X10一2 0 85 本発明 8 6.0X10 1 2 0 85 Present invention
9 6.0X10— 2 0 82 本発明 9 6.0X10— 2 0 82 The present invention
10 6 0X10—2 0 91 本発明 10 6 0X10— 2 0 91 The present invention
11 2 9X10— 2 0 56 本発明 11 2 9X10— 2 0 56 The present invention
12 3 2X10"2 0 55 本発明 12 3 2X10 " 2 0 55 The present invention
53 3 2X10"2 0 58 本発明 53 3 2X10 " 2 0 58 The present invention
14 2 9X10"2 0 57 本発明 14 2 9X10 " 2 0 57 The present invention
15 3 5X102 0 65 本発明 15 3 5X10 2 0 65 The present invention
16 4 0X10 0 70 本発明  16 4 0X10 0 70 The present invention
17 5 5X10^ 0 71 本発明  17 5 5X10 ^ 0 71 The present invention
18 6 1X10— 2 0 82 本発明 18 6 1X10— 2 0 82 The present invention
19 5 9X10— 2 0 76 本発明 19 5 9X10— 2 0 76 The present invention
20 5 5X10·— 2 0 75 本発明 20 5 5X10 · — 2 0 75 The present invention
21 6 OX10'2 0.88 本発明 21 6 OX10 ' 2 0.88 The present invention
22 6 18X10一2 0 90 本発明 22 6 18X10 1 2 0 90 Present invention
23 2 oxto-2 1 - 90 比較例 23 2 oxto -2 1-90 Comparative example
24 6 8X10 5. 30 比較例  24 6 8X10 5.30 Comparative example
25 4 8X1 T2 1.85 比較例 25 4 8X1 T 2 1.85 Comparative Example
[0125] 表 7の結果から、本発明のプロトン伝導性電解質膜はプロトン伝導性が高ぐメタノ ール透過性が低 ヽことがわかる。比較のプロトン伝導性電解質膜は単セルを区切る 絶縁材料の充填が不十分になりやすぐメタノール透過性が高くなることがわかる。 [0125] From the results in Table 7, the proton-conducting electrolyte membrane of the present invention has a high methanol conductivity. It can be seen that the permeability of the tool is low. It can be seen that the proton-conducting electrolyte membrane for comparison has a high methanol permeability as soon as the insulating material that separates the single cells is insufficiently filled.
[0126] 〔燃料電池の作製と評価〕  [Fabrication and evaluation of fuel cell]
作製したプロトン伝導性電解質膜 No. 1〜22及び比較試料としてプロトン伝導性 電解質膜 No. 23〜25を用いた膜—電極接合体 (MEA)を下記の方法で作製し、 評価した。  Membrane-electrode assemblies (MEA) using the produced proton conductive electrolyte membranes Nos. 1 to 22 and the proton conductive electrolyte membranes Nos. 23 to 25 as comparative samples were produced and evaluated by the following methods.
[0127] 〈電極の作製〉  <Preparation of electrode>
炭素繊維クロス基材にポリテトラフルォロエチレン (PTFE)で撥水処理を行った後、 PTFEを 20質量%含むカーボンブラック分散液を塗工、焼成して電極基材を作製し た。この電極基材上に、 Pt—Ru担持カーボンとナフイオン (デュポン社製)溶液から なるアノード電極触媒塗液を塗工、乾燥してアノード電極を、また Pt担持カーボンと ナフイオン (デュポン社製)溶液からなる力ソード電極触媒塗液を塗工、乾燥してカソ —ド電極を作製した 0 The carbon fiber cloth substrate was subjected to water repellent treatment with polytetrafluoroethylene (PTFE), and then a carbon black dispersion containing 20% by mass of PTFE was applied and baked to produce an electrode substrate. On this electrode base material, an anode electrode catalyst coating solution comprising a Pt—Ru-supported carbon and naphthion (DuPont) solution was applied and dried to form an anode electrode, and Pt-supported carbon and naphthion (DuPont) solution. consists force cathode electrode catalyst coating solution coated and dried to cathode - were prepared cathode electrode 0
[0128] 〈膜-電極接合体 (MEA)の作製〉  [0128] <Production of membrane-electrode assembly (MEA)>
作製したプロトン伝導性電解質膜 No. 1〜22及び比較試料としてプロトン伝導性 電解質膜 No. 23〜25の複数の多孔質部を、それぞれアノード電極と力ソード電極 で夾持し、加熱プレスすることで膜 電極複合体(MEA) MEA— No. 1〜22及び 比較試料として MEA— No. 23〜25を作製した。この膜—電極接合体 (MEA)を空 気配流板及び燃料配流板に挟み、 3つの単セル同士を、電子伝導性材料を充填し た貫通穴を通してアノード電極と力ソード電極を直列に接続した。比較試料は特開 2 004- 31133号公報の図 5に記載の例示方法のようにセル同士を接続した。  Produced proton conductive electrolyte membranes Nos. 1 to 22 and a plurality of porous portions of proton conductive electrolyte membranes Nos. 23 to 25 as comparative samples are held by an anode electrode and a force sword electrode, respectively, and heated and pressed. Thus, a membrane electrode assembly (MEA) MEA No. 1 to 22 and MEA No. 23 to 25 as comparative samples were prepared. This membrane-electrode assembly (MEA) is sandwiched between an air flow distribution plate and a fuel flow distribution plate, and an anode electrode and a force sword electrode are connected in series through a through hole filled with an electron conductive material between three single cells. . In the comparative sample, cells were connected as in the exemplified method described in FIG. 5 of JP-A-2 004-31133.
[0129] アノード側に 3%メタノール水溶液、力ソード側に空気を流して燃料電池を作動し、 電流電圧特性の評価を行った。電圧 0. 4Vでの電流密度を表 8に示す。  [0129] The current-voltage characteristics were evaluated by operating the fuel cell with 3% aqueous methanol solution on the anode side and air on the power sword side. Table 8 shows the current density at a voltage of 0.4V.
[0130] [表 8] MEA— No. 電流密度(A/cm2) 備 考 [0130] [Table 8] MEA— No. Current density (A / cm 2 ) Remarks
1 0.14 本発明  1 0.14 The present invention
2 0.14 本発明  2 0.14 The present invention
3 0.19 本発明  3 0.19 The present invention
4 0.17 本発明  4 0.17 The present invention
5 0.20 本発明  5 0.20 The present invention
6 0.20 本発明  6 0.20 The present invention
7 0.17 本発明  7 0.17 The present invention
8 0.18 本発明  8 0.18 The present invention
9 0.17 本発明  9 0.17 The present invention
10 0.16 本発明  10 0.16 The present invention
11 0.14 本発明  11 0.14 The present invention
12 0.17 本発明  12 0.17 The present invention
t3 0.14 本発明  t3 0.14 The present invention
14 0.13 本発明  14 0.13 The present invention
15 0.14 本発明  15 0.14 The present invention
16 0.16 本発明  16 0.16 The present invention
17 0.20 本発明  17 0.20 The present invention
18 0.19 本発明  18 0.19 The present invention
19 0.19 本発明  19 0.19 The present invention
20 0.19 本発明  20 0.19 The present invention
21 0.18 本発明  21 0.18 The present invention
22 0.17 本発明  22 0.17 The present invention
23 0.05 比較例  23 0.05 Comparative example
24 0.09 比較例  24 0.09 Comparative example
25 0.10 比較例 表 8の結果から、本発明に係る膜—電極接合体 (MEA)は、比較の膜—電極接合 体 (MEA)に比べて、電流密度が大きいことがわかる。  25 0.10 Comparative Example From the results in Table 8, it can be seen that the membrane-electrode assembly (MEA) according to the present invention has a higher current density than the comparative membrane-electrode assembly (MEA).

Claims

請求の範囲 The scope of the claims
[1] セラミックス薄膜基体に複数個の多孔質部及び貫通穴部を有し、該多孔質部には プロトン伝導性ポリマーを含有し、該貫通穴部には電子伝導性材料を含有することを 特徴とするプロトン伝導性電解質膜。  [1] The ceramic thin film substrate has a plurality of porous portions and through-hole portions, the porous portion contains a proton conductive polymer, and the through-hole portions contain an electron conductive material. A proton conductive electrolyte membrane.
[2] 前記多孔質部の平均細孔径が 10〜450nmであることを特徴とする請求の範囲第  [2] The average pore diameter of the porous portion is 10 to 450 nm.
1項に記載のプロトン伝導性電解質膜。  2. The proton conductive electrolyte membrane according to item 1.
[3] 力ソード極、アノード極及び該両極に挟まれた電解質カゝらなる燃料電池セルが複数 個形成されてなる固体高分子型燃料電池において、該電解質として請求の範囲第 1 項または第 2項に記載のプロトン伝導性電解質膜を用いることを特徴とする固体高分 子型燃料電池。 [3] In a polymer electrolyte fuel cell in which a plurality of fuel cell cells such as a force sword electrode, an anode electrode, and an electrolyte electrode sandwiched between the two electrodes are formed, the electrolyte is the claim 1 or A solid polymer fuel cell, wherein the proton-conducting electrolyte membrane according to item 2 is used.
[4] セラミックス薄膜基体に複数個の多孔質部及び貫通穴部を設置し、該多孔質部に はプロトン伝導性ポリマーを充填し、該貫通穴部には電子伝導性材料を充填すること を特徴とするプロトン伝導性電解質膜の製造方法。  [4] A plurality of porous portions and through-hole portions are installed in the ceramic thin film substrate, the porous portions are filled with a proton conductive polymer, and the through-hole portions are filled with an electron conductive material. A method for producing a proton conductive electrolyte membrane.
[5] 前記多孔質部が、無機粒子及び有機粒子を含む分散液を用いて該無機粒子と有 機粒子を積層させた後、焼成することにより得られることを特徴とする請求の範囲第 4 項に記載のプロトン伝導性電解質膜の製造方法。 [5] The porous portion is obtained by laminating the inorganic particles and the organic particles using a dispersion liquid containing inorganic particles and organic particles, and then firing the laminated layers. A method for producing a proton-conductive electrolyte membrane according to Item.
[6] 前記多孔質部へプロトン伝導性ポリマーを充填する方法が、少なくとも分子内に 1 個以上のプロトン解離性基を含有するモノマーを多孔質部に充填後、 In— situ重合 する方法であることを特徴とする請求の範囲第 4項または第 5項に記載のプロトン伝 導性電解質膜の製造方法。 [6] The method of filling the porous portion with the proton conductive polymer is a method of performing in-situ polymerization after filling the porous portion with a monomer containing at least one proton dissociable group in the molecule. 6. The method for producing a proton-conducting electrolyte membrane according to claim 4 or 5, wherein:
[7] 前記多孔質部を設置する工程が、塗布工程によることを特徴とする請求の範囲第 4 項〜第 6項のいずれか 1項に記載のプロトン伝導性電解質膜の製造方法。 [7] The method for producing a proton conductive electrolyte membrane according to any one of [4] to [6], wherein the step of installing the porous portion is an application step.
PCT/JP2006/308271 2005-05-25 2006-04-20 Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane WO2006126346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517743A JPWO2006126346A1 (en) 2005-05-25 2006-04-20 PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, MANUFACTURING METHOD THEREOF, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-152281 2005-05-25
JP2005152281 2005-05-25

Publications (1)

Publication Number Publication Date
WO2006126346A1 true WO2006126346A1 (en) 2006-11-30

Family

ID=37451775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308271 WO2006126346A1 (en) 2005-05-25 2006-04-20 Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane

Country Status (2)

Country Link
JP (1) JPWO2006126346A1 (en)
WO (1) WO2006126346A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165633A (en) * 2010-02-09 2011-08-25 Sanyo Electric Co Ltd Composite membrane, fuel cell , method of making of composite membrane, and manufacturing method of fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510390A (en) * 1994-12-09 1998-10-06 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー PEM fuel cell
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2005038669A (en) * 2003-07-18 2005-02-10 Ube Ind Ltd Direct methanol fuel cell capable of being used at freezing point or below, electrolyte film, and film-electrode junction
JP2005085562A (en) * 2003-09-08 2005-03-31 Toray Ind Inc Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell using it
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film
JP2006120366A (en) * 2004-10-19 2006-05-11 Kanagawa Prefecture Fuel cell, cell structure and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10510390A (en) * 1994-12-09 1998-10-06 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー PEM fuel cell
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
WO2002059996A1 (en) * 2001-01-26 2002-08-01 Toray Industries, Inc. Polymer electrolyte film and method for preparation of the same, and solid polymer type fuel cell using the same
JP2003197225A (en) * 2001-12-28 2003-07-11 Dainippon Printing Co Ltd High polymer electrolyte fuel cell
JP2005038669A (en) * 2003-07-18 2005-02-10 Ube Ind Ltd Direct methanol fuel cell capable of being used at freezing point or below, electrolyte film, and film-electrode junction
JP2005085562A (en) * 2003-09-08 2005-03-31 Toray Ind Inc Membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell using it
JP2005183017A (en) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc Manufacturing method of proton conductive electrolyte film, proton conductive electrolyte film, and fuel cell using proton conductive electrolyte film
JP2006120366A (en) * 2004-10-19 2006-05-11 Kanagawa Prefecture Fuel cell, cell structure and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165633A (en) * 2010-02-09 2011-08-25 Sanyo Electric Co Ltd Composite membrane, fuel cell , method of making of composite membrane, and manufacturing method of fuel cell

Also Published As

Publication number Publication date
JPWO2006126346A1 (en) 2008-12-25

Similar Documents

Publication Publication Date Title
US8153329B2 (en) Proton conducting electrolyte membrane and production method thereof and solid polymer fuel cell using the same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4419550B2 (en) Proton-conducting electrolyte membrane manufacturing method, proton-conducting electrolyte membrane, and fuel cell using proton-conducting electrolyte membrane
JP4728208B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP4390558B2 (en) Electrocatalyst layer for fuel cells
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
CA2689513C (en) Electrolyte membrane and membrane electrode assembly using the same
WO2005088749A1 (en) Membrane electrode assembly, method for producing the same, and solid state polymer fuel cell
TWI437755B (en) Film-electrode adhesive, proton conductive film with adhesive layer, adhesive of film-electrode, solid polymer fuel cell and film-electrode adhesive
KR20140126734A (en) Polymer electrolyte membrane, method for manufacturing the same and membraneelectrode assembly comprising the same
JPWO2008114688A1 (en) Electrode binder, electrode, membrane-electrode assembly, and polymer electrolyte fuel cell
KR20110027490A (en) Polymer membrane composition for fuel cell, polymer membranes prepared from same, and membrane-electrode assembly and fuel cell including same
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2007005308A (en) Polymer electrolyte membrane for fuel cell, its manufacturing method and fuel cell system including it
JP4957544B2 (en) PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
JP4895563B2 (en) Reinforced polymer electrolyte membrane
JP2009181788A (en) Manufacturing method of electrolyte membrane, electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
JP5044894B2 (en) Proton conducting electrolyte membrane for polymer electrolyte fuel cell, method for producing proton conducting electrolyte membrane, and polymer electrolyte fuel cell
JP2006331848A (en) Proton conductive electrolyte membrane and manufacturing method thereof, and polymer electrolyte fuel cell
CN107615545A (en) Polymer dielectric film including its membrane electrode assembly and the fuel cell including the membrane electrode assembly
JP2006147278A (en) Electrolyte membrane-electrode assembly for solid fuel cell, and its manufacturing method
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
WO2006126346A1 (en) Proton conductive electrolyte membrane, method for producing same, and solid polymer fuel cell using such proton conductive electrolyte membrane
JP4915043B2 (en) PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
JP2005285413A (en) Proton conductive membrane, its manufacturing method, and solid polymer type fuel cell using proton conductive membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517743

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06732129

Country of ref document: EP

Kind code of ref document: A1