WO2006123414A1 - 超音波生体刺激装置 - Google Patents

超音波生体刺激装置 Download PDF

Info

Publication number
WO2006123414A1
WO2006123414A1 PCT/JP2005/009169 JP2005009169W WO2006123414A1 WO 2006123414 A1 WO2006123414 A1 WO 2006123414A1 JP 2005009169 W JP2005009169 W JP 2005009169W WO 2006123414 A1 WO2006123414 A1 WO 2006123414A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
transducer
frequency
amplitude
switching
Prior art date
Application number
PCT/JP2005/009169
Other languages
English (en)
French (fr)
Inventor
Tatsuyuki Kobayashi
Original Assignee
Techno Link Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Link Co., Ltd. filed Critical Techno Link Co., Ltd.
Priority to PCT/JP2005/009169 priority Critical patent/WO2006123414A1/ja
Priority to JP2007516169A priority patent/JP4605548B2/ja
Publication of WO2006123414A1 publication Critical patent/WO2006123414A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers

Definitions

  • the present invention relates to an ultrasonic biostimulation apparatus for stimulating a living body by ultrasonic vibration of ultrasonic probe force attached to the living body.
  • a plurality of ultrasonic transducers are disposed on an ultrasonic probe attached to a treatment site of a living body, and ultrasonic vibrations emitted from the ultrasonic probe are used. Stimulate the treatment site.
  • an ultrasonic probe provided with a plurality of ultrasonic transducers is detachably connected to the drive circuit unit on the main body side, and the drive circuit unit force is supplied.
  • Each ultrasonic transducer oscillates and the living body is irradiated with ultrasonic waves by the driving power that is generated.
  • another patent document 2 arranges a plurality of ultrasonic transducers in a planar manner so that at least a part of position forces thereof can be changed three-dimensionally with each other.
  • an apparatus capable of reducing the burden on the practitioner when applying ultrasonic waves to a wide area of a living body.
  • the transducer groups driven by different drive systems are arranged in a rhombus pattern, and each transducer group is driven on-off at opposite timings to average the irradiation amount of ultrasonic waves. It is.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-28027
  • Patent Document 2 International Publication WO 01 Z 89 723
  • Patent Document 2 the problem is solved by disposing a plurality of ultrasonic transducers in a wide range, but even if the amount of ultrasonic waves of ultrasonic probe force is averaged, it is If the acoustic probe is not powered to some extent along the body, the patient will still feel pain
  • the range in which the ultrasonic probe is moved is also extended by that amount, causing a problem that the treatment time becomes longer.
  • the present invention provides an ultrasonic biostimulation apparatus capable of irradiating an appropriate amount of ultrasonic waves over a wide range of a living body without the need for the practitioner to power the ultrasonic probe, thereby shortening the treatment time. To that purpose.
  • An ultrasonic biostimulation apparatus comprises an ultrasonic probe in which a plurality of ultrasonic transducers are arranged in a plane and these ultrasonic transducers are fixed to a living body, and each of the ultrasonic waves.
  • the driving power from the driving means is excessive at a level at which the ultrasonic energy generated by the ultrasonic probe force is not concentrated locally. It is given to the sound wave vibrator while switching at any time. Therefore, it is possible to irradiate an appropriate amount of ultrasound over a wide area of the living body without having to move the ultrasound probe which can not be focused on locally and be given ultrasound energy from the ultrasound probe, and the treatment time is reduced. It can be shortened.
  • the switching means is configured such that the ultrasonic transducers can be vibrated one by one or plural ones or all at the same time.
  • the ultrasonic energy can be given while changing the position in the spot shape, and if the number of vibrations of the ultrasonic transducer is large, Ultrasonic energy can be applied in a two-dimensional area. for that reason, While the ultrasonic probe is attached to the living body, the range to which the ultrasonic vibration is applied can be freely changed, and various patterns of stimulation can be obtained to obtain more effective treatment effects.
  • the number of switching times by the switching means is set per second.
  • the switching means is configured to automatically switch the vibration of the ultrasonic vibrator at random speed and position !.
  • the ultrasonic biostimulation apparatus further includes an amplitude variable means for changing the amplitude of the drive power.
  • the ultrasonic biostimulation apparatus further includes an amplitude control unit that variably controls the amplitude of the drive power during the vibration of the ultrasonic transducer.
  • the intensity of the ultrasonic energy can be changed randomly or regularly during the vibration of the ultrasonic transducer, and it becomes possible to carry the stimulation energy by ultrasonic energy.
  • the ultrasonic biostimulation apparatus of the present invention further includes frequency control means for variably controlling the frequency of the drive power while the ultrasonic transducer is vibrating.
  • the ultrasonic biostimulation apparatus of the present invention is the same as when a person moves the ultrasonic probe.
  • the switching means is configured to switch the vibration of the ultrasonic transducer at a speed and a position.
  • the ultrasonic biostimulation apparatus is characterized in that the switching means is incorporated in the ultrasonic probe.
  • the wires between the switching means having a large number of wires and the ultrasonic transducers can be accommodated in the ultrasonic probe, and a highly reliable device can be provided.
  • a transducer sensing unit that senses a resonant frequency or impedance of the ultrasonic transducer, and a detection result of the transducer based on the transducer sensing unit, And D. correction means for correcting frequency or amplitude.
  • the ultrasonic transducer can not avoid variations in resonant frequency and impedance in manufacturing, the resonant frequency or impedance of the ultrasonic transducer is sensed by the transducer sensing means, and the sensed result is Accordingly, since the frequency or amplitude of the drive power can be appropriately corrected, the ultrasonic transducer force can also generate ultrasonic energy efficiently.
  • the ultrasonic biostimulation apparatus when the ultrasonic transducer is in operation, sensing results are taken in from the transducer sensing means every fixed time, and the frequency or amplitude of the driving power is Configure the correction means to correct! /.
  • the ultrasonic biostimulation apparatus of the present invention even if the operator does not have to use an ultrasonic probe, it is possible to irradiate an appropriate amount of ultrasonic waves to a wide area of the living body, thereby shortening the treatment time.
  • reference numeral 1 denotes an ultrasonic probe which contacts a human body, which is a living body, which is made of a sheet material such as metal, resin or flexible rubber capable of transmitting ultrasonic waves 2 (ultrasonic conductive substance)
  • a plurality of ultrasonic transducers 3 (3, 3 and -3) are arranged in a plane on one side 2A, and these ultrasonic
  • the number of ultrasonic transducers 3 to be attached to the sheet material 2 may be two or more. Further, the shape and size of the ultrasonic probe 1 and the ultrasonic transducer 3 are not particularly limited, as appropriate, according to the application. Then, by providing the ultrasonic transducer 3, the flat other side surface 2 B of the sheet material 2 is formed as a sticking surface to a living body.
  • Reference numeral 10 denotes a main body formed in, for example, a box shape, and the ultrasonic probe 1 is detachably connected to a connector 11 attached to the main body 10.
  • a drive circuit unit 12 serving as a drive unit serving as a drive source of the ultrasonic vibrator 3 and drive power from the drive circuit unit 12 are sequentially switched to the ultrasonic vibrators 3, 3, and -3. Vibration as switching means
  • a child switching unit 13 and a CPU 14 as control means for controlling the drive circuit unit 12 and the vibrator switching unit 13 are provided.
  • an input unit 15 which is a switch capable of sliding or pushing or the like is connected to an input port of the CPU 14, and an informing unit 16 for performing sound or display on the output port (sound output unit or display Means are connected.
  • the switching control signal for driving the desired ultrasonic transducers 3, 3 and 3 is driven from the CPU 14.
  • the switching control signal may be sent directly to the CPU 14 and the transducer switching unit 13.
  • the transducer switching unit 13 is incorporated into the ultrasonic probe 1 which is not included in the main body 10.
  • the transducer switching unit 13 has respective ultrasonic transducers 3, 3,
  • the wiring corresponding to the number of the movers 3 is required, but if the transducer switching unit 13 is provided on the ultrasonic probe 1 side, the number of wires of the connection cable with the main unit 10 can be reduced, and the reliability is high. It can provide the device.
  • the signal generation unit 22 provided with the oscillator 21 and the oscillation output from the signal generation unit 22 are power amplified to In response to a frequency control signal from the CPU 14 and a power amplification unit 23 for converting the acoustic wave oscillator 3 into a drive power signal (drive signal) capable of operating, the oscillation output and thus the drive signal frequency is variably set.
  • Frequency setting means 24, Amplitude setting means 25 which receives the amplitude control signal from the CPU 14 and variably sets the amplitude of the oscillation output and hence the drive signal, and each ultrasonic transducer 3,
  • Transducer detection which detects the current flowing through 3 and -3 and outputs the detection result to the CPU 14
  • the signal generation unit 22 used here is a PLL (Phase (Phase) circuit in order to obtain an oscillation output with high V and high stability under the influence of temperature and the like.
  • FIG. 3 shows a functional configuration of the CPU 14.
  • the CPU 14 generates a reference clock signal and outputs it to each means in the CPU 14.
  • the oscillation unit 31 for controlling the signal generator 22 and the oscillator output control unit 32 Children 3, 3,
  • a vibrator switching control means 33 for controlling the driving of the circuit. oscillation
  • the output control means 32 outputs a signal control signal for setting the frequency and the amplitude of the oscillation output from the signal generation unit 22 to the frequency setting means 24 and the amplitude setting means 25.
  • the frequency setting means 24 sets the frequency of the oscillation output
  • the amplitude setting means 25 sets the amplitude of the oscillation output.
  • the transducer switching control means 33 outputs a switching control signal indicating which ultrasonic transducer 3, 3, -3 is to be driven.
  • the transducer switching unit 13 In response to this switching control signal, the transducer switching unit 13 outputs to the transducer switching unit 13 one by one or a plurality of them, otherwise all ultrasonic transducers 3, 3, and -3.
  • the driving signal is given every predetermined time or random time for 1 2 10.
  • the signal generation unit 22 may be configured to supply an oscillation output having a fixed frequency and Z or amplitude consistently to the power amplification unit 23 during the operation.
  • the frequency setting means 24 and the amplitude setting means 25 do not need to receive the signal control signal from the CPU 14.
  • the signal control signal corresponding to the input operation from the input means 15 is CP so that the practitioner can arbitrarily change the frequency and Z or amplitude of the oscillation output. It may be configured to be output to the U14 force frequency setting means 24 and Z or the amplitude setting means 25. In this way, each time the practitioner operates a specific switch or the like of the input means 15, the frequency and the amplitude of the drive signal can be freely varied.
  • the oscillation output control means 32 in the present embodiment is based on the detection result from the transducer detection means 26.
  • Frequency correction means 36 for detecting the resonance frequency of the ultrasonic transducer 3 to correct the frequency of the oscillation output generated from the signal generation unit 22 to an optimal value, and one ultrasonic wave by the transducer switching unit 13
  • Amplitude correction means 37 is provided to correct the value to a value.
  • the CPU 14 preferably switches the order of switching of the preferred ultrasonic transducers 3, 3 and -3, and driving power.
  • Drive pattern storage means 38 for storing a plurality of drive patterns consisting of the amplitude A and the frequency f.
  • the CPU 14 calls up a specific drive pattern from the drive pattern storage means 38 by the operation from the input means 15, and according to this drive pattern, the ultrasonic transducer 3
  • a drive pattern for switching the vibration of the ultrasonic transducers 3, 3 and -3 is stored at the same speed and position as when a person powered the ultrasonic probe.
  • driving power is sent out by branching from the single drive circuit unit 12 having one oscillator 21 to each of the ultrasonic transducers 3, 3 and -3.
  • the opening / closing means 13, 13, to 13 mentioned here are, for example, relays.
  • FIG. 5 shows various modifications. Each portion from the transducer switching unit 13 to the ultrasonic transducer 3 shown in FIG. 4 is configured as a vibration output unit 8 that applies a vibration to a living body. In FIG. 5, a plurality of vibration output units 8, 8, 8... Are connected to a CPU 14 which is a control means.
  • the ultrasonic probe 1 can be attached to a plurality of treatment sites (for example, shoulder, waist, knee, etc. simultaneously) in accordance with the patient's condition.
  • the ultrasonic probe 1 which is not used during the operation can be cleaned up.
  • the other side 2B of the sheet material 2 is attached to the treatment site in advance, and the ultrasound probe 1 is attached and fixed to the human body by a belt or the like (not shown).
  • the ultrasonic probe 1 can be attached and fixed to a plurality of treatment sites.
  • a specific drive pattern is called out from the drive pattern storage means 38 by the operation of the input means 15, and pressing the start switch of the input means 15, for example.
  • the components in the main unit 10 start operating, and the oscillation output is supplied from the signal generation unit 22 of the drive circuit unit 12 to the power amplification unit 23, and the power amplification unit 23 vibrates the ultrasonic transducers 3, 3, and -3. A drive signal of sufficient power is generated. Also
  • the transducer switching unit 13 receives the switching control signal from the CPU 14 so that the ultrasonic energy emitted from the ultrasonic probe 1 is not concentrated locally when the ultrasonic probe 1 is fixed to the human body.
  • drive power may be supplied sequentially to each of, and -3, as shown in FIG.
  • the switching means 13 is turned on in the section B, and the single ultrasonic transducer 3
  • Driving power is given to 1 1, and in the next section C, the switching means 13 is turned on and a single ultrasonic wave is generated.
  • Driving power is applied to the vibrator 3 and the other ultrasonic transducers 3 -13 are sequentially driven in the same manner.
  • a time lag may be provided to further enhance the safety to the living body.
  • an appropriate amount of ultrasonic energy will be given to the treatment site of the human body while changing the position like a spot.
  • the opening / closing means 13 is turned on in section B and one ultrasonic vibration is generated.
  • the stage 13 is turned on to apply driving power to the three ultrasonic transducers 3, 3, 3, and the following section E
  • Another switching means 13 is turned on to supply drive power to the three ultrasonic transducers 3, 3, 3,
  • drive power is provided to replace the plurality (in this case, three) of ultrasonic transducers 3. That is, in this case, an appropriate amount of ultrasonic energy is given to the treatment site of the human body while changing the position in a two-dimensional area.
  • the drive patterns of the ultrasonic transducers 3, 3,--3 shown in FIG. 6 and FIG. 7 are merely examples.
  • any driving pattern may be adopted as long as ultrasonic energy from 1 2 10 is not concentrated locally on the human body.
  • the ultrasonic transducers 3, 3 and--3 are one by one.
  • a plurality of ultrasonic transducers 3, 3 and -3 are in the same section.
  • the transducer switching unit 13 and the CPU 14 may be configured to be able to do so. In this way, various stimulation patterns can be obtained to obtain more effective treatment effects.
  • the drive periods of the respective ultrasonic transducers 3, 3 and -3 are all set to be the same.
  • the CPU 14 may be configured to variably adjust the 1 2 10 driving period, that is, the switching speed.
  • a section in which a specific ultrasonic transducer 3, 3 is driven eg, a section D, I, By setting M, ⁇ ⁇ ⁇ ⁇ to be longer than the other sections, more ultrasonic energy can be given to the treatment site in the approximate center of the sheet material 2.
  • the driving period is shorter than the other
  • the ultrasonic vibration is not effective in the drive switching time of the ultrasonic vibrators 3, 3, and -3.
  • the switching of the drive power to the ultrasonic transducers 3, 3, and-3 can be performed by a human being.
  • the driving order and driving period of each of the ultrasonic transducers 3, 3 and 3 are not regular.
  • the drive circuit unit 12 While the ultrasonic transducers 3, 3, and 3 are operating, the drive circuit unit 12 has a frequency f and an amplitude A.
  • a sine wave signal is output as drive power.
  • the frequency f and the amplitude A may be fixed throughout the operation of the ultrasonic vibrators 3, 3 and 3, but the input
  • the frequency f and the amplitude A of the driving power may be variable. In this way, while switching the drive of the ultrasonic transducers 3, 3, and 3, the intensity of the ultrasonic energy is appropriately changed.
  • it is longer than the timing of switching the vibration of the ultrasonic transducers 3, 3 and -3.
  • the ultrasonic transducers 3, 3 to 3 receive the signal control signal from the oscillation output control means 32 of the CPU 14.
  • the amplitude modulation may be performed to change the value of the amplitude A during 1 2 10 driving (oscillation) periods.
  • driving oscillation
  • the drive pattern is repeated every interval B to K, interval L to U, ...), and the period (about 1 to 10 seconds) longer than the repetition of this drive pattern is not synchronized.
  • the drive circuit unit 12 is configured to change the value of the amplitude A of the drive power in a sinusoidal manner.
  • the sawtooth wave is not synchronized with the entire drive pattern of the ultrasonic transducers 3, 3 and -3.
  • the value of the amplitude A of the drive power may be changed in a similar manner.
  • the intensity of the ultrasonic energy given to the living body can be changed gradually over a long period.
  • the drive circuit unit 12 may be configured such that the amplitude A of the drive power gradually increases as the supply start time of the drive power increases. In this way, when the drive of the ultrasonic transducers 3, 3 and -3 is switched, a strong stimulus is not applied, and
  • the ultrasonic transducers 3, 3,--3 can be obtained.
  • the vibration frequency is low, and ultrasonic energy penetrates deep into the living body. Conversely, if the frequency f of the driving power is increased, the vibration frequency of the ultrasonic transducers 3, 3, and 3 becomes high.
  • Ultrasonic energy reaches the deep part of the living body. That is, by variably controlling the frequency f of the driving power, it is possible to change the effective depth and position of the ultrasonic vibration and to prevent the ultrasonic energy from being concentrated at the same depth of the living body. .
  • the drive circuit unit 12 is configured such that the frequency f of the drive power gradually decreases as the power supply start time ends. In this way, from the shallow part of the living body to the deep part Stimulus can be applied while moving. Of course, if the frequency f is gradually increased in each of the sections B, C, ..., the stimulus is given by moving to the depth, partial force, and part of the living body.
  • amplitude modulation and frequency modulation are prepared by the oscillation output control means 32 of the CPU 14, and one of them can be selected by the manual operation of the input means 15 force. May be Further, control combining amplitude modulation and frequency modulation may be realized by the CPU 14.
  • the plurality of ultrasonic transducers 3, 3 and -3 are arranged in a plane.
  • the driving power from the driving circuit unit 12 may be changed as needed to one or more of the ultrasonic transducers 3, 3, and -3 so that the ultrasonic energy emitted from the ultrasonic probe 1 is not concentrated locally.
  • the ultrasonic probe 1 can be irradiated with an appropriate amount of ultrasonic waves over a wide area of the living body without powering the ultrasonic probe 1 so that the ultrasonic energy can not be given locally by the ultrasonic probe 1.
  • the treatment time can be shortened.
  • the ultrasonic transducers 3, 3, and ⁇ 3 may be provided one by one or in multiples, or
  • the vibrator switching unit 13 is configured to be able to vibrate all at the same time. In this case, if the number of vibrations of the ultrasonic transducers 3, 3 and -3 is small, the spot shape is The ultrasonic energy can be given while changing the position, and conversely, the ultrasonic transducers 3, 3, 3,
  • the same ultrasonic transducers 3, 3, and -3 force do not keep outputting ultrasonic energy for a long time.
  • ultrasonic energy can be prevented from being concentrated locally at the same position.
  • ultrasonic transducers 3, 3, and -3 can be swept faster than human movement
  • the ultrasonic transducers 3, 3, which vibrate at random speed and position.
  • the oscillator switching unit 13 is configured to be able to switch automatically. This
  • each ultrasonic transducer 3, 3, -3 can be vibrated in a wide range and in an average manner.
  • the CPU 14 has a function as an amplitude varying means for variably changing the amplitude A of the drive power of the drive circuit unit 12 in synchronization or asynchronously with the drive pattern. In this way, the intensity of the ultrasonic energy is appropriately changed while switching the driving of the ultrasonic vibrators 3, 3 and -3.
  • the amplitude A of the driving power is set during the operation of the ultrasonic transducers 3, 3, and-3.
  • the CPU 14 is provided with a function as an amplitude control unit that performs variable control.
  • the frequency f of the driving power is
  • the CPU 14 is provided with a function as frequency control means for variably controlling the frequency.
  • the effective depth of ultrasonic vibration or The vibration position can be changed, and ultrasonic energy can be prevented from being concentrated at the same depth of the living body.
  • the ultrasonic transducer 3 is operated at the same speed and position as when a person powered the ultrasonic probe.
  • the vibrator switching unit 13 is configured to switch the vibration of 3, 3 and -3.
  • the ultrasound probe 1 is actually at rest, it is possible to effectively stimulate the living body as if the person were moving the ultrasound probe 1.
  • the wiring between the transducer switching unit 13 with a large number of wires and each of the ultrasonic transducers 3, 3 and -3 can be Sound wave pro
  • It can be housed in a single unit and can provide highly reliable equipment.
  • the search mode by the frequency correction means 36 and the amplitude correction means 37 is executed.
  • the switching control signal is output to the driving vibrator switching unit 13 so that the driving power is supplied to only one drive signal, and the signal control signal for changing (scanning) the frequency f of the driving power from the driving circuit unit 12 is Output to 12. And during this scan, the ultrasonic transducer 3
  • the impedance of the ultrasonic transducer 3 is calculated from Ultrasonic transducer 3 sensed
  • the vibration frequency and the impedance are stored in the non-illustrated! ⁇ storage means.
  • the resonance frequency and impedance of each of the ultrasonic transducers 3, 3 and-3 are 2 in manufacturing.
  • one scan time is about 0.2 seconds.
  • the resonance frequency and impedance of the other ultrasonic transducers 3 and -3 are sensed and stored in storage means (not shown). And for all ultrasonic transducers 3, 3,--3, the values of resonant frequency and impedance are automatically detected.
  • the transducer switching unit 13 vibrates, for example, a specific ultrasonic transducer 3
  • the frequency correction means 36 memorizes the resonant frequency of the ultrasonic transducer 3 each time
  • the frequency f of the drive power is corrected to the optimum value.
  • the amplitude correction means 37 also reads out the impedance of the ultrasonic transducer 3 from the storage means and
  • the driving power having the optimum frequency f and the amplitude A is given each time for 2 2 10, and it becomes possible to generate ultrasonic waves efficiently with each of the ultrasonic transducers 3, 3 and -3.
  • each ultrasonic transducer 3, 3,-3 is placed in the air and attached to a living body.
  • the resonance frequency fluctuates due to temperature rise after mounting and the like. Therefore, even if the frequency f and the amplitude A of the drive power are corrected only during the period (tO to tl) at the start of operation, the ultrasonic energy generated by each of the ultrasonic transducers 3, 3, and -3 gradually decreases. .
  • the search mode is entered, and the resonant frequencies and impedances of all the ultrasonic transducers 3, 3, and -3 are changed in a short time (one
  • Ultrasonic transducer Search for about 0.2 seconds) (period from t2 to t3 and period from t4 to t5). Then, based on the search results, the frequency f and the amplitude A of the drive power are automatically corrected again, and even if the characteristics of each of the ultrasonic transducers 3, 3 and -3 gradually change, Ultrasonic transducer
  • the resonance frequency or the resonance frequency of the ultrasonic transducers 3, 3 and -3 is
  • Vibrator detection means 26 and CPU 14 as vibrator sensing means for sensing impedance, and correction means 36, 37 for correcting the frequency f or the amplitude A of the driving power based on the sensing result of the vibrator sensing means. are further equipped.
  • the ultrasonic transducers 3, 3, and-3 have a resonant frequency and an impedance of
  • Ultrasonic energy can be generated.
  • the constant time is determined.
  • the correction means 36 and 37 are configured to take in the sensing result from the transducer sensing means and correct the frequency f or the amplitude A of the drive power each time.
  • the ultrasonic transducers 3, 3,--3 gradually have their resonance frequency and impedance during operation.
  • the present invention can be variously modified and implemented within the scope of the gist of the present invention which is not limited to the above embodiments.
  • 5 ⁇ 2 10 ultrasonic transducers are arranged in a two-dimensional plane in the above embodiment, they may be configured by combinations of other numbers.
  • the ultrasonic transducers 3, 3, and -3 correspond to each other.
  • FIG. 1 is a schematic explanatory view showing an entire configuration of an ultrasonic biostimulation apparatus common to each example of the present invention.
  • FIG. 2 Same as above, is a block diagram showing a configuration of a drive circuit unit.
  • FIG. 3 Same as above, is a block diagram showing a functional configuration of a CPU.
  • FIG. 4 is a block diagram showing a configuration of a transducer switching unit and the periphery thereof as in the above.
  • FIG. 5 is a block diagram showing an embodiment of the vibration output unit.
  • FIG. 6 Same as above, is a timing chart showing the operation of each ultrasonic transducer.
  • ⁇ 7] is the timing chart showing the operation of each ultrasonic transducer of the example different from FIG. 6 as above.
  • FIG. 8 is a graph showing the relationship between the amplitude of a drive signal (drive power) and time.
  • FIG. 9 A graph showing the relationship between the amplitude and time of the drive signal of an example different from FIG. 8 of the same.
  • FIG. 10 is a graph showing the relationship between the frequency of the drive signal and time.
  • FIG. 11 A graph showing the relationship between the frequency and the time of the drive signal of the example different from FIG. 10 as above.
  • FIG. 12 is a timing chart showing the operation state at the time of use.
  • FIG. 13 It is a block diagram of an essential part showing another modification.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

 本発明の超音波生体刺激装置は、複数の超音波振動子31,32,…310を平面状に配置し、これらの超音波振動子31,32,…310を生体に固定した状態で取付ける超音波プローブ1と、各超音波振動子31,32,…310への駆動電力を生成する駆動手段としての駆動回路部12と、超音波プローブ1の各超音波振動子31,32,…310から発する超音波エネルギーが局部的に集中しないレベルとなるように、駆動回路部12からの駆動電力を複数の超音波振動子31,32,…310に対し切替えて供給する切替手段としての振動子切替部13と、を備えている。

Description

明 細 書
超音波生体刺激装置
技術分野
[0001] 本発明は、生体に装着した超音波プローブ力 の超音波振動により、生体を刺激 する超音波生体刺激装置に関する。
背景技術
[0002] 一般に、この種の超音波生体刺激装置は、生体の治療部位に装着した超音波プロ 一ブにー乃至複数の超音波振動子が配設され、この振動子から発する超音波振動 により、当該治療部位を刺激する。具体的には、例えば特許文献 1などに開示される ように、複数の超音波振動子を備えた超音波プローブが、本体側の駆動回路部と着 脱自在に接続され、駆動回路部力 供給される駆動電力により、各超音波振動子が 発振して生体に超音波が照射されるようになって!/、る。
[0003] ところで、治療部位に当てた超音波プローブ力 の超音波の照射量が過大になると 、その部分が発熱して疼痛を感じたり、火傷を起こすなどの懸念を生じる。そのため、 こうした疼痛予防や火傷防止のために、治療中に施術者が絶えず超音波プローブを 広い範囲に動力さなければならな力つた。
[0004] このような問題に対して、別な特許文献 2には、少なくともその一部の位置力 相互 に三次元的に変更自在となるように、複数の超音波振動子を平面状に配置すること で、生体の広い範囲に超音波を照射する際に、施術者への負担を軽減できる装置 が開示されている。さらにここでは、複数の超音波振動子を同時に駆動させたときに 、各振動子力 の音場が不必要に重なり合って、その部分で超音波の照射量が過大 になるのを防ぐために、それぞれ異なる駆動系により駆動される振動子群を巿松模 様に配置し、各振動子群を相互に逆のタイミングでオン Zオフ駆動させて、超音波の 照射量を平均化させる考えも示されて 、る。
特許文献 1:特開 2005 - 28027号公報
特許文献 2:国際公開 WO01Z89723号公報
発明の開示 発明が解決しょうとする課題
[0005] 上記特許文献 2では、複数の超音波振動子を広範囲に配置することで問題の解決 を図っているが、超音波プローブ力 の超音波の照射量を平均化させたとしても、超 音波プローブを生体に沿ってある程度動力さなければ、やはり患者が疼痛を感じたり
、さらには火傷を起こす懸念を払拭できない。さらに、患者の治療部位が、例えばひ ざや腹など複数箇所に及んでいると、その分だけ超音波プローブを動かす範囲も広 がって、治療時間が長くなる問題を引き起こす。
[0006] そこで本発明は、施術者がわざわざ超音波プローブを動力さなくても、生体の広い 範囲に適切な量の超音波を照射でき、治療時間を短縮できる超音波生体刺激装置 を提供することをその目的とする。
課題を解決するための手段
[0007] 本発明の超音波生体刺激装置は、複数の超音波振動子を平面状に配置し、これら の超音波振動子を生体に固定した状態で取付ける超音波プローブと、前記各超音 波振動子への駆動電力を生成する駆動手段と、前記超音波プローブから発する超 音波エネルギーが局部的に集中しな 、レベルで、前記駆動手段からの駆動電力を 複数の超音波振動子に対し切替えて供給する切替手段と、を備えている。
[0008] この場合、平面状に配置した各超音波振動子を生体に固定した状態で、超音波プ ローブ力 発する超音波エネルギーが局部的に集中しないレベルで、駆動手段から の駆動電力が超音波振動子に対して随時切替ながら与えられる。そのため、超音波 プローブから局部的に集中して超音波エネルギーが与えられることがなぐ超音波プ ローブをわざわざ動かさずに、生体の広い範囲に適切な量の超音波を照射でき、治 療時間の短縮ィ匕を図ることができる。
[0009] また本発明の超音波生体刺激装置は、前記超音波振動子を一つずつまたは複数 ずつ、或いは全数同時に振動させることができるように、前記切替手段を構成してい る。
[0010] この場合、超音波振動子を振動させる数が少なければ、その分スポット状に位置を 変えながら超音波エネルギーを与えることができ、逆に超音波振動子を振動させる数 が多ければ、二次元エリア状に超音波エネルギーを与えることができる。そのため、 超音波プローブを生体に装着したまま、超音波振動を与える範囲を自由に可変する ことができ、刺激のパターンが多様ィ匕して、より効果的な施術効果を得ることが可能 になる。
[0011] また本発明の超音波生体刺激装置は、前記切替手段による切替回数を 1秒当たり
100回以上としたことを特徴とする。
[0012] この場合、同じ超音波振動子力 長時間超音波エネルギーが出力され続けないよ うにして、局部的に同じ位置で超音波エネルギーが集中しな 、ようにすることができ る。また、人が動かす速さよりも高速で超音波振動子を掃引できるので、新たな治療 方法,治療効果も期待できる。
[0013] また本発明の超音波生体刺激装置は、ランダムな速さと位置で、前記超音波振動 子の振動を自動的に切替えるように、前記切替手段を構成して!/、る。
[0014] この場合、特定の超音波振動子だけが長期間振動するなどの弊害が一掃され、各 超音波振動子を広範囲に且つ平均的に振動させることができる。
[0015] また本発明の超音波生体刺激装置は、前記駆動電力の振幅を可変させる振幅可 変手段を備えている。
[0016] こうすれば、超音波振動子の駆動を切替ながら、超音波エネルギーの強さを適宜 変化させることが可能になり、刺激状態を時間と位置に応じて変えることができる。
[0017] また本発明の超音波生体刺激装置は、前記超音波振動子の振動中に、前記駆動 電力の振幅を可変制御する振幅制御手段を備えて 、る。
[0018] この場合、超音波振動子の振動中に、超音波エネルギーの強さをランダム若しくは 規則的に変化させることができ、超音波エネルギーによる刺激のノ リエーシヨンを持 たせることが可能になる。
[0019] また本発明の超音波生体刺激装置は、前記超音波振動子の振動中に、前記駆動 電力の周波数を可変制御する周波数制御手段を備えている。
[0020] この場合、駆動電力の周波数を可変制御することで、超音波振動の有効深度や振 動位置に変化を与えることができ、生体の同じ深さで超音波エネルギーが集中して 与えられるのを防止できる。
[0021] また本発明の超音波生体刺激装置は、人が超音波プローブを動かしたときと同じよ うな速さと位置で、前記超音波振動子の振動を切替えるように、前記切替手段を構成 している。
[0022] この場合、実際には超音波プローブは静止して 、るものの、あた力も人が超音波プ ローブを動かしているかのように、生体に対し効果的に刺激を与えることができる。
[0023] また本発明の超音波生体刺激装置は、前記切替手段を前記超音波プローブに組 み込んだことを特徴とする。
[0024] この場合、配線数の多い切替手段と各超音波振動子との間の配線を、超音波プロ ーブ内に収容することができ、信頼性の高い装置を提供できる。
[0025] また本発明の超音波生体刺激装置は、前記超音波振動子の共振周波数またはィ ンピーダンスを感知する振動子感知手段と、この振動子感知手段からの感知結果に 基づき、前記駆動電力の周波数または振幅を補正する補正手段と、をさらに備えて いる。
[0026] この場合、超音波振動子は製造的に共振周波数やインピーダンスのバラツキが避 けられないが、振動子感知手段によって超音波振動子の共振周波数またはインピー ダンスを感知し、その感知結果に応じて駆動電力の周波数または振幅を適切に補正 できるので、超音波振動子力も効率よく超音波エネルギーを発生させることができる。
[0027] また本発明の超音波生体刺激装置は、前記超音波振動子が動作中のときに、一 定時間毎に前記振動子感知手段から感知結果を取り込み、前記駆動電力の周波数 または振幅を補正するように、前記補正手段を構成して!/、る。
[0028] 超音波振動子は、動作中にその共振周波数やインピーダンスが徐々に変化するの で、一定時間毎に超音波振動子の共振周波数やインピーダンスの変動を捕え、その 変動に見合う駆動電力の周波数や振幅の補正を行なうことで、長時間の使用に際し ても効率よく超音波エネルギーを発生させることができる。
発明の効果
[0029] 本発明の超音波生体刺激装置によれば、施術者がわざわざ超音波プローブを動 力さなくても、生体の広い範囲に適切な量の超音波を照射でき、治療時間を短縮で さる
発明を実施するための最良の形態 [0030] 以下、添付図面を参照しながら、本発明における超音波生体刺激装置の好ま 、 実施例を説明する。
[0031] まず、装置の基本構成を図 1に基づいて説明する。同図において、 1は生体である 人体などに接触する超音波プローブであり、これは超音波を伝達できる金属,榭脂, 若しくは柔軟性を有するゴムなどのシート素材 2 (超音波伝導物質)の一側面 2Aに、 複数の超音波振動子 3 (3 , 3 , -3 )を平面状に配置し、さらにこれらの超音波振
1 2 10
動子 3 , 3 , -3 のぞれぞれに対して駆動電力を供給する配線ケーブル 4を接続し
1 2 10
て構成される。なお、シート素材 2に貼付される超音波振動子 3の数は 2個以上幾つ あっても構わない。また、超音波プローブ 1や超音波振動子 3の形状や大きさは、用 途に応じて適宜変更してよぐ特に限定されるものではない。そして、超音波振動子 3 を設けて!/ヽな 、シート素材 2の平坦な他側面 2Bは、生体への貼付面として形成され る。
[0032] 10は例えば箱状に形成された本体であって、この本体 10に取付けられたコネクタ 11 には前記超音波プローブ 1が着脱自在に接続される。本体 10の内部は、超音波振動 子 3の駆動源となる駆動手段たる駆動回路部 12と、この駆動回路部 12からの駆動電 力を超音波振動子 3 , 3 , -3 に対し順次切替えて供給する切替手段としての振動
1 2 10
子切替部 13と、前記駆動回路部 12や振動子切替部 13を制御する制御手段としての CPU14とを備えている。また CPU14の入力ポートには、摺動若しくは押動可能なス イッチなど力もなる入力手段 15が接続されると共に、出力ポートには音や表示などを 行なうための報知手段 16 (音出力手段や表示手段)が接続される。図 1では、所望の 超音波振動子 3 , 3 , -3 を駆動させるための切替制御信号が、 CPU14から駆動
1 2 10
回路部 12を経由して振動子切替部 13に送り出されているが、 CPU14力 振動子切 替部 13に切替制御信号を直接送り出す構成としてもよい。
[0033] 一つの好ましい変形例として、前記振動子切替部 13は本体 10にではなぐ超音波 プローブ 1に組み込まれる。振動子切替部 13は、それぞれの超音波振動子 3 , 3 ,
1 2
•••3 の動作を切替えるものであるため、超音波振動子 3との間には、この超音波振
10
動子 3の数に見合う配線が必要となるが、振動子切替部 13が超音波プローブ 1側に 設けられていれば、本体 10との接続ケーブルの配線数を少なくでき、信頼性の高い 装置を提供できる。
[0034] 図 2に基づいて、駆動回路部 12の構成をより詳しく説明すると、ここには発振器 21を 備えた信号発生部 22と、信号発生部 22からの発振出力を電力増幅して、超音波振 動子 3を動作し得る駆動電力の信号 (駆動信号)に変換する電力増幅部 23と、 CPU 14からの周波数制御信号を受けて、前記発振出力ひいては駆動信号の周波数を可 変設定する周波数設定手段 24と、 CPU14からの振幅制御信号を受けて、発振出力 ひいては駆動信号の振幅を可変設定する振幅設定手段 25と、各超音波振動子 3 ,
1
3 , -3 に流れる電流を検出して、その検出結果を CPU14に出力する振動子検出
2 10
手段 26と、を備えている。ここで用いる信号発生部 22は、温度などの影響を受けにく V、安定性の高 、発振出力を得るために、 PLL (Phase
Locked Loop)発振回路を備えたものが好ましい。
[0035] 図 3は、 CPU14の機能的な構成を示したものである。 CPU14は、基準のクロック信 号を生成して CPU14内の各手段に出力するタイマ手段 31と、信号発生部 22を制御 するための発振出力制御手段 32と、振動子切替部 13ひいては超音波振動子 3 , 3 ,
1 2
•••3 の駆動を制御するための振動子切替制御手段 33と、を備えて構成される。発振
10
出力制御手段 32は、信号発生部 22からの発振出力の周波数や振幅を設定するため の信号制御信号を、周波数設定手段 24や振幅設定手段 25に出力する。この信号制 御信号を受けて、周波数設定手段 24が発振出力の周波数を設定すると共に、振幅 設定手段 25が発振出力の振幅を設定する構成となっている。また振動子切替制御 手段 33は、どの超音波振動子 3 , 3 , -3 を駆動させるのかを示す切替制御信号を
1 2 10
振動子切替部 13に出力するもので、この切替制御信号を受けて振動子切替部 13は 、一個ずつ,または複数個ずつ,さもなければ全個の超音波振動子 3 , 3 , -3 に
1 2 10 対して、一定時間若しくはランダムな時間毎に駆動信号を与えるようになって 、る。
[0036] 一つの例として、信号発生部 22は施術中に一貫して固定の周波数および Zまたは 振幅を有する発振出力を、電力増幅部 23に供給する構成であってもよい。その場合 、周波数設定手段 24や振幅設定手段 25は CPU14からの信号制御信号を受ける必 要はなくなる。また別な例として、施術者が任意に発振出力の周波数および Zまたは 振幅を変更できるように、入力手段 15からの入力操作に応じた信号制御信号が、 CP U14力 周波数設定手段 24および Zまたは振幅設定手段 25に出力される構成として もよい。こうすれば、施術者が入力手段 15の特定のスィッチなどを操作する毎に、発 振出力ひ!、ては駆動信号の周波数や振幅を自由に可変できるようになる。
[0037] 本実施例における発振出力制御手段 32は、振動子切替部 13によって一つの超音 波振動子 3が駆動しているときに、前記振動子検出手段 26からの検出結果に基づき 、その超音波振動子 3の共振周波数を感知し、信号発生部 22から発生する発振出力 の周波数が最適な値となるように補正する周波数補正手段 36と、振動子切替部 13に よって一つの超音波振動子 3が駆動しているときに、前記振動子検出手段 26からの 検出結果に基づき、その超音波振動子 3のインピーダンスを感知し、信号発生部 22 力 発生する発振出力の振幅が最適な値となるように補正する振幅補正手段 37を備 えている。これらの補正手段 36, 37は、必要に応じてその一方だけを備えていてもよ い。
[0038] その他に CPU14は、好ましい超音波振動子 3 , 3 , -3 の切替順序や、駆動電力
1 2 10
の振幅 Aや周波数 fからなる複数の駆動パターンを記憶する駆動パターン記憶手段 38を備えている。 CPU14は、入力手段 15からの操作によって、駆動パターン記憶手 段 38から特定の駆動パターンを呼出し、この駆動パターンに従って超音波振動子 3
1
, 3 , -3 の振動を切替えると共に、駆動回路部 12に対して駆動電力の振幅 Aや周
2 10
波数 fを決定する。特にここでは、人が超音波プローブを動力した時と同じような速さ と位置で、超音波振動子 3 , 3 , -3 の振動を切替える駆動パターンが記憶されて
1 2 10
いる。
[0039] 次に、本実施例における振動子切替部 13の構成について、図 4を参照しながら説 明する。この実施例では、 1つの発振器 21を有する単一の駆動回路部 12から、各超 音波振動子 3 , 3 , -3 に分岐して駆動電力が送り出されるようになっており、駆動
1 2 10
電力の各分岐ライン 5 , 5 , -5 に、振動子切替部 13の開閉手段 13 , 13 , -13 が
1 2 10 1 2 10 それぞれ挿入接続されている。ここでいう開閉手段 13 , 13 , 〜13 は、例えばリレー
1 2 10
などの機械的接点を備えたものや、半導体スィッチのような電気的接点を備えたもの で構成される。本実施例では、 CPU14力 の切替制御信号によって、超音波振動子 3 , 3 , - --3 の駆動を個別にオン Zオフできるようになつている。 [0040] 図 5は、種々の変形例を示したものである。上記図 4に示す振動子切替部 13から超 音波振動子 3に至る各部は、生体に振動を与える振動出力部 8として構成される。図 5に示すものは、制御手段である CPU14に、複数の振動出力部 8 , 8 , 8…を接続
1 2 3 したもので、この場合は患者の症状にあわせて、複数の治療部位 (例えば、肩,腰, 膝などを同時に)に超音波プローブ 1をそれぞれ装着することができる。好ましくは、 それぞれの振動出力部 8 , 8 , 8…にある超音波プローブ 1を、本体 10から着脱でき
1 2 3
るようにすれば、施術中に使用しない超音波プローブ 1を片付けておくことができる。
[0041] 次に、上記構成についてその作用を説明する。治療を行なうに際しては、予めシー ト素材 2の他側面 2Bを治療部位に貼り付け、図示しな 、ベルトなどによって超音波プ ローブ 1を人体に装着固定する。なお、図 5に示すような複数の振動出力部 8 , 8 , 8
1 2
3 …を有する装置では、複数の治療部位に超音波プローブ 1をそれぞれ装着固定す ることがでさる。
[0042] こうして人体への超音波プローブ 1の装着固定が完了した後で、入力手段 15の操 作により駆動パターン記憶手段 38から特定の駆動パターンを呼出し、入力手段 15の 例えばスタートスィッチを押すと、本体 10内の各部が動作開始して駆動回路部 12の 信号発生部 22から電力増幅部 23に発振出力が供給され、この電力増幅部 23から超 音波振動子 3 , 3 , -3 を振動させるのに十分な電力の駆動信号が発生する。また
1 2 10
振動子切替部 13は、超音波プローブ 1を人体に固定した状態で、当該超音波プロ一 ブ 1から発する超音波エネルギーが局部的に集中しないように、 CPU14からの切替 制御信号を受けて、複数の超音波振動子 3 , 3 ,
1 2 ー3 への駆動電力の供給を、順
10
次またはランダムに切替える。これは例えば図 6に示す様に、各超音波振動子 3 , 3
1 2
, -3 に対して一つずつ順に駆動電力を供給するようにしてもよいし、図 7に示す様
10
に、直前若しくは直後に駆動する超音波振動子 3 , 3 , -3 と部分的に重なり合うよ
1 2 10
うにして、駆動電力を供給するようにしてもよい。
[0043] 図 6に示す例では、区間 Bにおいて開閉手段 13がオンして単独の超音波振動子 3
1 1 に駆動電力が与えられ、次の区間 Cにおいて開閉手段 13がオンして単独の超音波
2
振動子 3に駆動電力が与えられ、以下同様に他の超音波振動子 3 -13 に順次駆
2 3 10 動電力が与えられるようになつている力 どの順番に開閉手段 13 , 13 , - --13 をオン させるのかについては限定しない。また、一つの超音波振動子 3 , 3 , - --3 への駆
1 2 10 動電力の供給が遮断されてから、次の超音波振動子 3 , 3 , -3 が駆動するまで、
1 2 10
タイムラグを設けるようにして、より生体への安全性を高めるようにしてもよい。この場 合、人体の治療部位に対して、スポット状に位置を変えながら適切な量の超音波ェ ネルギ一が与えられることになる。
[0044] 一方、図 7に示す例では、区間 Bにおいて開閉手段 13がオンして 1つの超音波振
1
動子 3に駆動電力が与えられ、次の区間 Cにおいて開閉手段 13力引き続きオンす
1 2
ると共に、別な開閉手段 13がオンして 2つの超音波振動子 3 , 3に駆動電力が与え
3 2 3
られ、次の区間 Dにおいて開閉手段 13 , 13力引き続きオンすると共に、別な開閉手
2 3
段 13がオンして 3つの超音波振動子 3 , 3 , 3に駆動電力が与えられ、次の区間 E
4 2 3 4
において開閉手段 13がオフする一方で、開閉手段 13 , 13は引き続きオンし、さらに
2 3 4
別な開閉手段 13がオンして 3つの超音波振動子 3 , 3 , 3に駆動電力が与えられ、
5 3 4 5
以下、同様にその後の各区間で、複数 (この場合は 3つ)の超音波振動子 3に代わる 代わる駆動電力が与えられる。すなわちこの場合は、人体の治療部位に対して、二 次元エリア状に位置を変えながら適切な量の超音波エネルギーが与えられることに なる。
[0045] 図 6や図 7に示す超音波振動子 3 , 3 , - --3 の駆動パターンは、あくまでも一例に
1 2 10
過ぎず、人体に超音波プローブ 1を固定した状態で、超音波振動子 3 , 3 , -3
1 2 10か らの超音波エネルギーが人体に対して局部的に集中しなければ、どのような駆動パ ターンを採用してもよい。例えば、図 6では、超音波振動子 3 , 3 , - --3 を一つずつ
1 2 10
振動させているが、図 7に示すように複数の超音波振動子 3 , 3 , -3 を同じ区間内
1 2 10
で振動させたり、または全ての超音波振動子 3 , 3 , -3 を同時に振動させることも
1 2 10
できるように、振動子切替部 13や CPU14を構成してもよい。こうすれば、刺激のバタ ーンが多様ィ匕して、より効果的な施術効果を得ることができる。
[0046] また図 6や図 7では、各超音波振動子 3 , 3 , -3 の駆動期間が全て同じに設定さ
1 2 10
れているが、例えば入力手段力もの操作によって、各超音波振動子 3 , 3 , -3 の
1 2 10 駆動期間すなわち切替速度を可変調整できるように、 CPU14を構成してもよい。例 えは、図 6において特定の超音波振動子 3 , 3が駆動する区間(例えば区間 D, I, M, · · ·)を、他の区間よりも長く設定すれば、シート素材 2のほぼ中央部において、よ り大きな超音波エネルギーを治療部位に与えることができる。逆に、治療に必要のな い部位にある例えば超音波振動子 3 , 3 に対しては、その駆動期間を他よりも短く
1 10
設定することで、無駄な超音波エネルギーの発生を防止できる。なお、超音波振動 子 3 , 3 , -3 の駆動切替時間は、電気的な切替を行なう場合に、超音波振動が阻
1 2 10
害されな 、振動可能時間以上であれば特に限定されな 、。
[0047] 因みに、この超音波振動子 3 , 3 , -3 に対する駆動電力の切替は、人が従来の
1 2 10
超音波プローブを動かすことができない速さ(例えば 1秒間に 100回以上)で行なう のが望ましい。その理由は、駆動電力の切替速度が遅くなると、それだけ同じ超音波 振動子 3 , 3 , -3 力も長時間超音波エネルギーが出力され続けて、当該超音波ェ
1 2 10
ネルギ一が局部的に集中しやすくなるからである。また、人が動かす速さよりも高速 で掃引できるので、新たな治療方法,治療効果も期待できる。
[0048] さらに、各超音波振動子 3 , 3 , ー3 の駆動順位や駆動期間を規則的にではなく
1 2 10
、ランダムに行なうようにして、超音波プローブ 1に設けた各超音波振動子 3 , 3 , · ··
1 2
3 を広範囲に且つ平均的に振動させるようにしてもよ!、。
10
[0049] 超音波振動子 3 , 3 , -3 が動作している間、駆動回路部 12は周波数 f,振幅 Aの
1 2 10
正弦波信号を駆動電力として出力する。これらの周波数 fや振幅 Aは、超音波振動 子 3 , 3 , -3 が動作する全期間において、終始固定されていてもよいが、入力手
1 2 10
段 15からの手動操作によって、若しくは駆動する超音波振動子 3 , 3 , -3 に応じ
1 2 10 て、駆動電力の周波数 fや振幅 Aを可変できる構成としてもよい。こうすれば、超音波 振動子 3 , 3 , -3 の駆動を切替ながら、超音波エネルギーの強さを適宜変化させ
1 2 10
て、刺激状態を時間と位置に応じて変えることが可能になる。
[0050] 一つの例として、超音波振動子 3 , 3 , -3 の振動を切替えるタイミングよりも長い
1 2 10
周期 (最大値から最小値まで 5秒程度)で、駆動電力の周波数 fや振幅 Aを緩やかに 変化させることも可能である。
[0051] さらに、超音波エネルギーによる刺激のバリエーションを持たせるために、 CPU14 の発振出力制御手段 32からの信号制御信号を受けて、超音波振動子 3 , 3 , 〜3
1 2 10 の駆動 (振動)期間中に振幅 Aの値を変化させる振幅変調を行なってもよ 、。例えば 図 6に示す例では、図 8に示すように、超音波振動子 3 , 3 , -3 全体の駆動パター
1 2 10
ン (この場合、区間 B〜K,区間 L〜U,…毎に、駆動パターンが繰り返される)とは同 期せずに、この駆動パターンの繰返しよりも長い周期(1秒〜 10秒程度)で、正弦波 状に駆動電力の振幅 Aの値を変化させるように、駆動回路部 12を構成する。また図 9 に示すように、超音波振動子 3 , 3 , -3 全体の駆動パターンとは非同期に、鋸波
1 2 10
状に駆動電力の振幅 Aの値を変化させてもよい。いずれの場合も、生体に与える超 音波エネルギーの強さを、長時間の周期で緩やかに変化させることができる。また、 図 8や図 9のように、超音波振動子 3 , 3 , -3 全体の駆動パターンとは非同期に、
1 2 10
振幅 Aの変化をさせたり、或いは振幅 Aの変化するパターンをよりランダムにすること で、生体に対するエネルギーの集中を避けることができる。
[0052] さらに図示しないが、例えば超音波振動子 3 , 3 , -3 が駆動する各区間 B, C,
1 2 10
…において、駆動電力の供給開始時力 供給終了時に向かうに従って、駆動電力の 振幅 Aが徐々に大きくなるように、駆動回路部 12を構成してもよい。こうすると、超音 波振動子 3 , 3 , -3 の駆動が切り替わる際に、強い刺激が加わらず、治療者にと
1 2 10
つて心地よ 、刺激を得ることができる。
[0053] また、これとは別に、 CPU14の発振出力制御手段 32からの信号制御信号を受けて 、超音波振動子 3 , 3 , -3 の駆動 (振動)期間中に周波数 fの値を変化させる周波
1 2 10
数変調を行なってもよい。超音波振動子 3 , 3 , -3
1 2 10が共振可能な周波数はある程 度の幅があるので、駆動電力の周波数 fを低くすれば、超音波振動子 3 , 3 , - --3 の
1 2 10 振動周波数は低くなつて、生体の深部にまで超音波エネルギーが侵入し、逆に駆動 電力の周波数 fを高くすれば、超音波振動子 3 , 3 ,ー3 の振動周波数は高くなつ
1 2 10
て、生体の深部に超音波エネルギーが届きに《なる。すなわち、駆動電力の周波数 fを可変制御することで、超音波振動の有効深度や振動位置に変化を与え、生体の 同じ深さで超音波エネルギーが集中して与えられるのを防止することができる。
[0054] こうした周波数変調の一例として、例えば図 6に示す駆動パターンで、図 10に示す ように、超音波振動子 3 , 3 , -3 が駆動する各区間 B, C,…において、駆動電力
1 2 10
の供給開始時力 供給終了時に向かうに従って、駆動電力の周波数 fが徐々に低く なるように、駆動回路部 12を構成する。こうすると、生体の浅い部分から深い部分へと 移動させながら刺激を加えることができる。勿論、各区間 B, C,…で周波数 fを徐々 に高く変化させれば、刺激は生体の深 、部分力 浅 、部分へと移動して与えられる
[0055] また別な周波数変調の例として、図 11に示すように、各区間 B, C,…のほぼ中間 の時点で、駆動電力の周波数 Aが最も低くなるような変調を行なわせてもよい。こうす れば、各区間 B, C,…の前半において、生体の浅い部分から深い部分へと刺激が 移動し、その後は再び浅い部分へと刺激が移動して、効果的に刺激を与えることが できる。
[0056] なお、上記振幅変調や周波数変調のバリエーションを CPU14の発振出力制御手 段 32で幾つか用意し、入力手段 15力 の手動操作によって、その中の一つを選択で きるように構成してもよい。また、振幅変調と周波数変調を組み合わせた制御を CPU 14で実現してもよい。
[0057] 以上のように本実施例では、複数の超音波振動子 3 , 3 , -3 を平面状に配置し
1 2 10
、これらの超音波振動子 3 , 3 , -3 を生体に固定した状態で取付ける超音波プロ
1 2 10
ーブ 1と、各超音波振動子 3 , 3 , -3 への駆動電力を生成する駆動手段としての
1 2 10
駆動回路部 12と、超音波プローブ 1の各超音波振動子 3 , 3 , -3 から発する超音
1 2 10
波エネルギーが局部的に集中しないレベルとなるように、駆動回路部 12力もの駆動 電力を複数の超音波振動子 3 , 3 , -3 に対し切替えて供給する切替手段としての
1 2 10
振動子切替部 13と、を備えている。
[0058] この場合、平面状に配置した各超音波振動子 3 , 3 , -3 を生体に固定した状態
1 2 10
で、超音波プローブ 1から発する超音波エネルギーが局部的に集中しないように、駆 動回路部 12からの駆動電力が一乃至複数の超音波振動子 3 , 3 , -3 に対し随時
1 2 10 切替ながら与えられる。そのため、超音波プローブ 1から局部的に集中して超音波ェ ネルギ一が与えられることがなぐ超音波プローブ 1をわざわざ動力さずに、生体の広 い範囲に適切な量の超音波を照射でき、治療時間の短縮ィ匕を図ることができる。
[0059] また本実施例では、超音波振動子 3 , 3 , -3 を一つずつまたは複数ずつ、或い
1 2 10
は全数同時に振動させることができるように、振動子切替部 13を構成している。この 場合、超音波振動子 3 , 3 , -3 を振動させる数が少なければ、その分スポット状に 位置を変えながら超音波エネルギーを与えることができ、逆に超音波振動子 3 , 3 ,
1 2
•••3 を振動させる数が多ければ、二次元エリア状に超音波エネルギーを与えること
10
ができる。そのため、超音波プローブ 1を生体に装着したまま、超音波振動を与える 範囲を自由に可変することができ、刺激のパターンが多様ィ匕して、より効果的な施術 効果を得ることが可能になる。
[0060] また、振動子切替部 13による切替回数を 1秒当たり 100回以上とすることで、同じ超 音波振動子 3 , 3 , -3 力 長時間超音波エネルギーが出力され続けないようにし
1 2 10
て、局部的に同じ位置で超音波エネルギーが集中しないようにすることができる。ま た、人が動かす速さよりも高速で超音波振動子 3 , 3 , -3 を掃引できるので、新た
1 2 10
な治療方法,治療効果も期待できる。
[0061] その他、本実施例では、ランダムな速さと位置で、振動する超音波振動子 3 , 3 ,
1 2
•••3 を自動的に切替えることができるように、振動子切替部 13を構成している。こうす
10
ると、特定の超音波振動子 3 , 3 , -3 だけが長期間振動するなどの弊害が一掃さ
1 2 10
れ、各超音波振動子 3 , 3 , -3 を広範囲に且つ平均的に振動させることができる。
1 2 10
[0062] また本実施例では、例えば入力手段 15力 の操作があったり、駆動する超音波振 動子 3 , 3 , -3 が切り替わったり、さもなければ超音波振動子 3 , 3 , -3 全体の
1 2 10 1 2 10 駆動パターンと同期若しくは非同期に、駆動回路部 12力 の駆動電力の振幅 Aを可 変させる振幅可変手段としての機能を、 CPU14が備えている。こうすれば、超音波振 動子 3 , 3 , -3 の駆動を切替ながら、超音波エネルギーの強さを適宜変化させる
1 2 10
ことが可能になり、刺激状態を時間と位置に応じて変えることができる。
[0063] また本実施例では、超音波振動子 3 , 3 , - --3 の動作中に、駆動電力の振幅 Aを
1 2 10
可変制御する振幅制御手段としての機能を、 CPU14に備えて 、る。
[0064] この場合、超音波振動子 3 , 3 , - --3 の動作中に、超音波エネルギーの強さをラン
1 2 10
ダム若しくは規則的に変化させることができ、超音波エネルギーによる刺激のノリエ ーシヨンを持たせることが可能になる。
[0065] また本実施例では、超音波振動子 3 , 3 , -3 の動作中に、駆動電力の周波数 f
1 2 10
を可変制御する周波数制御手段としての機能を、 CPU14に備えて 、る。
[0066] この場合、駆動電力の周波数 fを可変制御することで、超音波振動の有効深度や 振動位置に変化を与えることができ、生体の同じ深さで超音波エネルギーが集中し て与えられるのを防止できる。
[0067] また本実施例では、例えば駆動パターン記憶手段 38に記憶された特定の駆動バタ ーンによって、人が超音波プローブを動力したときと同じような速さと位置で、超音波 振動子 3 , 3 , -3 の振動を切替えるように、振動子切替部 13を構成している。
1 2 10
[0068] この場合、実際には超音波プローブ 1は静止しているものの、あた力も人が超音波 プローブ 1を動かしているかのように、生体に対し効果的に刺激を与えることができる
[0069] さらに、振動子切替部 13を超音波プローブ 1側に組み込むことによって、配線数の 多い振動子切替部 13と各超音波振動子 3 , 3 , -3 との間の配線を、超音波プロ
1 2 10 一 ブ 1内に収容することができ、信頼性の高!、装置を提供できる。
[0070] 次に、図 3で示した周波数補正手段 36と振幅補正手段 37の動作について、図 12を 参照しながら説明する。同図において、時点 tOで入力手段 15のスタートスィッチを押 し、装置の動作開始を指示すると、 CPU14は上述した各超音波振動子 3 , 3 , -3
1 2 10 を切替動作させる通常動作モードに先立ち、周波数補正手段 36や振幅補正手段 37 によるサーチモードを実行する。このサーチモードでは、一つの超音波振動子 3に
1 のみ駆動電力が与えられるように、駆動振動子切替部 13に切替制御信号を出力する と共に、駆動回路部 12からの駆動電力の周波数 fを変化 (スキャン)させる信号制御 信号を、駆動回路部 12に出力する。そしてこのスキャン中に、超音波振動子 3に流
1 れる電流を振動子検出手段 26で検出し、当該電流が最大となった時点の駆動電力 の周波数 fを、超音波振動子 3の共振周波数として感知すると同時に、その電流値
1
から超音波振動子 3のインピーダンスを算出する。感知された超音波振動子 3の共
1 1 振周波数とインピーダンスは、図示しな!ヽ記憶手段に記憶される。
[0071] ここで、各超音波振動子 3 , 3 , -3 の共振周波数やインピーダンスは、製造上 2
1 2 10
割程度のバラツキがあるが、ある程度予測される中心値は判っているので、サーチモ ードの時間短縮のために、この予測中心値を前後して駆動電力の周波数 fをスキャン させるのが好ましい。一例として、スキャン時間は 1個につき 0. 2秒程度となる。
[0072] 同様にして、他の超音波振動子 3 , -3 についても、その共振周波数とインピーダ ンスが感知され、それぞれ図示しない記憶手段に記憶される。そして、全ての超音波 振動子 3 , 3 , - --3 について、共振周波数とインピーダンスの値が自動的に感知さ
1 2 10
れると、通常動作モードに移行する(時点 tl)。
[0073] 通常動作モードでは、振動子切替部 13により特定の例えば超音波振動子 3を振動
1 させる毎に、周波数補正手段 36によってその超音波振動子 3の共振周波数が記憶
1
手段から読み出され、駆動電力の周波数 fが最適値に補正される。同様に、振幅補 正手段 37もその超音波振動子 3のインピーダンスを記憶手段から読み出し、駆動電
1
力の振幅 Aを最適値に補正する。こうして、振動する各超音波振動子 3 , 3 , -3 に
1 2 10 ついて、最適な周波数 fと振幅 Aを有する駆動電力がその都度与えられ、各超音波 振動子 3 , 3 , -3 力 効率よく超音波を発生させることが可能になる。
1 2 10
[0074] ところで、各超音波振動子 3 , 3 , -3 は空中に置いた場合と、生体への装着時
1 2 10
および装着後の温度上昇などにより、その共振周波数が変動する。そのため、動作 開始時の期間(tO〜tl)にのみ駆動電力の周波数 fや振幅 Aの補正を行なっても、各 超音波振動子 3 , 3 , -3 力 発生する超音波エネルギーは次第に小さくなる。
1 2 10
[0075] そこで、図 12に示す例では、各超音波振動子 3 , 3 , -3 による通常の動作モー
1 2 10
ドが一定時間(例えば 1分間)経過する毎に、上述したサーチモードに移行して、全 ての超音波振動子 3 , 3 , -3 の共振周波数とインピーダンスとを短時間(1個につ
1 2 10
き 0. 2秒程度)でサーチする(t2〜t3の期間、および t4〜t5の期間)。そして、このサ ーチ結果に基づいて、駆動電力の周波数 fや振幅 Aを再度自動的に補正することで 、各超音波振動子 3 , 3 , -3 の特性が次第に変化した場合でも、各超音波振動子
1 2 10
3 , 3 , -3 力 引き続き効率よく超音波を発生させることが可能になる。
1 2 10
[0076] 以上のように本実施例では、超音波振動子 3 , 3 , -3 の共振周波数またはイン
1 2 10
ピーダンスを感知する振動子感知手段としての振動子検出手段 26および CPU14と、 この振動子感知手段力もの感知結果に基づき、前記駆動電力の周波数 fまたは振幅 Aを補正する補正手段 36, 37と、をさらに備えている。
[0077] この場合、超音波振動子 3 , 3 , -3 は製造的に共振周波数やインピーダンスの
1 2 10
ノ ツキが避けられないが、振動子感知手段によって超音波振動子 3 , 3 , -3 の
1 2 10 共振周波数またはインピーダンスを感知し、その感知結果に応じて駆動電力の周波 数 fまたは振幅 Aを適切に補正できるので、超音波振動子 3 , 3 , -3 から効率よく
1 2 10
超音波エネルギーを発生させることができる。
[0078] また本実施例では、前記超音波振動子 3 , 3 , -3 が動作中のときに、一定時間
1 2 10
毎に前記振動子感知手段から感知結果を取り込み、駆動電力の周波数 fまたは振幅 Aをその都度補正するように、前記補正手段 36, 37を構成している。
[0079] 超音波振動子 3 , 3 , - --3 は、動作中にその共振周波数やインピーダンスが徐々
1 2 10
に変化するので、一定時間毎に超音波振動子 3 , 3 , -3 の共振周波数やインピ
1 2 10
一ダンスの変動を捕え、その変動に見合う駆動電力の周波数 fや振幅 Aの補正をそ の都度行なうことで、長時間の使用に際しても効率よく超音波エネルギーを発生させ ることがでさる。
[0080] なお、本発明は上記各実施例に限定されるものではなぐ本発明の要旨の範囲に おいて種々の変形実施が可能である。例えば、上記実施例では 5 X 2= 10個の超音 波振動子を二次元平面状に配列して 、るが、それ以外の数の組み合わせで構成し てもよい。また図 13に示すように、各超音波振動子 3 , 3 , -3 に対応して、それぞ
1 2 10
れ独自の発振器 21 , 21 ,—21 を内蔵した駆動回路部 12 , 12 , -12 を用意し、こ
1 2 10 1 2 10
れらの各駆動回路部 12 , 12 , -12 から各超音波振動子 3 , 3 , -3 に駆動電力
1 2 10 1 2 10
を供給する構成としてもよい。この場合、個々の駆動回路部 12 , 12 , -12 力 複数
1 2 10 の超音波振動子に対し駆動電力を切替えて供給する切替手段の機能を兼用するた め、図 4に示すような開閉手段 13 , 13 , -13 による振動子切替部 13の構成を不要
1 2 10
にできる。
図面の簡単な説明
[0081] [図 1]本発明の各実施例に共通する超音波生体刺激装置の全体構成を示す概略説 明図である。
[図 2]同上、駆動回路部の構成を示すブロック図である。
[図 3]同上、 CPUの機能構成を示すブロック図である。
[図 4]同上、振動子切替部およびその周辺の構成を示すブロック図である。
[図 5]同上、振動出力部の一実施形態を示すブロック図である。
[図 6]同上、各超音波振動子の動作を示すタイミングチャートである。 圆 7]同上、図 6とは別な例の各超音波振動子の動作を示すタイミングチャートである
[図 8]同上、駆動信号 (駆動電力)の振幅と時間との関係を示すグラフである。
[図 9]同上、図 8とは別な例の駆動信号の振幅と時間との関係を示すグラフである。
[図 10]同上、駆動信号の周波数と時間との関係を示すグラフである。
[図 11]同上、図 10とは別な例の駆動信号の周波数と時間との関係を示すグラフであ る。
[図 12]同上、使用時における動作状態を示すタイミングチャートである。
[図 13]別な変形例を示す要部のブロック構成図である。
符号の説明
1 超音波プローブ
3 , 3 , · ··3 超音波振動子
1 2 10
12 駆動回路部 (駆動手段)
13 振動子切替部 (切替手段)
14 CPU (振幅可変手段,振幅制御手段,周波数制御手段,振動子感知手段) 26 振動子検出手段 (振動子感知手段)
36, 37 補正手段

Claims

請求の範囲
[1] 複数の超音波振動子を平面状に配置し、これらの超音波振動子を生体に固定した 状態で取付ける超音波プローブと、
前記各超音波振動子への駆動電力を生成する駆動手段と、
前記超音波プローブ力も発する超音波エネルギーが局部的に集中しないレベルで
、前記駆動手段力 の駆動電力を複数の超音波振動子に対し切替えて供給する切 替手段と、を備えたことを特徴とする超音波生体刺激装置。
[2] 前記超音波振動子を一つずつまたは複数ずつ、或いは全数同時に振動させること ができるように、前記切替手段を構成したことを特徴とする請求項 1記載の超音波生 体刺激装置。
[3] 前記切替手段による切替回数を 1秒当たり 100回以上としたことを特徴とする請求項
1記載の超音波生体刺激装置。
[4] 前記切替手段は、ランダムな速さと位置で、前記超音波振動子の振動を自動的に切 替えるものであることを特徴とする請求項 1記載の超音波生体刺激装置。
[5] 前記駆動電力の振幅を可変させる振幅可変手段を備えたことを特徴とする請求項 1 記載の超音波生体刺激装置。
[6] 前記超音波振動子の動作中に、前記駆動電力の振幅を可変制御する振幅制御手 段を備えたことを特徴とする請求項 1記載の超音波生体刺激装置。
[7] 前記超音波振動子の動作中に、前記駆動電力の周波数を可変制御する周波数制 御手段を備えたことを特徴とする請求項 1記載の超音波生体刺激装置。
[8] 前記切替手段は、人が超音波プローブを動力したときと同じような速さと位置で、前 記超音波振動子の振動を切替えるものであることを特徴とする請求項 1記載の超音 波生体刺激装置。
[9] 前記切替手段を前記超音波プローブに組み込んだことを特徴とする請求項 1記載の 超音波生体刺激装置。
[10] 前記超音波振動子の共振周波数またはインピーダンスを感知する振動子感知手段 と、この振動子感知手段からの感知結果に基づき、前記駆動電力の周波数または振 幅を補正する補正手段と、をさらに備えたことを特徴とする請求項 1記載の超音波生 体刺激装置。
前記補正手段は、前記超音波振動子が動作中のときに、一定時間毎に前記振動子 感知手段から感知結果を取り込み、前記駆動電力の周波数または振幅を補正するも のであることを特徴とする請求項 10記載の超音波生体刺激装置。
PCT/JP2005/009169 2005-05-19 2005-05-19 超音波生体刺激装置 WO2006123414A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/009169 WO2006123414A1 (ja) 2005-05-19 2005-05-19 超音波生体刺激装置
JP2007516169A JP4605548B2 (ja) 2005-05-19 2005-05-19 超音波生体刺激装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009169 WO2006123414A1 (ja) 2005-05-19 2005-05-19 超音波生体刺激装置

Publications (1)

Publication Number Publication Date
WO2006123414A1 true WO2006123414A1 (ja) 2006-11-23

Family

ID=37430998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009169 WO2006123414A1 (ja) 2005-05-19 2005-05-19 超音波生体刺激装置

Country Status (2)

Country Link
JP (1) JP4605548B2 (ja)
WO (1) WO2006123414A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177240A (ja) * 2010-02-26 2011-09-15 Olympus Corp 超音波治療装置
JP2015037595A (ja) * 2009-02-12 2015-02-26 パーフュジア メディカル インコーポレーテッド 患者の循環系の循環を操作するための装置及び方法
WO2019065362A1 (ja) * 2017-09-29 2019-04-04 学校法人日本医科大学 超音波治療装置
JP7142336B1 (ja) * 2021-11-15 2022-09-27 ピクシーダストテクノロジーズ株式会社 超音波放射装置およびヘアケア装置
WO2023084822A1 (ja) * 2021-11-15 2023-05-19 ピクシーダストテクノロジーズ株式会社 超音波放射装置およびヘアケア装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165858A (ja) * 2000-12-01 2002-06-11 Katsutoshi Masuda 美容器具
JP2004130145A (ja) * 2003-11-11 2004-04-30 Toshiba Corp 超音波治療装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172939A (ja) * 1986-01-27 1987-07-29 松下電器産業株式会社 超音波プロ−ブ
JPH02274247A (ja) * 1989-04-17 1990-11-08 Asahi Chem Ind Co Ltd 治療用超音波照射装置
WO2001089723A1 (fr) * 2000-05-22 2001-11-29 Miwa Science Laboratory Inc. Appareil d'irradiation ultrasonique

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165858A (ja) * 2000-12-01 2002-06-11 Katsutoshi Masuda 美容器具
JP2004130145A (ja) * 2003-11-11 2004-04-30 Toshiba Corp 超音波治療装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015037595A (ja) * 2009-02-12 2015-02-26 パーフュジア メディカル インコーポレーテッド 患者の循環系の循環を操作するための装置及び方法
JP2011177240A (ja) * 2010-02-26 2011-09-15 Olympus Corp 超音波治療装置
WO2019065362A1 (ja) * 2017-09-29 2019-04-04 学校法人日本医科大学 超音波治療装置
JPWO2019065362A1 (ja) * 2017-09-29 2020-10-22 学校法人日本医科大学 超音波治療装置
JP7076108B2 (ja) 2017-09-29 2022-05-27 学校法人日本医科大学 超音波治療装置
JP7142336B1 (ja) * 2021-11-15 2022-09-27 ピクシーダストテクノロジーズ株式会社 超音波放射装置およびヘアケア装置
WO2023084822A1 (ja) * 2021-11-15 2023-05-19 ピクシーダストテクノロジーズ株式会社 超音波放射装置およびヘアケア装置

Also Published As

Publication number Publication date
JP4605548B2 (ja) 2011-01-05
JPWO2006123414A1 (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
KR0133731B1 (ko) 인체에 진동을 전가시키는 방법 및 장치
KR20130005274A (ko) 체형 교정 장치
CA2471296A1 (en) Pulsed ultrasonic device and method
WO2006123414A1 (ja) 超音波生体刺激装置
JP5469642B2 (ja) 超音波便秘改善器
KR101411141B1 (ko) 공진 주파수 자동 매칭 기능을 가지는 다중 주파수 초음파 발진 장치
KR20010019317A (ko) 초음파를 이용한 피부 미용방법 및 미용장치
CN113713278A (zh) 超声波理疗设备的输出控制方法及超声波理疗设备
JP5038022B2 (ja) 超音波治療器及びプログラム
KR20180056300A (ko) 초음파를 이용한 피부 미용 기기
JP4722216B1 (ja) 超音波便秘改善器
KR20100126475A (ko) 초음파 발생 시스템 및 방법
KR102107129B1 (ko) 트랜스듀서 공진주파수 매칭기능을 가지는 무선 프로브 형태의 hifu 장치
JPS63130012U (ja)
KR20020065309A (ko) 초음파 진동/저주파를 이용한 복부비만 치료방법 및 그 장치
KR102097369B1 (ko) 초음파 프로브용 카트리지
KR20140117860A (ko) 초음파 및 고주파를 이용한 피부치료기 및 그 제어방법
JP2001314473A (ja) 超音波美顔器
JP2002000613A (ja) 超音波刺激装置
KR200175618Y1 (ko) 피부 마사지장치
KR102054002B1 (ko) 집속초음파를 이용한 관절염 치료기
KR200217162Y1 (ko) 초음파 벨트
JP2606496Y2 (ja) 超音波治療器
ES2399380T3 (es) Dispositivo de destrucción de células neoplásicas
JP3312112B2 (ja) 超音波美容処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007516169

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05741418

Country of ref document: EP

Kind code of ref document: A1