JP3457697B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3457697B2
JP3457697B2 JP08357093A JP8357093A JP3457697B2 JP 3457697 B2 JP3457697 B2 JP 3457697B2 JP 08357093 A JP08357093 A JP 08357093A JP 8357093 A JP8357093 A JP 8357093A JP 3457697 B2 JP3457697 B2 JP 3457697B2
Authority
JP
Japan
Prior art keywords
heat
cold storage
compressor
heat exchanger
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08357093A
Other languages
Japanese (ja)
Other versions
JPH06300374A (en
Inventor
学 北本
啓一郎 清水
秀敏 成清
和男 山本
正幸 日比
登 熊谷
和夫 齊藤
恵蔵 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP08357093A priority Critical patent/JP3457697B2/en
Publication of JPH06300374A publication Critical patent/JPH06300374A/en
Application granted granted Critical
Publication of JP3457697B2 publication Critical patent/JP3457697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、蓄冷熱機能を有する
空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a cold heat storage function.

【0002】[0002]

【従来の技術】空気調和機は、圧縮機、室外熱交換器、
減圧器、室内熱交換器を順次接続して冷凍サイクルを構
成し、室外熱交換器を凝縮器、室内熱交換器を蒸発器と
して機能させることにより、室内を冷房する。また、室
内熱交換器を凝縮器、室外熱交換器を蒸発器として機能
させることにより、室内を暖房する。
2. Description of the Related Art Air conditioners include compressors, outdoor heat exchangers,
A decompressor and an indoor heat exchanger are sequentially connected to form a refrigeration cycle, and the outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator, thereby cooling the room. In addition, the indoor heat exchanger functions as a condenser, and the outdoor heat exchanger functions as an evaporator, thereby heating the room.

【0003】最近では、圧縮機の駆動用としてインバー
タ回路を設け、そのインバータ回路の出力周波数を空調
負荷に応じて制御することにより、空調負荷に対応する
最適な冷房能力または暖房能力を得、快適性および省エ
ネルギ効果の向上を図っている。
Recently, an inverter circuit is provided for driving a compressor, and the output frequency of the inverter circuit is controlled in accordance with the air conditioning load to obtain the optimum cooling capacity or heating capacity corresponding to the air conditioning load, thereby providing comfort. And energy saving effect.

【0004】[0004]

【発明が解決しようとする課題】気温上昇の激しいたと
えば夏季の日中は、空気調和機の運転台数が多くなり、
また空気調和機が大きな冷房能力で運転されるため、電
力の消費量が極端に増加する。
The number of operating air conditioners increases during the daytime when the temperature rises sharply, for example, in summer.
Moreover, since the air conditioner is operated with a large cooling capacity, the amount of power consumption is extremely increased.

【0005】最近の空気調和機は、ロータリー圧縮機や
スクロール圧縮機の採用およびインバータ駆動による制
御などによってかなりの省エネルギ対策が施されている
ものの、電力消費の増加はますます激しくなる傾向にあ
る。
Although recent air conditioners have taken considerable energy-saving measures by adopting rotary compressors and scroll compressors and controlling by inverter drive, the power consumption tends to increase more and more. .

【0006】この電力消費の増加は、電力容量の面から
電力会社にとって大きな悩みであることはもちろん、社
会的な省資源対策の観点からも改善すべき大きな問題と
なっている。
[0006] This increase in power consumption is not only a great concern for power companies in terms of power capacity, but also a major problem to be improved from the viewpoint of social resource saving measures.

【0007】この発明は上記の事情を考慮したもので、
その目的とするところは、冷房に必要な冷熱を蓄えてお
き、それを利用して冷房を行なうことができ、これによ
りたとえば夏季のように気温上昇が激しい時期でも電力
消費の集中を避けることができ、また安価な深夜電力を
利用することができ、省エネルギ性および経済性にすぐ
れた空気調和機を提供することにある。
The present invention takes the above circumstances into consideration,
The purpose is to store the cold heat necessary for cooling and use it to perform cooling, which avoids concentration of power consumption even during periods of high temperature rise such as summer. Another object of the present invention is to provide an air conditioner that is capable of using inexpensive late-night power and is excellent in energy saving and economical efficiency.

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【課題を解決するための手段】請求項1に係る発明の空
気調和機は、圧縮比可変の圧縮機と、室外熱交換器と、
開度小の範囲で減圧手段として機能し開度大の範囲で流
量調整手段として機能する第1電動膨張弁と、室内熱交
換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、熱媒
体を収容した蓄冷熱槽と、この蓄冷熱槽と前記蓄冷熱用
熱交換器との間に設けた熱媒体の循環路と、この循環路
に設けたポンプと、前記圧縮機を高圧縮比で運転し圧縮
機の吐出冷媒を室外熱交換器、第1電動膨張弁、室内熱
交換器に通して圧縮機に戻し冷房運転を実行する手段
と、この冷房運転の実行に際し前記第1電動膨張弁を開
度小の範囲に設定する手段と、前記圧縮機を高圧縮比で
運転し圧縮機の吐出冷媒を室外熱交換器、第2電動膨張
弁、蓄冷熱用熱交換器に通して圧縮機に戻しかつ前記ポ
ンプを運転し蓄冷熱運転を実行する手段と、前記圧縮機
を低圧縮比で運転し圧縮機の吐出冷媒を蓄冷熱用熱交換
器、第1電動膨張弁、室内熱交換器に通して圧縮機に戻
しかつ前記ポンプを運転し蓄冷熱利用冷房運転を実行す
る手段と、この蓄冷熱利用冷房運転の実行に際し第1電
動膨張弁を開度大の範囲に設定する手段とを備える。
An air conditioner according to a first aspect of the present invention comprises a compressor having a variable compression ratio, an outdoor heat exchanger,
A first electric expansion valve that functions as a pressure reducing means in a small opening range and a flow rate adjusting means in a large opening range, an indoor heat exchanger, a second electric expansion valve, and a heat exchanger for cold storage heat. , A cold storage heat tank containing the heat medium, a circulation path of the heat medium provided between the cold storage heat tank and the heat exchanger for cold storage heat, a pump provided in the circulation path, and the compressor A means for operating at a compression ratio to pass the refrigerant discharged from the compressor through the outdoor heat exchanger, the first electric expansion valve, and the indoor heat exchanger and returning to the compressor to perform the cooling operation, and the first means for performing the cooling operation. A means for setting the electric expansion valve within a range of a small opening, and the compressor is operated at a high compression ratio to pass the refrigerant discharged from the compressor through the outdoor heat exchanger, the second electric expansion valve, and the heat exchanger for cold storage heat. To return to the compressor and operate the pump to execute the cold heat operation, and to operate the compressor at a low compression ratio. A means for passing the refrigerant discharged from the compressor through the heat exchanger for cold storage heat, the first electric expansion valve and the indoor heat exchanger to the compressor and for operating the pump to execute the cooling operation using the cold storage heat, and the cold storage heat And a means for setting the first electric expansion valve in the range of a large opening when executing the use cooling operation.

【0012】請求項2に係る発明の空気調和機は、請求
項1に係る発明の空気調和機における蓄冷熱槽を具体化
したもので、蓄冷熱槽は、1次熱媒体として水を収容す
るとともに水より比重の大きい非水溶性の2次熱媒体を
収容し、かつ底部から槽外に取出されて冷やされる2次
熱媒体が再び槽内に噴出されることによって槽内に氷を
生成する。
[0012] air conditioner of the invention according to claim 2, wherein
The cold storage heat tank in the air conditioner of the invention according to item 1 is embodied, and the cold storage heat tank contains water as a primary heat medium and a non-water-soluble secondary heat medium having a larger specific gravity than water. Then, the secondary heat medium that is taken out from the bottom of the tank and cooled is jetted into the tank again to generate ice in the tank.

【0013】請求項3に係る発明の空気調和機は、圧縮
比可変の圧縮機と、室外熱交換器と、開度小の範囲で減
圧手段として機能し開度大の範囲で流量調整手段として
機能する第1電動膨張弁と、室内熱交換器と、第2電動
膨張弁と、蓄冷熱用熱交換器と、1次熱媒体として水を
収容するとともに水より比重の大きい非水溶性の2次熱
媒体を収容した蓄冷熱槽と、この蓄冷熱槽の内底部から
前記蓄冷熱用熱交換器を通り蓄冷熱槽内に連通する循環
路と、この循環路に設けたポンプと、前記圧縮機を高圧
縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第1電
動膨張弁、室内熱交換器に通して圧縮機に戻し冷房運転
を実行する手段と、この冷房運転の実行に際し第1電動
膨張弁を開度小の範囲に設定する手段と、前記圧縮機を
高圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第
2電動膨張弁、蓄冷熱用熱交換器に通して圧縮機に戻し
かつ前記ポンプを運転し蓄冷熱運転を実行する手段と、
前記圧縮機を低圧縮比で運転し圧縮機の吐出冷媒を蓄冷
熱用熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻しかつ前記ポンプを運転し蓄冷熱利用冷房運
転を実行する手段と、この蓄冷熱利用冷房運転の実行に
際し第1電動膨張弁を開度大の範囲に設定する手段と、
前記蓄冷熱槽の蓄冷熱量を検出する手段と、この蓄冷熱
量に応じて前記蓄冷熱運転および蓄冷熱利用冷房運転の
実行を制御する手段とを備える。
An air conditioner according to a third aspect of the present invention includes a compressor having a variable compression ratio, an outdoor heat exchanger, a pressure reducing means in a small opening range, and a flow rate adjusting means in a large opening range. A first electric expansion valve that functions, an indoor heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat, and a water-insoluble 2 that accommodates water as a primary heat medium and has a larger specific gravity than water. A cold storage heat tank containing the next heat medium, a circulation path communicating from the inner bottom of the cold storage heat tank to the cold storage heat tank through the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compression For operating the compressor at a high compression ratio and returning the refrigerant discharged from the compressor to the compressor by passing it through the outdoor heat exchanger, the first electric expansion valve and the indoor heat exchanger, and a means for executing the cooling operation. A means for setting the first electric expansion valve in a range of a small opening, and the compressor is operated at a high compression ratio. Means for executing the outdoor heat exchanger refrigerant discharged from the compressor, the second electric expansion valve, the operation and cold storage heat operation returns and the pump to the compressor through a cold storage heat heat exchanger,
The compressor is operated at a low compression ratio, the refrigerant discharged from the compressor is passed through the heat exchanger for cold storage heat, the first electric expansion valve, and the indoor heat exchanger to be returned to the compressor, and the pump is operated to perform cold storage utilizing cold storage heat. Means for executing the operation, means for setting the first electric expansion valve in the range of a large opening when executing the cooling operation utilizing the cold storage heat,
A means for detecting the amount of cold storage heat of the cold storage heat tank, and a means for controlling the execution of the cold storage heat operation and the cooling operation using cold storage heat according to the amount of cold storage heat are provided.

【0014】請求項4に係る発明の空気調和機は、請求
項3に係る発明の空気調和機において、蓄冷熱量を検出
する手段を具体化したもので、蓄冷熱量を検出する手段
は、循環路を流れる熱媒体の流量を検知する流量セン
サ、蓄冷熱槽内の水温を検知する水温センサ、循環路に
おいて蓄冷熱用熱交換器の入口側に設けた第1温度セン
サ、循環路において蓄冷熱用熱交換器の出口側に設けた
第2温度センサを有し、これらセンサの検知結果を基に
蓄冷熱量を検出する。
The air conditioner of the invention according to claim 4 is a claim
In the air conditioner of the invention according to Item 3, a means for detecting the amount of cold storage heat is embodied, and the means for detecting the amount of cold storage heat is a flow rate sensor for detecting the flow rate of the heat medium flowing through the circulation path, in the cold storage tank. A water temperature sensor for detecting the water temperature of, a first temperature sensor provided on the inlet side of the heat exchanger for cold storage heat in the circulation path, and a second temperature sensor provided on the outlet side of the heat exchanger for cold storage heat in the circulation path. The amount of cold storage heat is detected based on the detection results of these sensors.

【0015】請求項5に係る発明の空気調和機は、請求
項3に係る発明の空気調和機において、蓄冷熱量を検出
する手段を具体化したもので、蓄冷熱量を検出する手段
は、蓄冷熱槽内の底部に設けた超音波発振器および超音
波受信器を有し、超音波の送出から受信までの時間経過
を基に蓄冷熱量を検出する。
The air conditioner of the invention according to claim 5 is a claim
In the air conditioner of the invention according to Item 3, the means for detecting the amount of cold storage heat is embodied, and the means for detecting the amount of cold storage heat is an ultrasonic oscillator and an ultrasonic receiver provided at the bottom of the cold storage heat tank. The amount of cold storage heat is detected based on the elapsed time from the transmission of ultrasonic waves to the reception thereof.

【0016】請求項6に係る発明の空気調和機は、圧縮
比可変の圧縮機と、室外熱交換器と、開度小の範囲で減
圧手段として機能し開度大の範囲で流量調整手段として
機能する第1電動膨張弁と、室内熱交換器と、第2電動
膨張弁と、蓄冷熱用熱交換器と、1次熱媒体として水を
収容するとともに水より比重の大きい非水溶性の2次熱
媒体を収容した蓄冷熱槽と、この蓄冷熱槽の内底部から
前記蓄冷熱用熱交換器を通り蓄冷熱槽内に連通する循環
路と、この循環路に設けたポンプと、前記圧縮機を高圧
縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第1電
動膨張弁、室内熱交換器に通して圧縮機に戻し冷房運転
を実行する手段と、この冷房運転の実行に際し第1電動
膨張弁を開度小の範囲に設定する手段と、前記圧縮機を
高圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第
2電動膨張弁、蓄冷熱用熱交換器に通して圧縮機に戻し
かつ前記ポンプを運転し蓄冷熱運転を実行する手段と、
前記圧縮機を低圧縮比で運転し圧縮機の吐出冷媒を蓄冷
熱用熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻しかつ前記ポンプを運転し蓄冷熱利用冷房運
転を実行する手段と、この蓄冷熱利用冷房運転の実行に
際し第1電動膨張弁を開度大の範囲に設定する手段と、
前記循環路において蓄冷熱用熱交換器の入口側に設けた
第1温度センサと、前記循環路において蓄冷熱用熱交換
器の出口側に設けた第2温度センサと、前記蓄冷熱運転
の実行に際し前記第1および第2温度センサの検知温度
の差を検出する手段と、この温度差が目標値となるよう
ポンプの容量および第2電動膨張弁の開度の少なくとも
一方を制御する手段とを備える。
An air conditioner of the invention according to claim 6 functions as a compressor having a variable compression ratio, an outdoor heat exchanger, a pressure reducing means in a small opening range, and a flow rate adjusting means in a large opening range. A first electric expansion valve that functions, an indoor heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat, and a water-insoluble 2 that accommodates water as a primary heat medium and has a larger specific gravity than water. A cold storage heat tank containing the next heat medium, a circulation path communicating from the inner bottom of the cold storage heat tank to the cold storage heat tank through the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compression For operating the compressor at a high compression ratio and returning the refrigerant discharged from the compressor to the compressor by passing it through the outdoor heat exchanger, the first electric expansion valve and the indoor heat exchanger, and a means for executing the cooling operation. A means for setting the first electric expansion valve in a range of a small opening, and the compressor is operated at a high compression ratio. Means for executing the outdoor heat exchanger refrigerant discharged from the compressor, the second electric expansion valve, the operation and cold storage heat operation returns and the pump to the compressor through a cold storage heat heat exchanger,
The compressor is operated at a low compression ratio, the refrigerant discharged from the compressor is passed through the heat exchanger for cold storage heat, the first electric expansion valve, and the indoor heat exchanger to be returned to the compressor, and the pump is operated to perform cold storage utilizing cold storage heat. Means for executing the operation, means for setting the first electric expansion valve in the range of a large opening when executing the cooling operation utilizing the cold storage heat,
A first temperature sensor provided on the inlet side of the heat exchanger for cold storage heat in the circulation path, a second temperature sensor provided on the outlet side of the heat exchanger for cold storage heat in the circulation path, and the execution of the cold heat operation At this time, means for detecting the difference between the temperatures detected by the first and second temperature sensors and means for controlling at least one of the displacement of the pump and the opening degree of the second electric expansion valve so that the temperature difference becomes a target value. Prepare

【0017】請求項7に係る発明の空気調和機は、圧縮
比可変の圧縮機と、室外熱交換器と、開度小の範囲で減
圧手段として機能し開度大の範囲で流量調整手段として
機能する第1電動膨張弁と、室内熱交換器と、第2電動
膨張弁と、蓄冷熱用熱交換器と、 1次熱媒体として水
を収容するとともに水より比重の大きい非水溶性の2次
熱媒体を収容した蓄冷熱槽と、この蓄冷熱槽の内底部か
ら前記蓄冷熱用熱交換器を通り蓄冷熱槽内に連通する循
環路と、この循環路に設けたポンプと、前記圧縮機を高
圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第1
電動膨張弁、室内熱交換器に通して圧縮機に戻し冷房運
転を実行する手段と、この冷房運転の実行に際し第1電
動膨張弁を開度小の範囲に設定する手段と、前記圧縮機
を高圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、
第2電動膨張弁、蓄冷熱用熱交換器に通して圧縮機に戻
しかつ前記ポンプを運転し蓄冷熱運転を実行する手段
と、前記圧縮機を低圧縮比で運転し圧縮機の吐出冷媒を
蓄冷熱用熱交換器、第1電動膨張弁、室内熱交換器に通
して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱利用冷
房運転を実行する手段と、この蓄冷熱利用冷房運転の実
行に際し第1電動膨張弁を開度大の範囲に設定する手段
と、前記蓄冷熱用熱交換器から出る冷媒の圧力を検知す
る圧力センサと、前記蓄冷熱用熱交換器から出る冷媒の
温度を検知する温度センサと、前記蓄冷熱運転の実行に
際し前記圧力センサおよび温度センサの検知結果から蓄
冷熱用熱交換器での冷媒の過熱度を検出する手段と、こ
の過熱度が目標値となるようポンプの容量および第2
動膨張弁の開度の少なくとも一方を制御する手段とを備
える。
An air conditioner of the invention according to claim 7 functions as a compressor having a variable compression ratio, an outdoor heat exchanger, a pressure reducing means in a small opening range, and a flow rate adjusting means in a large opening range. A first electric expansion valve that functions, an indoor heat exchanger, a second electric expansion valve, a heat exchanger for storing cold heat, and a water-insoluble 2 that accommodates water as a primary heat medium and has a specific gravity larger than that of water. A cold storage heat tank containing the next heat medium, a circulation path communicating from the inner bottom of the cold storage heat tank to the cold storage heat tank through the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compression The compressor is operated at a high compression ratio and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, the first
A means for performing a cooling operation by returning to the compressor through an electric expansion valve and an indoor heat exchanger, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and the compressor. Operates at a high compression ratio and uses the refrigerant discharged from the compressor as an outdoor heat exchanger,
A means for returning to the compressor through the second electric expansion valve and the heat exchanger for cold storage heat and for operating the pump to perform the cold storage heat operation; and a means for operating the compressor at a low compression ratio to discharge the refrigerant discharged from the compressor. Means for returning to the compressor through the heat exchanger for cold storage heat, the first electric expansion valve, and the indoor heat exchanger and operating the pump to execute the cold storage heat utilization cooling operation, and the execution of the cold storage heat utilization cooling operation Means for setting the first electric expansion valve in a range of a large opening, a pressure sensor for detecting the pressure of the refrigerant discharged from the heat exchanger for cold heat storage, and a temperature of the refrigerant discharged from the heat exchanger for cold heat storage. Temperature sensor, a means for detecting the degree of superheat of the refrigerant in the heat exchanger for cold storage heat from the detection results of the pressure sensor and the temperature sensor during execution of the cold storage heat operation, and a pump for making this degree of superheat a target value. small of opening of the displacement and the second electric expansion valve And means for controlling one Kutomo.

【0018】請求項8に係る発明の空気調和機は、圧縮
比可変の圧縮機と、室外熱交換器と、開度小の範囲で減
圧手段として機能し開度大の範囲で流量調整手段として
機能する第1電動膨張弁と、室内熱交換器と、第2電動
膨張弁と、蓄冷熱用熱交換器と、 1次熱媒体として水
を収容するとともに水より比重の大きい非水溶性の2次
熱媒体を収容した蓄冷熱槽と、この蓄冷熱槽の内底部か
ら前記蓄冷熱用熱交換器を通り蓄冷熱槽内に連通する循
環路と、この循環路に設けたポンプと、前記圧縮機を高
圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第1
電動膨張弁、室内熱交換器に通して圧縮機に戻し冷房運
転を実行する手段と、この冷房運転の実行に際し第1電
動膨張弁を開度小の範囲に設定する手段と、前記圧縮機
を高圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、
第2電動膨張弁、蓄冷熱用熱交換器に通して圧縮機に戻
しかつ前記ポンプを運転し蓄冷熱運転を実行する手段
と、前記圧縮機を低圧縮比で運転し圧縮機の吐出冷媒を
蓄冷熱用熱交換器、第1電動膨張弁、室内熱交換器に通
して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱利用冷
房運転を実行する手段と、この蓄冷熱利用冷房運転の実
行に際し第1電動膨張弁を開度大の範囲に設定する手段
と、前記循環路において蓄冷熱用熱交換器の入口側に設
けた第1温度センサと、前記循環路において蓄冷熱用熱
交換器の出口側に設けた第2温度センサと、前記蓄冷熱
運転の実行に際し前記第1および第2温度センサの検知
温度の差を検出する手段と、この温度差が目標値となる
ようポンプの容量を制御する手段と、前記蓄冷熱用熱交
換器から出る冷媒の圧力を検知する圧力センサと、前記
蓄冷熱用熱交換器から出る冷媒の温度を検知する第3温
度センサと、前記蓄冷熱運転の実行に際し前記圧力セン
サおよび第3温度センサの検知結果から蓄冷熱用熱交換
器での冷媒の過熱度を検出する手段と、この過熱度が目
標値となるよう第2電動膨張弁の開度を制御する手段と
を備える。
The air conditioner of the invention according to claim 8 functions as a compressor having a variable compression ratio, an outdoor heat exchanger, a pressure reducing means in a range of a small opening, and a flow rate adjusting means in a range of a large opening. A first electric expansion valve that functions, an indoor heat exchanger, a second electric expansion valve, a heat exchanger for storing cold heat, and a water-insoluble 2 that accommodates water as a primary heat medium and has a specific gravity larger than that of water. A cold storage heat tank containing the next heat medium, a circulation path communicating from the inner bottom of the cold storage heat tank to the cold storage heat tank through the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compression The compressor is operated at a high compression ratio and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, the first
A means for performing a cooling operation by returning to the compressor through an electric expansion valve and an indoor heat exchanger, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and the compressor. Operates at a high compression ratio and uses the refrigerant discharged from the compressor as an outdoor heat exchanger,
A means for returning to the compressor through the second electric expansion valve and the heat exchanger for cold storage heat and for operating the pump to perform the cold storage heat operation; and a means for operating the compressor at a low compression ratio to discharge the refrigerant discharged from the compressor. Means for returning to the compressor through the heat exchanger for cold storage heat, the first electric expansion valve, and the indoor heat exchanger and operating the pump to execute the cold storage heat utilization cooling operation, and the execution of the cold storage heat utilization cooling operation A means for setting the first electric expansion valve in a range of a large opening, a first temperature sensor provided on the inlet side of the heat exchanger for cold storage heat in the circulation path, and a heat exchanger for cold storage heat in the circulation path. A second temperature sensor provided on the outlet side, a means for detecting a difference between the detected temperatures of the first and second temperature sensors when executing the cold storage heat operation, and a pump capacity so that the temperature difference becomes a target value. A means for controlling the refrigerant flowing from the heat exchanger for cold storage heat A pressure sensor for detecting a force, a third temperature sensor for detecting the temperature of the refrigerant discharged from the heat exchanger for cold storage heat, and a cold storage heat from the detection results of the pressure sensor and the third temperature sensor when executing the cold storage operation. A means for detecting the degree of superheat of the refrigerant in the heat exchanger for use, and a means for controlling the opening degree of the second electric expansion valve so that the degree of superheat becomes a target value.

【0019】請求項9に係る発明の空気調和機は、圧縮
比可変の圧縮機と、室外熱交換器と、第1減圧手段と、
流量調整手段と、室内熱交換器と、第2減圧手段と、蓄
冷熱用熱交換器と、熱媒体を収容した蓄冷熱槽と、前記
圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を室外熱交
換器、第1減圧手段、および室内熱交換器に通して圧縮
機に戻し冷房運転を実行する手段と、前記圧縮機を高圧
縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第2減
圧手段、蓄冷熱用熱交換器に通して圧縮機に戻しかつ前
記蓄冷熱槽内の熱媒体を前記蓄冷熱用熱交換器に通して
循環させ蓄冷熱運転を実行する手段と、前記圧縮機を高
圧縮比で運転し圧縮機の吐出冷媒を室外熱交換器、第1
減圧手段、および室内熱交換器に通して圧縮機に戻すと
ともに、室外熱交換器を経た冷媒の一部を第2減圧手
段、蓄冷熱用熱交換器に通して圧縮機に戻し、かつ前記
蓄冷熱槽内の熱媒体を前記蓄冷熱用熱交換器に通して循
環させ冷房・蓄冷熱同時運転を実行する手段と、前記圧
縮機を低圧縮比で運転し圧縮機の吐出冷媒を蓄冷熱用熱
交換器、流量調整手段、室内熱交換器に通して圧縮機に
戻しかつ前記蓄冷熱槽内の熱媒体を前記蓄冷熱用熱交換
器に通して循環させ蓄冷熱利用冷房運転を実行する手段
とを備える。
An air conditioner according to a ninth aspect of the invention is a compressor having a variable compression ratio, an outdoor heat exchanger, a first pressure reducing means,
A flow rate adjusting means, an indoor heat exchanger, a second pressure reducing means, a heat exchanger for cold storage heat, a cold storage heat tank containing a heat medium, and the compressor operated at a high compression ratio to discharge refrigerant from the compressor. Means for passing through the outdoor heat exchanger, the first pressure reducing means, and the indoor heat exchanger to return to the compressor to perform the cooling operation, and the compressor is operated at a high compression ratio to exchange the refrigerant discharged from the compressor with the outdoor heat. And a second decompression means, a means for returning to the compressor through the heat exchanger for cold storage heat, and a means for performing a cold storage heat operation by circulating the heat medium in the cold storage heat tank through the heat exchanger for cold storage heat. The compressor is operated at a high compression ratio, and the refrigerant discharged from the compressor is used as an outdoor heat exchanger,
The refrigerant is passed through the pressure reducing means and the indoor heat exchanger and returned to the compressor, and part of the refrigerant passing through the outdoor heat exchanger is returned to the compressor through the second pressure reducing means and the heat exchanger for cold storage heat, and the cold storage is performed. A means for circulating the heat medium in the heat tank through the heat exchanger for cold heat storage to perform simultaneous cooling and cold heat storage operation, and operating the compressor at a low compression ratio to cool the refrigerant discharged from the compressor for cold heat storage. Heat exchanger, flow rate adjusting means, means for returning to the compressor through the indoor heat exchanger and circulating the heat medium in the cold storage heat tank through the cold storage heat exchanger to execute the cooling operation using cold storage heat With.

【0020】請求項10に係る発明の空気調和機は、圧
縮比可変の圧縮機と、室外熱交換器と、開度小の範囲で
減圧手段として機能し開度大の範囲で流量調整手段とし
て機能する第1電動膨張弁と、室内熱交換器と、第2電
動膨張弁と、蓄冷熱用熱交換器と、熱媒体を収容した蓄
冷熱槽と、この蓄冷熱槽と前記蓄冷熱用熱交換器との間
に設けた熱媒体の循環路と、この循環路に設けたポンプ
と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を
室外熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻し冷房運転を実行する手段と、この冷房運転
の実行に際し前記第1電動膨張弁を開度小の範囲に設定
する手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐
出冷媒を室外熱交換器、第2電動膨張弁、蓄冷熱用熱交
換器に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷
熱運転を実行する手段と、前記圧縮機を高圧縮比で運転
し圧縮機の吐出冷媒を室外熱交換器、第1電動膨張弁、
および室内熱交換器に通して圧縮機に戻すとともに室外
熱交換器を経た冷媒の一部を第2電動膨張弁、蓄冷熱用
熱交換器に通して圧縮機に戻しかつ前記ポンプを運転し
冷房・蓄冷熱同時運転を実行する手段と、前記圧縮機を
低圧縮比で運転し圧縮機の吐出冷媒を蓄冷熱用熱交換
器、第1電動膨張弁、室内熱交換器に通して圧縮機に戻
しかつ前記ポンプを運転し蓄冷熱利用冷房運転を実行す
る手段と、この蓄冷熱利用冷房運転の実行に際し第1電
動膨張弁を開度大の範囲に設定する手段と、前記蓄冷熱
用熱交換器から出る冷媒の圧力を検知する圧力センサ
と、前記蓄冷熱用熱交換器から出る冷媒の温度を検知す
る温度センサと、前記蓄冷熱運転または冷房・蓄冷熱同
時運転の実行に際し前記圧力センサおよび温度センサの
検知結果から蓄冷熱用熱交換器での冷媒の過熱度を検出
する手段と、この過熱度が目標値となるよう始めに第2
電動膨張弁の開度を制御しその第2電動膨張弁の開度変
化が限界値に達したら次に前記ポンプの容量を制御する
手段とを備える。請求項11に係る発明の空気調和機
は、請求項1ないし請求項10に係る発明における圧縮
比可変の圧縮機について限定したもので、圧縮比可変の
圧縮機は、吐出口、吸込口、レリースポートおよびこの
レリースポートに設けたリード弁を有している。この圧
縮機を高圧縮比で運転する場合には、吐出口からレリー
スポートにかけて設けた加圧サイクルを導通するととも
にレリースポートから吸込口 にかけて設けたレリースサ
イクルを遮断する。圧縮機を低圧縮比で運転する場合に
は、加圧サイクルを遮断するとともにレリースサイクル
を導通する。
An air conditioner according to a tenth aspect of the present invention includes a compressor having a variable compression ratio, an outdoor heat exchanger, a pressure reducing means in a small opening range, and a flow rate adjusting means in a large opening range. A functioning first electric expansion valve, an indoor heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat, a cold storage heat tank containing a heat medium, the cold storage heat tank and the cold heat storage heat A heat medium circulation path provided between the heat exchanger and the exchanger, a pump provided in the circulation path, the compressor operated at a high compression ratio, and the refrigerant discharged from the compressor is an outdoor heat exchanger and a first electric expansion valve. , Means for returning to the compressor through the indoor heat exchanger to perform a cooling operation, means for setting the first electric expansion valve in a range of a small opening when performing the cooling operation, and high compression of the compressor The compressor discharges the refrigerant discharged from the compressor through the outdoor heat exchanger, the second electric expansion valve and the heat exchanger for cold storage The return and means for executing the operation to cold storage heat driving the pump, the compressor high compression ratio the outdoor heat exchanger refrigerant discharged from the compressor is operated, the first electric expansion valve,
Further, the refrigerant is passed through the indoor heat exchanger and returned to the compressor, and at the same time, a part of the refrigerant passing through the outdoor heat exchanger is passed through the second electric expansion valve and the heat exchanger for cold storage heat to be returned to the compressor and the pump is operated to perform cooling. -Means for executing the cold storage heat simultaneous operation and the compressor
Operates at a low compression ratio and exchanges refrigerant discharged from the compressor with heat for cold storage
Return to the compressor through the compressor, the first electric expansion valve, and the indoor heat exchanger.
And the pump is operated to execute the cooling operation using the cold storage heat.
Means for performing the cooling operation using the cold storage heat
Means for setting the dynamic expansion valve in the range of a large opening, a pressure sensor for detecting the pressure of the refrigerant coming out of the heat exchanger for cold storage heat, and a temperature for detecting the temperature of the refrigerant coming out of the heat exchanger for cold storage heat A sensor, a means for detecting the degree of superheat of the refrigerant in the heat exchanger for cold storage from the detection results of the pressure sensor and the temperature sensor during execution of the cold storage operation or the cooling / cooling heat simultaneous operation, and this degree of superheat is the target. Second to start with the value
And means for controlling the opening of the electric expansion valve and controlling the displacement of the pump when the change in the opening of the second electric expansion valve reaches a limit value. Air conditioner of the invention according to claim 11
Is the compression in the invention according to claims 1 to 10.
Limited to the variable ratio compressor, the variable compression ratio
The compressor is equipped with a discharge port, suction port, release port and
It has a reed valve on the release port. This pressure
When operating the compressor at a high compression ratio, release the
When conducting the pressurizing cycle provided over the sport,
The release port installed from the release port to the intake
Shut off the icle. When operating the compressor at a low compression ratio
Shut off the pressurizing cycle and release cycle
To conduct.

【0021】[0021]

【0022】[0022]

【0023】[0023]

【0024】[0024]

【作用】請求項1に係る発明の空気調和機では、蓄冷熱
運転の実行により、蓄冷熱槽内の熱媒体に冷熱が蓄えら
れる。蓄冷熱利用冷房運転を実行すると、蓄冷熱槽に蓄
えられた冷熱によって室内が冷房される。さらに、冷凍
サイクル中の1つの電動膨張弁が開度小の範囲で減圧手
段として機能し、開度大の範囲で流量調整手段として機
能する。
In the air conditioner of the invention according to claim 1 , cold heat is stored in the heat medium in the cold heat storage tank by executing the cold heat operation. When the cooling operation using the cold storage heat is executed, the room is cooled by the cold heat stored in the cold storage tank. Further, one electric expansion valve in the refrigeration cycle functions as a pressure reducing means in the range of small opening and functions as a flow rate adjusting means in the range of large opening.

【0025】請求項2に係る発明の空気調和機では、蓄
冷熱槽が、1次熱媒体として水を収容するとともに水よ
り比重の大きい非水溶性の2次熱媒体を収容し、かつ底
部から槽外に取出されて冷やされる2次熱媒体が再び槽
内に噴出されることで槽内に氷を生成する。
In the air conditioner according to the second aspect of the present invention, the cold storage heat tank accommodates water as the primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and from the bottom. The secondary heat medium taken out of the bath and cooled is again jetted into the bath to generate ice in the bath.

【0026】請求項3に係る発明の空気調和機では、蓄
冷熱槽の蓄冷熱量を検出し、その蓄冷熱量に応じて蓄冷
熱運転および蓄冷熱利用冷房運転の実行を制御する手段
とを備えている。
The air conditioner according to the third aspect of the present invention comprises means for detecting the amount of cold storage heat in the cold storage heat tank and controlling the execution of the cold storage heat operation and the cooling storage heat utilization cooling operation in accordance with the amount of cold storage heat. There is.

【0027】請求項4に係る発明の空気調和機では、蓄
冷熱量を検出する手段が、循環路を流れる熱媒体の流量
を検知する流量センサ、蓄冷熱槽内の水温を検知する水
温センサ、循環路において蓄冷熱用熱交換器の入口側に
設けた第1温度センサ、循環路において蓄冷熱用熱交換
器の出口側に設けた第2温度センサを有し、これらセン
サの検知結果を基に蓄冷熱量を検出する。
In the air conditioner of the invention according to claim 4, the means for detecting the amount of cold storage heat is a flow rate sensor for detecting the flow rate of the heat medium flowing through the circulation path, a water temperature sensor for detecting the water temperature in the cold storage heat tank, and the circulation. A first temperature sensor provided on the inlet side of the heat exchanger for cold storage heat in the passage, and a second temperature sensor provided on the outlet side of the heat exchanger for cold storage heat in the circulation passage, and based on the detection results of these sensors. Detect the amount of cold storage heat.

【0028】請求項5に係る発明の空気調和機では、蓄
冷熱量を検出する手段が、蓄冷熱槽内の底部に設けた超
音波発振器および超音波受信器を有し、超音波の送出か
ら受信までの時間経過を基に蓄冷熱量を検出する。
In the air conditioner of the invention according to claim 5, the means for detecting the amount of cold storage heat has an ultrasonic oscillator and an ultrasonic receiver provided at the bottom of the cold storage tank, and receives from the transmission of ultrasonic waves. The amount of cold storage heat is detected based on the elapsed time.

【0029】請求項6に係る発明の空気調和機では、蓄
冷熱運転の実行により、蓄冷熱槽内の熱媒体に冷熱が蓄
えられる。この蓄冷熱運転の実行に際し、蓄冷熱用熱交
換器に流入する2次熱媒体の温度と蓄冷熱用熱交換器か
ら流出する2次熱媒体の温度との差を検出し、その温度
差が目標値となるようポンプの容量および電動膨張弁の
開度の少なくとも一方を制御する。
In the air conditioner of the invention according to claim 6 , cold heat is stored in the heat medium in the cold heat storage tank by executing the cold heat operation. When executing this cold storage heat operation, the difference between the temperature of the secondary heat medium flowing into the heat exchanger for cold storage heat and the temperature of the secondary heat medium flowing out from the heat exchanger for cold storage heat is detected, and the temperature difference is At least one of the capacity of the pump and the opening degree of the electric expansion valve is controlled so as to reach the target value.

【0030】請求項7に係る発明の空気調和機では、蓄
冷熱運転の実行により、蓄冷熱槽内の熱媒体に冷熱が蓄
えられる。また、この蓄冷熱運転の実行に際し、蓄冷熱
用熱交換器での冷媒の過熱度を検出し、その過熱度が目
標値となるようポンプの容量および第2電動膨張弁の開
度の少なくとも一方を制御する。
In the air conditioner of the invention according to claim 7 , cold heat is stored in the heat medium in the cold heat storage tank by executing the cold heat operation. Further, at the time of executing this cold storage heat operation, the degree of superheat of the refrigerant in the heat exchanger for cold storage heat is detected, and at least one of the capacity of the pump and the opening degree of the second electric expansion valve is set so that the degree of superheat becomes a target value. To control.

【0031】請求項8に係る発明の空気調和機では、蓄
冷熱運転の実行により、蓄冷熱槽内の熱媒体に冷熱が蓄
えられる。また、この蓄冷熱運転の実行に際し、蓄冷熱
用熱交換器に流入する2次熱媒体の温度と蓄冷熱用熱交
換器から流出する2次熱媒体の温度との差を検出し、そ
の温度差が目標値となるようポンプの容量を制御すると
ともに、蓄冷熱用熱交換器での冷媒の過熱度を検出し、
その過熱度が目標値となるよう電動膨張弁の開度を制御
する。
In the air conditioner of the invention according to claim 8 , cold heat is stored in the heat medium in the cold heat storage tank by executing the cold heat operation. Further, at the time of executing the cold storage heat operation, the difference between the temperature of the secondary heat medium flowing into the heat exchanger for cold storage heat and the temperature of the secondary heat medium flowing out from the heat exchanger for cold storage heat is detected, and the temperature is detected. While controlling the pump capacity so that the difference becomes the target value, the degree of superheat of the refrigerant in the heat exchanger for cold storage heat is detected,
The opening degree of the electric expansion valve is controlled so that the degree of superheat reaches a target value.

【0032】請求項9に係る発明の空気調和機では、蓄
冷熱運転および蓄冷熱利用冷房運転を実行するほかに、
冷房・蓄冷熱同時運転を実行する。
In the air conditioner of the invention according to claim 9, in addition to executing the cool storage heat operation and the cool storage heat utilization cooling operation,
Simultaneous operation of cooling and storage heat is executed.

【0033】請求項10に係る発明の空気調和機では、
蓄冷熱運転および蓄冷熱利用冷房運転を実行するほか
に、冷房・蓄冷熱同時運転を実行する。そして、蓄冷熱
運転または冷房・蓄冷熱同時運転の実行に際し、蓄冷熱
用熱交換器での冷媒の過熱度を検出し、その過熱度が目
標値となるよう初めに電動膨張弁の開度を制御しその電
動膨張弁の開度変化が限界値に達したら次にポンプの容
量を制御する。請求項11に係る発明の空気調和機で
は、圧縮比可変の圧縮機が、吐出口、吸込口、レリース
ポートおよびこのレリースポートに設けたリード弁を有
している。高圧縮比の運転では、吐出口からレリースポ
ートにかけて設けた加圧サイクルを導通するとともにレ
リースポートから吸込口にかけて設けたレリースサイク
ルを遮断する。低圧縮比での運転では、加圧サイクルを
遮断するとともにレリースサイクルを導通する。
In the air conditioner of the invention according to claim 10 ,
In addition to executing the cold storage operation and the cooling operation using cold storage, the simultaneous cooling and cold storage operation is executed. Then, when performing the cold storage operation or the simultaneous cooling and cold storage operation, the degree of superheat of the refrigerant in the heat exchanger for cold storage is detected, and the opening degree of the electric expansion valve is first adjusted so that the degree of superheat reaches the target value. When the control is performed and the change in the opening of the electric expansion valve reaches the limit value, the capacity of the pump is controlled next. In the air conditioner of the invention according to claim 11
Is a compressor with variable compression ratio, discharge port, suction port, release
Port and reed valve provided on this release port
is doing. In operation with a high compression ratio, the release port is
The pressurizing cycle established over the
Release cycle from the lease port to the intake
Shut off. When operating at low compression ratio, pressurization cycle
The release cycle is conducted and the release cycle is conducted.

【0034】[0034]

【実施例】以下、この発明の第1実施例について図面を
参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings.

【0035】図1に示すように、室外ユニットAに蓄冷
熱ユニットBおよび複数台の室内ユニットCを配管接続
する。
As shown in FIG. 1, a cold storage heat unit B and a plurality of indoor units C are connected to the outdoor unit A by piping.

【0036】室外ユニットAは、圧縮比可変および能力
可変の圧縮機1を有する。この圧縮機1は、吐出口2お
よび吸込口3を有し、吸込口3から冷媒を吸込んで圧縮
し、それを吐出口2から吐出する。
The outdoor unit A has a compressor 1 with variable compression ratio and variable capacity. The compressor 1 has a discharge port 2 and a suction port 3, sucks a refrigerant from the suction port 3 to compress it, and discharges it from the discharge port 2.

【0037】圧縮機1はさらにレリース口4を有してお
り、吐出口2からレリース口4にかけて加圧サイクル5
を設け、その加圧サイクル5に二方弁6を設ける。レリ
ース口4から吸込口3にかけてレリースサイクル7を設
け、そのレリースサイクル7に流量調整弁8を設ける。
流量調整弁8は、入力される駆動パルスに応じて開度が
連続的に変化するパルスモータバルブ(PMV)であ
る。
The compressor 1 further has a release port 4, and a pressure cycle 5 from the discharge port 2 to the release port 4
And a two-way valve 6 is provided in the pressurization cycle 5. A release cycle 7 is provided from the release port 4 to the suction port 3, and a flow rate adjusting valve 8 is provided in the release cycle 7.
The flow rate adjusting valve 8 is a pulse motor valve (PMV) whose opening continuously changes according to an input drive pulse.

【0038】圧縮機1の吐出口2に四方弁9を介して室
外熱交換器10を接続する。四方弁9は、冷媒の流れ方
向を切換えるためのもので、通電されないときはニュー
トラル状態に設定され、通電されると切換わる。室外熱
交換器10は、流入する冷媒の熱と外気の熱とを交換す
る。この室外熱交換器10の近傍に室外ファン15を設
ける。この室外ファン15は、室外熱交換器10に外気
を供給するもので、モータ(後述の室外ファンモータ1
5M)のタップ切換により速度の調節が可能である。
An outdoor heat exchanger 10 is connected to the discharge port 2 of the compressor 1 via a four-way valve 9. The four-way valve 9 is for switching the flow direction of the refrigerant, is set to a neutral state when not energized, and switches when energized. The outdoor heat exchanger 10 exchanges the heat of the inflowing refrigerant with the heat of the outside air. An outdoor fan 15 is provided near the outdoor heat exchanger 10. The outdoor fan 15 supplies outdoor air to the outdoor heat exchanger 10, and is a motor (an outdoor fan motor 1 described later).
The speed can be adjusted by tapping the switch (5M).

【0039】室外熱交換器10に、順方向の逆止弁11
を介して受液器12を接続する。逆止弁11と並列に、
暖房運転用の膨張弁13を接続する。受液器12に、蓄
冷熱ユニットBの二方弁31,32および室内ユニット
Cの電動膨張弁51を介して同室内ユニットCの室内熱
交換器52を接続する。この室内熱交換器52を室外
ニットAの四方弁9およびアキュームレータ14を介し
て圧縮機1の吸込口3に接続する。
A forward check valve 11 is attached to the outdoor heat exchanger 10.
The liquid receiver 12 is connected via. In parallel with the check valve 11,
The expansion valve 13 for heating operation is connected. The indoor heat exchanger 52 of the indoor unit C is connected to the liquid receiver 12 via the two-way valves 31, 32 of the cold storage heat unit B and the electric expansion valve 51 of the indoor unit C. The indoor heat exchanger 52 is connected to the suction port 3 of the compressor 1 via the four-way valve 9 and the accumulator 14 of the outdoor unit A.

【0040】電動膨張弁51は、入力される駆動パルス
に応じて開度が連続的に変化するパルスモータバルブ
(PMV)で、後述する弁形状により、開度小の範囲で
本来の減圧手段つまり膨張弁として機能し、開度大の範
囲で流量調整弁として機能する。室内熱交換器52は、
流入する冷媒の熱と外気の熱とを交換する。他の室内ユ
ニットCについても同じ構成である。
The electric expansion valve 51 is a pulse motor valve (PMV) whose opening continuously changes in response to an input drive pulse, and has a valve shape which will be described later. It functions as an expansion valve and as a flow control valve in the range of large opening. The indoor heat exchanger 52 is
The heat of the inflowing refrigerant and the heat of the outside air are exchanged. The other indoor units C have the same configuration.

【0041】蓄冷熱ユニットBでは、二方弁31と二方
弁32との間の管に二方弁33を接続し、その二方弁3
3に第2電動膨張弁34と二方弁35の並列回路を介し
て蓄熱用熱交換器36のコイル36aを接続する。この
コイル36aを室外ユニットAの四方弁9およびアキュ
ームレータ14を介して圧縮機1の吸込口3に接続す
る。また、コイル36aから室外ユニットAにおける四
方弁9と室外熱交換器10との間の管にかけて、蓄冷熱
利用のためのバイパス38を接続する。このバイパス3
8に二方弁39を設ける。
In the cold storage heat unit B, a two-way valve 33 is connected to a pipe between the two-way valve 31 and the two-way valve 32, and the two-way valve 3
The coil 36a of the heat exchanger 36 for heat storage is connected to 3 through the parallel circuit of the second electric expansion valve 34 and the two-way valve 35. The coil 36 a is connected to the suction port 3 of the compressor 1 via the four-way valve 9 and the accumulator 14 of the outdoor unit A. Further, a bypass 38 for utilizing the cold storage heat is connected from the coil 36a to the pipe between the four-way valve 9 and the outdoor heat exchanger 10 in the outdoor unit A. This bypass 3
A two-way valve 39 is provided on the No. 8.

【0042】蓄冷熱ユニットBに蓄冷熱槽40を設け、
その蓄冷熱槽40に1次熱媒体として水Wを収容し、さ
らに2次熱媒体として水Wより比重の大きい非水溶性の
2次熱媒体Hを収容する。蓄冷熱槽40の底部をポンプ
41および蓄熱用熱交換器36のコイル36bを介して
蓄冷熱槽40の側部に接続する。こうして、蓄冷熱槽4
0の底部から2次熱媒体Hを取出し、それを蓄熱用熱交
換器36で熱交換させてから蓄冷熱槽40の水W中に噴
出するための循環路を形成している。ポンプ41は回転
数可変であり、2次熱媒体Hの循環量を調節できる。
The cold heat storage unit 40 is provided with the cold heat storage tank 40,
In the cold storage tank 40, water W is stored as a primary heat medium, and a water-insoluble secondary heat medium H having a larger specific gravity than the water W is further stored as a secondary heat medium. The bottom portion of the cold storage heat tank 40 is connected to the side portion of the cold storage heat tank 40 via the pump 41 and the coil 36b of the heat storage heat exchanger 36. Thus, the cold storage heat tank 4
A secondary heat medium H is taken out from the bottom of 0, heat is exchanged with the heat storage heat exchanger 36, and then a circulation path is formed for jetting it into the water W of the cold storage tank 40. The rotation speed of the pump 41 is variable, and the circulation amount of the secondary heat medium H can be adjusted.

【0043】蓄冷熱槽40の底部に二方弁42を介して
2次熱媒体回収用のタンク43を連通し、そのタンク4
3の内底部をポンプ44を介して蓄冷熱槽40の側部に
連通する。タンク43は、蓄冷熱が不要な暖房運転時お
よびメンテナンス時など、蓄冷熱槽40内の2次熱媒体
Hを回収して貯留しておくためのもので、二方弁42を
開くことで2次熱媒体Hを貯留し、ポンプ44を動作さ
せることで2次熱媒体Hを蓄冷熱槽40に充填すること
ができる。なお、二方弁42に代えてポンプを採用し、
ポンプの運転によって2次熱媒体Hをタンク43に強制
的に回収する構成としてもよい。
A tank 43 for recovering the secondary heat medium is connected to the bottom of the cold heat storage tank 40 via a two-way valve 42, and the tank 4
The inner bottom part of 3 is connected to the side part of the cold storage heat tank 40 via the pump 44. The tank 43 is for recovering and storing the secondary heat medium H in the cold storage heat tank 40 at the time of heating operation that does not require the cold storage heat and at the time of maintenance. The secondary heat medium H can be filled in the cold storage heat tank 40 by storing the secondary heat medium H and operating the pump 44. A pump is used instead of the two-way valve 42,
The secondary heat medium H may be forcibly recovered in the tank 43 by operating the pump.

【0044】一方、室外ユニットAにおいて、圧縮機1
の吐出口2と四方弁9との間の高圧側管に圧力センサ2
1を取付ける。アキュームレータ14と圧縮機1の吸込
口3との間の低圧側管に圧力センサ22および温度セン
サ23を取付ける。室外熱交換器10に温度センサ24
を取付ける。
On the other hand, in the outdoor unit A, the compressor 1
Of the pressure sensor 2 on the high-pressure side pipe between the discharge port 2 and the four-way valve 9 of
Install 1. A pressure sensor 22 and a temperature sensor 23 are attached to the low pressure side pipe between the accumulator 14 and the suction port 3 of the compressor 1. The temperature sensor 24 is attached to the outdoor heat exchanger 10.
Install.

【0045】蓄冷熱ユニットBにおいて、蓄熱用熱交換
器36と二方弁37,39との間の管に第3温度センサ
45および圧力センサ46を取付ける。蓄冷熱槽40内
の高さ方向のほぼ中央部に水温センサ47を設ける。蓄
熱用熱交換器36のコイル36bの入口側の管に第1温
度センサ48を取付け、コイル36bの出口側の管に第
2温度センサ49を取付ける。
In the cold storage unit B, the third temperature sensor 45 and the pressure sensor 46 are attached to the pipe between the heat storage heat exchanger 36 and the two-way valves 37 and 39. A water temperature sensor 47 is provided in the cool storage heat tank 40 at a substantially central portion in the height direction. The first temperature sensor 48 is attached to the pipe on the inlet side of the coil 36b of the heat storage heat exchanger 36, and the second temperature sensor 49 is attached to the pipe on the outlet side of the coil 36b.

【0046】各室内ユニットCにおいて、第1電動膨張
弁51と室内熱交換器52との間の管に温度センサ53
を取付ける。これとは室内熱交換器52を挟んで反対側
の管に、温度センサ54および圧力センサ55を取付け
る。室内熱交換器52への通風路に室内温度センサ56
を設ける。
In each indoor unit C, a temperature sensor 53 is provided in the pipe between the first electric expansion valve 51 and the indoor heat exchanger 52.
Install. A temperature sensor 54 and a pressure sensor 55 are attached to the tube on the opposite side of the indoor heat exchanger 52. An indoor temperature sensor 56 is provided in the ventilation path to the indoor heat exchanger 52.
To provide.

【0047】ここで、圧縮機1の具体的な構成について
図2により説明する。
Here, a specific structure of the compressor 1 will be described with reference to FIG.

【0048】圧縮機1は本体を密閉ケースで覆ってい
る。密閉ケース内の上部に固定スクロール61を設け、
この固定スクロール61に対し旋回スクロール62を旋
回可能に設けている。この旋回スクロール62は、駆動
軸63から電動機(図示せず;後述の圧縮機モータ1
M)の回転を受けることによって偏心状態で回転し、自
身の翼と固定スクロール61の翼との間に圧縮室64を
形成する。
The main body of the compressor 1 is covered with a closed case. A fixed scroll 61 is provided in the upper part of the closed case,
An orbiting scroll 62 is provided so as to be capable of orbiting with respect to the fixed scroll 61. This orbiting scroll 62 includes a drive shaft 63 and an electric motor (not shown; compressor motor 1 described later).
When it receives the rotation of M), it rotates in an eccentric state and forms a compression chamber 64 between its own blade and the blade of the fixed scroll 61.

【0049】密閉ケースの中途部に吸込口3を設け、そ
こから吸込んだ冷媒を圧縮室64に取込んで圧縮し、そ
れを固定スクロール61の上方の吐出室65に吐出す
る。吐出室65には吐出口2を連通し、吐出口2を密閉
ケース外に導出している。
The suction port 3 is provided in the middle of the closed case, and the refrigerant sucked from the suction port 3 is taken into the compression chamber 64 and compressed, and then discharged into the discharge chamber 65 above the fixed scroll 61. The discharge port 2 communicates with the discharge chamber 65, and the discharge port 2 is led out to the outside of the sealed case.

【0050】吐出室65に隣接してレリース室66を設
け、そのレリース室66と圧縮室64とを固定スクロー
ル61に配設したレリースポート67によって連通す
る。そして、レリースポート67において、レリース室
66側の開口にリード弁68を設け、その近傍に、リー
ド弁68の全開位置を規制するためのストッパ69を設
ける。また、レリース室66にレリース口4を連通し、
そのレリース口4を密閉ケース外に導出している。
A release chamber 66 is provided adjacent to the discharge chamber 65, and the release chamber 66 and the compression chamber 64 are connected by a release port 67 arranged in the fixed scroll 61. Then, in the release port 67, a reed valve 68 is provided at the opening on the release chamber 66 side, and a stopper 69 for restricting the fully open position of the reed valve 68 is provided in the vicinity thereof. In addition, the release port 4 is communicated with the release room 66,
The release port 4 is led out of the closed case.

【0051】そして、上記したように、吐出口2からレ
リース口4にかけて加圧サイクル5を設け、その加圧サ
イクル5に二方弁6を設ける。レリース口4から吸込口
3にかけてレリースサイクル7を設け、そのレリースサ
イクル7に流量調整弁8を設ける。
As described above, the pressurizing cycle 5 is provided from the discharge port 2 to the release port 4, and the two-way valve 6 is provided in the pressurizing cycle 5. A release cycle 7 is provided from the release port 4 to the suction port 3, and a flow rate adjusting valve 8 is provided in the release cycle 7.

【0052】すなわち,二方弁6を開いて流量調整弁8
を閉じると、吐出口2から吐出される冷媒が加圧サイク
ル5を通り、レリース口4からレリース室66に流入す
る。この流入する高圧力によってリード弁68が閉じ、
圧縮室64で圧縮された冷媒のすべてが圧縮室65に流
入し、吐出口2から吐出される。したがって、圧縮機1
が通常の高圧縮比で動作し、本来の圧縮機として働く。
That is, the two-way valve 6 is opened and the flow rate adjusting valve 8 is opened.
When is closed, the refrigerant discharged from the discharge port 2 passes through the pressurization cycle 5 and flows from the release port 4 into the release chamber 66. The high pressure that flows in closes the reed valve 68,
All of the refrigerant compressed in the compression chamber 64 flows into the compression chamber 65 and is discharged from the discharge port 2. Therefore, the compressor 1
Operates at a normal high compression ratio and works as an original compressor.

【0053】二方弁6を閉じて流量調整弁8を開くと、
吐出圧力がリード弁68に加わらず、よってリード弁6
8が開く。これにより、圧縮室64で圧縮された冷媒の
一部がレリース室66に流入し、それがレリース口4か
らレリースサイクル7を通って吸込口3に戻る。このと
き、吐出圧力が減少して吸込圧力は高まり、圧縮機1が
低圧縮比で動作する。したがって、圧縮機1は、冷媒を
吸込んで送り出すだけの冷媒ポンプとして働く。なお、
流量調整弁8の開度制御によって冷媒の戻り量を調節す
ることで、ポンプ能力を調整できる。
When the two-way valve 6 is closed and the flow rate adjusting valve 8 is opened,
The discharge pressure is not applied to the reed valve 68, so the reed valve 6
8 opens. As a result, a part of the refrigerant compressed in the compression chamber 64 flows into the release chamber 66, and returns from the release port 4 to the suction port 3 through the release cycle 7. At this time, the discharge pressure decreases, the suction pressure increases, and the compressor 1 operates at a low compression ratio. Therefore, the compressor 1 functions as a refrigerant pump that only sucks in and discharges the refrigerant. In addition,
The pump capacity can be adjusted by adjusting the return amount of the refrigerant by controlling the opening degree of the flow rate adjusting valve 8.

【0054】また、蓄冷熱ユニットBの具体例を図3に
示す。
A concrete example of the cold storage heat unit B is shown in FIG.

【0055】ポンプ41および蓄熱用熱交換器36を経
由する循環路において、蓄冷熱槽40との接続口に流量
センサ71を設け、蓄冷熱槽40内への接続口に噴射ノ
ズル72を挿入して設ける。流量センサ71は、蓄冷熱
槽40から取出される熱媒体の流量をタービン(羽根
車)の回転や超音波の送受によって検知する。噴射ノズ
ル72は、噴出口が水Wの中に開口しており、蓄熱用熱
交換器36から送られる熱媒体を細かい粒状にして噴出
する。
In the circulation path passing through the pump 41 and the heat storage heat exchanger 36, a flow rate sensor 71 is provided at a connection port with the cold storage heat tank 40, and an injection nozzle 72 is inserted at a connection port into the cold storage heat tank 40. Set up. The flow rate sensor 71 detects the flow rate of the heat medium taken out from the cold storage heat tank 40 by rotating a turbine (impeller) or transmitting / receiving ultrasonic waves. The jet nozzle 72 has a jet outlet opening in the water W, and jets the heat medium sent from the heat storage heat exchanger 36 into fine particles.

【0056】蓄熱用熱交換器36は、蓄冷熱槽40から
送られる熱媒体をコイル36aの周りに取込み、熱媒体
とコイル36a内の冷媒との熱交換を行なう。この場
合、コイル36aの周りの空間がコイル36bに相当す
る。
The heat storage heat exchanger 36 takes in the heat medium sent from the cold heat storage tank 40 around the coil 36a, and exchanges heat between the heat medium and the refrigerant in the coil 36a. In this case, the space around the coil 36a corresponds to the coil 36b.

【0057】ポンプ41を動作させると、蓄冷熱槽40
内の底部に溜まっている2次熱媒体Hが蓄熱用熱交換器
36に送られ、2次熱媒体Hがコイル36a内の冷媒と
熱交換する。熱交換した2次熱媒体Hは噴射ノズル72
に送られ、そこで多数の細かい粒状となって水Wの中に
噴出される。
When the pump 41 is operated, the cold heat storage tank 40 is
The secondary heat medium H accumulated at the bottom of the inside is sent to the heat storage heat exchanger 36, and the secondary heat medium H exchanges heat with the refrigerant in the coil 36a. The secondary heat medium H that has exchanged heat is injected into the injection nozzle 72.
To be sprayed into the water W.

【0058】噴出される2次熱媒体Hが冷えていれば、
2次熱媒体Hの粒子の表面に触れている水Wが急激に冷
却されて氷結する。この氷結した氷粒は2次熱媒体Hか
ら分離して上昇し、蓄熱槽40内の上部にシャーベット
状の氷Iが溜まり込む。この後、2次熱媒体Hは重力で
下方に落下し、再び蓄冷熱槽40内の底部に溜まる。こ
れが、蓄冷熱運転である。
If the ejected secondary heat medium H is cold,
The water W contacting the surface of the particles of the secondary heat medium H is rapidly cooled and frozen. The frozen ice particles are separated from the secondary heat medium H and rise, and sherbet-shaped ice I accumulates in the upper part of the heat storage tank 40. After that, the secondary heat medium H falls downward due to gravity and is again accumulated in the bottom portion of the cold storage heat tank 40. This is the cold storage operation.

【0059】この蓄冷熱運転に対し、蓄冷熱利用冷房運
転がある。これは、蓄冷熱槽40内の氷を含む熱媒体を
ポンプ41によって蓄熱用熱交換器36を通して循環さ
せ、熱媒体の冷熱によってコイル36a内の冷媒を冷却
する運転である。
In contrast to this cold storage heat operation, there is a cold storage heat utilization cooling operation. This is an operation in which the heat medium containing ice in the cold storage tank 40 is circulated through the heat storage heat exchanger 36 by the pump 41, and the refrigerant in the coil 36a is cooled by the cold heat of the heat medium.

【0060】また、室内ユニットCで使用する電動膨張
弁51の具体例を図4に示す。
A specific example of the electric expansion valve 51 used in the indoor unit C is shown in FIG.

【0061】電動膨張弁51は、リング状のコイル81
の内側に同じくリング状のフェライト82を設け、その
フェライト82の内側にロータ83を設け、そのロータ
83に弁棒84を連結し、その弁棒84の下端部周面と
弁シート85の内周面とで弁体を形成したもので、管路
86,87間の冷媒の流通に対して減圧手段および流量
調整手段として働く。
The electric expansion valve 51 includes a ring-shaped coil 81.
Similarly, a ring-shaped ferrite 82 is provided inside the rotor, a rotor 83 is provided inside the ferrite 82, and a valve rod 84 is connected to the rotor 83. The lower end peripheral surface of the valve rod 84 and the inner periphery of the valve seat 85 are connected to each other. A valve element is formed by the surface and functions as a pressure reducing means and a flow rate adjusting means with respect to the flow of the refrigerant between the pipelines 86 and 87.

【0062】弁棒84は、図5に示すように、互いに傾
斜角度の異なる2つのテーパー状部84a,84bを下
端部に有している。弁棒84が最下降した状態ではテー
パー状部84bが弁シート85に密接し、弁開度が零
(全閉)となる。そこから弁棒84が上昇するのに伴
い、テーパー状部84bと弁シート85との対応によっ
て開度が50%まで連続的に変化する。さらに、弁棒84
が上昇することにより、今度はテーパー状部84aと弁
シート85との対応によって開度が 100%まで連続的に
変化する。テーパー状部84bでの開度変化とテーパー
状部84aでの開度変化の違いを図6に示しており、テ
ーパー状部84bによる開度小の範囲( 0〜50%)では
開度変化率が小さくて絞り量の大きい膨張弁としての機
能を発揮し、テーパー状部84aによる開度大の範囲
(50〜100 %)では開度変化率が大きくて絞り量の小さ
い流量調整弁としての機能を発揮する。
As shown in FIG. 5, the valve rod 84 has two tapered portions 84a and 84b having different inclination angles at its lower end portion. When the valve rod 84 is in the lowest position, the tapered portion 84b comes into close contact with the valve seat 85, and the valve opening becomes zero (fully closed). As the valve rod 84 rises from there, the opening degree changes continuously up to 50% due to the correspondence between the tapered portion 84b and the valve seat 85. Further, the valve rod 84
As a result, the opening degree changes continuously up to 100% due to the correspondence between the tapered portion 84a and the valve seat 85. Fig. 6 shows the difference between the change in the opening degree at the tapered portion 84b and the change in the opening degree at the tapered portion 84a. The rate of change in the opening degree in the small opening range (0 to 50%) due to the tapered portion 84b. Function as an expansion valve with a small throttle amount and a large throttle amount, and as a flow rate control valve with a large throttle valve opening ratio (50 to 100%) and a small throttle amount. Exert.

【0063】次に、制御回路を図7に示す。Next, the control circuit is shown in FIG.

【0064】室外ユニットAは、マイクロコンピュ―タ
およびその周辺回路からなる制御部100を有する。こ
の制御部100に、二方弁6、流量調整弁8、四方弁
9、圧力センサ21,22、温度センサ23、インバ―
タ回路101、室内ファンモータ15M、および操作部
102を接続する。
The outdoor unit A has a control unit 100 composed of a microcomputer and its peripheral circuits. The control unit 100 includes a two-way valve 6, a flow rate adjusting valve 8, a four-way valve 9, pressure sensors 21 and 22, a temperature sensor 23, and an inverter.
The controller circuit 101, the indoor fan motor 15M, and the operation unit 102 are connected.

【0065】インバ―タ回路101は、商用交流電源
(図示しない)の電圧を整流し、それを室外制御部10
0の指令に応じた周波数およびレベルの電圧に変換し、
出力する。この出力は、圧縮機モータ1Mの駆動電力と
なる。
The inverter circuit 101 rectifies the voltage of a commercial AC power source (not shown) and supplies it to the outdoor control unit 10.
Converted to voltage of frequency and level according to 0 command,
Output. This output becomes drive power for the compressor motor 1M.

【0066】制御部100に、信号線で蓄冷熱ユニット
Bの制御部110を接続する。制御部110は、マイク
ロコンピュ―タおよびその周辺回路からなる。この制御
部110に、二方弁31,32,33,35,37,3
9、電動膨張弁34、ポンプ41、二方弁42、ポンプ
44、温度センサ45、圧力センサ46、水温センサ4
7、温度センサ48,49、流量センサ71、および回
収スイッチ111を接続する。回収スイッチ111は、
蓄冷熱槽40内の2次熱媒体Hをタンク43に回収させ
たいときに操作するものである。
The control unit 110 of the cold energy storage unit B is connected to the control unit 100 by a signal line. The control unit 110 is composed of a microcomputer and its peripheral circuits. The control unit 110 includes two-way valves 31, 32, 33, 35, 37, 3
9, electric expansion valve 34, pump 41, two-way valve 42, pump 44, temperature sensor 45, pressure sensor 46, water temperature sensor 4
7, the temperature sensors 48 and 49, the flow rate sensor 71, and the recovery switch 111 are connected. The recovery switch 111 is
This is operated when the secondary heat medium H in the cold storage heat tank 40 is to be collected in the tank 43.

【0067】制御部100に、信号線で各室内ユニット
Cの制御部120を接続する。制御部120は、マイク
ロコンピュ―タおよびその周辺回路からなる。この制御
部120に、電動膨張弁51、温度センサ53,54、
圧力センサ55、室内温度センサ56、室内ファンモー
タ121、およびリモートコントロール式の操作器(以
下、リモコンと略称する)122を接続する。
The controller 120 of each indoor unit C is connected to the controller 100 by a signal line. The control unit 120 is composed of a microcomputer and its peripheral circuits. The control unit 120 includes an electric expansion valve 51, temperature sensors 53 and 54,
A pressure sensor 55, an indoor temperature sensor 56, an indoor fan motor 121, and a remote control type operation device (hereinafter, abbreviated as a remote controller) 122 are connected.

【0068】この制御部120は、次の機能手段を有す
る。
The control section 120 has the following functional means.

【0069】[1]リモコン122の操作に基づく運転
開始および運転停止の指令を室外ユニットAに送る手
段。
[1] Means for sending to the outdoor unit A commands to start and stop the operation based on the operation of the remote controller 122.

【0070】[2]リモコン122で設定される冷房運
転モードまたは暖房運転モードの要求を室外ユニットA
に送る手段。
[2] The request for the cooling operation mode or the heating operation mode set by the remote controller 122 is transmitted to the outdoor unit A.
Means to send to.

【0071】[3]リモコン122で設定される設定室
内温度と室内温度センサ56の検知温度との差を空調負
荷として求める手段。
[3] A means for obtaining the difference between the set indoor temperature set by the remote controller 122 and the detected temperature of the indoor temperature sensor 56 as an air conditioning load.

【0072】[4]求めた空調負荷を室外ユニットAに
知らせる手段。
[4] Means for notifying the outdoor unit A of the obtained air conditioning load.

【0073】[5]運転停止時、電動膨張弁51を全閉
する手段。
[5] A means for fully closing the electric expansion valve 51 when the operation is stopped.

【0074】[6]運転開始時、電動膨張弁51をあら
かじめ定めた初期開度に一旦設定する手段。
[6] Means for temporarily setting the electric expansion valve 51 to a predetermined initial opening when the operation is started.

【0075】[7]冷房運転モード時および冷房・蓄冷
熱同時運転モード時(蓄冷熱を使用しない場合)は電動
膨張弁51を開度小の範囲に設定して電動膨張弁51を
膨張弁として機能させ、、暖房運転モード時および蓄冷
熱利用冷房運転モード時(蓄冷熱を使用する場合)は電
動膨張弁51を開度大の範囲に設定して電動膨張弁51
を流量調整弁として機能させる手段。
[7] In the cooling operation mode and in the simultaneous cooling and cold storage heat operation mode (when the cold storage heat is not used), the electric expansion valve 51 is set to a small opening range and the electric expansion valve 51 is used as an expansion valve. In the heating operation mode and the cold storage heat utilization cooling operation mode (when the cold storage heat is used), the motor-operated expansion valve 51 is set to a large opening range so as to function.
Means to function as a flow control valve.

【0076】[8]冷房運転モード時および冷房・蓄冷
熱同時運転モード時、圧力センサ55の検知圧力(蒸発
圧力)から冷媒飽和温度を求め、その冷媒飽和温度と温
度センサ54の検知温度との差を室内熱交換器52での
冷媒の過熱度として検出する手段。
[8] In the cooling operation mode and the simultaneous cooling / cold heat storage operation mode, the refrigerant saturation temperature is obtained from the pressure detected by the pressure sensor 55 (evaporation pressure), and the refrigerant saturation temperature and the temperature detected by the temperature sensor 54 are compared. A means for detecting the difference as the degree of superheat of the refrigerant in the indoor heat exchanger 52.

【0077】[9]冷房運転モード時および冷房・蓄冷
熱同時運転モード時、検出した過熱度があらかじめ定め
た一定値となるよう、電動膨張弁51の開度を開度小の
範囲で制御する手段。
[9] In the cooling operation mode and the simultaneous cooling / cooling heat storage operation mode, the opening degree of the electric expansion valve 51 is controlled within a small opening range so that the detected superheat degree becomes a predetermined constant value. means.

【0078】[10]暖房運転モード時、温度センサ53
の検知温度と圧力センサ55の検知圧力から室内熱交換
器52での冷媒の過冷却度を検出する手段。
[10] Temperature sensor 53 in the heating operation mode
Means for detecting the degree of supercooling of the refrigerant in the indoor heat exchanger 52 from the detected temperature of the pressure sensor 55 and the pressure detected by the pressure sensor 55.

【0079】[11]暖房運転モード時、検出した過冷却
度があらかじめ定めた一定値となるよう、電動膨張弁5
1の開度を開度大の範囲で制御する手段。
[11] In the heating operation mode, the electric expansion valve 5 is set so that the detected degree of supercooling becomes a predetermined constant value.
A means for controlling the opening of 1 in the range of the large opening.

【0080】室外ユニットAの制御部100は、次の機
能手段を有する。
The controller 100 of the outdoor unit A has the following functional means.

【0081】[1]各室内ユニットCの要求に従って冷
房運転モードおよび暖房運転モードのいずれか一つを決
定する手段。
[1] Means for determining one of the cooling operation mode and the heating operation mode according to the request of each indoor unit C.

【0082】[2]冷房運転モード時、蓄冷熱運転モー
ド時、および冷房・蓄冷熱同時運転モード時、四方弁4
をニュートラル状態に設定する手段。
[2] Four-way valve 4 in the cooling operation mode, the cold heat storage operation mode, and the cooling / cold heat storage simultaneous operation mode
Means to set the neutral state.

【0083】[3]暖房運転モード時、四方弁4を切換
える手段。
[3] Means for switching the four-way valve 4 in the heating operation mode.

【0084】[4]室内ユニットCからの運転開始の指
令に応答し、インバータ回路101を駆動して圧縮機1
の運転を開始するとともに、室内ユニットCからの運転
停止の指令に応答し、インバータ回路101の駆動を停
止して圧縮機1の運転を停止する手段。
[4] In response to the operation start command from the indoor unit C, the inverter circuit 101 is driven to drive the compressor 1
Means for stopping the driving of the inverter circuit 101 and stopping the driving of the compressor 1 in response to a command to stop the driving from the indoor unit C while starting the driving of the.

【0085】[5]冷房運転モード時、冷房運転モード
の要求を出している室内ユニットの空調負荷の総和を求
める手段。
[5] A means for obtaining the sum of the air conditioning loads of the indoor units that have issued a request for the cooling operation mode in the cooling operation mode.

【0086】[6]暖房運転モード時、暖房運転モード
の要求を出している室内ユニットの空調負荷の総和を求
める手段。
[6] Means for obtaining the sum of the air conditioning loads of the indoor units requesting the heating operation mode in the heating operation mode.

【0087】[7]空調負荷の総和に応じて、インバー
タ回路101の出力周波数F(Hz)を制御する手段。
[7] A means for controlling the output frequency F (Hz) of the inverter circuit 101 in accordance with the total air conditioning load.

【0088】[8]冷房運転モード時、蓄冷熱運転モー
ド時、および冷房・蓄冷熱同時運転モード時、温度セン
サ24の検知温度(凝縮温度)があらかじめ定めた所定
範囲内に収まるよう室外ファン15の送風量(室外ファ
ンモータ15Mの速度)を調節する手段。
[8] In the cooling operation mode, the cold storage heat operation mode, and the cooling / cooling heat storage operation mode, the outdoor fan 15 is set so that the temperature detected by the temperature sensor 24 (condensation temperature) falls within a predetermined range. Means for adjusting the amount of blown air (speed of the outdoor fan motor 15M).

【0089】[9]暖房運転モード時、温度センサ24
の検知温度から室外熱交換器10の着霜を検知して除霜
運転を実行する手段。
[9] Temperature sensor 24 in the heating operation mode
Means for detecting the frost formation of the outdoor heat exchanger 10 from the detected temperature of and performing the defrosting operation.

【0090】[10]操作部102で蓄冷熱自動モードが
設定されると、蓄冷熱ユニットBで検出される蓄冷熱残
量および種々のデータに従い、蓄冷熱運転モード、冷房
・蓄冷熱同時運転モード、および蓄冷熱利用冷房運転モ
ードのいずれか1つを設定する手段。
[10] When the cool storage heat automatic mode is set by the operation unit 102, according to the cool storage heat remaining amount detected by the cool storage heat unit B and various data, the cool storage heat operation mode, the cooling / cooling heat storage simultaneous operation mode , And means for setting any one of the cool storage heat utilization cooling operation mode.

【0091】[11]蓄冷熱利用冷房運転モード時のみ二
方弁6(つまり加圧サイクル5)を閉じて流量調整弁9
(レリースサイクル7)を所定開度に開き、圧縮機1を
低圧縮比で運転させ、それ以外のモードでは二方弁6を
開いて流量調整弁9を全閉し、圧縮機1を高圧縮比で運
転させる手段。
[11] The two-way valve 6 (that is, the pressurization cycle 5) is closed and the flow rate adjusting valve 9 is used only in the cooling operation mode using the stored heat
(Release cycle 7) is opened to a predetermined opening to operate the compressor 1 at a low compression ratio, and in the other modes, the two-way valve 6 is opened and the flow rate adjusting valve 9 is fully closed, so that the compressor 1 is highly compressed. A means to drive at a ratio.

【0092】[12]蓄冷熱利用冷房運転モード時、圧力
センサ21の検知圧力(高圧側圧力)と圧力センサ22
の検知圧力(低圧側圧力)から圧縮機1の圧縮比を求
め、その圧縮比が低圧縮比の所定値となるよう流量調整
弁8の開度を制御する手段。
[12] Pressure detected by the pressure sensor 21 (high-pressure side pressure) and the pressure sensor 22 in the cooling operation mode using the cold storage heat
A means for obtaining the compression ratio of the compressor 1 from the detected pressure (pressure on the low pressure side) and controlling the opening of the flow rate adjusting valve 8 so that the compression ratio becomes a predetermined value of the low compression ratio.

【0093】[13]運転モードの指令を蓄冷熱ユニット
Bおよび複数の室内ユニットCに送る手段。
[13] Means for sending an operation mode command to the cold storage heat unit B and the plurality of indoor units C.

【0094】蓄冷熱ユニットBの制御部110は、次の
機能手段を有する。
The control section 110 of the cold storage heat unit B has the following functional means.

【0095】[1]冷房運転モードおよび暖房運転モー
ド時、二方弁31,32を開いて二方弁33,37,3
9を閉じ、室外ユニットAと各室内ユニットCとの間の
冷媒の流通を許容しつつ、蓄熱用熱交換器36への冷媒
の流入を遮断する手段。
[1] In the cooling operation mode and the heating operation mode, the two-way valves 31, 32 are opened to open the two-way valves 33, 37, 3.
9 is closed to allow the refrigerant to flow between the outdoor unit A and each indoor unit C, while blocking the refrigerant from flowing into the heat storage heat exchanger 36.

【0096】[2]蓄冷熱運転モード、冷房・蓄冷熱同
時運転モード、および蓄冷熱利用冷房運転モード時、各
二方弁の適宜な開閉により、蓄熱用熱交換器36に冷媒
を流し、かつ蓄冷熱槽40内の2次熱媒体Hを蓄熱用熱
交換器36に通して循環させる手段。
[2] In the cold storage heat operation mode, the cooling / cold heat storage heat simultaneous operation mode, and the cold storage heat utilization cooling operation mode, the refrigerant is caused to flow through the heat storage heat exchanger 36 by appropriately opening / closing each two-way valve, and Means for circulating the secondary heat medium H in the cold storage tank 40 through the heat storage heat exchanger 36.

【0097】[3]蓄冷熱運転モードおよび冷房・蓄冷
熱同時運転モード時、蓄熱用熱交換器36での熱交換量
を適正にするべく、各センサの検知結果に応じてポンプ
41の容量または電動膨張弁34の開度の少なくとも一
方を制御する手段。
[3] In the cold storage heat operation mode and the simultaneous cooling / cooling heat storage operation mode, in order to make the heat exchange amount in the heat storage heat exchanger 36 appropriate, the capacity of the pump 41 or A means for controlling at least one of the openings of the electric expansion valve 34.

【0098】[4]冷房・蓄冷熱同時運転モード時、各
室内ユニットCの空調負荷の総和が所定値以下と小さい
場合に余剰冷媒を蓄熱用熱交換器36側に流して冷房と
蓄冷熱の両方を行ない、空調負荷の総和が所定値以上で
は蓄熱用熱交換器36側への冷媒の流入を遮断して冷房
のみ優先的に実行する手段。
[4] In the simultaneous cooling and cold storage heat operation mode, when the sum of the air conditioning loads of the indoor units C is smaller than a predetermined value, the surplus refrigerant is flown to the heat storage heat exchanger 36 side to cool and cool the heat. A means for performing both, and shutting off the inflow of the refrigerant to the heat storage heat exchanger 36 side and executing only the cooling preferentially when the sum of the air conditioning loads is a predetermined value or more.

【0099】[5]蓄冷熱槽40を使用しない暖房運転
モード時およびメンテナンス時は蓄冷熱槽40内の2次
熱媒体Hをタンク43に回収し、冷房運転モード、蓄冷
熱運転モード、および冷房・蓄冷熱同時運転モードに際
してはタンク43内の2次熱媒体Hを蓄冷熱槽40に充
填する手段。
[5] In the heating operation mode not using the cold storage heat tank 40 and during maintenance, the secondary heat medium H in the cold storage tank 40 is recovered in the tank 43, and the cooling operation mode, the cold storage heat operation mode, and the cooling operation are performed. A means for filling the cold storage heat tank 40 with the secondary heat medium H in the tank 43 in the cold storage heat simultaneous operation mode.

【0100】[6]各センサの検知結果から蓄熱槽40
の蓄冷熱残量を検出する手段。
[6] From the detection results of each sensor, the heat storage tank 40
Means for detecting the remaining amount of cold storage heat of.

【0101】[7]検出した蓄冷熱残量を室外ユニット
Aに知らせる手段。
[7] A means for notifying the outdoor unit A of the detected remaining amount of cold storage heat.

【0102】つぎに、上記の構成の作用を説明する。Next, the operation of the above configuration will be described.

【0103】室内ユニットCのリモコン122で運転開
始の操作を行なうと、運転開始の指令が室外ユニットA
に送られる。同時に、リモコン122で設定されている
冷房運転モードまたは暖房運転モードの要求が室外ユニ
ットAに送られる。
When the operation of starting the operation is performed by the remote controller 122 of the indoor unit C, the operation start command is issued to the outdoor unit A.
Sent to. At the same time, a request for the cooling operation mode or the heating operation mode set by the remote controller 122 is sent to the outdoor unit A.

【0104】リモコン122で設定される設定室内温度
と室内温度センサ56の検知温度との差が空調負荷とし
て求められ、それが室外ユニットAに知らされる。リモ
コン122で運転停止の操作を行なうと、運転停止の指
令が室外ユニットAに送られる。
The difference between the set room temperature set by the remote controller 122 and the temperature detected by the room temperature sensor 56 is obtained as an air conditioning load, and the outdoor unit A is notified of the difference. When the operation of stopping the operation is performed by the remote controller 122, a command to stop the operation is sent to the outdoor unit A.

【0105】室外ユニットAでは、各室内ユニットCの
要求に従い、冷房運転モードおよび暖房運転モードのい
ずれかを決定する。たとえば、冷房運転モードの要求数
と暖房運転モードの要求数とを比較し、数の多い方の運
転モードを決定する。あるいは、各室内ユニットCに対
して予め優先順位を定め、運転モードの要求を出してい
る室内ユニットのうち最も優先順位の高い室内ユニット
が出している運転モードを選択し、決定する。
In the outdoor unit A, either the cooling operation mode or the heating operation mode is determined according to the request of each indoor unit C. For example, the number of requests in the cooling operation mode and the number of requests in the heating operation mode are compared, and the operation mode with the larger number is determined. Alternatively, the priority order is set in advance for each indoor unit C, and the operation mode issued by the indoor unit having the highest priority order among the indoor units requesting the operation mode is selected and determined.

【0106】冷房運転モードを決定した場合、四方弁9
をニュートラル状態に設定するとともに、暖房運転モー
ドの要求を出している室内ユニットCの電動膨張弁51
を全閉させ、さらに冷房運転モードの要求を出している
室内ユニットCの電動膨張弁51をその室内ユニットC
の空調負荷に応じた開度に設定する。
When the cooling operation mode is determined, the four-way valve 9
Is set to the neutral state and the electric expansion valve 51 of the indoor unit C requesting the heating operation mode is set.
And the electric expansion valve 51 of the indoor unit C that is requesting the cooling operation mode is closed.
The opening is set according to the air conditioning load.

【0107】運転開始の指令が出ると、インバータ回路
101を駆動して圧縮機1の運転を開始する。この場
合、二方弁6が開いて加圧サイクル5導通し、かつ流
量調整弁8が全閉してレリースサイクル7が遮断し、圧
縮機1が高圧縮比で運転する。この圧縮機1の吐出冷媒
は四方弁9を通って室外熱交換器10に入り、そこで外
気に熱を奪われて液化する。
When an operation start command is issued, the inverter circuit 101 is driven to start the operation of the compressor 1. In this case, the two-way valve 6 is opened to conduct the pressurization cycle 5, the flow rate adjusting valve 8 is fully closed to shut off the release cycle 7, and the compressor 1 is operated at a high compression ratio. The refrigerant discharged from the compressor 1 passes through the four-way valve 9 and enters the outdoor heat exchanger 10, where heat is taken from the outside air to be liquefied.

【0108】室外熱交換器10を経た液冷媒は、逆止弁
11および受液器12を通り、さらに電動膨張弁51を
通る。冷房時は電動膨張弁51が開度小の範囲に設定さ
れて膨張弁として機能しており、そこで冷媒が減圧され
て室内熱交換器52に入る。室内熱交換器52に入った
冷媒は、そこで室内空気から熱を奪って気化する。室内
熱交換器52を経たガス冷媒は、四方弁9およびアキュ
ームレータ14を通って圧縮機1に吸込まれる。
The liquid refrigerant passing through the outdoor heat exchanger 10 passes through the check valve 11 and the liquid receiver 12, and further passes through the electric expansion valve 51. During cooling, the electric expansion valve 51 is set to a small opening range and functions as an expansion valve, where the refrigerant is decompressed and enters the indoor heat exchanger 52. The refrigerant that has entered the indoor heat exchanger 52 then takes heat from the indoor air and is vaporized. The gas refrigerant that has passed through the indoor heat exchanger 52 is sucked into the compressor 1 through the four-way valve 9 and the accumulator 14.

【0109】こうして、室外熱交換器10が凝縮器、室
内熱交換器52が蒸発器として働き、室内ユニットCが
設置されている部屋が冷房される。この冷房運転時、イ
ンバータ回路101の出力周波数F(Hz)を空調負荷
の総和に応じて制御する。また、室内熱交換器52での
冷媒の過熱度を検出し、その過熱度が一定値となるよう
電動膨張弁51を開度小の範囲で制御する。
Thus, the outdoor heat exchanger 10 functions as a condenser, the indoor heat exchanger 52 functions as an evaporator, and the room in which the indoor unit C is installed is cooled. During this cooling operation, the output frequency F (Hz) of the inverter circuit 101 is controlled according to the total air conditioning load. Further, the degree of superheat of the refrigerant in the indoor heat exchanger 52 is detected, and the electric expansion valve 51 is controlled within a small opening range so that the degree of superheat becomes a constant value.

【0110】暖房運転モードを決定した場合には、四方
弁9を切換えるとともに、冷房運転モードの要求を出し
ている室内ユニットCの電動膨張弁51が全閉させ、さ
らに暖房運転モードの要求を出している室内ユニッCの
電動膨張弁51をその室内ユニットCの空調負荷に応じ
た開度に設定する。
When the heating operation mode is determined, the four-way valve 9 is switched, the electric expansion valve 51 of the indoor unit C which has issued the request for the cooling operation mode is fully closed, and the request for the heating operation mode is issued. The electric expansion valve 51 of the indoor unit C is set to an opening degree according to the air conditioning load of the indoor unit C.

【0111】この場合も圧縮機1を高圧縮比で運転させ
る。この圧縮機1の吐出冷媒は四方弁9を通って室内熱
交換器52に入り、そこで室内空気に熱を奪われて液化
する。室内熱交換器52を経た液冷媒は、電動膨張弁5
1を通る。暖房時は電動膨張弁51を開度大の範囲に設
定して流量調整弁として機能させ、そこで冷媒の流量が
調節する。この調節に当たっては、室内熱交換器52で
の冷媒の過冷却度を検出し、その過冷却度が一定値とな
るよう電動膨張弁51を開度大の範囲で制御する。
Also in this case, the compressor 1 is operated at a high compression ratio. The refrigerant discharged from the compressor 1 passes through the four-way valve 9 and enters the indoor heat exchanger 52, where heat is taken from the indoor air and liquefied. The liquid refrigerant that has passed through the indoor heat exchanger 52 is electrically driven by the expansion valve 5
Pass 1 At the time of heating, the electric expansion valve 51 is set to a large opening range to function as a flow rate adjusting valve, and the flow rate of the refrigerant is adjusted there. In this adjustment, the degree of supercooling of the refrigerant in the indoor heat exchanger 52 is detected, and the electric expansion valve 51 is controlled within a wide opening range so that the degree of supercooling becomes a constant value.

【0112】室内熱交換器52を経た液冷媒は受液器1
2を通って膨張弁13で減圧され、室外熱交換器10に
入る。室外熱交換器10に入った冷媒は、そこで外気か
ら熱を取込んで気化する。室外熱交換器10を経たガス
冷媒は、四方弁9およびアキュームレータ14を通り、
圧縮機1に吸込まれる。
The liquid refrigerant passing through the indoor heat exchanger 52 is received by the liquid receiver 1
The pressure is reduced by the expansion valve 13 through 2 and enters the outdoor heat exchanger 10. The refrigerant that has entered the outdoor heat exchanger 10 then takes in heat from the outside air and is vaporized. The gas refrigerant passing through the outdoor heat exchanger 10 passes through the four-way valve 9 and the accumulator 14,
The compressor 1 is sucked.

【0113】こうして、室内熱交換器52が凝縮器、室
外熱交換器10が蒸発器として働き、室内ユニットCが
設置されている部屋が暖房される。この暖房運転時、イ
ンバータ回路101の出力周波数F(Hz)を空調負荷
の総和に応じて制御する。
Thus, the indoor heat exchanger 52 functions as a condenser and the outdoor heat exchanger 10 functions as an evaporator, and the room in which the indoor unit C is installed is heated. During this heating operation, the output frequency F (Hz) of the inverter circuit 101 is controlled according to the total air conditioning load.

【0114】また、暖房運転時は、蒸発器として働く室
外熱交換器10の表面に徐々に霜が付着し、そのままで
は熱交換量が減少してしまう。そこで、室外熱交換器1
0の温度を温度センサ24で検知し、その検知温度が零
℃またはそれ以下となってその状態が所定時間続くと、
除霜運転を開始する。
Further, during the heating operation, frost gradually adheres to the surface of the outdoor heat exchanger 10 which functions as an evaporator, and the heat exchange amount decreases as it is. Therefore, the outdoor heat exchanger 1
When the temperature of 0 is detected by the temperature sensor 24 and the detected temperature becomes 0 ° C. or lower, and the state continues for a predetermined time,
Start defrosting operation.

【0115】この除霜運転では、四方弁9をニュートラ
ル状態に復帰して冷媒の流れを反対に切換え、圧縮機1
から吐出される高温冷媒をそのまま室外熱交換器10に
供給する。この高温冷媒の供給により、室外熱交換器1
0に付着した霜が除去される。なお、室内ユニットCで
は、室内ファンモータ121の運転を停止し、室内への
冷風の吹出しを防止する。
In this defrosting operation, the four-way valve 9 is returned to the neutral state and the flow of the refrigerant is switched in the opposite direction, and the compressor 1
The high-temperature refrigerant discharged from is supplied to the outdoor heat exchanger 10 as it is. By supplying this high-temperature refrigerant, the outdoor heat exchanger 1
The frost attached to 0 is removed. In the indoor unit C, the operation of the indoor fan motor 121 is stopped to prevent the blow of cold air into the room.

【0116】その後、温度センサ24の検知温度が零℃
よりも高い所定値以上になると、四方弁9を切換え、暖
房運転に復帰する。
After that, the temperature detected by the temperature sensor 24 is 0.degree.
When it becomes a predetermined value higher than the above, the four-way valve 9 is switched to return to the heating operation.

【0117】一方、室外ユニットAの操作部102で蓄
熱使用モードが設定されると、図8のフローチャートに
示すように、蓄熱槽40の蓄冷熱残量を検出する(検出
方法については後述する)。そして、検出した蓄冷熱残
量と気象状況などの各種データに基づき、蓄冷熱が必要
か否か判定する。
On the other hand, when the heat storage use mode is set in the operation section 102 of the outdoor unit A, the cool storage heat remaining amount of the heat storage tank 40 is detected as shown in the flowchart of FIG. 8 (a detection method will be described later). . Then, based on the detected remaining amount of cold storage heat and various data such as weather conditions, it is determined whether or not the cold storage heat is required.

【0118】たとえば、蓄冷熱残量が所定値以下と少な
ければ、蓄冷熱が必要であると判定し、このとき冷房運
転の実行中でなければ、蓄冷熱運転モードを設定する。
For example, if the remaining amount of cold storage heat is less than a predetermined value, it is determined that the cold storage heat is required, and if the cooling operation is not being executed at this time, the cold storage heat operation mode is set.

【0119】この蓄冷熱運転モードでは、四方弁9をニ
ュートラル状態に設定するとともに、圧縮機1を高圧縮
比で運転する。そして、蓄冷熱ユニットBの二方弁3
1,33,37を開いて二方弁32,35,39を閉じ
る。
In this cold storage heat operation mode, the four-way valve 9 is set to the neutral state and the compressor 1 is operated at a high compression ratio. And the two-way valve 3 of the cold storage unit B
1, 33, 37 are opened and the two-way valves 32, 35, 39 are closed.

【0120】この場合、圧縮機1から吐出される冷媒
は、図1に実線矢印で示すように、四方弁9、室外熱交
換器10、逆止弁11、受液器12、二方弁31、二方
弁33、電動膨張弁34、蓄熱用熱交換器36、二方弁
37、四方弁9、およびアキュームレータ14を通って
圧縮機1の吸込側へと流れ、室外熱交換器10が凝縮
器、蓄熱用熱交換器36のコイル36aが蒸発器として
働く。
In this case, the refrigerant discharged from the compressor 1 is the four-way valve 9, the outdoor heat exchanger 10, the check valve 11, the liquid receiver 12, and the two-way valve 31 as shown by the solid line arrow in FIG. , The two-way valve 33, the electric expansion valve 34, the heat storage heat exchanger 36, the two-way valve 37, the four-way valve 9 and the accumulator 14 to the suction side of the compressor 1, and the outdoor heat exchanger 10 condenses. The coil and the coil 36a of the heat storage heat exchanger 36 work as an evaporator.

【0121】同時に、ポンプ41を運転し、蓄冷熱槽4
0内の2次熱媒体Hを蓄熱用熱交換器36に送る。蓄熱
用熱交換器36に送られた2次熱媒体Hはそこでコイル
36aを通る冷媒により冷却され、蓄冷熱槽40の水W
の中に多数の細かい粒状となって噴出される。
At the same time, the pump 41 is operated to cool the cold storage tank 4
The secondary heat medium H in 0 is sent to the heat storage heat exchanger 36. The secondary heat medium H sent to the heat storage heat exchanger 36 is cooled there by the refrigerant passing through the coil 36a, and the water W in the cold storage tank 40 is cooled.
It is ejected in the form of many fine particles.

【0122】噴出される2次熱媒体Hは冷えているの
で、2次熱媒体Hの各粒子の表面に触れている水Wが急
激に冷却されて氷結する。この氷結した氷粒は2次熱媒
体Hから分離して上昇し、蓄熱槽40内の上部にシャー
ベット状の氷Iが溜まり込む。つまり、氷Iの生成によ
って冷熱を蓄えることになる。この後、2次熱媒体Hは
重力で下方に落下し、再び蓄冷熱槽40内の底部に溜ま
り込む。
Since the jetted secondary heat medium H is cold, the water W contacting the surface of each particle of the secondary heat medium H is rapidly cooled and frozen. The frozen ice particles are separated from the secondary heat medium H and rise, and sherbet-shaped ice I accumulates in the upper part of the heat storage tank 40. That is, the cold heat is stored by the generation of the ice I. After that, the secondary heat medium H falls downward due to gravity and again accumulates in the bottom of the cold storage heat tank 40.

【0123】蓄冷熱運転の開始から氷Iの生成に至る各
部の温度変化を図9に示す。t0 は蓄冷熱槽40内の水
温、t1 は蓄熱用熱交換器36に流入する2次熱媒体H
の温度、t2 は蓄熱用熱交換器36から流出する2次熱
媒体Hの温度である。
FIG. 9 shows the temperature change of each part from the start of the cold heat storage operation to the production of ice I. t 0 is the water temperature in the cold heat storage tank 40, t 1 is the secondary heat medium H flowing into the heat storage heat exchanger 36
, T 2 is the temperature of the secondary heat medium H flowing out from the heat storage heat exchanger 36.

【0124】ところで、この蓄冷熱運転時、蓄熱用熱交
換器36における熱交換量を調節する。この調節の方法
として次の[1]〜[5]の5つがあり、いずれを採用
してもよい。
By the way, during the cold heat storage operation, the amount of heat exchange in the heat storage heat exchanger 36 is adjusted. There are the following five methods [1] to [5] for this adjustment, and any of them may be adopted.

【0125】[1]蓄熱用熱交換器36に流入する2次
熱媒体Hの温度t1 を温度センサ48で検知し、蓄熱用
熱交換器36から流出する2次熱媒体Hの温度t2 を温
度センサ49で検知する。そして、両検知温度の差を求
め、その温度差があらかじめ定めた目標値となるよう、
ポンプ41の容量を制御する。
[0125] [1] The temperature t 1 of the secondary heat medium H flowing in the heat storage heat exchanger 36 detected by the temperature sensor 48, the temperature t of the secondary heat medium H flowing from the heat storage heat exchanger 36 2 Is detected by the temperature sensor 49. Then, the difference between the two detected temperatures is obtained, and the temperature difference becomes a predetermined target value,
The capacity of the pump 41 is controlled.

【0126】ここでの温度差は2次熱媒体Hの温度低下
分に相当しており、その温度低下分が目標値よりも小さ
い場合はポンプ41の容量を減らして2次熱媒体Hの循
環量を少なくし、温度低下を促進する。温度低下分が目
標値とほぼ同じ場合は、そのときのポンプ41の容量を
保持する。温度低下分が目標値よりも大きい場合は、ポ
ンプ41の容量を増して2次熱媒体Hの循環量を多く
し、温度低下を抑制する。
The temperature difference here corresponds to the temperature decrease of the secondary heat medium H. If the temperature decrease is smaller than the target value, the capacity of the pump 41 is reduced to circulate the secondary heat medium H. Reduce the amount and promote temperature reduction. When the amount of temperature decrease is almost the same as the target value, the capacity of the pump 41 at that time is held. When the amount of temperature decrease is larger than the target value, the capacity of the pump 41 is increased to increase the circulation amount of the secondary heat medium H to suppress the temperature decrease.

【0127】[2]圧力センサ46の検知圧力(蒸発圧
力)から冷媒飽和温度を求め、温度センサ45の検知温
度と求めた冷媒飽和温度との差を蓄熱用熱交換器36で
の冷媒の過熱度として検出する。そして、この過熱度が
所定値となるよう、ポンプ41の容量を制御する。
[2] The refrigerant saturation temperature is obtained from the pressure detected by the pressure sensor 46 (evaporation pressure), and the difference between the temperature detected by the temperature sensor 45 and the obtained refrigerant saturation temperature is used as the refrigerant overheat in the heat storage heat exchanger 36. Detect as a degree. Then, the capacity of the pump 41 is controlled so that the degree of superheat becomes a predetermined value.

【0128】たとえば、過熱度が所定値より小さい場
合、ポンプ41の容量を増して2次熱媒体Hの循環量を
多くし、過熱度の増大を図る。過熱度がほぼ所定値の場
合には、そのときのポンプ41の容量を保持する。過熱
度が所定値より大きい場合、ポンプ41の容量を減らし
て2次熱媒体Hの循環量を少なくし、過熱度の減少を図
る。
For example, when the degree of superheat is smaller than a predetermined value, the capacity of the pump 41 is increased to increase the circulation amount of the secondary heat medium H to increase the degree of superheat. When the degree of superheat is almost a predetermined value, the capacity of the pump 41 at that time is maintained. When the degree of superheat is larger than a predetermined value, the capacity of the pump 41 is reduced to reduce the circulation amount of the secondary heat medium H to reduce the degree of superheat.

【0129】[3]蓄熱用熱交換器36に流入する2次
熱媒体Hの温度t1 を温度センサ48で検知し、蓄熱用
熱交換器36から流出する2次熱媒体Hの温度t2 を温
度センサ49で検知する。そして、両検知温度の差を求
め、その温度差があらかじめ定めた目標値となるよう、
電動膨張弁34の開度を制御する。
[0129] [3] The temperature t 1 of the secondary heat medium H flowing in the heat storage heat exchanger 36 detected by the temperature sensor 48, the temperature t of the secondary heat medium H flowing from the heat storage heat exchanger 36 2 Is detected by the temperature sensor 49. Then, the difference between the two detected temperatures is obtained, and the temperature difference becomes a predetermined target value,
The opening degree of the electric expansion valve 34 is controlled.

【0130】ここでの温度差は2次熱媒体Hの温度低下
分に相当しており、その温度低下分が目標値よりも小さ
い場合は電動膨張弁34の開度を増して冷媒流量を多く
し、温度低下を促進する。温度低下分が目標値とほぼ同
じ場合は、そのときの電動膨張弁34の開度を保持す
る。温度低下分が目標値よりも大きい場合は、電動膨張
弁34の開度を減らして冷媒流量を少なくし、温度低下
を抑制する。
The temperature difference here corresponds to the temperature decrease of the secondary heat medium H. If the temperature decrease is smaller than the target value, the opening degree of the electric expansion valve 34 is increased to increase the refrigerant flow rate. And promote the temperature decrease. When the amount of temperature decrease is substantially the same as the target value, the opening degree of the electric expansion valve 34 at that time is maintained. When the amount of temperature decrease is larger than the target value, the opening degree of the electric expansion valve 34 is reduced to reduce the refrigerant flow rate and suppress the temperature decrease.

【0131】[4]圧力センサ46の検知圧力(蒸発圧
力)から冷媒飽和温度を求め、温度センサ45の検知温
度と求めた冷媒飽和温度との差を蓄熱用熱交換器36で
の冷媒の過熱度として検出する。そして、この過熱度が
所定値となるよう、電動膨張弁34の開度を制御する。
[4] The refrigerant saturation temperature is obtained from the pressure detected by the pressure sensor 46 (evaporation pressure), and the difference between the temperature detected by the temperature sensor 45 and the obtained refrigerant saturation temperature is used as the refrigerant overheat in the heat storage heat exchanger 36. Detect as a degree. Then, the opening degree of the electric expansion valve 34 is controlled so that the degree of superheat becomes a predetermined value.

【0132】たとえば、過熱度が所定値より小さい場
合、電動膨張弁34の開度を減らして冷媒流量を少なく
し、過熱度を増大させる。過熱度がほぼ所定値の場合に
は、そのときの電動膨張弁34の開度を保持する。過熱
度が所定値より大きい場合、電動膨張弁34の開度を増
して冷媒流量を多くし、過熱度を減少させる。
For example, when the degree of superheat is smaller than the predetermined value, the opening degree of the electric expansion valve 34 is reduced to reduce the flow rate of the refrigerant and increase the degree of superheat. When the degree of superheat is approximately a predetermined value, the opening degree of the electric expansion valve 34 at that time is maintained. When the degree of superheat is larger than the predetermined value, the opening degree of the electric expansion valve 34 is increased to increase the flow rate of the refrigerant, and the degree of superheat is decreased.

【0133】[5]圧力センサ46の検知圧力(蒸発圧
力)から冷媒飽和温度を求め、温度センサ45の検知温
度と求めた冷媒飽和温度との差を蓄熱用熱交換器36で
の冷媒の過熱度として検出する。そして、この過熱度が
所定値となるよう、初めに電動膨張弁34の開度を制御
し、その電動膨張弁34の開度変化が限界値に達したら
次にポンプ41の容量を制御する。
[5] The refrigerant saturation temperature is obtained from the pressure detected by the pressure sensor 46 (evaporation pressure), and the difference between the temperature detected by the temperature sensor 45 and the obtained refrigerant saturation temperature is used as the refrigerant overheat in the heat storage heat exchanger 36. Detect as a degree. Then, the opening degree of the electric expansion valve 34 is first controlled so that the degree of superheat becomes a predetermined value, and when the change in the opening degree of the electric expansion valve 34 reaches a limit value, the capacity of the pump 41 is then controlled.

【0134】具体的には、過熱度が所定値より小さい場
合、電動膨張弁34の開度を減らして冷媒流量を少なく
し、過熱度を増大させる。ここで電動膨張弁34の開度
が許容最小値に達したら、ポンプ41の容量を増して2
次熱媒体Hの循環量を多くし、過熱度の増大を図る。過
熱度がほぼ所定値の場合には、そのときの電動膨張弁3
4の開度およびポンプ41の容量を保持する。過熱度が
所定値より大きい場合、電動膨張弁34の開度を増して
冷媒流量を多くし、過熱度を減少させる。ここで電動膨
張弁34の開度が最大値に達したら、ポンプ41の容量
を減らして2次熱媒体Hの循環量を少なくし、過熱度の
減少を図る。
Specifically, when the degree of superheat is smaller than a predetermined value, the opening degree of the electric expansion valve 34 is reduced to reduce the flow rate of the refrigerant and increase the degree of superheat. When the opening degree of the electric expansion valve 34 reaches the allowable minimum value, the capacity of the pump 41 is increased to 2
The circulation amount of the secondary heat medium H is increased to increase the degree of superheat. When the degree of superheat is almost a predetermined value, the electric expansion valve 3 at that time
4 and the capacity of the pump 41 are held. When the degree of superheat is larger than the predetermined value, the opening degree of the electric expansion valve 34 is increased to increase the flow rate of the refrigerant, and the degree of superheat is decreased. Here, when the opening degree of the electric expansion valve 34 reaches the maximum value, the capacity of the pump 41 is reduced to reduce the circulation amount of the secondary heat medium H to reduce the degree of superheat.

【0135】一方、蓄冷熱残量が所定値以下と少なくて
蓄冷熱は必要であるものの、すでに冷房運転が実行中で
あるとする。この場合、冷房・蓄冷熱同時運転モードを
設定する。
On the other hand, it is assumed that the remaining amount of cold storage heat is less than a predetermined value and the cold storage heat is necessary, but the cooling operation is already being executed. In this case, the cooling / cold heat storage simultaneous operation mode is set.

【0136】この冷房・蓄冷熱同時運転モードでは、空
調負荷の総和が所定値以上の場合、二方弁33,37,
39を閉じて蓄熱用熱交換器36側への冷媒の流入を遮
断し、通常の冷房運転のみ優先的に実行する。冷房が進
んで空調負荷の総和が所定値以下に小さくなると、二方
弁33,37を開き、余剰冷媒を蓄熱用熱交換器36側
に流す。こうして、蓄冷熱運転と同じく蓄冷熱槽40で
氷Iが生成され、冷熱が蓄えられる。
In the simultaneous cooling / cooling heat storage operation mode, when the total air conditioning load is equal to or greater than the predetermined value, the two-way valves 33, 37,
39 is closed to block the refrigerant from flowing into the heat storage heat exchanger 36, and only the normal cooling operation is preferentially executed. When the cooling progresses and the total air conditioning load becomes less than or equal to a predetermined value, the two-way valves 33 and 37 are opened, and excess refrigerant is caused to flow to the heat storage heat exchanger 36 side. Thus, as in the cold storage operation, the ice I is generated in the cold storage tank 40, and the cold heat is stored.

【0137】また、この冷房・蓄冷熱同時運転時におい
ても、余剰冷媒による蓄冷熱に際し、上記した[1]な
いし[5]のいずれかの方法で蓄冷熱用熱交換器36に
おける熱交換量を制御する。
Also, during this cooling / cold heat storage simultaneous operation, the amount of heat exchange in the cold storage heat exchanger 36 is adjusted by the above-described method [1] to [5] during the cold heat storage by the excess refrigerant. Control.

【0138】一方、蓄冷熱残量が所定値以上と多くて蓄
冷熱が不要のとき、仮に冷房運転の実行中であれば、冷
房運転モードから蓄冷熱利用冷房運転モードに切換わ
る。
On the other hand, when the amount of remaining cold storage heat is more than the predetermined value and the cold heat is not required, if the cooling operation is being executed, the cooling operation mode is switched to the cooling heat utilization cooling operation mode.

【0139】すなわち、蓄冷熱利用運転モードでは、二
方弁6を閉じて加圧サイクル5を遮断し、かつ流量調整
弁8を開いてレリースサイクル7を導通し、これにより
圧縮機1を低圧縮比のいわゆる冷媒ポンプとして働かせ
る。さらに、四方弁9をニュートラル状態に設定する。
That is, in the cold storage heat utilization operation mode, the two-way valve 6 is closed to shut off the pressurizing cycle 5, and the flow rate adjusting valve 8 is opened to make the release cycle 7 conductive. Acts as a so-called refrigerant pump of the ratio. Further, the four-way valve 9 is set to the neutral state.

【0140】同時に、ポンプ41を運転し、蓄冷熱槽4
0内の冷たい熱媒体(水Wおよび2次熱媒体H)を蓄熱
用熱交換器36を通して循環させる。さらに、二方弁3
1,37を閉じ、二方弁32,33,35,39を開
く。
At the same time, the pump 41 is operated to cool the cold storage tank 4
The cold heat medium in 0 (water W and secondary heat medium H) is circulated through the heat storage heat exchanger 36. Furthermore, two-way valve 3
1, 37 are closed, and the two-way valves 32, 33, 35, 39 are opened.

【0141】したがって、この場合、圧縮機1から送出
される低圧(または中間圧)の冷媒は、図1に破線矢印
で示すように、四方弁9からバイパス38(二方弁3
9)を通って蓄冷熱ユニットBに流入する。流入した冷
媒は蓄熱用熱交換器36に入り、そこで蓄冷熱槽40か
らの冷たい熱媒体と熱交換して凝縮する。蓄熱用熱交換
器36を経た液冷媒は二方弁35、二方弁33、二方弁
32を通り、室内ユニットCに流入する。
Therefore, in this case, the low-pressure (or intermediate pressure) refrigerant sent from the compressor 1 is supplied from the four-way valve 9 to the bypass 38 (two-way valve 3) as shown by the broken line arrow in FIG.
9) and flows into the cold storage heat unit B. The inflowing refrigerant enters the heat storage heat exchanger 36, where it exchanges heat with the cold heat medium from the cold storage tank 40 and is condensed. The liquid refrigerant that has passed through the heat storage heat exchanger 36 flows into the indoor unit C through the two-way valve 35, the two-way valve 33, and the two-way valve 32.

【0142】室内ユニットCに流入した液冷媒は、開度
大の範囲に設定されて流量調整弁として機能する電動膨
張弁51を通り、室内熱交換器52に入り、そこで室内
空気と熱交換して気化する。室内熱交換器52を経たガ
ス冷媒は四方弁9およびアキュームレータ14を通り、
圧縮機1に吸込まれる。
The liquid refrigerant flowing into the indoor unit C passes through the electric expansion valve 51, which is set in the range of large opening and functions as a flow rate adjusting valve, and enters the indoor heat exchanger 52, where it exchanges heat with indoor air. Vaporize. The gas refrigerant passing through the indoor heat exchanger 52 passes through the four-way valve 9 and the accumulator 14,
The compressor 1 is sucked.

【0143】なお、各室内ユニットCの空調負荷に応じ
て各電動膨張弁51の開度を制御し、室内熱交換器52
に流れる冷媒の量を調節する。
The opening degree of each electric expansion valve 51 is controlled according to the air conditioning load of each indoor unit C, and the indoor heat exchanger 52 is controlled.
Adjust the amount of refrigerant flowing through.

【0144】こうして、蓄冷熱槽40の蓄冷熱を利用し
て室内が冷房される。冷房が進むに従って蓄冷熱槽40
の蓄冷熱残量が減少し、蓄冷熱残量が所定値以下になっ
たところで、蓄冷熱利用冷房運転モードから通常の冷房
運転モードに復帰する。
In this way, the interior of the room is cooled by utilizing the cold storage heat of the cold storage heat tank 40. Cold storage tank 40 as cooling progresses
When the remaining amount of cold storage heat of is reduced and the remaining amount of cold storage heat becomes equal to or less than a predetermined value, the cooling heat utilization cooling operation mode is returned to the normal cooling operation mode.

【0145】ここまでの作用をまとめたのが下記表1で
ある。○印は弁の開、×印は弁の閉を表わしている。
Table 1 below summarizes the operations up to this point. A circle indicates that the valve is open, and a cross indicates that the valve is closed.

【0146】[0146]

【表1】 次に、蓄冷熱槽40における蓄冷熱残量の検出について
説明する。この蓄冷熱残量の検出の方法として次の
[1][2]の2つがある。どちらを採用してもよい。
[Table 1] Next, detection of the remaining amount of cold storage heat in the cold storage heat tank 40 will be described. There are the following two methods [1] and [2] as methods for detecting the remaining amount of cold storage heat. Either may be adopted.

【0147】[1]まず、蓄冷熱残量は、蓄冷熱運転で
得た製氷量(蓄冷熱量)から蓄冷熱利用冷房運転での蓄
冷熱利用量を減算したものに相当する。したがって、先
ず製氷量を検出する。
[1] First, the remaining amount of cold storage heat is equivalent to the amount of ice storage obtained in the cold storage heat operation (the amount of cold storage heat) minus the amount of cold storage heat use in the cold storage heat utilization cooling operation. Therefore, the amount of ice making is first detected.

【0148】製氷量Iwは、蓄冷熱運転時、蓄冷熱槽4
0内の水温t0 が零℃まで下がった時点からの時間経過
Tを計測し、それを蓄熱用熱交換器36に流入する2次
熱媒体Hの温度t1 と蓄熱用熱交換器36から流出する
2次熱媒体Hの温度t2 との差(=t1 −t2 )に積算
した値に相当する。具体的には下式の演算により求めら
れる。
The ice making amount Iw is determined by the cold storage tank 4 during the cold storage operation.
The time elapsed T from the time when the water temperature t 0 in 0 falls to 0 ° C. is measured, and the temperature T 1 of the secondary heat medium H flowing into the heat storage heat exchanger 36 and the heat storage heat exchanger 36 are measured. corresponds to a value obtained by integrating the difference (= t 1 -t 2) between the temperature t 2 of the exiting secondary heat medium H. Specifically, it is calculated by the following formula.

【0149】Iw=(Q/80)・T Q=(V/v)・Cp・(t1 −t2 )−q Q:1時間当りの吸熱量=1時間当りの氷の合計凝固潜
熱[Kcal/h] V:流量センサ71で検知される2次熱媒体Hの流量
[m3 /h] v:2次熱媒体Hの比熱[ Kcal/Kg・℃] q:外部から氷Iの層に浸入する熱量[Kcal/h] 80:水Wの零℃における凝固潜熱[Kcal/Kg ] 外部からの浸入熱量qは蓄冷熱槽40の断熱性能、表面
積、外気温と水温の温度差等から算出できるもので、そ
れを考慮することで製氷量Iwの検出精度が向上する。
また、積Q・Tは、零℃における全潜熱蓄冷熱量に相当
する。
Iw = (Q / 80) T Q = (V / v) Cp (t 1 -t 2 ) -q Q: Endothermic amount per hour = total latent heat of freezing of ice per hour [ Kcal / h] V: Flow rate of secondary heat medium H detected by flow rate sensor 71 [m 3 / h] v: Specific heat of secondary heat medium H [Kcal / Kg · ° C] q: Layer of ice I from the outside Heat entering the room [Kcal / h] 80: Latent heat of solidification of water W at 0 ° C [Kcal / Kg] The quantity of heat entering from outside q depends on the heat insulation performance of the cold storage heat tank 40, surface area, temperature difference between outside temperature and water temperature, etc. It can be calculated, and the accuracy of detection of the ice making amount Iw is improved by considering it.
Also, the product Q · T corresponds to the total latent heat storage heat storage amount at 0 ° C.

【0150】こうして、蓄冷熱運転時の製氷量Iwを蓄
冷熱量として捕らえておき、次に蓄冷熱利用冷房運転時
に蓄冷熱利用量を検出する。この蓄冷熱利用量は、蓄冷
熱利用冷房運転の実行時間を計測し、それを蓄熱用熱交
換器36に流入する2次熱媒体Hの温度t1 と蓄熱用熱
交換器36から流出する2次熱媒体Hの温度t2 との差
(=t1 −t2 )に積算することにより求めることがで
きる。基本的には製氷量Iwの検出の仕方と同じであ
り、流量センサ71の検知結果などを加味することによ
り、精度の高い検出を行なうことができる。
In this way, the ice making amount Iw during the cold storage heat operation is captured as the cold storage heat amount, and then the cold storage heat use amount is detected during the cold storage heat utilization cooling operation. This cold storage heat utilization amount measures the execution time of the cold storage heat utilization cooling operation, and outputs it from the temperature t 1 of the secondary heat medium H flowing into the heat storage heat exchanger 36 and from the heat storage heat exchanger 36. It can be obtained by integrating the difference with the temperature t 2 of the next heat medium H (= t 1 −t 2 ). Basically, it is the same as the method of detecting the ice making amount Iw, and by adding the detection result of the flow rate sensor 71 and the like, highly accurate detection can be performed.

【0151】蓄冷熱利用量が求まると、それを蓄冷熱量
から減算することで、蓄冷熱残量を求めることができ
る。
When the amount of cold storage heat utilization is obtained, it is possible to obtain the remaining amount of cold storage heat by subtracting it from the amount of cold storage heat.

【0152】[2]図10に示すように、蓄冷熱槽40
内の底部に超音波発振器91および超音波受信器92を
並べて設け、超音波発振器91から所定周波数の超音波
を上方に向けて送出させ、その超音波の反射波を超音波
受信器92で受信する構成としている。
[2] As shown in FIG. 10, the cold heat storage tank 40
An ultrasonic oscillator 91 and an ultrasonic receiver 92 are provided side by side at the bottom of the inside, and an ultrasonic wave of a predetermined frequency is sent upward from the ultrasonic oscillator 91, and the reflected wave of the ultrasonic wave is received by the ultrasonic receiver 92. It is configured to do.

【0153】蓄冷熱槽40に蓄冷熱がまったく無い場
合、図11に示すように、蓄冷熱槽40内には2次熱媒
体Hと水Wが存し、氷Iは存していない。この場合、超
音波発振器91から送出される超音波は、2次熱媒体H
と水Wとの境界面で反射されて超音波受信器92に達す
るとともに、一部が蓄冷熱槽40の上面に達してそこで
反射され、超音波受信器92に達する。
When there is no cold storage heat in the cold storage heat tank 40, as shown in FIG. 11, the secondary heat medium H and the water W exist in the cold storage heat tank 40, and the ice I does not exist. In this case, the ultrasonic wave transmitted from the ultrasonic oscillator 91 is the secondary heat medium H.
While reaching the ultrasonic receiver 92 by being reflected at the boundary surface between the water W and the water W, a part of it reaches the upper surface of the cold storage tank 40 and is reflected there, and reaches the ultrasonic receiver 92.

【0154】したがって、図12に示すように、超音波
発振器91に信号電圧が入力されてから、2次熱媒体H
と水Wとの境界面での反射に基づく時間T1 後に超音波
受信器92から信号電圧が出力される。さらに、超音波
発振器91に信号電圧が入力されてから、蓄冷熱槽40
の上面での反射に基づく時間T3 後に超音波受信器92
から信号電圧が出力される。
Therefore, as shown in FIG. 12, after the signal voltage is input to the ultrasonic oscillator 91, the secondary heating medium H
The signal voltage is output from the ultrasonic receiver 92 after a time T 1 based on the reflection at the boundary surface between the water W and the water. Further, after the signal voltage is input to the ultrasonic oscillator 91, the cool storage tank 40
Ultrasonic receiver 92 after a time T 3 due to reflection on the upper surface of the
Outputs a signal voltage.

【0155】蓄冷熱槽40の内底部から上面までの距離
をL3 とし、内底部から2次熱媒体Hと水Wとの境界面
までの距離をL1 とすれば、L3 についてはあらかじめ
測定しておくことが可能であるから、時間T1 ,T3
使って距離L1 を求めることができる。
If the distance from the inner bottom to the upper surface of the cold storage heat tank 40 is L 3 and the distance from the inner bottom to the boundary surface between the secondary heat medium H and the water W is L 1 , then L 3 is previously calculated. Since it is possible to measure in advance, the distance L 1 can be obtained using the times T 1 and T 3 .

【0156】L1 =L3 ・T1 /T3 この距離L1 および出力信号数(2つ)の関係から、蓄
冷熱槽40内には2次熱媒体Hと水Wのみが存在してい
ること、そして蓄冷熱量は零であることを知ることがで
きる。
L 1 = L 3 · T 1 / T 3 From the relationship of the distance L 1 and the number of output signals (two), only the secondary heat medium H and water W are present in the cold storage heat tank 40. It is possible to know that the stored heat quantity is zero.

【0157】蓄冷熱槽40に蓄冷熱が有る場合、図13
に示すように、蓄冷熱槽40内に2次熱媒体H、水W、
および氷Iが存する。この場合、超音波発振器91から
送出される超音波は、2次熱媒体Hと水Wとの境界面で
反射されて超音波受信器92に達するとともに、一部が
水Wと氷Iの層との境界面で反射されて超音波受信器9
2に達し、さらに別の一部が蓄冷熱槽40の上面に達し
てそこで反射され、超音波受信器92に達する。
When the cold storage heat tank 40 has the cold storage heat, FIG.
As shown in, the secondary heat medium H, water W, and
And there is Ice I. In this case, the ultrasonic waves sent from the ultrasonic oscillator 91 are reflected by the boundary surface between the secondary heat medium H and the water W and reach the ultrasonic receiver 92, and a part of the ultrasonic wave is a layer of the water W and the ice I. Ultrasonic receiver 9 reflected at the boundary surface with
2, and another part reaches the upper surface of the cold storage tank 40, is reflected there, and reaches the ultrasonic receiver 92.

【0158】したがって、図14に示すように、超音波
発振器91に信号電圧が入力されてから、2次熱媒体H
と水Wとの境界面での反射に基づく時間T1 後に超音波
受信器92から信号電圧が出力される。また、超音波発
振器91に信号電圧が入力されてから、水Wと氷Iの層
との境界面での反射に基づく時間T2 後に超音波受信器
92から信号電圧が出力される。さらに、超音波発振器
91に信号電圧が入力されてから、蓄冷熱槽40の上面
での反射に基づく時間T3 後に超音波受信器92から信
号電圧が出力される。
Therefore, as shown in FIG. 14, after the signal voltage is input to the ultrasonic oscillator 91, the secondary heating medium H
The signal voltage is output from the ultrasonic receiver 92 after a time T 1 based on the reflection at the boundary surface between the water W and the water. Further, after the signal voltage is input to the ultrasonic oscillator 91, the signal voltage is output from the ultrasonic receiver 92 after time T 2 based on the reflection at the boundary surface between the water W and the layer of ice I. Further, after the signal voltage is input to the ultrasonic oscillator 91, the signal voltage is output from the ultrasonic receiver 92 after a time T 3 based on the reflection on the upper surface of the cold storage tank 40.

【0159】蓄冷熱槽40の内底部から上面までの距離
をL3 とし、内底部から水Wと氷Iの層との境界面まで
の距離をL2 とし、内底部から2次熱媒体Hと水Wの境
界面までの距離をL1 とすれば、このうちL3 について
はあらかじめ測定しておくことが可能であるから、時間
1 ,T2 を使って距離L1 ,L2 を求めることができ
る。
The distance from the inner bottom to the upper surface of the cold storage heat tank 40 is L 3 , the distance from the inner bottom to the boundary surface between the water W and the ice I layer is L 2 , and the inner bottom is the secondary heat medium H. If the distance to the boundary surface between the water W and the water W is L 1 , it is possible to measure L 3 out of this, so that the distances L 1 and L 2 can be calculated using the times T 1 and T 2. You can ask.

【0160】L1 =L3 ・T1 /T32 =L3 ・T2 /T3 この距離L1 ,L2 および出力信号数(3つ)の関係か
ら、蓄冷熱槽40内には2次熱媒体H、水W、および氷
Iが存在していること、しかも製氷量(蓄冷熱量)がど
れだけかを知ることができる。この製氷量は、そのまま
蓄冷熱残量として捕らえることができる。
L 1 = L 3 · T 1 / T 3 L 2 = L 3 · T 2 / T 3 From the relationship between the distances L 1 and L 2 and the number of output signals (3), the cold storage tank 40 is Can know that the secondary heat medium H, the water W, and the ice I are present, and further, how much the amount of ice making (the amount of cold heat storage) is. This ice-making amount can be captured as it is as the remaining amount of cold storage heat.

【0161】一方、室外ユニットAの制御部100で
は、上記検出される蓄冷熱残量に従って蓄冷熱運転、冷
房・蓄冷熱同時運転運転、および蓄冷熱利用冷房運転の
実行を制御することになるが、その制御に当たっては、
当日の気象状況(外気温度、外気湿度等)から当日の空
調負荷を予測し、さらに当日または過去の気象状況から
翌日の空調負荷を予測し、これら予測データとともに料
金の安い深夜電力の時間帯(午後10時から午前8時の
間)を考慮した上で、各運転の実行時間を割付ける。
On the other hand, the control unit 100 of the outdoor unit A controls the execution of the cold storage heat operation, the cooling / cooling heat storage simultaneous operation operation, and the cold storage heat utilization cooling operation according to the detected cold storage heat remaining amount. When controlling it,
The air conditioning load of the day is predicted from the weather conditions of the day (outside air temperature, outside air humidity, etc.), and the air conditioning load of the next day is predicted from the weather conditions of the day or the past. Allocate the execution time of each operation after taking into consideration (between 10 pm and 8 am).

【0162】蓄冷熱利用冷房運転については、蓄冷熱残
量がその日のうちに全て消費されるよう、時間の割付け
を行なうのが望ましい。なお、予測した当日の空調負荷
と定常運転での蓄冷熱消費量とから蓄冷熱残量の過不足
を求め、その過不足の度合に応じて蓄冷熱利用量を増減
調整し、この調整によって蓄冷熱残量をその日のうちに
全て消費するようにしてもよい。
In the cooling operation utilizing the cold storage heat, it is desirable to allocate the time so that the remaining amount of the cold storage heat is completely consumed within the day. In addition, the excess or deficiency of the cold storage heat remaining amount is obtained from the predicted air conditioning load of the day and the cold storage heat consumption amount in the steady operation, and the cold storage heat usage amount is increased or decreased according to the degree of excess or deficiency. You may make it consume all the heat residual amount within the day.

【0163】当日の空調負荷の予測に当たっては、在室
者が発散する身体熱量を計算し、それを加味してもよ
い。また、当日の空調負荷の予測の仕方には種々があ
り、その例を以下に述べる。
When predicting the air-conditioning load on the day, the amount of body heat radiated by the person in the room may be calculated and taken into consideration. Further, there are various methods of predicting the air conditioning load on the day, and examples thereof will be described below.

【0164】[1]外気温度および外気湿度から予測す
る。
[1] Predict from outside air temperature and outside air humidity.

【0165】[2]一日の空調負荷の変化を時刻ごとの
パターンとしてあらかじめ測定して記憶しておき、それ
を予測データとして逐次に読出す。
[2] The change of the air-conditioning load for one day is measured and stored in advance as a pattern for each time, and it is sequentially read out as prediction data.

【0166】[3]過去の気象状況を基にした年間外気
温変化を週単位のパターンとして記憶しておき、それと
計算で求まる最大日積算負荷、同じく計算で求まる日積
算内部発生負荷、記憶している蓄冷熱槽40の容量、記
憶している熱源機器容量(圧縮機や熱交換器の容量)か
ら予測する。
[3] The annual outdoor temperature change based on the past weather conditions is stored as a weekly pattern, and the maximum daily integrated load obtained by the calculation and the daily integrated internally generated load also obtained by the calculation are stored. The capacity is estimated from the capacity of the cold storage heat storage tank 40 and the capacity of the stored heat source equipment (the capacity of the compressor or the heat exchanger).

【0167】翌日の空調負荷の予測にも種々の方法があ
り、その例を以下に述べる。
There are various methods for predicting the air-conditioning load on the next day, an example of which will be described below.

【0168】[1]過去における数日間の外気温度とあ
らかじめ定めた基準温度との差から予測する。
[1] Predict from the difference between the outside air temperature in the past several days and a predetermined reference temperature.

【0169】[2]過去における数日間の外気温度の平
均値を求め、それを外気温度と空調負荷の相関式に当て
嵌めて予測する。
[2] Obtain the average value of the outside air temperature in the past several days, and apply it to the correlation formula between the outside air temperature and the air conditioning load to make a prediction.

【0170】[3]当日の蓄冷熱残量から予測する。[3] Predict from the remaining amount of cold storage heat of the day.

【0171】[4]昼間の外気温度とあらかじめ定めた
基準温度との差、および蓄冷熱残量の増減傾向から予測
する。
[4] Predict from the difference between the outside air temperature during the daytime and the predetermined reference temperature, and the trend of increase / decrease in the remaining amount of cold storage heat.

【0172】[5]当日の一日分の積算負荷を計算して
予測する。
[5] The cumulative load for the day is calculated and predicted.

【0173】以上述べたように、冷房に必要な冷熱をあ
らかじめ蓄えておき、蓄えた冷熱を利用して冷房運転を
行なうことにより、たとえば夏季のように気温上昇が激
しい時期でも電力消費の集中を極力避けることができ
る。これは、電力消費の急激な増大を回避することにつ
ながり、省エネルギ効果が得られるとともに、電力会社
にとっては電力供給のための設備投資を増やさないです
むことにつながり、経済的である。居住者にとっても、
安価な深夜電力を利用ができるので、経済的である。
As described above, the cold heat required for cooling is stored in advance, and the stored cold heat is used to perform the cooling operation, so that the power consumption can be concentrated even in a period when the temperature rises sharply, such as in summer. It can be avoided as much as possible. This leads to avoiding a rapid increase in power consumption, has an energy saving effect, and is economical because an electric power company does not have to increase capital investment for power supply. For residents,
It is economical because it is possible to use cheap midnight power.

【0174】冷媒を循環させる蓄冷熱利用冷房運転で
は、圧縮機1を低圧縮比で運転して冷媒ポンプとして働
かせるので、専用のポンプを設ける必要がなく、構成の
簡略化およびコストの低減が図れる。
In the cooling operation using the cold storage heat in which the refrigerant is circulated, the compressor 1 is operated at a low compression ratio to act as a refrigerant pump, so that it is not necessary to provide a dedicated pump, and the structure can be simplified and the cost can be reduced. .

【0175】室内ユニットCの電動膨張弁51に膨張弁
の機能と流量調整弁の機能を合わせ持たせ、運転モード
に応じていずれかの機能を選択する構成としたので、弁
の数が減って構成の簡略化およびコストの低減が図れ
る。
Since the electric expansion valve 51 of the indoor unit C is made to have both the functions of the expansion valve and the function of the flow rate adjusting valve and one of the functions is selected according to the operation mode, the number of valves is reduced. The configuration can be simplified and the cost can be reduced.

【0176】蓄熱用熱交換器36での熱交換量をポンプ
41の容量制御または電動膨張弁34の開度制御によっ
て調節する構成としたので、常に効率の良いしかもきめ
細かな熱交換が可能となり、蓄冷熱にかかる時間の短縮
などが図れる。
Since the heat exchange amount in the heat storage heat exchanger 36 is adjusted by the capacity control of the pump 41 or the opening control of the electric expansion valve 34, efficient and fine heat exchange is always possible, The time required for cold storage heat can be shortened.

【0177】蓄冷熱槽40における蓄冷熱残量を検出
し、少なくともその蓄冷熱残量を基に蓄冷熱運転、冷房
・蓄冷熱同時運転運転、および蓄冷熱利用冷房運転の実
行時間を割付ける構成としたので、蓄冷熱量と蓄冷熱利
用量との相対関係が常に最適な状態に管理される。
A structure for detecting the remaining amount of cold storage heat in the cold storage heat tank 40, and allocating the execution time of the cold storage heat operation, the cooling / cooling heat storage simultaneous operation operation, and the cooling storage heat utilization cooling operation based on at least the remaining amount of cold storage heat Therefore, the relative relationship between the cold storage heat amount and the cold storage heat usage amount is always managed in an optimum state.

【0178】冷房運転中は空調負荷が小さくなったとこ
ろで蓄冷熱運転を同時実行するので、空調負荷の減少に
よる余剰冷凍能力を蓄冷熱に有効利用することになり、
省エネルギ効果が得られる。
During the cooling operation, the cold storage heat operation is simultaneously executed when the air conditioning load becomes small. Therefore, the surplus refrigerating capacity due to the reduction of the air conditioning load is effectively used for the cold storage heat.
Energy saving effect can be obtained.

【0179】暖房運転が実行される冬季やメンテナンス
時は、蓄冷熱が不要であることから蓄冷熱槽40内の2
次熱媒体Hをタンク43に収容しておくので、2次熱媒
体Hの劣化や蒸発を防ぐことができる。
During the winter season when the heating operation is performed or during maintenance, the cold storage heat is not necessary, so that the cold storage heat storage tank 40 has two
Since the secondary heat medium H is housed in the tank 43, deterioration or evaporation of the secondary heat medium H can be prevented.

【0180】次に、この発明の第2実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0181】第2実施例では、図15に示すように、圧
縮機1と並列に圧縮機93を接続する。この圧縮機93
は、圧縮機1と同じ密閉ケースに収容してあり、冷凍能
力の増強を目的に設けたもので(蓄冷熱運転および蓄冷
熱利用冷房運転では使用しない)、室内ユニットCの数
が多くて空調負荷が大きい状況であっても、それに対応
できるだけの十分な冷凍能力を発揮するようにしてい
る。なお、圧縮機93としては、圧縮機1と同じインバ
ータ駆動による能力可変タイプであっても、商用電源駆
動による能力固定タイプであっても、そのどちらでもよ
い。
In the second embodiment, as shown in FIG. 15, a compressor 93 is connected in parallel with the compressor 1. This compressor 93
Is housed in the same closed case as the compressor 1 and is provided for the purpose of increasing the refrigerating capacity (not used in the cold storage heat operation and the cold storage heat use cooling operation). Even if the load is heavy, the refrigeration capacity is sufficient to cope with it. The compressor 93 may be a variable capacity type driven by the same inverter as the compressor 1 or a fixed capacity type driven by a commercial power source, or either of them.

【0182】四方弁9と室外熱交換器10との間の管か
ら、受液器12と二方弁13との間の管にかけて、蓄冷
熱利用冷房運転のためのバイパス94を接続する。この
バイパス94に二方弁95を設ける。
A bypass 94 for cooling operation using cold storage heat is connected from the pipe between the four-way valve 9 and the outdoor heat exchanger 10 to the pipe between the liquid receiver 12 and the two-way valve 13. A two-way valve 95 is provided in this bypass 94.

【0183】バイパス38を、蓄熱用熱交換器36と二
方弁37との間の管から、二方弁32と電動膨張弁51
との間の管にかけて接続する。
The bypass 38 is connected to the two-way valve 32 and the electric expansion valve 51 from the pipe between the heat storage heat exchanger 36 and the two-way valve 37.
Connect over the tube between.

【0184】この場合、冷房運転、暖房運転、蓄冷熱運
転、冷房・蓄冷熱同時運転運転については第1実施例と
同じ冷媒の流れとなり、蓄冷熱利用冷房運転時のみ図示
破線矢印で示すように第1実施例と異なる冷媒の流れと
なる。
In this case, the cooling medium operation, the heating operation, the cold storage heat operation, and the simultaneous cooling / cooling heat storage operation operation have the same refrigerant flow as in the first embodiment. The refrigerant flow is different from that of the first embodiment.

【0185】すなわち、蓄冷熱利用冷房運転では、二方
弁95を開いてバイパス94を導通させ、圧縮機1から
送出される冷媒を四方弁9、バイパス94、二方弁3
1、二方弁33、二方弁35を通して蓄熱用熱交換器3
6に流し、その蓄熱用熱交換器36を経た冷媒をバイパ
ス38(二方弁39)を通して室内ユニットAに流す。
そして、室内ユニットAを経た冷媒を四方弁9およびア
キュームレータ14を通して圧縮機1の吸込側に流す。
That is, in the cooling operation using the cold storage heat, the two-way valve 95 is opened to bring the bypass 94 into conduction, and the refrigerant sent from the compressor 1 is supplied with the four-way valve 9, the bypass 94, and the two-way valve 3.
1, the two-way valve 33, the two-way valve 35 through the heat storage heat exchanger 3
6, and the refrigerant having passed through the heat storage heat exchanger 36 is flown to the indoor unit A through the bypass 38 (two-way valve 39).
Then, the refrigerant having passed through the indoor unit A is caused to flow to the suction side of the compressor 1 through the four-way valve 9 and the accumulator 14.

【0186】他の構成および作用については第1実施例
と同じである。
Other structures and operations are the same as those in the first embodiment.

【0187】この第2実施例の作用をまとめたのが下記
表2である。○印は弁の開、×印は弁の閉を表わしてい
る。
Table 2 below summarizes the operation of the second embodiment. A circle indicates that the valve is open, and a cross indicates that the valve is closed.

【0188】[0188]

【表2】 次に、この発明の第3実施例について説明する。第3実
施例では、蓄冷熱槽40に冷房用の冷熱を蓄えるだけで
なく、暖房用および除霜用の暖熱も蓄えるようにしてい
る。
[Table 2] Next, a third embodiment of the present invention will be described. In the third embodiment, not only the cold heat for cooling is stored in the cold heat storage tank 40, but also the warm heat for heating and defrosting is stored.

【0189】図16に示すように、圧縮機1の吐出口2
と室外熱交換器10との間を二方弁96を介して接続す
る。さらに、蓄熱用熱交換器36と二方弁37の間の管
から、四方弁9とアキュームレータ14との間の管かけ
て、除霜用のバイパス97を接続する。このバイパス9
7に二方弁98を設ける。
As shown in FIG. 16, the discharge port 2 of the compressor 1
And the outdoor heat exchanger 10 are connected via a two-way valve 96. Further, a defrosting bypass 97 is connected from a pipe between the heat storage heat exchanger 36 and the two-way valve 37 to a pipe between the four-way valve 9 and the accumulator 14. This bypass 9
7 is provided with a two-way valve 98.

【0190】冷房運転、暖房運転、蓄冷熱運転、冷房・
蓄冷熱同時運転運転、蓄冷熱利用冷房運転については第
1実施例と同じ冷媒の流れである。これらの運転モード
のほかに、暖房運転が実施されるような冬季や中間季に
おいて、蓄暖熱運転を実行する。
Cooling operation, heating operation, cold storage operation, cooling
The cold storage heat simultaneous operation operation and the cool storage heat utilization cooling operation have the same refrigerant flow as in the first embodiment. In addition to these operation modes, the heat storage operation is executed in the winter and intermediate seasons when the heating operation is performed.

【0191】蓄暖熱運転モードでは、圧縮機1を高圧縮
比で運転し、その吐出冷媒を図示太線矢印で示す方向に
流すとともに、ポンプ41を運転して蓄冷熱槽40の水
Wを蓄熱用熱交換器36を通して循環させる。なお、蓄
冷熱槽40内の2次熱媒体Hはタンク43に強制的に回
収させている。
In the warm storage heat operation mode, the compressor 1 is operated at a high compression ratio, the discharge refrigerant thereof is caused to flow in the direction indicated by the thick arrow in the figure, and the pump 41 is operated to store the water W in the cold heat storage tank 40. It circulates through the heat exchanger 36. The secondary heat medium H in the cold storage heat tank 40 is forcibly recovered in the tank 43.

【0192】すなわち、圧縮機1から吐出される冷媒は
四方弁9および二方弁37を通って蓄熱用熱交換器36
に流れ、そこで2次熱媒体Hに熱を奪われて凝縮する。
蓄熱用熱交換器36を経た液冷媒は二方弁35、二方弁
33、二方弁31、受液器12、および膨張弁13を通
って室外熱交換器10に流れ、そこで外気から熱を汲み
上げて蒸発する。室外熱交換器10を経たガス冷媒は四
方弁9およびフレーム14を通り、圧縮機1に吸込まれ
る。
That is, the refrigerant discharged from the compressor 1 passes through the four-way valve 9 and the two-way valve 37 and the heat storage heat exchanger 36.
, Where the heat is taken by the secondary heat medium H and condensed.
The liquid refrigerant that has passed through the heat storage heat exchanger 36 flows through the two-way valve 35, the two-way valve 33, the two-way valve 31, the liquid receiver 12 and the expansion valve 13 to the outdoor heat exchanger 10, where heat from the outside air is removed. Is pumped up and evaporated. The gas refrigerant passing through the outdoor heat exchanger 10 passes through the four-way valve 9 and the frame 14 and is sucked into the compressor 1.

【0193】こうして、蓄冷熱槽40内の水Wが蓄熱用
熱交換器36で次々に暖められていき、蓄冷熱槽40に
暖熱が蓄えられる。蓄暖熱残量については、蓄冷熱残量
と同じ方法により検出することができ、蓄暖熱残量が少
なければ、蓄暖熱が必要であるとの判断の下に、たとえ
ば深夜電力の利用時間帯においてこの蓄暖熱運転を実行
することになる。
In this way, the water W in the cold storage heat tank 40 is successively heated by the heat storage heat exchanger 36, and warm heat is stored in the cold storage heat tank 40. The remaining amount of warm storage heat can be detected by the same method as the remaining amount of cold heat storage. This heat storage / heating operation is executed in the time zone.

【0194】ただし、蓄暖熱が必要であると判断したと
き、すでに暖房運転の実行中であれば、暖房・蓄暖熱同
時運転モードを設定する。この暖房・蓄暖熱同時運転モ
ードでは、暖房運転を優先して実行し、空調負荷が小さ
い場合にのみ余剰冷凍能力を使った蓄暖熱運転を実行す
ることになる。
However, when it is judged that the stored heat is necessary, if the heating operation is already being executed, the simultaneous heating and stored heat operation mode is set. In this heating / heat storage / heat storage simultaneous operation mode, the heating operation is preferentially executed, and the heat storage / heat storage operation using the surplus refrigeration capacity is executed only when the air conditioning load is small.

【0195】また、蓄暖熱残量が所定値以上で、しかも
暖房運転が要求されていれば、蓄暖熱利用暖房運転モー
ドを設定する。この蓄暖熱利用暖房運転モードでは、圧
縮機1を低圧縮比で循環ポンプとして運転させ、その圧
縮機1から送出される中間圧の冷媒を図示破線矢印の方
向に流す。同時に、ポンプ41を運転して蓄冷熱槽40
内の温水Wを蓄熱用熱交換器36に通して循環させる。
If the remaining amount of heat storage heat storage is equal to or greater than the predetermined value and the heating operation is required, the heating operation mode using heat storage heat storage is set. In this heating operation mode using stored heat and heat, the compressor 1 is operated as a circulation pump at a low compression ratio, and the intermediate-pressure refrigerant sent from the compressor 1 is caused to flow in the direction of the dashed arrow in the figure. At the same time, the pump 41 is operated to operate the cold storage tank 40.
The hot water W therein is passed through the heat storage heat exchanger 36 and circulated.

【0196】すなわち、圧縮機1から送出される低圧
(または中間圧)の冷媒は四方弁9およびバイパス(二
方弁39)を通って蓄熱用熱交換器36に流れ、そこで
温水Wから熱を奪って温度上昇する。蓄熱用熱交換器3
6を経た冷媒は二方弁35、二方弁33、および二方弁
32を通って室内ユニットCに流入する。
That is, the low-pressure (or intermediate-pressure) refrigerant sent from the compressor 1 flows through the four-way valve 9 and the bypass (two-way valve 39) to the heat storage heat exchanger 36, where heat from the hot water W is transferred. Take it away and raise the temperature. Heat exchanger for heat storage 3
The refrigerant passing through 6 flows into the indoor unit C through the two-way valve 35, the two-way valve 33, and the two-way valve 32.

【0197】室内ユニットCに流入した冷媒は、開度大
の範囲に設定されて流量調整弁として機能する電動膨張
弁51を通り、室内熱交換器52に入り、そこで室内空
気と熱交換して温度降下する。室内熱交換器52を経た
冷媒は四方弁9およびアキュームレータ14を通り、圧
縮機1に吸込まれる。
The refrigerant flowing into the indoor unit C passes through the electric expansion valve 51, which is set in the range of the large opening and functions as a flow rate adjusting valve, and enters the indoor heat exchanger 52, where it exchanges heat with the indoor air. The temperature drops. The refrigerant that has passed through the indoor heat exchanger 52 passes through the four-way valve 9 and the accumulator 14 and is sucked into the compressor 1.

【0198】なお、各室内ユニットCの空調負荷に応じ
て各電動膨張弁51の開度を制御し、室内熱交換器52
に流れる冷媒の量を調節する。
The opening degree of each electric expansion valve 51 is controlled according to the air conditioning load of each indoor unit C, and the indoor heat exchanger 52 is controlled.
Adjust the amount of refrigerant flowing through.

【0199】こうして、蓄冷熱槽40の蓄暖熱を利用し
て室内が暖房される。暖房が進むに従って蓄冷熱槽40
の蓄暖熱残量が減少し、蓄暖熱残量が所定値以下になっ
たところで、蓄暖熱利用暖房運転モードから通常の暖房
運転モードに復帰する。
In this way, the room is heated by using the stored heat of the cold storage tank 40. Cold storage tank 40 as heating progresses
When the remaining amount of heat storage heat is reduced and the remaining amount of heat storage heat becomes equal to or less than a predetermined value, the heating operation mode using heat storage heat is returned to the normal heating operation mode.

【0200】ところで、暖房運転時は、蒸発器として機
能する室外熱交換器10の表面に徐々に霜が付着し、そ
のままでは熱交換量が減少してしまう。そこで、室外熱
交換器10の温度を温度センサ24で検知しており、そ
の検知温度が零℃またはそれ以下の状態を所定時間以上
続けると、室外熱交換器10に対する除霜運転を実行す
る。
By the way, during the heating operation, frost gradually adheres to the surface of the outdoor heat exchanger 10 functioning as an evaporator, and the heat exchange amount decreases as it is. Therefore, the temperature of the outdoor heat exchanger 10 is detected by the temperature sensor 24, and when the detected temperature is kept at 0 ° C. or lower for a predetermined time or longer, the defrosting operation is performed on the outdoor heat exchanger 10.

【0201】この除霜運転では、蓄熱用熱交換器40の
蓄暖熱残量が少なければ四方弁9を切換えるだけの通常
の逆サイクル除霜を行なうが、蓄暖熱残量が十分であれ
ば、蓄暖熱を利用した除霜を行なう。
In this defrosting operation, the normal reverse cycle defrosting is performed only by switching the four-way valve 9 if the heat storage heat exchanger 40 has a small remaining amount of heat storage heat, but if the remaining amount of heat storage heat is sufficient. For example, defrosting using stored heat is performed.

【0202】すなわち、蓄暖熱を利用した除霜運転で
は、四方弁9をニュートラル状態に復帰するとともに、
圧縮機1を低圧縮比で冷媒ポンプとして運転する。同時
に、ポンプ41を運転し、蓄冷熱槽40内の温水Wを蓄
熱用熱交換器36を通して循環させる。
That is, in the defrosting operation utilizing the stored heat, the four-way valve 9 is returned to the neutral state and
The compressor 1 is operated as a refrigerant pump with a low compression ratio. At the same time, the pump 41 is operated to circulate the hot water W in the cold storage tank 40 through the heat storage heat exchanger 36.

【0203】この場合、圧縮機1から送出される低圧
(または中間圧)の冷媒は四方弁9を通って室外熱交換
器10に流れ、そこで霜に熱を奪われて温度下降する。
つまり、室外熱交換器10に付着している霜が解けるこ
とになる。
In this case, the low-pressure (or intermediate-pressure) refrigerant sent from the compressor 1 flows through the four-way valve 9 to the outdoor heat exchanger 10, where heat is taken away by the frost and the temperature drops.
That is, the frost attached to the outdoor heat exchanger 10 can be thawed.

【0204】室外熱交換器10を経た冷媒は逆止弁1
1、受液器12、二方弁31、二方弁33、電動膨張弁
34(開度大)を通って蓄熱用熱交換器36に流れ、そ
こで温水Wと熱交換して温度上昇する。そして、蓄熱用
熱交換器36を経た冷媒はバイパス97(二方弁98)
およびアキュームレータ14を通り、圧縮機1に吸込ま
れる。
The refrigerant having passed through the outdoor heat exchanger 10 has a check valve 1
1, through the liquid receiver 12, the two-way valve 31, the two-way valve 33, and the electric expansion valve 34 (large opening) to the heat storage heat exchanger 36, where heat is exchanged with the hot water W and the temperature rises. The refrigerant passing through the heat storage heat exchanger 36 is bypass 97 (two-way valve 98).
And it passes through the accumulator 14 and is sucked into the compressor 1.

【0205】温度センサ24の検知温度が零℃よりも高
い所定値以上になると、除霜運転が終了し、暖房運転に
復帰する。
When the temperature detected by the temperature sensor 24 exceeds a predetermined value higher than 0 ° C., the defrosting operation ends and the heating operation is resumed.

【0206】このような蓄暖熱を利用した除霜運転は、
圧縮機1を高圧縮比で運転する通常の除霜運転に比べて
消費電力が少なくてすみ、安価な深夜電力を利用できる
ことと合わせて省エネルギ的にも経済的にもすぐれたも
のとなる。
[0206] The defrosting operation utilizing such stored heat is
It consumes less electric power than the normal defrosting operation in which the compressor 1 is operated at a high compression ratio, and it is also excellent in terms of energy saving and economical in combination with the availability of inexpensive late-night electric power.

【0207】この第3実施例の作用をまとめたのが下記
表3である。○印は弁の開、×印は弁の閉を表わしてい
る。
Table 3 below summarizes the operation of the third embodiment. A circle indicates that the valve is open, and a cross indicates that the valve is closed.

【0208】[0208]

【表3】 [Table 3]

【0209】[0209]

【発明の効果】以上述べたようにこの発明によれば、主
として、蓄冷熱槽への蓄冷熱運転を実行し、かつ蓄冷熱
槽の熱媒体を用いた蓄冷熱利用冷房運転を実行する構成
としたので、冷房に必要な冷熱を蓄えておき、それを利
用して冷房を行なうことができ、これによりたとえば夏
季のように気温上昇が激しい時期でも電力消費の集中を
避けることができ、また安価な深夜電力を利用すること
ができ、省エネルギ性および経済性にすぐれた空気調和
機を提供できる。また、冷媒を循環させる蓄冷熱利用冷
房運転では、圧縮機1を低圧縮比で運転して冷媒ポンプ
として働かせるので、圧縮仕事エネルギーの節約が図ら
れ、これによるさらなる省エネルギの効果が得られると
ともに、専用のポンプを設ける必要がなく、構成の簡素
化およびコストの低減が図れる。
As described above, according to the present invention, the configuration is mainly configured to execute the cold storage heat operation to the cold storage heat tank and to execute the cool storage heat utilization cooling operation using the heat medium of the cold storage heat tank. Therefore, it is possible to store the cold heat required for cooling and use it to perform cooling, which can avoid the concentration of power consumption even during periods of high temperature rise, such as summer, and is inexpensive. It is possible to use the electric power at midnight, and it is possible to provide an air conditioner excellent in energy saving and economical efficiency. In addition, the cold storage heat that circulates the refrigerant is used.
In the tuft operation, the compressor 1 is operated at a low compression ratio to operate the refrigerant pump.
Saves compression work energy.
And the effect of further energy saving by this is obtained
Both require no dedicated pump and have a simple structure.
And cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の冷凍サイクルの構成
図。
FIG. 1 is a configuration diagram of a refrigeration cycle according to a first embodiment of the present invention.

【図2】第1実施例における圧縮機の要部の構成図。FIG. 2 is a configuration diagram of a main part of a compressor according to the first embodiment.

【図3】第1実施例における蓄冷熱槽の具体的な構成
図。
FIG. 3 is a specific configuration diagram of the cold storage heat tank in the first embodiment.

【図4】第1実施例における電動膨張弁の具体的な構成
図。
FIG. 4 is a specific configuration diagram of the electric expansion valve according to the first embodiment.

【図5】図4の要部を拡大して示す図。FIG. 5 is an enlarged view showing a main part of FIG.

【図6】図4の電動膨張弁の特性図。FIG. 6 is a characteristic diagram of the electric expansion valve of FIG.

【図7】第1実施例の制御回路のブロック図。FIG. 7 is a block diagram of a control circuit according to the first embodiment.

【図8】第1実施例の作用を説明するためのフローチャ
ート。
FIG. 8 is a flowchart for explaining the operation of the first embodiment.

【図9】第1実施例の蓄冷熱槽における各部の温度変化
を示す図。
FIG. 9 is a diagram showing a temperature change of each part in the cold storage heat tank of the first embodiment.

【図10】第1実施例における蓄冷熱残量の検出手段の
構成図。
FIG. 10 is a configuration diagram of a means for detecting a remaining amount of cold storage heat in the first embodiment.

【図11】図10の検出手段の検出例を示す図。FIG. 11 is a diagram showing a detection example of the detection means of FIG.

【図12】図11の検出例における各部の信号波形図。FIG. 12 is a signal waveform diagram of each part in the detection example of FIG. 11.

【図13】図10の検出手段の他の検出例を示す図。13 is a diagram showing another detection example of the detection means of FIG.

【図14】図13の検出例における各部の信号波形図。FIG. 14 is a signal waveform diagram of each part in the detection example of FIG.

【図15】この発明の第2実施例の冷凍サイクルの構成
図。
FIG. 15 is a configuration diagram of a refrigeration cycle according to a second embodiment of the present invention.

【図16】この発明の第3実施例の冷凍サイクルの構成
図。
FIG. 16 is a configuration diagram of a refrigeration cycle according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B…蓄冷熱ユニット、C…室内ユニ
ット、1…圧縮機、10…室外熱交換器、34…第2電
動膨張弁、36…蓄熱用熱交換器、38…バイパス、4
0…蓄冷熱槽、W…水、H…2次熱媒体、41…ポン
プ、45…第3温度センサ、46…圧力センサ、47…
水温センサ、48…第1温度センサ、49…第2温度セ
ンサ、51…第1電動膨張弁、71…流量センサ、91
…超音波発振器、92…超音波受信器。
A ... Outdoor unit, B ... Cold heat storage unit, C ... Indoor unit, 1 ... Compressor, 10 ... Outdoor heat exchanger, 34 ... Second electric expansion valve, 36 ... Heat storage heat exchanger, 38 ... Bypass, 4
0 ... Regenerator, W ... Water, H ... Secondary heat medium, 41 ... Pump, 45 ... Third temperature sensor, 46 ... Pressure sensor, 47 ...
Water temperature sensor, 48 ... First temperature sensor, 49 ... Second temperature sensor, 51 ... First electric expansion valve, 71 ... Flow rate sensor, 91
… Ultrasonic oscillator, 92… Ultrasonic receiver.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 和男 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 日比 正幸 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 熊谷 登 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (72)発明者 齊藤 和夫 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝横浜事業所内 (72)発明者 岩田 恵蔵 静岡県富士市蓼原336番地 株式会社東 芝富士工場内 (56)参考文献 特開 平3−28672(JP,A) 特開 平4−371760(JP,A) 特開 平4−306433(JP,A) 特開 平2−97845(JP,A) 特公 昭63−37279(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 399 F25B 1/00 321 F24F 5/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Yamamoto 336 Tatehara, Fuji City, Shizuoka Prefecture, TOSHIBA FUJI CO., LTD. (72) Inventor Masayuki HIBI 336 Tatehara, Fuji City, Shizuoka Prefecture, TOSHIBA FUJI CO., LTD. (72) Inventor Noboru Kumagai 336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Corporation Fuji Factory (72) Inventor Kazuo Saito 8 Shinsita-cho, Isogo-ku, Yokohama City, Kanagawa Prefecture Toshiba Corporation Yokohama Office (72) Inventor Iwata Keizo 336 Tatehara, Fuji City, Shizuoka Prefecture Toshiba Corporation Fuji Factory (56) Reference JP-A-3-28672 (JP, A) JP-A-4-371760 (JP, A) JP-A-4-306433 (JP , A) JP-A-2-97845 (JP, A) JP-B-63-37279 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 1/00 399 F25B 1/00 321 F24F 5/00

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
熱媒体を収容した蓄冷熱槽と、この蓄冷熱槽と前記蓄冷
熱用熱交換器との間に設けた熱媒体の循環路と、この循
環路に設けたポンプと、前記圧縮機を高圧縮比で運転し
圧縮機の吐出冷媒を室外熱交換器、第1電動膨張弁、室
内熱交換器に通して圧縮機に戻し冷房運転を実行する手
段と、この冷房運転の実行に際し前記第1電動膨張弁を
開度小の範囲に設定する手段と、前記圧縮機を高圧縮比
で運転し圧縮機の吐出冷媒を室外熱交換器、第2電動膨
張弁、蓄冷熱用熱交換器に通して圧縮機に戻しかつ前記
ポンプを運転し蓄冷熱運転を実行する手段と、前記圧縮
機を低圧縮比で運転し圧縮機の吐出冷媒を蓄冷熱用熱交
換器、第1電動膨張弁、室内熱交換器に通して圧縮機に
戻しかつ前記ポンプを運転し蓄冷熱利用冷房運転を実行
する手段と、この蓄冷熱利用冷房運転の実行に際し第1
電動膨張弁を開度大の範囲に設定する手段とを備えたこ
とを特徴とする空気調和機。
1. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank containing a heat medium, a circulation path for the heat medium provided between the cold storage heat tank and the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compressor are highly compressed. And a means for operating the compressor to discharge the refrigerant discharged from the compressor through the outdoor heat exchanger, the first electric expansion valve, and the indoor heat exchanger to return to the compressor for cooling operation, and the first electric motor for executing the cooling operation. A means for setting the expansion valve in a range of a small opening, and operating the compressor at a high compression ratio to pass the refrigerant discharged from the compressor through an outdoor heat exchanger, a second electric expansion valve, and a heat exchanger for cold storage heat. Means for returning to the compressor and operating the pump to execute the cold storage operation, and a compressor for operating the compressor at a low compression ratio to discharge the refrigerant discharged from the compressor to the cold storage heat exchanger, the first electric expansion valve, and the indoor heat. Means for returning to the compressor through the exchanger and operating the pump to execute the cooling operation utilizing the cold storage heat; The Upon execution of cold use cooling operation 1
An air conditioner comprising: a means for setting an electric expansion valve within a range of a large opening.
【請求項2】 蓄冷熱槽は、1次熱媒体として水を収容
するとともに水より比重の大きい非水溶性の2次熱媒体
を収容し、かつ底部から槽外に取出されて冷やされる2
次熱媒体が再び槽内に噴出されることで槽内に氷を生成
することを特徴とする請求項1記載の空気調和機。
2. The cold storage heat tank contains water as a primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and is taken out from the bottom of the tank and cooled.
The air conditioner according to claim 1, wherein the next heat medium is again jetted into the tank to generate ice in the tank.
【請求項3】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
1次熱媒体として水を収容するとともに水より比重の大
きい非水溶性の2次熱媒体を収容した蓄冷熱槽と、この
蓄冷熱槽の内底部から前記蓄冷熱用熱交換器を通り蓄冷
熱槽内に連通する循環路と、この循環路に設けたポンプ
と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を
室外熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻し冷房運転を実行する手段と、この冷房運転
の実行に際し第1電動膨張弁を開度小の範囲に設定する
手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷
媒を室外熱交換器、第2電動膨張弁、蓄冷熱用熱交換器
に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱運
転を実行する手段と、前記圧縮機を低圧縮比で運転し圧
縮機の吐出冷媒を蓄冷熱用熱交換器、第1電動膨張弁、
室内熱交換器に通して圧縮機に戻しかつ前記ポンプを運
転し蓄冷熱利用冷房運転を実行する手段と、この蓄冷熱
利用冷房運転の実行に際し第1電動膨張弁を開度大の範
囲に設定する手段と、前記蓄冷熱槽の蓄冷熱量を検出す
る手段と、この蓄冷熱量に応じて前記蓄冷熱運転および
蓄冷熱利用冷房運転の実行を制御する手段とを備えたこ
とを特徴とする空気調和機。
3. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank that contains water as a primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and a cold storage heat from the inner bottom portion of the cold storage heat tank through the heat exchanger for cold storage heat A circulation path communicating with the inside of the tank, a pump provided in this circulation path, the compressor is operated at a high compression ratio, and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, a first electric expansion valve, and an indoor heat exchanger. Means for performing a cooling operation by returning the compressor to the compressor, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and a means for operating the compressor at a high compression ratio. A means for passing the discharged refrigerant through the outdoor heat exchanger, the second electric expansion valve, the heat exchanger for cold storage heat to the compressor and operating the pump to perform the cold storage heat operation, and the compressor at a low compression ratio. Operates the refrigerant discharged from the compressor by the heat exchanger for cold storage, the first electric expansion valve,
Means for returning to the compressor through the indoor heat exchanger and operating the pump to execute the cool storage heat utilization cooling operation, and setting the first electric expansion valve in the range of large opening degree when executing the cool storage heat utilization cooling operation Means, a means for detecting the amount of cold storage heat of the cold storage heat storage tank, and a means for controlling the execution of the cold storage heat operation and the cold storage heat utilization cooling operation according to the amount of cold storage heat. Machine.
【請求項4】 蓄冷熱量を検出する手段は、循環路を流
れる熱媒体の流量を検知する流量センサ、蓄冷熱槽内の
水温を検知する水温センサ、循環路において蓄冷熱用熱
交換器の入口側に設けた第1温度センサ、循環路におい
て蓄冷熱用熱交換器の出口側に設けた第2温度センサを
有し、これらセンサの検知結果を基に蓄冷熱量を検出す
ることを特徴とする請求項3記載の空気調和機。
4. The means for detecting the amount of cold storage heat is a flow rate sensor for detecting the flow rate of a heat medium flowing in the circulation path, a water temperature sensor for detecting the water temperature in the cold storage heat tank, and an inlet of the heat exchanger for cold storage heat in the circulation path. It has a first temperature sensor provided on the side and a second temperature sensor provided on the outlet side of the heat exchanger for cold storage heat in the circulation path, and detects the amount of cold storage heat based on the detection results of these sensors. The air conditioner according to claim 3.
【請求項5】 蓄冷熱量を検出する手段は、蓄冷熱槽内
の底部に設けた超音波発振器および超音波受信器を有
し、超音波の送出から受信までの時間経過を基に蓄冷熱
量を検出することを特徴とする請求項3記載の空気調和
機。
5. The means for detecting the amount of cold storage heat has an ultrasonic oscillator and an ultrasonic receiver provided at the bottom of the cold storage tank, and stores the amount of cold storage heat based on the lapse of time from the transmission of ultrasonic waves to the reception thereof. The air conditioner according to claim 3, wherein the air conditioner is detected.
【請求項6】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
1次熱媒体として水を収容するとともに水より比重の大
きい非水溶性の2次熱媒体を収容した蓄冷熱槽と、この
蓄冷熱槽の内底部から前記蓄冷熱用熱交換器を通り蓄冷
熱槽内に連通する循環路と、この循環路に設けたポンプ
と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を
室外熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻し冷房運転を実行する手段と、この冷房運転
の実行に際し第1電動膨張弁を開度小の範囲に設定する
手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷
媒を室外熱交換器、第2電動膨張弁、蓄冷熱用熱交換器
に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱運
転を実行する手段と、前記圧縮機を低圧縮比で運転し圧
縮機の吐出冷媒を蓄冷熱用熱交換器、第1電動膨張弁、
室内熱交換器に通して圧縮機に戻しかつ前記ポンプを運
転し蓄冷熱利用冷房運転を実行する手段と、この蓄冷熱
利用冷房運転の実行に際し第1電動膨張弁を開度大の範
囲に設定する手段と、前記循環路において蓄冷熱用熱交
換器の入口側に設けた第1温度センサと、前記循環路に
おいて蓄冷熱用熱交換器の出口側に設けた第2温度セン
サと、前記蓄冷熱運転の実行に際し前記第1および第2
温度センサの検知温度の差を検出する手段と、この温度
差が目標値となるようポンプの容量および第2電動膨張
弁の開度の少なくとも一方を制御する手段とを備えたこ
とを特徴とする空気調和機。
6. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank that contains water as a primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and a cold storage heat from the inner bottom portion of the cold storage heat tank through the heat exchanger for cold storage heat A circulation path communicating with the inside of the tank, a pump provided in this circulation path, the compressor is operated at a high compression ratio, and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, a first electric expansion valve, and an indoor heat exchanger. Means for performing a cooling operation by returning the compressor to the compressor, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and a means for operating the compressor at a high compression ratio. A means for passing the discharged refrigerant through the outdoor heat exchanger, the second electric expansion valve, the heat exchanger for cold storage heat to the compressor and operating the pump to perform the cold storage heat operation, and the compressor at a low compression ratio. Operates the refrigerant discharged from the compressor by the heat exchanger for cold storage, the first electric expansion valve,
Means for returning to the compressor through the indoor heat exchanger and operating the pump to execute the cool storage heat utilization cooling operation, and setting the first electric expansion valve in the range of large opening degree when executing the cool storage heat utilization cooling operation Means, a first temperature sensor provided on the inlet side of the cold storage heat exchanger in the circulation path, a second temperature sensor provided on the outlet side of the cold storage heat exchanger in the circulation path, and the cold storage In performing the thermal operation, the first and second
A means for detecting a difference in temperature detected by the temperature sensor, and a means for controlling at least one of the displacement of the pump and the opening degree of the second electric expansion valve so that the temperature difference becomes a target value. Air conditioner.
【請求項7】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
1次熱媒体として水を収容するとともに水より比重の大
きい非水溶性の2次熱媒体を収容した蓄冷熱槽と、この
蓄冷熱槽の内底部から前記蓄冷熱用熱交換器を通り蓄冷
熱槽内に連通する循環路と、この循環路に設けたポンプ
と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を
室外熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻し冷房運転を実行する手段と、この冷房運転
の実行に際し第1電動膨張弁を開度小の範囲に設定する
手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷
媒を室外熱交換器、第2電動膨張弁、蓄冷熱用熱交換器
に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱運
転を実行する手段と、前記圧縮機を低圧縮比で運転し圧
縮機の吐出冷媒を蓄冷熱用熱交換器、第1電動膨張弁、
室内熱交換器に通して圧縮機に戻しかつ前記ポンプを運
転し蓄冷熱利用冷房運転を実行する手段と、この蓄冷熱
利用冷房運転の実行に際し第1電動膨張弁を開度大の範
囲に設定する手段と、前記蓄冷熱用熱交換器から出る冷
媒の圧力を検知する圧力センサと、前記蓄冷熱用熱交換
器から出る冷媒の温度を検知する温度センサと、前記蓄
冷熱運転の実行に際し前記圧力センサおよび温度センサ
の検知結果から蓄冷熱用熱交換器での冷媒の過熱度を検
出する手段と、この過熱度が目標値となるようポンプの
容量および第2電動膨張弁の開度の少なくとも一方を制
御する手段とを備えたことを特徴とする空気調和機。
7. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank that contains water as a primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and a cold storage heat from the inner bottom portion of the cold storage heat tank through the heat exchanger for cold storage heat A circulation path communicating with the inside of the tank, a pump provided in this circulation path, the compressor is operated at a high compression ratio, and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, a first electric expansion valve, and an indoor heat exchanger. Means for performing a cooling operation by returning the compressor to the compressor, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and a means for operating the compressor at a high compression ratio. A means for passing the discharged refrigerant through the outdoor heat exchanger, the second electric expansion valve, the heat exchanger for cold storage heat to the compressor and operating the pump to perform the cold storage heat operation, and the compressor at a low compression ratio. Operates the refrigerant discharged from the compressor by the heat exchanger for cold storage, the first electric expansion valve,
Means for returning to the compressor through the indoor heat exchanger and operating the pump to execute the cool storage heat utilization cooling operation, and setting the first electric expansion valve in the range of large opening degree when executing the cool storage heat utilization cooling operation Means, a pressure sensor that detects the pressure of the refrigerant that exits the heat exchanger for cold storage heat, a temperature sensor that detects the temperature of the refrigerant that exits the heat exchanger for cold storage heat, and the execution of the cold heat operation A means for detecting the degree of superheat of the refrigerant in the heat exchanger for stored heat from the detection results of the pressure sensor and the temperature sensor, and at least the capacity of the pump and the opening degree of the second electric expansion valve so that the degree of superheat reaches a target value. An air conditioner comprising means for controlling one side.
【請求項8】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
1次熱媒体として水を収容するとともに水より比重の大
きい非水溶性の2次熱媒体を収容した蓄冷熱槽と、この
蓄冷熱槽の内底部から前記蓄冷熱用熱交換器を通り蓄冷
熱槽内に連通する循環路と、この循環路に設けたポンプ
と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒を
室外熱交換器、第1電動膨張弁、室内熱交換器に通して
圧縮機に戻し冷房運転を実行する手段と、この冷房運転
の実行に際し第1電動膨張弁を開度小の範囲に設定する
手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷
媒を室外熱交換器、第2電動膨張弁、蓄冷熱用熱交換器
に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱運
転を実行する手段と、前記圧縮機を低圧縮比で運転し圧
縮機の吐出冷媒を蓄冷熱用熱交換器、第1電動膨張弁、
室内熱交換器に通して圧縮機に戻しかつ前記ポンプを運
転し蓄冷熱利用冷房運転を実行する手段と、この蓄冷熱
利用冷房運転の実行に際し第1電動膨張弁を開度大の範
囲に設定する手段と、前記循環路において蓄冷熱用熱交
換器の入口側に設けた第1温度センサと、前記循環路に
おいて蓄冷熱用熱交換器の出口側に設けた第2温度セン
サと、前記蓄冷熱運転の実行に際し前記第1および第2
温度センサの検知温度の差を検出する手段と、この温度
差が目標値となるようポンプの容量を制御する手段と、
前記蓄冷熱用熱交換器から出る冷媒の圧力を検知する圧
力センサと、前記蓄冷熱用熱交換器から出る冷媒の温度
を検知する第3温度センサと、前記蓄冷熱運転の実行に
際し前記圧力センサおよび第3温度センサの検知結果か
ら蓄冷熱用熱交換器での冷媒の過熱度を検出する手段
と、この過熱度が目標値となるよう第2電動膨張弁の開
度を制御する手段とを備えたことを特徴とする空気調和
機。
8. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank that contains water as a primary heat medium and a water-insoluble secondary heat medium having a larger specific gravity than water, and a cold storage heat from the inner bottom portion of the cold storage heat tank through the heat exchanger for cold storage heat A circulation path communicating with the inside of the tank, a pump provided in this circulation path, the compressor is operated at a high compression ratio, and the refrigerant discharged from the compressor is used as an outdoor heat exchanger, a first electric expansion valve, and an indoor heat exchanger. Means for performing a cooling operation by returning the compressor to the compressor, a means for setting the first electric expansion valve in a range of a small opening when executing the cooling operation, and a means for operating the compressor at a high compression ratio. A means for passing the discharged refrigerant through the outdoor heat exchanger, the second electric expansion valve, the heat exchanger for cold storage heat to the compressor and operating the pump to perform the cold storage heat operation, and the compressor at a low compression ratio. Operates the refrigerant discharged from the compressor by the heat exchanger for cold storage, the first electric expansion valve,
Means for returning to the compressor through the indoor heat exchanger and operating the pump to execute the cool storage heat utilization cooling operation, and setting the first electric expansion valve in the range of large opening degree when executing the cool storage heat utilization cooling operation Means, a first temperature sensor provided on the inlet side of the cold storage heat exchanger in the circulation path, a second temperature sensor provided on the outlet side of the cold storage heat exchanger in the circulation path, and the cold storage In performing the thermal operation, the first and second
Means for detecting a difference in temperature detected by the temperature sensor, means for controlling the displacement of the pump so that the temperature difference becomes a target value,
A pressure sensor that detects the pressure of the refrigerant that exits the heat exchanger for cold storage heat, a third temperature sensor that detects the temperature of the refrigerant that exits the heat exchanger for cold storage heat, and the pressure sensor when performing the cold heat operation. And means for detecting the degree of superheat of the refrigerant in the heat exchanger for stored heat from the detection result of the third temperature sensor, and means for controlling the opening degree of the second electric expansion valve so that the degree of superheat becomes the target value. An air conditioner characterized by being equipped.
【請求項9】 圧縮比可変の圧縮機と、室外熱交換器
と、第1減圧手段と、流量調整手段と、室内熱交換器
と、第2減圧手段と、蓄冷熱用熱交換器と、熱媒体を収
容した蓄冷熱槽と、前記圧縮機を高圧縮比で運転し圧縮
機の吐出冷媒を室外熱交換器、第1減圧手段、および室
内熱交換器に通して圧縮機に戻し冷房運転を実行する手
段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷媒
を室外熱交換器、第2減圧手段、蓄冷熱用熱交換器に通
して圧縮機に戻しかつ前記蓄冷熱槽内の熱媒体を前記蓄
冷熱用熱交換器に通して循環させ蓄冷熱運転を実行する
手段と、前記圧縮機を高圧縮比で運転し圧縮機の吐出冷
媒を室外熱交換器、第1減圧手段、および室内熱交換器
に通して圧縮機に戻すとともに、室外熱交換器を経た冷
媒の一部を第2減圧手段、蓄冷熱用熱交換器に通して圧
縮機に戻し、かつ前記蓄冷熱槽内の熱媒体を前記蓄冷熱
用熱交換器に通して循環させ冷房・蓄冷熱同時運転を実
行する手段と、前記圧縮機を低圧縮比で運転し圧縮機の
吐出冷媒を蓄冷熱用熱交換器、流量調整手段、室内熱交
換器に通して圧縮機に戻しかつ前記蓄冷熱槽内の熱媒体
を前記蓄冷熱用熱交換器に通して循環させ蓄冷熱利用冷
房運転を実行する手段とを備えたことを特徴とする空気
調和機。
9. A compressor having a variable compression ratio, an outdoor heat exchanger, a first pressure reducing means, a flow rate adjusting means, an indoor heat exchanger, a second pressure reducing means, and a heat exchanger for cold storage heat. The cold storage heat tank containing the heat medium and the compressor are operated at a high compression ratio, and the refrigerant discharged from the compressor is returned to the compressor through the outdoor heat exchanger, the first pressure reducing means, and the indoor heat exchanger for cooling operation. And a compressor for operating the compressor at a high compression ratio to pass the refrigerant discharged from the compressor through the outdoor heat exchanger, the second pressure reducing means, the heat exchanger for cold storage heat to the compressor, and the cold storage tank. Means for circulating the heat medium in the cold heat storage heat exchanger to execute the cold heat storage operation; and a compressor operating at a high compression ratio to discharge refrigerant discharged from the compressor to the outdoor heat exchanger and the first decompression. And the compressor through the indoor heat exchanger and a part of the refrigerant passing through the outdoor heat exchanger is the second pressure reducing means. , Means for returning to the compressor through the heat exchanger for cold storage heat, and for circulating the heat medium in the heat storage tank for cold storage through the heat exchanger for cold storage heat to execute cooling / cooling heat simultaneous operation, and The compressor is operated at a low compression ratio, the refrigerant discharged from the compressor is returned to the compressor through the heat exchanger for cold storage heat, the flow rate adjusting means, and the indoor heat exchanger, and the heat medium in the cold storage heat tank is returned to the cold storage heat. An air conditioner having means for circulating the heat through a heat exchanger for use to execute a cooling operation using the stored heat.
【請求項10】 圧縮比可変の圧縮機と、室外熱交換器
と、開度小の範囲で減圧手段として機能し開度大の範囲
で流量調整手段として機能する第1電動膨張弁と、室内
熱交換器と、第2電動膨張弁と、蓄冷熱用熱交換器と、
熱媒体を収容した蓄冷熱槽と、この蓄冷熱槽と前記蓄冷
熱用熱交換器との間に設けた熱媒体の循環路と、この循
環路に設けたポンプと、前記圧縮機を高圧縮比で運転し
圧縮機の吐出冷媒を室外熱交換器、第1電動膨張弁、室
内熱交換器に通して圧縮機に戻し冷房運転を実行する手
段と、この冷房運転の実行に際し前記第1電動膨張弁を
開度小の範囲に設定する手段と、前記圧縮機を高圧縮比
で運転し圧縮機の吐出冷媒を室外熱交換器、第2電動膨
張弁、蓄冷熱用熱交換器に通して圧縮機に戻しかつ前記
ポンプを運転し蓄冷熱運転を実行する手段と、前記圧縮
機を高圧縮比で運転し圧縮機の吐出冷媒を室外熱交換
器、第1電動膨張弁、および室内熱交換器に通して圧縮
機に戻すとともに室外熱交換器を経た冷媒の一部を第2
電動膨張弁、蓄冷熱用熱交換器に通して圧縮機に戻しか
つ前記ポンプを運転し冷房・蓄冷熱同時運転を実行する
手段と、前記圧縮機を低圧縮比で運転し圧縮機の吐出冷
媒を蓄冷熱用熱交換器、第1電動膨張弁、室内熱交換器
に通して圧縮機に戻しかつ前記ポンプを運転し蓄冷熱利
用冷房運転を実行する手段と、この蓄冷熱利用冷房運転
の実行に際し第1電動膨張弁を開度大の範囲に設定する
手段と、前記蓄冷熱用熱交換器から出る冷媒の圧力を検
知する圧力センサと、前記蓄冷熱用熱交換器から出る冷
媒の温度を検知する温度センサと、前記蓄冷熱運転また
は冷房・蓄冷熱同時運転の実行に際し前記圧力センサお
よび温度センサの検知結果から蓄冷熱用熱交換器での冷
媒の過熱度を検出する手段と、この過熱度が目標値とな
るよう始めに第2電動膨張弁の開度を制御しその第2電
動膨張弁の開度変化が限界値に達したら次に前記ポンプ
の容量を制御する手段とを備えたことを特徴とする空気
調和機。
10. A compressor having a variable compression ratio, an outdoor heat exchanger, a first electric expansion valve functioning as a pressure reducing means in a range of a small opening and a flow rate adjusting means in a range of a large opening, and an indoor chamber. A heat exchanger, a second electric expansion valve, a heat exchanger for cold storage heat,
A cold storage heat tank containing a heat medium, a circulation path for the heat medium provided between the cold storage heat tank and the heat exchanger for cold storage heat, a pump provided in this circulation path, and the compressor are highly compressed. And a means for operating the compressor to discharge the refrigerant discharged from the compressor through the outdoor heat exchanger, the first electric expansion valve, and the indoor heat exchanger to return to the compressor for cooling operation, and the first electric motor for executing the cooling operation. A means for setting the expansion valve in a range of a small opening, and operating the compressor at a high compression ratio to pass the refrigerant discharged from the compressor through an outdoor heat exchanger, a second electric expansion valve, and a heat exchanger for cold storage heat. Means for returning to the compressor and operating the pump to execute the cold storage operation, and operating the compressor at a high compression ratio to discharge the refrigerant discharged from the compressor to the outdoor heat exchanger, the first electric expansion valve, and the indoor heat exchange. And return a part of the refrigerant that has passed through the outdoor heat exchanger to the compressor.
A means for returning to the compressor through the electric expansion valve and the heat exchanger for cold storage heat and operating the pump to execute the simultaneous cooling and cold storage heat operation, and the refrigerant discharged from the compressor by operating the compressor at a low compression ratio. Through the heat exchanger for cold storage heat, the first electric expansion valve, and the indoor heat exchanger to return to the compressor and operate the pump to execute the cooling operation using cold storage heat, and the execution of the cooling operation using cold storage heat At this time, the means for setting the first electric expansion valve in the range of large opening, the pressure sensor for detecting the pressure of the refrigerant discharged from the heat exchanger for cold storage heat, and the temperature of the refrigerant discharged from the heat exchanger for cold storage heat A temperature sensor for detecting, a means for detecting the degree of superheat of the refrigerant in the heat exchanger for cold storage heat from the detection results of the pressure sensor and the temperature sensor during execution of the cold heat storage operation or the cooling / cooling heat storage simultaneous operation, and this superheat First, so that the degree reaches the target value And controlling the opening of the dynamic expansion valve air conditioner wherein the opening change of the second electric expansion valve and a means for controlling the capacity of next the pump reaches the limit value.
【請求項11】 前記圧縮比可変の圧縮機は、吐出口、
吸込口、レリースポートおよびこのレリースポートに設
けたリード弁を有し、この圧縮機を高圧縮比で運転する
場合には、前記吐出口からレリースポートにかけて設け
た加圧サイクルを導通するとともに前記レリースポート
から吸込口にかけて設けたレリースサイクルを遮断し、
前記圧縮機を低圧縮比で運転する場合には、前記加圧サ
イクルを遮断するとともに前記レリースサイクルを導通
することを特徴とする請求項1乃至請求項10記載の空
気調和機。
11. The compressor having a variable compression ratio comprises a discharge port,
It has a suction port, a release port, and a reed valve provided in this release port.When operating this compressor at a high compression ratio, the pressurizing cycle provided from the discharge port to the release port is conducted and the release Cut off the release cycle provided from the port to the suction port,
The air conditioner according to claim 1, wherein when the compressor is operated at a low compression ratio, the pressurization cycle is shut off and the release cycle is conducted.
JP08357093A 1993-04-09 1993-04-09 Air conditioner Expired - Fee Related JP3457697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08357093A JP3457697B2 (en) 1993-04-09 1993-04-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08357093A JP3457697B2 (en) 1993-04-09 1993-04-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPH06300374A JPH06300374A (en) 1994-10-28
JP3457697B2 true JP3457697B2 (en) 2003-10-20

Family

ID=13806177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08357093A Expired - Fee Related JP3457697B2 (en) 1993-04-09 1993-04-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP3457697B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017440A (en) * 2004-06-30 2006-01-19 E's Inc Heat pump air conditioner
JP2017141981A (en) * 2016-02-08 2017-08-17 ダイキン工業株式会社 Storage type air conditioner
CN112665127B (en) * 2020-12-16 2022-04-12 珠海格力电器股份有限公司 Ice storage air conditioning system and control method, device and controller thereof
CN117366720A (en) * 2022-07-01 2024-01-09 大金工业株式会社 Control method of energy storage system

Also Published As

Publication number Publication date
JPH06300374A (en) 1994-10-28

Similar Documents

Publication Publication Date Title
US7856836B2 (en) Refrigerating air conditioning system
US4471630A (en) Cooling system having combination of compression and absorption type units
CN111351248A (en) Air conditioning system and control method
CN104704302A (en) Heat pump device
JPH1019305A (en) Cooling system
WO2006114983A1 (en) Refrigeration cycle device
JP3855695B2 (en) Heat pump water heater
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JP6589946B2 (en) Refrigeration equipment
JP3457697B2 (en) Air conditioner
CN112611072A (en) Control method of cooling and heating air conditioner
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP4650086B2 (en) Thermal storage heat recovery device
JPH043865A (en) Freezing cycle device
JP4074422B2 (en) Air conditioner and its control method
JP3319676B2 (en) Thermal storage type air conditioner and its operation control method
JPH0849936A (en) Regenerative air-conditioner
JP4120471B2 (en) Refrigeration equipment
JP2000028185A (en) Air conditioner
JPH1038347A (en) Heat accumulative type air conditioner
JP3164079B2 (en) Refrigeration equipment
JPH11316038A (en) Air conditioning system
CN214746562U (en) Air conditioning unit and air conditioner
JPH0526481A (en) Heat source employing heating tower
CN109764577B (en) Low-temperature heat pump system and control method of reversing valve thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees