WO2006111600A1 - Procedimiento y catalizadores para la epoxidación de compuestos olefínicos en presencia de oxígeno - Google Patents

Procedimiento y catalizadores para la epoxidación de compuestos olefínicos en presencia de oxígeno Download PDF

Info

Publication number
WO2006111600A1
WO2006111600A1 PCT/ES2006/070044 ES2006070044W WO2006111600A1 WO 2006111600 A1 WO2006111600 A1 WO 2006111600A1 ES 2006070044 W ES2006070044 W ES 2006070044W WO 2006111600 A1 WO2006111600 A1 WO 2006111600A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
cat
oxygen
reactor
epoxidation
Prior art date
Application number
PCT/ES2006/070044
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Marcelo Eduardo Domine
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politécnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Priority to BRPI0612973-0A priority Critical patent/BRPI0612973A2/pt
Priority to EP06743488A priority patent/EP1876176A1/en
Priority to US11/911,836 priority patent/US20090234145A1/en
Priority to JP2008507102A priority patent/JP2008536897A/ja
Priority to MX2007012985A priority patent/MX2007012985A/es
Publication of WO2006111600A1 publication Critical patent/WO2006111600A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0325Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • B01J35/393

Definitions

  • the two main commercial routes for obtaining low molecular weight epoxides are the processes that use chlorohydrin and hydroperoxides, both in liquid phase.
  • the chlorohydrin process causes serious problems of corrosion in the reactors and environmental pollution, in addition to being carried out under conditions of high danger, so it has been gradually replaced by the use of hydroperoxides or other alternative epoxidation routes.
  • Halcon-ARCO process uses a homogeneous phase Mo catalyst and as an oxidant ethylbenzene hydroperoxide.
  • the propylene conversions achieved are 84% at 75 minutes, with the disadvantage of including numerous steps for the final separation of the catalyst from the reaction mixture.
  • the Shell OiI company developed a heterogeneous silica-titania catalyst, especially active in the epoxidation of olefins with ethylbenzene hydroperoxide [HP WuIff et al. (Shell OiI Co.), GB Pat 1,249,079, 1971].
  • ENICHEM technology based on the use of a solid catalyst of the titanium-silicate type, TS-I, and Hydrogen peroxide as an oxidant in liquid phase, allows to obtain high conversions and selectivities to epoxides [M. Taramaso et al. (SNAM Progetti), US Pat 4,410,501, 1983; M. G. Clerici et al. (ENICHEM Sintesi S.p.A.), US Pat 4,824,976, 1989]. The results are even better when the titanium silicate (TS-I) is modified at a later stage than the synthesis, reaching 97% epoxy selectivities (PO) with 90% oxidant conversions, [M. G. Clerici et al. J. Catal. , 129, 159, 1991].
  • microporous sieves such as Ti-Beta [A. Corma et al., J. Chem. Soc, Chem. Commun. , 589, 1992; and J. Catal., 145, 151, 1994] are capable of efficiently epoxidating olefins using H2O2, the materials mesoporous type Ti-MCM- 41 [A. Corma et al., NO 9429022 Al, 1994] and Ti-MCM-48 [A.
  • Corma et al., WO 004460 Al, 2000] allow to oxidize a wide range of olefinic molecules using organic hydroperoxides as oxidants [A. Corma et al., ⁇ 0-2000054880 Al, 2000].
  • At least one catalyst comprising at least one metal selected from one or more noble metals, one or more transition metals and mixtures thereof, and
  • the organic epoxides that are obtained are preferably epoxides of terminal, internal, linear, cyclic olefins, with no branching, with one or more chain branches, and comprising a hydrocarbon chain of between 2 and 24
  • the organic epoxides that can be obtained can respond to the general formula:
  • Ri-HCOCH-R 2 in which Ri and R 2 are substituents the same or different from each other, and are selected interchangeably from: alkyl with 1 to 12 C atoms, linear or branched, substituted or unsubstituted; cyclic alkyl with 4 to 12 C atoms, substituted or unsubstituted; or aryl with 6 to 18 C atoms, substituted or unsubstituted.
  • the Organic epoxides have the formula:
  • the organic epoxides obtained have between 2 and 12 carbon atoms.
  • epoxides are for example ethylene oxide, propylene oxide, 1,2-epoxy-butane, 1,2-epoxy-hexane, 1,2-epoxy-octane, 1,2-epoxy-cyclohexane, 1, 2- epoxy-l-methyl-cyclohexane, among others, without being these limiting examples.
  • the selected olefinic compound or compounds are organic compounds that have one or more double bonds in their structure, preferably mono-, di- or poly-olefins.
  • the olefinic compound is preferably a mono-olefin.
  • Said mono-olefin is preferably selected from one or more terminal olefins, internal olefins, branched olefins, cyclic olefins, and combinations thereof.
  • Said hydrocarbon can be selected from compounds that respond to the formula
  • the branched alkane or hydrocarbon may be selected from sec-alkanes, cycloalkanes, alkyl-cycloalkanes, aryl-cycloalkanes, alkyl aromatics, or mixtures thereof.
  • sec-alkanes with 3 or more carbons such as iso-butane, 2-methyl-pentane, 3-methyl-pentane, 2-methyl-hexane, 3-methyl-hexane, 3-methyl-heptane, 4-methyl heptane; substituted cycloalkanes and cycloalkanes, such as cyclohexane, methylcyclohexane, di-methylcyclohexane; and alkyl aromatics, such as ethyl-benzene, iso-propyl-benzene (eumene), di-iso-propyl-benzene, without being these limiting examples.
  • the olefinic compound is propylene and the hydrocarbon is a methyl-alkane such as methyl-pentane, or mixtures of methyl-alkanes.
  • the olefinic compound is propylene and the hydrocarbon is ethylbenzene.
  • the olefinic compound is propylene and the hydrocarbon is iso-propylbenzene (eumene).
  • the reaction is carried out in the presence of one or more activating or initiating agents.
  • the reaction initiating agent may be selected from:
  • Organic nitriles are preferably used in combination with azo groups in the same molecule.
  • the compounds used respond to the general formula:
  • N ⁇ C-Ri-N NR 2 -C ⁇ N in which Ri and R2 are substituents the same or different from each other, and are selected interchangeably from: an alkyl group of 1 to 12 C atoms, linear or branched, substituted or unsubstituted; an alkyl-cyclic group of 4 to 12 C atoms, substituted or unsubstituted; an aryl group of 6 to 18 C atoms, substituted or unsubstituted.
  • the organic nitrile has an alkyl-azo group of 1 to 12 C atoms, linear or branched, substituted or unsubstituted; a bis-alkyl-azo group of 1 to 12 C atoms, linear or branched, substituted or unsubstituted; an aryl-azo group of 6 to 18 C atoms, substituted or unsubstituted; a bis-aryl-azo group of 6 to 18 C atoms, substituted or unsubstituted.
  • Non-limiting examples of organic nitriles used can be mentioned: aceto-nitrile, butyro-nitrile, iso-butyro-nitrile, phenyl-nitrile, and more preferably, azo-butyro-nitrile, azo-iso-butyro-nitrile, azo-bis -isobutyro-nitrile, azo-phenyl-nitrile and azo-bis-phenyl-nitrile.
  • the oxygen can come from a source selected from pure molecular oxygen, a gaseous mixture comprising oxygen and combinations thereof.
  • Said gaseous mixture comprising oxygen may be selected from air, oxygen enriched air, oxygen enriched ozone, oxygen enriched N 2 , Ar enriched with oxygen and a mixture comprising two or more gases, for example a mixture of nitrogen, argon and oxygen, without being these limiting examples.
  • the amount of oxygen and the source selected will depend on the type of reactor and the specific reaction conditions of the process.
  • the amount of oxygen present in the reactive medium will always be referred to the initial amount of the olefinic compound used, and will depend on the temperature and pressure in the reactor, in order to minimize unwanted side reactions.
  • the catalyst according to the process of the present invention may be selected from: a) a "CAT A" metal catalyst comprising: - one or more noble metals, or
  • the metal or metals may be in the form of salts or complexes, such as noble metal complexes or transition metal complexes.
  • the catalyst when the catalyst is a "CAT A" metal catalyst, it may comprise one or more noble metals, one or more transition metals, or one of its salts, and is supported, or included, in the structure of an inorganic matrix.
  • Said noble metal may be selected, by example, between Au, Pd, Pt, Ag, Re, Rh, and combinations thereof.
  • Preferably said noble metal is Au or Au combined with another metal. More preferably even when the catalyst is "CAT A" said Au, or Au is combined with another metal, and is supported, in the form of nano-particles of a size between 0.5 and 20 nm.
  • the catalyst can be "CAT A", “CAT T” or CAT A + CAT T in which said transition metal is selected from one or more metals of the groups Ib, Hb, IVb, Vb , VIb, VIIb and VIII of the periodic table. According to preferred embodiments, said transition metal is selected from Ti, Zr, Zn, Cu, Co, Mn, Mo, V, Ni, Fe, Al, and combinations thereof.
  • said catalyst When the catalyst of the process is "CAT A", said catalyst may be supported, or included, in the structure of an inorganic matrix which may be an amorphous material selected from one or more metal oxides, one or more mixed metal oxides, and combinations thereof.
  • an amorphous material selected from one or more metal oxides, one or more mixed metal oxides, and combinations thereof.
  • these amorphous materials there may be mentioned silicon, alumina, ceria, titania, Fe2Ü 3 , ytria, silica-alumina, silice-ceria, one or more mixed alkaline earth metal oxides, and one or more transition metal oxides.
  • said inorganic matrix is a cerium oxide.
  • said solid or inorganic matrix can also be of the type of microporous molecular sieves, mesoporous molecular sieves and combinations thereof.
  • the metallic catalyst "CAT A” may consist of a compound selected from at least one salt and at least one transition metal complex, said salt or complex being supported, or included, in the structure of an inorganic solid or matrix, such as amorphous solids, or microporous molecular sieves, mesoporous molecular sieves and combinations thereof.
  • Non-limiting examples of amorphous solid matrices used can also be mentioned: silica, alumina, titania, ceria, ytria, Fe oxides such as Fe2Ü 3 , silica-alumina, silicon-ceria, and in general mixed metals and / or oxides transition metals such as Cu, Co, Zr, Zn, Ti, Mn, V, Ni, Fe, Mo, among others.
  • amorphous solid matrices solids consisting of alkaline earth metal oxides (MgO, CaO, BaO), preferably MgO, together with oxides of other types of metals, and in general mixed oxides derived from anionic clays, may be mentioned.
  • alkaline earth metal oxides MgO, CaO, BaO
  • oxides of other types of metals and in general mixed oxides derived from anionic clays, may be mentioned.
  • microporous solid matrices used can be mentioned: microporous silicates including pure silica zeolites, microporous alumino-silicates including Al-zeolites, microporous metallo silicates including Me-zeolites, microporous alumino phosphates (AlPO's, APO's and the like), microporous alumino phosphates containing metals (Me-APO 's), microporous silico-aluminophosphates (SAPO' s, TAPSO 's, etc.).
  • microporous silicates including pure silica zeolites
  • microporous metallo silicates including Me-zeolites
  • microporous alumino phosphates AlPO's, APO's and the like
  • microporous inorganic matrices lamellar materials such as clays and clays pilareadas, of the type bentonite, montmorillonite, among others, and combinations thereof.
  • solid mesoporous matrices used can be mentioned: silicates, alumino-silicates, and in general mesoporous metallo-silicates with hexagonal or cubic structure, such as MCM-41, MCM-48, SBA-15, HMS, MSA, among others.
  • the catalyst is "CAT A", "CAT T” or a combination of both, said catalyst may be included in an inorganic matrix that is one or more microporous molecular sieves.
  • Said microporous molecular sieve may be selected from a zeolite, clay, clay, and mixtures thereof.
  • said catalyst may be included in an inorganic matrix that is one or more mesoporous molecular sieves, and said mesoporous molecular sieve may be selected between silicate, metallo silicate and a mesoposoro material from the delamination of a laminar zeolitic precursor.
  • the catalyst can be a "CAT T" catalyst, comprising one or more transition metals, included or supported in the structure of an inorganic matrix.
  • said inorganic matrix is an amorphous material selected from: silica, alumina, silica-alumina, titania, silica-titania, and a mixed oxide of transition metals.
  • said mesoporous solid is selected from mesoporous molecular sieves, and molecular sieves containing meso and micropores, and contains at least Si, Ti incorporated into the network - in tetrahedral positions -. It can also happen that in a particular embodiment said mesoporous solid may further comprise Ti in non-reticular positions - octahedral - of the molecular sieve, and silicon bonded to carbon.
  • the "CAT T" metal catalyst may consist of a microporous molecular sieve, a mesoporous molecular sieve, or even amorphous silica materials, or containing Si and Ti, or combinations of the same.
  • these materials may contain Si, Ti and Si-C bonds, forming an organic-inorganic composite.
  • said organic-inorganic composite comprising at least Si, Ti and silicon bonded to carbon is obtained by a method comprising a silylation stage during the synthesis or by a method comprising a post-synthesis silylation stage .
  • Said organic-inorganic composites can be a microporous molecular sieve comprising at least Si, Ti and silicon bonded to carbon, or a mesoporous molecular sieve comprising at least Si, Ti and silicon bonded to carbon, or they can consist of inorganic silicon solids amorphous chemically combined with Ti in proportions between 0.2 and 8% by weight of Ti in the form of oxide on the total catalyst, and containing silicon bonded to carbon.
  • the precursor of a mesoporous molecular sieve used as a catalyst can have the chemical formula: y (A n + 1 / n XO 2 ): tTO 2 : (1-m) S, O 2 : xTiO 2 : mR (4- P ) Si0p / 2: sS in which x is between 0.005 and 0.1, both values included;
  • - X represents at least one trivalent element, and is between 0 and 0.2, both values included;
  • - A represents one or more mono compensation cations, di or trivalent, or mixtures thereof
  • - T represents tetravalent elements other than Si and Ti, - t is between O and I, and preferably between 0 and 0.2, both values included;
  • - s can vary between 0 and 0.5, both values included; m is between 10 ⁇ 6 and 0.66, both values included;
  • - p is between 3 and 1, both values included; and where R is an alkyl, aromatic group or a combination of both that comes from the silylating agent that contains the Si-C bonds.
  • the organic compound corresponding to group S is extracted chemically and the mesoporous molecular sieve is subjected to a post-synthesis treatment with a silylating agent that leads to the formation of new Si-C bonds.
  • These materials have a high specific surface area between 200 and 1500 ⁇ ⁇ -g "1 and have an intense band in the UV-Vis spectrum centered around 220 nm, indicating the presence of Ti in tetrahedral environments.
  • Mesoporous materials such as ordered mesoporous materials such as MCM-41, MCM-48, SBH-15, HMS, and other amorphous materials, such as amorphous silica, can be cited.
  • Teitanium is introduced at the stage of synthesis, or in a post-treatment. Synthesis In addition, said materials may have organic groups anchored on their surface.
  • the catalyst can be of the "CAT A", CAT T “, or” CAT A + CAT T “type, supported on a mesoporous molecular sieve which responds in its calcined and anhydrous form, and without organic component, to the chemical composition and (A 1 / n n + XO 2 ): t TO 2 : SiO 2 : x TiO 2 in which: - X represents at least one element trivalent, and is between 0 and 0.2 and preferably between 0 and 0.1,
  • T represents at least one tetravalent element other than Si and Ti, t is comprised between O and I, and preferably between 0 and 0.2 and - x can vary between 0.015 and 0.065; (2 and 8% by weight in the form of TiO 2 ).
  • the mesoporous molecular sieve is subjected to a post-synthesis treatment with a silylating agent that leads to the formation of new Si-C bonds.
  • These materials have a high specific surface area between 200 and 1500 ⁇ ⁇ -g "1 and have an intense band in the UV-Vis spectrum centered around 220 nm, indicating the presence of Ti in tetrahedral environments.
  • the catalyst can be of the "CAT A", CAT T ", or” CAT A + CAT T "type, supported on a mesoporous molecular sieve selected from materials of the type MCM-41, MCM-48, SBA-15, and HMS., and combinations thereof.
  • Said mesoporous solid may have been prepared by a process comprising a stage, selected between stages of synthesis and post-synthesis stages, in which Si-C bonds are introduced into the catalyst.
  • the process for the epoxidation of olefinic compounds in the presence of O2 can be carried out in a batch reactor, a continuous stirred tank reactor
  • CSTR in a continuous fixed bed reactor, in a fluidized bed reactor, or a boiling bed reactor.
  • the epoxidation process of olefinic compounds is carried out by contacting a reactive mixture containing one or more olefinic compounds, a source of oxygen (preferably, O2 or air), an initiating or activating agent, one or more hydrocarbons, with a metal catalyst "CAT A", or a solid material containing metal species "CAT T" ' , or a mixture of them "CAT A” + “CAT T” ' , in a range of pressures that can range from atmospheric pressure to 50 bar, at a temperature between 10 and 250 ° C, during reaction times that can vary between 2 minutes and 72 hours depending on the catalyst and the reaction conditions used.
  • the weight ratio of the olefinic compound to the catalyst is preferably between 2 and 1000, more preferably between 10 and 500.
  • the weight ratio between the olefinic compound and the oxidizing agent may preferably be between 3 and 600, while the weight ratio olefinic compound to initiating agent is preferably between 10 and 10,000, and the weight ratio of the olefinic compound to hydrocarbon is between 0.1 and 200.
  • the weight ratio of the olefinic compound to catalyst is preferably between 2 and 1000, more preferably between 10 and 500.
  • the molar relationship between the Olefinic compound and oxygen is between 3 and 600, and oxygen can also be added in continuously controlled quantities to the system keeping the total reactor pressure constant throughout the process.
  • the process temperature in a batch reactor is preferably between 10 and 250 ° C, more preferably between 40 and 200 ° C.
  • the reaction time in a batch reactor preferably ranges from 2 minutes to 72 hours.
  • the oxidation reaction when carried out in a batch reactor is carried out at a total pressure in the system preferably between atmospheric pressure and 50 bar.
  • the weight ratio of the olefinic compound and the initiating agent is preferably between 10 and 10,000.
  • the weight ratio of the olefinic compound and the hydrocarbon is preferably between 0.1 and 200.
  • Example la Preparation of a metal catalyst "CAT A" based on a CeC> 2 material containing Au in its composition.
  • Au gold particles
  • the impregnation method was used, with HAUCI4 as the source of Au, following the experimental procedure detailed below.
  • Example Ib Preparation of a "CAT A" metal catalyst based on a mesoporous molecular sieve of the MCM-41 type containing Au in its composition. [Au / MCM-41]
  • the mixture thus obtained was kept under stirring at room temperature for 15-16 hours, and once the solid was recovered by filtration, it was washed thoroughly with water and dried in an oven at 100 ° C for approximately 12 hours.
  • the material thus synthesized was suitably characterized by different spectroscopic techniques and chemical methods, finally obtaining a sample of Au / MCM-41 with approximately 4.5% by weight of Au in the solid.
  • Example 2a Preparation of a "CAT T” metal catalyst based on a mesoporous molecular sieve of the MCM-41 type containing Ti in its composition.
  • TAB cetyltrimethylammonium bromide
  • the solid material obtained is placed in a quartz tubular reactor and a dry nitrogen stream of 50 ml-min "1 is passed while the temperature is raised to 540 ° C to 3 0 OmIn " 1 . Once the temperature is reached, nitrogen is passed for 60 minutes, after which the nitrogen flow is changed to a dry air flow of 50 ml-min "1. The calcination is prolonged for an additional 360 minutes and the solid is cooled to Ambient temperature This heat treatment allows all organic occluded in the pores of the material to be completely removed.
  • This solid has a specific surface area of 950 m 2 -g "1 , as well as a band in the UV-Vis spectrum centered at 220 nm.
  • Example 2b Preparation of a "CAT T” organic-inorganic hybrid metal catalyst based on a mesoporous molecular sieve of the MCM-41 type containing Ti in its composition. [Ti-MCM-41-Sil.]
  • Example 3 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the catalyst of Example la. [Au / CeO 2 - CAT A]
  • the samples are analyzed by GC with FID detector (flame ionization detector), calculating from the composition of the mixture obtained, the conversion of olefinic compound (initial reagent moles - initial reagent moles / initial reagent moles * 100 ), and the selectivities to the products obtained (moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 4 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the catalyst of Example 2b. [Ti-MCM-41-Sil. - CAT T]
  • Example 2b In a 12-ml stainless steel autoclave reactor, with a Teflon-coated interior and with a magnetic stirrer, 3000 mg of 1-octene and 1000 mg of 3-methylpentane are introduced, and then 100 mg of a catalyst such as the described in Example 2b [Ti-MCM-41-Sil. - CAT T].
  • the autoclave is closed tightly with the lid containing a connection to a pressure gauge (pressure gauge), another connection for loading the source of gaseous oxygen and a third outlet that allows samples to be taken at different time intervals.
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 ° C, immersing the autoclave in a temperature controlled silicone bath.
  • Example 5 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the combination of catalysts of Examples la and 2b.
  • 3000 mg of 1-octene and 1000 mg of 3-methylpentane are introduced, and then a mechanical mixture is added of 50 mg of a catalyst as described in Example [Au / CeÜ2-CAT A] + 100 mg of a catalyst as described in Example 2b [Ti-MCM-41-Sil. - CAT T].
  • the autoclave is closed tightly with the lid containing a connection to a pressure gauge (pressure gauge), another connection for loading the source of gaseous oxygen and a third outlet that allows samples to be taken at different time intervals.
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 ° C, immersing the autoclave in a temperature controlled silicone bath. The reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating the conversion of the olefinic compound (moles) from the composition of the mixture obtained reagent initials - reagent final moles / initial reagent moles * 100), and selectivities to the products obtained (product moles / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 6 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the catalyst of Example [Au / CeC> 2-CAT A], using azo-iso-butyronitrile (AIBN) as initiator or activator.
  • AIBN azo-iso-butyronitrile
  • Example Example Example [Au / CeÜ2-CAT A] In a 12-ml stainless steel autoclave reactor, with Teflon-coated interior and with magnetic stirrer, 3000 mg of 1-octene, 1000 mg of 3-methyl-pentane and 12 mg of AIBN are introduced, and then 85 mg are added of a catalyst as described in Example Example [Au / CeÜ2-CAT A].
  • the autoclave is closed tightly with the lid containing a connection to a pressure gauge (pressure gauge), another connection for loading the source of gaseous oxygen and a third outlet that allows samples to be taken at different time intervals.
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 ° C, immersing the autoclave in a temperature controlled silicone bath.
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 reaction hours
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compounds (initial reagent moles - initial reagent moles / reagent initial moles * 100), and the selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 7 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the catalyst of Example 2b [Ti-MCM-41-Sil. - CAT T], using azo-iso-butyronitrile (AIBN) as activator.
  • AIBN azo-iso-butyronitrile
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compounds (initial reagent moles - initial reagent moles / reagent initial moles * 100), and the selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 8 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the combination of catalysts of Examples la and 2b [Au / CeC> 2-CAT A] + [Ti-MCM-41-Sil. - CAT T], using azo-iso-butyronitrile (AIBN) as initiator or activator.
  • AIBN azo-iso-butyronitrile
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 0 C, immersing the autoclave in a temperature controlled silicone bath. The reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction. The samples are analyzed by GC with FID detector, calculating the conversion of the olefinic compound from the mixture composition obtained
  • Example 9 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with the catalyst of Example Ib [Au / MCM-41-CAT A], using azo-iso-butyronitrile (AIBN) as initiator or activator.
  • AIBN azo-iso-butyronitrile
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 0 C, immersing the autoclave in a temperature controlled silicone bath. The reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction. The samples are analyzed by GC with FID detector, calculating the conversion of the olefinic compound from the mixture composition obtained
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 ° C, immersing the autoclave in a temperature controlled silicone bath.
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compound (initial moles of reagent - final moles of reagent / initial moles of reagent * 100), and selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case.
  • a- Epoxide 1,2-epoxy-octane.
  • Example 11 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with cyclohexane as hydrocarbon and with the combination of catalysts of Examples la and 2b [Au / CeO 2 -CAT A] + [Ti-MCM-41-Sil. - CAT T], using azo-iso-butyronitrile (AIBN) as initiator or activator.
  • AIBN azo-iso-butyronitrile
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 ° C, immersing the autoclave in a temperature controlled silicone bath.
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating the composition of the mixture obtained the conversion of olefinic compounds (initial moles of reagent - final moles of reagent / initial moles of reagent * 100), and selectivities to the products obtained (moles of product i / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 12 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with ethylbenzene as hydrocarbon and with the combination of catalysts of Examples la and 2b [Au / CeO 2 -CAT A] + [Ti-MCM-41-Sil. - CAT T], using azo-iso-butyronitrile (AIBN) as initiator or activator.
  • AIBN azo-iso-butyronitrile
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 0 C, immersing the autoclave in a temperature controlled silicone bath.
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compound (initial moles of reagent - final moles of reagent / initial moles of reagent * 100), and selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:
  • Example 13 Results obtained in the epoxidation of olefinic compounds in the presence of O2 with iso-propylbenzene (eumene) as hydrocarbon and with the combination of catalysts of Examples la and 2b [Au / CeC> 2 - CAT A] +
  • AIBN AIBN as initiator or activator.
  • the reactor is pressurized at 10 bar with oxygen and the reaction temperature is brought to 90 0 C, immersing the autoclave in a temperature controlled silicone bath.
  • the reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compound (initial moles of reagent - final moles of reagent / initial moles of reagent * 100), and selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:
  • the autoclave is closed tightly with the lid containing a connection to a pressure gauge (pressure gauge), another connection for loading the source of gaseous oxygen containing a 10 bar pressure regulator and a third outlet that allows samples to be taken at different intervals of weather.
  • the reactor is pressurized at 10 bar with oxygen and that pressure is kept constant throughout the process with the slow addition of oxygen to the system.
  • the reaction temperature is brought to 90 ° C, immersing the autoclave in a silicone bath with temperature control. The reaction mixture is stirred and samples are taken at different time intervals until 17 hours of reaction.
  • the samples are analyzed by GC with FID detector, calculating from the composition of the mixture obtained the conversion of olefinic compound (initial moles of reagent - final moles of reagent / initial moles of reagent * 100), and selectivities to the products obtained ( moles of product and / moles of total products * 100) in each case. In this way the following results were obtained:

Abstract

La presente invención se refiere a un procedimiento para la epoxidación de un compuesto olefínico, caracterizado porque comprende realizar una reacción de oxidación de al menos un compuesto olefinico que contiene uno o más dobles enlaces C=C, con oxigeno, en presencia de uno o más agentes iniciadores de la reacción, al menos un catalizador, que comprende al menos un metal seleccionado entre metal noble, un metal de transición y mezclas de ellos, y al menos un hidrocarburo seleccionado entre uno o más alcanos ramificados, uno o más hidrocarburos ciclicos o alquil- cíclicos, uno o más compuestos aromáticos o alquil- aromáticos, y mezclas de ellos.

Description

Titulo
PROCEDIMIENTO Y CATALIZADORES PARA LA EPOXIDACIÓN DE COMPUESTOS OLEFÍNICOS EN PRESENCIA DE OXÍGENO.
Campo de la Técnica
Oxidación, Catálisis heterogénea, Petroquimica
Antecedentes
Desde hace muchos años, la epoxidación de compuestos olefinicos ha atraido considerablemente la atención de los investigadores debido a la versatilidad de los epóxidos como intermedios en sintesis orgánica [K. A. Jorgensen, Chem. Rev. , 89, 431, 1989]. Son especialmente relevantes a nivel industrial los derivados oxigenados de olefinas de bajo peso molecular (etileno, propileno, butileno) para la obtención de glicoles, poliglicoles y poliéteres, de uso generalizado en las industrias de detergentes, polimeros, resinas, barnices y pinturas, entre muchas otras [ "Kirk- Othmer Enciclopedia of Chemical Technology", VoI. 9, 4 a Ed., J. Wiley & Sons, NY, 1994, p. 915].
Las dos principales rutas comerciales de obtención de epóxidos de bajo peso molecular (por ej . : óxido de propileno, PO) son los procesos que utilizan clorohidrina e hidroperóxidos, ambos en fase liquida. El proceso de la clorohidrina causa serios problemas de corrosión en los reactores y polución ambiental, además de llevarse a cabo en condiciones de alta peligrosidad, por lo que ha sido reemplazado paulatinamente por el uso de hidroperóxidos u otras rutas alternativas de epoxidación. Existen varios procesos alternativos de producción de epóxidos de bajo peso molecular basados en la utilización de hidroperóxidos. Asi, el proceso Halcon-ARCO [J. P. Schmidt (Oxirane Corp.), US Pat 3,988,353 , 1976] utiliza un catalizador de Mo en fase homogénea y como oxidante hidroperóxido de etilbenceno. Las conversiones de propileno alcanzadas son del 84% a los 75 minutos, con la desventaja de incluir numerosos pasos para la separación final del catalizador de la mezcla de reacción. Con el fin de evitar las etapas de separación, la compañia Shell OiI desarrolló un catalizador heterogéneo de silice-titania, especialmente activo en la epoxidación de olefinas con hidroperóxido de etilbenceno [H. P. WuIff et al. (Shell OiI Co.), GB Pat 1,249,079 , 1971]. Desde hace más de una década, los numerosos trabajos de investigación desarrollados por grupos universitarios y empresas han llevado a la obtención de distintos métodos de preparación de materiales silice- titania, que han mejorado la eficiencia de estos catalizadores en el proceso de epoxidación de olefinas [A. Baiker et al., J. Catal . , 153, 177, 1995; y Catal . Rev.- Sci. Eng., 42(1-2), 213, 2000].
Por otro lado, la tecnologia de ENICHEM basada en la utilización de un catalizador sólido del tipo titano- silicato, TS-I, y peróxido de Hidrógeno como oxidante en fase liquida, permite obtener elevadas conversiones y selectividades a los epóxidos [M. Taramaso et al. (SNAM Progetti) , US Pat 4,410,501, 1983; M. G. Clerici et al. (ENICHEM Sintesi S.p.A.), US Pat 4,824,976, 1989]. Los resultados son aún mejores cuando el titano-silicato (TS-I) es modificado en una etapa posterior a la sintesis, alcanzando selectividades al epóxido (PO) del 97% con conversiones del oxidante del 90%, [M. G. Clerici et al. J. Catal. , 129, 159, 1991] .
A los anteriores catalizadores se han unido los nuevos tamices moleculares micro y mesoporosos conteniendo Ti. Asi, mientras tamices microporosos como la Ti-Beta [A. Corma et al., J. Chem. Soc, Chem. Commun. , 589, 1992; y J. Catal., 145, 151, 1994] son capaces de epoxidar eficientemente olefinas utilizando H2O2, los materiales mesoporosos del tipo Ti-MCM- 41 [A. Corma et al., NO 9429022 Al, 1994] y Ti-MCM-48 [A. Corma et al., WO 004460 Al, 2000] , entre otros, permiten oxidar una variada gama de moléculas olefinicas utilizando hidroperóxidos orgánicos como oxidantes [A. Corma et al., ¡¥0-2000054880 Al , 2000].
Se han propuesto otros métodos alternativos a los ya existentes para la sintesis de epóxidos de olefinas . Uno de ellos consiste en la reacción de epoxidación de olefinas en fase gaseosa con H2O2 generado in situ a partir de H2 y O2 sobre catalizadores sólidos que contienen distintos metales nobles. Asi por ejemplo, catalizadores del tipo Pd-Pt/TS-1 han demostrado ser activos y selectivos en la epoxidación de propileno en fase gaseosa [M. Clerici et al., Catal . Today, 41, 14, 1998; R. Meiers et al., Catal. Lett., 59, 161, 1999; y J. Catal., 176, 376, 1998], aunque los rendimientos a epóxido alcanzados se acercan al 5%.
Además, el dopado de los materiales del tipo silice- titania, asi como de distintos óxidos de metales de transición con particulas de metales nobles (por ejemplo, Au, Pd, Pt) ha permitido generar H2O2 en el propio medio de reacción partiendo de H2 y O2, con la consecuente obtención del epóxido de forma limpia y eficiente [M. Haruta and cowork., Stud. Surf. Sci . Catal., 110, 965, 1997; y J. Catal., 186(1), 228, 1999]. De todos ellos, los materiales basados en Au y Titanio dan los mejores resultados, con selectividades al epóxido =99%, aunque en todos los casos las conversiones de olefina obtenidas no superan el 2%, siendo la fuerte desactivación del catalizador un grave inconveniente [J. A. Moulijn and cowork., Catal. Today, 72, 59, 2002], asi como la necesidad de trabajar en condiciones de mezcla H2 y O2 cercana a los limites de explosión, para alcanzar los mejores rendimientos.
Un proceso ideal para la obtención de epóxidos de manera limpia y eficiente consistiria en la oxidación directa y selectiva de la olefina con oxígeno molecular en fase gaseosa. Si bien la oxidación directa de etileno con O2 se conoce desde fines del siglo XIX, no fue hasta 1930 que se utilizó un catalizador de plata activo y selectivo para el proceso [T. E. Lefort, 175-1,998,878, 1935], que actualmente continúa dominando el mercado de producción del óxido de etileno. Sin embargo, y a pesar de los esfuerzos realizados en la epoxidación de otras mono-olefinas de bajo peso molecular con O2 (por ej . PO) , los rendimientos a epóxido suelen ser muy bajos [M. Clerici et al., J. Catal . , 129, 159, 1991] . Además de los catalizadores antes mencionados, otros catalizadores basados en: Ag soportada sobre óxidos mixtos [J. Q. Lu et al., Appl . Catal. A.-Gral., 237 (1-2) , 11, 2002], tamices moleculares modificados conteniendo Ti [K. Murata et al., Chem. Commun., 1356, 2001] y Cu soportado sobre óxidos mixtos [J. Lu et al., J. Catal., 211, 552, 2002], han sido estudiados en la epoxidación directa de olefinas con O2 con muy pobres resultados .
También se han publicado otros tipos de catalizadores para este proceso, tales como: Au-Ti/SiÜ2 [T. Hayashi et al. (Nippon Shokubai Co., Ltd.), EP Pat 1040860 A2, 2000], Ag- Mo-Na-CsAAl2O3 [H. Borchert et al. (BASF Aktiengesellschft) , EP Pat 1393801 Al, 2004], o combinaciones binarias de Rh con distintos metales de transición (V, Cr, Sn, In, Mo, Sm) soportados sobre AI2O3 [T. Miyazaki et al., Catal. Today, 81 (3) , 473, 2003] . Todos ellos muestran muy bajos rendimientos al epóxido deseado.
De todo lo expuesto con anterioridad, parece evidente la necesidad de desarrollar procesos catalíticos alternativos para la producción de epóxidos orgánicos, mediante la oxidación en presencia de O2, que sean económica e industrialmente rentables y viables . Descripción de la Invención
La presente invención se refiere a un procedimiento para la epoxidación de compuestos olefinicos, caracterizado porque comprende realizar una reacción de oxidación de al menos un compuesto olefinico que contiene uno o más dobles enlaces C=C, con oxigeno, en presencia de:
- uno o más agentes iniciadores de la reacción, y
- al menos un catalizador, que comprende al menos un metal seleccionado entre uno o más metales nobles, uno o más metales de transición y mezclas de ellos, y
- al menos un hidrocarburo seleccionado entre uno o más alcanos ramificados, uno o más hidrocarburos ciclicos o alquil-ciclicos, uno o más compuestos aromáticos o alquil- aromáticos, y mezclas de ellos. En esta memoria el término "compuesto olefinico" se refiere a un compuesto orgánico que tiene al menos un doble enlace carbono-carbono - C=C -, independientemente de que tenga además otros grupos funcionales .
Según una realización cualquiera del procedimiento de la presente invención, los epóxidos orgánicos que se obtienen son preferentemente epóxidos de olefinas terminales, internas, lineales, ciclicas, con ninguna ramificación, con una o más ramificaciones de cadena, y que comprenden una cadena hidrocarbonada de entre 2 y 24 Los epóxidos orgánicos que se pueden obtener, pueden responder a la fórmula general:
Ri-HCOCH-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: alquilo con 1 a 12 átomos de C, lineal o ramificado, sustituido o no sustituido; alquilo ciclico con 4 a 12 átomos de C, sustituido o no sustituido; o arilo con 6 a 18 átomos de C, sustituido o no sustituido.
Según una realización de la presente invención, los epóxidos orgánicos poseen la fórmula:
Ri-HCOCH- (CH2) n-HCOCH-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: alquilo con 1 a 12 átomos de C, lineales o ramificados, sustituidos o no sustituidos; alquilo ciclico con 4 a 12 átomos de C, sustituidos o no sustituidos; o arilo con 6 a
18 átomos de C, sustituidos o no sustituidos; y n puede variar entre 1 y 12. Según una realización particular de la presente invención, los epóxidos orgánicos que se obtienen poseen entre 2 y 12 átomos de carbono.
Ejemplos de epóxidos son por ejemplo óxido de etileno, óxido de propileno, 1, 2-epoxi-butano, 1, 2-epoxi-hexano, 1, 2-epoxi-octano, 1, 2-epoxi-ciclohexano, 1, 2-epoxi-l-metil- ciclohexano, entre otros, sin ser estos ejemplos limitantes .
Según el procedimiento de la presente invención el compuesto o compuestos olefinicos seleccionados son compuestos orgánicos que poseen uno o más dobles enlaces en su estructura, preferentemente mono-, di- o poli-olefinas .
El compuesto olefinico es preferentemente una mono-olefina.
Dicha mono-olefina está seleccionada preferentemente entre uno o más olefinas terminales, olefinas internas, olefinas ramificadas, olefinas ciclicas, y combinaciones de las mismas .
Dicho hidrocarburo puede ser seleccionado entre compuestos que responden a la fórmula
Ri-(CH2)n-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: hidrógeno, alquilo ramificado con 1 a 12 átomos de C, sustituidos o no sustituidos; alquilo ciclico con 4 a 12 átomos de C, sustituidos o no sustituidos; o arilo con 6 a 18 átomos de C, sustituidos o no sustituidos; y n puede variar entre 0 y 12.
Preferiblemente, el alcano ramificado o hidrocarburo puede ser seleccionado entre sec-alcanos, cicloalcanos, alquil-cicloalcanos, aril-cicloalcanos, alquil-aromáticos, o mezclas de ellos. Ejemplos de éstos serian: sec-alcanos con 3 o más carbonos, tales como iso-butano, 2-metil- pentano, 3-metil-pentano, 2-metil-hexano, 3-metil-hexano, 3-metil-heptano, 4-metil-heptano; cicloalcanos y cicloalcanos sustituidos, tales como ciclohexano, metil- ciclohexano, di-metil-ciclohexano; y alquil-aromáticos, tales como etil-benceno, iso-propil-benceno (eumeno) , di- iso-propil-benceno, sin ser estos ejemplos limitantes.
Según una realización preferente del procedimiento el compuesto olefinico es propileno y el hidrocarburo es un metil-alcano tal como metil-pentano, o mezclas de metil- alcanos .
Según una realización preferente adicional del procedimiento el compuesto olefinico es propileno y el hidrocarburo es etilbenceno.
Según una realización preferente adicional del procedimiento el compuesto olefinico es propileno y el hidrocarburo es iso-propil-benceno (eumeno) .
La reacción se lleva a cabo en presencia de uno o más agentes activadores o iniciadores.
El agente iniciador de la reacción puede estar seleccionado entre:
- uno o más nitrilos orgánicos,
- uno o más azo-compuestos, - mezclas de uno o más nitrilos orgánicos y uno o más azo-compuestos, y uno o más nitrilos orgánicos que comprenden uno grupos azo- en la misma molécula. Los nitrilos orgánicos, preferentemente se usan en combinación con grupos azo- en la misma molécula.
Preferiblemente, y en el caso del uso de compuestos que posean grupos funcionales del tipo nitrilo, preferentemente en combinación con grupos azo- en la misma molécula, los compuestos utilizados responden a la fórmula general :
N≡C-Ri-N=N-R2-C≡N en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: un grupo alquilo de 1 a 12 átomos de C, lineal o ramificado, sustituido o no sustituido; un grupo alquil-ciclico de 4 a 12 átomos de C, sustituido o no sustituido; un grupo arilo de 6 a 18 átomos de C, sustituido o no sustituido. Preferentemente, el nitrilo orgánico posee un grupo alquil- azo de 1 a 12 átomos de C, lineal o ramificado, sustituido o no sustituido; un grupo bis-alquil-azo de 1 a 12 átomos de C, lineal o ramificado, sustituido o no sustituido; un grupo aril-azo de 6 a 18 átomos de C, sustituido o no sustituido; un grupo bis-aril-azo de 6 a 18 átomos de C, sustituido o no sustituido.
Como ejemplos no limitantes de nitrilos orgánicos utilizados pueden citarse: aceto-nitrilo, butiro-nitrilo, iso-butiro-nitrilo, fenil-nitrilo, y más preferiblemente, azo-butiro-nitrilo, azo-iso-butiro-nitrilo, azo-bis-iso- butiro-nitrilo, azo-fenil-nitrilo y azo-bis-fenil-nitrilo .
Según el procedimiento de la presente invención, el oxigeno puede proceder de una fuente seleccionada entre oxigeno molecular en forma pura, una mezcla gaseosa que comprende oxigeno y combinaciones de los mismos.
Dicha mezcla gaseosa que comprende oxigeno puede estar seleccionada entre aire, aire enriquecido con oxigeno, ozono enriquecido con oxigeno, N2 enriquecido con oxigeno, Ar enriquecido con oxigeno y una mezcla que comprende dos o más gases, por ejemplo una mezcla de nitrógeno, argón y oxigeno, sin ser estos ejemplos limitantes. La cantidad de oxigeno y la fuente seleccionada dependerán del tipo de reactor y de las condiciones de reacción especificas del proceso. La cantidad de oxigeno presente en el medio reactivo estará siempre referida a la cantidad inicial del compuesto olefinico utilizado, y dependerá de la temperatura y presión en el reactor, con el fin de minimizar las reacciones secundarias no deseadas.
El catalizador según el procedimiento de la presente invención puede estar seleccionado entre: a) un catalizador metálico "CAT A" que comprende: - uno o más metales nobles, o
- uno o más metales de transición, o
- una o más de sus sales o complejos, y
- combinaciones de los anteriores, estando dicho "CAT A" soportado, o incluido, en la estructura de un sólido o una matriz inorgánica; b) un catalizador metálico "CAT T" que comprende uno o más metales de transición, sus sales o complejos, incluidos o soportados, en la estructura de un sólido o una matriz inorgánica; y c) combinaciones de los mismos "CAT A" + "CAT T".
En los catalizadores utilizados en el procedimiento descrito, el metal o los metales pueden estar en forma de sales o complejos, tales como complejos de metales nobles o complejos de metales de transición. Cuando el catalizador es un catalizador metálico "CAT A" éste puede comprender uno o más metales nobles, uno o más metales de transición, o una de sus sales, y está soportado, o incluido, en la estructura de una matriz inorgánica. Dicho metal noble puede estar seleccionado, por ejemplo, entre Au, Pd, Pt, Ag, Re, Rh, y combinaciones de los mismos. Preferentemente dicho metal noble es Au o Au combinado con otro metal. De manera más preferente aún cuando el catalizador es "CAT A" dicho Au, o Au está combinado con otro metal, y está soportado, en forma de nano-particulas de un tamaño comprendido entre 0,5 y 20 nm.
En una realización cualquiera del procedimiento, el catalizador puede ser "CAT A", "CAT T" o CAT A + CAT T en el que dicho metal de transición está seleccionado entre uno o más metales de los grupos Ib, Hb, IVb, Vb, VIb, VIIb y VIII de la tabla periódica. Según realizaciones preferentes dicho metal de transición está seleccionado entre Ti, Zr, Zn, Cu, Co, Mn, Mo, V, Ni, Fe, Al, y combinaciones de los mismos.
Cuando el catalizador del procedimiento es "CAT A", dicho catalizador puede estar soportado, o incluido, en la estructura de una matriz inorgánica que puede ser un material amorfo seleccionado entre uno o más óxidos de metales, uno o más óxidos mixtos de metales, y combinaciones de los mismos. Entre estos materiales amorfos se pueden citar silice, alúmina, ceria, titania, Fe2Ü3, ytria, silice-alúmina, silice-ceria, uno o más óxidos mixtos de metales alcalino térreos, y uno o más óxidos de metales de transición. De manera preferente, dicha matriz inorgánica es un óxido de cerio.
Cuando el catalizador es "CAT A" dicho sólido o matriz inorgánica puede ser también del tipo de tamices moleculares microporosos, tamices moleculares mesoporosos y combinaciones de los mismos.
En otro caso particular el catalizador metálico "CAT A" puede consistir en un compuesto seleccionado entre al menos una sal y al menos un complejo de metal de transición, estando dicha sal o complejo soportado, o incluido, en la estructura de un sólido o matriz inorgánica, tales como sólidos amorfos, o del tipo tamices moleculares microporosos, tamices moleculares mesoporosos y combinaciones de los mismos. Como ejemplos no limitantes de matrices sólidas amorfas utilizadas se pueden mencionar también: silice, alúmina, titania, ceria, ytria, óxidos de Fe tal como Fe2Ü3, silice-alúmina, silice-ceria, y en general óxidos mixtos de metales y/o metales de transición tales como Cu, Co, Zr, Zn, Ti, Mn, V, Ni, Fe, Mo, entre otros.
Como ejemplos no limitantes de matrices sólidas amorfas utilizadas se pueden mencionar sólidos conformados por óxidos de metales alcalino-térreos (MgO, CaO, BaO) preferentemente MgO, junto con óxidos de otros tipos de metales, y en general óxidos mixtos derivados de arcillas aniónicas, como por ejemplo hidróxidos dobles laminares del tipo hidrotalcita (Mg/Al) .
Como ejemplos no limitantes de matrices sólidas microporosas utilizadas se pueden mencionar: silicatos microporosos incluidas zeolitas pura silice, alumino- silicatos microporosos incluidas Al-zeolitas, metalo- silicatos microporosos incluidas Me-zeolitas, alumino- fosfatos microporosos (AlPO's, APO's y similares), alumino- fosfatos microporosos conteniendo metales (Me-APO' s), silico-aluminofosfatos microporosos (SAPO' s, TAPSO' s, etc.). También se pueden utilizar como matrices inorgánicas microporosas materiales laminares como las arcillas y arcillas pilareadas, del tipo bentonita, montmorillonita, entre otros, y combinaciones de los mismos. Como ejemplos no limitantes de matrices sólidas mesoporosas utilizadas se pueden mencionar: silicatos, alumino-silicatos, y en general metalo-silicatos mesoporosos con estructura hexagonal o cúbica, tales como MCM-41, MCM-48, SBA-15, HMS, MSA, entre otros. También se pueden utilizar como matrices sólidas mesoporosas materiales mesoporosos obtenidos por deslaminación de precursores zeoliticos laminares, tales como ITQ-2, ITQ-6, entre otros . Tanto en el caso de que el catalizador sea "CAT A", "CAT T" o una combinación de ambos, dicho catalizador puede estar incluido en una matriz inorgánica que sea uno o más tamices moleculares microporosos . Dicho tamiz molecular microporoso puede estar seleccionado entre una zeolita, arcilla, arcilla pilareada, y mezclas de ellas.
Tanto en el caso de que el catalizador sea "CAT A", "CAT T" o una combinación de ambos, dicho catalizador puede estar incluido en una matriz inorgánica que sea uno o más tamices moleculares mesoporosos, y dicho tamiz molecular mesoporoso puede estar seleccionado entre silicato, metalo- silicato y un material mesoposoro procedente de la deslaminación de un precursor zeolitico laminar.
Según el procedimiento de la invención y como se ha indicado anteriormente, el catalizador puede ser un catalizador "CAT T", que comprende uno o más metales de transición, incluidos o soportados en la estructura de una matriz inorgánica. Según realizaciones particulares, dicha matriz inorgánica es un material amorfo seleccionado entre: silice, alúmina, silice-alúmina, titania, silice-titania, y un óxido mixto de metales de transición.
Según realizaciones particulares adicionales cuando el catalizador es "CAT T", dicho sólido mesoporoso está seleccionado entre tamices moleculares mesoporosos, y tamices moleculares que contienen meso y microporos, y contiene al menos Si, Ti incorporado en la red - en posiciones tetraédricas -. También puede ocurrir que en una realización particular dicho sólido mesoporoso puede comprender además Ti en posiciones no reticulares - octaédricas- del tamiz molecular, y silicio unido a carbono.
En otro caso particular del procedimiento de epoxidación descrito en la presente invención, el catalizador metálico "CAT T" puede consistir en un tamiz molecular microporoso, un tamiz molecular mesoporoso, o incluso materiales siliceos amorfos, o conteniendo Si y Ti, o combinaciones de los mismos. Preferiblemente, estos materiales pueden contener Si, Ti y enlaces Si-C, conformando un composite orgánico-inorgánico .
Según el procedimiento de la presente invención dicho composite orgánico-inorgánico que comprende al menos Si, Ti y silicio unido a carbono se obtiene mediante un procedimiento que comprende una etapa de sililación durante la sintesis o bien mediante un procedimiento que comprende una etapa de sililación postsintesis .
Dichos composites orgánico-inorgánicos pueden ser un tamiz molecular microporoso que comprende al menos Si, Ti y silicio unido a carbono, o bien un tamiz molecular mesoporoso que comprende al menos Si, Ti y silicio unido a carbono, o pueden consistir en sólidos siliceos inorgánicos amorfos quimicamente combinados con Ti en proporciones entre 0.2 y 8% en peso de Ti en forma de óxido sobre el catalizador total, y que contienen silicio unido a carbono. El precursor de un tamiz molecular mesoporoso utilizado como catalizador puede tener la fórmula quimica: y (An+ 1/n XO2 ) :tTO2: (1-m) S, O2 :xTiO2 :mR(4-P)Si0p/2 : sS en la que x está comprendido entre 0.005 y 0.1, ambos valores incluidos;
- X representa al menos un elemento trivalente, y está comprendido entre 0 y 0.2, ambos valores incluidos;
- A representa uno o más cationes de compensación mono, di o trivalentes, o mezclas de éstos,
- n = 1, 2 o 3,
- T representa elementos tetravalentes distintos de Si y Ti, - t está comprendido entre O y I, y preferentemente entre 0 y 0.2, ambos valores incluidos;
- S representa un compuesto orgánico ,
- s puede variar entre 0 y 0.5, ambos valores incluidos; m está comprendido entre 10~6 y 0.66, ambos valores incluidos;
- p esta comprendido entre 3 y 1, ambos valores incluidos; y donde R es un grupo alquilo, aromático o una combinación de ambos que proviene del agente sililante que contiene los enlaces Si-C. El compuesto orgánico correspondiente al grupo S se extrae por via quimica y el tamiz molecular mesoporoso se somete a un tratamiento postsintesis con un agente sililante que da lugar a la formación de nuevos enlaces Si-C. Estos materiales poseen una elevada superficie especifica comprendida entre 200 y 1500 π^-g"1 y presentan una banda intensa en el espectro UV-Vis centrada alrededor de 220 nm, lo que indica la presencia de Ti en entornos tetraédricos . Entre dichos materiales sólidos mesoporosos, se pueden citar materiales mesoporosos ordenados como por ejemplo MCM-41, MCM-48, SBH-15, HMS, y otros amorfos, como silice amorfa. El titanio se introduce en la etapa de sintesis, o en un tratamiento posterior a la sintesis. Además, dichos materiales pueden presentar grupos orgánicos anclados en su superficie .
Según una realización particular del procedimiento, el catalizador puede ser del tipo "CAT A", CAT T", o "CAT A + CAT T", soportado en un tamiz molecular mesoporoso que responde en su forma calcinada y anhidra, y sin componente orgánico, a la composición quimica y (A1/n n+ XO2) : t TO2 : SiO2 : x TiO2 en la que: - X representa al menos a un elemento trivalente, y está comprendido entre 0 y 0.2 y preferentemente entre 0 y 0.1,
A representa a cationes de compensación mono, di o trivalentes, o mezclas de éstos, - n = 1, 2 o 3,
T representa al menos un elemento tetravalente distinto de Si y Ti, t está comprendido entre O y I, y preferentemente entre 0 y 0.2 y - x puede variar entre 0.015 y 0.065; (2 y 8% en peso en forma de TiO2) .
El tamiz molecular mesoporoso se somete a un tratamiento postsintesis con un agente sililante que da lugar a la formación de nuevos enlaces Si-C. Estos materiales poseen una elevada superficie especifica comprendida entre 200 y 1500 π^-g"1 y presentan una banda intensa en el espectro UV-Vis centrada alrededor de 220 nm, lo que indica la presencia de Ti en entornos tetraédricos . Según una realización particular del procedimiento, el catalizador puede ser del tipo "CAT A", CAT T", o "CAT A + CAT T", soportado en un tamiz molecular mesoporoso seleccionado entre materiales del tipo MCM-41, MCM-48, SBA- 15, y HMS., y combinaciones de los mismos. Dicho sólido mesoporoso puede haber sido preparado mediante un proceso que comprende una etapa, seleccionada entre etapas de sintesis y etapas postsintesis, en la que se introducen en el catalizador enlaces Si-C. El procedimiento para la epoxidación de compuestos olefinicos en presencia de O2 se puede llevar a cabo en un reactor discontinuo, un reactor continuo de tanque agitado
(CSTR) , en un reactor continuo de lecho fijo, en un reactor de lecho fluidizado, o un reactor de lecho ebullente.
En una realización de la presente invención el procedimiento de epoxidación de compuestos olefinicos se lleva a cabo poniendo en contacto una mezcla reactiva que contiene uno o más compuestos olefinicos, una fuente de oxigeno (preferiblemente, O2 o aire) , un agente iniciador o activador, uno o más hidrocarburos, con un catalizador metálico "CAT A", o un material sólido conteniendo especies metálicas "CAT T"', o una mezcla de ellos "CAT A" + "CAT T"', en un intervalo de presiones que puede oscilar desde presión atmosférica hasta los 50 bares, a una temperatura comprendida entre 10 y 250 °C, durante tiempos de reacción que pueden variar entre 2 minutos y 72 horas dependiendo del catalizador y de las condiciones de reacción empleadas.
En el procedimiento según la presente invención la relación en peso del compuesto olefinico al catalizador se encuentra comprendida preferentemente entre 2 y 1000, mas preferentemente entre 10 y 500.
La relación en peso entre del compuesto olefinico y el agente oxidante puede estar comprendida preferentemente, entre 3 y 600, mientras que la relación en peso compuesto olefinico a agente iniciador está comprendida preferentemente entre 10 y 10000, y la relación en peso del compuesto olefinico a hidrocarburo está comprendida entre 0,1 y 200. En el caso de que la oxidación se lleve a cabo en un reactor discontinuo, la relación en peso del compuesto olefinico a catalizador está comprendida preferentemente entre 2 y 1000, más preferentemente entre 10 y 500. En el caso de un reactor discontinuo la relación molar entre el compuesto olefínico y oxígeno está comprendida entre 3 y 600, pudiéndose además adicionar el oxígeno en cantidades controladas continuamente al sistema manteniendo constante la presión total del reactor durante todo el proceso. La temperatura del procedimiento en un reactor discontinuo está comprendida preferentemente entre 10 y 250°C, más preferentemente entre 40 y 200°C. El tiempo de reacción en un reactor discontinuo oscila preferentemente entre 2 minutos y 72 horas. La reacción de oxidación cuando se lleva a cabo en un reactor discontinuo se realiza a una presión total en el sistema comprendida preferentemente entre presión atmosférica y 50 bares.
Cuando la reacción de oxidación se lleva a cabo en un reactor discontinuo, la relación en peso del compuesto olefínico y el agente iniciador está preferentemente comprendida entre 10 y 10000.
En el caso de que la reacción de oxidación se lleve a cabo en un reactor discontinuo, la relación en peso del compuesto olefínico y el hidrocarburo está comprendida preferentemente entre 0,1 y 200.
La presente invención describe un proceso para la epoxidación directa de compuestos olefínicos, entre ellos etileno, propileno, butenos, 1-hexeno, 2-hexeno, 1-octeno, 2-octeno, 3-octeno, ciclohexeno, metil-ciclohexeno, entre otros, y en general compuestos olefínicos que poseen en su estructura entre 2 y 24 átomos de carbono, y más específicamente entre 2 y 12 átomos de carbono, con uno o más enlaces C=C.
Mediante el procedimiento de la presente invención se pueden obtener excelentes niveles de conversión y selectividad hacia los correspondientes epóxidos orgánicos, tanto alifáticos como cíclicos, a través de la epoxidación selectiva de compuestos olefínicos con O2 o aire, o mezclas de gases enriquecidos con oxígeno, utilizando un agente activador o iniciador, uno o más hidrocarburos y en presencia de uno o más catalizadores metálicos, en condiciones de reacción (temperatura y presión) suaves o moderadas . Los siguientes ejemplos ilustran la preparación de los catalizadores metálicos y la aplicación de los mismos a la reacción de epoxidación directa y selectiva de compuestos olefinicos con O2, para la obtención de epóxidos orgánicos.
EJEMPLOS
Ejemplo la: Preparación de un catalizador metálico "CAT A" basado en un material CeC>2 conteniendo Au en su composición. [Au/CeO2] Para la deposición de las particulas de oro (Au) sobre la superficie del óxido de cerio se utilizó el método de impregnación, con HAUCI4 como fuente de Au, siguiendo el procedimiento experimental que a continuación se detalla. A 0.6 g de HAuCl4-3H2O diluidos en 70 mi de agua (Calidad Milli Q) se les adicionó (gota a gota) una disolución 0.2M de NaOH hasta alcanzar un pH = 10. Luego, esta disolución de sal de Au en agua (pH=10) se adicionó a un recipiente que contiene 5.7 g de CeO2 en 200 mi. de agua (Calidad Milli Q) bajo agitación continua y vigorosa. La mezcla asi obtenida se mantuvo con agitación a temperatura ambiente durante 15-16 horas, y una vez que el sólido se recuperó por filtración, se lavó exhaustivamente con agua y se secó en estufa a 100 °C durante aproximadamente 12 horas. El material asi sintetizado se caracterizó adecuadamente mediante diferentes técnicas espectroscópicas y métodos quimicos, obteniéndose finalmente una muestra de Au/CeO2 con aproximadamente 2.5% en peso de Au en el sólido. Ejemplo Ib: Preparación de un catalizador metálico "CAT A" basado en un tamiz molecular mesoporoso del tipo MCM-41 conteniendo Au en su composición. [Au/MCM-41]
Para la deposición de las particulas de oro (Au) sobre la superficie de un tamiz molecular MCM-41 (Relación molar Si/Al = ∞) se utilizó el método de impregnación, con HAUCI4 como fuente de Au, siguiendo el procedimiento experimental que a continuación se detalla. A 1.2 g de HAUCI4 3H2O diluidos en 100 mi de agua (Calidad Milli Q) se les adicionó (gota a gota) una disolución 0.2M de NaOH hasta alcanzar un pH = 10. Luego, esta disolución de sal de Au en agua (pH=10) se adicionó a un recipiente que contiene 5.0 g del material MCM-41 en 200 mi. de agua (Calidad Milli Q) bajo agitación continua y vigorosa. La mezcla asi obtenida se mantuvo con agitación a temperatura ambiente durante 15- 16 horas, y una vez que el sólido se recuperó por filtración, se lavó exhaustivamente con agua y se secó en estufa a 100 °C durante aproximadamente 12 horas. El material asi sintetizado se caracterizó adecuadamente mediante diferentes técnicas espectroscópicas y métodos quimicos, obteniéndose finalmente una muestra de Au/MCM-41 con aproximadamente 4.5% en peso de Au en el sólido.
Ejemplo 2a: Preparación de un catalizador metálico "CAT T" basado en un tamiz molecular mesoporoso del tipo MCM-41 conteniendo Ti en su composición. [Ti-MCM-41]
3.11 g de bromuro de cetiltrimetilamonio (CTAB) se disuelven 20.88 g de agua. A esta disolución se le añaden 5.39 g de hidróxido de tetrametilamonio (TMAOH) y 0.21 g de tetraetóxido de titanio (TEOT) y se agita hasta completa disolución del titanio. Posteriormente se adicionan 3.43 g de silice dando lugar a un gel que se agita a temperatura ambiente durante 1 hora a 250 r.p.m. La mezcla resultante se introduce en autoclaves y se calienta a 100°C a la presión autógena del sistema durante 48 horas. Transcurrido este tiempo, se recupera un sólido por filtración, lavado exhaustivo con agua destilada y secado a 60°C durante 12 horas. El material sólido obtenido se dispone en un reactor tubular de cuarzo y se hace pasar una corriente de nitrógeno seco de 50 ml-min"1 mientras se eleva la temperatura hasta 540°C a 30OmIn"1. Una vez alcanzada la temperatura se pasa nitrógeno durante 60 minutos, transcurridos los cuales, el flujo de nitrógeno se cambia por un flujo de aire seco de 50 ml-min"1. La calcinación se prolonga durante 360 minutos más y el sólido se enfria a temperatura ambiente. Este tratamiento térmico permite eliminar completamente todo el orgánico ocluido en los poros del material. Este sólido presenta una superficie especifica de 950 m2 -g"1, asi como una banda en el espectro UV-Vis centrada a 220 nm.
Ejemplo 2b: Preparación de un catalizador metálico hibrido orgánico-inorgánico "CAT T" basado en un tamiz molecular mesoporoso del tipo MCM-41 conteniendo Ti en su composición. [Ti-MCM-41-Sil.]
2.0 g de la muestra sólida obtenida en el ejemplo 2a se deshidratan a 100°C y 10~3 Torr durante 2 horas. La muestra se enfria, y a temperatura ambiente se adiciona una disolución de 1.88g de hexametildisilazano (CH3) 3Si-NH- Si (CH3) 3) en 3Og de tolueno. La mezcla resultante se refluye a 120°C durante 90 minutos y se lava con tolueno. El producto final se seca a 6O0C. Este sólido presenta una superficie especifica de 935 m2 -g"1, asi como una banda en el espectro UV-Vis centrada a 220 nm. Además el espectro de 29Si-MAS-RMN presenta una banda de resonancia a -10 ppm asignada a la presencia de enlaces Si-C. Ejemplo 3: Resultados obtenidos en la epoxidación de compuestos olefínicos en presencia de O2 con el catalizador del Ejemplo la. [Au/CeO2 - CAT A]
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1-octeno y 1000 mg de 3-metil- pentano, y a continuación se añaden 85 mg de un catalizador como el descrito en el Ejemplo la [Au/CeÜ2 - CAT A] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID (detector de ionización de llama) , calculando a partir de la composición de la mezcla obtenida, la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000022_0001
a- Epóxido = 1,2-epoxi- octano.- b- Enol = 1-octen- 3-ol.- c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dímeros = Productos de dimerización del compuesto olefínico . -
Ejemplo 4: Resultados obtenidos en la epoxidación de compuestos olefínicos en presencia de O2 con el catalizador del Ejemplo 2b. [Ti-MCM-41-Sil . - CAT T]
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1-octeno y 1000 mg de 3-metil- pentano, y a continuación se añaden 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil . - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - mo les finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000024_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dímeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 5: Resultados obtenidos en la epoxidación de compuestos olefínicos en presencia de O2 con la combinación de catalizadores de los Ejemplos la y 2b. [Au/CeC>2 - CAT A] + [Ti-MCM-41-Sil. - CAT T] En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1-octeno y 1000 mg de 3-metil- pentano, y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeÜ2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil . - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000025_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 6: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con el catalizador del Ejemplo la [Au/CeC>2 - CAT A] , utilizando azo-iso- butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1-octeno, 1000 mg de 3-metil-pentano y 12 mg de AIBN, y a continuación se añaden 85 mg de un catalizador como el descrito en el Ejemplo la [Au/CeÜ2 - CAT A] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuestos olefinicos (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000026_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 7: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con el catalizador del Ejemplo 2b [Ti-MCM-41-Sil . - CAT T], utilizando azo-iso- butironitrilo (AIBN) como activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1-octeno, 1000 mg de 3-metil-pentano y 12 mg de AIBN (iniciador) , y a continuación se añaden 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti- MCM-41-Sil. - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 0C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuestos olefinicos (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000027_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 8: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con la combinación de catalizadores de los Ejemplos la y 2b [Au/CeC>2 - CAT A] + [Ti-MCM-41-Sil. - CAT T], utilizando azo-iso-butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1000 mg de 3- metil-pentano y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeÜ2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil . - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión
(manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 0C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico
(moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000028_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de la olefina.-
Ejemplo 9: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con el catalizador del Ejemplo Ib [Au/MCM-41 - CAT A], utilizando azo-iso- butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y con agitador magnético, se introducen 3000 mg de 1- octeno, 1000 mg de 3-metil- pentano y 12 mg de AIBN (iniciador) , y a continuación se añaden 85 mg de un catalizador como el descrito en el Ejemplo
Ib [Au/MCM-41 - CAT A] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión
(manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 0C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico
(moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000029_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.- Ejemplo 10: Resultados obtenidos en la epoxidación de compuestos olefínicos en presencia de O2 con la combinación de catalizadores de los Ejemplos Ib y 2b [Au/MCM- 41 - CAT A] + [Ti-MCM-41-Sil. - CAT T], utilizando azo-iso- butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1000 mg de 3- metil-pentano y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo Ib [Au/MCM-41 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41- SiI. - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000031_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dímeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 11: Resultados obtenidos en la epoxidación de compuestos olefínicos en presencia de O2 con ciclohexano como hidrocarburo y con la combinación de catalizadores de los Ejemplos la y 2b [Au/CeO2 - CAT A] + [Ti-MCM-41-Sil . - CAT T] , utilizando azo-iso-butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1000 mg de ciclohexano y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeO2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil . - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinicos (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000032_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 12: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con etilbenceno como hidrocarburo y con la combinación de catalizadores de los Ejemplos la y 2b [Au/CeO2 - CAT A] + [Ti-MCM-41-Sil . - CAT T] , utilizando azo-iso-butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1250 mg de etilbenceno y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeO2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil . - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 0C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000033_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-
Ejemplo 13: Resultados obtenidos en la epoxidación de compuestos olefinicos en presencia de O2 con iso-propil- benceno (eumeno) como hidrocarburo y con la combinación de catalizadores de los Ejemplos la y 2b [Au/CeC>2 - CAT A] +
[Ti-MCM-41-Sil. - CAT T], utilizando azo-iso-butironitrilo
(AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1360 mg de iso- propil-benceno (eumeno) y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeC>2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil. - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y la temperatura de reacción se lleva hasta los 90 0C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000034_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.- Ejemplo 14: Resultados obtenidos en la epoxidación de compuestos olefínicos en con alimentación continua y controlada de O2, con iso-propil-benceno (eumeno) como hidrocarburo y con la combinación de catalizadores de los Ejemplos la y 2b [Au/CeO2 - CAT A] + [Ti-MCM-41-Sil . - CAT T] , utilizando azo-iso-butironitrilo (AIBN) como iniciador o activador.
En un reactor autoclave de acero inoxidable de 12 mi, con interior recubierto de Teflon y que contiene un barrita magnética, se introducen 3000 mg de 1-octeno, 1360 mg de iso- propil-benceno (eumeno) y 12 mg de AIBN (iniciador) , y a continuación se añade una mezcla mecánica de 50 mg de un catalizador como el descrito en el Ejemplo la [Au/CeÜ2 - CAT A] + 100 mg de un catalizador como el descrito en el Ejemplo 2b [Ti-MCM-41-Sil. - CAT T] . El autoclave se cierra herméticamente conteniendo la tapa una conexión a un medidor de presión (manómetro) , otra conexión para la carga de la fuente de oxigeno gaseosa conteniendo un regulador de presión a 10 bares y una tercera salida que permite tomar muestras a diferentes intervalos de tiempo. El reactor se presuriza a 10 bares con oxigeno y esa presión se mantiene constante durante todo el proceso con la adición lenta de oxigeno al sistema. La temperatura de reacción se lleva hasta los 90 °C, sumergiendo el autoclave en un baño de silicona con control de temperatura. La mezcla de reacción se agita y se toman muestras a distintos intervalos de tiempo hasta las 17 horas de reacción. Las muestras son analizadas mediante GC con detector FID, calculando de la composición de la mezcla obtenida la conversión de compuesto olefinico (moles iniciales de reactivo - moles finales de reactivo / moles iniciales de reactivo * 100) , y las selectividades a los productos obtenidos (moles de producto i / moles de productos totales * 100) en cada caso. De esta manera se obtuvieron los siguientes resultados:
Figure imgf000036_0001
a- Epóxido = 1, 2-epoxi-octano . - b- Enol = l-octen-3-ol . - c- Enona = l-octen-3-ona. - d- 1, 2-octanodiol . - Dimeros = Productos de dimerización de compuesto olefinico.-

Claims

REIVINDICACIONES
1. Procedimiento para la epoxidación de compuestos olefinicos, caracterizado porque comprende realizar una reacción de oxidación de al menos un compuesto olefinico que contiene uno o más dobles enlaces C=C, con oxigeno, gen presencia de:
- uno o más agentes iniciadores de la reacción, y al menos un catalizador, que comprende al menos un metal seleccionado entre uno o más metales nobles, uno o más metales de transición y mezclas de ellos, y
- al menos un hidrocarburo seleccionado entre uno o más alcanos ramificados, uno o más hidrocarburos ciclicos o alquil-ciclicos, uno o más compuestos aromáticos o alquil- aromáticos, y mezclas de ellos.
2. Procedimiento según la reivindicación 1, caracterizado porque se obtiene un epóxido orgánico seleccionado entre una olefina terminal, interna, lineal, ciclica, con ninguna ramificación, con una o más ramificaciones de cadena, y que comprende una cadena hidrocarbonada de entre 2 y 24 carbonos.
3. Procedimiento según una de las reivindicaciones 1 ó 2, caracterizado porque se obtiene un epóxido orgánico que responde a la fórmula general:
Ri-HCOCH-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: alquilo con 1 a 12 átomos de C, lineales o ramificados, sustituidos o no sustituidos; alquilo ciclico con 4 a 12 átomos de C, sustituidos o no sustituidos; o arilo con 6 a 18 átomos de C, sustituidos o no sustituidos.
4. Procedimiento según una de las reivindicaciones 1 ó 2, caracterizado porque se obtiene un epóxido orgánico que posee la fórmula:
Ri-HCOCH- (CH2) n-HCOCH-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: alquilo con 1 a 12 átomos de C, lineales o ramificados, sustituidos o no sustituidos; alquilo ciclico con 4 a 12 átomos de C, sustituidos o no sustituidos; o arilo con 6 a 18 átomos de C, sustituidos o no sustituidos; y n puede variar entre 1 y 12.
5. Procedimiento según una de las reivindicaciones 1 ó 2, caracterizado porque se obtiene un epóxido orgánico que posee entre 2 y 12 átomos de carbono.
6. Procedimiento según la reivindicación 1, caracterizado porque el compuesto olefinico está seleccionado entre una monoolefina, una diolefina y una poliolefina.
7. Procedimiento según la reivindicación 1, caracterizado porque el compuesto olefinico es una monoolefina.
8. Procedimiento según la reivindicación 7, caracterizado porque dicha mono-olefina está seleccionada entre una o más olefinas terminales, olefinas internas, olefinas ramificadas, olefinas ciclicas, y combinaciones de las mismas.
9. Procedimiento según la reivindicación 1, caracterizado porque el hidrocarburo es un compuesto que responde a la fórmula:
Ri-(CH2)n-R2 en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: hidrógeno, alquilo ramificado con 1 a 12 átomos de C, sustituidos o no sustituidos; alquilo ciclico con 4 a 12 átomos de C, sustituidos o no sustituidos; o arilo con 6 a 18 átomos de C, sustituidos o no sustituidos; y n puede variar entre 0 y 12.
10. Procedimiento según la reivindicación 1, caracterizado porque el compuesto olefinico es propileno y el hidrocarburo es un metil-alcano o mezclas de metil- alcanos .
11. Procedimiento según la reivindicación 1, caracterizado porque el compuesto olefinico es propileno y el hidrocarburo es etilbenceno.
12. Procedimiento según la reivindicación 1, caracterizado porque el compuesto olefinico es propileno y el hidrocarburo es iso-propil-benceno (eumeno) .
13. Procedimiento según la reivindicación 1, caracterizado porque el agente iniciador de la reacción está seleccionado entre:
- uno o más nitrilos orgánicos, - uno o más azo-compuestos,
- mezclas de uno o más nitrilos orgánicos y uno o más azo-compuestos, y
- uno o más nitrilos orgánicos que comprenden uno o más grupos azo- en la misma molécula.
14. Procedimiento según la reinvindicación 13, caracterizado porque el agente iniciador es un compuesto orgánico que posee al menos un grupo nitrilo en su composición, y al menos un grupo azo- en la misma molécula, y responde a la fórmula general:
N≡C-Ri-N=N-R2-C≡N en la que Ri y R2 son sustituyentes iguales o distintos entre si, y están seleccionados indistintamente entre: un grupo alquilo de 1 a 12 átomos de C, lineal o ramificado, sustituido o no sustituido; un grupo alquil-ciclico de 4 a 12 átomos de C, sustituido o no sustituido; y un grupo arilo de 6 a 18 átomos de C, sustituido o no sustituido.
15. Procedimiento según la reivindicación 1, caracterizado porque el oxigeno procede de una fuente seleccionada entre oxigeno molecular, una mezcla gaseosa que comprende oxigeno y combinaciones de los mismos.
16. Procedimiento según la reivindicación 15, caracterizado porque la fuente de oxigeno es una mezcla gaseosa que comprende oxigeno, seleccionada entre aire, aire enriquecido con oxigeno, ozono enriquecido con oxigeno, N2 enriquecido con oxigeno, Ar enriquecido con oxigeno, y una mezcla que comprende nitrógeno, argón y oxigeno.
17. Procedimiento según la reivindicación 1, caracterizado porque el catalizador está seleccionado entre : a) un catalizador metálico "CAT A" que comprende:
- uno o más metales nobles, o
- uno o más metales de transición, o
- una o más de sus sales, o complejos, y
- combinaciones de los anteriores, estando dicho "CAT A" soportado, o incluido, en la estructura de una matriz inorgánica; b) un catalizador metálico "CAT T" que comprende uno o más metales de transición, sus sales o complejos, incluidos o soportados, en la estructura de una matriz inorgánica; y c) combinaciones de los mismos "CAT A" + "CAT T".
18. Procedimiento según la reivindicación 17, caracterizado porque el catalizador es un catalizador metálico "CAT A" que comprende uno o más metales nobles, uno o más metales de transición, o una de sus sales, y está soportado, o incluido, en la estructura de una matriz inorgánica .
19. Procedimiento según la reivindicación 17, caracterizado porque el catalizador es un catalizador metálico "CAT T" que comprende uno o más metales de transición incluidos en la estructura de una matriz inorgánica .
20. Procedimiento según la reivindicación 18, caracterizado porque dicho metal noble está seleccionado entre Au, Pd, Pt, Ag, Re, Rh, y combinaciones de los mismos .
21. Procedimiento según la reivindicación 18, caracterizado porque dicho metal noble es Au o Au combinado con otro metal .
22. Procedimiento según la reivindicación 21, caracterizado porque dicho Au, o Au combinado con otro metal, está soportado, en forma de nano-particulas de una tamaño comprendido entre 0,5 y 20 nm.
23. Procedimiento según una de las reivindicaciones 17, 18 ó 19, caracterizado porque dicho metal de transición está seleccionado entre uno o más metales de los grupos Ib, Hb, IVb, Vb, VIb, VIIb y VIII de la tabla periódica.
24. Procedimiento según una de las reivindicaciones 17, 18 ó 19, caracterizado porque dicho metal de transición está seleccionado entre Ti, Zr, Zn, Cu, Co, Mn, Mo, V, Ni, Fe, Al, y combinaciones de los mismos.
25. Procedimiento según la reivindicación 18, caracterizado porque dicha matriz inorgánica es un material amorfo seleccionado entre uno o más óxidos de metales, uno o más óxidos mixtos de metales, y combinaciones de los mismos .
26. Procedimiento según la reivindicación 25, caracterizado porque dicha matriz inorgánica está seleccionada entre: silice, alúmina, ceria, ytria, titania, Fe2Ü3, silice-alúmina, silice-ceria, uno o más óxidos mixtos de metales alcalino térreos, y uno o más óxidos de metales de transición.
27. Procedimiento según la reivindicación 18, caracterizado porque dicha matriz inorgánica es un óxido de cerio .
28. Procedimiento según una de las reivindicaciones 17, 18 ó 19, caracterizado porque dicha matriz inorgánica es uno o más tamices moleculares microporosos .
29. Procedimiento según la reivindicación 28, caracterizado porque dicho tamiz molecular microporoso está seleccionado entre una zeolita, arcilla y arcilla pilareada, y mezclas de ellos.
30. Procedimiento según una de las reivindicaciones 17, 18 ó 19, caracterizado porque dicha matriz inorgánica es uno o más tamices moleculares mesoporosos .
31. Procedimiento según la reivindicación 30, caracterizado porque dicho tamiz molecular mesoporoso está seleccionado entre silicato, metalo-silicato y un material mesoposoro procedente de la deslaminación de un precursor zeolitico laminar.
32. Procedimiento según la reivindicación 19, caracterizado porque dicha matriz inorgánica es un material amorfo seleccionado entre: silice, alúmina, silice-alúmina, titania, silice-titania, y un óxido mixto de metales de transición .
33. Procedimiento según la reivindicación 30, caracterizado porque dicho sólido mesoporoso está seleccionado entre tamices moleculares mesoporosos, y tamices moleculares que contienen meso y microporos, y porque contiene al menos Si, Ti incorporado en la red - en posiciones tetraédricas .
34. Procedimiento según la reivindicación 33, caracterizado porque dicho sólido mesoporoso comprende además Ti en posiciones no reticulares - octaédricas - del tamiz molecular, y silicio unido a carbono.
35. Procedimiento según la reivindicación 30, caracterizado porque el tamiz molecular mesoporoso responde en su forma calcinada y anhidra, y sin componente orgánico, a la composición quimica y (A1/n n+ XO2) : t TO2 : SiO2 : x TiO2 en la que:
X representa al menos a un elemento trivalente, y está comprendido entre 0 y 0.2, A representa a cationes de compensación mono, di o trivalentes, o mezclas de éstos, - n = 1, 2 o 3,
T representa al menos un elemento tetravalente otros que Si y Ti, - t está comprendido entre 0 y 1, y x puede variar entre 0.015 y 0.065.
36. Un procedimiento según la reivindicación 30, caracterizado porque el catalizador sólido mesoporoso está seleccionado entre materiales del tipo MCM-41, MCM-48, SBA- 15, HMS y mezclas de ellos.
37. Un procedimiento según la reivindicación 30, caracterizado porque el catalizador sólido mesoporoso ha sido preparado mediante un proceso que comprende una etapa, seleccionada entre etapas de sintesis y etapas postsintesis, en la que se introducen en el catalizador enlaces Si-C.
38. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor seleccionado entre un reactor discontinuo, un reactor CSTR, un reactor continuo de lecho fijo, un reactor de lecho fluidizado y un reactor de lecho ebullente.
39. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, con una relación en peso de compuesto olefinico al catalizador comprendida entre 2 y 1000.
40. Procedimiento según la reivindicación 39, caracterizado porque dicha relación en peso del compuesto olefinico al catalizador se encuentra comprendida entre 10 y 500.
41. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación del compuesto olefinico se lleva a cabo en un reactor discontinuo, con una relación molar de compuesto olefinico y el oxidante comprendida entre 3 y 600.
42. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, con una relación en peso de compuesto olefinico y el agente iniciador comprendida entre 10 y 10000.
43. Procedimiento según la reivindicación 1, caracterizado porque la reacción de epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, con una relación en peso de compuesto olefinico y el hidrocarburo comprendida entre 0,1 y 200.
44. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, a una temperatura comprendida entre 10 y 250 °C.
45. Procedimiento según la reivindicación 44, caracterizado porque la temperatura está comprendida entre 40 y 200°C.
46. Procedimiento según la reivindicación 1, caracterizado porque la reacción de epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, en un tiempo de reacción comprendido entre 2 minutos y 72 horas.
47. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, a una presión total en el sistema comprendida entre presión atmosférica y 50 bares.
48. Procedimiento según la reivindicación 1, caracterizado porque la epoxidación de compuestos olefinicos se lleva a cabo en un reactor discontinuo, con adición continua de oxigeno manteniendo la presión del reactor constante, a una presión total en el sistema comprendida entre presión atmosférica y 50 bares.
PCT/ES2006/070044 2005-04-19 2006-04-06 Procedimiento y catalizadores para la epoxidación de compuestos olefínicos en presencia de oxígeno WO2006111600A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0612973-0A BRPI0612973A2 (pt) 2005-04-19 2006-04-06 procedimento para a epoxidaÇço de compostos olefÍnicos
EP06743488A EP1876176A1 (en) 2005-04-19 2006-04-06 Method and catalysts for the epoxidation of olefinic compounds in the presence of oxygen
US11/911,836 US20090234145A1 (en) 2005-04-19 2006-04-06 Method and catalysts for the epoxidation of olefinic compounds in the presence of oxygen
JP2008507102A JP2008536897A (ja) 2005-04-19 2006-04-06 酸素の存在でのオレフィン化合物のエポキシ化方法およびエポキシ化用触媒
MX2007012985A MX2007012985A (es) 2005-04-19 2006-04-06 Procedimiento y catalizadores para la epoxidacion de compuestos olefinicos en presencia de oxigeno.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200500994 2005-04-19
ES200500994A ES2261080B1 (es) 2005-04-19 2005-04-19 Procedimiento y catalizadores para la expoxidacion de compuestos olefinicos en presencia de oxigeno.

Publications (1)

Publication Number Publication Date
WO2006111600A1 true WO2006111600A1 (es) 2006-10-26

Family

ID=37114740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070044 WO2006111600A1 (es) 2005-04-19 2006-04-06 Procedimiento y catalizadores para la epoxidación de compuestos olefínicos en presencia de oxígeno

Country Status (9)

Country Link
US (1) US20090234145A1 (es)
EP (1) EP1876176A1 (es)
JP (1) JP2008536897A (es)
KR (1) KR20080003893A (es)
CN (1) CN101184740A (es)
BR (1) BRPI0612973A2 (es)
ES (1) ES2261080B1 (es)
MX (1) MX2007012985A (es)
WO (1) WO2006111600A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499055B (zh) * 2014-12-19 2017-01-18 中国科学技术大学先进技术研究院 一种有孪晶界的Au75Pd25二十面体纳米晶体及其制备方法和应用
CN115069245A (zh) * 2021-03-15 2022-09-20 中国石油化工股份有限公司 一种乙烯氧化生产环氧乙烷用银催化剂及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781275B (zh) * 2010-03-25 2012-04-11 中南大学 一种4,5-环氧-α-紫罗兰酮的合成方法
CN102807538B (zh) * 2011-06-02 2014-08-06 中国石油化工股份有限公司 一种制备环氧丙烷的方法
CN102875491A (zh) * 2011-07-13 2013-01-16 湖北大学 钴负载的沸石分子筛高选择性催化烯烃与空气环氧化方法
CN103288779B (zh) * 2012-02-29 2015-04-29 中国石油化工股份有限公司 一种烯丙醇氧化的方法
CN103288781B (zh) * 2012-02-29 2015-04-29 中国石油化工股份有限公司 一种制备环氧氯丙烷的方法
CN102935377A (zh) * 2012-11-22 2013-02-20 北京科技大学 一种苯乙烯催化氧化为环氧苯乙烷的催化剂的制备方法
CN113603658A (zh) * 2015-08-28 2021-11-05 利安德化学技术有限公司 环氧化工艺及其使用的催化剂
CN105170176B (zh) * 2015-09-30 2017-05-17 万华化学集团股份有限公司 一种烯烃环氧化催化剂及其制备方法和应用
CN110214134A (zh) * 2017-01-24 2019-09-06 利安德化学技术有限公司 用分子氧液相选择性氧化成环氧化物
CN109926098B (zh) * 2017-12-15 2021-07-13 中国科学院大连化学物理研究所 一种气体助剂改性丙烯环氧化制备环氧丙烷用催化剂及制备和应用
CN110314689A (zh) * 2018-03-29 2019-10-11 武汉纺织大学 一种棒状臭氧催化剂Cu-OMS-2的制备方法与应用
EP3969169A1 (en) * 2019-05-15 2022-03-23 Lyondell Chemical Technology, L.P. Methods of drying propylene oxide
CN112791744B (zh) * 2020-12-22 2024-03-19 上海华峰新材料研发科技有限公司 一种改性钛硅分子筛及其制备方法和应用
CN114713242A (zh) * 2022-05-11 2022-07-08 榆林学院 一种用于长链α烯烃环氧化反应金属氧化物催化剂制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998878A (en) * 1931-03-27 1935-04-23 Fr De Catalyse Generalisee Sa Process for the production of ethylene oxide
US3403193A (en) * 1965-06-28 1968-09-24 Halcon International Inc Process for the co-production of a styrene and a di-olefin
US3459810A (en) * 1965-12-30 1969-08-05 Halcon International Inc Process for the preparation of ethylbenzene hydroperoxide
US3993672A (en) * 1973-09-07 1976-11-23 Agence Nationale De Valorisation De La Recherche (Anvar) Process for direct olefin oxidation
US4474974A (en) * 1983-04-21 1984-10-02 Texaco Inc. Propylene oxide by direct oxidation in chlorobenzene and halocarbons with a silver catalyst
US6252095B1 (en) * 1998-02-24 2001-06-26 Director-General Of Agency Of Industrial Science And Technology Catalyst for partially oxidizing unsaturated hydrocarbon
EP1125933A1 (en) * 2000-02-07 2001-08-22 Bayer Aktiengesellschaft Epoxidation catalyst containing metals of the lanthanoide series
US20020052290A1 (en) * 1996-07-01 2002-05-02 Bowman Robert G. Process for the direct oxidation of olefins to olefin oxides
DE10205873A1 (de) * 2002-02-13 2003-08-21 Zsw Metalloxidgeträgerte Au-Katalysatoren, Verfahren zu deren Herstellung sowie deren Verwendung
ES2225567T3 (es) * 2000-07-25 2005-03-16 Arco Chemical Technology, L.P. Procedimiento de epoxidacion directa utilizando un sistema catalitico mixto.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498259B1 (en) * 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US6984761B2 (en) * 2002-12-16 2006-01-10 Exxonmobil Chemical Patents Inc. Co-production of phenol, acetone, α-methylstyrene and propylene oxide, and catalyst therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1998878A (en) * 1931-03-27 1935-04-23 Fr De Catalyse Generalisee Sa Process for the production of ethylene oxide
US3403193A (en) * 1965-06-28 1968-09-24 Halcon International Inc Process for the co-production of a styrene and a di-olefin
US3459810A (en) * 1965-12-30 1969-08-05 Halcon International Inc Process for the preparation of ethylbenzene hydroperoxide
US3993672A (en) * 1973-09-07 1976-11-23 Agence Nationale De Valorisation De La Recherche (Anvar) Process for direct olefin oxidation
US4474974A (en) * 1983-04-21 1984-10-02 Texaco Inc. Propylene oxide by direct oxidation in chlorobenzene and halocarbons with a silver catalyst
US20020052290A1 (en) * 1996-07-01 2002-05-02 Bowman Robert G. Process for the direct oxidation of olefins to olefin oxides
US6252095B1 (en) * 1998-02-24 2001-06-26 Director-General Of Agency Of Industrial Science And Technology Catalyst for partially oxidizing unsaturated hydrocarbon
EP1125933A1 (en) * 2000-02-07 2001-08-22 Bayer Aktiengesellschaft Epoxidation catalyst containing metals of the lanthanoide series
ES2225567T3 (es) * 2000-07-25 2005-03-16 Arco Chemical Technology, L.P. Procedimiento de epoxidacion directa utilizando un sistema catalitico mixto.
DE10205873A1 (de) * 2002-02-13 2003-08-21 Zsw Metalloxidgeträgerte Au-Katalysatoren, Verfahren zu deren Herstellung sowie deren Verwendung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104499055B (zh) * 2014-12-19 2017-01-18 中国科学技术大学先进技术研究院 一种有孪晶界的Au75Pd25二十面体纳米晶体及其制备方法和应用
CN115069245A (zh) * 2021-03-15 2022-09-20 中国石油化工股份有限公司 一种乙烯氧化生产环氧乙烷用银催化剂及其制备方法和应用
CN115069245B (zh) * 2021-03-15 2024-03-26 中国石油化工股份有限公司 一种乙烯氧化生产环氧乙烷用银催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20080003893A (ko) 2008-01-08
BRPI0612973A2 (pt) 2010-12-14
ES2261080A1 (es) 2006-11-01
EP1876176A1 (en) 2008-01-09
JP2008536897A (ja) 2008-09-11
CN101184740A (zh) 2008-05-21
MX2007012985A (es) 2008-03-13
US20090234145A1 (en) 2009-09-17
ES2261080B1 (es) 2007-12-16

Similar Documents

Publication Publication Date Title
ES2261080B1 (es) Procedimiento y catalizadores para la expoxidacion de compuestos olefinicos en presencia de oxigeno.
US6121187A (en) Amorphous, microporous mixed oxide catalysts with controlled surface polarity for selective heterogeneous catalysis, adsorption and material separation
EP0918762B1 (en) Process for the direct oxidation of olefins to olefin oxides
Corma State of the art and future challenges of zeolites as catalysts
EP1140883B1 (en) Process for the direct oxidation of olefins to olefin oxides
EP1024895B1 (en) Process for the direct oxidation of olefins to olefin oxides
EP0651674B1 (en) Catalysts and their use in oxidation of satured hydrocarbons
US7456303B2 (en) Catalyst
US20020038057A1 (en) Process for the catalytic selective oxidation of a hydrocarbon compound in presence of mesoporous zeolite
US6323351B1 (en) Process for the direct oxidation of olefins to olefin oxides
Wu et al. Selective liquid-phase oxidation of cyclopentene over MWW type titanosilicate
WO2003044129A1 (es) Un procedimiento para la oxidacion de compuestos de azufre de las fracciones gasolina, kerosene y diesel
Wu et al. Direct synthesis of hydrothermally stable mesoporous Ti-MSU-G and its catalytic properties in liquid-phase epoxidation
MXPA02007583A (es) Catalizadores de epoxidacion que contienen metales de la serie de los lantanoides.
Wróblewska et al. Synthesis and characteristics of titanium silicalite TS-1, Ti-Beta and Ti-MWW catalysts
PL243065B1 (pl) Sposób otrzymywania katalizatora tytanowo-silikatowego i jego zastosowanie
PL243584B1 (pl) Sposób otrzymywania katalizatora tytanowo-silikatowego i jego zastosowanie
Sieves Phenol with Aqueous H, O, on
Lee et al. Photocatalytic Hydroxylation of Phenol over Ti-containing Zeolites (TS-1, Ti-MCM-41) Gun Dae Lee, Sung Gab Kim, Hee Hoon Jeong, Seong Soo Park and Seong Soo Hong
WO2012067264A1 (en) Process for producing olefin oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008507102

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012985

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006743488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077026614

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 5209/CHENP/2007

Country of ref document: IN

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 200680018450.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006743488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11911836

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0612973

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071018