WO2006104210A1 - アクティブマトリクス基板、表示装置及び電子機器 - Google Patents

アクティブマトリクス基板、表示装置及び電子機器 Download PDF

Info

Publication number
WO2006104210A1
WO2006104210A1 PCT/JP2006/306539 JP2006306539W WO2006104210A1 WO 2006104210 A1 WO2006104210 A1 WO 2006104210A1 JP 2006306539 W JP2006306539 W JP 2006306539W WO 2006104210 A1 WO2006104210 A1 WO 2006104210A1
Authority
WO
WIPO (PCT)
Prior art keywords
active matrix
matrix substrate
display device
insulating film
film
Prior art date
Application number
PCT/JP2006/306539
Other languages
English (en)
French (fr)
Inventor
Mayuko Sakamoto
Yoshihiro Izumi
Hiromi Katoh
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006104210A1 publication Critical patent/WO2006104210A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector

Definitions

  • the present invention relates to a display device such as a liquid crystal display device and an EL (Electronic Luminescent) display device.
  • the present invention also relates to an active matrix substrate used for these display devices.
  • a display system including such an optical sensor is disclosed in, for example, Japanese Patent Laid-Open Nos. 4-174819 and 5-241512.
  • an optical sensor which is a discrete component, is provided in the vicinity of the display device, and based on the use environment illuminance detected by the optical sensor, A method for automatically controlling brightness is disclosed.
  • the brightness is automatically adjusted according to the brightness of the surrounding environment, such as increasing the display brightness in a bright environment such as daytime or outdoors, and decreasing the display brightness in a relatively dark environment such as nighttime or indoors. Light).
  • the viewer of the display device does not feel the screen dazzling in a dark environment, and visibility can be improved.
  • a display system equipped with an automatic light control function can achieve both good visibility and low power consumption against changes in the brightness of the usage environment. It is particularly useful for mopile devices (cell phones, PDAs, mono-game devices, etc.) that have many opportunities to use and require battery operation.
  • Japanese Patent Application Laid-Open No. 2002-62856 discloses a structure in which an optical sensor, which is a discrete component, is incorporated in a display device as an example of a structure in which an environmental sensor is incorporated in the display device.
  • FIG. 14 is a schematic configuration diagram excluding the casing of the liquid crystal display device disclosed in Japanese Patent Laid-Open No. 2002-62856
  • FIG. 15 is a cross-sectional view of the optical sensor mounting portion.
  • a substrate (active matrix substrate) 901 on which an active element such as a thin film transistor (TFT) is formed is bonded to a counter substrate 902 via a seal resin 925, and a liquid crystal layer is formed in the gap therebetween. 903 is sandwiched.
  • an optical sensor 907 which is a discrete component, is disposed in a peripheral portion of the active matrix substrate 901, that is, in a peripheral region S (frame region) where no counter substrate exists.
  • a region indicated by H is a region where the counter substrate 902 is present on the active matrix substrate 901 (display region H).
  • a backlight system 914 is provided on the side of the active matrix substrate 901 opposite to the side on which the counter substrate 902 is disposed.
  • the casing 915 is arranged so as to cover the side of the knocklight system 914 opposite to the side where the active matrix substrate 901 is arranged and the periphery of the peripheral region S.
  • An opening 916 is provided at a position of the housing 915 facing the optical sensor 907, and light entering the optical sensor 907 is incident from the opening 916.
  • the structure in which the optical sensor 907 is disposed in the peripheral region S has the following characteristics. That is, when the display mode of the liquid crystal display device is a transmissive type or a transflective type, it is necessary to provide the backlight system 914 on the back surface of the active matrix substrate 901, but the optical sensor 907 is arranged in the peripheral region S described above. Is a knock light system that prevents light emitted from the backlight system 914 from directly reaching the light sensor 907. It is possible to minimize the malfunction of the optical sensor 907 due to the light emitted from the light source.
  • a force sensor 907 having a polarizing plate (not shown) attached to the front side of the counter substrate 902 is disposed in the peripheral region S. Therefore, the light sensor 907 It is possible to guide the light sensor with a sufficient amount of external light that is not blocked by the polarizing plate on the counter substrate 902. As a result, the optical sensor 907 can obtain high V and SZN.
  • Japanese Patent Application Laid-Open No. 2002-175026 when a display area portion is formed on a substrate, a vertical drive circuit, a horizontal drive circuit, a voltage conversion circuit, and a timing generation circuit are formed around the display area portion.
  • An example in which an optical sensor circuit and the like are formed monolithically by the same process is disclosed.
  • Such monolithic formation of discrete components in a display device enables reduction of the number of components and component mounting process, and can achieve downsizing and cost reduction of an electronic device incorporating the display device.
  • Japanese Laid-Open Patent Publication No. 2002-62856 also describes a technique for forming a peripheral circuit and an optical sensor monolithically on the substrate in the same process, instead of the discrete part optical sensor.
  • a thin film transistor (TFT) using an amorphous Si film or a polycrystalline Si film is generally used as an active element used in an active matrix display device.
  • TFT thin film transistor
  • a polycrystalline Si film is mainly used.
  • the source electrode 517 formed on the first interlayer insulating film 514 is electrically connected to the source region 511c of the semiconductor film through a contact hole penetrating the first interlayer insulating film 514 and the gate insulating film 512. ing.
  • the drain electrode 515 formed on the first interlayer insulating film 514 is electrically connected to the drain region 51 lb of the semiconductor film through a contact hole that penetrates the first interlayer insulating film 514 and the gate insulating film 512. It is connected to the. Further, a second interlayer insulating film 518 is formed so as to cover them.
  • the region of the semiconductor film facing the gate electrode 513 functions as the channel region 511a.
  • the regions other than the channel region 511a of the semiconductor film are highly doped with impurities, and function as the source region 511c and the drain region 51 lb.
  • a pixel electrode 519 for supplying an electric signal to the driven display medium is formed on the second interlayer insulating film 518.
  • the pixel electrode 519 is electrically connected to the drain electrode 515 through a contact hole provided in the second interlayer insulating film 518.
  • the pixel electrode 519 generally requires flatness, and the second interlayer insulating film 518 existing below the pixel electrode 519 is required to function as a flat film. Therefore, the second interlayer insulating film 518 is preferably an organic film (thickness: 2 to 3 m) such as acrylic resin.
  • the second interlayer insulating film 518 is required to have a patterning performance in order to form a contact hole in the TFT 500 and take out an electrode in a peripheral region, and usually a photosensitive organic film is often used.
  • FIG. 17 is a schematic cross-sectional view showing a cross-section of the element structure of the optical sensor 400 that satisfies these conditions.
  • a semiconductor film 411 constituting an optical sensor is formed on a glass substrate 410, and a doping region (p region 41 lc or n region 41 lb) force of the semiconductor film 411 is applied to a non-doping region (i region 41 la). It is formed in the horizontal direction (plane direction) instead of the vertical direction (stacking direction).
  • a structure having a PIN junction in the lateral direction (plane direction) parallel to the forming surface is called a lateral type PIN photodiode!
  • each member constituting the optical sensor 400 is formed by the same process as each member constituting the TFT of FIG.
  • an insulating film 412 made of the same material as the gate insulating film 512 is formed on the upper layer of the semiconductor film 411, and the same material as that of the source electrode 517 is formed on the upper layer of the first interlayer insulating film 414.
  • the p-side electrode 417 formed by the same process and the drain electrode 515 are made of the same material.
  • the n-side electrode 415 formed by the same process is formed.
  • JP-A-6-188400 as another example of the structure of the optical sensor 400, a monolithic TFT is formed on the same substrate as a TFT having a bottom gate structure (inverted stagger structure) using a non-crystalline Si film.
  • An optical diode having an MIS (MetaHnsulator-Semiconductor) type junction that can be formed is described, and such an MIS type photodiode can also be employed.
  • Light shielding area (S1) All external light is shielded by the casing 915. Of course, no ultraviolet rays reach the second interlayer insulating film 518 on the active matrix substrate 901.
  • Non-shielding region (S2) Since external light is directly incident, light of all wavelengths (including ultraviolet rays) included in the external light reaches the second interlayer insulating film on the active matrix substrate.
  • the display device is used outdoors, ultraviolet rays contained in sunlight are Only in the non-light-shielding region (S2) in the peripheral region, the second interlayer insulating film on the active matrix substrate can be reached.
  • the second interlayer insulating film is formed of an organic film having photosensitivity such as acrylic resin, but the organic film used here has so far been considered resistant to ultraviolet rays.
  • the power was unthinkable. Therefore, when we conducted a light resistance test of the second interlayer insulating film located in the non-light-shielding region (S2), the phenomenon that the film deteriorates due to long-term ultraviolet irradiation, that is, the initially transparent film turned brownish Or it turned out that the phenomenon of becoming cloudy occurs. Furthermore, as a result, it was found that the transparency of the second interlayer insulating film was impaired, and the external light reaching the photosensor located below it was reduced, resulting in poor sensitivity of the photosensor and changes in characteristics over time. . This phenomenon is a problem related to the reliability of display devices equipped with optical sensors and needs to be resolved.
  • the existing second interlayer insulating film resin material that has already been optimized for other required specifications such as large area coating performance, patterning property, flatness, heat resistance against process temperature, etc. Further improvement is a concern for performance trade-offs. Therefore, it is desirable to take measures by other methods based on the premise of using the current second interlayer insulating film.
  • the present invention provides an active matrix substrate and a display device provided with an environmental sensor (for example, an optical sensor) formed in a peripheral region of the active matrix substrate, and a surface protective film above the arrangement layer of the environmental sensor. It is an object of the present invention to provide an active matrix substrate and a display device that can prevent the deterioration of sensitivity of the environmental sensor and the deterioration of characteristics over time due to the deterioration of the surface protective film.
  • an environmental sensor for example, an optical sensor
  • the active matrix substrate of the present invention is an active matrix substrate having a pixel array region in which a plurality of pixels are arrayed, and the pixel array region includes a plurality of electrode wirings.
  • an environmental sensor disposed in a peripheral region existing around the pixel array region and a surface protective film provided in a layer above the environmental sensor disposed layer in the peripheral region.
  • the surface protective film includes an opening in a portion corresponding to the upper position of the environment sensor arrangement position.
  • the display device of the present invention includes the active matrix substrate, a counter substrate disposed so as to face a surface of the active matrix substrate on which the active element is formed, and the active matrix. And a display medium disposed in a gap between the substrate and the counter substrate.
  • an electronic apparatus of the present invention is characterized by including the display device according to the present invention.
  • the active matrix substrate of the present invention includes an opening in a portion corresponding to an upper portion of the environmental sensor placement position of the surface protective film arranged on the upper layer of the environmental sensor, and is therefore included in external light. It is possible to avoid the phenomenon that the surface protective film is altered by ultraviolet rays. As a result, it is possible to realize an environmental sensor with good sensitivity and small change with time, and it is possible to realize an active matrix substrate and display device with excellent reliability, and an electronic device using the same.
  • FIG. 1 is an overall configuration diagram showing an outline of a display device according to a first embodiment.
  • FIG. 2 is a cross-sectional view showing a state in which the display device according to Embodiment 1 is incorporated in a housing.
  • FIG. 3 is a schematic cross-sectional view showing a structure of a pixel in a pixel array region (display region) of the display device according to Embodiment 1.
  • FIG. 4 is a schematic cross-sectional view of a peripheral region of the display device according to Embodiment 1.
  • FIG. 5 (a) is a schematic cross-sectional view showing the structure of the photosensor according to Embodiment 1.
  • Fig. 5 ( b) is a schematic cross-sectional view showing a modified example of the structure of the photosensor according to Embodiment 1.
  • FIG. 5 (a) is a schematic cross-sectional view showing the structure of the photosensor according to Embodiment 1.
  • Fig. 5 ( b) is a schematic cross-sectional view showing a modified example of the structure of the photosensor according to Embodiment 1.
  • FIG. 5 (a) is a schematic cross-sectional view showing the structure of the photosensor according to Embodiment 1.
  • FIG. 6 (a) is a schematic cross-sectional view showing an outline of a display device according to Embodiment 2.
  • FIG. 6B is a schematic cross-sectional view showing a modification of the display device according to the second embodiment.
  • (c) is a schematic cross-sectional view showing a modification of the display device according to Embodiment 2.
  • FIG. 7 is a schematic cross-sectional view of a peripheral region of the display device according to the second embodiment.
  • FIG. 8 is a schematic plan view of a display device according to Embodiment 3, and a cross-sectional view taken along line A1-A2.
  • FIG. 9 is a schematic plan view of a display device according to Embodiment 4 and a sectional view taken along line B1-B2.
  • FIG. 111 is a schematic cross-sectional view (modification) of the peripheral region of the display device according to Embodiment 5.
  • FIG. 12 is a schematic cross-sectional view (modification example) of the peripheral region of the display device according to Embodiment 5.
  • FIG. 13 is a block diagram showing a schematic configuration of an electronic apparatus according to an embodiment of the present invention.
  • FIG. 14 is an overall configuration diagram of a conventional liquid crystal display device.
  • FIG. 15 is a schematic sectional view of a photosensor mounting portion of a conventional liquid crystal display device.
  • FIG. 16 is a schematic cross-sectional view of a conventional TFT formed in a pixel array region of an active matrix substrate.
  • FIG. 17 is a schematic cross-sectional view of a conventional photosensor formed in a peripheral region of an active matrix substrate.
  • FIG. 1 is an overall configuration diagram of a display device 1 according to the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which the display device 1 is incorporated in a housing.
  • the display device 1 includes an active matrix substrate 2 in which a large number of pixels 5 are arranged in a matrix form, and a counter substrate 3 disposed so as to face the active matrix substrate 2. It has a structure in which the liquid crystal is sandwiched.
  • the active matrix substrate 2 and the counter substrate 3 are bonded together by a frame-like seal resin 25 along the outer periphery of the counter substrate 3.
  • Each pixel 5 of the active matrix substrate 2 is provided with a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the display medium 4, and the counter substrate 3 has a counter electrode (FIG. 1). A cocoon (not shown) and a color filter (not shown in Fig. 1) are formed!
  • the active matrix substrate 2 has an area (pixel arrangement area) 8 in which the pixels 5 are arranged and a peripheral area 9 close to the pixel arrangement area, and the counter substrate 3 covers the pixel arrangement area 8. Both are disposed so that a part of the peripheral region 9 is exposed.
  • an FPC (Flex3 ⁇ 4le Printed Circuit) 10 for connecting an external drive circuit 30 to the display device 1 is mounted on the terminal 38.
  • An optical sensor 11 for detecting the brightness of external light which is an example, is provided.
  • other peripheral circuits a drive circuit (not shown) for driving the TFT 6 in the pixel array region 8 based on an input signal from an external drive circuit
  • the TFT 6 formed in the pixel array region 8 and the optical sensor 11 formed in the peripheral region 9 are monolithically formed on the same substrate by substantially the same process. In other words, some components of the optical sensor 11 are formed at the same time as some components of the TFT 6.
  • the display device 1 shown in FIG. 1 is incorporated into a casing 35 with an opening, as in the conventional display device shown in FIG.
  • the opening 37 of the housing 35 is disposed so as to oppose the position where the optical sensor 11 is disposed, and external light reaches the optical sensor 11 through the opening 37.
  • 39 is a circuit board.
  • the display device 1 uses a transmissive mode using transmitted light as its display mode.
  • the backlight system 12 is provided on the side (back side) of the active matrix substrate 2 in the housing 35 opposite to the counter substrate arrangement side. Note that the backlight system 12 is not necessary when a reflective display mode using reflection of external light is used as the display mode or when a self-luminous element such as an EL is used as the display medium.
  • the optical sensor 11 is intended to detect outside light, if the light of the knocklight system 12 is incident on the optical sensor 11, the optical sensor 11 malfunctions! / The title arises. Therefore, the force that prevents the backlight system 12 from being disposed below the portion where the optical sensor 11 is disposed on the active matrix substrate 2 (the side opposite to the side where the optical sensor 11 is disposed on the active matrix substrate 2) or the active matrix A light shielding member (aluminum tape or the like) is provided on the back surface of the optical sensor mounting portion of the substrate 2 so that the light from the knock light system 12 does not enter the optical sensor 11.
  • the display device 1 of the present embodiment described above is applied to a display system with an automatic dimming function that detects the illuminance of outside light using the optical sensor 11 and automatically controls the display luminance in accordance with the detected illuminance.
  • a control circuit that controls the luminance of the backlight system 12 or the luminance signal of the display signal based on the brightness information of the external light output from the optical sensor 11 provided in the peripheral region 9 of the active matrix substrate 2.
  • This control circuit may be formed integrally with the display device 1 or may be formed separately from the display device 1.
  • Examples of the case where the display device 1 is integrally formed include a case where the active matrix substrate 2 is formed monolithically, or a control circuit formed separately from the active matrix substrate 2 to form a COG (Chip On Grass ) Method, etc., when mounted on the active matrix substrate 2.
  • a control circuit is formed separately from the active matrix substrate 2 and connected to the active matrix substrate 2 via an FPC or the like.
  • a control circuit is arranged in an electronic device equipped with the device 1 and a control circuit force signal is transmitted to the active matrix substrate 2.
  • the display brightness is increased in bright environments such as outdoors, and at night or in the room. If the brightness is adjusted (dimming) automatically so that the display brightness is reduced in a relatively small environment, such as inside, it is possible to reduce the power consumption and extend the life of the display device. .
  • FIG. 3 is a schematic cross-sectional view schematically showing a cross-sectional structure of the pixel array region (display region) 8 per pixel 5 in the display device 1 of FIG.
  • a display medium (liquid crystal in this embodiment) 4 is sandwiched between the active matrix substrate 2 and the counter substrate 3.
  • a thin film transistor (TFT) 6 and a pixel electrode 7 for driving the liquid crystal 4 are formed on the active matrix substrate 2.
  • the structure of TFT 6 using the polycrystalline Si film used in the present embodiment and the pixel 5 including the TFT 6 will be described with reference to FIGS. 1 and 3.
  • the structure of TFT 6 used here is called a “top gate structure” or “positive stagger structure”, and has a gate electrode 16 on the upper layer of a semiconductor film (polycrystalline Si film) 13 to be a channel.
  • a glass substrate can be mainly used.
  • non-alkali barium borosilicate glass or alumino borosilicate glass is used.
  • the TFT 6 uses a polycrystalline Si film 13 formed on the substrate 14 and a gate insulating film 15 formed so as to cover the polycrystalline Si film 13 (for example, an oxide silicon film or a silicon nitride film).
  • a gate electrode 16 formed on the gate insulating film 15 for example, Al, Mo, T, or an alloy thereof can be used
  • Interlayer insulating film 17 for example, a silicon oxide film or a silicon nitride film can be used).
  • a region facing the gate electrode 16 through the gate insulating film 15 functions as a channel region 13a.
  • the region other than the channel region of the polycrystalline Si film 13 is an n + layer doped with impurities at a high concentration, and functions as a source region 13b and a drain region 13c.
  • LDD Lightly Doped Drain
  • impurities are lightly doped on the channel region side of the source region 13b and the channel region side of the drain region 13c to prevent deterioration of electrical characteristics due to hot carriers. A region is formed.
  • a base coat film for example, an oxide silicon film or a silicon nitride film can be used
  • the polycrystalline Si film 13 can be obtained by crystallizing a semiconductor film (amorphous Si film) having an amorphous structure by heat treatment such as laser annealing or RTA (Rapid Thermal Annealing).
  • a source electrode 18 (for example, Al, Mo, T, or an alloy thereof can be used) is formed on the first interlayer insulating film 17.
  • the source electrode 18 is electrically connected to the source region 13 b of the polycrystalline Si film 13 through a contact hole that penetrates the first interlayer insulating film 17 and the gate insulating film 15.
  • the drain electrode 19 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is connected to the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the drain region 13c of the polycrystalline Si film 13 through the penetrating contact hole.
  • a second interlayer insulating film 20 is further formed so as to cover the TFT 6 described above.
  • the second interlayer insulating film 20 is required to flatten the unevenness of the lower layer in addition to the insulating property between the layers, an organic film that can be formed by coating or printing is mainly used.
  • a pixel electrode 7 (for example, ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), Al, etc. can be used) is formed on the second interlayer insulating film 20.
  • the pixel electrode 7 is electrically connected to the drain electrode 19 through a contact hole 20 a formed in the second interlayer insulating film 20.
  • the second interlayer insulating film 20 it is preferable to use an organic insulating film having photosensitivity, whereby a contact hole 20a is easily formed in the second interlayer insulating film by mask exposure and development processing. be able to.
  • Examples of such an organic insulating film having photosensitivity include acrylic, polyimide, and BCB (Benzo-Cyclo-Butene).
  • 30 is a glass substrate which is a base substrate of the counter substrate 3
  • 31 is a color filter
  • 32 is a counter electrode formed on the entire surface of the counter substrate 3.
  • FIG. 4 is a schematic cross-sectional view of the peripheral region 9 in the display device 1 of FIG. 1, and FIG. b) is a cross-sectional structure diagram of the optical sensor 11 formed in the peripheral region 9.
  • the structure of the optical sensor 11 used here is called a “lateral structure photodiode”, and includes a diode in which a semiconductor PIN junction is formed in the surface direction (lateral direction) of the substrate.
  • a PIN diode made of a polycrystalline Si film 21 is formed on a glass substrate 14 (a substrate common to the substrate on which the TFT is formed) serving as a base substrate.
  • the polycrystalline Si film 21 of the optical sensor 11 is formed simultaneously with the same process as the polycrystalline Si film 13 of the TFT 6 (see FIG. 3) in the pixel array region 8 (display region). Therefore, the polycrystalline Si film 21 and the polycrystalline Si film 13 have the same film thickness.
  • the PIN junction is formed by a p + layer (region 21b) and n + layer (region 21c) doped with impurities at a high concentration, and an i layer (region 21a) not doped with impurities. Instead of the i layer, it is possible to use a lightly doped p-layer or n layer alone or in combination.
  • a gate insulating film 15 for example, an oxide silicon film or a silicon nitride film, which is common to the constituent members of the pixel array region 8 can be used so as to cover the polycrystalline Si film 21 having the PIN junction.
  • a first interlayer insulating film 17 for example, a silicon oxide film or a silicon nitride film can be used.
  • the gate insulating film 15 and the first interlayer insulating film 17 shown in FIG. 5A are the same as the gate insulating film 15 and the first interlayer insulating film 17 (see FIG. 3) of the TFT 6 in the pixel array region 8 up to the peripheral region 9. It is an extension.
  • the p-side electrode 3 3 formed on the first interlayer insulating film 17 (for example, Al, Mo, T, or an alloy thereof can be used) is connected to the first interlayer insulating film 17 and the gate insulating film 15. It is electrically connected to the ⁇ + region 21 b of the polycrystalline Si film 21 through a penetrating contact hole.
  • the n-side electrode 34 (for example, Al, Mo, T, or an alloy thereof can be used) formed on the first interlayer insulating film 17 is used for the first interlayer insulating film 17 and the gate insulating film. It is electrically connected to the ⁇ + region 21 c of the polycrystalline Si film 21 through a contact hole that penetrates the film 15.
  • the portions of the p-side electrode 33 and the n-side electrode 34 that are exposed on the surface of the first interlayer insulating film 17 are the electrode portions of the photosensor 11.
  • the contact to the first interlayer insulating film 17 and the gate insulating film 15 in the peripheral region 9 The formation of the holes is simultaneously performed by the same process as the formation of the contact holes to the first interlayer insulating film 17 and the gate insulating film 15 in the pixel array region 8.
  • the p-side electrode 33 and the n-side electrode 34 are formed simultaneously by the same process as the formation of the source electrode 18 and the drain electrode 19 of the TFT 6.
  • the constituent members of the optical sensor 11 are substantially the same as the constituent members of the TFT 6 in the pixel arrangement region described above, and the manufacturing process is almost common. Therefore, both manufacturing processes can be made common. In this way, the TFT 6 in the pixel array region 8 and the photosensor 11 in the peripheral region 9 are monolithically formed on the active matrix substrate 2.
  • the peripheral area 9 includes a peripheral circuit (a driving circuit for driving the TFT 6 in the pixel array area 8 based on an input signal from an external driving circuit (not shown). ), A wiring 36 (see FIG. 2) connected to the optical sensor 11 and the drive circuit, and a lead-out wiring (not shown) from the pixel array region 8 are also formed.
  • the second interlayer insulating film 20 (acrylic, common to the components of the pixel array region 8 is formed on the upper layer so as to cover the optical sensor 11, the drive circuit, and various wirings in the peripheral region.
  • An organic insulating film such as polyimide or BCB is formed.
  • the second interlayer insulating film 20 serves as a surface protective film in the peripheral region 9.
  • an opening 22 which is a feature of the present embodiment is intentionally formed above the optical sensor 11. Yes.
  • the opening 22 can be formed simultaneously with the formation of the contact hole 20 a in the second interlayer insulating film 20 in the pixel array region 8. That is, the second interlayer insulating film 20 functions as an interlayer insulating film in the pixel array region 8 and functions as a surface protective film of the photosensor 11 in the peripheral region 9.
  • the structural feature of the display device 1 of the present embodiment is that the active matrix substrate 2 includes the pixel array region 8 (display region) and the peripheral region 9, and the brightness of external light in the peripheral region.
  • the optical sensor 11 for detecting the thickness is formed, the second interlayer insulating film 20 used in the pixel array region 8 is also formed in the peripheral region, and the second interlayer insulating film (surface protective film) 20
  • the opening 22 is provided in a portion corresponding to the upper side of the optical sensor 11.
  • the optical sensor 11 has no second interlayer insulating film 20 on the upper part of the optical sensor 11, so that the second interlayer insulating film caused by the ultraviolet light is present. Unaffected by 20 discoloration.
  • the optical sensor 11 it has been necessary to design the optical sensor 11 with excessive specifications in anticipation of deterioration of the second interlayer insulating film 20 due to ultraviolet rays (decrease in transmittance). It becomes possible to optimally design the optical sensor 11 that does not need to worry about the decrease in the transmittance of the insulating film 20. For this reason, the optical sensor 11 itself can be made smaller than before. As a result, the peripheral region 9 in which the optical sensor 11 is arranged can be minimized, and it is possible to contribute to the narrow frame of the display device.
  • the second interlayer insulating film formed in the pixel array region 8 and the surface protective film formed in the peripheral region 9 are formed by the same material and the same process.
  • the force described for the example is not limited to this. Even if both are formed by different materials or different processes, if the surface protection film has insufficient UV resistance, the above structure (the second interlayer insulating film 20 as the surface protection film of the optical sensor 11)
  • the opening 22 is formed by photolithography. , Effective in terms.
  • the protective member 42 As described above, when the opening 22 is formed in the second interlayer insulating film 20 above the photosensor 11, the p-side electrode 33 and the n-side electrode 34 made of metal are exposed. Therefore, when there is a concern about oxidation or corrosion due to contact of these two electrodes with the outside air, it is preferable to form a protective member 42 on both electrodes as shown in FIG. 5 (b).
  • the protective member 42 an oxide film that is stable against the outside air (oxygen, moisture) and excellent in resistance to ultraviolet rays is suitable.
  • the same conductive oxide film as the pixel electrode 7 for example, ITO, Can be used.
  • Embodiment 2 of the present invention a case where the above-described optical sensor 11 is provided with a protective member made of other than a conductive oxide film will be described. Since the optical sensor 11 is the same as that described in the first embodiment except that the protective member 42 is provided without using the protective member 42, the same components are denoted by the same reference numerals. Therefore, the description is omitted.
  • FIG. 6 (a) is a cross-sectional structure diagram in the case where a protective member 24 is added to the optical sensor 11 described above. That is, the protective member 24 is provided in the opening 22 formed in the second interlayer insulating film 20 on the optical sensor 11. As a result, it is possible to protect the upper surface of the photosensor 11 exposed in the peripheral region 9, and it is possible to ensure high reliability against not only ultraviolet rays but also outside air.
  • the protective member 24 used here has a large area coating performance like the second interlayer insulating film 20 as long as it has transparency to the wavelength range of light received by the optical sensor 11 and resistance to ultraviolet rays. Strict specs such as turning, flattening and heat resistance to process temperature are not required. Therefore, a wide range of materials can be applied as the protective member 24.
  • materials such as fluorine-based resin, silicone resin, epoxy resin, and acrylic resin can be used.
  • a silicone potting material for example, SE1880 manufactured by Toray Dow Koung Co., Ltd., Aflex (registered trademark), CYTOP (registered trademark), etc. manufactured by Asahi Glass Co., Ltd. can be used.
  • a resin that does not contain a filler that causes light scattering In consideration of the simplicity of the process for forming the protective member, it is preferable to employ a room-temperature curable resin (such as a room-temperature curable silicone resin) that does not require a curing oven.
  • a room-temperature curable resin such as a room-temperature curable silicone resin
  • the protective member 24 is a force showing such a configuration that it covers the entire opening 22 of the second interlayer insulating film 20, as shown in FIG. 6 (b).
  • a protective member 24 is disposed in a part of the opening 22 so as to cover at least the optical sensor 11 rather than covering the entire opening. Also good.
  • the protective member 24 may be disposed in a part of the opening 22 so as to cover at least the position where the light enters the optical sensor 11.
  • the protective member 24 may be disposed in a part of the opening 22 so as to cover at least both the electrodes in the same manner as the protective member 42 shown in FIG. 5 (b). Further, the protective member 42 described in FIG. 5B of Embodiment 1 can be used in combination with the protective member 24.
  • FIG. 7 is a schematic cross-sectional view of the peripheral region 9 when the protective member 24 is added on the optical sensor 11.
  • the height X of the protective member 24 in the normal direction of the TFT formation surface of the active matrix substrate 2 is the thickness of the counter substrate 3 and the display medium 4
  • It is desirable that the total of Y is less than or equal to Y. This facilitates securing a clearance between the protective member 24 and the housing when the display device 1 is assembled into the housing.
  • FIG. 8 is a schematic plan view of the display device 26 according to the third embodiment and a cross-sectional view taken along line A1-A2. The configuration not described is the same as that of the display device of the second embodiment.
  • the seal resin 25 is formed along substantially the outer periphery of the counter substrate 3, and an opening is formed in a part of the side facing the peripheral region 9 of the active matrix substrate 2. This opening is an injection port 27 for injecting liquid crystal as the display medium 4 into the gap between the active matrix substrate 2 and the counter substrate 3. After the liquid crystal is injected from the injection port 27, the liquid crystal is sealed between the active matrix substrate 2 and the counter substrate 3 by sealing with an oleaginous sealing member 28.
  • optical sensor 11 is arranged in the vicinity of injection port 27 for injecting liquid crystal (preferably within a distance of 5 mm).
  • the sealing member 28 of the inlet 27 for injecting liquid crystal has a structure that also serves as the protective member 24 of the optical sensor 11.
  • the second interlayer insulating film 20 is omitted for convenience of explanation, but in practice, the optical interlayer is interposed between the optical sensor 11 and the protective member 24 (sealing member 28).
  • a second interlayer insulating film 20 having an opening 22 exists above the sensor 11.
  • the sealing member 28 of the injection port 27 and the protective member 24 of the optical sensor 11 are made of the same material, it is possible to work in the same process as compared with the case of using different materials. Become. Further, the protective member arranging step of the optical sensor 11 and the sealing member arranging step of the injection port 27 are performed in one step, and the sealing member 28 and the protective member 24 are integrally formed, thereby increasing the number of steps. Prevent Togashi.
  • FIG. 9 is a schematic plan view of the display device 40 according to the fourth embodiment and a cross-sectional view taken along the line B1-B2. The configuration not described is the same as that of the display device of the second embodiment.
  • the FPC 10 is mounted in the peripheral region, and the connection of the FPC 10 is reinforced around the mounting portion of the FPC 10 (reliability of the mounting portion by mechanical reinforcement or moisture proof / dustproof).
  • Reinforcing member 39 (reinforcing resin) is provided.
  • the optical sensor 11 is disposed in the vicinity of the mounting portion of the FPC 10, and has a structure in which the protective member 24 of the reinforcing member 39 force optical sensor 11 is integrally formed.
  • the second interlayer insulating film 20 is also omitted for convenience of explanation, but in practice, the optical interlayer between the optical sensor 11 and the protective member 24 (reinforcing member 39)
  • a second interlayer insulating film 20 having an opening 22 exists above the sensor 11.
  • the reinforcing member 39 of the FPC 10 and the protective member 24 of the optical sensor 11 are made of the same material, it is possible to work in the same process as compared with the case of using different materials. Further, by performing the protective member arranging step of the optical sensor 11 and the reinforcing member arranging step of the FPC 10 in one step, an increase in man-hours can be prevented.
  • FIG. 10 is an overall configuration diagram of the display device 29 according to the fifth embodiment.
  • FIG. 11 is a schematic cross-sectional view of a portion of the peripheral region 9 where the optical sensor 11 is disposed.
  • the counter substrate 3 is large enough to cover the photosensor 11 in the peripheral region 9, and the protective member 24 of the photosensor 11 is formed between the active matrix substrate 2 and the counter substrate 3. It has a structure that exists in the gap.
  • the second interlayer insulating film 20 is omitted for convenience of explanation, but actually corresponds to the upper part of the optical sensor 11 between the optical sensor 11 and the protective member 24.
  • the second interlayer insulating film 20 having the opening 22 at the position is Exists. Note that the same components as those in the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the mechanical strength of the protective member may be a problem, such as the occurrence of surface flaws.
  • the protection member 24 can be mechanically (physically) protected.
  • a polarizing plate and a color filter are not formed in a portion covering the peripheral region 9 of the counter substrate 3 so as not to prevent the outside light from entering the optical sensor 11.
  • the knock light system 12 does not extend directly below the optical sensor 11.
  • a light shielding member such as aluminum tape may be provided on the back surface of the active matrix substrate 2 where the optical sensor 11 is disposed.
  • the protective member 24 of the optical sensor 11 is exposed to the outside air except for the side surface. A structure without touching can be realized, and the influence of moisture from the outside air can be further reduced.
  • the refractive index is small between the optical sensor 11 and the counter substrate 3, and no air layer is interposed! Therefore, the light reflection loss at the interface between the air layer and the protective member 24 is reduced, and the SZ N of the optical sensor 11 can be improved.
  • the second interlayer insulating film 20 is shown with the force omitted for convenience of description. In fact, a position corresponding to the upper side of the optical sensor 11 is between the optical sensor 11 and the protective member 24. There is a second interlayer insulating film 20 having an opening 22 in the same.
  • the TFT 6 and the optical sensor 11 are formed using a polycrystalline Si film, but both can be formed using an amorphous Si film. Further, not only a TFT with a top gate structure (forward stagger structure) but also a TFT with a bottom gate structure (reverse stagger structure) may be used. It is also possible to use other active elements such as MIM (Meta Insulator- Metal) instead of TFT6.
  • MIM Metal Insulator- Metal
  • a photodiode having a Schottky junction or an MIS type junction using only a PIN junction can be used.
  • a bottom-gate (inverted staggered) TFT using an amorphous Si film is the same as a photodiode with an MIS junction.
  • monolithic formation on a substrate refer to JP-A-6-188400.
  • other element structures such as an optical conductor or an optical transistor in which two terminals are formed in the lateral direction (plane direction) can be used.
  • the force sensor in which the optical sensor 11 is monolithically formed on the active matrix substrate by substantially the same process as the TFT 6 is a glass of the active matrix substrate.
  • a configuration in which COG is mounted on the substrate may be used.
  • the present invention can be widely applied to flat panel display devices including active elements, and can be applied to various display devices such as EL display devices and electrophoretic display devices in addition to liquid crystal display devices. can do.
  • a temperature sensor instead of the force sensor described for the display device in which the optical sensor is formed in the peripheral region 9 as a representative of the environmental sensor, a temperature sensor, a humidity sensor, and a backlight system are used. Even when various sensors such as color sensors and brightness sensors are formed, by adopting the configuration of the present application, it is possible to reduce deterioration of sensor characteristics due to deterioration of the surface protective film above the sensor. .
  • FIG. 13 shows a schematic configuration of an electronic device according to an embodiment of the present invention.
  • the electronic device 60 according to the present embodiment corresponds to the brightness information of the external light detected by the display device 1 according to the first embodiment and the optical sensor 11 of the display device 1.
  • the functional blocks in the display device 1 and the electronic device 60 are simply illustrated.
  • the control circuit 61 may have a function of controlling an arbitrary operation of the electronic device 60 in addition to the control of display luminance.
  • the electronic device 60 may have an arbitrary functional block other than that shown in FIG. 13 depending on its use.
  • the control circuit 61 controls the display brightness of the display device 1 by adjusting the brightness of the backlight system 12 according to the brightness information (sensor output) of the external light detected by the light sensor 11. Since display device 1 is a liquid crystal display device, the display luminance can be adjusted by controlling the luminance of the backlight. However, when a self-luminous element such as an EL element is used as the display device, the control circuit 61 is configured to control the light emission brightness of the self-luminous element Is done.
  • the power using the display device 1 according to the first embodiment is exemplified.
  • the electronic devices using the display devices according to the second to fifth embodiments and the modifications thereof are also provided. It is within the scope of the present invention.
  • the electronic device of the present embodiment can achieve both good visibility and low power consumption in response to changes in the brightness of the usage environment, so it is often used as a mopile device that needs to be taken outside and needs battery drive. It is particularly useful.
  • the application of the present invention is not limited to these.
  • information terminals such as mobile phones, PDAs, mopile game equipment, portable music players, digital cameras, video There are cameras.
  • control circuit 61 for controlling the display luminance of the display device is provided outside the display device, but the control circuit is provided as a part of the display device. It is good also as the structure comprised.
  • the present invention can be widely applied to flat panel display devices including active elements, and can be applied to various display devices such as EL display devices and electrophoretic display devices in addition to liquid crystal display devices. Can do. As a result, electronic devices that use display devices (such as, but not limited to, mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, television receivers, etc.) Is available.
  • display devices such as, but not limited to, mobile phones, PDAs, DVD players, mopile game devices, notebook PCs, PC monitors, television receivers, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Nonlinear Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

 アクティブマトリクス基板の周辺領域に形成された環境センサを備えた表示装置において、環境センサの上層に設けられた表面保護膜の変質に基づく、環境センサの感度不良および特性の経時劣化を防止する。複数の画素が配列された画素配列領域を有するアクティブマトリクス基板(2)において、画素配列領域の周囲に存在する周辺領域に配置された環境センサ(11)と、前記周辺領域において環境センサ(11)の配置層より上層に設けられた表面保護膜(20)とを備え、表面保護膜(20)は、環境センサ(11)の配置位置の上方に相当する部分に開口部(22)を備えている。

Description

明 細 書
アクティブマトリクス基板、表示装置及び電子機器
技術分野
[0001] 本発明は、液晶表示装置、 EL (Electronic Luminescent)表示装置などの表示装置 に関する。また、これら表示装置に使用するアクティブマトリクス基板に関する。
背景技術
[0002] 液晶表示装置に代表されるフラットパネル型の表示装置は、薄型軽量、低消費電 力といった特徴を有し、さらに、カラー化、高精細化、動画対応といった表示性能の 向上に向けた技術開発が進んでいることから、現在では、携帯電話、 PDA (Personal Digital Assistants)、 DVDプレイヤー、モパイルゲーム機器、ノート PC、 PCモニター 、 TV等、幅広い情報機器、 TV機器、アミューズメント機器等の電子機器に組み込ま れている。
[0003] このような背景の中、表示装置に、周辺環境を検知する環境センサを取り付ける技 術が用いられ始めている。この環境センサの代表例として、周辺環境の明るさを検知 する光センサがある。近年、表示装置の更なる視認性向上や低消費電力化を目的と して、使用環境の明るさに応じて表示装置の輝度を自動的に制御する自動調光機 能付きの表示システムが提案されて 、る。
[0004] このような光センサを備える表示システムは、例えば、特開平 4— 174819号公報 ゃ特開平 5— 241512号公報に開示されている。特開平 4— 174819号公報ゃ特開 平 5— 241512号公報では、表示装置の近傍にディスクリート部品である光センサを 配設し、該光センサで検知した使用環境照度を基に、表示装置の輝度を自動的に 制御する方法が開示されている。この結果、昼間や屋外など明るい環境下では表示 輝度を高くし、夜間や室内など比較的暗い環境下では表示輝度を下げるといったよ うに、周囲環境の明るさに応じて自動的に輝度調整 (調光)を行うことができる。この 場合、表示装置の観察者が、暗い環境下で画面をまぶしく感じることがなくなり、視認 性の向上を図ることができる。また、使用環境の明 Z暗にかかわらず、表示輝度を常 に高く保つ使用方法に比べると、表示装置の低消費電力化や長寿命化を実現する ことができる。さらに、光センサの検知情報を基に自動的に輝度調整 (調光)を行うた めに、使用者の手を煩わせることもない。
[0005] このように、自動調光機能を備えた表示システムは、使用環境の明るさの変化に対 して良好な視認性と低消費電力化を両立することができることから、屋外に持ち出し て使用する機会が多くバッテリー駆動を必要とするモパイル機器 (携帯電話、 PDA、 モノくィルゲーム機器等)に対して特に有用である。
[0006] 一方、特開 2002— 62856号公報には、環境センサを表示装置内に組み込んだ構 造の一例として、ディスクリート部品である光センサを、表示装置内に組み込む構造 が開示されている。図 14は、特開 2002— 62856号公報に開示されている液晶表示 装置の筐体を除く概略構成図であり、図 15は、その光センサ実装部の断面図である
[0007] この液晶表示装置は、薄膜トランジスタ (TFT)などのアクティブ素子が形成される 基板 (アクティブマトリクス基板) 901と対向基板 902とがシール榭脂 925を介して貼り 合わされ、両者の間隙に液晶層 903が挟持された構造となっている。ここで、ァクティ ブマトリクス基板 901の周辺部、すなわち対向基板が存在しない周辺領域 S (額縁領 域)に、ディスクリート部品である光センサ 907が配設されている。なお、図 15におい て Hで示した領域は、アクティブマトリクス基板 901上に対向基板 902が存在する領 域 (表示領域 H)である。また、アクティブマトリクス基板 901の対向基板 902配置側と は相対する側にはバックライトシステム 914が設けられる。そして、ノ ックライトシステ ム 914のアクティブマトリクス基板 901配置側とは相対する側と、周辺領域 Sの周囲と を覆うように、筐体 915が配置される。筐体 915の光センサ 907と対向する位置には 、開孔部 916が設けられ、光センサ 907への光は開孔部 916から入射する仕組みに なっている。
[0008] このように、光センサ 907を上記周辺領域 Sに配設する構造は、以下の特徴を備え ている。すなわち、液晶表示装置の表示モードが透過型や半透過型の場合には、ァ クティブマトリクス基板 901の裏面にバックライトシステム 914を備える必要があるが、 光センサ 907が上記の周辺領域 Sに配設されているので、該バックライトシステム 91 4から発せられる光が直接光センサ 907に到達することがなぐノ ックライトシステムか ら発せられる光に起因する光センサ 907の誤動作を最小限に留めることが可能であ る。また、通常の液晶表示装置では、対向基板 902の表側には偏光板(図示せず) が貼られている力 光センサ 907が上記の周辺領域 Sに配設されているので、光セン サ 907に入射する外光が対向基板 902上の偏光板によって遮られることが無ぐ十 分な光量の外光を光センサに導くことが可能である。この結果、光センサ 907は、高 V、SZNを得ることが可能である。
[0009] 一方、近年、表示装置の製造技術が急速に進展し、従来はディスクリート部品とし て表示装置の周辺部に実装していた ICチップや各種回路素子を、表示装置の構成 回路 '素子の形成時に、表示装置内(具体的には表示装置を構成するガラス基板上 )に同一プロセスでモノリシックに形成する技術が確立されてきている。
[0010] 例えば、特開 2002— 175026号公報では、基板上に表示領域部を形成する際、 表示領域部の周辺の領域に、垂直駆動回路、水平駆動回路、電圧変換回路、タイミ ング発生回路、光センサ回路などを、同一プロセスでモノリシックに形成する例が開 示されている。このようなディスクリート部品の表示装置内へのモノリシック形成は、部 品点数や部品実装プロセスの削減を可能にし、表示装置を組み込んだ電子機器の 小型化とコストダウンを実現することができる。もちろん、上述した表示装置の輝度調 節 (調光)に用いる光センサや、光センサ用の専用回路 (光量検出回路)などを、表 示装置内にモノリシックに形成することも可能である。なお、特開 2002— 62856号 公報にも、ディスクリート部品の光センサの代わりに、基板上に周辺回路と光センサを 同一プロセスでモノリシックに形成する技術が記載されている。
[0011] ところで、アクティブマトリクス型の表示装置に使用されるアクティブ素子としては、 非晶質 Si膜や多結晶 Si膜を用いた薄膜トランジスタ (TFT)が一般的である。上述の ようにアクティブ素子と各種回路素子を同一基板上にモノリシックに形成する場合は 、主として多結晶 Si膜を利用した TFTが用いられる。
[0012] そこで、図 16を参照しながら、画素配列領域 (表示領域)の各画素に形成される多 結晶 Si膜を半導体層として備える TFTの構造を説明する。ここで説明する TFTの構 造は、「トップゲート構造」、または「正スタガ構造」と呼ばれるもので、チャネルとなる 半導体膜 (多結晶 Si膜)の上層にゲート電極を備えるものである。 [0013] TFT500は、ガラス基板 510上に形成された多結晶 Si膜 511と、多結晶 Si膜 511 を覆うように形成されたゲート絶縁膜 512と、ゲート絶縁膜 512上に形成されたゲート 電極 513と、ゲート電極 513及びゲート酸化膜 512を覆うように形成された第 1層間 絶縁膜 514とを有して 、る。第 1層間絶縁膜 514上に形成されて!、るソース電極 517 は、第 1層間絶縁膜 514およびゲート絶縁膜 512を貫通するコンタクトホールを介し て半導体膜のソース領域 511cに電気的に接続されている。同様に、第 1層間絶縁 膜 514上に形成されているドレイン電極 515は、第 1層間絶縁膜 514およびゲート絶 縁膜 512を貫通するコンタクトホールを介して半導体膜のドレイン領域 51 lbに電気 的に接続されている。さらに、これらを覆うように第 2層間絶縁膜 518が形成されてい る。
[0014] このような構造において、ゲート電極 513と対向する半導体膜の領域がチャネル領 域 511aとして機能する。また、半導体膜のチャネル領域 511a以外の領域は、不純 物が高濃度にドープされており、ソース領域 511cおよびドレイン領域 51 lbとして機 能する。
[0015] なお、ここでは図示しないが、ホットキャリアによる電気特性の劣化を防ぐために、ソ ース領域 51 lcのチャネル領域側およびドレイン領域 51 lbのチャネル領域側に、不 純物が低濃度にドープされた LDD (Lightly Doped Drain)領域が形成されている。
[0016] さらに、第 2層間絶縁膜 518の上層には、駆動される表示媒体に電気信号を供給 するための画素電極 519が形成される。画素電極 519は、第 2層間絶縁膜 518に設 けられたコンタクトホールを介して、ドレイン電極 515に電気的に接続される。この画 素電極 519は、一般に平坦性が求められることが多ぐ画素電極 519の下層に存在 する第 2層間絶縁膜 518は平坦ィ匕膜としての機能が要求される。このため第 2層間絶 縁膜 518には、アクリル榭脂などの有機膜 (厚み 2〜3 m)を用いることが好ましい。 また、 TFT500におけるコンタクトホールの形成や、周辺領域での電極取り出しのた めに、第 2層間絶縁膜 518はパターユング性能が求められ、通常、感光性を有する 有機膜を用いることが多い。
[0017] 一方、表示領域に上述の構造を有する TFTを備えた表示装置にぉ 、て、外光の 明るさを検知するための光センサを、表示装置の周辺領域にモノリシック形成しようと した場合、製造プロセスの増加を最小限に抑えようとすると、光センサの素子構造が 限定されること〖こなる。
[0018] 図 17は、これら条件を満たす光センサ 400の素子構造断面を示す断面模式図で ある。ガラス基板 410上に、光センサを構成する半導体膜 411が形成され、該半導体 膜 411のドーピング領域 (p領域 41 lc又は n領域 41 lb)力 ノンドーピング領域 (i領 域 41 la)に対して縦方向(積層方向)ではなく横方向(面方向)に形成される。一般 に、形成面に対して平行な横方向(面方向)に PIN接合を有する構造は、ラテラル構 造の PIN型光ダイオードと呼ばれて!/、る。
[0019] また、光センサ 400を構成する各部材は、図 16の TFTを構成する各部材と、同じ プロセスで形成されている。例えば、半導体膜 411の上層には、ゲート絶縁膜 512と 同材料'同プロセスで形成される絶縁膜 412が形成され、第 1層間絶縁膜 414の上 層には、ソース電極 517と同材料 '同プロセスで形成される p側電極 417と、ドレイン 電極 515と同材料 .同プロセスで形成される n側電極 415が形成される。
[0020] さらにその上層には、第 2層間絶縁膜 518と同材料 '同プロセスで形成される表面 保護膜 418が形成される。この場合、第 2層間絶縁膜 518は、画素配列領域 (表示 領域)においては、 TFT500形成層と画素電極 519形成層の層間を電気的に絶縁 するとともに、画素電極 519の形成面の平坦性を向上させる役割を果たし、画素配列 領域外 (表示領域外)の周辺領域 (額縁領域)では、アクティブマトリクス基板の表面 保護膜 418として光センサ 400や光センサ 400に接続される電極を外気カゝら保護す る役割を果たす。このように、表面保護膜 418は、第 2層間絶縁膜 518と同プロセス で形成され、また、表示領域から周辺領域に渡って略全面に形成されることが望まし い。
[0021] このような図 17に示した光センサ 400は、図 14に示した従来の表示装置の光セン サ (周辺領域に設けられたディスクリート部品)の代わりに使用することができ、かつ、 図 14に示した表示装置を電子機器に組み込む際に、部品点数の削減や部品実装 プロセスの削減を可能にする。
[0022] なお、特開平 6— 188400号公報には、光センサ 400の構造の他の例として、非結 晶 Si膜を用いたボトムゲート構造 (逆スタガ構造)の TFTと同一基板上にモノリシック に形成することが可能な MIS (MetaHnsulator- Semiconductor)型接合を有する光ダ ィオードが記載されており、このような MIS型の光ダイオードを採用することも可能で ある。
発明の開示
発明が解決しょうとする課題
[0023] し力しながら、上述した図 17に示す光センサを、アクティブマトリクス基板上の周辺 領域に形成して表示装置を実現しょうとすると、以下の問題が生じることが明らかにな つた o
[0024] 表示装置を構成するアクティブマトリクス基板は、図 15に示すように、表示領域 (H) と周辺領域 (額縁領域) (S)に大別されるが、後者の周辺領域 (S)は、さらに筐体で 遮光された遮光領域 (S1)と、筐体に設けられた開孔部 (例えば図 15の開孔部 916 に相当)に位置し外光の入射を受ける非遮光領域 (S2)に分けることができる。上述 した光センサは、外光を受光する必要があることから、当然、アクティブマトリクス基板 上の非遮光領域 (S2)に配置される必要がある。
[0025] 第 2層間絶縁膜 518 (表面保護膜 418)は、表示領域 H力も周辺領域 Sに亘つて略 全面に形成される旨を前段で説明したが、この第 2層間絶縁膜 518 (表面保護膜 41 8)に対し、外光 (屋外太陽光下での使用を想定)が如何に到達するかについて考え てみると、以下のようになる。
[0026] 表示領域 (H) :対向基板 902に備えられた偏光板(図示せず)やカラーフィルタに よって、外光の一部が吸収されるため、アクティブマトリクス基板 901上の第 2層間絶 縁膜 518に到達する外光は、特定の波長領域の光に限定される。特に偏光板やカラ 一フィルタで紫外線は略 100%吸収されるために、第 2層間絶縁膜 518に到達する 紫外線は皆無である。
[0027] 遮光領域 (S1):筐体 915によって外光が全て遮光される。もちろん、アクティブマト リクス基板 901上の第 2層間絶縁膜 518に到達する紫外線は皆無である。
[0028] 非遮光領域 (S2):外光が直接入射するため、アクティブマトリクス基板上の第 2層 間絶縁膜に、外光に含まれる全波長の光 (紫外線含む)が到達する。
[0029] つまり、表示装置を屋外で使用する場合を考えると、太陽光に含まれる紫外線は、 周辺領域の非遮光領域 (S2)のみにおいて、アクティブマトリクス基板上の第 2層間 絶縁膜に到達し得ることになる。
[0030] 前述したように、第 2層間絶縁膜は、アクリル榭脂などの感光性を有する有機膜によ つて形成されているが、ここで用いる有機膜は、これまで、紫外線に対する耐性は考 慮されていな力つた。そこで、非遮光領域 (S2)に位置する第 2層間絶縁膜の耐光試 験を実施してみると、長期間の紫外線照射によって膜が劣化する現象、すなわち当 初透明であった膜が茶褐色化又は白濁化する現象が生じることが判明した。さらに、 この結果、第 2層間絶縁膜の透明性が損なわれ、その下に位置する光センサに到達 する外光が減少して、光センサの感度不良および特性の経時変化をもたらすことが 判明した。この現象は光センサを備えた表示装置の信頼性に関わる問題であり、解 決を図る必要がある。
[0031] また、光センサの代わりに他の環境センサ(温度センサ、湿度センサ)を用いる場合 であっても、第 2層間絶縁膜の膜質が劣化すると、その配下に存在する環境センサ の信頼性が損なわれることから、解決を図る必要がある。
[0032] このような問題を解決する方法としては、第 2層間絶縁膜の耐紫外線性を高めること が有効である。し力しながら、大面積塗布性能、パターユング性、平坦化性、プロセス 温度に対する耐熱性など、他の要求仕様に対して既に最適化されている既存の第 2 層間絶縁膜の榭脂材料を更に改良することは、性能のトレードオフの発生が懸念さ れる。したがって、現状の第 2層間絶縁膜の使用を前提とした、他の方法による対策 が望まれている。
[0033] そこで本発明は、アクティブマトリクス基板の周辺領域に形成された環境センサ (例 えば光センサ)を備えたアクティブマトリクス基板および表示装置において、該環境セ ンサの配置層より上層に表面保護膜を形成しつつ、かつ該表面保護膜の変質に起 因する環境センサの感度不良および特性の経時劣化を防ぐことが可能なアクティブ マトリクス基板および表示装置を提供することを目的とする。
課題を解決するための手段
[0034] 本発明のアクティブマトリクス基板は、複数の画素が配列された画素配列領域を有 するアクティブマトリクス基板において、前記画素配列領域には、複数の電極配線と 、複数のアクティブ素子と、前記複数の電極配線および複数のアクティブ素子の上層 に設けられた層間絶縁膜と、この層間絶縁膜上に形成された複数の画素電極とが配 設されており、前記アクティブマトリクス基板において前記画素配列領域の周囲に存 在する周辺領域に配置された環境センサと、前記周辺領域にぉ 、て前記環境セン サの配置層より上層に設けられた表面保護膜とを備え、前記表面保護膜は、前記環 境センサ配置位置の上方に相当する部分に開口部を備えて 、ることを特徴として!/ヽ る。
[0035] また、本発明の表示装置は、前記アクティブマトリクス基板と、前記アクティブマトリク ス基板の前記アクティブ素子が形成されている面に対向するように配設される対向基 板と、前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを 備えたことを特徴としている。
[0036] また、本発明の電子機器は、本発明にかかる表示装置を備えたことを特徴としてい る。
発明の効果
[0037] 本発明のアクティブマトリクス基板は、環境センサの上層に配置される表面保護膜 の環境センサ配置位置の上方に相当する部分に開口部が備えられて 、るために、 外光に含まれる紫外線により表面保護膜が変質する現象を回避することができる。こ の結果、感度が良ぐ特性の経時変化の小さい環境センサを実現することができ、信 頼性の優れたアクティブマトリクス基板および表示装置並びにこれを用いた電子機器 を実現することができる。
図面の簡単な説明
[0038] [図 1]図 1は、実施の形態 1に係る表示装置の概略を示す全体構成図である。
[図 2]図 2は、実施の形態 1に係る表示装置を筐体に組み込んだ状態を示す断面図 である。
[図 3]図 3は、実施の形態 1に係る表示装置の画素配列領域 (表示領域)の画素の構 造を示す断面模式図である。
[図 4]図 4は、実施の形態 1に係る表示装置の周辺領域の断面模式図である。
[図 5]図 5 (a)は実施の形態 1に係る光センサの構造を示す断面模式図である。図 5 ( b)は実施の形態 1に係る光センサの構造の変形例示す断面模式図である。
[図 6]図 6 (a)は実施の形態 2に係る表示装置の概略を示す断面模式図である。図 6 ( b)は実施の形態 2に係る表示装置の変形例を示す断面模式図である。 (c)は実施の 形態 2に係る表示装置の変形例を示す断面模式図である。
[図 7]図 7は、実施の形態 2に係る表示装置の周辺領域の断面模式図である。
[図 8]図 8は、実施の形態 3に係る表示装置の概略平面図と、その A1— A2線におけ る断面図である。
[図 9]図 9は、実施の形態 4に係る表示装置の概略平面図と、その B1— B2線におけ る断面図である。
[図 10]図 10は、実施の形態 5に係る表示装置の周辺領域の概略を示す全体構成図 である。
[図 11]図 111は、実施の形態 5に係る表示装置の周辺領域の断面模式図(変形例) である。
[図 12]図 12は、実施の形態 5に係る表示装置の周辺領域の断面模式図(変形例)で ある。
[図 13]図 13は、本発明の一実施形態にカゝかる電子機器の概略構成を示すブロック 図である。
[図 14]図 14は、従来の液晶表示装置の全体構成図である。
[図 15]図 15は、従来の液晶表示装置の光センサ実装部の断面摸式図である。
[図 16]図 16は、アクティブマトリクス基板の画素配列領域に形成される従来の TFTの 断面摸式図である。
[図 17]図 17は、アクティブマトリクス基板の周辺領域に形成される従来の光センサの 断面摸式図である。
発明を実施するための最良の形態
[実施の形態 1]
以下、図面を参照しながら、本発明の実施の形態 1に係る表示装置および該表示 装置に用いるアクティブマトリクス基板について、液晶表示装置を例に概略を説明す る。 [0040] 図 1は、本発明に係る表示装置 1の全体構成図である。また、図 2は、表示装置 1を 筐体に組み込んだ状態を示す断面図である。この表示装置 1は、多数の画素 5がマ トリタス状に配列されたアクティブマトリクス基板 2と、これに対向するように配置された 対向基板 3を備えており、さらに両者の間隙には表示媒体 4である液晶が挟持された 構造をしている。そして、アクティブマトリクス基板 2と対向基板 3は、対向基板 3の外 周に沿った枠状のシール榭脂 25によって接着されて 、る。
[0041] アクティブマトリクス基板 2の各画素 5には、表示媒体 4を駆動するための薄膜トラン ジスタ (TFT) 6や画素電極 7が形成されており、対向基板 3には、対向電極(図 1〖こ は図示せず)やカラーフィルタ(図 1には図示せず)が形成されて!、る。
[0042] アクティブマトリクス基板 2は、画素 5が配列された領域 (画素配列領域) 8と、画素 配列領域に近接する周辺領域 9を有し、対向基板 3は、上記画素配列領域 8を覆うと ともに、周辺領域 9の一部が露出するように配設されて 、る。
[0043] また、アクティブマトリクス基板 2の上記周辺領域 9には、表示装置 1に外部の駆動 回路 30を接続するための FPC (Flex¾le Printed Circuit) 10が端子 38に実装され、 さらに、環境センサの一例である外光の明るさを検出するための光センサ 11が配設 されている。また、その他に周辺回路 (外部の駆動回路からの入力信号に基づいて 画素配列領域 8の TFT6を駆動するための駆動回路(図示せず)、光センサ 11や駆 動回路に接続される配線 (36)、画素配列領域 8からの引き出し配線(図示せず)な ど)も配設されている。
[0044] 上記画素配列領域 8に形成される TFT6と、周辺領域 9に形成される光センサ 11と は、同一基板上に、ほぼ同一のプロセスによってモノリシックに形成されている。つま り、光センサ 11の一部の構成部材は、 TFT6の一部の構成部材と同時に形成される
[0045] そして、図 1に示す表示装置 1は、図 2に示すように、従来例の図 15に示した表示 装置と同様に、開孔部付き筐体 35に組み込まれる。筐体 35の開孔部 37は光センサ 11の配置位置に対向するように配置されており、その開孔部 37を介して外光が上記 光センサ 11に到達する仕組みになっている。なお、図 2における 39は回路基板であ る。 [0046] また、表示装置 1は、その表示モードとして、透過光を利用する透過型モードを用 いている。従って、筐体 35内のアクティブマトリクス基板 2の対向基板配置側とは相対 する側 (裏面側)にはバックライトシステム 12が備えられている。なお、表示モードとし て外光の反射を利用する反射表示モードを用いる場合や、表示媒体として ELなどの 自発光素子を用いる場合には、バックライトシステム 12は不要である。
[0047] また、上述の光センサ 11は、外光を検知することを目的としているため、ノ ックライト システム 12の光が該光センサ 11に入射すると、光センサ 11が誤動作すると!/、つた問 題が生じる。したがって、アクティブマトリクス基板 2の光センサ 11配設部の下側(ァク ティブマトリクス基板 2の光センサ 11配置側とは反対側)にバックライトシステム 12が 配置されないようにする力 或いは、アクティブマトリクス基板 2の光センサ配設部の 裏面に遮光部材 (アルミテープなど)を具備して、ノ ックライトシステム 12の光が光セ ンサ 11に入射しな 、ように配慮が必要である。
[0048] 上述した本実施形態の表示装置 1は、光センサ 11を用いて外光の照度を検出し、 それに合わせて表示輝度を自動的に制御する自動調光機能付きの表示システムに 適用することができる。つまり、上記アクティブマトリクス基板 2の周辺領域 9に設けら れた光センサ 11が出力する外光の明るさ情報を基に、バックライトシステム 12の輝度 、又は表示信号の輝度信号を制御する制御回路を備えておくことで、表示装置 1の 表示輝度を自動的に制御することが可能になる。
[0049] この制御回路は、表示装置 1と一体的に形成されていても、表示装置 1と別体に形 成されていても良い。表示装置 1と一体的に形成されている場合の例としては、ァク ティブマトリクス基板 2内にモノリシックに形成する場合や、アクティブマトリクス基板 2 とは別に制御回路を形成して COG (Chip On Grass)方式等によりアクティブマトリクス 基板 2上に搭載する場合が挙げられる。また、表示装置 1と別体に形成さえている場 合の例としては、アクティブマトリクス基板 2とは別に制御回路を形成して FPC等を介 してアクティブマトリクス基板 2に接続する場合や、表示装置 1を備える電子機器に制 御回路を配置してアクティブマトリックス基板 2に制御回路力 信号を送信する場合 が挙げられる。
[0050] この制御回路を用いて、屋外など明るい環境下では表示輝度を高くし、夜間や室 内など比較的喑 、環境下では表示輝度を下げるように輝度調整 (調光)を自動的に 行うように制御させると、表示装置の低消費電力化や長寿命化を実現することができ る。
[0051] 次に、本発明の表示装置 1の詳細な構造について、図 3、図 4、図 5を用いて説明 する。図 3は、図 1の表示装置 1における画素配列領域 (表示領域) 8の画素 5当たり の断面構造を概略的に示す略断面図である。アクティブマトリクス基板 2と対向基板 3 の間隙に表示媒体 (本実施の形態では液晶) 4が挟持されて 、る。アクティブマトリク ス基板 2には、液晶 4を駆動するための薄膜トランジスタ (TFT) 6や画素電極 7が形 成されている。
[0052] 以下、図 1および図 3を参照しながら、本実施の形態で用いる多結晶 Si膜を用いた TFT6と、この TFT6を含む画素 5の構造について説明する。ここで使用する TFT6 の構造は、「トップゲート構造」または「正スタガ構造」と呼ばれるもので、チャネルとな る半導体膜 (多結晶 Si膜) 13の上層にゲート電極 16を備えるものである。なお、この ように、基板に対して複数の層を積層する場合に、基板側を下側とし、基板から層ま での距離が離れる方向を上側として記載して 、る。
[0053] ベース基材となる基板 14には、主にガラス基板が使用でき、例えば無アルカリのバ リウムホウケィ酸ガラス、またはアルミノホウケィ酸ガラスなどが使用される。 TFT6は、 基板 14上に形成された多結晶 Si膜 13と、多結晶 Si膜 13を覆うように形成されたゲ ート絶縁膜 15 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜などが使用できる)と、ゲート 絶縁膜 15上に形成されたゲート電極 16 (例えば、 Al、 Mo、 Tほたはそれらの合金な どが使用できる)と、ゲート電極 16を覆うように形成された第 1層間絶縁膜 17 (例えば 、酸ィ匕シリコン膜ゃ窒化シリコン膜が使用できる)とを有している。
[0054] ここで、多結晶 Si膜 13において、ゲート絶縁膜 15を介してゲート電極 16と対向す る領域は、チャネル領域 13aとして機能する。また、多結晶 Si膜 13のチャネル領域以 外の領域は、不純物が高濃度にドープされた n+層であり、ソース領域 13bおよびドレ イン領域 13cとして機能する。また、ここでは図示しないが、ホットキャリアによる電気 特性の劣化を防ぐために、ソース領域 13bのチャネル領域側およびドレイン領域 13c のチャネル領域側に、不純物が低濃度にドープされた LDD (Lightly Doped Drain) 領域が形成されている。
[0055] なお、ガラス基板の表面 (多結晶 Si膜 13の下)に、ベースコート膜 (例えば、酸ィ匕シ リコン膜ゃ窒化シリコン膜などが使用できる)を備えても良い。また、多結晶 Si膜 13は 、非晶質構造を有する半導体膜 (非結晶 Si膜)を、レーザーァニールや RTA (Rapid Thermal Annealing)などの熱処理により結晶化することで得ることができる。
[0056] 第 1層間絶縁膜 17上にはソース電極 18 (例えば、 Al、 Mo、 Tほたはそれらの合金 が使用できる)が形成されている。ソース電極 18は、第 1層間絶縁膜 17およびゲート 絶縁膜 15を貫通するコンタクトホールを介して、多結晶 Si膜 13のソース領域 13bに 電気的に接続されている。同様に、第 1層間絶縁膜 17上に形成されているドレイン 電極 19 (例えば、 Al、 Mo、 Tほたはそれらの合金が使用できる)は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホールを介して、多結晶 Si膜 13のド レイン領域 13cに電気的に接続されて!、る。
[0057] 以上が、ここで使用する TFT6の基本的な構造である。そして、画素配列領域 (表 示領域) 8においては、上述の TFT6を覆うように、さらに第 2層間絶縁膜 20が形成さ れている。ここで、第 2層間絶縁膜 20は、層間の絶縁性に加えて下層の凹凸を平坦 化する役割が要求されるので、塗布や印刷によって形成が可能な有機膜が主に使 用される。
[0058] 更に、第 2層間絶縁膜 20の上層には、画素電極 7 (例えば、 ITO (Indium- Tin- Oxid e)、 IZO (Indium-Zinc-Oxide)、 Alなどが使用できる)が形成される。画素電極 7は、 第 2層間絶縁膜 20に形成されたコンタクトホール 20aを介して、ドレイン電極 19に電 気的に接続されている。この、第 2層間絶縁膜 20としては、感光性を有する有機絶縁 膜を用いることが好ましぐこれにより、マスク露光と現像処理によって、簡便に第 2層 間絶縁膜にコンタクトホール 20aを形成することができる。このように感光性を有する 有機絶縁膜としては、例えば、アクリル、ポリイミド、 BCB (Benzo- Cyclo- Butene)など が例示できる。なお、図 3において、 30は対向基板 3のベース基板であるガラス基板 であり、 31はカラーフィルタであり、 32は対向基板 3の全面に形成された対向電極で ある。
[0059] 図 4は、図 1の表示装置 1における周辺領域 9の断面模式図であり、図 5 (a)および( b)は、周辺領域 9に形成されている光センサ 11の断面構造図である。
[0060] 以下、図 4、図 5 (a)を参照しながら、光センサ 11の構造について説明する。ここで 使用する光センサ 11の構造は、「ラテラル構造の光ダイオード」と呼ばれるものであり 、半導体の PIN接合が基板の面方向(横方向)に形成されたダイオードを備えるもの である。
[0061] ベース基材となるガラス基板 14 (TFTが形成されて ヽる基板と共通の基板)上に、 多結晶 Si膜 21による PINダイオードが形成されて 、る。この光センサ 11の多結晶 Si 膜 21は、画素配列領域 8 (表示領域)の TFT6の多結晶 Si膜 13 (図 3参照)と同一プ 口セスで同時に形成されるものである。従って、多結晶 Si膜 21と多結晶 Si膜 13とは、 同じ膜厚を有する。 PIN接合は、不純物が高濃度にドープされた p+層(領域 21b)と n +層(領域 21c)、及び不純物がドープされない i層(領域 21a)によって形成されている 。なお、 i層の代わりに、低濃度にドープされた p—層や n層を単独、又は併設して用い ることち可會である。
[0062] さらに、 PIN接合を有する多結晶 Si膜 21を覆うように、画素配列領域 8の構成部材 と共通のゲート絶縁膜 15 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜などが使用でき る)と第 1層間絶縁膜 17 (例えば、酸ィ匕シリコン膜ゃ窒化シリコン膜が使用できる)が 形成される。図 5 (a)に示すゲート絶縁膜 15および第 1層間絶縁膜 17は、画素配列 領域 8における TFT6のゲート絶縁膜 15および第 1層間絶縁膜 17 (図 3参照)が、周 辺領域 9まで延在したものである。第 1層間絶縁膜 17上に形成されている p側電極 3 3 (例えば、 Al、 Mo、 Tほたはそれらの合金が使用できる)は、第 1層間絶縁膜 17お よびゲート絶縁膜 15を貫通するコンタクトホールを介して多結晶 Si膜 21の ρ+領域 21 bに電気的に接続されている。同様に、第 1層間絶縁膜 17上に形成されている n側電 極 34 (例えば、 Al、 Mo、 Tほたはそれらの合金が使用できる。 )は、第 1層間絶縁膜 17およびゲート絶縁膜 15を貫通するコンタクトホールを介して多結晶 Si膜 21の η+領 域 21cに電気的に接続されている。
[0063] p側電極 33および n側電極 34において第 1層間絶縁膜 17の表面に露出している 部分が、光センサ 11の電極部である。
[0064] なお、周辺領域 9における第 1層間絶縁膜 17およびゲート絶縁膜 15へのコンタクト ホールの形成は、画素配列領域 8における第 1層間絶縁膜 17およびゲート絶縁膜 1 5へのコンタクトホールの形成と同一プロセスにより同時に行われる。また、 p側電極 3 3および n側電極 34の形成は、 TFT6のソース電極 18およびドレイン電極 19の形成 と同一プロセスにより同時に行われる。
[0065] 以上が、基本的な光センサ 11の構造である。上記のとおり、光センサ 11の構成部 材は、前述の画素配列領域の TFT6の構成部材とほぼ同じであり、製造プロセスもほ ぼ共通である。従って、両者の製造プロセスを共通にすることができる。このようにし て、アクティブマトリクス基板 2には、画素配列領域 8の TFT6と周辺領域 9の光センサ 11がモノリシックに形成されて!、る。
[0066] なお、周辺領域 9には、上記光センサ 11の他に、周辺回路 (外部の駆動回路から の入力信号に基づいて画素配列領域 8の TFT6を駆動するための駆動回路(図示 せず)、光センサ 11や駆動回路に接続される配線 36 (図 2参照)、画素配列領域 8か らの引き出し配線(図示せず)など)も形成されている。そしてこれらを保護する目的 で、周辺領域の光センサ 11、駆動回路、各種配線を覆うように、これらの上層には画 素配列領域 8の構成部材と共通の第 2層間絶縁膜 20 (アクリル、ポリイミド、 BCBなど の有機絶縁膜)が形成されて 、る。
[0067] そして、第 2層間絶縁膜 20は、周辺領域 9においては表面保護膜としての役割を 果たす。ただし、この第 2層間絶縁膜 20は、図 2および図 5 (a)に示すように、光セン サ 11の上部において、本実施の形態の特徴となる開口部 22が意図的に形成されて いる。この開口部 22は、画素配列領域 8において、第 2層間絶縁膜 20にコンタクトホ ール 20aを形成する際に同時に形成することができる。すなわち、第 2層間絶縁膜 2 0は、画素配列領域 8では層間絶縁膜として機能し、周辺領域 9では光センサ 11の 表面保護膜として機能する。
[0068] つまり、本実施の形態の表示装置 1の構造上の特徴は、アクティブマトリクス基板 2 が画素配列領域 8 (表示領域)と周辺領域 9を備えている点、周辺領域に外光の明る さを検出する光センサ 11が形成されている点、画素配列領域 8で使用する第 2層間 絶縁膜 20が周辺領域にも形成されている点、第 2層間絶縁膜 (表面保護膜) 20の光 センサ 11の上方に相当する部分に開口部 22を有する点にある。 [0069] この結果、光センサ 11は、外光に紫外線が含まれていたとしても、光センサ 11の上 部に第 2層間絶縁膜 20が存在しないので、紫外線に起因する第 2層間絶縁膜 20の 変色の影響を受けることがない。したがって、長時間にわたり安定して外光の明るさ の変化を正確に検出することができる。また、従来では、紫外線による第 2層間絶縁 膜 20の劣化 (透過率の低下)を見越して、光センサ 11を過剰スペックで設計しておく 必要があつたが、本実施の形態では第 2層間絶縁膜 20の透過率の低下を懸念する 必要がなぐ光センサ 11を最適設計することが可能になる。このため、光センサ 11自 身を従来より小さくすることが可能になる。これによつて、光センサ 11が配置される周 辺領域 9を最小限に小さくでき、表示装置の狭額縁ィ匕に寄与することが可能になる。
[0070] なお、上述の実施形態では、画素配列領域 8に形成されている第 2層間絶縁膜と、 周辺領域 9に形成されている表面保護膜とが同じ材料、及び同じプロセスで形成さ れた例について説明した力 これに限るものではない。両者が別材料や別プロセス で形成された場合であっても、表面保護膜の紫外線耐性が十分でない場合には、上 記構造 (光センサ 11の表面保護膜としての第 2層間絶縁膜 20に開口部 22を設ける 構造)を採用することで本発明の効果を得ることが可能である。特に、表面保護膜 (第 2層間絶縁膜 20)が感光性を有する場合、フォトリソグラフィによって開口部 22を形
Figure imgf000018_0001
、点で有効である。
[0071] ところで、上述のように、光センサ 11の上部において、第 2層間絶縁膜 20に開口部 22を形成すると、金属からなる p側電極 33と n側電極 34が露出される。そこで、これら 両電極が外気に触れることによる酸化や腐食が懸念される場合には、図 5 (b)に示す ように、両電極上に保護部材 42を積層形成しておくことが好ましい。保護部材 42とし ては、外気 (酸素、水分)に対して安定で、紫外線に対する耐性も優れている酸化膜 が適しており、例えば画素電極 7と同じ導電性酸ィ匕膜 (例えば、 ITO、 ΙΖΟ等)を使用 することができる。また、保護部材 42を画素電極 7と同じプロセスで形成すると、プロ セスの追カロが必要ないために好適である。なお、このように開口部 22に導電性を有 する保護部材 42を設ける場合には、 ρ側電極 33と η側電極 34が保護部材 42を介し て短絡しな ヽように、それぞれの電極のパターン形状に応じて保護部材 42もパター ニングしておく必要がある。 [0072] [実施の形態 2]
本発明の実施の形態 2として、上述の光センサ 11に対し、導電性酸化膜以外から なる保護部材を具備させるものについて説明する。なお、光センサ 11に保護部材 42 を用いる事なく保護部材 24を具備させている点を除いては実施の形態 1に説明した ものと同じであるので、同一の構成については同一の符号を付して説明を省略する。
[0073] 図 6 (a)は、上述の光センサ 11に保護部材 24を追加した場合の断面構造図である 。すなわち光センサ 11上の、第 2層間絶縁膜 20に形成された開口部 22に保護部材 24が備えられている。この結果、周辺領域 9で露出していた光センサ 11の上面を保 護することが可能になり、紫外線だけでなく外気に対しても高い信頼性を確保するこ とが可能になる。
[0074] ここで用いる保護部材 24は、光センサ 11が受光する光の波長域に対する透明性と 、紫外線に対する耐性を有していれば良ぐ第 2層間絶縁膜 20のように大面積塗布 性能、ノターニング性、平坦化性、プロセス温度に対する耐熱性といった厳しいスぺ ックは要求されない。したがって、保護部材 24として幅広い材料を適用することが可 能である。例えば、フッ素系榭脂、シリコーン榭脂、エポキシ榭脂、アクリル榭脂など の材料を使用することが可能である。具体的には、東レダウコーユング社製のシリコ 一ンポッティング材 (例えば SE1880など)、旭硝子社製のァフレックス (登録商標)、 サイトップ (登録商標)などが使用できる。なお、透過率を高く保っためには、光散乱 要因となるフィラーを含まない榭脂を採用することが好ましい。また、保護部材形成の プロセスの簡略ィ匕を考慮すると、硬化用のオーブンを必要としない常温硬化型の榭 脂(常温硬化型シリコーン榭脂など)を採用することが好ましい。
[0075] なお、図 6 (a)では、保護部材 24が、第 2層間絶縁膜 20の開口部 22を全て覆うよう な形態を示した力 特にその必要はなぐ図 6 (b)に示すように例えば開口部 22が光 センサ 11のサイズに比べて広い場合には、開口部全体を覆うのではなぐ少なくとも 光センサ 11を覆うように開口部 22内の一部に保護部材 24を配置しても良い。また、 図 6 (c)に示すように例えば光センサ 11に対して光が入射する位置を少なくとも覆う ように開口部 22内の一部に保護部材 24を配置しても良い。また、開口部 22内で露 出する電極 (P側電極 33と n側電極 34)の酸化や腐食を懸念する場合には、実施の 形態 1において図 5 (b)に示した保護部材 42と同じ態様で、少なくともこれら両電極を 覆うように開口部 22内の一部に保護部材 24を配置しても良い。また、実施の形態 1 の図 5 (b)で説明した保護部材 42を保護部材 24と併用することも可能である。
[0076] また、図 7は、光センサ 11上に保護部材 24を追加した場合の周辺領域 9の断面模 式図である。図 7に示すように、アクティブマトリクス基板 2の TFT形成面の法線方向( 図 7中、矢印の方向)における保護部材 24の高さ Xは、前記対向基板 3と前記表示 媒体 4の厚さの合計 Y以下であることが望ましい。これにより、表示装置 1を筐体に組 み込む際に、保護部材 24と筐体との間のクリアランスを確保することが容易になる。
[0077] [実施の形態 3]
図 8は、実施の形態 3にかかる表示装置 26の概略平面図と、その A1— A2線断面 図である。なお、説明していない構成については実施の形態 2の表示装置と同じであ る。
[0078] シール榭脂 25は、対向基板 3の略外周に沿って形成されていて、アクティブマトリク ス基板 2の周辺領域 9に面する辺の一部に開口部が形成されている。この開口部は 、アクティブマトリクス基板 2と対向基板 3の間隙に表示媒体 4である液晶を注入する ための注入口 27である。この注入口 27から液晶を注入した後、榭脂性の封止部材 2 8で封止することによって液晶がアクティブマトリクス基板 2と対向基板 3の間に封止さ れる。
[0079] ここで、実施の形態 3の表示装置 26では、液晶を注入する注入口 27の近傍 (距離 5mm以内が好ましい)に光センサ 11が配置されている。さらに、液晶を注入する注 入口 27の封止部材 28が、光センサ 11の保護部材 24を兼用した構造になっている。 なお、図 8の断面図において、第 2層間絶縁膜 20は説明の便宜上省略して記載され ているが、実際には光センサ 11と保護部材 24 (封止部材 28)との間に、光センサ 11 の上方に開口部 22を有する第 2層間絶縁膜 20が存在する。
[0080] このように、注入口 27の封止部材 28と光センサ 11の保護部材 24が同一材料であ るために、別々の材料にする場合に比べると、同一工程での作業が可能となる。また 、光センサ 11の保護部材配置工程と、注入口 27の封止部材配置工程とを一工程で 行い、封止部材 28と保護部材 24とを一体的に形成することで、工数の増加を防ぐこ とがでさる。
[0081] [実施の形態 4]
図 9は、実施の形態 4にかかる表示装置 40の概略平面図と、その B1— B2線断面 図である。なお、説明していない構成については実施の形態 2の表示装置と同じであ る。
[0082] ここで、表示装置 40では、上記周辺領域に FPC10が実装されており、その FPC1 0の実装部周辺に FPC10の接続を補強 (機械的補強、又は、防湿'防塵による実装 部の信頼性補強)する補強部材 39 (補強榭脂)が配設されて ヽる。
[0083] また、光センサ 11は、 FPC10の実装部近傍に配置されており、上記補強部材 39 力 光センサ 11の保護部材 24を一体的に形成した構造になっている。なお、図 9の 断面図においても、第 2層間絶縁膜 20は説明の便宜上省略して記載されているが、 実際には光センサ 11と保護部材 24 (補強部材 39)との間に、光センサ 11の上方に 開口部 22を有する第 2層間絶縁膜 20が存在する。
[0084] このように、 FPC10の補強部材 39と光センサ 11の保護部材 24が同一材料である ために、別々の材料にする場合に比べると、同一工程での作業が可能となる。また、 光センサ 11の保護部材配置工程と、 FPC10の補強部材配置工程を一工程で行うこ とで、工数の増加を防ぐことができる。
[0085] もちろん、 ?じ10の代ゎりに1^^ (丁& 6 Carrier Package)や LSIが周辺領域 9に 実装されている場合であっても、これら回路部材を補強する補強部材 39と光センサ 1 1の保護部材 24を一体的に形成することで、同様の効果を得ることができる。
[0086] [実施の形態 5]
図 10は、実施の形態 5にかかる表示装置 29の全体構成図である。また図 11は、そ の周辺領域 9のうち光センサ 11が配置されている部分の断面模式図である。本実施 の形態 5では、対向基板 3が周辺領域 9の光センサ 11を覆うのに十分な大きさとなつ ており、かつ、光センサ 11の保護部材 24がアクティブマトリクス基板 2と対向基板 3と の隙間に存在する構造となっている。なお、図 11においても、第 2層間絶縁膜 20は 説明の便宜上省略して記載されているが、実際には、光センサ 11と保護部材 24との 間に、光センサ 11の上方に相当する位置に開口部 22を有する第 2層間絶縁膜 20が 存在する。なお、実施の形態 1から実施の形態 4と同一の構成に対しては、同一の符 号を付して説明を省略する。
[0087] 通常、保護部材 24に硬度の小さい榭脂材料を用いる場合には、表面傷の発生な ど保護部材の機械的強度が問題になる場合があるが、保護部材 24が対向基板 3に 覆われることで、保護部材 24の機械的 (物理的)保護を行うことが可能となる。
[0088] なお、このとき、対向基板 3の周辺領域 9を覆う部分には、光センサ 11への外光の 進入を妨げないように、偏光板やカラーフィルタを形成しないことが望ましい。また、 ノ ックライトシステム 12は、図 10に示したように、光センサ 11の直下まで延在しないよ う配慮する必要がある。あるいは、ノ ックライトシステムが光センサ 11の真下にも位置 する場合は、アクティブマトリクス基板 2の光センサ 11の配設部の裏面に遮光部材( アルミテープなど)を設ければ良!、。
[0089] さらに、図 12に示すように、光センサ 11と対向基板 3の間隙を、保護部材 24で完 全に充填するようにすると、光センサ 11の保護部材 24が、側面を除き外気に触れな い構造を実現することができ、外気の湿気などの影響を更に軽減することができる。 また、光センサ 11と対向基板 3の間に屈折率が小さ 、空気層が介在しな!、ために、 空気層と保護部材 24の界面における光の反射ロスが少なくなり、光センサ 11の SZ Nを向上させることも可能となる。なお、図 12においても、第 2層間絶縁膜 20は説明 の便宜上省略して記載されている力 実際には、光センサ 11と保護部材 24との間に 、光センサ 11の上方に相当する位置に開口部 22を有する第 2層間絶縁膜 20が存 在する。
[0090] 上述の実施の形態 1〜5では、多結晶 Si膜を用いて TFT6と光センサ 11を形成し た例を示したが、両者を非結晶 Si膜で形成することも可能である。また、トップゲート 構造 (正スタガ構造)の TFTに限らず、ボトムゲート構造 (逆スタガ構造)の TFTを用 いても構わない。また、 TFT6の代わりに、 MIM (Meta卜 Insulator- Metal)などの他の アクティブ素子を使用することも可能である。
[0091] さらに、光センサは、 PIN接合を利用したものだけでなぐショットキー接合や MIS 型接合を有する光ダイオードを利用することもできる。例えば、非結晶 Si膜を用いた ボトムゲート構造 (逆スタガ構造)の TFTと、 MIS型接合を有する光ダイオードを同一 基板上にモノリシックに形成する例としては、特開平 6— 188400号公報を参照する と良い。また、光センサ 11の構造としては、 2つの端子が横方向(面方向)に形成され た光コンダクタや光トランジスタなど、他の素子構造を用いることも可能である。
[0092] また、上記の説明では、光センサ 11が、 TFT6とほぼ同一のプロセスによってァク ティブマトリクス基板上にモノリシックに形成されている例を示した力 光センサがァク ティブマトリクス基板のガラス基板上に COG実装された構成であっても良い。
[0093] なお、本発明は、アクティブ素子を備えたフラットパネル型表示装置に広く適用する ことができ、液晶表示装置以外にも、 EL表示装置、電気泳動表示装置などの各種表 示装置に適用することができる。
[0094] また、上述の実施の形態 1〜5では、環境センサの代表として光センサを周辺領域 9に形成した表示装置について説明した力 光センサの代わりに、温度センサ、湿度 センサ、バックライトシステムの色センサや明るさセンサなど、各種センサを形成する 場合であっても、本願の構成を採用することで、センサの上方の表面保護膜の劣化 に基づくセンサ特性の劣化を低減することができる。
[0095] [実施の形態 6]
本発明の一実施形態にカゝかる電子機器の概略構成を図 13に示す。図 13に示すよ うに、本実施形態に力かる電子機器 60は、実施の形態 1にかかる表示装置 1と、この 表示装置 1の光センサ 11によって検出された外光の明るさ情報に応じて、表示装置 1の表示輝度を制御する制御回路 61とを備えている。なお、図 13では、表示装置 1 および電子機器 60における機能ブロックの図示を簡略ィ匕している。制御回路 61は、 表示輝度の制御以外に、電子機器 60の任意の動作を制御する機能を有して ヽても 良い。また、電子機器 60は、その用途等に応じて、図 13に示した以外の任意の機能 ブロックを有し得る。
[0096] 制御回路 61は、光センサ 11によって検出された外光の明るさ情報 (センサ出力)に 応じてバックライトシステム 12の輝度を調整することにより、表示装置 1の表示輝度を 制御する。なお、表示装置 1は液晶表示装置であるためバックライトの輝度を制御す ることによって表示輝度の調整が可能であるが、 EL素子等の自発光素子を表示装 置として用いる場合は、制御回路 61は、自発光素子の発光輝度を制御するよう構成 される。
[0097] また、本実施形態では、実施の形態 1にかかる表示装置 1を用いた構成を例示した 力 実施の形態 2〜5ならびにこれらの変形例に力かる表示装置を用いた電子機器 も、本発明の範囲内である。
[0098] 以上のように、周囲の明るさに応じて必要十分な輝度になるよう表示輝度を制御す ることにより、消費電力を低減し、かつ、見易い表示を実現する電子機器を提供でき る。本実施形態の電子機器は、使用環境の明るさの変化に対して良好な視認性と低 消費電力化を両立できることから、屋外に持ち出して使用する機会が多くバッテリー 駆動を必要とするモパイル機器として特に有用である。このようなモパイル機器の具 体例としては、本発明の用途をこれらに限定するものではないが、例えば、携帯電話 、 PDA等の情報端末、モパイルゲーム機器、携帯型音楽プレイヤー、デジタルカメラ 、ビデオカメラ等がある。
[0099] なお、本実施形態では、表示装置の表示輝度を制御するための制御回路 61が表 示装置の外部に設けられた構成を例示したが、制御回路が表示装置の一部として設 けられた構成としても良い。
産業上の利用可能性
[0100] 本発明は、アクティブ素子を備えたフラットパネル型表示装置に広く適用することが でき、液晶表示装置以外にも、 EL表示装置、電気泳動表示装置などの各種表示装 置に適用することができる。その結果、表示装置を使用する電子機器 (例えば、これ らには限定されないが、携帯電話、 PDA, DVDプレイヤー、モパイルゲーム機器、ノ ート PC、 PCモニター、テレビジョン受像機など)にも利用可能である。

Claims

請求の範囲
[1] 複数の画素が配列された画素配列領域を有するアクティブマトリクス基板にぉ 、て 前記画素配列領域には、複数の電極配線と、複数のアクティブ素子と、前記複数 の電極配線および複数のアクティブ素子の上層に設けられた層間絶縁膜と、この層 間絶縁膜上に形成された複数の画素電極とが配設されており、
前記アクティブマトリクス基板において前記画素配列領域の周囲に存在する周辺 領域に配置された環境センサと、
前記周辺領域において前記環境センサの配置層より上層に設けられた表面保護 膜とを備え、
前記表面保護膜は、前記環境センサ配置位置の上方に相当する部分に開口部を 備えて 、ることを特徴とするアクティブマトリクス基板。
[2] 前記層間絶縁膜と前記表面保護膜とが同一材料で形成されている、請求項 1に記 載のアクティブマトリクス基板。
[3] 前記表面保護膜が感光性材料力も形成されている、請求項 1または 2に記載のァク ティブマトリクス基板。
[4] 前記表面保護膜の開口部の少なくとも一部を覆う保護部材を備えている、請求項 1
〜3のいずれか一項に記載のアクティブマトリクス基板。
[5] 前記保護部材は、前記表面保護膜より、紫外線に対する耐性が優れている材料に て形成されて ヽる、請求項 4に記載のアクティブマトリクス基板。
[6] 前記表面保護膜の開口部に、前記環境センサに接続された金属電極が配設され ており、
前記保護部材は、前記金属電極上に前記画素電極と同一材料にて形成されて ヽ る、請求項 4に記載のアクティブマトリクス基板。
[7] 前記アクティブ素子と前記環境センサが同一プロセスで形成されるとともに、前記層 間絶縁膜と前記表面保護膜が同一プロセスで形成されている、請求項 1〜6のいず れか一項に記載のアクティブマトリクス基板。
[8] 前記アクティブ素子が薄膜トランジスタであり、前記環境センサがラテラル構造を有 するフォトダイオードである、請求項 7に記載のアクティブマトリクス基板。
請求項 1〜8のいずれかに記載のアクティブマトリクス基板と、前記アクティブマトリク ス基板の前記アクティブ素子が形成されている面に対向するように配設される対向基 板と、前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを 備えたことを特徴とする表示装置。
請求項 4または 5に記載のアクティブマトリクス基板と、前記アクティブマトリクス基板 の前記アクティブ素子が形成されている面に対向するように配設される対向基板と、 前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを備え 前記対向基板が、前記画素配列領域の全領域を覆うように、かつ、前記周辺領域 のうち少なくとも前記環境センサが形成されている領域が露出するように配設されて Vヽることを特徴とする表示装置。
前記アクティブ素子形成面の法線方向における前記保護部材の高さが、前記対向 基板と前記表示媒体の厚さの合計以下であることを特徴とする請求項 10に記載の表 示装置。
請求項 4または 5に記載のアクティブマトリクス基板と、前記アクティブマトリクス基板 の前記アクティブ素子が形成されている面に対向するように配設される対向基板と、 前記アクティブマトリクス基板と前記対向基板の間隙に配設される表示媒体とを備え 前記対向基板が、前記画素配列領域の全領域を覆うように、かつ、前記周辺領域 のうち少なくとも前記環境センサが形成されて 、る領域を覆うように配設されて 、るこ とを特徴とする表示装置。
前記保護部材が、前記アクティブマトリクス基板と対向基板の間隙に配設されてい る、請求項 12に記載の表示装置。
前記表示媒体の注入を行うための注入口と、前記注入口とを封止する封止部材が 備えられており、
前記保護部材と前記封止部材とは同一の材料により形成されている、請求項 9〜1 3の 、ずれか一項に記載の表示装置。 [15] 前記注入口が前記光センサの近傍に位置し、前記封止部材と前記保護部材が、 一体的に形成されている、請求項 14に記載の表示装置。
[16] 前記アクティブマトリクス基板の周辺領域に実装された回路部材と、前記アクティブ マトリクス基板と前記回路部材との接続を補強する補強部材とを備え、前記補強部材 と前記保護部材とは同一の材料により形成されている、請求項 9〜13のいずれか一 項に記載の表示装置。
[17] 前記補強部材と前記保護部材とが一体的に形成されている、請求項 16に記載の 表示装置。
[18] 前記環境センサは光センサであり、前記光センサによって検出された外光の明るさ 情報に基づき、表示輝度を自動で制御する制御回路を備えたことを特徴とする請求 項 9〜 17のいずれか一項に記載の表示装置。
[19] 請求項 9〜18のいずれか一項に記載の表示装置を備えたことを特徴とする電子機
PCT/JP2006/306539 2005-03-29 2006-03-29 アクティブマトリクス基板、表示装置及び電子機器 WO2006104210A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005093668A JP2008170460A (ja) 2005-03-29 2005-03-29 アクティブマトリクス基板、表示装置及び電子機器
JP2005-093668 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104210A1 true WO2006104210A1 (ja) 2006-10-05

Family

ID=37053464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306539 WO2006104210A1 (ja) 2005-03-29 2006-03-29 アクティブマトリクス基板、表示装置及び電子機器

Country Status (2)

Country Link
JP (1) JP2008170460A (ja)
WO (1) WO2006104210A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079095A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 電装機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195262A (ja) * 1997-09-20 1999-04-09 Semiconductor Energy Lab Co Ltd イメージセンサ機能を有する一体型液晶表示パネル
JP2002062856A (ja) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2004078160A (ja) * 2002-06-17 2004-03-11 Fuji Photo Film Co Ltd 画像表示装置
JP2005010228A (ja) * 2003-06-16 2005-01-13 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置およびその製造方法
JP2005019353A (ja) * 2003-06-30 2005-01-20 Sanyo Electric Co Ltd El表示装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195262A (ja) * 1997-09-20 1999-04-09 Semiconductor Energy Lab Co Ltd イメージセンサ機能を有する一体型液晶表示パネル
JP2002062856A (ja) * 2000-06-06 2002-02-28 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2004078160A (ja) * 2002-06-17 2004-03-11 Fuji Photo Film Co Ltd 画像表示装置
JP2005010228A (ja) * 2003-06-16 2005-01-13 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置およびその製造方法
JP2005019353A (ja) * 2003-06-30 2005-01-20 Sanyo Electric Co Ltd El表示装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015079095A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 電装機器

Also Published As

Publication number Publication date
JP2008170460A (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4621734B2 (ja) 表示装置およびこれを備えた電子機器
US8085256B2 (en) Electronic device
WO2006104212A1 (ja) アクティブマトリクス基板およびこれを備えた表示装置並びに電子機器
US20090128529A1 (en) Display Device and Electronic Device
KR100722570B1 (ko) 화상판독장치, 화상판독장치를 구비한 화상판독시스템
US20100045904A1 (en) Liquid crystal display
US20100128010A1 (en) Liquid crystal display device and method for driving the same
KR20080001769A (ko) 액정 표시 장치 및 이의 제조 방법
WO2006104204A1 (ja) 表示装置およびこれを備えた電子機器
US8067773B2 (en) Pixel unit structure of self-illumination display with low-reflection
CN113544855B (zh) 显示面板及显示装置
JP2010056303A (ja) 光センサ及びこの光センサを使用した液晶表示装置
WO2017022609A1 (ja) 表示パネル
JP2009053261A (ja) 液晶表示装置
JP4656082B2 (ja) 電気光学装置及び電子機器
JP4370957B2 (ja) 画像読取装置
JP2007304519A (ja) 液晶表示装置
JP2007304520A (ja) カラー液晶表示装置
WO2006118166A1 (ja) 表示装置およびこれを備えた電子機器
CN112447791A (zh) 显示面板及终端设备
WO2006104210A1 (ja) アクティブマトリクス基板、表示装置及び電子機器
JP2008224896A (ja) 表示装置
US20070229484A1 (en) Electro-optical device and electronic apparatus
JP5154321B2 (ja) 電気光学装置の製造方法、電気光学装置及び電子機器
JP2008191498A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP