WO2006104069A1 - ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ - Google Patents

ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ Download PDF

Info

Publication number
WO2006104069A1
WO2006104069A1 PCT/JP2006/306074 JP2006306074W WO2006104069A1 WO 2006104069 A1 WO2006104069 A1 WO 2006104069A1 JP 2006306074 W JP2006306074 W JP 2006306074W WO 2006104069 A1 WO2006104069 A1 WO 2006104069A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
gate insulating
insulating film
film
manufacturing
Prior art date
Application number
PCT/JP2006/306074
Other languages
English (en)
French (fr)
Inventor
Satoru Ohta
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007510470A priority Critical patent/JP4914828B2/ja
Publication of WO2006104069A1 publication Critical patent/WO2006104069A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to a method for manufacturing a gate insulating film, a method for manufacturing an organic transistor, a method for manufacturing an organic EL display device, and a display.
  • Organic thin film transistors (hereinafter also referred to as organic TFTs (Thin Film Transistors)) are used in various applications.
  • organic TFTs have been studied as a means for driving organic EL elements in organic EL display devices.
  • An organic EL device includes an electrode and an organic solid layer having at least a light-emitting layer between the electrodes, and injects electrons and holes into the light-emitting layer in the organic solid layer from both the electrode caps. It is an element that causes light emission in the organic light emitting layer, and can emit light with high brightness. In addition, since it uses the luminescence of organic compounds, it has a feature such as a wide selection range of luminescent colors, and is expected as a light source and organic EL display device. In particular, the organic EL display device is generally expected as a flat panel display having a wide field of view, high contrast, high speed response and visibility, thin and light, and low power consumption.
  • An organic EL display device includes a pixel composed of an organic EL element including at least an anode, an organic light emitting layer, and a cathode, and an organic transistor that lights and controls the organic EL element.
  • organic EL display devices a passive matrix system in which organic EL elements arranged in a matrix are driven externally by stripe-shaped scanning electrodes and data electrodes (signal electrodes) orthogonal to each other, and switching elements that also have organic transistor power for each pixel.
  • an active matrix system that includes a memory element and lights an organic EL element.
  • the active matrix method using organic transistors is generally superior to the active matrix method in which organic EL elements are driven by TFTs as compared to the V and passive matrix methods as the number of pixels increases. This is because the organic EL element of each pixel is lit only during the period when the scanning electrode is selected and the number of pixels increases. While the average luminance tends to decrease as the lighting period of the organic EL element becomes shorter, the active matrix method has a switching element and a memory element consisting of TFTs for each pixel, so the lighting of the organic EL element This is because the state is maintained, operation is possible with high brightness, high efficiency and long life, and there is a tendency to be advantageous for high definition and large display.
  • FIG. 1 shows an organic EL display device PA according to the background art.
  • the organic EL display device PA covers the substrate 10, the barrier film 12 formed on the substrate 10, the organic EL element 100 and the organic TFT 50 formed on the barrier film 12, and the organic EL element 100 and the organic TFT 50. And a protective film (passivation film) 20.
  • the source electrode 58 and the drain electrode 60 are provided separately from each other, the organic semiconductor layer 56 is interposed between the source electrode 58 and the drain electrode 60, and the source is interposed via the gate insulating film 54.
  • the electrode 58, the drain electrode 60, and the gate electrode 52 disposed to face the organic semiconductor layer 56 are provided.
  • the performance of the organic TFT itself is often about the same as that of an amorphous silicon TFT!
  • the performance of the organic TFT is about the on-Zoff ratio as long as the liquid crystal is used as an electrophoretic drive element. If there is a certain amount, low current drive is possible, so there are many problems such as ensuring insulation in the gate insulating film!
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-110999
  • the metal oxide particles contained therein May cause problems.
  • metal oxide particles protruding from the surface of the gate insulating film may cause the surface of the gate insulating film to become rough and cause the performance of the organic TFT to deteriorate.
  • the present invention has been made in view of the above problems, and a method for producing a higher quality gate insulating film, a method for producing a higher performance organic transistor, a method for producing an organic EL display device, a display,
  • the main purpose is to provide.
  • the invention according to claim 1 is a method for manufacturing a gate insulating film in an organic transistor, which is formed by thermosetting a mixture containing a mixed polymer in which cyanoethyl groups and hydroxyl groups are mixed and a melamine derivative. Including the step of:
  • the invention described in claim 3 is a method for manufacturing an organic transistor including a gate insulating film, and the gate insulating film is manufactured by the method for manufacturing a gate insulating film according to claim 1 or 2.
  • the manufacturing method of the organic transistor which becomes.
  • the invention of claim 4 is an organic EL element comprising at least an anode, an organic light emitting layer, and a cathode.
  • the invention described in claim 5 is a display including the organic transistor manufactured by the method for manufacturing an organic transistor according to claim 3.
  • FIG. 1 is a schematic cross-sectional view of an organic EL display device in the prior art.
  • FIG. 2 is a schematic cross-sectional view of an organic TFT in the prior art.
  • FIG. 3 is a schematic cross-sectional view of an organic EL display device in the present embodiment.
  • FIG. 4 is a schematic enlarged view of the vicinity of the organic EL element of the organic EL display device in the present embodiment.
  • FIG. 5 is a schematic enlarged view of the vicinity of the organic TFT of the organic EL display device in the present embodiment.
  • FIG. 6 is a schematic explanatory view of a method for manufacturing a gate insulating film in the present embodiment.
  • FIG. 7 is a schematic explanatory view of a method for manufacturing a gate insulating film in the present embodiment.
  • FIG. 8 is a schematic explanatory view of a method for manufacturing a gate insulating film in the present embodiment. Explanation of symbols
  • the inventor mixed a polymer having a cyanoethyl group with another polymer.
  • the gate insulating film to be fabricated was examined.
  • cyanobacterized resin may cause phase separation with poor compatibility with the solvent, and may lead to deterioration of the gate insulating film.
  • polymers having cyanoethyl groups may be affected by solvents that have poor solvent resistance, such as etching solvents or coating organic semiconductors, leading to deterioration of the gate insulating film.
  • the present inventor has come to consider using a crosslinking reaction in order to improve the compatibility of cyanobacterized resin.
  • polybutane alcohol PVA: chemical formula (1) below
  • polybutanol PVP: chemical formula (2) below
  • Tuna resin are melamine derivatives (chemical formula (3) below:
  • melamine formaldehyde resin
  • the melamine derivative crosslinks with polyphenolphenol resin and the melamine derivative has a cyanoamine group and has a cyanoamine group.
  • the cross-linking reaction does not occur.
  • a part of the hydroxyl group is partially a cyanoethyl group for a polymer having a hydroxyl group
  • a polymer having a cyanoethyl group is a part of the cyanoethyl group. It was found that using a mixed polymer in which a cyanoethyl group and a hydroxyl group are mixed (hereinafter also referred to simply as a mixed polymer) by using a partial hydroxyl group as a part, and utilizing both advantages of a cyanoethyl group and a hydroxyl group, The present invention has been reached.
  • the high relative permittivity ⁇ by the cyanoethyl group is measured, and the hydroxyl group promotes the crosslinking reaction with the melamine derivative while ensuring the high relative permittivity, so that the solvent resistance and compatibility are improved. I found it. Furthermore, particularly when the gate insulating film has a relative dielectric constant of 7 to 40, the dielectric constant can be secured, and the reasons such as prevention of hysteresis and stabilization of electrical properties are also suitable.
  • a higher quality gate insulating film can be provided, and a high-performance organic transistor including the gate insulating film and a method for manufacturing an organic EL display device including the organic transistor and a display can be found. did it.
  • FIG. 3 shows a schematic cross-sectional view of the organic EL display device P 1 according to the present embodiment.
  • the organic EL display P1 covers the film substrate 10, the barrier film 12 formed on the substrate 10, the organic EL element 100 and the organic TFT 50 formed on the noor film 12, and the organic TFT 50.
  • 100 and the organic TFT 50 have a protective film 20 that also protects the erosion power of external force.
  • the substrate 10 may be formed by appropriately selecting the constituent materials.
  • the resin thermoplastic resin, thermosetting resin, polycarbonate, polymethyl methacrylate, polyarylate, polyether sulfone, polysulfone, polyethylene terephthalate polyester, polypropylene, cellophane, polycarbonate, cellulose acetate, polyethylene, Poly (vinyl chloride), polystyrene, polyamide, polyimide, poly (vinyl chloride), polyvinyl alcohol, saponified ethylene butyl acetate copolymer, fluorine resin, salt rubber, ionomer, ethylene / acrylic acid copolymer Various substrates can be used as ethylene / acrylic acid ester copolymers.
  • a glass substrate or a glass / plastic bonded substrate may be used instead of a substrate mainly composed of resin, and an alkali barrier film or a gas noria film may be coated on the substrate surface.
  • the substrate 10 is not necessarily transparent.
  • the noria film 12 does not necessarily have to be formed, but it is preferable because it can protect the erosion force by moisture or oxygen from the substrate side.
  • the barrier film 12 is formed, the material can be appropriately selected and used.
  • the noria film 12 may have a multilayer structure, a single layer structure, an inorganic film, or an organic film, but if an inorganic film is included, moisture is contained. This is preferable because it improves the noria property from erosion due to oxygen and oxygen.
  • a nitride film, an oxide film, a carbon film, a silicon film, or the like can be employed. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used. Examples include nitride films, diamond-like carbon (DLC) films, and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
  • Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
  • Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, a fluorine-based molecule (perfluoroolefin, perfluoroolefin ether, tetrafluoroethylene). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
  • Polymerized films such as lyimide precursors and perylene compounds can be used.
  • the noria film 12 has a laminated structure having two or more kinds of material forces, an inorganic protective film, a silane coupling layer, a laminated structure made of a resin sealing film, a barrier layer made of an inorganic material cover, and an organic material cover.
  • Laminated structure that also has cover layer strength, Si-CXHY or other metal or compound of semiconductor and organic material, laminated structure of inorganic material, structure in which inorganic film and organic film are laminated alternately, Si on Si layer Examples thereof include a laminated structure such as a structure in which O or SiN is laminated.
  • FIG. 4 shows an enlarged view of the vicinity of the organic EL element 100 of the organic EL display device P1.
  • the organic EL element 100 is configured by laminating the barrier film 12 side force from the anode 14Z organic solid layer 16Z cathode 18 as well.
  • the anode 14 may be a transparent electrode such as ITO (Indium tin oxide) as long as it uses a layer having an energy level at which holes can be easily injected.
  • ITO Indium tin oxide
  • a general electrode may be used instead of the transparent electrode.
  • a transparent conductive material such as ITO is formed to a thickness of, for example, 150 nm by sputtering or the like.
  • ITO an oxide zinc (ZnO) film, IZO (indium-zinc alloy) gold, copper iodide, or the like can be used instead.
  • the organic solid layer 16 is formed from the anode 14 side from the hole injection layer 162 / hole transport layer 164 / light emitting layer 16 6 / electron transport layer 168.
  • the hole injection layer 162 is a layer that is provided between the anode 14 and the light emitting layer 166 and promotes the injection of holes from the anode 14. With the hole injection layer 162, the driving voltage of the organic EL element 100 can be lowered. Also, it plays a role such as stabilizing hole injection and extending the life of the element, and covering irregular surfaces such as protrusions formed on the surface of the anode 14 to reduce element defects. May be responsible for
  • the material of the hole injection layer 162 may be appropriately selected so that the ionization energy is between the work function of the anode 14 and the ion energy of the light emitting layer 166.
  • TPTE triphenylamine tetramer
  • copper phthalocyanine etc.
  • the hole transport layer 164 is a layer that is provided between the hole injection layer 162 and the light emitting layer 166 and promotes hole transport, and has a function of appropriately transporting holes to the light emitting layer 166. .
  • the material of the hole transport layer 164 may be appropriately selected so that the ionization energy is between the hole injection layer 162 and the light emitting layer 166.
  • TPD a triphenylamine derivative
  • the light-emitting layer 166 is a layer that recombines the transported holes and the transported electrons, which will be described later, to emit fluorescence or phosphorescence.
  • the material of the light-emitting layer 166 may be selected as appropriate so as to satisfy the properties corresponding to the above light-emitting modes.
  • an aluminum quinolinol complex (Alq3) can be used to emit green light.
  • the phosphorescent device when electrons and holes are injected from the cathode 18 and the anode 14 respectively into the phosphorescent light emitting layer 166 and recombined there, the recombination energy is doped through the host material. When supplied to the material, this dopant emits phosphorescence.
  • this phosphorescent organic EL device can emit red light due to the dopant.
  • the host material according to the present invention having a light emitting function also emits light, and the emission color of the host material and the emission color of the dopant material are different. Additive light is obtained. For example, when a compound that emits light blue is used, the dopant emits red light. Therefore, in this organic EL element, white light in which light blue and red are synthesized can be emitted to the outside.
  • the electron transport layer 168 is provided between the cathode 18 and the light emitting layer 166, and has a function of promoting the injection of electrons from the cathode 18, and lowers the driving voltage of the organic EL element 100.
  • the electron injection may be stabilized to extend the life of the device, the adhesion between the cathode 18 and the light emitting layer 166 may be enhanced, or the uniformity of the light emitting surface may be improved to reduce device defects.
  • the material of the electron transport layer 168 may be appropriately selected so as to be between the work function of the cathode 18 and the electron affinity of the light emitting layer 166.
  • the electron transport layer 168 is LiF, LiO (two
  • Lithium oxide and other thin films (eg 0.5 nm) can be used.
  • Each layer constituting the organic solid layer 16 is usually made of an organic substance, and may be made of a low-molecular organic substance or a high-molecular organic substance.
  • Organic functional layers with low molecular organic power are generally produced by dry processes (vacuum processes) such as vapor deposition.
  • Organic functional layers made of high molecular organic materials are generally spin-coated, blade-coated, dipped, sprayed, and printed. Each can be formed by a wet process.
  • organic material used for each layer constituting the organic solid layer 16 for example, as a polymer material, PEDOT, polyarine, polyparaphenylene-biylene derivative, polythiophene derivative, polyparaphenylene derivative, polyalkylphenol, And polyacetylene derivatives.
  • PEDOT polymer material
  • polyarine polyparaphenylene-biylene derivative
  • polythiophene derivative polyparaphenylene derivative
  • polyalkylphenol polyacetylene derivatives.
  • the organic solid layer 16 includes a hole injection layer 162, a hole transport layer 166, a light emitting layer 166, and an electron transport layer 168, but is limited to this configuration.
  • the light emitting layer 166 may be included at least, and it is not necessary.
  • a hole blocking layer is provided between the light emitting layer 166 and the electron transport layer 168 in the organic solid layer 16. You may choose. Holes may pass through the light emitting layer 166 and reach the cathode 18. For example, when Alq3 or the like is used for the electron transport layer 168, when Alq3 emits light when holes flow into the electron transport layer or the holes cannot be trapped in the light emitting layer, the light emission efficiency is low. There is a possibility of lowering. Therefore, a hole blocking layer may be provided to prevent holes from flowing out from the light emitting layer 166 to the electron transporting layer 168.
  • a material having a small work function or electron affinity may be selected.
  • an alloy type such as an Mg: Ag alloy or an Al: Li alloy can be suitably used.
  • the cathode 18 can be formed by vacuum deposition of a metal material such as A1 or MgAg to a thickness of 150 nm, for example.
  • FIG. 5 shows an enlarged view of the vicinity of the organic TFT 50 of the organic EL display device P1.
  • the organic TFT 50 has a gate electrode 52 formed on the barrier film 12 from the side of the NOR film 12 and a gate insulating film 54 formed so as to cover the surface of the gate electrode 52.
  • An organic semiconductor layer 56 is formed on the gate insulating film 54, a source electrode 58 is formed on the left edge side, and a drain electrode 60 is formed on the right edge side.
  • the drain electrode 60 is electrically connected to the anode 14 of the organic EL element 100.
  • the source electrode 58 and the drain electrode 60 are provided separately from each other, the organic semiconductor layer 56 is interposed between the source electrode 58 and the drain electrode 60, and the source electrode is interposed through the gate insulating film 54. 58, a drain electrode 60, and a gate electrode 52 arranged to face the organic semiconductor layer 56.
  • the gate electrode 52 may be any metal that can be anodized as the gate electrode material.
  • a single substance such as Al, Mg, Ti, Nb, Zr, or an alloy thereof may be used, but the material is not limited thereto. No.
  • the gate electrode only needs to have sufficient conductivity.For example, Pt, Au, W, Ru, Ir, Al, Sc, Ti, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Ta, Re, Os, Tl, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho , Er, Tm, Yb, Lu, etc.
  • organic conductive materials containing conjugated polymer compounds such as metal oxide particles such as ⁇ and ⁇ , polyaniline, polythiophene, and polypyrrole may be used.
  • the wiring pattern of the gate electrode 52 is formed on the substrate 10. Any general method may be used. Power that can be used for sputtering, CVD, etc. There is no particular limitation and an appropriate one may be used. For example, general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spin coating method, spray method, and CVD are also possible.
  • the gate insulating film 54 has a hydroxyl group partially including a cyanoethyl group, and a polymer having a cyanoethyl group partially includes a cyanoethyl group.
  • a mixed solution of a mixed polymer in which a cyanoethyl group and a hydroxyl group are mixed hereinafter also simply referred to as a mixed polymer
  • a melamine derivative is applied and thermally cured.
  • the mixed polymer is not particularly limited as long as it has a partially cyanoethyl group and a partially hydroxyl group. Also, the mixed polymer does not prevent the inclusion of groups other than cyanoethyl and hydroxyl groups! / ,.
  • polysenorelose methoxycellulose
  • hydrogenated chichenenoresenorelose canoleboxymethylenole
  • examples thereof include cellulose derivatives such as senorelose, methinoresenellose, and ethinoresululose, pullulan, sorbitol, phenoxy resin, polyphenol resin, and the like, in which a cyanoethyl group is partially added.
  • polyphenolic resin is obtained by reacting phenols and aldehydes in a ratio of 1 to 3 moles of aldehydes to 1 mole of phenolic hydroxyl group under a basic catalyst or an acidic catalyst. It is done.
  • phenols include phenol, cresol, xylenol, octylphenol, phenol-phenol, bisphenol A, bisphenol S, and bisphenol F.
  • Aldehydes include formaldehyde, paraformaldehyde, glyoxal, Trioquizal etc. are mentioned.
  • those modified with a modifying agent that promotes plasticization such as paratoluene sulfonamide, tung oil, phosphate esters, glycols, etc.
  • a modifying agent that promotes plasticization such as paratoluene sulfonamide, tung oil, phosphate esters, glycols, etc.
  • basic catalysts include sodium and potassium.
  • the acidic catalyst include paratoluenesulfonic acid and hydrochloric acid.
  • the melamine derivative is not particularly limited as long as it has good compatibility with the polymer and can be dissolved in the same solvent as the partially cyanethylated polymer.
  • As the melamine derivative there is a force using a methylated polymer formaldehyde copolymer, and as the melamine derivative, there are methylolated, acrylated, butylated and isobutylated polymelamine formaldehyde copolymer.
  • triazines and formaldehydes such as methylolated melamine resin, methylolated melamine-phenol cocondensed resin, methylolated melamine-urea cocondensed resin, and methylolated melamine-epoxy cocondensed resin can be used together.
  • a synthetic resin obtained by condensation can be used.
  • the gate insulating film 54 is formed of the above mixed polymer, it does not prevent mixing of other polymers such as thermoplastic resin and thermosetting resin or metal oxide particles. Yes. These can be appropriately selected and used in combination with the mixed polymer.
  • organic polymer or oligomer materials having a high dielectric constant include, for example, cyanoethyl cellulose (dielectric constant 16), cyanoethyl hydroxyethyl cellulose (dielectric constant 18), cyanoethyl hydroxypropyl.
  • Cellulose (dielectric constant 14), cyanoethyldihydroxypropylcellulose (dielectric constant 23), cyanoethyl amylose (dielectric constant 17), cyanoethyl starch (dielectric constant 17), cyanoethyldihydroxypropyl starch (ratio) Dielectric constant 18), cyanoethyl pullulan (relative dielectric constant 18), cyanoethyl dalicidol pullulan (dielectric constant 20), cyanopolyvinyl alcohol (dielectric constant 20), cyanoethyl polyhydroxymethylene (dielectric) 10), cyanoethyl sucrose (dielectric constant 25), cyanoethyl sorbitol (dielectric constant 40), etc.
  • Ethyl group-containing polymer or oligomer 1 Polyvinylidene fluoride (dielectric constant 11), vinylidene fluoride-trifluoroethylene copolymer (55/45: dielectric constant 18, 75/25: dielectric constant) Vinylidene polymers such as 10) are listed.
  • thermosetting resins include polyurethane, phenol resin, melamine resin, urea resin, unsaturated polyester resin, diallyl cover. Examples thereof include rate resin, silicon resin, and epoxy resin.
  • Thermosetting resins include polyurethane, phenol resin, melamine resin, urea resin, unsaturated polyester resin, diallyl cover. Examples thereof include rate resin, silicon resin, and epoxy resin.
  • the metal oxide particles can be appropriately selected and used.
  • the metal oxide contained in the metal oxide particles can be appropriately selected and used, and is not particularly limited.
  • 3 3 3 3 3 3 3 3 3 3 3 2 3 or solid solutions thereof more specifically barium strontium titanate, strontium titanate, barium titanate, belly titanate, calcium titanate, magnesium titanate, zirconate Barium titanate, lead zirconate titanate, lead zirconate
  • composite oxide particles such as lead lanthanum zirconate titanate, lead lanthanum titanate, bismuth titanate, lanthanum titanate, barium magnesium fluoride, etc.
  • metal oxide particles such as titanium dioxide, tantalum pentoxide, and yttrium trioxide. Only one kind of these metal oxide particles may be used, or a plurality of kinds may be used in combination.
  • the source electrode 58 and the drain electrode 60 may be made of a simple substance such as Al, Mg, Ti, Nb, Zr, or an alloy thereof, but is not limited thereto.
  • the gate electrode only needs to have sufficient conductivity.
  • a single metal such as Er, Tm, Yb, or Lu, or a laminate or a compound thereof may be used.
  • metal oxide particles such as ⁇ , ⁇
  • Organic conductive materials containing conjugated polymer compounds such as polyarines, polythiophenes, and polypyrroles may also be used.
  • the source electrode 58 and the drain electrode 60 may be manufactured by a general method.
  • Spatter Examples of such a method include an etching method and a CVD method, but an appropriate method may be used as long as it is not particularly limited.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, CVD, lift-off, etc. are also possible.
  • the organic semiconductor 56 is not particularly limited as long as it is an organic material exhibiting semiconductor characteristics such as pentacene.
  • phthalocyanine derivatives for example, phthalocyanine derivatives, naphthalocyanine derivatives, azo compound derivatives, perylene derivatives, indigo derivatives, Quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxadiazole, pyrazoline, thiathiazole , Nitrogen-containing cyclic compound derivatives such as triazole, hydrazine derivatives, triphenylamine derivatives, triphenylmethane derivatives, stilbenes, quinone compound derivatives such as anthraquinone diphenoquinone, anthracene, bilene,
  • the structure of polycyclic aromatic compound derivatives such as enanthrene and coronene was used in the main chain of polymers such as poly
  • Attached in a pendant form as a side chain or an aromatic conjugated polymer such as polyparaphenylene, an aliphatic conjugated polymer such as polyacetylene, a heterocyclic conjugate of polypinol or polythiophene ratio
  • polymers heteroatom-conjugated polymers such as polyarylenes and polyphenylene sulfide, and conjugates such as poly (phenylene vinylene), poly (anilenylene vinylene), and poly (cellene vinylene)
  • a carbon-based conjugated polymer such as a composite conjugated polymer having a structure in which structural units of the conductive polymer are alternately bonded is used.
  • oligosilanes such as disila-lene carbon-based conjugated polymer structures such as polysilanes, disila-lenarylene polymers, (disila-lene) etylene polymers, and (disila-diylene) ethylene polymers. Polymers in which carbon and conjugated structures are alternately linked are used.
  • polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers with aromatic ligands of polymer chains such as phthalocyanate polysiloxane, perylene tetracarboxylic acid Organic compounds such as polymers obtained by heat-treating perylenes such as polyacrylamide, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylo-tolyl, and mouth-bumite.
  • a force such as a sputtering method or a CVD method may be used.
  • An appropriate method may be used without being particularly limited.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, and CVD are also possible.
  • the protective film 20 does not necessarily need to be formed, but it is preferable because it can protect the erosion power due to moisture, oxygen, and the like.
  • the protective film 20 may have a multilayer structure, a single-layer structure, an inorganic film, or an organic film, but if an inorganic film is included, the protective film 20 is caused by moisture or oxygen. This is preferable because noria from erosion is improved.
  • a nitride film, an oxide film, a carbon film, a silicon film, or the like can be used. More specifically, a silicon nitride film, a silicon oxide film, a silicon oxide film, or the like can be used. Examples include nitride films, diamond-like carbon (DLC) films, and amorphous carbon films. That is, nitrides such as SiN, A1N, and GaN, oxides such as SiO, Al 2 O, Ta 2 O, ZnO, and GeO
  • Oxynitrides such as SiON, carbonitrides such as SiCN, metal fluorine compounds, metal films, and the like.
  • Examples of the organic film include a furan film, a pyrrole film, a thiophene film, or a polyparaxylene film, an epoxy resin, an acrylic resin, a polyparaxylene, a fluorine-based molecule (perfluoroolefin, perfluoronole ether, tetrafluoroethylene). Fluoroethylene, chlorotrifluoroethylene, dichlorodifluoroethylene, etc.), metal alkoxides (CHOM, CHOM, etc.),
  • Polymerized films such as lyimide precursors and perylene compounds can be used.
  • the protective film 20 has a laminated structure composed of two or more kinds of substances, an inorganic protective film, a silane coupling layer, a laminated structure composed of a resin sealing film, a barrier layer composed of an inorganic material cover, an organic material cover.
  • Laminated structure that also has cover layer strength, Si-CXHY or other metal or compound of semiconductor and organic material, laminated structure of inorganic material, structure in which inorganic film and organic film are laminated alternately, Si on Si layer Examples thereof include a laminated structure such as a structure in which O or SiN is laminated.
  • the nolia film 12 and the protective film 20 fill the surface irregularities of the pinhole formed by the organic film formed on the inorganic film and flatten the surface.
  • the film stress of the inorganic film can be relaxed There is also a role to play.
  • a method for manufacturing the protective film 20 includes a sputtering method, a CVD method, and the like, but is not particularly limited, and an appropriate one may be used as appropriate.
  • general thin film forming methods such as vacuum deposition, ion plating, sol-gel method, spray method, spin coating method, and CVD are also possible.
  • the light emission mode of the organic EL display device P1 will be described.
  • Holes are supplied from the source electrode 58 to the drain electrode 60 through the gate insulating film 54. Holes are transferred to the anode 14 of the organic EL element 100 through the drain electrode 60.
  • holes are transported from the anode 14 to the hole injection layer 162 in the organic solid layer 16.
  • the transported holes are injected into the hole transport layer 164.
  • the holes injected into the hole transport layer 164 are transported to the light emitting layer 166.
  • the organic EL element 100 electrons are transported from the cathode 18 to the electron transport layer 168 in the organic solid layer 16. The transported electrons are transported to the light emitting layer 166.
  • the transported holes and electrons recombine in the light-emitting layer 166.
  • EL emits light due to the energy generated.
  • This light emission is led out to the outside through the hole transport layer 164, the hole injection layer 162, the anode 14, the noria film 12, and the substrate 10 in order, and the light emission can be visually recognized.
  • the interface between the cathode layer 18 and the electron transport layer 168 becomes a reflection surface, and is reflected at this interface, proceeds to the anode 14 side, and passes through the substrate 10. And injected outside. Therefore, the organic EL element with the above configuration is used as a display. When it is adopted, the substrate 10 side becomes the display observation surface.
  • an organic EL panel when an organic EL panel is intended to realize a full-color display, for example, a method of manufacturing organic EL elements that emit RGB colors by painting (painting method), a white-colored monochromatic light-emitting organic A combination of an EL element and a color filter (color filter method), a combination of a single color emission organic EL element such as blue light emission or white emission and a color conversion layer (color conversion method), a single color organic EL element
  • a method (photo bleaching method) for realizing a plurality of light emission by irradiating the organic light emitting layer with an electromagnetic wave or the like can be mentioned, but it is not particularly limited.
  • the organic EL element 100 is driven by the high-performance organic TFT including the high-quality gate insulating film 54, so that a higher-performance organic EL display device is provided. Can be provided.
  • a high-performance organic TFT can be fabricated using the gate insulating film of this embodiment. Therefore, an organic EL display device having a high-performance organic TFT can be provided.
  • photolithography is more suitable for providing a gate insulating film, an organic TFT, and an organic EL display device if a polymer polymer such as a polymer solvent having high solvent resistance for etching, heat treatment and other processes is used. is there.
  • an organic EL display device including an organic EL element and an organic TFT used in the organic EL display apparatus are shown.
  • the present invention is not limited to this, and an organic transistor that drives other than the organic EL element may be used.
  • This embodiment is applicable. That is, in the above embodiment, the organic EL element may be replaced with a driving element driven by another organic transistor, or the driving element such as the organic EL element may be omitted and the organic transistor alone may be used.
  • Such an organic transistor can be applied to a display in general, for example, a liquid crystal display, an electrophoretic display, an electronic paper, and a toner display.
  • a method for manufacturing the organic EL display device P1 shown in FIG. 2 will be described.
  • a barrier film 12 is formed on the substrate 10, and the organic EL element 100 and the organic TFT 50 are manufactured on the noria film 12.
  • the drain electrode 60 of the organic TFT 50 and the anode 14 of the organic EL element 100 are fabricated so as to be in electrical contact with each other.
  • the protective film 20 is formed to manufacture the organic EL display device PI.
  • the mixed polymer may be a ready-made one, but may be produced.
  • the method for producing the mixed polymer is not particularly limited.
  • the polymer having a hydroxyl group can be produced by a cyano-ethylation reaction (Michael addition reaction, etc.) using nitrile nitrile.
  • the amount of acryl-tolyl added here is limited so that all the hydroxyl groups of the polymer having a hydroxyl group are not cyanoethylated.
  • the mixed polymer is represented by the following chemical formulas (4) and (5).
  • the mixed polymer represented by the chemical formula (4) is a mixed polymer in which the hydroxyl group of the polybutyl alcohol represented by the chemical formula (1) is substituted with a cyanoethyl group.
  • the mixed polymer represented by the chemical formula (5) is a mixed polymer in which the polybutanol represented by the chemical formula (2) is substituted with a cyanoethyl group.
  • the mixed polymer represented by the above chemical formulas (4), (5), etc., and the melamine derivative represented by the above chemical formula (3), etc. are liquefied, mixed and stirred to prepare a coating solution as a mixture containing them.
  • the liquefaction method of the mixed polymer and melamine derivative includes a method of liquefying the mixture of the mixed polymer and melamine derivative itself (solvent-free coating solution), and a method of using a solvent that dissolves the mixture separately from the mixture.
  • the solvent is not particularly limited as long as it is appropriately selected and used.
  • acetonitrile, DMF (N, N-dimethylformamide), acetonitrile, and the like are used.
  • a water-soluble organic solvent such as water or alcohol
  • water ordinary industrial water can be used.
  • it can be prepared by using lower alcohols such as methanol, ethanol, isopropyl alcohol, N-propyl alcohol, glycols and esters thereof as water-soluble organic solvents that are equivalent to water and alcohol.
  • the lower alcohol, glycols and esters thereof are preferably contained in a proportion of about 5 to 20% by weight.
  • These solvents such as lower alcohols, glycols and esters thereof are used for the purpose of improving the fluidity of ink, improving the wetness of the substrate sheet as the substrate, and adjusting the drying property.
  • the type, amount used, etc. are determined according to the purpose.
  • the solvent of the solvent-based coating solution is not particularly limited.
  • a water-insoluble organic solvent such as ether, ethylene glycol monomethinoreethenole, or a mixed solvent thereof is used.
  • the coating solution 32 thus prepared is applied to the surface of the barrier film 12 on the substrate 10 on which the gate electrode surface and the gate electrode are formed.
  • the coating method of the coating liquid is not particularly limited as long as it is appropriately selected and used, but is not limited to inkjet, gravure coating, gravure reverse coating, comma coating, die coating, lip coating, cast coating, ronore coating, Air knife coat, Mayer coat, Extrusion coat, Offset, UV curing offset, Flexo, Stencil, Silk, Curtain Flow coat, Wire coat-Reno cloth coat-Gravure coat, Kiss coat, Blay Various printing methods such as coating, smooth coating, spray coating, pouring coating and brush coating can be applied.
  • a desired portion 34 where the gate insulating film 54 is formed is heated. By this heating, the cross-linking reaction between the mixed polymer and the melamine derivative proceeds. By this crosslinking reaction, a three-dimensional crosslinked structure of the mixed polymer and the melamine derivative is formed and cured. In this manner, the desired portion 34 where the gate insulating film 54 is formed is thermally cured by heating.
  • the desired portion 34 where the gate insulating film 54 is to be formed is thermally cured, and then the portion of the coating solution is washed with a solvent by an etching process such as oxygen-reactive ion etching, and then flowed.
  • a solvent such as oxygen-reactive ion etching
  • Aromatic organic solvents such as alcohol and toluene
  • alcohol-based organic solvents butanol, etc.
  • ester-based organic solvents such as butyl acetate
  • ether-based organic solvents such as tetrahydrofuran
  • ketone organic solvents such as methyl isobutyl ketone
  • Specific examples include aromatic organic solvents such as veratole, toluene, and phenetole, and other materials include diethylene glycol monomethylenoatenore, diethyleneglycolenomonochinenoreatenore, and diethyleneglycolenomonoenoate.
  • examples also include butyl ether, diethylene glycol dimethyl ether, tetralin, methyl isobutyl ketone, dimethylacetamide, N-methyl-2-pyrrolidone, and dimethylformamide.
  • the organic semiconductor layer 56, the source electrode 58, and the drain electrode 60 are formed by photolithography or the like to form the organic TFT 50.
  • the gate insulating film in the present embodiment is such that a polymer having a hydroxyl group partially has a cyanoethyl group, or a polymer having a cyanoethyl group partially has a cyanoethyl group.
  • a mixture containing a mixed polymer containing cyanoethyl groups and hydroxyl groups and a melamine derivative, such as a hydroxyl group, is heat-cured and a crosslinked film is used, which makes the gate insulation highly compatible with high dielectric constant.
  • a membrane can be provided.
  • a high-performance organic TFT can be manufactured using the gate insulating film of this embodiment. Therefore, an organic EL display device having a high-performance organic TFT can be provided.
  • a polymer polymer with high solvent resistance to the process is used to provide a gate insulating film, organic TFT, organic EL display device and display. Is preferred.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Formation Of Insulating Films (AREA)

Description

明 細 書
ゲート絶縁膜、有機トランジスタ、有機 EL表示装置の製造方法、ディスプ レ
技術分野
[0001] 本発明は、ゲート絶縁膜の製造方法、有機トランジスタの製造方法、有機 EL表示 装置の製造方法、ディスプレイに関する。
背景技術
[0002] 有機薄膜トランジスタ(以下、有機 TFT (Thin Film Transistors)ともいう)は様 々な用途に用いられている。例えば、有機 TFTは、有機 EL表示装置における有機 E L素子を駆動する手段として研究されて 、る。
[0003] 有機 EL素子は、基板上に、電極及び電極間に少なくとも発光層を備えた有機固体 層を備え、両側の電極カゝら有機固体層中の発光層に電子と正孔を注入し、有機発 光層で発光を起こさせる素子であり、高輝度発光が可能である。また有機化合物の 発光を利用しているため発光色の選択範囲が広いなどの特徴を有し、光源や有機 E L表示装置などとして期待されている。特に有機 EL表示装置は、一般に、広視野、 高コントラスト、高速応答性および視認性に優れ、薄型'軽量で、低消費電力のフラッ トパネルディスプレイなどとして期待されている。
[0004] 有機 EL表示装置は、少なくとも陽極、有機発光層、陰極を備える有機 EL素子から なる画素と前記有機 EL素子を点灯 ·制御する有機トランジスタが備えられるものであ る。有機 EL表示装置において、マトリクス状に配置した有機 EL素子を、互いに直交 したストライプ状の走査電極およびデータ電極 (信号電極)により外部から駆動するパ ッシブマトリクス方式と、画素ごとに有機トランジスタ力もなるスイッチング素子とメモリ 素子を備え、有機 EL素子を点灯させるアクティブマトリクス方式とがある。
[0005] 有機トランジスタを用いたアクティブマトリクス方式は、一般に、画素数の増大に伴 V、パッシブマトリックス方式に比べ、 TFTにより有機 EL素子が駆動されるアクティブ マトリクス方式のほうが優位とされている。これは、ノッシブマトリクス方式は、走查電 極が選択された期間のみ各画素の有機 EL素子が点灯し、画素数が多くなるに従い 、有機 EL素子の点灯期間が短くなつて平均輝度が低下する傾向にあるのに対し、ァ クティブマトリクス方式は、画素ごとに TFTからなるスイッチング素子とメモリ素子を備 えているため有機 EL素子の点灯状態が保持され、高輝度、高効率で長寿命の動作 が可能であり、ディスプレイの高精細化や大型化に有利である傾向にあるなどの理由 による。
[0006] 図 1には、背景技術に係る有機 EL表示装置 PAが示される。有機 EL表示装置 PA は、基板 10と、基板 10上に形成されたバリア膜 12と、バリア膜 12上に形成された有 機 EL素子 100および有機 TFT50と、有機 EL素子 100および有機 TFT50を覆う保 護膜 (パッシベーシヨン膜) 20とを有する。
[0007] 有機 TFT50は、ソース電極 58及びドレイン電極 60は、互いに分離して設けられ、 ソース電極 58とドレイン電極 60の間に有機半導体層 56を介在させ、ゲート絶縁膜 5 4を介してソース電極 58、ドレイン電極 60、有機半導体層 56と対向されて配置された ゲート電極 52を有する構造である。
[0008] 有機 TFT自体の性能は、アモルファスシリコン TFT程度である場合が多!、が、液 晶ゃ電気泳動型の駆動用の素子として用いる分には、有機 TFTの性能としては、 on Zoff比がある程度あれば低電流駆動が可能であるため、ゲート絶縁膜における絶 縁性の確保などの問題な!/、場合が多 、。
[0009] ところが一方で、自発光素子である有機 EL素子をアクティブマトリクス方式により駆 動するには、発光させるために大電流を供給できるトランジスタが必要となる。このた め、ゲート絶縁膜として Ta Oといった高比誘電率の材料を用い、誘引されて発生す
2 5
る多くのキャリアによる大電流を供給できる有機 TFTの開発が進められて!/、る。
[0010] 一方で様々な利点があることから、塗布液を被塗布材表面に塗布して、固化させる ことでゲート絶縁膜を形成させる印刷技術でゲート絶縁膜を形成させる方法も検討さ れている。印刷技術で高比誘電率のゲート絶縁膜を形成するためには、固化後ゲー ト絶縁膜となる塗布膜の選定が問題となる。塗布膜としてはバインダー榭脂だけでは 一般的に高比誘電率を有しない傾向にあるので、バインダー榭脂よりも高比誘電率 を有する高比誘電率物質を含有させた塗布膜を採用する。下記特許文献 1には、バ インダー榭脂中に単に比誘電率の高 、金属酸ィ匕物粒子を分散させる方法が挙げら れる。
特許文献 1:特開 2002— 110999号公報
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、上記特許文献 1のようにバインダー榭脂中に単に金属酸ィ匕物粒子を 分散させる塗布液でゲート絶縁膜を形成した場合には、含有される金属酸化物粒子 により不具合が生じる場合がある。例えば、ゲート絶縁膜表面に突き出した金属酸ィ匕 物粒子により、ゲート絶縁膜の表面が粗くなり、有機 TFTの性能が低下する原因とな る場合がある。
[0012] そこで、高比誘電率を有するシァノエチル基を有するポリマーを単独で使用したり、 他のポリマーと混合して使用することも考えられる。
[0013] しかし、シァノエチル基を有するポリマーを単独使用の場合は、フォトリソグラフィー やエッチングなどのトランジスタ作製プロセスにお 、て使用される、エッチング用の溶 剤や、塗布型有機半導体を使用する場合などに耐溶剤性に問題がある場合がある。
[0014] また、シァノエチル基を有するポリマーを他の硬化系ポリマーと混合使用した場合 は、耐溶剤性は改善されるが、相溶性が悪ぐ相分離を起こしてしまう場合がある。以 上などから、高品質なゲート絶縁膜を提供することができない場合がある。
[0015] 本発明は、上記課題に鑑みてなされたものであり、より高品質なゲート絶縁膜の製 造方法、より高性能な有機トランジスタの製造方法、有機 EL表示装置の製造方法、 ディスプレイを提供することを主な目的とする。
課題を解決するための手段
[0016] 請求項 1に記載の発明は、有機トランジスタにおけるゲート絶縁膜の製造方法であ つて、シァノエチル基と水酸基との混在する混在ポリマーとメラミン誘導体とを含む混 合物を熱硬化させて形成する工程を含むことを特徴とする。
[0017] 請求項 3に記載の発明は、ゲート絶縁膜を含む有機トランジスタの製造方法であつ て、前記ゲート絶縁膜は、請求項 1または 2に記載のゲート絶縁膜の製造方法により 製造されてなる有機トランジスタの製造方法。
[0018] 請求項 4に記載の発明は、少なくとも陽極、有機発光層、陰極を備える有機 EL素 子と前記有機 EL素子を駆動する有機トランジスタを含む有機 EL表示装置の製造方 法であって、前記有機トランジスタは、請求項 3に記載の有機トランジスタの製造方法 によって製造されてなることを特徴とする。
[0019] 請求項 5に記載の発明は、請求項 3に記載の有機トランジスタの製造方法で製造さ れた有機トランジスタを含むディスプレイであることを特徴とする。
図面の簡単な説明
[0020] [図 1]従来技術における有機 EL表示装置の模式的な断面図である。
[図 2]従来技術における有機 TFTの模式的な断面図である。
[図 3]本実施形態における有機 EL表示装置の模式的な断面図である。
[図 4]本実施形態における有機 EL表示装置の有機 EL素子付近の模式的な拡大図 である。
[図 5]本実施形態における有機 EL表示装置の有機 TFT付近の模式的な拡大図であ る。
[図 6]本実施形態におけるゲート絶縁膜の製造方法の模式的な説明図である。
[図 7]本実施形態におけるゲート絶縁膜の製造方法の模式的な説明図である。
[図 8]本実施形態におけるゲート絶縁膜の製造方法の模式的な説明図である。 符号の説明
[0021] 10 基板
16 有機固体層
18 陰極
20 保護膜
50 有機 TFT
54 ゲート絶縁膜
100 有機 EL素子
PI, PA 有機 EL表示装置
発明を実施するための最良の形態
[0022] 「ゲート絶縁膜の製造工程の改良」
本発明者は、シァノエチル基を有するポリマーについて、他のポリマーと混合して 作製するゲート絶縁膜について検討した。上述のように、シァノエチルイ匕した榭脂は 、溶媒との相溶性が悪ぐ相分離を起こしてしまう場合があり、ゲート絶縁膜の劣化に つながる場合がある。それ以上に、シァノエチル基を有するポリマーは耐溶剤性が悪 ぐエッチング用の溶剤や、塗布型有機半導体を使用する場合などに溶剤に侵され ゲート絶縁膜の劣化につながる場合がある。
本発明者は、シァノエチルイ匕した榭脂の相溶性を向上させるために、架橋反応を 利用することを考えるに至った。例えば、ポリビュルアルコール (PVA:下記化学式( 1) )やポリビュルフエノール(PVP:下記化学式(2) )、ポリフエノール榭脂と!/、つた榭 脂は、メラミン誘導体(下記化学式(3):その一例であるメラミン ホルムアルデヒド榭 脂)と熱により架橋反応して熱硬化するので、これら榭脂との相溶性はよい。しかしな がら、ポリビュルアルコール、ポリフエノール榭脂ゃポリビュルフエノールといった榭脂 では比誘電率を十分に確保することが難 、ので、代わりにシァノエチル基を有する ポリマーを使用することが考えられる。
[0023] [化 1]
Figure imgf000007_0001
[0024] [化 2]
Figure imgf000007_0002
[0025] [化 3]
Figure imgf000008_0001
( 3 ) ところが、上述のようにメラミン誘導体は、ポリフエノール榭脂ゃポリビュルフエノール t ヽつた樹脂とは架橋反応する一方で、シァノエチル基を有するシァノエチルプルラ ンゃポリスチレンでは、メラミン誘導体との架橋反応が起こらな 、。
[0026] これは、本発明者が一例として考察するに、ポリビュルフエノールとポリスチレンで は、置換基が水酸基の有無という構造の相違のみであることにより、メラミン誘導体と 架橋反応には水酸基が関与して 、ると考えられ、シァノエチル基を有するシァノエチ ルプルランやポリスチレンでは、水酸基を有さないことによりメラミン誘導体との架橋 反応が起こらな 、ものであると考えられる。
[0027] 以上を鑑みて本発明者は、鋭意検討した結果、水酸基を有するポリマーについて 、水酸基の一部を部分的にシァノエチル基とすることや、シァノエチル基を有するポ リマーについて、シァノエチル基の一部を部分的に水酸基とするなどして、シァノエ チル基と水酸基が混在した混在ポリマー(以下単に混在ポリマーともいう)を用い、シ ァノエチル基と水酸基の両利点を利用することを見 、だし、本発明に至った。
[0028] すなわち、シァノエチル基による高比誘電率ィ匕をはかり、高比誘電率を担保したま ま水酸基がメラミン誘導体との架橋反応を促進するので耐溶剤性や相溶性も改善さ れることを見いだした。さらには、特にゲート絶縁膜は比誘電率が 7〜40を有すると 誘電率を確保でき、ヒステリシスを防止し電気的物性を安定させるなどの理由力も好 適である。
[0029] その結果、より高品質なゲート絶縁膜を提供でき、これを備える高性能な有機トラン ジスタ、さらにはこの有機トランジスタを備える有機 EL表示装置の製造方法、デイス プレイを見 、だすことができた。
[0030] 「有機 EL表示装置」 以下、本発明の実施の形態を図面に基づいて説明する。なお、本実施形態につい ては、本発明を実施するための一形態に過ぎず、本発明は本実施形態によって限定 されるものではない。
[0031] 図 3には、本実施形態に係る有機 EL表示装置 P1の概略断面図が示される。有機 EL表示装置 P1は、フィルム基板 10と、基板 10上に形成されたバリア膜 12と、ノ リア 膜 12上に形成された有機 EL素子 100および有機 TFT50と、有機 TFT50を覆い、 有機 EL素子 100および有機 TFT50を外部力もの浸食力も保護する保護膜 20とを 有する。
[0032] く基板〉
基板 10は、その構成する材料は適宜選択して用いればよい。例えば、榭脂として は、熱可塑性榭脂、熱硬化性榭脂、ポリカーボネート、ポリメタクリル酸メチル、ポリア リレート、ポリエーテルスルフォン、ポリサルフォン、ポリエチレンテレフタレートポリエス テル、ポリプロピレン、セロファン、ポリカーボネート、酢酸セルロース、ポリエチレン、 ポリ塩ィ匕ビニル、ポリスチレン、ポリアミド、ポリイミド、ポリ塩ィ匕ビニリデン、ポリビニルァ ルコール、エチレン '酢酸ビュル共重合体けん化物、フッ素榭脂、塩ィ匕ゴム、アイオノ マー、エチレン ·アクリル酸共重合体、エチレン ·アクリル酸エステル共重合体等として 様々な基板を用いることができる。また、榭脂を主成分とする基板ではなぐガラス基 板や、ガラスとブラスティックの貼り合せ基板でもよぐまた基板表面にアルカリバリア 膜や、ガスノリア膜がコートされていてもよい。また、これら透明基板に反対側から光 を射出するトップェミッション型である場合などには、基板 10は必ずしも透明でなくと ちょい。
[0033] <バリア膜 >
ノリア膜 12は必ずしも形成しなくともよいが、形成すると基板側からの水分や酸素 などによる浸食力 保護することができるので好適である。バリア膜 12を形成する場 合には、材料は適宜選択して用いることができる。
[0034] ノ リア膜 12は、多層構造であってもよく単層構造であってもよぐ無機膜であっても よぐ有機膜であってもよいが無機膜が含まれていると水分や酸素などによる浸食か らのノ リア性が向上するので好適である。 [0035] 無機膜としては、例えば、窒化膜、酸ィ匕膜又は炭素膜又はシリコン膜等が採用可能 であり、より具体的には、シリコン窒化膜、シリコン酸ィ匕膜、シリコン酸ィ匕窒化膜、又は ダイヤモンド状カーボン (DLC)膜、アモルファスカーボン膜などが挙げられる。すな わち、 SiN、 A1N、 GaN等の窒化物、 SiO、 Al O、 Ta O、 ZnO、 GeO等の酸化物
2 3 2 5
、 SiON等の酸ィ匕窒化物、 SiCN等の炭化窒化物、金属フッ素化合物、金属膜、等 があげられる。
[0036] 有機膜としては、例えば、フラン膜、ピロール膜、チオフ ン膜或いは、ポリパラキシ レン膜エポキシ榭脂、アクリル榭脂、ポリパラキシレン、フッ素系ェ分子 (パーフルォロ ォレフィン、パーフノレオ口エーテル、テトラフノレォロエチレン、クロロトリフノレォロェチレ ン、ジクロロジフルォロエチレン等)、金属アルコキシド(CH OM、 C H OM等)、ポ
3 2 5
リイミド前駆体、ペリレン系化合物などの重合膜等があげられる。
[0037] ノリア膜 12は、 2種類以上の物質力 なる積層構造、無機保護膜、シランカップリン グ層、榭脂封止膜からなる積層構造、無機材料カゝらなるバリア層、有機材料カゝらなる カバー層力もなる積層構造、 Si— CXHY等の金属または半導体と有機物との化合 物、無機物カゝらなる積層構造、無機膜と有機膜を交互に積層した構造、 Si層上に Si Oまたは Si Nを積層した構造等の積層構造としたものなどが挙げられる。
2 3 4
[0038] <有機 EL素子 >
図 4には有機 EL表示装置 P1の有機 EL素子 100付近の拡大図が示される。有機 E L素子 100は、バリア膜 12側力も陽極 14Z有機固体層 16Z陰極 18とから積層され て構成されている。
[0039] 陽極 14は、正孔を注入しやすいエネルギーレベルを持つ層を用いればよぐ ITO ( Indium tin oxide :酸化インジウム錫膜)などの透明電極を用いることができるが、 有機 EL表示装置がトップェミッション型である場合には透明電極でなくとも一般的な 電極を用いればよい。
[0040] ITOなどの透明導電性材料を例えば 150nmの厚さにスパッタリングなどによって形 成する。 ITOに限らず、代わりに酸ィ匕亜鉛 (ZnO)膜、 IZO (インジウム—亜鉛合金) 金、よう化銅等を採用することもできる。
[0041] 有機固体層 16は、陽極 14側から正孔注入層 162/正孔輸送層 164/発光層 16 6/電子輸送層 168とから構成されて 、る。
[0042] 正孔注入層 162は、陽極 14と発光層 166との間に設けられ、陽極 14からの正孔の 注入を促進させる層である。正孔注入層 162により、有機 EL素子 100の駆動電圧は 低電圧化することができる。また、正孔注入を安定ィ匕し素子を長寿命化するなどの役 割を担ったり、陽極 14の表面に形成された突起などの凹凸面を被覆し素子欠陥を減 少させる、などの役割を担う場合もある。
[0043] 正孔注入層 162の材質については、そのイオン化エネルギーが陽極 14の仕事関 数と発光層 166のイオンィ匕エネルギーの間になるように適宜選択すればよい。例え ば、トリフエ-ルァミン 4量体 (TPTE)、銅フタロシアニンなどを用いることができる。
[0044] 正孔輸送層 164は、正孔注入層 162と発光層 166の間に設けられ、正孔の輸送を 促進させる層であり、正孔を発光層 166まで適切に輸送する働きを持つ。
[0045] 正孔輸送層 164の材質については、そのイオン化エネルギーが正孔注入層 162と 発光層 166の間になるように適宜選択すればよい。例えば、 TPD (トリフエ-ルァミン 誘導体)を採用することができる。
[0046] 発光層 166は、輸送された正孔と同じく輸送された後述の電子とを再結合させ、蛍 光発光または燐光発光させる層のことである。発光層 166は上記発光態様に対応で きる性質を満たすものになるようにその材料を適宜選択すればよい。例えば、トリス(8 —キノリノラト)アルミニウム錯体 (Alq)や、ビス (ベンゾキノリノラト)ベリリウム錯体 (Be Bq)、トリ(ジベンゾィルメチル)フエナント口リンユーロピウム錯体(Eu (DBM) 3 (Phe n) )、ジトルイルビ-ルビフエ-ル(DTVBi)、ポリ(p—フエ-レンビ-レン)や、ポリア ルキルチオフェンのような π共役高分子などを用いることができる。例えば緑色に発 光させたければアルミキノリノール錯体 (Alq3)を用いることができる。
[0047] 例えば、燐光発光型素子においては、陰極 18と陽極 14からそれぞれ電子と正孔 を燐光発光層 166に注入してここで再結合させると、ホスト材料を介して再結合エネ ルギがドーパント材料に供給され、このドーパントが燐光を発光する。ここで、注入電 流密度が低い条件下では、この燐光発光型の有機 EL素子は、ドーパントに起因した 赤色発光が得られる。また、注入電流密度の高い条件下では、発光機能を備える本 発明にカゝかるホスト材料も発光し、ホスト材料の発光色とドーパント材料の発光色の 加色光が得られる。例えば、水色に発光する化合物を用いると、ドーパントは、赤色 に発光するため、この有機 EL素子では、水色と赤色が合成された白色光を外部に 射出することができる。
[0048] 電子輸送層 168は、陰極 18と発光層 166との間に設けられ、陰極 18からの電子の 注入を促進する機能を有し、有機 EL素子 100の駆動電圧を低電圧化する。また、電 子注入を安定化し素子を長寿命化したり、陰極 18と発光層 166との密着性を強化し たり、発光面の均一性を向上させ素子欠陥を減少させたりする場合がある。
[0049] 電子輸送層 168の材質にっ 、ては、陰極 18の仕事関数と発光層 166の電子親和 力の間になるように適宜選択すればよい。例えば、電子輸送層 168は LiF、 LiO (二
2 酸化リチウム)などの薄膜 (例えば 0. 5nm)などが採用できる。
[0050] これら有機固体層 16を構成する各層は通常、有機物カゝらなり、更に、低分子の有 機物からなる場合、高分子の有機物からなる場合がある。低分子の有機物力もなる 有機機能層は一般に蒸着法等のドライプロセス (真空プロセス)によって、高分子の 有機物からなる有機機能層は一般にスピンコート法、ブレードコート法、ディップ法、 スプレー法そして印刷法等のウエットプロセスによって、それぞれ形成するなどするこ とがでさる。
[0051] 有機固体層 16を構成する各層に用いる有機材料として、例えば高分子材料として 、 PEDOT、ポリア-リン、ポリパラフエ-レンビ-レン誘導体、ポリチォフェン誘導体、 ポリパラフエ-レン誘導体、ポリアルキルフエ-レン、ポリアセチレン誘導体、などが挙 げられる。
[0052] なお、本実施形態において、有機固体層 16は、正孔注入層 162、正孔輸送層 16 6、発光層 166、電子輸送層 168から構成されるものを挙げたがこの構成に限定され ることはなく、少なくとも発光層 166を含んで構成されて 、ればよ 、。
[0053] 例えば、採用する有機材料等の特性に応じて、発光層の単層構造等の他、正孔輸 送層 Z発光層、発光層 Z電子輸送層等の 2層構造、正孔輸送層 Z発光層 Z電子輸 送層の 3層構造や、更に電荷 (正孔、電子)注入層などを備える多層構造など力ゝら構 成することができる。
[0054] さらに有機固体層 16には発光層 166と電子輸送層 168の間に正孔ブロック層を設 けてもよい。正孔は発光層 166を通り抜け、陰極 18へ到達する可能性がある。例え ば、電子輸送層 168に Alq3等を用いている場合、電子輸送層に正孔が流れ込むこ とでこの Alq3が発光したり、正孔を発光層に閉じこめることができずに発光効率が低 下する可能性がある。そこで、正孔ブロック層を設け、発光層 166から電子輸送層 16 8に正孔が流れ出てしまうことを防止してもよい。
[0055] 陰極 18は、有機固体層 16への電子注入を良好にするため、仕事関数又は電子親 和力の小さな材料を選定すればよい。例えば、 Mg :Ag合金、 Al:Li合金などの合金 型 (混合金属)等を好適に用いることができる。陰極 18は、 A1や MgAgなどの金属材 料を例えば 150nmの厚さに真空蒸着などで形成することができる。
[0056] <有機トランジスタ (有機 TFT) >
図 5には、有機 EL表示装置 P1の有機 TFT50付近の拡大図が示される。有機 TF T50は、ノ リア膜 12側からバリア膜 12上に形成されたゲート電極 52と、ゲート電極 5 2の表面を覆うように形成されたゲート絶縁膜 54とを有して 、る。ゲート絶縁膜 54上 には有機半導体層 56、左端縁側にソース電極 58、右端縁側にドレイン電極 60が形 成されている。ここで、ドレイン電極 60は、有機 EL素子 100の陽極 14に電気的に接 続される。すなわち、有機 TFT50は、ソース電極 58及びドレイン電極 60は、互いに 分離して設けられ、ソース電極 58とドレイン電極 60の間に有機半導体層 56を介在さ せ、ゲート絶縁膜 54を介してソース電極 58、ドレイン電極 60、有機半導体層 56と対 向されて配置されたゲート電極 52を有する構造である。
[0057] ゲート電極 52は、ゲート電極材料としては陽極酸ィ匕可能な金属であれば良ぐ Al、 Mg、 Ti、 Nb、 Zr等の単体もしくはそれらの合金を用いることができるがこれに限定さ れない。ゲート電極としては、十分な導電性があればよぐ例えば、 Pt、 Au、 W、 Ru、 Ir、 Al、 Sc、 Ti、 V、 Mn、 Fe、 Co、 Ni、 Zn、 Ga、 Y、 Zr、 Nb、 Mo、 Tc、 Rh、 Pd、 Ag 、 Cd、 Ln、 Sn、 Ta、 Re、 Os、 Tl、 Pb、 La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 Er、 Tm、 Yb、 Lu等の金属単体もしくは積層もしくはその化合物でも良い。ま た、 ΙΤΟ、 ΙΖΟのような金属酸化物粒子、ポリア二リン類、ポリチォフェン類、ポリピロ ール類などの共役性高分子化合物を含む有機導電材料でもよい。
[0058] ゲート電極 52の製造方法は、基板 10上に、ゲート電極 52の配線パターンを形成 する一般的な方法であればよい。スパッタリング法や CVD法等があげられる力 特に 限定されることはなぐ適宜適切なものを用いればよい。例えば、真空蒸着、イオンプ レーティング、ゾルゲル法、スピンコート法、スプレー法、 CVD等の一般的な薄膜作 成方法にても可能である。
[0059] ゲート絶縁膜 54は、水酸基を有するポリマーについて、水酸基の一部を部分的に シァノエチル基とすることや、シァノエチル基を有するポリマーについて、シァノエチ ル基の一部を部分的に水酸基とするなどして、シァノエチル基と水酸基が混在した 混在ポリマー(以下単に混在ポリマーともいう)と、メラミン誘導体との混合溶液を塗布 し、熱硬化させて形成する。
[0060] 混在ポリマーとしては、部分的にシァノエチル基と部分的に水酸基を有していれば 良ぐ特に限られるものではない。また、混在ポリマーには、シァノエチル基と水酸基 以外の基が含まれることを妨げるものではな!/、。
[0061] 例えば、ゲート絶縁膜 54を構成するポリマーとしては、ポリビュルフエノールとポリビ ニルアルコール、澱粉及びその誘導体、ェチルセルロース、メトキシセルロース、ヒド 口キシェチノレセノレロース、カノレボキシメチノレセノレロース、メチノレセノレロース、ェチノレセ ルロース等のセルロース誘導体、プルラン、ソルビートル、フエノキシ榭脂、ポリフエノ 一ル榭脂等であって、部分的にシァノエチル基が付加したものが挙げられる。
[0062] 例えば、ポリフエノール榭脂は、フエノール類とアルデヒド類とをフエノール性水酸基 1モルに対してアルデヒド類を 1〜3モルの割合で塩基性触媒下或いは酸性触媒下 にて反応させて得られる。
[0063] フエノール類としては、フエノール、クレゾール、キシレノール、ォクチルフエノール、 フエ-ルフエノール、ビスフエノール A、ビスフエノール S、ビスフエノール Fなどが挙げ られ、アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、グリオキザール 、トリオキザールなどが挙げられる。
[0064] また、必要に応じてパラトルエンスルフォンアミド、桐油、燐酸エステル類、グリコー ル類などの可塑化を促す変性剤で変性されたものも適用でき、塩基性触媒としては 、ナトリウム、カリウムなどのアルカリ金属、及びマグネシウム、カルシウムなどのアル力 リ土類金属の酸化物や水酸化物、及びトリェチルァミン、トリエタノールァミンなどのァ ミン類、アンモニアが挙げられ、酸性触媒としては、パラトルエンスルフォン酸、塩酸 などが挙げられる。
[0065] メラミン誘導体としては、ポリマーとの相溶性がよぐかつ、部分的にシァノエチルイ匕 したポリマーと同じ溶媒で溶解できればよい。メラミン誘導体としては、メチル化ポリメ ラミン ホルムアルデヒド共重合体を用いた力 その他、メラミン誘導体としてはメチロ ール化、アクリル化、ブチル化、イソブチル化、のポリメラミン ホルムアルデヒド共重 合体等がある。例えば、メチロール化メラミン榭脂、メチロール化メラミン—フエノール 共縮合榭脂、メチロール化メラミン一ユリア共縮合榭脂、メチロール化メラミン一ェポ キシ共縮合榭脂等の、トリアジン類とホルムアルデヒド類等を共縮合して得られる合 成榭脂などを用いることができる。
[0066] なお、ゲート絶縁膜 54は、上記混在ポリマーで形成されるが、熱可塑性榭脂ゃ熱 硬化性榭脂など他のポリマーや金属酸ィ匕物粒子を混入することを妨げるものではな い。これらは適宜選択して混在ポリマーと併用することができる。
[0067] また、ここで混合される他のポリマーは高比誘電率を有していると好適である。例え ば、高比誘電率を有する有機高分子またはオリゴマー材料としては、例えば、シァノ ェチルセルロース(比誘電率 16)、シァノエチルヒドロキシェチルセルロース(比誘電 率 18)、シァノエチルヒドロキシプロピルセルロース(比誘電率 14)、シァノエチルジヒ ドロキシプロピルセルロース(比誘電率 23)、シァノエチルアミロース(比誘電率 17)、 シァノエチルスターチ(比誘電率 17)、シァノエチルジヒドロキシプロピルスターチ(比 誘電率 18)、シァノエチルプルラン(比誘電率 18)、シァノエチルダリシドールプルラ ン(比誘電率 20)、シァノエチルポリビニルアルコール(比誘電率 20)、シァノエチル ポリヒドロキシメチレン(比誘電率 10)、シァノエチルシュクロース(比誘電率 25)、シァ ノエチルソルビトール (比誘電率 40)等のシァノエチル基含有高分子またはオリゴマ 一、ポリフッ化ビ-リデン(比誘電率 11)、フッ化ビ-リデン—トリフルォロエチレン共 重合体(55/45:比誘電率 18、 75/25:比誘電率 10)等のビニリデン系高分子が挙 げられる。
[0068] さらに、熱硬化性榭脂を混入すると好適である。熱硬化性榭脂としては、ポリウレタ ン、フエノール榭脂、メラミン榭脂、尿素樹脂、不飽和ポリエステル榭脂、ジァリルフタ レート榭脂、シリコン榭脂、エポキシ榭脂等を挙げることができる。例えばエポキシ榭 脂の一例として、ビスフエノールー A型エポキシ榭脂、ビスフエノールー F型エポキシ 榭脂、ビスフエノールー AD型エポキシ榭脂、フエノールノボラック型エポキシ榭脂、ク レゾールノボラック型エポキシ榭脂、環状脂肪族エポキシ榭脂、グリシジルエステル 系榭脂、グリシジルァミン系エポキシ榭脂、複素環式エポキシ榭脂、ウレタン変性ェ ポキシ榭脂、臭素化ビスフエノール一 A型エポキシ榭脂等を挙げることができる。
[0069] 金属酸ィ匕物粒子としては、適宜選択して用いることができる。例えば、金属酸化物 粒子に含まれる金属酸ィ匕物としては適宜選択して用いることができ、特に限られない が、例えば、 Ta O、 TiO、 ZrO、 BaTiO、 PbTiO、 CaTiO、 MgTiO、 BaZrO
2 5 2 2 3 3 3 3 3
、 PbZrO、 SrZrO、 CaZrO、 LaTiO、 LaZrO、 BiTiO、 LaPbTiO、 Y O等、
3 3 3 3 3 3 3 2 3 または、これらの固溶体、より具体的にはチタン酸バリウムストロンチウム、チタン酸ス トロンチウム、チタン酸バリウム、チタン酸鈴、チタン酸カルシウム、チタン酸マグネシ ゥム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、ジルコニウム酸鉛
、ジルコニウム酸バリウム、ジルコニウム酸ストロンチウム、ジルコニウム酸カルシウム が挙げられる。他にも、ジルコニウム酸チタン酸鉛ランタン、チタン酸鉛ランタン、チタ ン酸ビスマス、チタン酸ランタン、フッ化バリウムマグネシウム等の複合酸ィ匕物粒子や
、二酸化チタン、五酸ィ匕ニタンタル、三酸ィ匕ニイットリウム等の金属酸ィ匕物粒子が挙 げられる。これらの金属酸ィ匕物粒子は 1種類のみを用いてもよいし、複数種類を組み 合わせて用いてもよい。
[0070] ソース電極 58、ドレイン電極 60は、 Al、 Mg、 Ti、 Nb、 Zr等の単体もしくはそれらの 合金を用いることができるがこれに限定されない。ゲート電極としては、十分な導電性 があればよぐ例えば、 Ptゝ Au、 W、 Ru、 Ir、 Al、 Scゝ Ti、 V、 Mn、 Feゝ Co、 Niゝ Zn 、 Ga、 Y、 Zr、 Nb、 Mo、 Tc、 Rh、 Pd、 Ag、 Cd、 Ln、 Sn、 Ta、 Re、 Os、 Tl、 Pb、 La 、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu等の金属単体 もしくは積層もしくはその化合物でも良い。また、 ιτο、 ΙΖΟのような金属酸ィ匕物粒子
、ポリア-リン類、ポリチォフェン類、ポリピロール類などの共役性高分子化合物を含 む有機導電材料でもよい。
[0071] ソース電極 58、ドレイン電極 60は一般的な方法により製造すればよい。スパッタリ ング法や CVD法等があげられるが、特に限定されることはなぐ適宜適切なものを用 いればよい。例えば、真空蒸着、イオンプレーティング、ゾルゲル法、スプレー法、ス ピンコート法、 CVD、リフトオフ、等の一般的な薄膜作成方法にても可能である。 有機半導体 56としては、ペンタセンなど半導体特性を示す有機材料であれば良く 、特に限定されないが、例えば、フタロシアニン系誘導体、ナフタロシアニン系誘導 体、ァゾ化合物系誘導体、ペリレン系誘導体、インジゴ系誘導体、キナクリドン系誘導 体、アントラキノン類などの多環キノン系誘導体、シァニン系誘導体、フラーレン類誘 導体、あるいはインドール、カルバゾール、ォキサゾール、インォキサゾール、チアゾ ール、イミダゾール、ピラゾール、ォキサアジアゾール、ピラゾリン、チアチアゾール、ト リアゾールなどの含窒素環式化合物誘導体、ヒドラジン誘導体、トリフエニルァミン誘 導体、トリフエ-ルメタン誘導体、スチルベン類、アントラキノンジフエノキノン等のキノ ン化合物誘導体、アントラセン、ビレン、フエナントレン、コロネンなどの多環芳香族化 合物誘導体などでその構造がポリエチレン鎖、ポリシロキサン鎖、ポリエーテル鎖、ポ リエステル鎖、ポリアミド鎖、ポリイミド鎖等の高分子の主鎖中に用いられた物あるい は側鎖としてペンダント状に結合したもの、もしくはポリパラフエ-レン等の芳香族系 共役性高分子、ポリアセチレン等の脂肪族系共役性高分子、ポリピノールやポリチォ フェン率の複素環式共役性高分子、ポリア-リン類やポリフエ-レンサルファイド等の 含へテロ原子共役性高分子、ポリ(フエ-レンビ-レン)やポリ(ァニーレンビ-レン) やポリ(チェ-レンビ-レン)等の共役性高分子の構成単位が交互に結合した構造を 有する複合型共役系高分子等の炭素系共役高分子が用いられる。また、ポリシラン 類ゃジシラ-レンァリレンポリマー類、(ジシラ-レン)エテュレンポリマー類、(ジシラ 二レン)ェチ-レンポリマー類のようなジシラ-レン炭素系共役性ポリマー構造などの オリゴシラン類と炭素系共役性構造が交互に連鎖した高分子類などが用いられる。 他にもリン系、窒素系等の無機元素からなる高分子鎖でも良ぐさらにフタロシアナー トポリシロキサンのような高分子鎖の芳香族系配位子が配位した高分子類、ペリレン テトラカルボン酸のようなペリレン類を熱処理して縮環させた高分子類、ポリアクリロ- トリルなどのシァノ基を有するポリエチレン誘導体を熱処理して得られるラダー型高分 子類、さらにべ口ブスカイト類に有機化合物がインター力レートした複合材料を用いて ちょい。
[0073] 有機半導体 56の形成方法としては、スパッタリング法や CVD法等があげられる力 特に限定されることはなぐ適宜適切なものを用いればよい。例えば、真空蒸着、ィォ ンプレーティング、ゾルゲル法、スプレー法、スピンコート法、 CVD等の一般的な薄 膜作成方法にても可能である。
[0074] <保護膜 >
保護膜 20は、必ずしも形成しなくともよいが、形成すると水分や酸素などによる浸 食力も保護することができるので好適である。保護膜 20は、多層構造であってもよく 単層構造であってもよぐ無機膜であってもよぐ有機膜であってもよいが無機膜が含 まれていると水分や酸素などによる浸食からのノリア性が向上するので好適である。
[0075] 無機膜としては、例えば、窒化膜、酸ィ匕膜又は炭素膜又はシリコン膜等が採用可能 であり、より具体的には、シリコン窒化膜、シリコン酸ィ匕膜、シリコン酸ィ匕窒化膜、又は ダイヤモンド状カーボン (DLC)膜、アモルファスカーボン膜などが挙げられる。すな わち、 SiN、 A1N、 GaN等の窒化物、 SiO、 Al O、 Ta O、 ZnO、 GeO等の酸化物
2 3 2 5
、 SiON等の酸ィ匕窒化物、 SiCN等の炭化窒化物、金属フッ素化合物、金属膜、等 があげられる。
[0076] 有機膜としては、例えば、フラン膜、ピロール膜、チオフ ン膜或いは、ポリパラキシ レン膜エポキシ榭脂、アクリル榭脂、ポリパラキシレン、フッ素系ェ分子 (パーフルォロ ォレフィン、パーフノレオ口エーテル、テトラフノレォロエチレン、クロロトリフノレォロェチレ ン、ジクロロジフルォロエチレン等)、金属アルコキシド(CH OM、 C H OM等)、ポ
3 2 5
リイミド前駆体、ペリレン系化合物などの重合膜等があげられる。
[0077] 保護膜 20は、 2種類以上の物質からなる積層構造、無機保護膜、シランカップリン グ層、榭脂封止膜からなる積層構造、無機材料カゝらなるバリア層、有機材料カゝらなる カバー層力もなる積層構造、 Si— CXHY等の金属または半導体と有機物との化合 物、無機物カゝらなる積層構造、無機膜と有機膜を交互に積層した構造、 Si層上に Si Oまたは Si Nを積層した構造等の積層構造としたものなどが挙げられる。
2 3 4
[0078] ノリア膜 12、保護膜 20は、その構成される有機膜が無機膜に形成されたピンホー ルゃ表面凹凸を埋め、表面を平坦化させる。また、無機膜の膜応力を緩和させたり する役割を担う場合もある。
[0079] 保護膜 20の製造方法は、スパッタリング法や CVD法等があげられるが、特に限定 されることはなく、適宜適切なものを用いればよい。例えば、真空蒸着、イオンプレー ティング、ゾルゲル法、スプレー法、スピンコート法、 CVD等の一般的な薄膜作成方 法にても可能である。
[0080] <有機 EL表示装置の発光態様 >
上述の有機 EL表示装置 P1の発光態様について説明する。
[0081] ゲート電極 52とソース電極 58の間に電圧が印加されると、有機半導体 56とゲート 絶縁膜 54との界面 (数 nm程度の領域)に正孔が生成する。正孔が生成後、ソース電 極 58とドレイン電極 60間に電圧をかけると正孔を輸送させることができる。一方で、 ゲート電極 52とソース電極 58の間に電圧が印加されないと正孔は輸送されない。こ のように非導通状態 (スィッチがオフの状態)と導通状態 (スィッチがオン状態)を利用 して、スイッチングを行うことができる。
[0082] ソース電極 58からホール(正孔)がゲート絶縁膜 54を通じて、ドレイン電極 60へ供 給される。ドレイン電極 60を通じて正孔は、有機 EL素子 100の陽極 14へ伝えられる
[0083] 有機 EL素子 100において、陽極 14から正孔が有機固体層 16中の正孔注入層 16 2へと輸送される。輸送された正孔は、正孔輸送層 164へと注入される。正孔輸送層 164へ注入された正孔は、発光層 166へと輸送される。
[0084] また、有機 EL素子 100において、陰極 18から電子が有機固体層 16中の電子輸送 層 168へと輸送される。輸送された電子は、発光層 166へと輸送される。
[0085] 輸送された正孔および電子は、発光層 166中で再結合する。再結合の際、発せら れるエネルギーにより、 ELによる発光が発生する。この発光は、順に正孔輸送層 16 4、正孔注入層 162、陽極 14、ノ リア膜 12、基板 10を通じて外部へと導出され、その 発光を視認することができる。
[0086] 陰極 18に A1が用いられている場合などは、陰極層 18と電子輸送層 168との界面 が反射面となり、この界面で反射され、陽極 14側へと進み、基板 10を透過して外部 へと射出される。したがって、以上のような構成の有機 EL素子をディスプレイなどに 採用した場合、基板 10側が表示の観察面となる。
[0087] 例えば、有機 ELパネルで、フルカラーディスプレイを実現しょうとする場合、例えば 、 RGB各色を発光する有機 EL素子を塗り分けにより製造する方式 (塗り分け法)、白 色発光の単色発光の有機 EL素子とカラーフィルタを組み合わせた方式 (カラーフィ ルタ法)、青色発光若しくは白色発光等の単色発光の有機 EL素子と色変換層とを組 み合わせた方式 (色変換法)、単色の有機 EL素子であって、有機発光層に電磁波を 照射する等して複数発光を実現する方式 (フォトブリーチング方式)などが挙げられる が特に限定されない。
[0088] 本実施形態の有機 EL表示装置 P1は、高品質なゲート絶縁膜 54を含む高性能な 有機 TFTにより、有機 EL素子 100が駆動されるので、より高性能な有機 EL表示装 置を提供できる。
[0089] 本実施形態のゲート絶縁膜を用いて高性能な有機 TFTを作製することができる。し たがって、高性能な有機 TFTを備えた有機 EL表示装置を提供することができる。こ こでフォトリソグラフィーゃエッチング、熱処理と!/、つたプロセスに対して耐溶剤性が 高いポリマーカゝら混在ポリマーとすればゲート絶縁膜、有機 TFT、有機 EL表示装置 を提供することにさらに好適である。
[0090] 上記実施形態では、有機 EL素子を備える有機 EL表示装置およびこれに用いられ る有機 TFTを示したが、これに限られることなぐ有機 EL素子以外を駆動する有機ト ランジスタであっても本実施形態は適用できる。すなわち、上記実施形態において、 有機 EL素子を他の有機トランジスタによって駆動される駆動素子に置き換えてもよく 、有機 EL素子などの駆動素子を省略して有機トランジスタ単独としてもよい。このよう な有機トランジスタは、ディスプレイ一般、例えば、液晶ディスプレイ、電気泳動型ディ スプレイ、電子ペーパー、トナーディスプレイなどに適用できる。
[0091] 「有機 EL表示装置の製造方法」
図 2に示される有機 EL表示装置 P1の製造方法を説明する。基板 10上にバリア膜 12を形成し、ノリア膜 12上に有機 EL素子 100および有機 TFT50を作製する。有機 TFT50のドレイン電極 60と有機 EL素子 100の陽極 14とは電気的に導通するように 、接触させて作製する。次に、有機 EL素子 100、有機 TFT50の表面を覆うように保 護膜 20を形成して有機 EL表示装置 PIを製造する。
[0092] 「ゲート絶縁膜の形成方法」
有機 TFT50のゲート絶縁膜 54の製造方法について一例を述べる。
[0093] (混在ポリマーの作製)
混在ポリマーは既成のものを用いてもよいが、作製してもよい。混在ポリマーの製造 方法は、特に限定されるものではないが、例えば、水酸基を有するポリマーをアタリ口 二トリルによるシァノエチルイ匕反応 (マイケル (Michael)付加反応など)により作製す ることができる。ここで付加するアクリル-トリルの量は、水酸基を有するポリマーの水 酸基全てがシァノエチルイ匕されな 、ように量を制限する。
[0094] 一例として混在ポリマーは下記化学式 (4)、 (5)で示される。化学式 (4)で示される 混在ポリマーは、上記化学式(1)で示されるポリビュルアルコールの水酸基がシァノ ェチル基で置換された混在ポリマーである。化学式(5)で示される混在ポリマーは、 上記化学式(2)で示されるポリビュルフエノールがシァノエチル基で置換された混在 ポリマーである。
[0095] [化 4]
Figure imgf000021_0001
( 5 )
(ゲート絶縁膜の作製) 上記化学式 (4)、(5)などで示される混在ポリマー、上記化学式 (3)などで示される メラミン誘導体を液化させ、混合攪拌して、これらを含む混合物たる塗布液を作製す る。混在ポリマー、メラミン誘導体の液化方法は混在ポリマーとメラミン誘導体の混合 物自体を液化させる方法 (無溶剤タイプの塗布液)、混合物とは別に混合物を溶かす 溶媒を用いる方法が挙げられる。
[0097] 溶媒は、適宜選択して用いればよく特に限定されるものではないが、例えば、ァセト ン、 DMF (N, N—ジメチルホルムアミド)、ァセトニトリルなどが用いられる。
[0098] 水系塗布液の溶媒としては、水やアルコール等の水溶性有機溶剤を用いることが できる。水としては、通常の工業用水を使用することができる。また、水とアルコール 等力 なる水溶性有機溶剤として、水のほかにメタノール、エタノール、イソプロピル アルコール、 N—プロピルアルコール等の低級アルコール、グリコール類およびその エステル類等を使用して調整することができる。なお、該低級アルコール、グリコール 類およびそのエステル類等は、 5〜20重量%位の割合で含有して 、ることが望まし い。なお、これら低級アルコール、グリコール類およびそのエステル類等の溶剤は、ィ ンキの流動性改良、被印刷体である基材シートへの濡れの向上、乾燥性の調整等の 目的で使用されるものであり、その目的に応じてその種類、使用量等が決定されるも のである。
[0099] 溶剤系塗布液の溶媒としては、特に限定されるものではな 、が、例えば、トルエン、 キシレン、酢酸ェチル、酢酸ブチル、メチルェチルケトン、メチルイソブチルケトン、ェ チレングリコーノレモノメチノレエーテル、エチレングリコーノレモノェチノレエーテノレ等の非 水溶性有機溶剤、またはこれらの混合溶剤等が用いられる。
[0100] 図 6に示されるように、このようにして作製した塗布液 32をゲート電極表面およびゲ ート電極が形成された基板 10上、バリア膜 12表面に塗布する。
[0101] 塗布液の塗布方式としては、適宜選択して用いればよく特に限定されるものではな いが、インクジェット、グラビアコート、グラビアリバースコート、コンマコート、ダイコート 、リップコート、キャストコート、ローノレコート、エアーナイフコート、メイヤーノ ーコート、 押し出しコート、オフセット、紫外線硬化オフセット、フレキソ、孔版、シルク、カーテン フローコート、ワイヤーノ ーコート- リノくースコート-グラビアコート、キスコート、ブレー ドコート、スムーズコート、スプレーコート、かけ流しコート、刷毛塗り等の各種印刷方 式が適用できる。
[0102] 次に、図 7に示されるように、ゲート絶縁膜 54を形成する所望の箇所 34を加熱する 。この加熱により、混在ポリマーと、メラミン誘導体との架橋反応が進行する。この架橋 反応により、混在ポリマーとメラミン誘導体との三次元架橋構造が形成され、硬化する 。このようにして、加熱によりゲート絶縁膜 54を形成する所望の箇所 34を熱硬化させ る。
[0103] 熱硬化後、図 8に示されるようにゲート絶縁膜 54を形成する所望の箇所 34を熱硬 化後、酸素リアタティブイオンエッチングなどエッチング工程によって塗布液の部分を 溶剤で洗 、流すなどして除去し、固化して洗 、流されな力つた箇所 34がゲート絶縁 膜 54となり、ゲート絶縁膜 54が形成される。
[0104] エッチング用の溶剤としては適宜選択して用いればよい。シリコーンラダーポリマー に対して良溶媒である芳香族系有機溶剤 (ァ-ノール、トルエン等)、アルコール系 有機溶剤 (ブタノール等)、エステル系有機溶剤 (酢酸ブチル等)、エーテル系有機 溶剤 (テトラヒドロフラン等)、及び、ケトン系有機溶剤 (メチルイソブチルケトン等)など が挙げられる。具体例を挙げれば、芳香族系有機溶剤としては、ベラトール、トルェ ン、及び、フエネトールなどがあり、その他の材料として、ジエチレングリコールモノメ チノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノ ブチルエーテル、ジエチレングリコールジメチルエーテル、テトラリン、メチルイソブチ ルケトン、ジメチルァセトアミド、 N—メチル—2—ピロリドン、及び、ジメチルホルムアミ ドなども挙げられる。
[0105] このゲート絶縁膜 54を形成した後、フォトリソグラフィーなどによって有機半導体層 5 6、ソース電極 58、ドレイン電極 60を形成し有機 TFT50が形成される。
[0106] 本実施形態におけるゲート絶縁膜は、水酸基を有するポリマーについて、水酸基 の一部を部分的にシァノエチル基とすることや、シァノエチル基を有するポリマーに ついて、シァノエチル基の一部を部分的に水酸基とするなどして、シァノエチル基と 水酸基が混在した混在ポリマーとメラミン誘導体とを含む混合物を熱硬化し、架橋し た膜を用いているので、相溶性がよぐ高比誘電率のゲート絶縁膜を提供できる。 本実施形態のゲート絶縁膜を用いて高性能な有機 TFTを作製することができる。し たがって、高性能な有機 TFTを備えた有機 EL表示装置を提供することができる。こ こでフォトリソグラフィーゃエッチング、熱処理と!/、つたプロセスに対して耐溶剤性が 高いポリマーカゝら混在ポリマーとすればゲート絶縁膜、有機 TFT、有機 EL表示装置 、ディスプレイを提供することにさらに好適である。

Claims

請求の範囲
[1] 有機トランジスタにおけるゲート絶縁膜の製造方法であって、
シァノエチル基と水酸基との混在する混在ポリマーとメラミン誘導体とを含む混合物 を熱硬化させて形成する工程を含むゲート絶縁膜の製造方法。
[2] 請求項 1に記載のゲート絶縁膜の製造方法であって、
前記ゲート絶縁膜は比誘電率が 7〜40を有するゲート絶縁膜の製造方法。
[3] ゲート絶縁膜を含む有機トランジスタの製造方法であって、
前記ゲート絶縁膜は、請求項 1または 2に記載のゲート絶縁膜の製造方法により製 造されてなる有機トランジスタの製造方法。
[4] 少なくとも陽極、有機発光層、陰極を備える有機 EL素子と前記有機 EL素子を駆動 する有機トランジスタを含む有機 EL表示装置の製造方法であって、
前記有機トランジスタは、請求項 3に記載の有機トランジスタの製造方法によって製 造されてなる有機 EL表示装置の製造方法。
[5] 請求項 3に記載の有機トランジスタの製造方法で製造された有機トランジスタを含 むディスプレイ。
PCT/JP2006/306074 2005-03-28 2006-03-27 ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ WO2006104069A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510470A JP4914828B2 (ja) 2005-03-28 2006-03-27 ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-091657 2005-03-28
JP2005091657 2005-03-28

Publications (1)

Publication Number Publication Date
WO2006104069A1 true WO2006104069A1 (ja) 2006-10-05

Family

ID=37053327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306074 WO2006104069A1 (ja) 2005-03-28 2006-03-27 ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ

Country Status (2)

Country Link
JP (1) JP4914828B2 (ja)
WO (1) WO2006104069A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008085904A1 (en) * 2007-01-05 2008-07-17 Charles Stark Draper Laboratory, Inc. Biodegradable electronic devices
JP2009038337A (ja) * 2007-07-11 2009-02-19 Ricoh Co Ltd 有機薄膜トランジスタ及びその製造方法
WO2009115913A2 (pt) * 2008-03-20 2009-09-24 Universidade Nova De Lisboa Processo de utilização e criação de papel à base de fibras celulósicas naturais, fibras sintéticas ou mistas como suporte físico e meio armazenador de cargas eléctricas em transístores de efeito de campo com memória auto-sustentáveis usando óxidos semi-condutores activos
GB2458940B (en) * 2008-04-03 2010-10-06 Cambridge Display Tech Ltd Organic thin film transistors
JP2012510177A (ja) * 2008-11-26 2012-04-26 ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオー 調整可能な発光ダイオード
JP5015141B2 (ja) * 2006-03-29 2012-08-29 パイオニア株式会社 有機薄膜トランジスタ及びその製造方法
WO2012161106A1 (ja) * 2011-05-26 2012-11-29 住友化学株式会社 有機薄膜トランジスタ絶縁層材料
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
WO2015016164A1 (ja) * 2013-07-31 2015-02-05 日本ゼオン株式会社 樹脂組成物及びゲート絶縁膜
US8975073B2 (en) 2006-11-21 2015-03-10 The Charles Stark Draper Laboratory, Inc. Microfluidic device comprising silk films coupled to form a microchannel
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants
US11029198B2 (en) 2015-06-01 2021-06-08 The Board Of Trustees Of The University Of Illinois Alternative approach for UV sensing
US11118965B2 (en) 2015-06-01 2021-09-14 The Board Of Trustees Of The University Of Illinois Miniaturized electronic systems with wireless power and near-field communication capabilities

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191162A (ja) * 1995-01-09 1996-07-23 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
JP2004158858A (ja) * 2002-11-02 2004-06-03 Merck Patent Gmbh 重合可能なアミン混合物、アミンポリマー材料、およびそれらの使用
JP2005507180A (ja) * 2001-10-16 2005-03-10 シーメンス アクチエンゲゼルシヤフト 有機電子デバイス用の絶縁体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3515507B2 (ja) * 2000-09-29 2004-04-05 株式会社東芝 トランジスタおよびその製造方法
JP4572515B2 (ja) * 2002-07-31 2010-11-04 三菱化学株式会社 電界効果トランジスタ
JP2005072528A (ja) * 2003-08-28 2005-03-17 Shin Etsu Chem Co Ltd 薄層電界効果トランジスター及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191162A (ja) * 1995-01-09 1996-07-23 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
JP2005507180A (ja) * 2001-10-16 2005-03-10 シーメンス アクチエンゲゼルシヤフト 有機電子デバイス用の絶縁体
JP2004158858A (ja) * 2002-11-02 2004-06-03 Merck Patent Gmbh 重合可能なアミン混合物、アミンポリマー材料、およびそれらの使用

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450043B2 (en) 2004-06-04 2016-09-20 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US11088268B2 (en) 2004-06-04 2021-08-10 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US10374072B2 (en) 2004-06-04 2019-08-06 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9768086B2 (en) 2004-06-04 2017-09-19 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
US9761444B2 (en) 2004-06-04 2017-09-12 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
JP5015141B2 (ja) * 2006-03-29 2012-08-29 パイオニア株式会社 有機薄膜トランジスタ及びその製造方法
US8975073B2 (en) 2006-11-21 2015-03-10 The Charles Stark Draper Laboratory, Inc. Microfluidic device comprising silk films coupled to form a microchannel
WO2008085904A1 (en) * 2007-01-05 2008-07-17 Charles Stark Draper Laboratory, Inc. Biodegradable electronic devices
JP2009038337A (ja) * 2007-07-11 2009-02-19 Ricoh Co Ltd 有機薄膜トランジスタ及びその製造方法
EP2282359B1 (en) * 2008-03-20 2018-05-02 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Storing medium for electrical charges in self-sustaining (supporting) field-effect transistors with paper dielectric based on cellulose fibers and its fabrication process
AU2009227670B2 (en) * 2008-03-20 2014-07-31 Faculdade De Ciencias E Tecnologia Da Universidade Nova De Lisboa Process for using and producing paper based on natural cellulose fibers, synthetic fibers or mixed fibers as physical support and storing medium for electrical charges in self-sustaining field-effect transistors with memory using active semiconductor oxides
JP2011517504A (ja) * 2008-03-20 2011-06-09 ファクルダージ デ シエンシアス イ テクノロジア ダ ユニベルシダデ ノバ デ リスボア 能動半導体酸化物を用いるメモリを備える自立可能な接合電界効果型トランジスタにおける物理的支持体及び電荷蓄積媒体としての、天然セルロース系繊維、合成セルロース系繊維、又はそれらの組合せの使用及び製造方法
WO2009115913A3 (pt) * 2008-03-20 2009-12-23 Universidade Nova De Lisboa Processo de utilização e criação de papel à base de fibras celulósicas naturais, fibras sintéticas ou mistas como suporte físico e meio armazenador de cargas eléctricas em transístores de efeito de campo com memória auto-sustentáveis usando óxidos semi-condutores activos
WO2009115913A2 (pt) * 2008-03-20 2009-09-24 Universidade Nova De Lisboa Processo de utilização e criação de papel à base de fibras celulósicas naturais, fibras sintéticas ou mistas como suporte físico e meio armazenador de cargas eléctricas em transístores de efeito de campo com memória auto-sustentáveis usando óxidos semi-condutores activos
US10689808B2 (en) 2008-03-20 2020-06-23 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Process for using and producing paper based on natural cellulose fibers, synthetic fibers or mixed fibers as physical support and storing medium for electrical charges in self-sustaining field-effect transistors with memory using active semiconductor oxides
GB2458940B (en) * 2008-04-03 2010-10-06 Cambridge Display Tech Ltd Organic thin film transistors
US9012784B2 (en) 2008-10-07 2015-04-21 Mc10, Inc. Extremely stretchable electronics
US9289132B2 (en) 2008-10-07 2016-03-22 Mc10, Inc. Catheter balloon having stretchable integrated circuitry and sensor array
US9629586B2 (en) 2008-10-07 2017-04-25 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
JP2012510177A (ja) * 2008-11-26 2012-04-26 ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオー 調整可能な発光ダイオード
US9723122B2 (en) 2009-10-01 2017-08-01 Mc10, Inc. Protective cases with integrated electronics
US10918298B2 (en) 2009-12-16 2021-02-16 The Board Of Trustees Of The University Of Illinois High-speed, high-resolution electrophysiology in-vivo using conformal electronics
US11057991B2 (en) 2009-12-16 2021-07-06 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US10441185B2 (en) 2009-12-16 2019-10-15 The Board Of Trustees Of The University Of Illinois Flexible and stretchable electronic systems for epidermal electronics
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
US9986924B2 (en) 2010-03-17 2018-06-05 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
WO2012161106A1 (ja) * 2011-05-26 2012-11-29 住友化学株式会社 有機薄膜トランジスタ絶縁層材料
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US10349860B2 (en) 2011-06-03 2019-07-16 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9691873B2 (en) 2011-12-01 2017-06-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10396173B2 (en) 2011-12-01 2019-08-27 The Board Of Trustees Of The University Of Illinois Transient devices designed to undergo programmable transformations
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10357201B2 (en) 2012-03-30 2019-07-23 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9554484B2 (en) 2012-03-30 2017-01-24 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9024394B2 (en) 2013-05-22 2015-05-05 Transient Electronics, Inc. Controlled transformation of non-transient electronics
US9617408B2 (en) 2013-07-31 2017-04-11 Zeon Corporation Resin composition and gate insulating film
JPWO2015016164A1 (ja) * 2013-07-31 2017-03-02 日本ゼオン株式会社 樹脂組成物及びゲート絶縁膜
CN105378902A (zh) * 2013-07-31 2016-03-02 日本瑞翁株式会社 树脂组合物及栅极绝缘膜
WO2015016164A1 (ja) * 2013-07-31 2015-02-05 日本ゼオン株式会社 樹脂組成物及びゲート絶縁膜
US11029198B2 (en) 2015-06-01 2021-06-08 The Board Of Trustees Of The University Of Illinois Alternative approach for UV sensing
US11118965B2 (en) 2015-06-01 2021-09-14 The Board Of Trustees Of The University Of Illinois Miniaturized electronic systems with wireless power and near-field communication capabilities
US10925543B2 (en) 2015-11-11 2021-02-23 The Board Of Trustees Of The University Of Illinois Bioresorbable silicon electronics for transient implants

Also Published As

Publication number Publication date
JP4914828B2 (ja) 2012-04-11
JPWO2006104069A1 (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4914828B2 (ja) ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ
KR101657319B1 (ko) 인쇄 조성물용 용매
JP4522416B2 (ja) 有機エレクトロルミネッセンス素子、それを備えた画像表示装置及び照明装置、電荷輸送材料、及びそれを含む電荷輸送層形成用インク
JP4466594B2 (ja) 有機el装置及び有機el装置の製造方法
JP4226159B2 (ja) 有機ledディスプレイの製造方法
US8471457B2 (en) Transparent plate with transparent conductive film and organic electroluminescence element
JP4311429B2 (ja) 有機エレクトロルミネッセンス装置の製造方法、及び有機エレクトロルミネッセンス装置
WO2006104068A1 (ja) ゲート絶縁膜、有機トランジスタ、有機el表示装置の製造方法、ディスプレイ
WO2011013618A1 (ja) 有機エレクトロルミネッセンス素子
JP2020080328A (ja) 有機半導体素子用の液状組成物の保管方法
JP2012191234A (ja) 有機りん光発光デバイス
WO2010029882A1 (ja) 有機エレクトロルミネッセンス素子製造用のインキ、有機エレクトロルミネッセンス素子の製造方法、および表示装置
JP4671201B2 (ja) 保護膜製造方法、無機膜製造方法
JPWO2011040238A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた表示装置並びに有機エレクトロルミネッセンス素子の製造方法
JP2010040512A (ja) 有機エレクトロルミネッセンス素子およびその製造方法
TWI692892B (zh) 有機el元件
CN104247074A (zh) 有机电致发光单元及其制造方法和电子装置
WO2009008543A1 (ja) 有機発光素子の製造方法
CN102113412A (zh) 有机电致发光元件的制造方法、发光装置及显示装置
JP2006092809A (ja) シートディスプレイ
JP2007250718A (ja) エレクトロルミネッセント素子およびその製造方法
JP2006243127A (ja) シートディスプレイ
JP2010073678A (ja) 有機エレクトロルミネッセンス素子
JP2009277917A (ja) 有機発光素子
JP2010146894A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007510470

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730022

Country of ref document: EP

Kind code of ref document: A1