WO2006101017A1 - Organic thin film transistor and method for manufacturing same - Google Patents

Organic thin film transistor and method for manufacturing same Download PDF

Info

Publication number
WO2006101017A1
WO2006101017A1 PCT/JP2006/305322 JP2006305322W WO2006101017A1 WO 2006101017 A1 WO2006101017 A1 WO 2006101017A1 JP 2006305322 W JP2006305322 W JP 2006305322W WO 2006101017 A1 WO2006101017 A1 WO 2006101017A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate insulating
insulating film
electrode
organic thin
film transistor
Prior art date
Application number
PCT/JP2006/305322
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Chuman
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2006101017A1 publication Critical patent/WO2006101017A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics

Definitions

  • the present invention relates to an organic thin film transistor and a method for producing the same.
  • Background Art '' Organic thin-film transistors organic TFTs
  • organic TFTs have been actively researched, and as an example of their application, application to flexible displays is expected.
  • one of the organic TFT M0S structures is provided with a gate electrode G on a substrate 10, a gate insulating film GIF formed thereon, and a source electrode S and a drain electrode thereon. D is provided apart from each other, and thereafter, an organic semiconductor film OSF is laminated on the gate insulating film GIF between the source electrode S and the drain electrode D, and a structure called a bottom contact type is known ( (See JP 2004-63978 A).
  • the amount of charge at the interface between the organic semiconductor film and the gate insulating film changes according to the change in the voltage applied to the gate electrode.
  • a channel is generated in the vicinity of the interface between the organic semiconductor film and the gate insulating film between the source electrode and the drain electrode, and a source-drain current flows.
  • the gain of the organic TFT increases as the ratio WZL of the channel width W defined by the opposite ends of the source electrode and the drain electrode and the channel length L, which is the distance between the opposite ends, increases.
  • an organic TFT having a MOS structure generally has a structure in which a gate electrode G, a source electrode S, and a drain electrode D overlap with each other through a gate insulating film GIF.
  • the overlapping part O L between the gate electrode and the source and drain electrodes via the gate insulating film becomes a parasitic capacitance, which can be a factor to hinder circuit characteristics.
  • the gate electrode line width is almost the same as the channel length L because it is necessary to match the position of the source and drain electrodes with respect to the gate electrode width (O L 0) in order to reduce the parasitic capacitance. I had to do it. For this reason, if the channel length L is shortened to several meters to allow source-drain current to flow, the wiring resistance of the gate electrode G also increases (see Fig. 2).
  • the organic semiconductor film OSF on the gate insulating film GIF between the source electrode S and the drain electrode D
  • a small amount of an organic semiconductor solution can be dispensed and a droplet is ejected to an accurate position Ink jet technology is applied.
  • the ink jet technology requires high positioning accuracy of droplet landing between the source electrode S and the drain electrode D above the narrow line width gate electrode.
  • the present invention has a small parasitic capacitance and a low resistance that can accurately form a short channel length.
  • One example is to provide an anti-organic thin film transistor and a method for producing the same.
  • the organic thin film transistor of the present invention includes a source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the organic semiconductor film between the source electrode and the drain electrode.
  • the organic thin film transistor manufacturing method of the present invention includes a source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the source electrode and the drain electrode.
  • a partition wall that defines the recess is formed so that the gate insulating film has a recess in the vicinity of the gate electrode.
  • FIG. 1 is a schematic cross-sectional view of organic TFT.
  • FIG. 2 is a partially cut perspective view showing an organic TFT structure.
  • FIG. 3 is a partially cut perspective view of an organic TFT according to an embodiment of the present invention.
  • FIG. 4 is an enlarged partial sectional view showing an inclined surface of the partition wall portion of the organic TFT according to the embodiment of the present invention.
  • 5 to 12 are partial cross-sectional views of the substrate in the steps of the organic TFT manufacturing method according to the embodiment of the present invention. Detailed Description of the Invention
  • FIG. 3 is a partially cut perspective view showing an example of the structure of a bottom contact type organic TFT.
  • the organic TFT includes an opposing source electrode S and drain electrode D, an organic semiconductor film OSF made of an organic semiconductor laminated so that a channel can be formed between the source electrode and the drain electrode, and a source electrode S and a drain electrode D.
  • the gate insulating film GIF has a recess whose depth direction faces the gate electrode G, The end portions of the source electrode S and the drain electrode D are provided on the side surfaces of the recess so as to face each other. The bottom of the recess (groove) is the channel portion.
  • the side surfaces of the concave portion that is, the side surfaces of the partition wall portion FF are provided so that the opposing end portions of the source electrode S and the drain electrode D are closest to the gate electrode and both electrodes are separated from the gate electrode G.
  • a partition wall FF is provided to define the recess.
  • the partition wall portion FF has an inclined surface SL that is inclined (angle 0) with respect to the gate electrode on the organic semiconductor film side through the source electrode and the drain electrode.
  • the angle (0) of the side wall of the partition wall is an obtuse angle and exceeds 90 ° (with respect to the bottom surface of the recess, that is, the top surface of the gate electrode and the gate insulating film) up to 170 °, preferably up to 13 ° It is in the range.
  • the parasitic capacitance due to the overlap between the gate electrode and gate insulating film of the organic TFT and the source and drain electrodes is reduced. 1 or 2 when no partition is provided.
  • the dielectric constant of the partition material may be arbitrary, but is preferably a value equal to or lower than that of the gate insulating film.
  • the material may be inorganic or organic, and may be the same material as the gate insulating film.
  • the recess is provided at the center of the gate electrode G width.
  • a gate electrode G is formed on the cleaned substrate 10.
  • a gate insulating film G IF is formed on the gate electrode G.
  • a recess facing the gate electrode G is provided in the gate insulating film GIF.
  • an insulating partition wall portion FF having a thicker film thickness than that of the channel portion is formed.
  • an oxide thin film obtained by oxidizing the surface of the gate electrode G by an anodic oxidation method, that is, a gate insulating film GIF is formed.
  • a second material having a partition wall portion FF different from the gate insulating film G IF is formed on the gate insulating film G.
  • the partition wall portion FF is formed by drilling a recess in the second material of the partition wall portion to such a depth that the gate insulating film GIF is exposed.
  • the recess is perforated by dry etching or wet etching, for example, and an inclined surface inclined with respect to the recess is formed in the partition wall portion FF.
  • the angle of the inclined surface of the partition wall portion FF is more than 90 ° and within 1700 ° with respect to the bottom of the recess.
  • a source electrode S and a drain electrode D that are separated from each other are formed from the gate insulating film G IF at the bottom of the concave portion to the partition wall portion FF through the slope of the side surface of the concave portion.
  • liquid droplets of the liquefied material of the organic semiconductor film are supplied to the recesses and dried, and the organic semiconductor film is formed on the opposite ends of the source electrode and the drain electrode and in the vicinity thereof.
  • An organic semiconductor film can also be formed by a self-organization method.
  • an organic insulating film is provided as a partition on an inorganic gate insulating film.
  • the present invention is not limited to this, and as shown in FIG. 11, after a thick gate insulating film GIF is provided. Only the channel part (between the opposite ends of the source electrode and the drain electrode, that is, the concave part) can be removed by dry etching or wet etching to form a gate insulating film GIF and a partition wall part FF.
  • the gate insulating film and the partition may be made of the same material. Further, the same material may be provided by different film formation methods. For example the gate insulating film, a method of anodizing the Ta, the partition wall may be provided by CVD with Ta 2 ⁇ 5.
  • the substrate 10 may be a plastic substrate such as PES or PC, a bonded substrate of glass and plastic, or an alkali barrier film or a gas barrier film may be coated on the substrate surface.
  • plastic substrates include polyethylene terephthalate, polyethylene 1,2,6-naphthalate, polysulfone, polyethersulfone, polyetheretherketone, polyphenoxyether, polyarylate, fluororesin, and polypropylene. Film can be applied.
  • the partition wall FF can be made of an organic material such as polyimide or any other inorganic material.
  • the inorganic material L i O x, L i N x, N aO x, KO x, Rb_ ⁇ x, C S_ ⁇ x, Be_ ⁇ x, Mg_ ⁇ x, MgN x, Ca_ ⁇ x, C aN x , S rO x , BaO x , S cO x , Y ⁇ x , YN X , L aO x , L aN x , C e ⁇ x, P and rO x, Nd_ ⁇ x, SmO x, EuO x, Gd_ ⁇ x, Tb_ ⁇ x, Dy_ ⁇ x, H O_ ⁇ x, E and rO x, Tm_ ⁇ x, YbO x, Lu_ ⁇ x, T i O x,
  • any organic polymer can be used.
  • Polymer materials such as polyamide, polyester, polyacrylate, epoxy resin, phenol resin (phenol nopolac), and polyvinyl alcohol are effective organic materials.
  • polyethylene, polyvinyl chloride, polyvinylidene fluoride, polycarbonate, polyethylene sulfide, polyester terether ketone, polyethylene tersulfone, polyimide, benzocyclobutene, polychloropyrene, polyoxymethylene, polysulfone, and other resins Can also be used.
  • Other resins that can be cured by heat or light are also effective.
  • An oxide of a gate electrode material can be used as the gate insulating film GIF.
  • the Gate electrode and T a can be a T a 2 0 5 by the anodic oxidation treatment to the gate insulating film GIF.
  • the gate electrode material may be any metal as long as it can be anodized, and a simple substance such as Al, Mg, Ti, Nb, Zr or an alloy thereof may be anodized to form a gate insulating film.
  • an insulator of inorganic material or organic material from the same material as the partition wall and use it as the gate insulating film GIF without using anodic oxidation.
  • Examples of the gate electrode G, the source Z, and the drain electrodes S and D include Ding.
  • a 1 "single layer or a CrZAu laminate is used, but the material is not particularly limited, and it only needs to have sufficient conductivity as an electrode. That is, Pt, Au, W, Ru, Ir , A l, S c, T i, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Re, ⁇ S, T l, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.
  • it may be an organic conductive material containing a conjugated polymer compound such as metal oxides such as IT ⁇ and I ⁇ , polyaniline, polythiophene, polypyrrole, etc.
  • Organic semiconductor film OSF As an organic semiconductor, any organic material that exhibits semiconductor characteristics may be used.
  • a pendecene for example, in the case of a low molecular weight material, a pendecene, a phthalocyanine derivative, a naphthocyanine derivative, Azo compound derivatives, perylene derivatives, indigo derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, force lubapool, oxazole, inoxazole, Nitrogen-containing cyclic compounds such as thiazole, imidazole, pyrazole, oxadiazole, pyrazoline, thiazole, triazol, hydrazine derivative, triphenylamine derivative, triphenylmethane derivative, stilbene, anthraquinone, diphenoquinone, etc.
  • the organic semiconductor film OSF polymer material used in the main chain or side of the polymer such as polyethylene chain, polysiloxane chain, polyether chain, polyester chain, polyamide chain, polyimide chain in the structure of the above derivatives.
  • Polymers linked in a pendant form as a chain aromatic conjugated polymers such as polyparaphenylene, aliphatic conjugated polymers such as polyacetylene, and heterocyclic conjugated polymers such as polypinolene polythiophene , Polyaniline and poly (phenylene sulfide) -containing heteroatom conjugated polymers, and poly (phenylene vinylene), poly (vinylene vinylene), and poly (chainylene vinylene) conjugated polymer structural units
  • aromatic conjugated polymers such as polyparaphenylene, aliphatic conjugated polymers such as polyacetylene, and heterocyclic conjugated polymers such as polypinolene polythiophene , Polyaniline and poly (phenylene sulfide) -containing heteroatom conjugated polymers, and poly (phenylene vinylene), poly (vinylene vinylene), and poly (chainylene vinylene) conjugated polymer structural units
  • aromatic conjugated polymers such as polyparaphenylene, aliphatic conjug
  • carbon-based conjugates with oligosilanes having a disilarylene carbon-based conjugated polymer structure such as polysilanes, disilylene diarylene polymers, (disilanylene) ethynylene polymers, and (disilanylene) ethynylene polymers.
  • a polymer in which the structure is alternately linked is used.
  • polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers having aromatic chain ligands such as phthalocyanate polysiloxane coordinated, perylenetetracarboxylic.
  • Organic compounds such as polymers obtained by heat-conducting berylenes such as acids, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylonitrile, and belobskites A composite material with an evening power rate may be used.
  • the surface of the gate insulating film between the source Z and drain electrodes can be covered with a self-assembled monolayer.
  • HMD S Hexmethyldisilazane, (CH 3 ) 3 was treated with S i NHS i (CH 3) 3), preferred to depositing their monolayer arbitrariness.
  • OTS OTS
  • Membrane sealing is performed by using an inorganic system such as silicon nitride or a polymer system so as to cover the formed circuit and the organic TFT. Sealing with an inorganic sealing film made of a nitride oxide such as silicon nitride oxide, an oxide such as silicon oxide or aluminum oxide, or a carbide such as silicon carbide, or multi-layer sealing of a polymer and an inorganic film may also be used. .
  • a comparative example organic TFT as shown in Fig. 2 and an example organic TFT as shown in Fig. 3 were fabricated.
  • a gate electrode Ta film having a thickness of 2000 A was formed on the cleaned glass substrate, and dry etching was performed by a RIE (Reactive Ion Etching) apparatus to obtain a wiring pattern having a width of 20 m.
  • a Ta 2 0 5 film was formed by anodizing the Ta wiring film to obtain a gate insulating film Ta 2 0 5 (relative dielectric constant: 24).
  • Cr no Au films for source and drain electrodes were patterned on the gate insulating film.
  • the overlap between the gate electrode and the drain electrode of the comparative device was set to width 5 length 2 mm.
  • organic between the gate electrode and drain electrode A semiconductor P 3HT (oly (3-hexy lthiophene)) was applied, and this element was used as a comparative organic TFTF.
  • a 200 OA thick gate electrode Ta film was formed on a cleaned glass substrate, and dry etching was performed with an RIE apparatus to obtain a wiring pattern with a width of 20 m.
  • a Ta 2 0 5 film was formed by anodizing the Ta wiring film to obtain a gate insulating film Ta 2 0 5 (relative dielectric constant: 24).
  • a polyimide on the gate insulating film Ta 2 0 5 (relative permittivity: 3.8) was the deposited patterned partition walls at a 3 m thick was formed patterned source and drain electrodes C rZAu. The angle of this partition wall from the horizontal plane (the interface between the gate electrode and the gate insulating film) was 110 °.
  • the organic semiconductor P 3 HT was applied there like the comparative example, and this element was made into an example organic TFT.
  • the gate electrodes of the respective elements was measured the capacitance of the capacitor formed by the drain electrode (parasitic capacitance), the comparative example against to a 3. 5X 10_ 12 F, the present embodiment 2. It became the 8X 10- 14 F and about two orders of magnitude lower value.
  • the mobility of each element was 0.01 cm 2 / Vs.
  • the wiring resistance could be reduced without reducing the width of the gate electrode, and an organic TFT could be fabricated without the need for highly accurate alignment of the source and drain electrodes.
  • the parasitic capacitance due to the overlap of the gate electrode, the gate insulating film, and the source and drain electrodes is reduced in the organic TFT structure.
  • barrier ribs with a bank function effective for droplet landing of organic semiconductor material ink jet technology are added to ease the alignment accuracy of the source and drain electrodes, and further, the wiring resistance increases with the miniaturization of the gate electrode. Deter. Therefore, the organic TFT of this embodiment is suitable for an active matrix driving element.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

An organic thin film transistor is provided with a source electrode and a drain electrode separately arranged; an organic semiconductor film between the source electrode and the drain electrode; and a gate electrode arranged to face the organic semiconductor film between the source electrode and the drain electrode through a gate insulating film. The gate insulating film has a recessed section in the vicinity of the gate electrode, and the end sections of the source electrode and the drain electrode are arranged to face each other on side planes of the recessed section.

Description

明細書  Specification
有機薄膜トランジス夕及びその製造方法 技術分野  Organic thin film transistor and manufacturing method thereof
本発明は、 有機薄膜トランジス夕及びその製造方法に関する。 背景技術 ' 有機薄膜トランジスタ (有機 TFT) も研究が盛んに行われており、 その応用 の一例として、 フレキシブルディスプレイへの応用が期待されている。  The present invention relates to an organic thin film transistor and a method for producing the same. Background Art '' Organic thin-film transistors (organic TFTs) have been actively researched, and as an example of their application, application to flexible displays is expected.
有機 TFTの M〇S構造の 1つには、 図 1に示すように、基板 10上にゲート 電極 Gを設け、その上にゲート絶縁膜 G I Fを形成し、その上にソース電極 Sと ドレイン電極 Dを互いに離して設け、その後、 ソース電極 S及びドレイン電極 D の間のゲート絶縁膜 G I F上に有機半導体膜 OSFを積層して構成され、ボトム コンタクト型と呼ばれる構造のものが知られている(特開 2004-63978 号公報、 参照)。  As shown in Fig. 1, one of the organic TFT M0S structures is provided with a gate electrode G on a substrate 10, a gate insulating film GIF formed thereon, and a source electrode S and a drain electrode thereon. D is provided apart from each other, and thereafter, an organic semiconductor film OSF is laminated on the gate insulating film GIF between the source electrode S and the drain electrode D, and a structure called a bottom contact type is known ( (See JP 2004-63978 A).
この MO S構造の有機 T F Tのソース電極及びドレイン電極間への電圧印加 時に、ゲ一ト電極への印加電圧の変化に応じて有機半導体膜及びゲ一ト絶縁膜の 界面における電荷量が変化し、ソース電極とドレイン電極との間の有機半導体膜 及びゲ一ト絶縁膜の界面近傍部分にチャネルが生成され、ソース一ドレイン電流 が流れる。  When a voltage is applied between the source electrode and the drain electrode of the organic TFT with this MOS structure, the amount of charge at the interface between the organic semiconductor film and the gate insulating film changes according to the change in the voltage applied to the gate electrode. A channel is generated in the vicinity of the interface between the organic semiconductor film and the gate insulating film between the source electrode and the drain electrode, and a source-drain current flows.
有機 T F Tの利得は、ソース電極及びドレイン電極の対向端部で画定されるチ ャネル幅 Wと当該対向端部間距離であるチャネル長 Lの比 WZLが大きいほど、 大きくなり、 かつ、 Lが小さいほど、 有機 T F Tは高速になる。 有機半導体のキ ャリア移動度は無機半導体のものに比して小さいのでチャネル部の設計は重要 である。 発明の開示 The gain of the organic TFT increases as the ratio WZL of the channel width W defined by the opposite ends of the source electrode and the drain electrode and the channel length L, which is the distance between the opposite ends, increases. The larger the size and the smaller L, the faster the organic TFT. Since the carrier mobility of organic semiconductors is smaller than that of inorganic semiconductors, the channel design is important. Disclosure of the invention
図 1に示すように、 MO S構造の有機 T F Tでは、一般的にゲート絶縁膜 G I Fを介してゲート電極 Gとソース電極 S及びドレイン電極 Dとが重なっている 構造である。  As shown in FIG. 1, an organic TFT having a MOS structure generally has a structure in which a gate electrode G, a source electrode S, and a drain electrode D overlap with each other through a gate insulating film GIF.
MO S構造の有機 T F Tにおいて、図 1に示すように、ゲート絶縁膜を介した ゲート電極とソース及びドレイン電極との重なり部分〇 Lは寄生容量となり、回 路特性を阻害させる要因となりうる。また、その寄生容量を緩和するためゲート 電極幅に対してソース及びドレイン電極の位置を重ならない位置(〇L 0 )に 合せる必要があつたため、ゲート電極の線幅はチャネル長 Lとほぼ同一にする必 要があった。このためソース一ドレイン電流を流すためチャネル長 Lを数 mま で短くすると、ゲート電極 Gの配線抵抗も大きくなるという問題があった(図 2 参照)。  In the organic TFT with MOS structure, as shown in Fig. 1, the overlapping part O L between the gate electrode and the source and drain electrodes via the gate insulating film becomes a parasitic capacitance, which can be a factor to hinder circuit characteristics. In addition, the gate electrode line width is almost the same as the channel length L because it is necessary to match the position of the source and drain electrodes with respect to the gate electrode width (O L 0) in order to reduce the parasitic capacitance. I had to do it. For this reason, if the channel length L is shortened to several meters to allow source-drain current to flow, the wiring resistance of the gate electrode G also increases (see Fig. 2).
また、ソース電極 S及びドレイン電極 D間のゲート絶縁膜 G I F上に有機半導 体膜〇S Fを形成するために、一般に、有機半導体溶液を微量分注できかつ正確 な位置に液滴を吐出することが可能なィンクジェット技術が適用される。図 2に 示すように、 細い線幅ゲート電極上方のソース電極 S及びドレイン電極 D間に、 液滴着弾の高い位置決め精度がインクジエツ卜技術に求められる。  In addition, in order to form the organic semiconductor film OSF on the gate insulating film GIF between the source electrode S and the drain electrode D, in general, a small amount of an organic semiconductor solution can be dispensed and a droplet is ejected to an accurate position Ink jet technology is applied. As shown in FIG. 2, the ink jet technology requires high positioning accuracy of droplet landing between the source electrode S and the drain electrode D above the narrow line width gate electrode.
そこで本発明は、短いチャネル長を精度良く形成可能な寄生容量が小さく低抵 抗の有機薄膜トランジス夕及びその製造方法を提供することが一例として挙げ られる。 Therefore, the present invention has a small parasitic capacitance and a low resistance that can accurately form a short channel length. One example is to provide an anti-organic thin film transistor and a method for producing the same.
本発明の有機薄膜トランジスタは、互いに分離して設けられたソース電極及び ドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有機半導体膜 と、前記ソース電極及びドレイン電極の間の前記有機半導体膜に対向してゲート 絶縁膜を介して配置されたゲート電極と、を有する有機薄膜トランジスタであつ て、前記ゲート絶縁膜は前記ゲート電極の近傍に凹部を有することを特徴とする。 また、前記ソース電極及びドレイン電極の端部が互いに対向して前記凹部の側面 に設けられていることが好ましい。  The organic thin film transistor of the present invention includes a source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the organic semiconductor film between the source electrode and the drain electrode. An organic thin film transistor having a recess in the vicinity of the gate electrode. Further, it is preferable that end portions of the source electrode and the drain electrode are provided on a side surface of the concave portion so as to face each other.
本発明の有機薄膜トランジスタの製造方法は、互いに分離して設けられたソ一 ス電極及びドレイン電極と、前記ソース電極及びドレイン電極の間に介在する有 機半導体膜と、前記ソース電極及びドレイン電極の間の前記有機半導体膜に対向 してゲート絶縁膜を介して配置されたゲート電極と、を有する有機薄膜トランジ ス夕の製造方法であって、  The organic thin film transistor manufacturing method of the present invention includes a source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the source electrode and the drain electrode. A method of manufacturing an organic thin film transistor having a gate electrode disposed through a gate insulating film so as to face the organic semiconductor film therebetween,
基板上にゲ一ト電極を形成する工程と、  Forming a gate electrode on the substrate;
前記ゲート電極上にゲート絶縁膜を形成する工程と、  Forming a gate insulating film on the gate electrode;
前記ゲート絶縁膜上に互いに分離したソース電極及びドレイン電極を形成す る工程と、  Forming a source electrode and a drain electrode separated from each other on the gate insulating film;
前記ソース電極及びドレイン電極の対向端部及びその近傍上に前記有機半導 体膜を形成する工程と、 を含み、  Forming the organic semiconductor film on opposite ends of the source electrode and the drain electrode and in the vicinity thereof, and
前記ゲー卜絶縁膜を形成する工程において、前記ゲー卜絶縁膜が前記ゲート電 極の近傍に凹部を有するように、前記凹部を画定する隔壁部を形成することを特 徵とする。 図面の簡単な説明 In the step of forming the gate insulating film, a partition wall that defines the recess is formed so that the gate insulating film has a recess in the vicinity of the gate electrode. Say it. Brief Description of Drawings
図 1は、 有機 T F Tの概略断面図である。  FIG. 1 is a schematic cross-sectional view of organic TFT.
図 2は、 有機 T F T構造を示す部分切断斜視図である。  FIG. 2 is a partially cut perspective view showing an organic TFT structure.
図 3は、 本発明による実施形態の有機 T F Tの部分切断斜視図である。  FIG. 3 is a partially cut perspective view of an organic TFT according to an embodiment of the present invention.
図 4は、本発明による実施形態の有機 T F Tの隔壁部の傾斜面を示す拡大部分 断面図である。  FIG. 4 is an enlarged partial sectional view showing an inclined surface of the partition wall portion of the organic TFT according to the embodiment of the present invention.
図 5〜図 1 2は、本発明による実施形態の有機 T F T製造方法の工程における 基板の部分断面図である。 . 発明の詳細な説明  5 to 12 are partial cross-sectional views of the substrate in the steps of the organic TFT manufacturing method according to the embodiment of the present invention. Detailed Description of the Invention
以下に本発明の実施形態の有機 T F T及びその製造方法を図面を参照しつつ 説明する。  Hereinafter, an organic TFT according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings.
図 3はボトムコンタクト型の有機 T F Tの構造の一例を示す部分切断斜視図 である。  FIG. 3 is a partially cut perspective view showing an example of the structure of a bottom contact type organic TFT.
有機 T F Tは、対向するソース電極 S及びドレイン電極 Dと、 ソース電極及び ドレイン電極の間にチャネルを形成できるように積層された有機半導体からな る有機半導体膜 O S Fと、ソース電極 S及びドレイン電極 Dの間の有機半導体膜 O S Fに電界を印加せしめるゲート電極 Gと、 を含み、ゲート電極 Gを覆いソー ス電極 S及びドレイン電極 Dから絶縁するゲート絶縁膜 G I Fを有している。さ らに、 ゲート絶縁膜 G I Fはその深さ方向がゲート電極 Gに向かう凹部を有し、 ソース電極 S及びドレイン電極 Dの端部が互いに対向して凹部の側面に設けら れている。 凹部 (溝) の底部をチャネル部とする。 そのために、 ソース電極 S及 びドレイン電極 Dの対向端部が最もゲート電極に近接し、両電極がゲート電極 G から離れるように、凹部側面すなわち隔壁部 F Fの側面が設けられる。凹部を画 定するために隔壁部 F Fが設けられている。 The organic TFT includes an opposing source electrode S and drain electrode D, an organic semiconductor film OSF made of an organic semiconductor laminated so that a channel can be formed between the source electrode and the drain electrode, and a source electrode S and a drain electrode D. A gate electrode G for applying an electric field to the organic semiconductor film OSF between and a gate insulating film GIF that covers and insulates the gate electrode G from the source electrode S and the drain electrode D. Furthermore, the gate insulating film GIF has a recess whose depth direction faces the gate electrode G, The end portions of the source electrode S and the drain electrode D are provided on the side surfaces of the recess so as to face each other. The bottom of the recess (groove) is the channel portion. Therefore, the side surfaces of the concave portion, that is, the side surfaces of the partition wall portion FF are provided so that the opposing end portions of the source electrode S and the drain electrode D are closest to the gate electrode and both electrodes are separated from the gate electrode G. A partition wall FF is provided to define the recess.
隔壁部 F Fは、図 4に示すように、そのソース電極及びドレイン電極を介した 有機半導体膜側に、ゲート電極に対して傾斜 (角度 0 )した傾斜面 S Lを有する。 隔壁の側面の角度 (0 ) は、 鈍角であって、 9 0 ° (凹部底面即ちゲート電極及 びゲート絶縁膜の上面に対し)を超えて 1 7 0 ° まで、好ましくは 1 3 5 ° まで の範囲内にある。  As shown in FIG. 4, the partition wall portion FF has an inclined surface SL that is inclined (angle 0) with respect to the gate electrode on the organic semiconductor film side through the source electrode and the drain electrode. The angle (0) of the side wall of the partition wall is an obtuse angle and exceeds 90 ° (with respect to the bottom surface of the recess, that is, the top surface of the gate electrode and the gate insulating film) up to 170 °, preferably up to 13 ° It is in the range.
有機 T F Tのソース及びドレイン電極の下部のゲート電極上方に存在する隔 壁を設けることにより、有機 T F Tのゲート電極、ゲ一ト絶縁膜とソース及びド レイン電極との重なりに起因する寄生容量が、隔壁を設けない場合の 1 2以下 となる。  By providing a barrier that exists above the gate electrode below the source and drain electrodes of the organic TFT, the parasitic capacitance due to the overlap between the gate electrode and gate insulating film of the organic TFT and the source and drain electrodes is reduced. 1 or 2 when no partition is provided.
上記隔壁材料の誘電率は任意でもよいが、好ましくはゲート絶縁膜以下の値が 望ましい。 また、 その材質は無機物でも有機物でもよく、 またゲート絶縁膜と同 一材料でもよい。  The dielectric constant of the partition material may be arbitrary, but is preferably a value equal to or lower than that of the gate insulating film. The material may be inorganic or organic, and may be the same material as the gate insulating film.
本実施形態を用いることによって、ゲート電極とソース及びドレイン電極との 間で形成される寄生容量を低減するための高精度の位置合せは不要になる。 本実施形態を用いることによって、ゲート電極の微細化の必要がなくなり、微 細化に伴う配線抵抗の上昇を抑止する。好ましくは凹部はゲート電極 G幅の中央 部に設けられる。 本実施形態の有機薄膜トランジス夕製造方法の一例を説明する。 By using this embodiment, highly accurate alignment for reducing the parasitic capacitance formed between the gate electrode and the source and drain electrodes becomes unnecessary. By using this embodiment, it is not necessary to miniaturize the gate electrode, and increase in wiring resistance due to miniaturization is suppressed. Preferably, the recess is provided at the center of the gate electrode G width. An example of the organic thin film transistor manufacturing method of this embodiment will be described.
図 5に示すように、 洗浄した基板 1 0上にゲート電極 Gを形成する。  As shown in FIG. 5, a gate electrode G is formed on the cleaned substrate 10.
次に、 図 6に示すように、 ゲート電極 G上にゲート絶縁膜 G I Fを形成する。 このゲート絶縁膜を形成する工程では、ゲート絶縁膜 G I Fにゲート電極 Gに向 かう凹部を設ける。そのために、チャネル部となる部分よりも膜厚の厚い絶縁性 の隔壁部 F Fを形成する。  Next, as shown in FIG. 6, a gate insulating film G IF is formed on the gate electrode G. In the step of forming the gate insulating film, a recess facing the gate electrode G is provided in the gate insulating film GIF. For this purpose, an insulating partition wall portion FF having a thicker film thickness than that of the channel portion is formed.
例えば、先ずゲート電極 Gの表面を陽極酸化法によつて酸化して得られた酸化 物薄膜すなわちゲ一ト絶縁膜 G I Fを形成する。  For example, first, an oxide thin film obtained by oxidizing the surface of the gate electrode G by an anodic oxidation method, that is, a gate insulating film GIF is formed.
次に、図 7に示すように、ゲート絶縁膜 G I Fとは異なる隔壁部 F Fの第 2材 料をゲート絶縁膜 G上に成膜する。  Next, as shown in FIG. 7, a second material having a partition wall portion FF different from the gate insulating film G IF is formed on the gate insulating film G.
次に、図 8に示すように、隔壁部の第 2材料をゲート絶縁膜 G I Fが露出する ような深さまで凹部を穿孔して隔壁部 F Fを形成する。凹部の穿孔は例えば、 ド ライエッチング又はゥエツトエッチングにより行い、凹部に対して傾斜した傾斜 面を隔壁部 F Fに形成する。 隔壁部 F Fの傾斜面の角度は凹部の底部に対して、 9 0 ° を超えて 1 7 0 ° 以内である。  Next, as shown in FIG. 8, the partition wall portion FF is formed by drilling a recess in the second material of the partition wall portion to such a depth that the gate insulating film GIF is exposed. The recess is perforated by dry etching or wet etching, for example, and an inclined surface inclined with respect to the recess is formed in the partition wall portion FF. The angle of the inclined surface of the partition wall portion FF is more than 90 ° and within 1700 ° with respect to the bottom of the recess.
次に、図 9に示すように、凹部の底部のゲート絶縁膜 G I Fから凹部側面の傾 斜面を経て隔壁部 F F上に亘つて、互いに分離したソース電極 S及びドレイン電 極 Dを形成する。  Next, as shown in FIG. 9, a source electrode S and a drain electrode D that are separated from each other are formed from the gate insulating film G IF at the bottom of the concave portion to the partition wall portion FF through the slope of the side surface of the concave portion.
図 1 0に示すように、有機半導体膜の液状化された材料の液滴を凹部に供給し て、 これを乾燥して、 ソース電極及びドレイン電極の対向端部及びその近傍上に 有機半導体膜を形成する。また、 自己組織化方法により有機半導体膜を形成する こともできる。 上記の有機薄膜トランジス夕製造方法では無機のゲート絶縁膜上に有機の絶 縁膜を隔壁として設けたが、 これに限らず、 図 1 1に示すように、 ゲート絶縁膜 G I Fを厚く設けた後にチャネル部分(ソース電極及びドレイン電極の対向端部 の間すなわち凹部)のみドライエッチングもしくはウエットエツチングで不要な 膜部分を除去し、 ゲート絶縁膜 G I F及び隔壁部 FFとすることも可能であるAs shown in FIG. 10, liquid droplets of the liquefied material of the organic semiconductor film are supplied to the recesses and dried, and the organic semiconductor film is formed on the opposite ends of the source electrode and the drain electrode and in the vicinity thereof. Form. An organic semiconductor film can also be formed by a self-organization method. In the organic thin film transistor manufacturing method described above, an organic insulating film is provided as a partition on an inorganic gate insulating film. However, the present invention is not limited to this, and as shown in FIG. 11, after a thick gate insulating film GIF is provided. Only the channel part (between the opposite ends of the source electrode and the drain electrode, that is, the concave part) can be removed by dry etching or wet etching to form a gate insulating film GIF and a partition wall part FF.
(図 12参照)。 このように、 ゲート絶縁膜と隔壁が同一材料であってもよい。 また、 同一材料であっても、 異なる成膜方法で設けてもよい。 例えばゲート絶縁 膜を、 Taを陽極酸化する方法で、 隔壁を、 Ta25で CVDにより設けても よい。 (See Figure 12). As described above, the gate insulating film and the partition may be made of the same material. Further, the same material may be provided by different film formation methods. For example the gate insulating film, a method of anodizing the Ta, the partition wall may be provided by CVD with Ta 25.
(基板)  (Board)
基板 10はガラスの他、 PES、 PCなどのブラスティック基板や、 ガラスと プラスティックの貼り合わせ基板でもよく、また基板表面にアルカリバリア膜や、 ガスバリア膜がコートされてもよい。 ブラスティック基板としては、 例えば、 ポ リエチレンテレフ夕レート、 ポリエチレン一 2, 6—ナフ夕レート、 ポリサルフ オン、 ポリエーテルサルフォン、 ポリエ一テルエ一テルケトン、 ポリフエノキシ エーテル、 ポリアリレート、 フッ素樹脂、 ポリプロピレンなどのフィルムが適用 できる。  In addition to glass, the substrate 10 may be a plastic substrate such as PES or PC, a bonded substrate of glass and plastic, or an alkali barrier film or a gas barrier film may be coated on the substrate surface. Examples of plastic substrates include polyethylene terephthalate, polyethylene 1,2,6-naphthalate, polysulfone, polyethersulfone, polyetheretherketone, polyphenoxyether, polyarylate, fluororesin, and polypropylene. Film can be applied.
(有機 TFT)  (Organic TFT)
隔壁部 FFとして、その材料はポリイミドなど有機材料や、 ほかに無機材料の いずれの絶縁物も使用できる。 例えば、 無機材料では、 L i Ox、 L i Nx、 N aOx、 KOx、 Rb〇x、 C s〇x、 Be〇x、 Mg〇x、 MgNx、 Ca〇x、 C aNx、 S rOx、 BaOx、 S cOx、 Y〇x、 YNX、 L aOx, L aNx, C e 〇x、 P rOx、 Nd〇x、 SmOx、 EuOx、 Gd〇x、 Tb〇x、 Dy〇x、 H o〇x、 E rOx、 Tm〇x、 YbOx、 Lu〇x、 T i Ox、 T i Nx> Z r〇x、 Z rNx、 H f 〇x、 H f Nx、 ThOx、 V〇x、 VNX、 NbOx、 Ta〇x、 T aNx、 C r〇x、 C rNx、 Mo〇x、 MoNx、 WOx、 WNX、 Mn〇x、 Re Ox、 FeOx、 FeNx、 RuOx、 OsOx、 Co〇x、 RhOx、 I rOx、 N i Ox、 Pd〇x、 P t〇x、 Cu〇x、 CuNx、 AgOx、 AuOx、 Zn〇x、 Cd〇x、 Hg〇x、 B〇x、 BNX、 A 1 Ox、 A 1 Nx、 Ga〇x、 GaNx、 I nOx、 T i Ox、 T i Nx、 S i Nx、 Ge〇x、 Sn〇x、 Pb〇x、 POx、 P Nx、 AsOx、 SbOx、 S eOx、 T e〇xなどの金属酸化物でも、 L i A l O 2、 L i 2S i 03、 L i 2T i 03、 Na2A l 2234、 N a F e 02, Na4S i 〇3、 K2S i〇3、 K2T i〇3、 K2W〇4、 Rb2C r04、 CS2C r〇4、 Mg A 1204、 MgFe24、 MgT i〇3、 C aT i〇3、 C aW04、 C a Z r 〇3、 S r Fe1219、 S rT i〇3、 S r Z r〇3、 BaA l 24、 B a F e ! 2019、 BaT i 03、 Y3A15012, Y3Fe5012, L aFe03, La3Fe 5012、 La2T i 27、 Ce Sn04、 CeT i〇4、 Sm3Fe5012、 EuF e〇3、 Eu3Fe512、 GdFe03、 Gd3Fe512、 DyFe〇3、 Dy3 F e5012、、 HoFe03、 Ho3Fe512、 E r Fe03、 E r3F e5012、 Tm3F e5012、 LuFe〇3、 Lu3F e5012、 N i T i 03、 A l 2T i 03、 FeT i 03、 B aZ r〇3、 L i Z r 03> MgZ r03、 H f T i〇4、 NH4 V03、 AgV〇3、 L i V〇3、 B aNb 206 NaNb〇3、 S r Nb 206 KTa〇3、 NaTa〇3、 S rTa26、 CuC r 204、 Ag2C r〇4、 B a C r 04, K2Mo04、 Na2Mo〇4、 N i Mo〇4、 B aW〇4、 Na2W04、 S rW〇4、 MnC r 24、 MnFe 204、 MnT i〇3、 MnW〇4、 CoF e24、、 ZnFe24、 FeW〇4、 CoMo〇4、 CuT i 03、 CuW〇4、 Ag2Mo〇4、 Ag2W〇4、 ZnA l 24、 ZnMo〇4、 ZnW〇4、 CdS n〇3、 CdT i〇3、 CdMo〇4、 CdW04、 NaA l〇2、 MgA 124、 S rA l 204、 Gd3Ga512、 I nFe〇3、 Mg l n24、 A l 2T i 05、 F eT i〇3、 MgT i〇3、 Na2S i〇3、 CaS i〇3、 Z r S i 04、 K2 Ge〇3、 L i 2G e 03 Na2Ge〇3、 B i 2Sn 309、 MgSn〇3、 S r S n〇3、 PbS i〇3、 PbMo〇4、 PbT i〇3、 Sn〇2— Sb 203、 C uS e04、 Na2S e〇3、 ZnS e〇3、 K2Te〇3、 K2Te〇4、 N a 2T e03、 Na2Te0^j;どの貴金属複合酸化物でも、 F e S、 A 12 S 3、 Mg S、 ZnSなどの硫化物、 L i F、 MgF2、 SmF3などのフッ化物、 HgC l、 F e C 12、 C r C 13などの塩化物、 AgB r、 CuB r、 MnB r 2などの臭 化物、 Pb l 2、 Cu l、 Fe l 2などのヨウ化物、 または S i A 1 ONなどの 金属酸化窒化物でも有効である。 The partition wall FF can be made of an organic material such as polyimide or any other inorganic material. For example, the inorganic material, L i O x, L i N x, N aO x, KO x, Rb_〇 x, C S_〇 x, Be_〇 x, Mg_〇 x, MgN x, Ca_〇 x, C aN x , S rO x , BaO x , S cO x , Y〇 x , YN X , L aO x , L aN x , C e 〇 x, P and rO x, Nd_〇 x, SmO x, EuO x, Gd_〇 x, Tb_〇 x, Dy_〇 x, H O_〇 x, E and rO x, Tm_〇 x, YbO x, Lu_〇 x, T i O x , T i N x> Z r〇 x , Z rN x , H f 〇 x , H f N x , ThO x , V〇 x , VN X , NbO x , Ta〇 x , TaN x , C rO x , C rN x , MoO x , MoN x , WO x , WN X , MnO x , Re O x , FeO x , FeN x , RuO x , OsO x , CoO x , RhO x , I rO x, N i O x, Pd_〇 x, P T_〇 x, Cu_〇 x, CuN x, AgO x, AuO x, Zn_〇 x, Cd_〇 x, Hg_〇 x, B_〇 x, BN X, A 1 O x, A 1 N x, Ga_〇 x, GaN x, I nO x , T i O x, T i N x, S i N x, Ge_〇 x, Sn_〇 x, Pb_〇 x, PO x, PN Metal oxides such as x , AsO x , SbO x , SeO x , and Te 〇 x can also be used as L i A l O 2, L i 2 S i 0 3 , L i 2 T i 0 3 , Na 2 A l 22 34, N a F e 0 2 , Na 4 S i 〇 3, K 2 S I_〇 3, K 2 T I_〇 3, K 2 W_〇 4, Rb 2 C r0 4, C S2 C R_〇 4 , Mg A 1 2 0 4 MgFe 24, MgT I_〇 3, C aT I_〇 3, C aW0 4, C a Z r 〇 3, S r Fe 1219, S rT I_〇 3, S r Z R_〇 3, BaA l 24 , B a F e! 20 19 , BaT i 0 3 , Y 3 A 15 0 12 , Y 3 Fe 5 0 12 , LaFe0 3 , La 3 Fe 5 0 12 , La 2 Ti 2 0 7 , Ce Sn0 4 , CeTi 4 , Sm 3 Fe 5 0 12 , EuF e 0 3 , Eu 3 Fe 5 0 12 , GdFe 0 3 , Gd 3 Fe 5 0 12 , DyFe 0 3 , Dy 3 F e 5 0 12 , , HoFe0 3 , Ho 3 Fe 5 0 12 , Er Fe0 3 , Er 3 F e 5 0 12 , Tm 3 F e 5 0 12 , LuFe 0 3 , Lu 3 F e 5 0 12 , N i T i 0 3, A l 2 T i 0 3, FeT i 0 3, B aZ R_〇 3, L i Z r 0 3 > MgZ r0 3, H f T I_〇 4, NH 4 V0 3, AgV_〇 3, L i V 0 3 , B aNb 2 0 6 NaNb 0 3 , S r Nb 2 0 6 KTa 0 3 , NaTa 0 3 , S rTa 2 0 6 , CuC r 2 0 4 , Ag 2 C r 0 4 , B a C r 0 4, K 2 Mo0 4, Na 2 Mo_〇 4, N i Mo_〇 4, B AW_〇 4, Na 2 W0 4, S RW_〇 4, MnC r 2 4, MnFe 2 0 4, MnT I_〇 3, MnW_〇 4, CoF e 24 ,, ZnFe 24, FeW_〇 4, CoMo_〇 4, CuT i 0 3, CuW_〇 4, Ag 2 Mo_〇 4, Ag 2 W_〇 4, ZNA l 24, ZnMo_〇 4, ZnW_〇 4, CdS N_〇 3, CdT I_〇 3, CdMo_〇 4, CdW0 4, NaA L_〇 2 , MgA 1 2 0 4 , S rA l 2 0 4 , Gd 3 Ga 5 0 12 , InFe3 3 , Mg ln 2 0 4 , A 1 2 T i 0 5 , F eT i 0 3 , MgT i0 3, Na 2 S I_〇 3, CaS I_〇 3, Z r S i 0 4 , K 2 Ge_〇 3, L i 2 G e 0 3 Na 2 Ge_〇 3, B i 2 Sn 3 0 9, MgSn_〇 3, S r S N_〇 3, PbS I_〇 3, PbMo_〇 4, PBT I_〇 3, Sn_〇 2 - Sb 2 0 3, C uS e0 4, Na 2 S E_〇 3, ZnS E_〇 3, K 2 Te_〇 3, K 2 Te_〇 4, N a 2 T e0 3 , Na 2 Te0 ^ j; any noble metal composite oxide, F e S, a 1 2 S 3, Mg S, sulfides such as ZnS, L i F, fluorides such as MgF 2, SmF 3, HgC l , chlorides such as F e C 1 2, C r C 1 3, AgB r, CuB r, MnB r 2 What odor compound is also effective in Pb l 2, Cu l, iodides such as Fe l 2 or a metal oxynitride such as S i A 1 ON,.
また、 隔壁部 FFとして有機化合物を用いた場合は、絶緣性のポリマーであれ ば使用できる。 また、 有機材料ではポリアミド、 ポリエステル、 ポリアクリレー ト、 エポキシ樹脂、 フエノール樹脂 (フエノールノポラック)、 ポリビニルアル コールなどポリマー系材料が有効である。 さらに、 ポリエチレン、 ポリ塩化ビニ ル、 ポリフッ化ビニリデン、 ポリカーボネート、 ポリフエ二レンスルフィ ド、 ポ リエ一テルエ一テルケトン、 ポリエ一テルサルフォン、 ポリイミド、、 ベンゾシ クロブテン、 ポリクロロピレン、 ポリオキシメチレン、 ポリサルフォンなどの榭 脂も使用できる。 その他、 熱または光で硬化する樹脂も有効である。 ゲート絶縁膜 G I Fとしてゲート電極材料の酸化物が使用できる。例えば、ゲ ート電極を T aとし、 その陽極酸化処理により T a 205をゲート絶縁膜 G I F とすることができる。ゲート電極材料としては陽極酸化可能な金属であれば何で もよく、 A l、 Mg、 T i、 Nb、 Z rなどの単体もしくはそれらの合金を陽極 酸化してゲート絶縁膜としてもよい。 In addition, when an organic compound is used as the partition wall portion FF, any organic polymer can be used. Polymer materials such as polyamide, polyester, polyacrylate, epoxy resin, phenol resin (phenol nopolac), and polyvinyl alcohol are effective organic materials. In addition, polyethylene, polyvinyl chloride, polyvinylidene fluoride, polycarbonate, polyethylene sulfide, polyester terether ketone, polyethylene tersulfone, polyimide, benzocyclobutene, polychloropyrene, polyoxymethylene, polysulfone, and other resins Can also be used. Other resins that can be cured by heat or light are also effective. An oxide of a gate electrode material can be used as the gate insulating film GIF. For example, the Gate electrode and T a, can be a T a 2 0 5 by the anodic oxidation treatment to the gate insulating film GIF. The gate electrode material may be any metal as long as it can be anodized, and a simple substance such as Al, Mg, Ti, Nb, Zr or an alloy thereof may be anodized to form a gate insulating film.
その他、陽極酸化を用いずとも無機材料、有機材料のいずれの絶縁物も隔壁と 同一材料から選択してゲート絶縁膜 G I Fとして使用できる。 例えば L i Ox、 L i Nx、 NaOx、 K〇x、 RbOx、 C s〇x、 BeOx、 MgOx、 MgNx、 Ca〇x、 CaNx、 S r〇x、 BaOx、 S c〇x、 Y〇x、 YNX、 L a〇x、 L aNx、 CeOx、 P rOx、 NdOx、 SmOx、 EuOx、 GdOx、 TbOx、 DyOx、 Ho〇x、 E r〇x、 Tm〇x、 YbOx、 Lu〇x、 T i〇x、 T i Nx, Z r〇x、 Z rNx、 H f Ox、 H f Nx、 ThOx、 VOx、 VNX、 Nb〇x、 T aOx、 TaNx、 C r〇x、 C rNx、 Mo〇x、 MoNx、 WOx、 WNX、 Mn 〇x、 ReOx、 FeOx、 FeNx、 Ru〇x、 OsOx、 Co〇x、 Rh〇x、 I r〇x、 N i Ox、 Pd〇x、 P t Ox、 Cu〇x、 CuNx、 Ag〇x、 Au〇x、 Zn〇x、 CdOx、 HgOx> B〇x、 BNX、 A 1〇x、 A 1 Nx、 Ga〇x、 G aNx、 I nOx、 T i〇x、 T i Nx、 S i Nx、 GeOx、 SnOx、 PbOx、 P〇x、 PNX、 AsOx、 SbOx、 S e〇x、 TeOxなどの金属酸化物 (ただ し、 上記物質表記の Nx、 〇xにおける Xは原子比を示す) でも、 L i A 102、 L i 2 S i〇3、 L i 2T i〇3、 Na2A l 2234、 NaFe〇2、 Na4S i〇3、 K2S i 03、 K2T i〇3、 K2W04、 Rb2C r〇4、 CS2C r 04 Mg A 124、 MgFe 204、 MgT i〇3、 C aT i 03、 C aW04、 CaZ r03、 S r Fe 1219、 S rT i〇3、 S r Z r〇3、 BaA l 204、 B a F e 120: 9、 B aT i 03、 Y3A15012、 Y3Fe512、 LaFe〇3、 L asFe^In addition, it is possible to select an insulator of inorganic material or organic material from the same material as the partition wall and use it as the gate insulating film GIF without using anodic oxidation. For example L i O x, L i N x, NaO x, K_〇 x, RbO x, C S_〇 x, BeO x, MgO x, MgN x, Ca_〇 x, CaN x, S R_〇 x, BaO x, S C_〇 x, Y_〇 x, YN X, L A_〇 x, L aN x, CeO x , P rO x, NdO x, SmO x, EuO x, GdO x, TbO x, DyO x, Ho_〇 x, E rO x , TmO x , YbO x , LuO x , T iO x , T i N x , Z rO x , Z rN x , H f O x , H f N x , ThO x , VO x , VN X , NbO x , TaO x , TaN x , CrO x , C rN x , MoO x , MoN x , WO x , WN X , Mn O x , ReO x , FeO x , FeN x , Ru_〇 x, OsO x, Co_〇 x, Rh_〇 x, I R_〇 x, N i O x, Pd_〇 x, P t O x, Cu_〇 x, CuN x, Ag_〇 x, Au_〇 x, Zn 〇 x, CdO x, HgO x> B_〇 x, BN X, A 1_Rei x, A 1 N x, Ga_〇 x, G aN x, I nO x, T I_〇 x, T i N x, S i Metal oxides such as N x , GeO x , SnO x , PbO x , P〇 x , PN x , AsO x , SbO x , Se o x , TeO x However, N x in the above substance notation, and X in O x indicates an atomic ratio). However, L i A 10 2 , L i 2 S i O 3 , L i 2 T i O 3 , Na 2 A l 22 O 34 , NaFe_〇 2, Na 4 S I_〇 3, K 2 S i 0 3 , K 2 T I_〇 3, K 2 W0 4, Rb 2 C R_〇 4, C S2 C r 0 4 Mg A 1 2 〇 4 , MgFe 2 0 4, MgT I_〇 3, C aT i 0 3, C aW0 4, CaZ r0 3, S r Fe 1219 , S r T i ○ 3 , S r Z r ○ 3 , BaA l 2 0 4 , B a F e 12 0 : 9 , B aT i 0 3 , Y 3 A 15 0 12 , Y 3 Fe 512, LaFe_〇 3, L asFe ^
2、 L a 2T i 207, Ce Sn〇4、 CeT i〇4、 Sm3F e512、 E u F e O 2, L a 2 T i 2 0 7, Ce Sn_〇 4, CET I_〇 4, Sm 3 F e 512, E u F e O
3、 Eu3Fe5012、 GdF e〇3、 Gd3Fe512、 DyFe〇3、 Dy 3F e 5012、 HoFe〇3、 Ho3Fe512、 E r Fe〇3、 E r3Fe512、 Tm 3Fe512、 LuFe03、 Lu3Fe512、 N i T i〇3、 A l 2T i〇3、 F eT i〇3、 BaZ r〇3、 L i Z r〇3、 MgZ r03、 H f T i 04 NH4V 〇3、 AgV03、 L i Vo3、 BaNb26、 NaNb〇3、 S rNb26、 K Ta〇3、 NaTa〇3、 S rTa 206、 CuC r 204、 Ag2C r〇4、 B a C rO4、 K2Mo〇4、 Na2Mo04, N iMo04、 B aW04、 Na2W〇4、 S rW〇4、 MnC r24、 MnFe24、 MnT i〇3、 MnW〇4、 CoF e24、 ZnF e 204、 F eW〇4、 CoMo〇4、 CuT i〇3、 CuW〇4、 Ag2Mo〇4、 Ag2W04、 Z n A 1204, ZnMo〇4、 ZnW〇4、 C d S n03、 CdT i〇3、 CdMo〇4、 CdW〇4、 NaA l〇2、 MgA 124、 S rA l 24、 Gd3Ga512、 I nFe03、 Mg I n24、 A l 2T i〇5、 F e T i 03 MgT i〇3、 N a 2 S i 03, CaS i〇3、 Z r S i 04、 K2 Ge〇3、 L i 2 G e O a Na2Ge03、 B i 2Sn39、 MgSn03、 S r Sn〇3、 PbS i〇3、 PbMo〇4、 PbT i〇3、 Sn02— Sb 203、 C uS e〇4、 Na2S e〇3、 ZnS e〇3、 K2Te〇3、 K2Te〇4、 Na2T e〇3、 Na2Te 04などの貴金属複合酸化物でも、 Fe S、 A l 2S3、 MgS、 ZnSなどの硫化物、 L i F、 MgF2、 SmF3などのフッ化物、 HgCし F e C 12、 C r C 13などの塩化物、 AgB r、 CuB r、 MnB r 2などの臭 化物、 Pb l 2、 Cu l、 Fe l 2などのヨウ化物、 または S i A I ONなどの 金属酸化窒化物でも有効である。また、ポリイミド、ポリアミド、ポリエステル、 ポリアクリレート、 エポキシ樹脂、 フエノール樹脂、 ポリビニルアルコールなど ポリマー系材料でも有効である。 3, Eu 3 Fe 5 0 12, GdF E_〇 3, Gd 3 Fe 512, DyFe_〇 3, Dy 3 F e 5 0 12, HoFe_〇 3, Ho 3 Fe 512, E r Fe_〇 3, E r 3 Fe 512, Tm 3 Fe 5 12, LuFe0 3, Lu 3 Fe 5 〇 12, N i T I_〇 3, A l 2 T I_〇 3, F eT I_〇 3, baz R_〇 3 , L i Z R_〇 3, MgZ r0 3, H f T i 0 4 NH 4 V 〇 3, AgV0 3, L i Vo 3, BaNb 2 〇 6, NaNb_〇 3, S RNB 26, K Ta_〇 3 , NaTaO 3 , S rTa 2 0 6 , CuC r 2 0 4 , Ag 2 Cr 0 4 , B a C rO 4 , K 2 Mo 0 4 , Na 2 Mo0 4 , NiMo0 4 , B aW0 4 , Na 2 W_〇 4, S RW_〇 4, MnC r 24, MnFe 24, mnt I_〇 3, MnW_〇 4, CoF e 24, ZnF e 2 0 4, F EW_〇 4, CoMo_〇 4, CUT I_〇 3, CuW_〇 4, Ag 2 Mo_〇 4, Ag 2 W0 4, Z n A 1 2 0 4, ZnMo_〇 4, ZnW_〇 4, C d S n0 3, CdT I_〇 3, CdMo 〇 4, CdW_〇 4, NaA L_〇 2, MGA 1 24, S rA l 24, Gd 3 Ga 5 12, I nFe0 3, Mg I n 2 〇 4, A l 2 T I_〇 5, F e T i 0 3 MgT I_〇 3, N a 2 S i 0 3, CaS I_〇 3, Z r S i 0 4 , K 2 Ge_〇 3, L i 2 G e O a Na 2 Ge0 3 , B i 2 Sn 39, MgSn0 3, S r Sn_〇 3, PbS I_〇 3, PbMo_〇 4, PBT I_〇 3, Sn0 2 - Sb 2 0 3, C uS E_〇 4, Na 2 S e 〇 3, ZnS E_〇 3, K 2 Te_〇 3, even with K 2 Te_〇 4, Na 2 T E_〇 3, a noble metal composite oxide such as Na 2 Te 0 4, Fe S , a l 2 S 3, MgS , sulfides such as ZnS, L i F, fluorides such as MgF 2, SmF 3, chlorides such as HgC and F e C 1 2, C r C 1 3, AgB r, CuB r, such MnB r 2 Odor It is also effective for iodides such as fluoride, Pb l 2 , Cu l and Fe l 2 , or metal oxynitrides such as Si AI ON. It is also effective for polymer materials such as polyimide, polyamide, polyester, polyacrylate, epoxy resin, phenol resin, and polyvinyl alcohol.
ゲート電極 G、 ソース Zドレイン電極 S, Dとしては、 例えば、 丁&ゃ。 1"単 独または、 C rZAu積層が用いられるが、その材料は特に限定されることはな く、 電極として十分な導電性があればよい。 すなわち、 P t、 Au、 W、 Ru、 I r、 A l、 S c、 T i、 V、 Mn、 Fe、 Co、 N i、 Zn、 Ga、 Y、 Z r、 Nb、 Mo, Tc、 Rh、 Pd、 Ag、 Cd、 Ln、 Sn、 Re、 〇s、 T l、 Pb、 L a、 Ce、 P r、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 E r、 Tm、 Yb、 L uなどの金属単体もしくは積層もしくはその化合物でもよ い。 また、 I T〇、 I ΖΟのような金属酸化物類、 ポリア二リン類、 ポリチオフ ェン類、ポリピロール類などの共役性高分子化合物を含む有機導電材料でもよい。 有機半導体膜 O S Fの有機半導体としては、半導体特性を示す有'機材料であれ ばよく、 例えば低分子系材料ではペン夕セン、 フタロシアニン系誘導体、 ナフ夕 ロシアニン系誘導体、 ァゾ化合物系誘導体、 ペリレン系誘導体、 インジゴ系誘導 体、 キナクリドン系誘導体、 アントラキノン類などの多環キノン系誘導体、 シァ ニン系誘導体、 フラーレン類誘導体、 あるいはインドール、 力ルバプール、 ォキ サゾール、 インォキサゾール、 チアゾール、 イミダゾ一ル、 ピラゾール、 ォキサ アジアゾール、 ピラゾリン、 チアゾール、 トリァゾ一ルなどの含窒素環式化合物 誘導体、 ヒドラジン誘導体、 トリフエニルァミン誘導体、 トリフエニルメタン誘 導体、 スチルベン類、 アントラキノン、 ジフエノキノンなどのキノン化合物誘導 体、 アントラセン、 ピレン、 フエナントレン、 コロネンなどの多環芳香族化合物 誘導体などである。有機半導体膜 O S Fの高分子材料では、以上の誘導体の構造 においてポリエチレン鎖、ポリシロキサン鎖、ポリエーテル鎖、ポリエステル鎖、 ポリアミド鎖、ポリイミド鎖などの高分子の主鎖中に用いられたものあるいは側 鎖としてペンダント状に結合した高分子、若しくはポリパラフエ二レンなどの芳 香族系共役性高分子、 ポリアセチレンなどの脂肪族系共役性高分子、ポリピノ一 ルゃポリチォフエンなどの複素環式共役性高分子、ポリァニリン類ゃポリフエ二 レンサルファイドなどの含へテロ原子共役性高分子、ポリ(フエ二レンビニレン) やポリ (ァ二一レンビニレン) やポリ (チェ二レンビニレン) などの共役性高分 子の構成単位が交互に結合した構造を有する複合型系高分子などの炭素系共役 高分子が用いられる。 また、 ポリシラン類やジシラ二レンァリレンポリマー類、 (ジシラニレン) ェテニレンポリマー類、 (ジシラニレン) ェチニレンポリマー のようなジシラ二レン炭素系共役性ポリマー構造を有するオリゴシラン類と炭 素系共役性構造とが交互に連鎖した高分子などが用いられる。他にもリン系、窒 素系などの無機元素からなる高分子鎖でもよく、さらにフタロシアナートポリシ ロキサンのような高分子鎖の芳香族系配位子が配位した高分子類、ペリレンテト ラカルボン酸のようなべリレン類を熱処理して縮環させた高分子類、ポリアクリ ロニトリルなどのシァノ基を有するポリエチレン誘導体を熱処理して得られる ラダー型高分子類、さらにべロブスカイト類に有機化合物がィン夕一力レートと した複合材料を用いてもよい。 Examples of the gate electrode G, the source Z, and the drain electrodes S and D include Ding. A 1 "single layer or a CrZAu laminate is used, but the material is not particularly limited, and it only needs to have sufficient conductivity as an electrode. That is, Pt, Au, W, Ru, Ir , A l, S c, T i, V, Mn, Fe, Co, Ni, Zn, Ga, Y, Zr, Nb, Mo, Tc, Rh, Pd, Ag, Cd, Ln, Sn, Re, 〇S, T l, Pb, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. Alternatively, it may be an organic conductive material containing a conjugated polymer compound such as metal oxides such as IT ○ and IΖΟ, polyaniline, polythiophene, polypyrrole, etc. Organic semiconductor film OSF As an organic semiconductor, any organic material that exhibits semiconductor characteristics may be used. For example, in the case of a low molecular weight material, a pendecene, a phthalocyanine derivative, a naphthocyanine derivative, Azo compound derivatives, perylene derivatives, indigo derivatives, quinacridone derivatives, polycyclic quinone derivatives such as anthraquinones, cyanine derivatives, fullerene derivatives, or indole, force lubapool, oxazole, inoxazole, Nitrogen-containing cyclic compounds such as thiazole, imidazole, pyrazole, oxadiazole, pyrazoline, thiazole, triazol, hydrazine derivative, triphenylamine derivative, triphenylmethane derivative, stilbene, anthraquinone, diphenoquinone, etc. Of quinone compounds Body, anthracene, pyrene, phenanthrene, coronene and other polycyclic aromatic compound derivatives. The organic semiconductor film OSF polymer material used in the main chain or side of the polymer such as polyethylene chain, polysiloxane chain, polyether chain, polyester chain, polyamide chain, polyimide chain in the structure of the above derivatives. Polymers linked in a pendant form as a chain, aromatic conjugated polymers such as polyparaphenylene, aliphatic conjugated polymers such as polyacetylene, and heterocyclic conjugated polymers such as polypinolene polythiophene , Polyaniline and poly (phenylene sulfide) -containing heteroatom conjugated polymers, and poly (phenylene vinylene), poly (vinylene vinylene), and poly (chainylene vinylene) conjugated polymer structural units A carbon-based conjugated polymer such as a composite polymer having a structure in which is alternately bonded is used. Also, carbon-based conjugates with oligosilanes having a disilarylene carbon-based conjugated polymer structure, such as polysilanes, disilylene diarylene polymers, (disilanylene) ethynylene polymers, and (disilanylene) ethynylene polymers. For example, a polymer in which the structure is alternately linked is used. In addition, polymer chains composed of inorganic elements such as phosphorus and nitrogen may be used, and polymers having aromatic chain ligands such as phthalocyanate polysiloxane coordinated, perylenetetracarboxylic. Organic compounds such as polymers obtained by heat-conducting berylenes such as acids, ladder-type polymers obtained by heat-treating polyethylene derivatives having a cyano group such as polyacrylonitrile, and belobskites A composite material with an evening power rate may be used.
さらに、ソース Zドレイン電極間のゲート絶縁膜表面を自己組織化単分子膜で 被覆することもできる。 例えば、 HMD S (:へキメチルジシラサン、 (C H3) 3S i NHS i (CH3) 3) で処理し、 それらの単分子膜を成膜することが好ま しい。 そのほかに、 ソース Zドレイン電極間のゲート絶縁膜表面以外を、 OTSFurthermore, the surface of the gate insulating film between the source Z and drain electrodes can be covered with a self-assembled monolayer. For example, HMD S (: Hexmethyldisilazane, (CH 3 ) 3 was treated with S i NHS i (CH 3) 3), preferred to depositing their monolayer arbitrariness. In addition, except the surface of the gate insulating film between the source Z drain electrode, OTS
(:ォクタデシルトリクロロシラン CH3 (CH2) 17S i C 13) 膜処理によつ て、 疎水膜を設けた構成でも有効である。 (: Octadecyltrichlorosilane CH 3 (CH 2 ) 17 Si C 1 3 ) It is also effective in a configuration in which a hydrophobic film is provided by film treatment.
形成された回路及び有機 T F Tを覆うように、窒化シリコンなどの窒化物の無 機系、ポリマー系などによる膜封止がなされる。窒化酸化シリコンなどの窒化酸 化物、酸化シリコンや酸化アルミニウムなどの酸化物、炭化シリコンなどの炭化 物からなる無機物封止膜による封止や、その他に、高分子及び無機膜の多層封止 でもよい。  Membrane sealing is performed by using an inorganic system such as silicon nitride or a polymer system so as to cover the formed circuit and the organic TFT. Sealing with an inorganic sealing film made of a nitride oxide such as silicon nitride oxide, an oxide such as silicon oxide or aluminum oxide, or a carbide such as silicon carbide, or multi-layer sealing of a polymer and an inorganic film may also be used. .
(実施例)  (Example)
有機 T F Tでアクティブ駆動する有機 E Lパネルを作製し、その特性を評価し た。  An organic EL panel that is actively driven by organic TFT was fabricated and its characteristics were evaluated.
隔壁の有無による構造の違いを、 図 2に示すような比較例有機 TFTと、 図 3 に示すような実施例有機 T FTと、 を作製した。  For the difference in structure depending on the presence / absence of barrier ribs, a comparative example organic TFT as shown in Fig. 2 and an example organic TFT as shown in Fig. 3 were fabricated.
(比較例有機 T FT)  (Comparative Example Organic TFT)
洗浄したガラス基板上にゲート電極 T a膜を厚さ 2000 A成膜し、 R I E (Re a c t i v e I on E t c h i n g)装置にてドライエッチングを行 い、幅 20 mの配線パターンを得た。 この T a配線膜に陽極酸化を行うことに より Ta 205膜を形成し、 ゲート絶縁膜 Ta25 (比誘電率: 24) とした。 その後、ゲ一ト絶緣膜上にソース及びドレイン電極用の C rノ A u膜をパター ニングした。なお、実験のため比較例素子のゲ一ト電極とドレイン電極との重な りは幅 5 長さ 2 mmとした。その後、ゲート電極及びドレイン電極間に有機 半導体 P 3HT ( o l y (3-he xy l t h i oph e ne)) を塗布し、 この素子を比較例有機 T F Τとした。 A gate electrode Ta film having a thickness of 2000 A was formed on the cleaned glass substrate, and dry etching was performed by a RIE (Reactive Ion Etching) apparatus to obtain a wiring pattern having a width of 20 m. A Ta 2 0 5 film was formed by anodizing the Ta wiring film to obtain a gate insulating film Ta 2 0 5 (relative dielectric constant: 24). After that, Cr no Au films for source and drain electrodes were patterned on the gate insulating film. For the experiment, the overlap between the gate electrode and the drain electrode of the comparative device was set to width 5 length 2 mm. Then, organic between the gate electrode and drain electrode A semiconductor P 3HT (oly (3-hexy lthiophene)) was applied, and this element was used as a comparative organic TFTF.
(実施例有機 T FT)  (Example organic TFT)
比較例同様に、洗浄したガラス基板上にゲート電極 T a膜を厚さ 200 OA成 膜し、 R I E装置にてドライエッチングを行い、幅 20 mの配線パターンを得 た。 この Ta配線膜に陽極酸化を行うことにより Ta25膜を形成し、 ゲート 絶縁膜 Ta 205 (比誘電率: 24) とした。 As in the comparative example, a 200 OA thick gate electrode Ta film was formed on a cleaned glass substrate, and dry etching was performed with an RIE apparatus to obtain a wiring pattern with a width of 20 m. A Ta 2 0 5 film was formed by anodizing the Ta wiring film to obtain a gate insulating film Ta 2 0 5 (relative dielectric constant: 24).
次に、 ゲート絶縁膜 Ta 205の上にポリイミド (比誘電率: 3. 8) を 3 m厚で成膜パターニングし隔壁とした後、ソース及びドレイン電極 C rZAuを 成膜パターニングした。この隔壁の水平面(ゲート電極及びゲート絶緣膜の界面) からの角度は 1 10° であった。そこに比較例と同様に有機半導体 P 3 HTを塗 布し、 この素子を実施例有機 TFTとした。 Next, a polyimide on the gate insulating film Ta 2 0 5 (relative permittivity: 3.8) was the deposited patterned partition walls at a 3 m thick was formed patterned source and drain electrodes C rZAu. The angle of this partition wall from the horizontal plane (the interface between the gate electrode and the gate insulating film) was 110 °. The organic semiconductor P 3 HT was applied there like the comparative example, and this element was made into an example organic TFT.
各素子のゲート電極、ゲート絶縁膜、 ドレイン電極で形成されるコンデンサの 容量 (寄生容量) を測定したところ、 比較例は 3. 5X 10_12Fであるのに対 し、 本実施例は 2. 8X 10— 14Fと約 2桁低い値となった。 The gate electrodes of the respective elements, a gate insulating film, was measured the capacitance of the capacitor formed by the drain electrode (parasitic capacitance), the comparative example against to a 3. 5X 10_ 12 F, the present embodiment 2. It became the 8X 10- 14 F and about two orders of magnitude lower value.
また、 半導体特性を測定した所、 いずれの素子も移動度 0. 01 cm2/Vs を得た。 When the semiconductor characteristics were measured, the mobility of each element was 0.01 cm 2 / Vs.
隔壁により、 ゲート電極の幅を小さくすることなく、 配線抵抗を低下でき、 ソ —ス及びドレイン電極の高精度な位置合せを必要とせずに有機 T FTを作製す ることができた。  With the partition, the wiring resistance could be reduced without reducing the width of the gate electrode, and an organic TFT could be fabricated without the need for highly accurate alignment of the source and drain electrodes.
以上のように、 本実施形態によれば、 有機 T FT構造においてゲート電極、 ゲ ―ト絶縁膜とソース及びドレイン電極との重なりに起因する寄生容量を低減し かつ有機半導体材料のインクジエツト技術の液滴着弾に有効なバンク機能を有 する隔壁を付加させてソース及びドレイン電極の位置合せ精度を緩和し、さらに、 ゲート電極の微細化に伴う配線抵抗の上昇を抑止する。よって、本実施形態の有 機 T F Tはアクティブマトリクス駆動素子に好適である。 As described above, according to the present embodiment, the parasitic capacitance due to the overlap of the gate electrode, the gate insulating film, and the source and drain electrodes is reduced in the organic TFT structure. In addition, barrier ribs with a bank function effective for droplet landing of organic semiconductor material ink jet technology are added to ease the alignment accuracy of the source and drain electrodes, and further, the wiring resistance increases with the miniaturization of the gate electrode. Deter. Therefore, the organic TFT of this embodiment is suitable for an active matrix driving element.

Claims

請求の範囲 The scope of the claims
1 . 互いに分離して設けられたソース電極及びドレイン電極と、前記ソース 電極及びドレイン電極の間に介在する有機半導体膜と、前記ソース電極及びドレ ィン電極の間の前記有機半導体膜に対向してゲート絶縁膜を介して配置された ゲート電極と、 を有する有機薄膜トランジスタであって、前記ゲート絶縁膜は前 記ゲ一ト電極の近傍に凹部を有することを特徴とする有機薄膜トランジス夕。 1. A source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the organic semiconductor film between the source electrode and the drain electrode. An organic thin film transistor comprising: a gate electrode disposed through a gate insulating film; wherein the gate insulating film has a recess in the vicinity of the gate electrode.
2 . 前記ソース電極及びドレイン電極の端部が互いに対向して前記凹部の側 面に設けられていることを特徴とする請求項 1記載の有機薄膜トランジスタ。  2. The organic thin film transistor according to claim 1, wherein end portions of the source electrode and the drain electrode are provided on a side surface of the recess so as to face each other.
3 . 前記ゲート絶緣膜は前記凹部の底部をチャネル部として画定する隔壁部 を有することを特徴とする請求項 1又は 2記載の有機薄膜トランジスタ。  3. The organic thin film transistor according to claim 1 or 2, wherein the gate insulating film has a partition wall that defines a bottom of the recess as a channel portion.
4. 前記凹部は、 前記ゲート絶縁膜の材料を第 1厚さで前記ゲート電極上に 成膜し、前記ゲ一ト絶縁膜が前記第 1厚さより小なる第 2厚さとなるような深さ まで穿孔して形成されたことを特徴とする請求項 3記載の有機薄膜トランジス 夕。  4. The recess has a depth such that a material of the gate insulating film is formed on the gate electrode with a first thickness, and the gate insulating film has a second thickness smaller than the first thickness. 4. The organic thin-film transistor according to claim 3, wherein the organic thin-film transistor is formed by perforating.
5 . 前記隔壁部は、前記ゲート絶縁膜とは異なる材料からなることを特徴と する請求項 3記載の有機薄膜トランジスタ。  5. The organic thin film transistor according to claim 3, wherein the partition wall portion is made of a material different from that of the gate insulating film.
6 . 前記隔壁部は、 前記ゲート絶緣膜の誘電率以下の誘電率の値を有する誘 電体からなることを特徴とする請求項 5記載の有機薄膜トランジスタ。  6. The organic thin film transistor according to claim 5, wherein the partition wall portion is made of an insulator having a dielectric constant equal to or lower than a dielectric constant of the gate insulating film.
7 . 前記隔壁部は、その前記ソース電極及びドレイン電極を介した前記有機 半導体膜側に、前記ゲート電極に対して傾斜した傾斜面を有することを特徴とす る請求項 3〜 5のいずれかに記載の有機薄膜トランジスタ。 7. The partition wall has an inclined surface inclined with respect to the gate electrode on the organic semiconductor film side through the source electrode and the drain electrode. The organic thin film transistor as described in 1.
8 . 前記隔壁部の傾斜面の角度は前記ゲート電極に対して、 9 0 ° を超えて 1 7 0 ° 以内であることを特徴とする請求項 7記載の有機薄膜トランジスタ。 8. The organic thin film transistor according to claim 7, wherein an angle of an inclined surface of the partition wall is more than 90 ° and within 1700 ° with respect to the gate electrode.
9 . 互いに分離して設けられたソース電極及びドレイン電極と、前記ソース 電極及びドレイン電極の間に介在する有機半導体膜と、前記ソース電極及びドレ イン電極の間の前記有機半導体膜に対向してゲー卜絶縁膜を介して配置された ゲート電極を有する有機薄膜トランジスタの製造方法であって、  9. A source electrode and a drain electrode provided separately from each other, an organic semiconductor film interposed between the source electrode and the drain electrode, and the organic semiconductor film between the source electrode and the drain electrode. A method of manufacturing an organic thin film transistor having a gate electrode disposed via a gate insulating film,
基板上にゲー卜電極を形成する工程と、  Forming a gate electrode on the substrate;
前記ゲート電極上にゲート絶縁膜を形成する工程と、  Forming a gate insulating film on the gate electrode;
前記ゲート絶縁膜上に互いに分離したソース電極及びドレイン電極を形成す る工程と、  Forming a source electrode and a drain electrode separated from each other on the gate insulating film;
前記ソース電極及びドレイン電極の対向端部及びその近傍上に前記有機半導 体膜を形成する工程と、 を含み、  Forming the organic semiconductor film on opposing ends of the source electrode and the drain electrode and in the vicinity thereof, and
前記ゲート絶緣膜を形成する工程において、前記ゲート絶縁膜が前記ゲート電 極の近傍に凹部を有するように、前記凹部を画定する隔壁部を形成することを特 徵とする有機薄膜トランジスタの製造方法。  A method for producing an organic thin film transistor, characterized in that, in the step of forming the gate insulating film, a partition wall for defining the recess is formed so that the gate insulating film has a recess in the vicinity of the gate electrode.
1 0 . 前記ゲート絶縁膜の材料を第 1厚さで前記ゲート電極上に成膜し、前 記ゲート絶縁膜が前記第 1厚さより小なる第 2厚さとなるような深さまで凹部 を穿孔して前記隔壁部を形成する工程を含むことを特徴とする請求項 9記載の 有機薄膜トランジスタの製造方法。  10. Deposit the material of the gate insulating film on the gate electrode with a first thickness, and drill the recess to a depth such that the gate insulating film has a second thickness smaller than the first thickness. 10. The method for producing an organic thin film transistor according to claim 9, further comprising a step of forming the partition wall.
1 1 . 前記隔壁部は前記ゲ一ト絶縁膜とは異なる材料からなり、前記ゲート 絶縁膜の第 1材料を一様な厚さで前記ゲート電極上に成膜し、前記隔壁部の第 2 材料を前記ゲート絶緣膜上に成膜し、前記隔壁部の第 2材料を前記ゲート絶縁膜 が露出するような深さまで凹部を穿孔して前記隔壁部を形成する工程を含むこ とを特徴とする請求項 9記載の有機薄膜トランジスタの製造方法。 11. The partition wall is made of a material different from that of the gate insulating film, and the first material of the gate insulating film is formed on the gate electrode with a uniform thickness, and the second partition wall A material is formed on the gate insulating film, and a second material of the partition is used as the gate insulating film. 10. The method of manufacturing an organic thin film transistor according to claim 9, further comprising a step of forming the partition wall by perforating a recess to such a depth that the surface is exposed.
1 2 . 前記ゲート絶縁膜の第 1材料は、前記ゲート電極の表面を陽極酸化法 によって酸化して得られた酸化物であることを特徵とする請求項 1 1記載の有 機薄膜トランジスタの製造方法。  12. The method of manufacturing an organic thin film transistor according to claim 11, wherein the first material of the gate insulating film is an oxide obtained by oxidizing the surface of the gate electrode by an anodic oxidation method. .
1 3 . 前記凹部の穿孔はドライエッチング又はゥエツトエッチングによるェ 程を含み、前記凹部に対して傾斜した傾斜面を前記隔壁部に形成することを特徴 とする請求項 9〜 1 2のいずれかに記載の有機薄膜トランジス夕の製造方法。 .  13. The perforation in the concave portion includes a process by dry etching or wet etching, and an inclined surface inclined with respect to the concave portion is formed in the partition wall portion. A method for producing an organic thin film transistor described in 1. .
1 4 . 前記隔壁部の傾斜面の角度は前記凹部の底部に対して、 9 0 ° を超え て 1 7 0 ° 以内であることを特徴とする請求項 1 3記載の有機薄膜トランジス 夕の製造方法。 ,  14. The manufacturing method of an organic thin film transistor according to claim 13, wherein the angle of the inclined surface of the partition wall is more than 90 ° and within 1700 ° with respect to the bottom of the recess. Method. ,
1 5 . 前記有機半導体膜を形成する工程は、前記有機半導体膜の液状化され た材料の液滴を前記凹部に供給する工程を含むことを特徴とする請求項 9〜1 4のいずれかに記載の有機薄膜トランジス夕の製造方法。  15. The step of forming the organic semiconductor film includes a step of supplying liquid droplets of the liquefied material of the organic semiconductor film to the concave portion. The manufacturing method of the organic thin film transistor described.
1 6 . 前記有機半導体膜を形成する工程においては、 自己組織化方法により 前記有機半導体膜を形成する工程を含むことを特徴とする請求項 9〜1 5のい ずれかに記載の有機薄膜トランジスタの製造方法。  16. The step of forming the organic semiconductor film includes a step of forming the organic semiconductor film by a self-organization method, wherein the organic thin film transistor according to any one of claims 9 to 15 is formed. Production method.
PCT/JP2006/305322 2005-03-22 2006-03-13 Organic thin film transistor and method for manufacturing same WO2006101017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-081686 2005-03-22
JP2005081686 2005-03-22

Publications (1)

Publication Number Publication Date
WO2006101017A1 true WO2006101017A1 (en) 2006-09-28

Family

ID=37023678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305322 WO2006101017A1 (en) 2005-03-22 2006-03-13 Organic thin film transistor and method for manufacturing same

Country Status (2)

Country Link
TW (1) TW200640016A (en)
WO (1) WO2006101017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189125A1 (en) * 2013-05-24 2014-11-27 株式会社フジクラ Thin film transistor and matrix circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244467A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Coplanar semiconductor device, display device using it, and method for its manufacture
JP2004140359A (en) * 2002-10-17 2004-05-13 Xerox Corp Method and device using self-organized polymer
JP2004289044A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Thin film transistor element sheet and its producing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244467A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Coplanar semiconductor device, display device using it, and method for its manufacture
JP2004140359A (en) * 2002-10-17 2004-05-13 Xerox Corp Method and device using self-organized polymer
JP2004289044A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Thin film transistor element sheet and its producing process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189125A1 (en) * 2013-05-24 2014-11-27 株式会社フジクラ Thin film transistor and matrix circuit
JPWO2014189125A1 (en) * 2013-05-24 2017-02-23 株式会社フジクラ Thin film transistor and matrix circuit

Also Published As

Publication number Publication date
TW200640016A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
US6344662B1 (en) Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR101227021B1 (en) Organic field-effect transistor and semiconductor device including the same
US20090026443A1 (en) Organic thin-film transistor and method of manufacture thereof
US7075105B2 (en) Organic bistable element, organic bistable memory device using the same, and method for driving said organic bistable element and organic bistable memory device
JP2008535218A (en) Polymer gate dielectric for thin film transistors
JP2004235298A (en) Organic semiconductor element and method for manufacturing the same
JP5110414B2 (en) Organic bistable element, organic bistable memory device using the same, and driving method thereof
JP2006332614A (en) Semiconductor device, organic transistor and manufacturing method thereof
US20090224231A1 (en) Electronic device, process for producing the same and electronic equipment making use thereof
JP4746557B2 (en) Electronic circuit board and manufacturing method thereof
US20070194312A1 (en) Subpixel
EP2003935B1 (en) Organic electroluminescent display panel and method for fabricating the same
JP4433746B2 (en) Organic field effect transistor and manufacturing method thereof
WO2006101017A1 (en) Organic thin film transistor and method for manufacturing same
US7354647B2 (en) Organic bistable element, organic bistable memory device using the same, and method for driving said organic bistable element and organic bistable memory device
JP2010080490A (en) Semiconductor element
KR20080098438A (en) Organic thin film transistor device and method for manufacturing same
JP2007273874A (en) Organic semiconductor device and method of manufacturing the same
JP4585209B2 (en) Organic bistable memory device
JP5025948B2 (en) Organic field effect transistor and semiconductor device
JP2019153653A (en) Organic semiconductor device
JP2012169419A (en) Organic thin-film transistor
JP2003086804A (en) Organic semiconductor device
JP4700976B2 (en) Manufacturing method of field effect organic transistor
JP6505857B2 (en) Organic thin film transistor and method of manufacturing organic thin film transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06729312

Country of ref document: EP

Kind code of ref document: A1