WO2006098313A1 - 光増幅器およびレーザ装置 - Google Patents

光増幅器およびレーザ装置 Download PDF

Info

Publication number
WO2006098313A1
WO2006098313A1 PCT/JP2006/305001 JP2006305001W WO2006098313A1 WO 2006098313 A1 WO2006098313 A1 WO 2006098313A1 JP 2006305001 W JP2006305001 W JP 2006305001W WO 2006098313 A1 WO2006098313 A1 WO 2006098313A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
signal light
photonic crystal
crystal fiber
excitation
Prior art date
Application number
PCT/JP2006/305001
Other languages
English (en)
French (fr)
Inventor
Takehiko Wada
Eisaku Kojima
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to JP2007508150A priority Critical patent/JPWO2006098313A1/ja
Publication of WO2006098313A1 publication Critical patent/WO2006098313A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06741Photonic crystal fibre, i.e. the fibre having a photonic bandgap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling

Definitions

  • the present invention relates to an optical amplifier and a laser device, and more particularly to an optical amplifier and a laser device including a photonic crystal optical fiber.
  • Laser light can be used in various industrial applications. For example, laser light is used for processing to mark quality information on the surface of a component. Laser light is used for mounting semiconductor chips and repairing defects in liquid crystal pixels.
  • the mode of laser light used for microfabrication is more suitable for single mode (single mode) than for multimode (multimode).
  • Laser devices must respond to various requirements, such as being small in size, resistant to impact, and low in cost.
  • laser resonators have been individually designed according to the output of the laser beam, the wavelength of the laser beam, and the mode of the beam beam. The laser resonator was adjusted based on know-how accumulated over many years.
  • FIG. 14 is a diagram showing a configuration of a resonator of a conventional LD-pumped solid-state laser.
  • laser apparatus 100 includes resonator 102.
  • the resonator 102 includes a crystal 104 such as YAG (Yttrium Alu minum Garnet) and YV04, reflecting mirrors 106 and 108 facing each other through the crystal 104, and a Q switch 110 for generating laser oscillation and generating laser light.
  • the Q switch 110 is a shirt such as an acousto-optic element or an electro-optic element.
  • Excitation light for exciting the crystal 104 is input from the LD array 112 through the lens 114 to one end surface of the crystal 104.
  • the LD array 112 is provided with a plurality of LD elements (not shown).
  • a plurality of optical fibers 116 corresponding to each of the plurality of LD elements are provided.
  • a plurality of optical fibers 116 are bundled by a fiber coupling 118. Excitation light E transmitted through each of the plurality of optical fibers 116 is emitted from one end face of the fiber coupling 118.
  • the crystal 104 is YAG, an aperture (not shown) is provided between the reflecting mirror 108 and the crystal 104 in order to output single-mode laser light. Further, when the crystal 104 is YV04, a crystal cut along the c-axis direction of the a-axis to c-axis crystal axes is used to output single-mode laser light. The crystal cut along the c-axis is attached to the laser device 100 so that the optical path and the c-axis are in the same direction.
  • FIG. 15 is a diagram showing a configuration of a conventional fiber laser.
  • laser apparatus 200 includes resonator 202.
  • the resonator 202 is a ring resonator configured by an optical fiber.
  • Fiber Bragg Gratings (FBG) 206, 208 forces S are formed at both ends of the optical fiber.
  • the FBG is a diffraction grating formed in the core of an optical fiber and functions as an optical filter.
  • An optical fiber used for the resonator 202 is an optical amplification fiber in which a rare earth element is added to a core.
  • the rare earth element When the excitation light enters the core, the rare earth element is excited.
  • signal light (not shown) enters the core, stimulated emission occurs in the excited rare earth element, so that the signal light is amplified. Note that the wavelength of the excitation light and the wavelength of the signal light differ depending on the type of rare earth element.
  • the excitation light enters the resonator 202 from the LD array 112 via the optical fiber 116.
  • the optical fiber 116 and the resonator 202 are directly connected.
  • FIG. 16 is a diagram showing a connection between the optical fiber 116 and the resonator 202 in FIG.
  • the optical fiber 210 constitutes the resonator 202.
  • a cross section of the optical fiber 210 is shown.
  • the optical fiber 210 is provided with a core 218 and a first cladding 220 is provided so as to surround the core 218. Further, a second cladding 222 is provided so as to surround the first cladding 220.
  • the end face of the optical fiber 116 is connected to the end face of the second cladding 222.
  • the excitation light reflected from the first clad 220 and the second clad 222 is reflected toward the first clad 220.
  • Excitation light that enters the core 218 from the first cladding 220 is absorbed by the core 218.
  • FIG. 17 is a diagram showing a configuration of a conventional optical fiber amplifier.
  • an optical fiber amplifier 300 includes an optical amplification fiber 301, a light source 302 that emits signal light, and a plurality of light sources 304 that emit excitation light. Excitation light emitted from each of the plurality of light sources 304 enters the core of the optical amplification fiber 301 via the fiber branch line 306 and the fiber coupler 308.
  • the signal light incident on one end face of the light amplification fiber 301 from the light source 302 is amplified by the light amplification fiber 301.
  • the signal light S 100 is emitted from the other end of the optical amplification fiber 301 as amplified signal light.
  • a fundamental laser beam generated in a laser medium passes through a nonlinear optical crystal element provided in a resonator.
  • a solid-state laser provided with optical means in the resonator for generating second harmonic laser light by resonance operation and suppressing coupling due to sum frequency generation between two polarization modes of the fundamental laser light.
  • An oscillator is disclosed.
  • This solid-state laser oscillator has the same optical means for oscillating the two polarization modes of the fundamental laser beam in a single longitudinal mode and the oscillation intensity force S of the two polarization modes of the fundamental laser beam.
  • a control means for controlling the effective resonator length of the resonator.
  • Patent Document 2 As a conventional technique for adjusting the optical axis of a laser, for example, in Japanese Unexamined Patent Application Publication No. 2004-47650 (Patent Document 2), a plurality of laser diodes and these laser diodes are respectively connected to light emitting points. Are fixedly held in a state in which they are aligned in one direction, and a collimator lens array in which a plurality of collimator lenses that collimate laser beams emitted from the laser diode are integrated in a state in which they are aligned in one direction. A laser device is disclosed.
  • a smooth lens defining surface is formed in front of the portion where the plurality of laser diodes of the block are fixed, at a predetermined distance from the light emitting point of the laser diode and perpendicular to the light emitting axis of the laser diode.
  • the collimator lens array is fixed to the block in a state in which one end surface of the collimator lens array is aligned with the lens defining surface.
  • the plurality of amplifying optical fibers have a first amplifying fiber on the signal light input end side and a second amplifying fiber on the signal light output end side.
  • the optical fiber amplifier also supplies a first gain detecting means for calculating a signal light amplification gain in the second amplifying optical fiber from the first amplifying fiber, and pumping light to the first amplifying optical fiber.
  • the intensity of the pumping light supplied by the first pumping light supply means, the second pumping light supply means for supplying pumping light to the second amplifying optical fiber, and the first pumping light supply means is constant.
  • the second control Based on the first control means for controlling and the gain detected by the first gain detection means, the second control for controlling the intensity of the pumping light supplied by the second pumping light supply means to be a constant gain. And an isolator disposed between the first amplifying optical fiber and the second amplifying optical fiber.
  • Patent Document 1 Japanese Patent No. 2893862
  • Patent Document 2 JP 2004-47650 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-297101
  • the optical axis of the LD element must be adjusted so that excitation light emitted from a plurality of LD elements included in the LD array 112 enters the core of the optical fiber 116. Since the adjustment work is performed manually, the cost of the LD-pumped solid-state laser device increases.
  • the optical fiber itself is a resonator and no reflecting mirror is provided unlike the LD-pumped solid-state laser, it is more susceptible to vibration shock than the LD-solid-pumped laser. In contrast, strong.
  • the work for connecting the optical fiber 116 to the first cladding 220 of the optical fiber 210 is performed manually. This work increases the cost of the fiber laser device. In other words, conventional laser devices emit light from LD elements. The cost of the laser device was increasing because a lot of labor was required for the adjustment work to put the excitation light into the core.
  • An object of the present invention is to provide an optical amplifier and a laser device capable of emitting high-output light with a small and simple configuration.
  • the present invention is an optical amplifier that includes a photonic crystal fiber that propagates signal light having a main wavelength of light having a predetermined wavelength in a single mode.
  • the photonic crystal fiber includes a signal light propagation region for propagating signal light, and has a refractive index different from each other so as to satisfy a Bragg reflection condition for light of a predetermined wavelength so as to surround a central portion of the signal light propagation region.
  • a periodic structure having a plurality of medium forces is provided, and the signal light propagation region is doped with a light amplifying substance that causes stimulated emission when signal light is incident in an excited state.
  • the optical amplifier further includes an excitation unit that irradiates the signal light propagation region from the side surface of the photonic crystal fiber with a wavelength different from that of the signal light and excites the optical material, thereby selecting according to the periodic structure.
  • Signal light having a predetermined wavelength as the main wavelength is propagated in a single mode, and the signal light is amplified by irradiation with excitation light.
  • an optical amplifier is a signal light source that emits a signal light having a predetermined wavelength of light as a main wavelength; the signal light is received at one end surface; and the signal light is transmitted in a single mode.
  • a photonic crystal fiber that propagates and emits from the other end face.
  • the photonic crystal fiber includes a signal light propagation region for propagating signal light, and has a refractive index different from each other so as to satisfy a Bragg reflection condition for light of a predetermined wavelength so as to surround a central portion of the signal light propagation region.
  • a periodic structure having a plurality of medium forces is provided, and the signal light propagation region is doped with a light amplifying substance that causes stimulated emission when signal light is incident in an excited state.
  • the width device further includes an excitation unit that irradiates excitation light having a wavelength different from that of the signal light from the side surface of the photonic crystal fiber toward the signal light propagation region and excites the optical material.
  • the optical amplifier amplifies the signal light propagating through the photonic crystal fiber.
  • the periodic structure is formed by periodically providing holes in a solid medium constituting the photonic crystal fiber in a cross section of the photonic crystal fiber.
  • Individual vacancies constituting the periodic structure in the cross section are vacancies in which the same cross-sectional shape is continuously connected from one end face to the other end face of the photonic crystal fiber.
  • a laser apparatus includes an optical amplifier.
  • the optical amplifier includes a photonic crystal fiber that propagates signal light having a predetermined wavelength of light as a principal wavelength in a single mode.
  • the photonic crystal fiber has a signal light propagation region for propagating signal light, and has a refractive index that satisfies the Bragg reflection condition for light of a predetermined wavelength so as to surround the center of the signal light propagation region.
  • a plurality of different medium force periodic structures are provided, and the signal light propagation region is doped with a light amplifying substance that induces stimulated emission when signal light is incident in an excited state.
  • the optical amplifier further includes a pumping unit that irradiates pumping light having a wavelength different from that of the signal light from the side surface of the photonic crystal fiber toward the signal light propagation region and excites an optical material, and is thereby selected by a periodic structure.
  • Signal light having a predetermined wavelength of light as a main wavelength is propagated in a single mode, and the signal light is amplified by irradiation with excitation light.
  • the laser device further includes a reflecting portion that reflects the signal light on each end face of the photonic crystal fiber.
  • a laser apparatus includes an optical amplifier.
  • the optical amplifier includes a photonic crystal fiber that propagates signal light having a predetermined wavelength of light as a principal wavelength in a single mode.
  • a photonic crystal fiber has a signal light propagation region for propagating signal light, and has a refractive index different from each other so as to satisfy the Bragg reflection condition for light of a predetermined wavelength so as to surround the center of the signal light propagation region.
  • a periodic structure composed of a plurality of media is provided, and an optical amplification substance that induces stimulated emission when signal light is incident in an excited state is doped in the signal light propagation region.
  • Optical amplifier side of photonic crystal fiber It further includes an excitation unit that irradiates the signal light propagation region from the signal light with a wavelength different from that of the signal light and excites the optical material, whereby light having a predetermined wavelength selected by the periodic structure is defined as the main wavelength.
  • the signal light propagates in a single mode, and the signal light is amplified by the irradiation of the excitation light.
  • the laser device further includes a return portion for returning the signal light reaching the one end surface of the photonic crystal fiber to the other end surface of the photonic crystal fiber.
  • the photonic crystal fiber is disposed so that one end face and the other end face are close to each other, and the return portion reflects a part of the signal light emitted from the other end face to the one end face. It is a reflecting mirror that enters and transmits part of the signal light emitted from the other end surface.
  • the laser device further includes a first reflection unit that is provided on the opposite side of the excitation unit with respect to the photonic crystal fiber and reflects the excitation light toward the photonic crystal fiber.
  • the laser device further includes a second reflection unit provided between the photonic crystal fiber and the excitation unit, and the second reflection unit transmits excitation light emitted from the excitation unit.
  • the excitation light reflected by the first reflecting part is reflected toward the photonic crystal fiber.
  • the outer shape of the first reflecting portion is at least a part of an ellipse, and the photonic crystal fiber is disposed such that the position of the light propagation region is the position of the focal point of the ellipse.
  • the photonic crystal fiber has a shape in which a cross section perpendicular to the propagation direction of the signal light is at least a part of an ellipse, and the light propagation region is disposed at a position of the focal point of the ellipse.
  • the photonic crystal fiber generates signal light by itself generated by spontaneous emission generated in the light amplification material in response to excitation light emitted from any one of a plurality of excitation light sources.
  • the signal amplification causes stimulated emission in the light amplification substance.
  • the excitation unit irradiates the photonic crystal fiber with excitation light so that the incident angle becomes a Brewster angle.
  • the excitation unit includes a plurality of excitation light sources that continuously emit excitation light.
  • the return portion is optically coupled to one end surface and optically coupled to the first fiber grating structure for returning the signal light reaching the one end surface toward the other end surface, and the other end surface. And a second fiber grating structure for returning the signal light reaching the other end surface toward the one end surface.
  • the laser device further includes an optical waveguide unit provided between the excitation unit and the photonic crystal fiber to guide the excitation light to a side surface of the photonic crystal fiber, and the optical waveguide unit includes the excitation unit
  • the photonic crystal fiber includes a light emitting surface for emitting light in a planar shape, and the photonic crystal fiber is provided along the light emitting surface.
  • the optical waveguide section is made of a foldable material.
  • the laser device is provided on the opposite side of the light emitting surface with respect to the photonic crystal fiber, and includes a reflecting portion that reflects the excitation light toward the photonic crystal fiber, and the light emitting surface and the photonic crystal fiber. And a transmissive portion that is provided between them and transmits the excitation light.
  • the transmission part is a dichroic mirror that transmits light having a wavelength for exciting the light amplification substance in the excitation light.
  • the transmission part is a microphone aperture lens array including a plurality of microlenses that collect excitation light.
  • the photonic crystal fiber has a shape in which a cross section perpendicular to the propagation direction of the signal light is a parabola, and the light propagation region is arranged at the focal point of the parabola.
  • the laser device further includes a cooling unit that circulates cooling water for immersing and cooling the photonic crystal fiber.
  • the optical amplifier further includes an optical waveguide provided between the pumping unit and the photonic crystal fiber to guide the pumping light to the side surface of the photonic crystal fiber.
  • the optical waveguide unit includes a light emitting surface for emitting excitation light in a planar shape.
  • the photonic crystal fiber is provided along the light emitting surface.
  • optical amplifier of the present invention single-mode light is propagated and optical amplification is performed.
  • Excitation light is input to the core by irradiating the side surface of the photonic crystal fiber with the excitation light. This makes it easy to make adjustments to achieve high light output while being compact.
  • FIG. 1 is a conceptual diagram showing a configuration of an optical amplifier according to the present invention.
  • FIG. 2 is a diagram schematically showing a cross section of the optical fiber 2 in FIG.
  • FIG. 3 is a schematic diagram showing a configuration of a laser apparatus according to a second embodiment.
  • FIG. 4 is a schematic diagram showing the configuration of the optical amplifier 1 of FIG.
  • FIG. 5 is a diagram showing another configuration example of the optical amplifier 1 in the second embodiment.
  • FIG. 6 is a diagram showing still another configuration example of the optical amplifier 1 in the second embodiment.
  • FIG. 7 is a schematic diagram showing a configuration of a laser apparatus according to a third embodiment.
  • FIG. 8 is a schematic diagram showing a configuration of a laser apparatus according to a fourth embodiment.
  • FIG. 9 is a view of the laser device 31 of FIG. 8 as viewed from above.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • FIG. 11 is a diagram showing an example of an optical fiber 2 in a fourth embodiment.
  • FIG. 12 is a diagram showing another example of the optical fiber 2 in the fourth embodiment.
  • FIG. 13 is a diagram showing another configuration example of the transmission unit 45.
  • FIG. 14 is a diagram showing a configuration of a resonator of a conventional LD-pumped solid-state laser.
  • FIG. 15 is a diagram showing a configuration of a conventional fiber laser.
  • 16 is a diagram showing a connection between the optical fiber 116 and the resonator 202 in FIG.
  • FIG. 17 is a diagram showing a configuration of a conventional optical fiber amplifier.
  • FIG. 18 is a diagram specifically showing a cross section of the optical fiber 2 of FIG.
  • FIG. 1 is a conceptual diagram showing the configuration of the optical amplifier of the present invention.
  • an optical amplifier 1 includes an optical fiber 2, a pumping unit 4 that irradiates pumping light E from a side surface of the optical fiber 2 toward a light propagation region of the optical fiber, and a signal light S1 on one end surface of the optical fiber. And a light source 6 for incident light.
  • the signal light S1 is amplified in the optical fiber 2 and output from the other end face of the optical fiber 2 as signal light S2.
  • the optical fiber 2 is a photonic crystal fiber.
  • a photonic crystal is an artificial crystal in which two types of substances with different refractive indices are arranged periodically with a size and spacing equivalent to the wavelength of light.
  • a photonic crystal has wavelength selectivity and reflects only light having a wavelength corresponding to the period of the crystal at the interface. The reason for this is that due to the energy band structure (photonic band) due to the periodic structure, the wavelength according to the period of the crystal is not allowed to exist in the photonic crystal.
  • the light of the wavelength selected by the periodic structure cannot penetrate into the photonic crystal. Therefore, light propagates through the light propagation region surrounded by the photonic crystal.
  • the photonic crystal fiber is not subject to the various limitations that conventional optical waveguides have. For example, even if the bending radius is reduced, the amount of light leaking out of the optical fiber can be reduced.
  • the signal light S1 corresponds to light having a photonic band gap wavelength.
  • the wavelength of the excitation light E is a wavelength in the transmission region of the photonic band. Therefore, the wavelength of the signal light S1 And the wavelength of excitation light E are different.
  • FIG. 2 is a diagram schematically showing a cross section of the optical fiber 2 of FIG.
  • optical fiber 2 includes a signal light propagation region 8 and a periodic structure region 9.
  • the periodic structure region 9 surrounds the central portion of the signal light propagation region 8, and the holes 9A are periodically formed in a transparent material such as glass or plastic so as to satisfy the Bragg reflection condition for the light of the signal light wavelength.
  • This area has the structure provided in Air is present in the holes.
  • the light of a specific wavelength is strongly reflected from the relationship between the period of the diffraction grating in the direction of the incident light and the wavelength of the light. Transmits light. Such reflection is called Bragg reflection.
  • the period of holes 9 A provided in the optical fiber is provided in a transparent material with an interval and size approximately equal to the wavelength of the signal light, and the periodic structure is appropriately arranged. Bragg reflection can be generated, and signal light can propagate while being confined in the signal light propagation region 8.
  • the periodic structure is finite, a wavelength having a certain spread around a specific wavelength satisfies the Bragg reflection condition, but such a case is also included.
  • the excitation light has a wavelength different from that of the signal light, and the excitation light from the side surface of the fiber is transmitted with high transmittance by designing the periodic structure so as not to satisfy the Bragg reflection condition. Can reach propagation area 8.
  • the signal light propagation region 8 is doped with a rare earth element as an optical amplification substance.
  • the excitation light E in FIG. 1 enters the signal light propagation region 8
  • the rare earth element doped in the signal light propagation region 8 is excited by the excitation light E.
  • the signal light S1 enters the signal light propagation region 8, stimulated emission occurs in the excited rare earth element, and the signal light S1 is amplified.
  • the wavelengths of the excitation light and the stimulated emission light differ depending on the type of rare earth element.
  • specific examples of rare earth elements include neodymium (Nd), ytterbium (Yb), and erbium (Er).
  • the excitation light wavelength is 808 nm and the stimulated emission light wavelength is 1064 ⁇ m.
  • the wavelengths of excitation light are 940 ⁇ 10 nm and 970 nm, and the wavelength of stimulated emission light is 1030 nm.
  • the optical amplifier 1 can output light of different wavelengths by exchanging the optical fiber 2 according to the required wavelength of the signal light S2.
  • the absorption probability (absorption cross-sectional area) of the excitation light caused by excessive irradiation is increased. It is possible to increase the amplification factor of the signal light and to emit light from the optical fiber by avoiding the effect of the decrease in () and maintaining a high absorption probability.
  • the diameter of the light propagation region must be the same as the wavelength (about 1 to several ⁇ m) in order to propagate single mode light. Nare ,. Therefore, even if the conventional optical amplifier is irradiated with excitation light from the side surface of the fiber, the diameter of the light propagation region is too small, so that the excitation light absorbed in the light propagation region is reduced. Since optical fiber 2 is a photonic crystal fiber, it can propagate single-mode light even if the diameter of the light propagation region is about 10 times that diameter.
  • the optical amplifier 1 can easily adjust the position of the pumping portion with respect to the optical fiber 2 as compared with the conventional optical amplifier.
  • FIG. 18 is a diagram specifically showing a cross section of the optical fiber 2 of FIG.
  • the periodic structure region 9 has a structure in which transparent substances such as glass and plastic and holes are stacked in layers around the holes 8A.
  • Boundary lines 9:! To 94 are lines shown for convenience as boundaries between layers.
  • the diameter of the air hole 8A is about 15 ⁇ m.
  • the refractive index of the holes is almost equal to 1.
  • Yb ytterbium
  • Ytteripium is added to the first layer (the area between the hole 8A and the boundary 91).
  • the above-described layers are About 6 to 6 layers are required, but about 4 layers are required for optical fiber 2 to propagate light in a single mode (FIG. 18 shows an example of 4 layers).
  • the pitch ⁇ between the two holes 9A is about 2 to 3
  • the diameter d of the holes 9A is about 2 to 3 zm
  • the structural parameter d / ⁇ is about 1
  • ytterbium (Yb) is added to the first layer, and a laser dopant such as erbium (Er) is added to the first layer and the second layer.
  • Elpium receives excitation light from the outside of the fiber (on the side of the fiber) and emits light with a wavelength close to that of ytterbium. The light emitted by erbium excites an ytterbium in the center of the fiber. Erbium may also be added to the first to sixth layers (or more).
  • Embodiment 1 As described above, according to Embodiment 1, light having a predetermined wavelength is provided so as to have a signal light propagation region to which a rare earth element is added and to surround the central portion of the signal light propagation region.
  • a photonic crystal fiber having a periodic structure consisting of transparent materials and vacancies having different refractive indexes that satisfy the Bragg reflection condition and from the side surface of the photonic crystal fiber toward the light propagation region
  • FIG. 3 is a schematic diagram showing the configuration of the laser apparatus of the second embodiment.
  • the laser device 11 includes an optical amplifier 1, a reflecting mirror 13, and collimator lenses 14A and 14B.
  • the reflecting mirror 13 reflects a part of the signal light L2 emitted from one end face of the optical fiber 2 and enters the other end face of the optical fiber 2, and transmits a part of the signal light L2.
  • Amplification of signal light L2 by optical amplifier 1 and signal light L2 by reflector, loss in fiber, extinction due to dopant concentration, and extinction that occurs depending on fiber length cause laser oscillation, which causes reflection mirror
  • Laser light LA is emitted from 13 to the outside. Quenching is a phenomenon in which light energy is lost as heat by phonon emission, etc., because it absorbs light at the oscillation wavelength and stores it again.
  • the optical amplifier 1 includes an optical fiber 2, a plurality of pumping light sources 4A, a pulse oscillation LD12, and a cylindrical The frame 15, the reflector 16, and the heat sink 18 are configured.
  • the optical fiber 2 is installed in a ring shape by being wound along the side surface of the separating frame 15. Since the optical fiber 2 is a photonic crystal fiber, even if it is twisted along the whirling frame 15, almost no light leaks from the bent part that is extremely resistant to bending. Therefore, even if the optical fiber 2 is lengthened, the optical amplifier 1 can be prevented from increasing in size, so that the laser device 11 is small and can emit high-power laser light.
  • the plurality of excitation light sources 4A constitute the excitation unit 4 in FIG. Since the optical fiber 2 is wound around the perimeter 15, the excitation light source 4 A emits excitation light in the radial direction of the reel 15.
  • the excitation light source 4A includes an LD element (not shown) that performs continuous oscillation.
  • the oscillation wavelength of the LD element is the wavelength in the transmission region of the photonic band as well as the excitation wavelength of the rare earth element.
  • the oscillation wavelength is appropriately determined according to the rare earth element added to the light propagation region of the optical fiber 2 and the transmission region of the photonic band.
  • excitation light sources 4A are provided.
  • the number of excitation light sources 4A may be different.
  • the other excitation light source 4A emits excitation light. Can be emitted.
  • the output of the laser light can be increased.
  • the optical amplifier 1 includes a reflection unit 16 provided so as to sandwich the optical fiber 2.
  • the reflector 16 is provided so that the pumping light emitted from the pumping light source 4A is efficiently absorbed by the light propagation region of the optical fiber 2.
  • the reflecting portion 16 includes reflecting portions 16A and 16B.
  • the reflecting portion 16A is provided on the side opposite to the pumping light source 4A with respect to the optical fiber 2, and reflects the pumping light toward the light propagation region of the optical fiber 2.
  • the reflecting portion 16B is provided along the optical fiber except for the region where the excitation light source 4A force is irradiated with the excitation light.
  • the reflection unit 16B reflects the reflected excitation light toward the optical fiber 2 together with the reflection unit 16A. As described above, since the excitation light is repeatedly reflected by the reflecting portions 16A and 16B, the excitation light is efficiently absorbed in the light propagation region.
  • the reflecting portions 16A and 16B are constituted by, for example, a prism sheet (diffraction grating sheet), a metal vapor deposition sheet, a sheet with a multilayer dielectric coating, or the like.
  • a heat sink 18 is provided between each of the plurality of excitation light sources 4A. Since the heat from the LD element included in the excitation light source can be released by the heat sink 18, an increase in the temperature of the LD element can be suppressed. Therefore, the wavelength of the excitation light is stabilized.
  • the excitation light source 4 A is provided inside the firing frame 15 with respect to the optical fiber 2, while the excitation light source 4 A is provided outside the firing frame 15 with respect to the optical fiber 2. It ’s okay.
  • the reflecting mirror 13 is made of, for example, quartz glass. Quartz glass has the advantage of small volume expansion with temperature.
  • a dielectric multilayer film is laminated on the reflecting surface of the reflecting mirror 13. The reflectivity of the signal light L2 on the reflecting surface can be ensured to be 99% or more when a dielectric multilayer film is used on the reflecting surface. Note that the oscillation wavelength of the laser beam can be finely adjusted by changing the distance between the optical fiber 2 and the reflecting mirror 13.
  • the collimator lenses 14A and 14B are provided to make the signal light L2 entering the optical fiber 2 and the signal light L2 exiting the optical fiber 2 into parallel rays.
  • FIG. 4 is a schematic diagram showing the configuration of the optical amplifier 1 of FIG.
  • excitation light source 4A is provided with a plurality of LD elements 19 that perform continuous oscillation.
  • the number of LD elements 19 is appropriately determined according to the power of pumping light necessary for pumping the light propagation region.
  • the heat sink 18 is not shown in order to avoid making the figure complicated.
  • only two excitation light sources 4A are shown in order to avoid complication of the figure.
  • the incident angle A of the excitation light E with respect to the optical fiber 2 is incident with the Brewster angle as the center.
  • the Brewster angle is the angle of incidence where the reflection is zero when linearly polarized light (P-polarized light) having only an electric field component parallel to the incident surface is incident. If the center value of the polarization direction and incident angle of the LD used for the excitation light is the Brewster angle, the excitation light E efficiently enters the optical fiber 2, so that the excitation light is efficiently absorbed in the light propagation region. .
  • the Brewster angle in the second embodiment is about 34 °.
  • FIG. 5 is a diagram showing another configuration example of the optical amplifier 1 in the second embodiment. See Figure 5 The optical fiber 2, the reflection part 16C, the LD element 19 and the electrode 19A are shown.
  • the electrode 19 A is an electrode for applying a drive voltage to the LD element 19 and controlling its operation.
  • 5 shows a cross section of the main part of the optical amplifier 1 as seen from the propagation direction of the signal light.
  • the external shape of the reflecting portion 16C is at least a part of an ellipse.
  • the ellipse has two focal points. Therefore, if the LD element 19 is regarded as a point light source, the optical fiber 2 is provided so that the position of the light propagation region becomes the first focus of the ellipse, and the light emitting surface of the LD element 19 is provided at the position of the second focus. Thus, the excitation light E emitted from the LD element 19 can be collected in the optical fiber 2.
  • the reflecting portion 16C is provided along the optical fiber 2, so that the length of the reflecting portion 16C is only the length of the optical fiber 2.
  • FIG. 6 is a diagram showing still another configuration example of the optical amplifier 1 in the second embodiment. Referring to FIG. 6, optical fiber A, LD element 19 and electrode 19A are shown. Similar to FIG. 5, FIG. 6 shows a cross section of the main part of the optical amplifier 1 as seen from the propagation direction of the signal light.
  • the shape of the optical fiber 2A is a part of an ellipse.
  • the signal light propagation region 8 is provided at the position of the first focus of the ellipse, and the light emitting surface of the LD element 19 is provided at the position of the second focus. Similar to the optical amplifier 1 shown in FIG. 5, since the pumping light E emitted from the LD element 19 is collected in the signal light propagation region 8, the pumping light E can be efficiently absorbed in the light propagation region. In the case of the optical amplifier shown in FIG. 6, it is not necessary to provide a reflection part outside the optical fiber, so that the cost of the laser device can be reduced.
  • the excitation light incident on the optical fiber becomes a parallel light beam.
  • the outer shape of the reflecting portion 16C is a parabola
  • the optical fiber 2 is provided at the focal point of the parabola.
  • the outer shape of the optical fiber 2A is a parabola
  • a signal light propagation region 8 is provided at the focal point of the parabola.
  • the light emitted from the optical amplifier including the photonic crystal fiber is fed back to the optical amplifier by a single reflecting mirror, whereby the reflecting mirror and the optical amplifier are It becomes possible to realize a laser apparatus that can easily adjust the relative position and can easily change the wavelength and output of the laser beam.
  • FIG. 7 is a schematic diagram showing the configuration of the laser apparatus of the third embodiment.
  • laser device 21 is different from laser device 11 of FIG. 2 in that it includes a pulse oscillation LD 12 and includes a mirror, a dot, and a reflecting mirror 22. Since the configuration of other parts of laser device 21 is the same as the configuration of the corresponding portion of laser device 11, the following description will not be repeated.
  • the laser device 21 is a laser capable of continuous oscillation.
  • the output of each of the plurality of pumping light sources 4A is gradually increased, light due to spontaneous emission is generated in the light propagation region of the optical fiber 2. This light becomes signal light and is amplified while propagating through the optical fiber 2.
  • a part of the signal light L2 emitted from one end face of the optical fiber 2 is reflected by the reflecting mirror 13 and enters the other end face of the optical fiber 2, and a part thereof is transmitted through the reflecting mirror 13 and emitted.
  • the amplification of the signal light L2 by the optical amplifier 1 and the emission of the signal light L2 by the reflecting mirror 13 are balanced, laser oscillation occurs.
  • the signal light L1 enters from one end face of the optical fiber 2, so that the amplified signal light L2 travels only in one direction (clockwise).
  • the traveling direction of the signal light L2 is not particularly limited, the clockwise direction, the counterclockwise direction, or the clockwise direction and the counterclockwise direction are considered as the traveling directions.
  • the traveling direction is both the clockwise direction and the counterclockwise direction, the signal light L2 is output from both end faces of the optical fiber 2. Therefore, transmitted light L3 is generated as light passing through the reflecting mirror 13 in addition to the laser light.
  • Embodiment 3 a reflecting mirror 22 that reflects the transmitted light L3 is provided.
  • the transmitted light L 3 is reflected by the reflecting mirror 22, and the reflected light L 4 and the laser light LA are combined at a position P 1 on the reflecting mirror 13. Therefore, in Embodiment 3, it is possible to prevent the output of the laser beam LA from being lowered.
  • Embodiment 3 since there is no light emitted to the outside other than the laser beam LA, when the operator processes the product using the laser apparatus, the operator can easily perform the laser. The device can be handled.
  • the phase of the laser beam LA and the phase of the light L4 must be the same at the position P1. Don't be. For this reason, the distance D1 from the position P1 to the reflecting mirror 22 must be set to be an integral multiple of half the oscillation wavelength (half wavelength).
  • a reflecting portion 16C shown in FIG. 5 may be used instead of the reflecting portion 16.
  • optical fiber 2A may be used instead of optical fiber 2.
  • the output of the pumping light output from the pumping light source is increased so that spontaneous emission occurs in the light propagation region of the optical amplifying fiber, thereby performing continuous oscillation.
  • An apparatus can be realized.
  • FIG. 8 is a schematic diagram showing the configuration of the laser apparatus according to the fourth embodiment.
  • laser device 31 includes optical amplifier 1, heat sink 18, control unit 32, light guide 34, and wavelength selection units 36A and 36B.
  • Wavelength selectors 36A and 36B are provided at both ends of the optical fiber 2. Wavelength selector 36A,
  • the reflectance 36B has a function equivalent to the conventional FBG, and the reflectance is set selectively high only for a specific wavelength. Instead of the wavelength selectors 36A and 36B, a reflection film for reflecting the signal light at the end face and returning the signal light to the inside of the optical fiber 2 is coated on the both end faces of the optical fiber 2. Moyore.
  • each of the wavelength selectors 36A and 36B part of the signal light is returned to the optical fiber 2 and part of the signal light is emitted to the outside.
  • the laser light LA is emitted from the laser device 31.
  • the radiation surface 36C from which the laser light is emitted to the outside is mirror coated to reflect most of the light and transmit part of the light.
  • the excitation unit 4 includes a plurality of LD elements 19 that are light sources. As in the second and third embodiments, a plurality of LD elements 19 are included in the excitation unit 4, so that even if one of the LD elements no longer emits excitation light due to a failure, the other LD element may cause the optical fiber to fail. 2 can be excited.
  • the light source included in the excitation unit 4 may be an LED (Light Emitting Diode; including an LED backlight) or a lamp.
  • the light guide 34 is an optical waveguide unit that is provided between the excitation unit 4 and the optical fiber 2 and guides the excitation light E to the side surface of the optical fiber 2.
  • the excitation light E emitted from the LD element 19 is reflected by the light guide 34 and enters the optical fiber 2 from the side surface of the optical fiber 2.
  • Light guide 34 is excitation light It has a light emitting surface for emitting E in a planar shape.
  • the optical fiber 2 is provided on the light emitting surface from which the excitation light E is emitted from the light guide 34. Since the excitation light is uniformly irradiated rather than irradiating the optical fiber 2 locally, absorption saturation is less likely to occur, and the rare earth element can be efficiently excited without increasing loss. .
  • the control unit 32 is a pulse generator that generates an arbitrary waveform, for example.
  • the control unit 3 2 controls the current injected into the pulse oscillation LD 12 based on the instruction sent from the instruction unit 38 and the instruction unit 38 that outputs an instruction for controlling the output and temperature of the laser beam.
  • And driver 40 that performs processing.
  • the laser device 31 further includes a cooling unit 42 that cools the optical fiber 2.
  • the optical fiber 2 is immersed in cooling water.
  • the cooling unit 42 cools the optical fiber 2 by circulating cooling water.
  • the optical fiber is bent in a ring shape, but in the fourth embodiment, the optical fiber 2 is bent along the surface. Since the optical fiber 2 is a photonic crystal fiber, it can be freely provided on the light emitting surface with a predetermined bending radius or less. Note that an optical fiber is preferably provided so as to cover the entire light emitting surface so that a large amount of excitation light can be absorbed.
  • FIG. 9 is a view of the laser device 31 of FIG. 8 as viewed from above.
  • the light guide 34 has a light emitting surface 35.
  • An optical fiber 2 is provided along the light emitting surface 35.
  • an isolator 43 is provided between the pulse oscillation LD 12 and the wavelength selector 36A.
  • the isolator 43 blocks the light S that passes the signal light L1 emitted from the pulse oscillation LD12 through the optical fiber 2 and the light that returns from the optical fiber 2 to the pulse oscillation LD12.
  • the isolator 43 prevents the return light from entering the pulse oscillation LD 12. Therefore, the pulse oscillation LD12 is protected.
  • the isolator 43 may not be included in the laser device 31.
  • FIG. 10 is a cross-sectional view taken along line XX in FIG.
  • optical fiber 2 is sandwiched between reflecting part 16 A and transmitting part 45.
  • the reflecting portion 16 A is a metal film laminated on the surface of the heat sink 44.
  • the reflecting portion 16A is provided on the side opposite to the light emitting surface 35 with respect to the optical fiber 2, and reflects the excitation light E toward the optical fiber 2.
  • the transmission unit 45 transmits light having a wavelength that excites the light amplification substance doped in the light propagation region, among the excitation light E emitted from the excitation unit 4.
  • the transmission part 45 is, for example, a dichroic mirror.
  • the angle of the upper surface of the heat sink 18 (the reflecting surface of the light guide 34) and the angle of the lower surface of the heat sink 44 are set so that the excitation light reflected by the reflecting portion 16A does not return to the LD element. It is preferable.
  • Excitation light E emitted from the excitation light source is converted into parallel rays by the cylindrical lens 50.
  • the light guide 34 is provided with an inclination.
  • the excitation light E is reflected by the inclined surface of the light guide 34 and enters the optical fiber 2 via the transmission part 45.
  • the light guide 34 is a transparent substance that transmits the excitation light E.
  • the light guide 34 is made of, for example, glass or resin, but is preferably made of a material that can be bent to reduce the size of the laser device 31.
  • a specific example of the material of the light guide 34 is, for example, PET (polyethylene terephthaiate).
  • the seals 46A and 46B are used to seal the cooling water 52 between the optical fibers 2. Cooling water
  • the material of the seals 46A and 46B has high thermal conductivity. Further, the surface of each of the seals 46A and 46B facing the optical fiber 2 is coated with a reflective film (not shown) that reflects the excitation light E.
  • the optical amplifier is used in the fourth embodiment.
  • FIG. 11 is a diagram showing an example of the optical fiber 2 in the fourth embodiment.
  • a cross section of the optical fiber 2 is shown.
  • the cross section shown in Fig. 11 is perpendicular to the propagation direction of the signal light.
  • the shape of the cross section becomes a parabola. Since the excitation light E sent from the light guide 34 to the optical fiber 2 is a parallel light beam, the excitation light E is efficiently collected in the signal light propagation region 8 by providing the signal light propagation region 8 at the focal point of the parabola. Is possible.
  • FIG. 12 is a diagram showing another example of the optical fiber 2 in the fourth embodiment.
  • the shape of optical fiber 2 is a parabola.
  • the hole 2D is provided in the signal light propagation region 8 in the cross section. In particular, when outputting high-power laser light, these holes are provided in the signal light propagation region 8 to avoid an increase in the absorption coefficient due to the presence of high-density light and to reduce output loss. It becomes possible to suppress.
  • FIG. 13 is a diagram illustrating another configuration example of the transmission unit 45. Referring to FIG. 13, a microlens array including microlenses 60 as transmissive portions 45 is formed on light emitting surface 35. The optical fiber 2 is provided on the microlens array. Since the excitation light is collected by the microlens 60 and enters the optical fiber 2, light can be efficiently collected in the light propagation region.
  • the excitation light is incident on the side surface of the photonic crystal fiber from the light emitting surface, so that a single mode laser beam can be output while being small. It becomes possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

 従来の光ファイバを用いた光増幅器やファイバレーザの場合、光ファイバ内でシングルモードの光を伝播するためにはコアの直径を波長と同程度(1~数μm程度)にする必要がある。よって、仮に側面から励起光を照射したとしてもコアの径が小さすぎるため、コアに吸収される励起光が少なくなる。光ファイバ(2)はフォトニック結晶ファイバであるため、光伝播領域の径がたとえば100μm程度であってもシングルモードの光を伝播することができる。よって、光ファイバ(2)の側面から受ける励起光(E)が光伝播領域に効率よく吸収される。よって、小型かつ簡単な構成で、高出力の光を発することが可能な光増幅器およびレーザ装置を提供することができる。

Description

明 細 書
光増幅器およびレーザ装置
技術分野
[0001] 本発明は光増幅器およびレーザ装置に関し、特にフォトニック結晶光ファイバを含 む光増幅器およびレーザ装置に関する。
背景技術
[0002] レーザ光は様々な産業用途に利用できる。たとえばレーザ光は部品の表面に品質 に関する情報をマーキングするための加工に用いられる。また、レーザ光は半導体 チップの実装や液晶画素の欠陥の修復等に用いられる。
[0003] 特に微小な領域に製造年月日など多くの情報が記録される場合には、精度よい加 ェができなければならない。微細加工に用いられるレーザ光のモードは多モード(マ ルチモード)よりも単一モード(シングルモード)のほうが適している。
[0004] レーザ装置は、小型であることや衝撃に対して強いこと、あるいは低コストであること など、様々な要求に対応しなければならなレ、。このような要望を満たすため、従来は レーザ光の出力やレーザ光の波長、ビーム光のモードなどに応じ、個別にレーザ共 振器が設計されていた。また、レーザ共振器の調整は長年にわたり蓄積されたノウハ ゥ等に基づいて行なわれていた。
[0005] 従来の微細加工用レーザ装置の構成について、 LD (Laser Diode)励起固体レ 一ザおよびファイバレーザを例に説明する。
[0006] 図 14は、従来の LD励起固体レーザの共振器の構成を示す図である。図 14を参照 して、レーザ装置 100は共振器 102を備える。共振器 102は、 YAG (Yttrium Alu minum Garnet)や YV04などの結晶 104、および結晶 104を介して対向する反射 鏡 106, 108、パルス発振を起してレーザ光を出力するための Qスィッチ 110を含む 。 Qスィッチ 110はたとえば音響光学素子や電気光学素子などのシャツタである。
[0007] 結晶 104を励起するための励起光は LDアレイ 112からレンズ 114を介して結晶 10 4の一端面に入力される。励起状態において Qスィッチ 110がオンする(シャツタが開 く)とレーザ発振が行なわれて反射鏡 108からレーザ光 LAが出射する。 [0008] LDアレイ 112には複数の LD素子(図示せず)が設けられる。複数の LD素子の各 々から出た励起光をレンズ 114に導くため、複数の LD素子の各々に対応した複数 の光ファイバ 116が設けられる。複数の光ファイバ 116はファイバカップリング 118で 束ねられる。複数の光ファイバ 116の各々を伝達した励起光 Eはファイバカップリング 118の一端面から放出される。
[0009] なお、結晶 104が YAGであれば、シングルモードのレーザ光を出力するため反射 鏡 108と結晶 104との間にはアパーチャ(図示せず)が設けられる。また、結晶 104が YV04である場合、シングルモードのレーザ光を出力するために a軸〜 c軸の結晶軸 のうちの c軸方向に沿ってカットした結晶が用いられる。 c軸に沿ってカットされた結晶 は光路と c軸が同一方向になるようにレーザ装置 100に取り付けられる。
[0010] 図 15は、従来のファイバレーザの構成を示す図である。図 15を参照して、レーザ装 置 200は、共振器 202を備える。共振器 202は、光ファイバにより構成されるリング共 振器である。光ファイバの両端にはファイバブラッググレーティング(FBG : Fiber Br agg Gratings ;以下、 FBGと称す) 206、 208力 S形成される。 FBGは光ファイバのコ ァ中に形成された回折格子であり、光フィルタとしての機能を有する。
[0011] 共振器 202に用いられる光ファイバは、コアに希土類元素が添加された光増幅ファ ィバである。励起光がコアに入射すると、希土類元素が励起される。さらに、信号光( 図示せず)がコアに入射すると、励起状態の希土類元素において誘導放出が生じる ので信号光が増幅される。なお、希土類元素の種類に応じて励起光の波長および信 号光の波長は異なる。
[0012] 図 14のレーザ装置 100と同様に、励起光は LDアレイ 112から光ファイバ 116を介 して共振器 202に入る。ただし、光ファイバ 116と共振器 202 (光ファイバ)とは直接 接続される。
[0013] 図 16は、図 15の光ファイバ 116と共振器 202との接続を示す図である。図 16を参 照して、光ファイバ 210は共振器 202を構成する。図 16では光ファイバ 210の断面が 示される。光ファイバ 210にはコア 218が設けられ、コア 218を囲むように第 1クラッド 220が設けられる。さらに第 1クラッド 220を囲むように第 2クラッド 222が設けられる。
[0014] 光ファイバ 116の端面は第 2クラッド 222の端面に接続される。第 1クラッド 220を通 る励起光は第 1クラッド 220と第 2クラッド 222との境界で第 1クラッド 220のほうに反射 する。第 1クラッド 220からコア 218に入射する励起光はコア 218に吸収される。
[0015] 図 17は、従来の光ファイバアンプの構成を示す図である。図 17を参照して、光ファ ィバアンプ 300は、光増幅ファイバ 301と、信号光を発する光源 302と、励起光を発 する複数の光源 304とを備える。複数の光源 304の各々から発せられる励起光はフ アイバ支線 306およびファイバカプラ 308を介して光増幅ファイバ 301のコアに入る。 光源 302から光増幅ファイバ 301の一端面に入射した信号光は光増幅ファイバ 301 により増幅される。光増幅ファイバ 301の他端部からは増幅後の信号光として信号光 S 100が発せられる。
[0016] 従来の固体レーザの例として、たとえば特許第 2893862号公報(特許文献 1)では 、レーザ媒質において発生した基本波レーザ光を共振器内に設けた非線形光学結 晶素子を通過するように共振動作させることにより、第 2高調波レーザ光を発生させる と共に、上記基本波レーザ光の 2つの偏光モード間の和周波発生によるカップリング を抑制する光学手段を上記共振器内に設けた固体レーザ発振器を開示する。この 固体レーザ発振器は、上記基本波レーザ光の 2つの偏光モードを、夫々単一の縦モ ードで発振させる光学手段と、上記基本波レーザ光の 2つの偏光モードの発振強度 力 S同一に成るように上記共振器の実効共振器長を制御する制御手段とを設けたこと を特徴とする。
[0017] また、レーザの光軸を調整するための従来技術として、たとえば特開 2004— 4765 0号公報(特許文献 2)では、複数のレーザダイオードと、これらのレーザダイオードを 、それぞれの発光点が一方向に並ぶ状態に固定保持したブロックと、レーザダイォ ードから発せられたレーザービームを各々平行光化するコリメータレンズが複数、一 方向に並ぶ状態に一体化されてなるコリメータレンズアレイとを備えるレーザ装置を 開示する。このレーザ装置では、ブロックの複数のレーザダイオードを固定した部分 よりも前方側に、レーザダイオードの発光点から所定距離離れて、レーザダイオード の発光軸に垂直とされた平滑なレンズ規定面が形成され、このレンズ規定面にコリメ ータレンズアレイの一端面を合わせた状態で、該コリメータレンズアレイがブロックに 固定されていることを特徴とする。 [0018] また、光ファイバアンプの従来例として、たとえば特開 2004— 297101号公報(特 許文献 3)では、複数の増幅性光ファイバに励起光を供給して信号光を光増幅する 光ファイバ増幅器を開示する。この光ファイバ増幅器において、複数の増幅性光ファ ィバは、信号光入力端側に第 1の増幅性ファイバ、信号光出力端側に第 2の増幅性 ファイバとを有する。また、この光ファイバ増幅器は、第 1の増幅性ファイバから第 2の 増幅性光ファイバにおける信号光増幅利得を算出する第 1の利得検出手段と、第 1 の増幅性光ファイバに励起光を供給する第 1の励起光供給手段と、第 2の増幅性光 ファイバに励起光を供給する第 2の励起光供給手段と、第 1の励起光供給手段により 供給される励起光の強度を一定に制御する第 1の制御手段と、第 1の利得検出手段 により検出された利得に基づいて、第 2の励起光供給手段により供給される励起光の 強度を利得一定となるように制御する第 2の制御手段と、第 1の増幅性光ファイバと第 2の増幅性光ファイバの間に配置されたアイソレータとを備える。
特許文献 1:特許第 2893862号公報
特許文献 2:特開 2004— 47650号公報
特許文献 3 :特開 2004— 297101号公報
発明の開示
発明が解決しょうとする課題
[0019] 図 14に示す LD励起固体レーザにおいては、 2枚の反射鏡 106, 108が設けられ ているため、振動や温度変化により反射鏡の相対的な位置がずれやすい。よって、 レーザ装置を設置した際にはレーザ光を出力するための調整が必要となる。
[0020] また、 LDアレイ 112に含まれる複数の LD素子から発せられる励起光が光ファイバ 116のコアに入るように LD素子の光軸を調整しなければならなレ、。調整作業は人手 により行なわれるので、 LD励起固体レーザ装置のコストが高くなる。
[0021] 一方、図 15に示すファイバレーザの場合には、光ファイバそのものが共振器であり 、 LD励起固体レーザのように反射鏡が設けられていないため、 LD固体励起レーザ よりは振動衝撃に対して強レ、。しかし、光ファイバ 116を光ファイバ 210の第 1クラッド 220に接続するための作業が人手により行なわれる。この作業がファイバレーザ装置 のコストを高くする要因となっている。つまり従来のレーザ装置では、 LD素子から発 せられる励起光をコアに入れるための調整作業に多くの労力が必要であるため、レ 一ザ装置のコストが高くなつていた。
[0022] また、光ファイバを用いた光増幅器において高出力の光を放出する(増幅率を高く する)ためには、光増幅ファイバの長さを長くする必要があるが、光ファイバが長くなる と光ファイバが占有する面積が大きくなるため、装置全体が大型化する。仮に光ファ ィバの占有面積を小さくするために光ファイバを曲げたとしても曲げられた部分から 外に光が逃げてしまうので、光ファイバを曲げた場合には増幅率が下がるという問題 力 Sある。
[0023] 本発明の目的は、小型かつ簡単な構成で、高出力の光を発することが可能な光増 幅器およびレーザ装置を提供することである。
課題を解決するための手段
[0024] 本発明は要約すれば、光増幅器であって、所定の波長の光を主波長とする信号光 をシングノレモードで伝播するフォトニック結晶ファイバを備える。フォトニック結晶ファ ィバは、信号光を伝播する信号光伝播領域を含み、信号光伝播領域の中心部を囲 むように、所定の波長の光に対してブラッグ反射条件を満たす互いに屈折率が異な る複数の媒質力 なる周期構造が設けられ、かつ、信号光伝播領域に、励起状態に おいて信号光が入射すると誘導放出を起こす光増幅物質がドープされている。光増 幅器は、フォトニック結晶ファイバの側面から信号光伝播領域に向けて信号光と波長 が異なる励起光を照射し、光物質を励起する励起部をさらに備え、それにより、周期 構造により選択される所定の波長の光を主波長とする信号光をシングルモードで伝 播し、励起光の照射により信号光を増幅する。
[0025] 本発明の他の局面に従うと、光増幅器であって、所定の波長の光を主波長とする 信号光を発する信号光源と、信号光を一端面に受け、信号光をシングルモードで伝 播して他端面から放出するフォトニック結晶ファイバとを備える。フォトニック結晶ファ ィバは、信号光を伝播する信号光伝播領域を含み、信号光伝播領域の中心部を囲 むように、所定の波長の光に対してブラッグ反射条件を満たす互いに屈折率が異な る複数の媒質力 なる周期構造が設けられ、かつ、信号光伝播領域に、励起状態に おいて信号光が入射すると誘導放出を起こす光増幅物質がドープされている。光増 幅器はフォトニック結晶ファイバの側面から信号光伝播領域に向けて信号光と波長 が異なる励起光を照射し、光物質を励起する励起部をさらに備える。光増幅器はフォ トニック結晶ファイバを伝播する信号光を増幅する。
[0026] 好ましくは、周期構造は、フォトニック結晶ファイバの断面において、フォトニック結 晶ファイバを構成する固体媒質に、空孔が周期的に設けられることにより形成される
[0027] 空孔は、固体媒質がなぐ空気が存在する。断面において周期構造を構成する個 々の空孔は、フォトニック結晶ファイバの一方の端面から他方の端面まで同じ断面形 状が連続して繋がった空孔となる。
[0028] 本発明のさらに他の局面に従うと、レーザ装置であって、光増幅器を備える。光増 幅器は、所定の波長の光を主波長とする信号光をシングノレモードで伝播するフォト二 ック結晶ファイバを含む。フォトニック結晶ファイバは、信号光を伝播する信号光伝播 領域を有し、信号光伝播領域の中心部を囲むように、所定の波長の光に対してブラ ッグ反射条件を満たす互いに屈折率が異なる複数の媒質力 なる周期構造が設けら れ、かつ、信号光伝播領域に、励起状態において信号光が入射すると誘導放出を 起こす光増幅物質がドープされている。光増幅器は、フォトニック結晶ファイバの側面 から信号光伝播領域に向けて信号光と波長が異なる励起光を照射し、光物質を励 起する励起部をさらに含み、それにより、周期構造により選択される所定の波長の光 を主波長とする信号光をシングルモードで伝播し、励起光の照射により信号光を増 幅する。レーザ装置は、フォトニック結晶ファイバのそれぞれの端面に信号光を反射 する反射部をさらに備える。
[0029] 本発明のさらに他の局面に従うと、レーザ装置であって、光増幅器を備える。光増 幅器は、所定の波長の光を主波長とする信号光をシングノレモードで伝播するフォト二 ック結晶ファイバを含む。フォトニック結晶ファイバは、信号光を伝播する信号光伝播 領域を有すし、信号光伝播領域の中心部を囲むように、所定の波長の光に対してブ ラッグ反射条件を満たす互いに屈折率が異なる複数の媒質からなる周期構造が設け られ、かつ、信号光伝播領域に、励起状態において信号光が入射すると誘導放出を 起こす光増幅物質がドープされている。光増幅器は、フォトニック結晶ファイバの側面 から信号光伝播領域に向けて信号光と波長が異なる励起光を照射し、光物質を励 起する励起部をさらに含み、それにより、周期構造により選択される所定の波長の光 を主波長とする信号光をシングルモードで伝播し、励起光の照射により信号光を増 幅する。レーザ装置は、フォトニック結晶ファイバの一端面に到達した信号光を、フォ トニック結晶ファイバの他端面に戻すための戻り部をさらに備える。
[0030] さらに好ましくは、フォトニック結晶ファイバは、一端面と他端面とが近接して設置さ れ、戻り部は、他端面から出射する信号光のうちの一部を反射して一端面に入射す るとともに、他端面から出射する信号光の一部を透過する反射鏡である。
[0031] さらに好ましくは、レーザ装置は、フォトニック結晶ファイバに対して励起部と反対側 に設けられ、フォトニック結晶ファイバに向けて励起光を反射する第 1の反射部をさら に備える。
[0032] さらに好ましくは、レーザ装置は、フォトニック結晶ファイバと励起部との間に設けら れる第 2の反射部をさらに備え、第 2の反射部は、励起部から発せられる励起光を透 過し、第 1の反射部によって反射された励起光をフォトニック結晶ファイバに向けて反 射する。
[0033] さらに好ましくは、第 1の反射部の外形は、楕円の少なくとも一部であり、フォトニック 結晶ファイバは、光伝播領域の位置が楕円の焦点の位置になるように配置される。
[0034] さらに好ましくは、フォトニック結晶ファイバは、信号光の伝播方向に垂直な断面が 、楕円の少なくとも一部となる形状を有し、光伝播領域は、楕円の焦点の位置に配置 される。
[0035] さらに好ましくは、フォトニック結晶ファイバは、複数の励起光源のうちのいずれかの 励起光源力 発せられる励起光に応じて光増幅物質に生じた自然放出により信号光 を自ら生成し、生成した信号光により、光増幅物質に誘導放出を起こさせる。
[0036] さらに好ましくは、励起部は、入射角がブルースター角になるようにフォトニック結晶 ファイバに対して励起光を照射する。
[0037] さらに好ましくは、励起部は、励起光を連続して発する複数の励起光源を含む。
さらに好ましくは、戻り部は、一端面に光学的に結合され、一端面に到達した信号 光を他端面に向けて戻す第 1のファイバグレーティング構造と、他端面に光学的に結 合され、他端面に到達した信号光を一端面に向けて戻す第 2のファイバグレーティン グ構造とを含む。
[0038] さらに好ましくは、レーザ装置は、励起部とフォトニック結晶ファイバとの間に設けら れて励起光をフォトニック結晶ファイバの側面に導く光導波部をさらに備え、光導波 部は、励起光を面状に放出するための発光面を含み、フォトニック結晶ファイバは、 発光面に沿って設けられる。
[0039] さらに好ましくは、光導波部は、折り曲げ自在な素材により構成される。
さらに好ましくは、レーザ装置は、フォトニック結晶ファイバに対して発光面と反対側 に設けられ、励起光を、フォトニック結晶ファイバに向けて反射する反射部と、発光面 とフォトニック結晶ファイバとの間に設けられ、励起光を透過する透過部とをさらに備 る。
[0040] さらに好ましくは、透過部は、励起光のうち、光増幅物質を励起する波長の光を透 過するダイクロイツクミラーである。
[0041] さらに好ましくは、透過部は、励起光を集光する複数のマイクロレンズを含むマイク 口レンズアレイである。
さらに好ましくは、フォトニック結晶ファイバは、信号光の伝播方向に垂直な断面が 放物線となる形状を有し、放物線の焦点の位置に光伝播領域が配置される。
[0042] さらに好ましくは、光伝播領域の内部は、断面において、光伝播領域内に、周期構 造を構成する空孔とは異なる他の空孔が設けられている。
[0043] さらに好ましくは、レーザ装置は、フォトニック結晶ファイバを浸漬して冷却する冷却 水を循環させる冷却部をさらに備える。
[0044] 好ましくは、光増幅器は、励起部とフォトニック結晶ファイバとの間に設けられて励 起光をフォトニック結晶ファイバの側面に導く光導波部をさらに備える。光導波部は、 励起光を面状に放出するための発光面を含む。フォトニック結晶ファイバは、発光面 に沿って設けられる。
発明の効果
[0045] 本発明の光増幅器によれば、シングルモードの光を伝播し、かつ、光増幅を行なう フォトニック結晶ファイバの側面に励起光を照射することにより、励起光をコアに入力 するための調整を簡単にすることができるとともに、小型でありながら高い出力の光を 出すことができる。
図面の簡単な説明
[0046] [図 1]本発明の光増幅器の構成を示す概念図である。
[図 2]図 1の光ファイバ 2の断面を模式的に示す図である。
[図 3]実施の形態 2のレーザ装置の構成を示す概略図である。
[図 4]図 3の光増幅器 1の構成を示す概略図である。
[図 5]実施の形態 2における光増幅器 1の別の構成例を示す図である。
[図 6]実施の形態 2における光増幅器 1のさらに別の構成例を示す図である。
[図 7]実施の形態 3のレーザ装置の構成を示す概略図である。
[図 8]実施の形態 4のレーザ装置の構成を示す概略図である。
[図 9]図 8のレーザ装置 31を上方から見た図である。
[図 10]図 8の線分 X—X部の断面図である。
[図 11]実施の形態 4における光ファイバ 2の一例を示す図である。
[図 12]実施の形態 4における光ファイバ 2の別の例を示す図である。
[図 13]透過部 45の別の構成例を示す図である。
[図 14]従来の LD励起固体レーザの共振器の構成を示す図である。
[図 15]従来のファイバレーザの構成を示す図である。
[図 16]図 15の光ファイバ 116と共振器 202との接続を示す図である。
[図 17]従来の光ファイバアンプの構成を示す図である。
[図 18]図 1の光ファイバ 2の断面を具体的に示す図である。
符号の説明
[0047] 1 光増幅器、 2, 2A, 116, 210 光ファイバ、 2D 空孔、 4A 励起光源、 4 励起 部、 6 光源、 8 信号光伝播領域、 9 周期構造領域、 8A, 9A 空孔、 11, 21 , 31 , 100, 200 レーザ装置、 12 パルス発振 LD、 13 反射鏡、 14A, 14B コリメータ レンズ、 15 卷き枠、 16, 16A, 16B, 16C 反射咅、 18 ヒートシンク、 19 LD素子 、 19A 電極、 22 反射鏡、 32 制御部、 34 ライトガイド、 35 発光面、 36A, 36B 波長選択部、 36C 放射面、 38 指示部、 40 ドライバ 42 冷却部、 43 アイソレ ータ、 44 放熱板、 45 透過咅、 46A, 46B シーノレ、 50 シリンドリカノレレンズ、 52 冷却水、 60 マイクロレンズ、 91〜94 境界線、 102, 202 共振器、 104 結晶、 106, 108 反射鏡、 110 Qスィッチ、 112 LDアレイ、 114 レンズ、 118 フアイノ カップリング、 218 コア、 220 第 1クラッド、 222 第 2クラッド、 300 光ファイバアン プ、 301 ί曾 ファイノ 、 302, 304 306 ファイノ ¾ 、 308 ファイバ力 プラ、 D1 距離、 E 励起光、 LI, L2, SI , S2, S100 信号光、 L3 透過光、 L4 反射光、 LA レーザ光、 P1 位置。
発明を実施するための最良の形態
[0048] 以下において、本発明の実施の形態について図面を参照して詳しく説明する。な お、図中同一符号は同一または相当部分を示す。
[0049] [実施の形態 1]
図 1は、本発明の光増幅器の構成を示す概念図である。図 1を参照して、光増幅器 1は光ファイバ 2、光ファイバ 2の側面から光ファイバの光伝播領域に向けて励起光 E を照射する励起部 4および光ファイバの一端面に、信号光 S1を入射する光源 6とを 備える。信号光 S1は光ファイバ 2において増幅され、光ファイバ 2の他端面から信号 光 S2として出力される。
[0050] 光ファイバ 2はフォトニック結晶ファイバである。フォトニック結晶とは屈折率の異なる 2種類の物質を光の波長程度のサイズおよび間隔で周期的に配列させた人工結晶 である。フォトニック結晶は波長選択性を有し、結晶の周期に応じた波長の光のみ、 界面で反射する性質を持つ。その理由として、周期構造によるエネルギーバンド構 造 (フォトニックバンド)により、結晶の周期に応じた波長はフォトニック結晶中での存 在が許されなレヽためである。
[0051] 周期構造により選択された波長の光はフォトニック結晶中に侵入できなレ、。よって 光はフォトニック結晶に囲まれた光伝播領域を伝播する。フォトニック結晶ファイバは 従来の光導波路が有していた様々な制限を受けなくなる。たとえば曲げ半径を小さく しても光ファイバの外部に漏れ出す光を少なくすることができる。
[0052] 本発明では信号光 S1がフォトニックバンドギャップの波長の光に相当する。励起光 Eの波長はフォトニックバンドの透過領域にある波長である。よって信号光 S1の波長 と励起光 Eの波長とは異なる。
[0053] 図 2は、図 1の光ファイバ 2の断面を模式的に示す図である。図 2を参照して、光ファ ィバ 2は、信号光伝播領域 8および周期構造領域 9を含む。周期構造領域 9は、信号 光伝播領域 8の中心部を囲み、信号光の波長の光に対してブラッグ反射条件を満た すように、ガラスやプラスチックなどの透明な物質に空孔 9Aが周期的に設けられた構 造を持つ領域である。空孔には空気が存在することになる。
[0054] 屈折率が周期的に変化するような回折格子では、入射する光の方向における回折 格子の周期と光の波長との関係から、特定の波長の光を強く反射し、その他の波長 の光を透過する。このような反射をブラッグ反射と呼ぶ。光ファイバ内に設ける空孔 9 Aの周期が信号光の波長程度の間隔およびサイズで透明な物質に設け、周期構造 の配置を適切に行なうことによって、ファイバ内を伝播する信号光に対してはブラッグ 反射が生じるようにすることができ、信号光が信号光伝播領域 8内に閉じ込められた 状態で伝播することができる。なお、周期構造が有限であれば特定波長を中心に一 定の広がりを持つ波長も、ブラッグ反射条件を満たすがそのような場合も含まれるも のとする。
[0055] 周期構造領域 9において、励起光は信号光とは波長が異なり、ブラッグ反射条件を 満たさないように周期構造を設計することにより、高い透過率でファイバ側面からの励 起光は信号光伝播領域 8に到達できる。
[0056] 信号光伝播領域 8には光増幅物質として希土類元素がドープされる。図 1の励起光 Eが信号光伝播領域 8に入射すると信号光伝播領域 8にドープされた希土類元素が 励起光 Eにより励起される。さらに信号光伝播領域 8に信号光 S1が入射すると励起 状態の希土類元素において誘導放出が生じ、信号光 S1が増幅される。
[0057] 希土類元素の種類に応じて励起光および誘導放出光の波長は異なる。希土類元 素の具体例としてはネオジゥム(Nd)、イツテリビゥム(Yb)、エルビウム(Er)などであ る。希土類元素に対応する励起光の波長および信号光の波長の例を示すと、たとえ ばネオジゥムの場合、励起光の波長は 808nmであり、誘導放出光の波長は 1064η mである。イツテリビゥムの場合、励起光の波長は 940 ± 10nmおよび 970nmであり 、誘導放出光の波長は 1030nmである。エルビウムの場合、励起光の波長は 980η mおよび 1480nmであり、誘導放出光の波長は 1550nmである。よって、光増幅器 1 は必要となる信号光 S2の波長に応じて光ファイバ 2を交換することで、異なる波長の 光を出力することができる。
[0058] さらに、光ファイバ 2全体 (実際には希土類元素が添加された領域)の面積に、均一 に励起光を照射することによって、過剰な照射によって生じる励起光の吸収確率(吸 収断面積)の減少の影響を回避し、高い吸収確率を維持することによって信号光の 増幅率を高くして、光ファイバから光を放出することが可能になる。
[0059] 従来の光ファイバを用いた光増幅器やファイバレーザの場合、シングルモードの光 を伝播するためには光伝播領域の直径が波長と同程度(1〜数 μ m程度)でなけれ ばならなレ、。よって仮に従来の光増幅器にぉレ、てファイバの側面から励起光を照射 したとしても光伝播領域の径が小さすぎるため、光伝播領域に吸収される励起光が 少なくなる。光ファイバ 2はフォトニック結晶ファイバであるため光伝播領域の径がそ の 10倍程度であってもシングルモードの光を伝播することができる。よって光ファイバ 2の側面から信号光伝播領域 8に向けて励起部 4が励起光 Eを照射しても信号光伝 播領域 8は効率よく励起光 Eを吸収できる。よって光増幅器 1では従来の光増幅器に 比べ、光ファイバ 2に対する励起部の位置を調整することが容易になる。
[0060] 続いて、図 18を参照しながら本発明の実施の形態におけるフォトニック結晶フアイ バの構成例を具体的に説明する。
[0061] 図 18は、図 1の光ファイバ 2の断面を具体的に示す図である。
図 18を参照して、信号光伝播領域 8内には、周期構造領域 9を構成する空孔 9Aと は異なる他の空孔 8A (コア)が設けられる。複数の空孔 9Aは信号光伝播領域 8の空 孔 8Aを多重に囲み、かつ、周期的に配置される。いわば周期構造領域 9は空孔 8A の周りにガラスやプラスチックなどの透明な物質および空孔が層状に重ねられた構成 を有する。なお境界線 9:!〜 94は、各層の境界として便宜的に示した線である。
[0062] 空孔 8Aの径は約 15 μ m程度である。また空孔の屈折率はほぼ 1に等しくなる。信 号光伝播領域 8には光増幅物質としてイツテリビゥム (Yb)が添加される。イツテリピウ ムは第 1層目(空孔 8Aと境界線 91との間の領域)に添加される。
[0063] 光ファイバ 2の構造がフォトニックバンドギャップ構造となるためには上述した層が 1 層〜 6層程度必要となるが、光ファイバ 2がシングルモードで光を伝播するためには 4 層程度必要となる(図 18では 4層の例を示す)。
[0064] なおレーザ発振波長が 1064nmの場合には、 2つの空孔 9A間のピッチ Λは約 2〜 となり、空孔 9Aの径 dは約 2〜3 z mとなり、構造パラメータ d/ Λは約 1となる。
[0065] また、図 18に示す構造において、第 1層にイツテリビゥム (Yb)が添加され、第 1層 および第 2層にエルビウム(Er)等のレーザドーパントが添加されてもょレ、。エルピウ ムはファイバ外部(ファイバ側面)からの励起光を受けてイツテリビゥムの励起光に近 い波長の光を発光する。エルビウムが発した光はファイバ中心部のイツテリビゥムを励 起する。また、エルビウムは第 1層から第 6層(あるいはそれ以上の層)に添加されて あよい。
[0066] 以上のように、実施の形態 1によれば、希土類元素が添加された信号光伝播領域 を有し、かつ、信号光伝播領域の中心部を囲むように、所定の波長の光に対してブラ ッグ反射条件を満たす、互いに屈折率が異なる透明な物質と空孔とからなる周期構 造を有するフォトニック結晶ファイバと、このフォトニック結晶ファイバの側面から光伝 播領域に向けて励起光を照射する励起部とを備えることによって、光ファイバに対す る励起部の配置を容易に設定することが可能になるとともに、小型で高出力の光増 幅器を実現することができる。
[0067] [実施の形態 2]
図 3は、実施の形態 2のレーザ装置の構成を示す概略図である。図 3を参照して、 レーザ装置 11は、光増幅器 1と、反射鏡 13と、コリメータレンズ 14A, 14Bとを備える 。反射鏡 13は、光ファイバ 2の一端面から出射する信号光 L2のうちの一部を反射し て光ファイバ 2の他端面に入射するとともに、信号光 L2の一部を透過する。光増幅器 1による信号光 L2の増幅と反射鏡による信号光 L2の損失やファイバ内の損失やドー パント濃度による消光、ファイバ長さに依存して起こる消光とが釣り合うとレーザ発振 が生じ、反射鏡 13からレーザ光 LAが外部に発せられる。消光とは発振波長の光を 吸収して再度蓄光するために、一般的にはフオノン放出などによって熱として光エネ ルギ一が失われる現象を指す。
[0068] 光増幅器 1は、光ファイバ 2、複数の励起光源 4A、パルス発振 LD12、円筒形の卷 き枠 15、反射部 16およびヒートシンク 18により構成される。光ファイバ 2は卷き枠 15 の側面に沿って卷かれることによりリング状に設置される。光ファイバ 2はフォトニック 結晶ファイバであるので卷き枠 15に沿って卷かれていても曲げに対して耐性が極め て強ぐ曲げられた部分から殆ど光が漏れなレ、。よって光ファイバ 2を長くしても光増 幅器 1が大型化することを防げるのでレーザ装置 11は小型であるとともに高出力のレ 一ザ光を発することができる。
[0069] 複数の励起光源 4Aは図 1の励起部 4を構成する。光ファイバ 2が卷き枠 15の周囲 に沿って巻かれているため励起光源 4Aは巻き枠 15の径方向に励起光を発する。励 起光源 4Aには連続発振を行なう LD素子(図示せず)が含まれる。 LD素子の発振波 長は希土類元素の励起波長であるとともにフォトニックバンドの透過領域にある波長 である。光ファイバ 2の光伝播領域に添加される希土類元素およびフォトニックバンド の透過領域に応じて発振波長は適切に定められる。
[0070] 励起光源 4Aは 8個設けられている力 励起光源 4Aの数は異なっていてもよい。励 起光源 4Aを複数設けることによって、いずれかの励起光源 4Aが故障等の理由によ り励起光を発しなくなっても他の励起光源 4Aが励起光を発するのでレーザ装置 11 はレーザ光 LAを発することができる。また、レーザ装置 11に含まれる励起光源 4Aの 数が多いほどレーザ光の出力を高くすることができる。
[0071] 光増幅器 1は光ファイバ 2をはさむように設けられる反射部 16を含む。反射部 16は 励起光源 4Aから出た励起光が効率よく光ファイバ 2の光伝播領域に吸収されるため に設けられる。
[0072] 反射部 16は反射部 16A, 16Bを含む。反射部 16Aは光ファイバ 2に対して励起光 源 4Aと反対側に設けられ、励起光を、光ファイバ 2の光伝播領域に向けて反射する 。反射部 16Bは光ファイバに沿って励起光源 4A力も励起光が照射される領域を除 いて設けられる。反射部 16Bは反射部 16Aとともに、反射された励起光を光ファイバ 2に向けて反射する。このように、反射部 16A, 16Bによって繰り返し励起光が反射さ れるので、光伝播領域に効率よく励起光が吸収される。なお、反射部 16A, 16Bは、 たとえばプリズムシート(回折格子シート)や金属蒸着シート、多層誘電体コート付き シートなどによって構成される。 [0073] 複数の励起光源 4Aの各々の間にはヒートシンク 18が設けられる。ヒートシンク 18に よって励起光源に含まれる LD素子から出る熱を放出することができるので、 LD素子 の温度上昇を抑えることができる。よって、励起光の波長が安定する。
[0074] なお図 3において、励起光源 4Aは光ファイバ 2に対して卷き枠 15の内側に設けら れてレ、るが光ファイバ 2に対して卷き枠 15の外側に設けられてレ、てもよレ、。
[0075] 反射鏡 13は、たとえば石英ガラスにより構成される。石英ガラスは温度による体積 膨張が小さいという利点を有する。信号光 L2を反射するため、反射鏡 13の反射面に は、たとえば誘電体多層膜が積層される。反射面での信号光 L2の反射率は、反射 面に誘電体多層膜を用いた場合 99%以上を確保できる。なお、光ファイバ 2と反射 鏡 13との距離を変えることで、レーザ光の発振波長を微調整することが可能になる。
[0076] このように実施の形態 2のレーザ装置では光ファイバ 2に対して 1つの反射鏡のみ が設けられる。よって、従来の LD励起固体レーザと比較して反射鏡の数が少ないの で、振動衝撃によって光増幅器 1と反射鏡 13との位置がずれたとしても容易に位置 を調整すること力 Sできる。
[0077] コリメータレンズ 14A, 14Bは、光ファイバ 2に入る信号光 L2および光ファイバ 2から 出る信号光 L2のそれぞれを平行な光線にするために設けられる。
[0078] 図 4は、図 3の光増幅器 1の構成を示す概略図である。図 4を参照して、励起光源 4 Aには連続発振を行なう LD素子 19が複数設けられる。 LD素子 19の数は光伝播領 域を励起するために必要な励起光のパワーに応じて適切に定められる。なお、図 4で は図が煩雑になるのを避けるため、ヒートシンク 18が示されていない。また、同様に 図が煩雑になるのを避けるため、励起光源 4Aは 2つのみ示される。
[0079] 光ファイバ 2に対する励起光 Eの入射角 Aは、ブルースター角を中心として入射さ せるようにすることが特に好ましい。ブルースター角とは入射面に対して平行な電界 成分のみを持つ直線偏光(P偏光)が入射する際に反射が 0となる入射角をレ、う。励 起光に用いる LDの偏光方向および入射角の中心値がブルースター角であれば励 起光 Eが効率よく光ファイバ 2に入ることになるので励起光は光伝播領域に効率よく 吸収される。なお実施の形態 2におけるブルースター角は約 34° になる。
[0080] 図 5は、実施の形態 2における光増幅器 1の別の構成例を示す図である。図 5を参 照して、光ファイバ 2、反射部 16C、 LD素子 19および電極 19Aが示される。電極 19 Aは LD素子 19に対して駆動電圧の印加や動作の制御を行なうための電極である。 なお図 5は光増幅器 1の主要部分について、信号光の伝播方向から見た断面を示す
[0081] 反射部 16Cの外形は楕円の少なくとも一部である。楕円は 2つの焦点を有する。よ つて LD素子 19を点光源とみなせば、光伝播領域の位置が楕円の第 1の焦点になる ように光ファイバ 2を設け、第 2の焦点の位置に LD素子 19の発光面を設けることで、 LD素子 19から発せられる励起光 Eを光ファイバ 2に集めることができる。なお、図 5に 示す光増幅器 1の場合、反射部 16Cは光ファイバ 2に沿って設けられるので、反射部 16Cの長さは光ファイバ 2の長さだけ必要になる。
[0082] 図 6は、実施の形態 2における光増幅器 1のさらに別の構成例を示す図である。図 6 を参照して、光ファイノ ¾A、 LD素子 19および電極 19Aが示される。図 5と同様に、 図 6は光増幅器 1の主要部分について、信号光の伝播方向から見た断面を示す。
[0083] 図 6に示す光増幅器 1では、光ファイバ 2Aの形状が楕円の一部になっている。楕 円の第 1の焦点の位置に信号光伝播領域 8が設けられ、第 2の焦点の位置に LD素 子 19の発光面が設けられる。図 5に示す光増幅器 1と同様に、 LD素子 19から発せ られる励起光 Eは信号光伝播領域 8に集まるので、光伝播領域では励起光 Eを効率 よく吸収することができる。図 6に示す光増幅器の場合には光ファイバの外側に反射 部を設ける必要がないのでレーザ装置のコストを下げることができる。
[0084] なお、 LD素子 19と光ファイバとの間にコリメータレンズが設けられる場合には光フ アイバに入射する励起光が平行光線になる。励起光が平行光線であれば図 5に示す 光増幅器 1では反射部 16Cの外形が放物線になり、放物線の焦点に光ファイバ 2が 設けられる。同様に図 6に示す光増幅器 1では光ファイバ 2Aの外形が放物線になり 、放物線の焦点に信号光伝播領域 8が設けられる。
[0085] 以上のように実施の形態 2によれば、 1枚の反射鏡によってフォトニック結晶ファイバ を含む光増幅器から出た光を光増幅器に帰還させることによって、反射鏡と光増幅 器との相対的な位置の調整を容易に行なうことができ、かつ、レーザ光の波長や出 力を容易に変える事が可能なレーザ装置が実現可能になる。 [0086] [実施の形態 3]
図 7は、実施の形態 3のレーザ装置の構成を示す概略図である。図 7を参照して、 レーザ装置 21はパルス発振 LD12が含まれてレ、なレ、点および反射鏡 22が含まれる 点において図 2のレーザ装置 11と異なる。レーザ装置 21の他の部分の構成につい てはレーザ装置 11の対応する部分の構成と同様であるので以後の説明は繰り返さ ない。
[0087] レーザ装置 21は連続発振が可能なレーザである。複数の励起光源 4Aの各々の出 力を徐々に高くしていくと、光ファイバ 2の光伝播領域では自然放出による光が生じる 。この光が信号光となり、光ファイバ 2を伝播するうちに増幅される。光ファイバ 2の一 端面から出た信号光 L2の一部は反射鏡 13により反射して光ファイバ 2の他端面に 入り、一部は反射鏡 13を透過して放出される。光増幅器 1による信号光 L2の増幅と 反射鏡 13による信号光 L2の放出とが釣り合うとレーザ発振が生じる。
[0088] 実施の形態 2では光ファイバ 2の一端面から信号光 L1が入ることにより、増幅後の 信号光 L2は一方向(時計方向)のみに進む。実施の形態 3では信号光 L2の進行方 向は特に限定されないため、時計方向や反時計方向、あるいは時計方向および反 時計方向が進行方向として考えられる。特に進行方向が時計方向と反時計方向との 両方向である場合、光ファイバ 2の両端面から信号光 L2が出力される。よって、反射 鏡 13を透過する光としてレーザ光以外に透過光 L3が発生する。
[0089] 実施の形態 3では透過光 L3を反射する反射鏡 22を備える。反射鏡 22で透過光 L 3が反射され、反射光 L4とレーザ光 LAとが反射鏡 13上の位置 P1において合成され る。よって、実施の形態 3ではレーザ光 LAの出力が下がることを防ぐことができる。ま た、実施の形態 3では、レーザ光 LA以外に外部に放出される光がなくなるので、レ 一ザ装置を用いて作業者が製品の加工を行なう場合において、作業者は容易にレ 一ザ装置を取り扱うことができる。
[0090] なお、反射光 L4とレーザ光 LAとを合成した場合にレーザ光 LAの出力が下がらな いためには、位置 P1においてレーザ光 LAの位相と光 L4の位相とが同じでなくては ならない。このため、位置 P1から反射鏡 22までの距離 D1は、発振波長の半分の長 さ(半波長)の整数倍の長さになるように設定されなければならない。 [0091] 実施の形態 3においても実施の形態 2と同様に、反射部 16に代えて図 5に示す反 射部 16Cが用いられてもよい。また、実施の形態 3において、光ファイバ 2に代えて光 ファイノく 2Aが用いられてもよレ、。
[0092] 以上のように実施の形態 3によれば、励起光源から出力される励起光の出力を、光 増幅ファイバの光伝播領域で自然放出が生じるほど高くすることによって、連続発振 を行なうレーザ装置を実現することができる。
[0093] [実施の形態 4]
図 8は、実施の形態 4のレーザ装置の構成を示す概略図である。図 8を参照してレ 一ザ装置 31は、光増幅器 1と、ヒートシンク 18と、制御部 32と、ライトガイド 34と、波長 選択部 36A, 36Bとを備える。
[0094] 光ファイバ 2の両端部には波長選択部 36A, 36Bが設けられる。波長選択部 36A,
36Bは従来の FBGに相当する機能を有し、特定の波長に対してのみ選択的に反射 率が高く設定されている。なお、波長選択部 36A, 36Bに代え、端面で信号光を反 射し、光ファイバ 2の内部に信号光を戻すための反射膜が光ファイバ 2の両端面にコ 一ティングされてレ、てもよレ、。
[0095] 波長選択部 36A, 36Bの各々では信号光の一部が光ファイバ 2に戻されるとともに 信号光の一部が外部に放出される。光ファイバ 2による信号光の増幅と波長選択部 3 6A, 36Bの各々による信号光の放出とが釣り合うとレーザ光 LAがレーザ装置 31か ら発せられる。なお、レーザ光が外部に発せられる放射面 36Cにはミラーコーティン グが施され、大部分の光を反射するとともに一部の光を透過させてレ、る。
[0096] 励起部 4は光源である複数の LD素子 19を含む。実施の形態 2, 3と同様に複数の LD素子 19が励起部 4に含まれることにより、いずれ力、 1つの LD素子が故障により励 起光を発しなくなったとしても他の LD素子によって光ファイバ 2を励起することができ る。なお、励起部 4に含まれる光源としては LD素子 19以外にも LED (Light Emitti ng Diode ; LEDバックライトを含む)やランプであってもよレヽ。
[0097] ライトガイド 34は励起部 4と光ファイバ 2との間に設けられ、励起光 Eを光ファイバ 2 の側面に導くための光導波部である。 LD素子 19から出た励起光 Eはライトガイド 34 により反射され、光ファイバ 2の側面から光ファイバ 2に入る。ライトガイド 34は励起光 Eを面状に放出するための発光面を有する。光ファイバ 2はライトガイド 34から励起光 Eが放出される発光面上に設けられる。光ファイバ 2に対して局所的に励起光を照射 するのではなぐ均一に励起光を照射するので吸収飽和が発生しにくくなり、損失を 多くすることなぐ効率的に希土類元素を励起することができる。
[0098] 制御部 32は、たとえば任意の波形を生成するパルスジェネレータである。制御部 3 2はレーザ光の出力や温度を制御するための指示を出力する指示部 38と、指示部 3 8から送られる指示に基づレ、てパルス発振 LD 12に注入する電流を制御する処理を 行なうドライバ 40とを含む。
[0099] レーザ装置 31は、さらに、光ファイバ 2を冷却する冷却部 42を備える。光ファイバ 2 は冷却水に浸漬される。冷却部 42は冷却水を循環させて光ファイバ 2を冷却する。
[0100] 実施の形態 2および実施の形態 3では光ファイバはリング状に曲げられているが実 施の形態 4では光ファイバ 2は面に沿って曲げられる。光ファイバ 2はフォトニック結晶 ファイバであるので、発光面上に所定の曲げ半径以下で自由に設けることができる。 なお、多くの励起光を吸収できるよう、発光面全体を覆うように光ファイバが設けられ ることが好ましい。
[0101] 図 9は、図 8のレーザ装置 31を上方から見た図である。図 9を参照してライトガイド 3 4は発光面 35を有する。発光面 35に沿って光ファイバ 2が設けられる。なお、パルス 発振 LD12と波長選択部 36Aとの間にはアイソレータ 43が設けられる。アイソレータ 43は、パルス発振 LD12から出た信号光 L1を光ファイバ 2に通す力 S、光ファイバ 2か らパルス発振 LD 12に戻る光を遮断する。アイソレータ 43によってパルス発振 LD 12 には戻り光が入らない。よって、パルス発振 LD12が保護される。なお、アイソレータ 4 3はレーザ装置 31に含まれていなくてもよい。
[0102] 図 10は、図 8の線分 X—X部の断面図である。図 10を参照して、光ファイバ 2は反 射部 16 Aおよび透過部 45に挟まれる。反射部 16 Aは放熱板 44の表面に積層され た金属膜である。反射部 16Aは光ファイバ 2に対して発光面 35と反対側に設けられ 、励起光 Eを光ファイバ 2に向けて反射する。透過部 45は励起部 4から発せられた励 起光 Eのうち、光伝播領域にドープされた光増幅物質を励起する波長の光を透過す る。透過部 45は、たとえばダイクロイツクミラーである。 [0103] なお、ヒートシンク 18上面(ライトガイド 34の反射面)の角度および放熱板 44の下面 の角度は、反射部 16Aで反射された励起光が LD素子に戻らないような角度に設定 されることが好ましい。
[0104] 励起光源から出た励起光 Eはシリンドリカルレンズ 50によって平行光線となる。ライ トガイド 34には傾斜が設けられる。励起光 Eはライトガイド 34の傾斜面により反射され 、透過部 45を介して光ファイバ 2に入射する。
[0105] ライトガイド 34は励起光 Eを透過する透明な物質である。ライトガイド 34はたとえば ガラスや樹脂であるが、特にレーザ装置 31を小型化するために折り曲げ自在な素材 で構成されることが好ましい。ライトガイド 34の素材の具体例としては、たとえば PET ( polyethylene terephthaiateノで feる。
[0106] シール 46A, 46Bは光ファイバ 2間の冷却水 52を封じるために用いられる。冷却水
52の熱を外部に放出するため、シール 46A, 46Bの素材は高い熱導電性を有する ことが好ましレ、。さらにシール 46A, 46Bの各々の光ファイバ 2に対向する面には、励 起光 Eを反射する反射膜(図示せず)がコーティングされる。
[0107] なお実施の形態 2および実施の形態 3と同様に、実施の形態 4においても光増幅器
1での増幅率を高めるために、光ファイバの光伝播領域に効率よく励起光 Eを集める ことが好ましい。以下、光伝播領域に効率よく励起光を集めることが可能なフォトニッ ク結晶ファイバの形状や構成について説明する。
[0108] 図 11は、実施の形態 4における光ファイバ 2の一例を示す図である。図 11を参照し て、光ファイバ 2の断面が示される。図 11に示す断面は信号光の伝播方向に垂直で ある。断面の形状は放物線になる。ライトガイド 34から光ファイバ 2に送られる励起光 Eは平行光線であるので、信号光伝播領域 8を放物線の焦点の位置に設けることに よって励起光 Eを効率よく信号光伝播領域 8に集めることが可能になる。
[0109] 図 12は、実施の形態 4における光ファイバ 2の別の例を示す図である。図 12を参照 して、光ファイバ 2の形状は放物線である。ただし、断面において信号光伝播領域 8 には空孔 2Dが設けられる。特に高出力のレーザ光を出力する場合にはこのような空 孔が信号光伝播領域 8に設けられることで光が高密度で存在することによる吸収係 数の増加現象を避け、出力の損失を抑えることが可能になる。 [0110] 図 13は、透過部 45の別の構成例を示す図である。図 13を参照して発光面 35には 透過部 45としてマイクロレンズ 60を含むマイクロレンズアレイが形成される。光フアイ バ 2はマイクロレンズアレイ上に設けられる。マイクロレンズ 60によって励起光が集光 されて光ファイバ 2に入射するので、光伝播領域に効率よく光を集めることが可能に なる。
[0111] 以上のように実施の形態 4によれば、発光面からフォトニック結晶ファイバの側面に 励起光を入射することによって、小型でありながら、かつ、シングルモードのレーザ光 を出力することが可能になる。
[0112] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。

Claims

請求の範囲
[1] 所定の波長の光を主波長とする信号光をシングルモードで伝播するフォトニック結 晶ファイバ(2)を備え、
前記フォトニック結晶ファイバ(2)は、
前記信号光を伝播する信号光伝播領域 (8)を含み、
前記信号光伝播領域 (8)の中心部を囲むように、前記所定の波長の光に対してブ ラッグ反射条件を満たす互いに屈折率が異なる複数の媒質からなる周期構造 (9)が 設けられ、かつ、
前記信号光伝播領域 (8)に、励起状態において前記信号光が入射すると誘導放 出を起こす光増幅物質がドープされており、
前記フォトニック結晶ファイバ(2)の側面から前記信号光伝播領域 (8)に向けて前 記信号光と波長が異なる励起光を照射し、前記光物質を励起する励起部 (4)をさら に備え、
それにより、前記周期構造(9)により選択される前記所定の波長の光を主波長とす る信号光をシングルモードで伝播し、前記励起光の照射により前記信号光を増幅す る光増幅器。
[2] 所定の波長の光を主波長とする信号光を発する信号光源 (6)と、
前記信号光を一端面に受け、前記信号光をシングノレモードで伝播して他端面から 放出するフォトニック結晶ファイバ(2)とを備え、
前記フォトニック結晶ファイバ(2)は、
前記信号光を伝播する信号光伝播領域 (8)を含み、
前記信号光伝播領域 (8)の中心部を囲むように、前記所定の波長の光に対してブ ラッグ反射条件を満たす互いに屈折率が異なる複数の媒質からなる周期構造 (9)が 設けられ、かつ、
前記信号光伝播領域 (8)に、励起状態において前記信号光が入射すると誘導放 出を起こす光増幅物質がドープされており、
前記フォトニック結晶ファイバ(2)の側面から前記信号光伝播領域 (8)に向けて前 記信号光と波長が異なる励起光を照射し、前記光物質を励起する励起部 (4)をさら に備える、
前記フォトニック結晶ファイバ(2)を伝播する前記信号光を増幅する光増幅器。
[3] 前記周期構造(9)は、前記フォトニック結晶ファイバ(2)の断面において、前記フォ トニック結晶ファイバを構成する固体媒質に、空孔が周期的に設けられることにより形 成される、請求項 1または 2に記載の光増幅器。
[4] レーザ装置(31)であって、
光増幅器 (1)を備え、
前記光増幅器 (1)は、
所定の波長の光を主波長とする信号光をシングルモードで伝播するフォトニック結 晶ファイバ(2)を含み、
前記フォトニック結晶ファイバ(2)は、
前記信号光を伝播する信号光伝播領域 (8)を有し、
前記信号光伝播領域(8)の中心部を囲むように、前記所定の波長の光に対してブ ラッグ反射条件を満たす互いに屈折率が異なる複数の媒質からなる周期構造 (9)が 設けられ、かつ、
前記信号光伝播領域 (8)に、励起状態において前記信号光が入射すると誘導放 出を起こす光増幅物質がドープされており、
前記光増幅器(1)は、
前記フォトニック結晶ファイバ(2)の側面から前記信号光伝播領域 (8)に向けて前 記信号光と波長が異なる励起光を照射し、前記光物質を励起する励起部 (4)をさら に含み、
それにより、前記周期構造(9)により選択される前記所定の波長の光を主波長とす る信号光をシングルモードで伝播し、前記励起光の照射により前記信号光を増幅し、 前記レーザ装置 (31)は、
前記フォトニック結晶ファイバ(2)のそれぞれの端面に前記信号光を反射する反射 部をさらに備える、レーザ装置。
[5] レーザ装置(11)であって、
光増幅器 (1)を備え、 前記光増幅器(1)は、
所定の波長の光を主波長とする信号光をシングルモードで伝播するフォトニック結 晶ファイバ(2)を含み、
前記フォトニック結晶ファイバ(2)は、
前記信号光を伝播する信号光伝播領域 (8)を有し、
前記信号光伝播領域 (8)の中心部を囲むように、前記所定の波長の光に対してブ ラッグ反射条件を満たす互いに屈折率が異なる複数の媒質からなる周期構造 (9)が 設けられ、かつ、
前記信号光伝播領域 (8)に、励起状態において前記信号光が入射すると誘導放 出を起こす光増幅物質がドープされており、
前記光増幅器 (1)は、
前記フォトニック結晶ファイバ(2)の側面から前記信号光伝播領域 (8)に向けて前 記信号光と波長が異なる励起光を照射し、前記光物質を励起する励起部 (4)をさら に含み、
それにより、前記周期構造(9)により選択される前記所定の波長の光を主波長とす る信号光をシングルモードで伝播し、前記励起光の照射により前記信号光を増幅し、 前記レーザ装置(11)は、
前記フォトニック結晶ファイバ(2)の一端面に到達した前記信号光を、前記フォト二 ック結晶ファイバの他端面に戻すための戻り部をさらに備える、レーザ装置。
[6] 前記フォトニック結晶ファイバ(2)は、前記一端面と前記他端面とが近接して設置さ れ、
前記戻り部は、前記他端面から出射する前記信号光のうちの一部を反射して前記 一端面に入射するとともに、前記他端面から出射する前記信号光の一部を透過する 反射鏡(13)である、請求項 5に記載のレーザ装置。
[7] 前記フォトニック結晶ファイバ(2)に対して前記励起部 (4A)と反対側に設けられ、 前記フォトニック結晶ファイバ(2)に向けて前記励起光を反射する第 1の反射部(16
A)をさらに備える、請求項 6に記載のレーザ装置。
[8] 前記レーザ装置(11)は、前記フォトニック結晶ファイバ(2)と前記励起部 (4A)との 間に設けられる第 2の反射部(16B)をさらに備え、
前記第 2の反射部(16B)は、前記励起部(4A)から発せられる前記励起光を透過 し、前記第 1の反射部(16A)によって反射された前記励起光を前記フォトニック結晶 ファイバ(2)に向けて反射する、請求項 7に記載のレーザ装置。
[9] 前記第 1の反射部(16C)の外形は、楕円の少なくとも一部であり、
前記フォトニック結晶ファイバ(2)は、前記光伝播領域 (8)の位置が前記楕円の焦 点の位置になるように配置される、請求項 7に記載のレーザ装置。
[10] 前記フォトニック結晶ファイバ(2A)は、前記信号光の伝播方向に垂直な断面が、 楕円の少なくとも一部となる形状を有し、
前記光伝播領域 (8)は、前記楕円の焦点の位置に配置される、請求項 6に記載の レーザ装置。
[11] 前記フォトニック結晶ファイバ(2)は、前記複数の励起光源(19)のうちのいずれか の励起光源力 発せられる励起光に応じて前記光増幅物質に生じた自然放出により 前記信号光を自ら生成し、生成した前記信号光により、前記光増幅物質に誘導放出 を起こさせる、請求項 6に記載のレーザ装置。
[12] 前記励起部(4A)は、入射角がブルースター角になるように前記フォトニック結晶フ アイバに対して前記励起光を照射する、請求項 6に記載のレーザ装置。
[13] 前記励起部 (4A)は、前記励起光を連続して発する複数の励起光源(19)を含む、 請求項 12に記載のレーザ装置。
[14] 前記戻り部は、
前記一端面に光学的に結合され、前記一端面に到達した前記信号光を前記他端 面に向けて戻す第 1のファイバグレーティング構造(36A)と、
前記他端面に光学的に結合され、前記他端面に到達した前記信号光を前記一端 面に向けて戻す第 2のファイバグレーティング構造(36B)とを含む、請求項 5に記載 のレーザ装置。
[15] 前記レーザ装置 (31)は、前記励起部 (4)と前記フォトニック結晶ファイバ(2)との間 に設けられて前記励起光を前記フォトニック結晶ファイバ(2)の側面に導く光導波部 (34)をさらに備え、 前記光導波部(34)は、前記励起光を面状に放出するための発光面(35)を含み、 前記フォトニック結晶ファイバ(2)は、前記発光面(35)に沿って設けられる、請求項 14に記載のレーザ装置。
[16] 前記光導波部(34)は、折り曲げ自在な素材により構成される、請求項 15に記載の レーザ装置。
[17] 前記レーザ装置 (31)は、
前記フォトニック結晶ファイバ(2)に対して前記発光面(35)と反対側に設けられ、 前記励起光を、前記フォトニック結晶ファイバ(2)に向けて反射する反射部(16A)と 前記発光面(35)と前記フォトニック結晶ファイバ(2)との間に設けられ、前記励起 光を透過する透過部(45)とをさらに備える、請求項 15に記載のレーザ装置。
[18] 前記透過部 (45)は、前記励起光のうち、前記光増幅物質を励起する波長の光を 透過するダイクロイツクミラーである、請求項 17に記載のレーザ装置。
[19] 前記透過部 (45)は、前記励起光を集光する複数のマイクロレンズ (60)を含むマイ クロレンズアレイである、請求項 17に記載のレーザ装置。
[20] 前記フォトニック結晶ファイバ(2)は、前記信号光の伝播方向に垂直な断面が放物 線となる形状を有し、前記放物線の焦点の位置に前記光伝播領域が配置される、請 求項 15に記載のレーザ装置。
[21] 前記光伝播領域の内部は、断面において、前記光伝播領域内に、前記周期構造 を構成する空孔(9A)とは異なる他の空孔(8A)が設けられている、請求項 20に記載 のレーザ装置。
[22] 前記レーザ装置(31)は、前記フォトニック結晶ファイバ(2)を浸漬して冷却する冷 却水(52)を循環させる冷却部(42)をさらに備える、請求項 14に記載のレーザ装置
[23] 前記励起部 (4)と前記フォトニック結晶ファイバ(2)との間に設けられて前記励起光 を前記フォトニック結晶ファイバ(2)の側面に導く光導波部(34)をさらに備え、 前記光導波部(34)は、前記励起光を面状に放出するための発光面(35)を含み、 前記フォトニック結晶ファイバ(2)は、前記発光面(35)に沿って設けられる、請求項 に記載の光増幅器。
PCT/JP2006/305001 2005-03-15 2006-03-14 光増幅器およびレーザ装置 WO2006098313A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508150A JPWO2006098313A1 (ja) 2005-03-15 2006-03-14 光増幅器およびレーザ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005073562 2005-03-15
JP2005-073562 2005-03-15

Publications (1)

Publication Number Publication Date
WO2006098313A1 true WO2006098313A1 (ja) 2006-09-21

Family

ID=36991656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305001 WO2006098313A1 (ja) 2005-03-15 2006-03-14 光増幅器およびレーザ装置

Country Status (2)

Country Link
JP (1) JPWO2006098313A1 (ja)
WO (1) WO2006098313A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115968A (ja) * 2005-10-21 2007-05-10 Omron Corp 光増幅器およびレーザ装置
WO2011068980A3 (en) * 2009-12-03 2011-10-06 Ipg Photonics Corporation Single mode high power fiber laser system
WO2012063556A1 (ja) * 2010-11-12 2012-05-18 株式会社フジクラ 光ファイバ増幅器、及び、それを用いたファイバレーザ装置
WO2013145141A1 (ja) * 2012-03-27 2013-10-03 富士通株式会社 増幅装置および増幅媒体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124524A (ja) * 1998-10-14 2000-04-28 Furukawa Electric Co Ltd:The 光増幅器とそれを用いた光増幅装置及びそれらに使用される光増幅方法。
JP2000269571A (ja) * 1999-03-17 2000-09-29 Hoya Corp レーザ光発生装置及び光信号増幅器
JP2001044540A (ja) * 1999-05-25 2001-02-16 Hoya Corp レーザ光発生装置及び光信号増幅器
JP2001119084A (ja) * 1999-10-19 2001-04-27 Hoya Corp 光ファイバレーザ装置及び光増幅装置
JP2001168425A (ja) * 1999-12-06 2001-06-22 Hoya Corp レーザ装置およびレーザ加工装置
JP2002055239A (ja) * 2000-08-09 2002-02-20 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバ及びその製造方法
JP2002359420A (ja) * 2001-03-16 2002-12-13 Alcatel 二重クラッドフォトニック光ファイバ
JP2003202422A (ja) * 2001-04-13 2003-07-18 Furukawa Electric Co Ltd:The 光減衰モジュール、これを用いた光増幅器および励起光源
JP2004077891A (ja) * 2002-08-20 2004-03-11 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバ及びその設計方法
JP2004335772A (ja) * 2003-05-08 2004-11-25 Mitsubishi Cable Ind Ltd 光増幅用フォトニッククリスタルファイバ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000124524A (ja) * 1998-10-14 2000-04-28 Furukawa Electric Co Ltd:The 光増幅器とそれを用いた光増幅装置及びそれらに使用される光増幅方法。
JP2000269571A (ja) * 1999-03-17 2000-09-29 Hoya Corp レーザ光発生装置及び光信号増幅器
JP2001044540A (ja) * 1999-05-25 2001-02-16 Hoya Corp レーザ光発生装置及び光信号増幅器
JP2001119084A (ja) * 1999-10-19 2001-04-27 Hoya Corp 光ファイバレーザ装置及び光増幅装置
JP2001168425A (ja) * 1999-12-06 2001-06-22 Hoya Corp レーザ装置およびレーザ加工装置
JP2002055239A (ja) * 2000-08-09 2002-02-20 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバ及びその製造方法
JP2002359420A (ja) * 2001-03-16 2002-12-13 Alcatel 二重クラッドフォトニック光ファイバ
JP2003202422A (ja) * 2001-04-13 2003-07-18 Furukawa Electric Co Ltd:The 光減衰モジュール、これを用いた光増幅器および励起光源
JP2004077891A (ja) * 2002-08-20 2004-03-11 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバ及びその設計方法
JP2004335772A (ja) * 2003-05-08 2004-11-25 Mitsubishi Cable Ind Ltd 光増幅用フォトニッククリスタルファイバ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115968A (ja) * 2005-10-21 2007-05-10 Omron Corp 光増幅器およびレーザ装置
WO2011068980A3 (en) * 2009-12-03 2011-10-06 Ipg Photonics Corporation Single mode high power fiber laser system
WO2012063556A1 (ja) * 2010-11-12 2012-05-18 株式会社フジクラ 光ファイバ増幅器、及び、それを用いたファイバレーザ装置
WO2013145141A1 (ja) * 2012-03-27 2013-10-03 富士通株式会社 増幅装置および増幅媒体
JPWO2013145141A1 (ja) * 2012-03-27 2015-08-03 富士通株式会社 増幅装置および増幅媒体
US9325141B2 (en) 2012-03-27 2016-04-26 Fujitsu Limited Amplifying apparatus and amplifying medium

Also Published As

Publication number Publication date
JPWO2006098313A1 (ja) 2008-08-21

Similar Documents

Publication Publication Date Title
US7792161B2 (en) Optical fiber for fiber laser, fiber laser, and laser oscillation method
JP2015095641A (ja) ファイバレーザ装置
US8542710B2 (en) Optical fiber amplifier and fiber laser apparatus using the same
JP2008293004A (ja) 光ファイバグレーティングデバイスおよび光ファイバレーザ
JP2007250951A (ja) ダブルクラッドファイバ及びそれを備えたファイバレーザ
US8665514B2 (en) Multi-core optical amplification fiber wound with decreasing radius of curvature
WO2006098313A1 (ja) 光増幅器およびレーザ装置
KR102135943B1 (ko) 광섬유 레이저 장치
JP2007214431A (ja) 光ファイバレーザ
WO2011027579A1 (ja) 平面導波路型レーザ装置
JP2012209510A (ja) 光ファイバレーザ光源
JP6636562B2 (ja) ガラスブロック、光ファイバ終端構造、レーザ装置、及びレーザシステム
JP4969840B2 (ja) 光ファイバ構造体および光学装置
JP2012248609A (ja) 平面導波路型レーザ装置
JP2007123594A (ja) 光ファイバ型光増幅装置及びこれを用いた光ファイバ型レーザ装置
WO2007116563A1 (ja) 光源
JP4779567B2 (ja) 光増幅器およびレーザ装置
JP2001015835A (ja) レーザ光発生装置及び光アンプ
CN114788100A (zh) 平面波导型放大器和激光雷达装置
JP2001015834A (ja) レーザ光発生装置の製造方法、及び光アンプの製造方法
WO2021125162A1 (ja) ビーム品質制御装置、及びこれを用いるレーザ装置
WO2020241363A1 (ja) 光ファイバ装置
JP6690869B2 (ja) 平面導波路及びレーザ増幅器
JP2020088161A (ja) 保護キャップ及びレーザ装置
JPH11238928A (ja) 光ファイバレーザ装置及びレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508150

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729035

Country of ref document: EP

Kind code of ref document: A1