WO2006095878A1 - 光学補償シート、偏光板および液晶表示装置 - Google Patents

光学補償シート、偏光板および液晶表示装置 Download PDF

Info

Publication number
WO2006095878A1
WO2006095878A1 PCT/JP2006/304810 JP2006304810W WO2006095878A1 WO 2006095878 A1 WO2006095878 A1 WO 2006095878A1 JP 2006304810 W JP2006304810 W JP 2006304810W WO 2006095878 A1 WO2006095878 A1 WO 2006095878A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical compensation
compensation sheet
liquid crystal
layer
Prior art date
Application number
PCT/JP2006/304810
Other languages
English (en)
French (fr)
Inventor
Sumio Ohtani
Ikuko Ohgaru
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006095878A1 publication Critical patent/WO2006095878A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • C08L23/0823Copolymers of ethene with aliphatic cyclic olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/3175Next to addition polymer from unsaturated monomer[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • Optical compensation sheet polarizing plate, and liquid crystal display device
  • the present invention relates to an optical compensation sheet, a polarizing plate, and a liquid crystal display device.
  • the present invention relates to an optical compensation sheet using a cyclic polyolefin-based addition polymer as a base film.
  • a polarizing plate is usually produced by laminating a film mainly composed of cellulose triacetate as a protective film on both sides of a polarizer in which iodine or a dichroic dye is oriented and adsorbed to polybulal alcohol.
  • Cellulose triacetate has characteristics such as toughness, flame retardancy, and high optical isotropy (low lettering), and is widely used as the protective film for the polarizing plate described above.
  • the liquid crystal display device is composed of a polarizing plate and a liquid crystal cell. In TN mode TFT liquid crystal display devices, which are currently the mainstream of liquid crystal display devices, display is achieved by inserting an optical compensation sheet between the polarizing plate and the liquid crystal cell as described in JP-A-8-50206.
  • cellulose triacetate has a problem that the optical compensation performance is changed and the polarizer is easily deteriorated because it absorbs and transmits water much.
  • the TN liquid crystal display device has a problem that light leaks on the four sides of the screen over time after the power is turned on, and the VA mode liquid crystal display device has light leakage in four corners over time after the power is turned on.
  • cyclic polyolefin film can improve the hygroscopicity and moisture permeability of cellulose triacetate film, and its optical property change with respect to environmental temperature and humidity changes is small. Development as a display film is in progress.
  • Patent Document 1 discloses an optical compensation sheet in which an optically anisotropic layer is laminated on a base film made of a cyclic olefin-based ring-opening polymer.
  • the ring-opening polymerization type polyolefin film has low in-plane lettering and film thickness direction lettering when it is not stretched, and is optically isotropic.
  • Chillon has the property of rising together, and only simple optical compensation was possible.
  • Patent Document 1 JP 2004-246338 A
  • An object of the present invention is to provide an optical compensation sheet that has little change in optical characteristics with respect to changes in environmental temperature and humidity, and that has a high degree of freedom in designing in-plane letter Re and film thickness direction letter Rth. It is to be. Another object is to provide a polarizing plate and a liquid crystal display device having such an excellent optical compensation sheet.
  • in-plane lettering and thickness direction lettering are free by using a cyclic olefin-based addition polymer as the constituent polymer of the base film of the optical compensation sheet. It was found that an optical compensation sheet suitable for use in liquid crystal display devices of various modes can be designed. By changing the structure of the cyclic olefin-based addition polymer or stretching the base film in the base film containing the cyclic olefin-containing calopolymer, the optically isotropic base film or optically different film can be obtained. A substrate film having various optical properties such as a large size and a substrate film can be obtained. In particular, it becomes possible to obtain a base film having a relatively large film thickness direction lettering relative to the in-plane lettering that has been difficult to produce so far. Succeeded in significantly increasing the degree of freedom in designing the optical properties of the compensation sheet
  • the present invention is as follows.
  • An optical compensation sheet wherein an optically anisotropic layer is laminated on a substrate film containing a cyclic olefin-based addition polymer.
  • the cyclic olefin-based addition polymer is a copolymer comprising at least one repeating unit represented by the general formula (I) and at least one cyclic repeating unit force represented by the general formula (II).
  • m represents an integer of 0 to 4.
  • 1 ⁇ to 1 ⁇ is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • ⁇ ⁇ YY 2 is hydrogen atom, 1 to the number of carbon atoms: L0 hydrocarbon group, a halogen atom, substituted with a C androgenic atoms C1-C10 hydrocarbon group, (CH) COOR u , one (CH)
  • Z 5 is a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a hydrocarbon group ⁇ or a hydrocarbon group substituted with halogen
  • W is SiR 16 D (R 16 is a hydrocarbon group having 1 to C0: L0, D is Halogen atoms,
  • OCOR 16 or OR 16 p represents an integer of 0 to 3), and n represents an integer of 0 to 10.
  • Rth ( ⁇ ) represents Rth measured at a wavelength of ⁇ nm.
  • Substrate film force Fine particles having a primary particle diameter of lnm to 20 m are contained in a proportion of 0.3% by mass, such as 0.01 force, and any one of the above (1) to (4) The optical compensation sheet according to 1.
  • optical compensation sheet according to any one of (1) to (5), wherein the optically anisotropic layer contains a discotic liquid crystal layer.
  • optical compensation sheet according to any one of (1) to (5), wherein the optically anisotropic layer contains a rod-like liquid crystal layer.
  • optical compensation sheet according to any one of (1) to (5), wherein the optically anisotropic layer contains a polymer film.
  • the polymer film forming the optically anisotropic layer contains at least one polymer material selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyamideimide polyesterimide, and polyaryletherketone.
  • the substrate film containing the cyclic olefin-added polymer contains 10 to 35% by mass of the cyclic olefin-added polymer and a chlorinated organic solvent as a main solvent.
  • a liquid as a starting material, sequentially casting on an endless metal support, drying until the residual volatile content is 5 to 60% by mass, peeling from the metal support with a peeling resistance of 0.25 NZcm or less.
  • the optical compensation sheet according to any one of (1) to (9), wherein the optical compensation sheet is formed through a step of conducting and a step of drying and winding.
  • the poor solvent of the cyclic olefin addition polymer is contained 3 to L00 parts by mass with respect to 100 parts by mass of the cyclic olefin addition polymer, (10) to (11) No !, the optical compensation sheet described in the slip.
  • the polarizing plate comprising a polarizer and two protective films disposed on both sides of the polarizer, at least one of the protective films is any one of the above (1) to (14)
  • liquid crystal display device As a liquid crystal display device, the following forms are preferable.
  • At least one of the protective films constituting the polarizing plate used in the liquid crystal display device has an in-plane letter retardation Re (630) of 15 nm or less and a film thickness direction letter retardation Rth (630) of The liquid crystal display device according to (16) in the TN mode, which is 40 nm or more and 120 nm or less and has a discotic liquid crystal layer laminated thereon.
  • At least one of the protective films constituting the polarizing plate used in the liquid crystal display device has an in-plane letter retardation Re (630) of 15 nm or less, and a thickness-direction letter retardation Rth (630) of 120 nm or more and 300 nm or less and a rod-shaped liquid crystal layer is laminated, VA (16) The VA liquid crystal display device of the mode.
  • At least one of the protective films constituting the polarizing plate used in the liquid crystal display device has an in-plane letter Re Re (630) of 30 nm or more and 70 or less, and a thickness direction letter Rth (630).
  • Re (E) and Rth ( ⁇ ) represent Rth measured at wavelength ⁇ nm.
  • an optical compensation sheet with little change in optical characteristics with respect to changes in ambient temperature and humidity, and with a high degree of freedom in design of in-plane letter Re and Re-thickness letter Rth was obtained.
  • a polarizing plate and a liquid crystal display device having such an excellent optical compensation sheet were obtained.
  • an optical compensation function corresponding to liquid crystal display devices of various modes such as TN, VA, OCB, and IPS is adjusted by adjusting the optical characteristics of the base film containing the cyclic olefin-based addition polymer.
  • An optical compensation sheet and a polarizing plate can be produced.
  • liquid crystal display device of the present invention has little or no light leakage over time! BEST MODE FOR CARRYING OUT THE INVENTION
  • cyclic olefin-based addition polymers examples include (1) norbornene-based polymers, (2) monocyclic cyclic olefin polymers, (3) cyclic conjugation polymers, 4) Vinyl alicyclic hydrocarbon polymers and hydrides of (1) to (4).
  • norbornene polymers and their hydrides vinyl alicyclic hydrocarbon polymers and their hydrides are preferable from the viewpoints of optical properties, heat resistance, mechanical strength, and the like.
  • Preferred polymers for the present invention include norbornene comprising at least one repeating unit represented by the following general formula (I) and at least one cyclic repeating unit represented by the general formula ( ⁇ ). System addition (co) polymer.
  • m represents an integer of 0 to 4.
  • 1 ⁇ to 1 ⁇ is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • ⁇ ⁇ YY 2 is hydrogen atom, 1 to the number of carbon atoms: LO hydrocarbon group, a halogen atom, substituted with a C androgenic atoms C1-C10 hydrocarbon group, (CH) COOR u , one (CH)
  • R 11 , R 12 , R 13 , R 14 , R 1 5 is a hydrocarbon group having 1 to 20 carbon atoms
  • Z is a hydrocarbon group (preferably a hydrocarbon group having 1 to 10 carbon atoms), or a hydrocarbon group substituted with a halogen (preferably 1 to 10 carbon atoms) Hydrocarbon group)
  • W is SiR 16 D (R 16 is a hydrocarbon group with 1 to: LO, D is a halogen atom,
  • the norbornene-based caro (co) polymer is disclosed in JP-A-10-7732, JP-T-2002-504184, WO2004Z070463A1, and the like.
  • This norbornene-based addition (co) polymer is marketed by Mitsui Engineering Co., Ltd. under the Abel brand name.
  • APL8008T Tg70 ° C
  • APL6013T Tgl25 ° C
  • Tg glass transition temperatures
  • APL6015T Tgl45 ° C
  • Polyplastics Co., Ltd. sells pellets such as Ryoma TOPAS8007, 6013, 6015 and Ferrania Ryoma Appear3000.
  • the ratio of the repeating unit represented by the general formula (I) to the cyclic repeating unit represented by the general formula (II) is 0: 100 to 90:10, preferably 0: 100 to 70:30.
  • the norbornene-based addition (co) polymer is a polymer having one cyclic repeating unit force represented by the general formula (II), or a general one, because it increases the film thickness direction lettering.
  • a copolymer having at least two cyclic repeating unit forces represented by the formula (II) is preferable.
  • Norbornene-based addition (co) polymer force When the copolymer is represented by general formula (II) and has at least two cyclic repeating unit forces, one of the substituents X 2 or Z and Y 2 is hydrophilic. , Have a large polarity, and the other substituents X 2 or Z and Y 2 are preferably hydrophobic or have a small polarity. Thus, if the hydrophilicity and water permeability of the film can be controlled, the effect is obtained.
  • the structure of the cyclic olefin-based addition polymer of the present invention is changed, or the base film is extended.
  • a substrate film having various optical properties such as an optically isotropic substrate film and a substrate film having a large optical anisotropy can be obtained.
  • the ratio of the repeating unit component of the general formula (I) is decreased, and the ratio of the repeating unit component of the general formula (II) is decreased. It is preferable to carry out by increasing.
  • a technique applied to a cellulose acylate film can be used, and examples thereof include tenter stretching. Desired optical properties can be obtained by appropriately changing the draw ratio.
  • various additives for example, deterioration inhibitors, ultraviolet inhibitors, letter-dose (optical anisotropy) modifiers, fine particles, Peeling accelerators, infrared absorbers, etc.
  • the melting point and boiling point are not particularly limited.
  • Infrared absorbing dyes are described, for example, in JP-A-2001-19522.
  • the addition timing may be any in the dope preparation process, but the process of adding the additive may be performed as the last process in the dope preparation process.
  • the amount of each additive added is not particularly limited as long as the function is exhibited.
  • a base film containing a cyclic olefin-based addition polymer hereinafter also referred to as a base film of a cyclic olefin-based addition polymer, also referred to as cyclic polyolefin
  • the type and amount of additives in each layer May be different.
  • the base film of the cyclic olefin-based addition polymer of the present invention has a known deterioration (oxidation) inhibitor such as 2,6 di-tert-butyl, 4-methylphenol, 4,4, -thiobis (6-t-butyl-3- Methylphenol), 1,1,1bis (4 hydroxyphenol) cyclohexane, 2,2, -methylenebis (4-ethyl-6-tert-butylphenol), 2,5-di-tert-butylhydroquinone, pentaerythrityl Tetrakis [3— (3, 5—di-tert-butyl-4 Phenolic or hydroquinone antioxidants such as -hydroxyphenol) propionate can be added.
  • a known deterioration (oxidation) inhibitor such as 2,6 di-tert-butyl, 4-methylphenol, 4,4, -thiobis (6-t-butyl-3- Methylphenol), 1,1,1bis (4 hydroxyphenol) cyclohexan
  • tris (4-methoxy-1,3,5-diphenyl) phosphite tris (no-phenol) phosphite, tris (2,4-diethyl butylphenol) phosphite, bis (2,6 di-t
  • a phosphoric acid inhibitor such as —butyl-4-methylphenol) pentaerythritol diphosphite, bis (2,4 di-tert-butylphenol) pentaerythritol diphosphite.
  • the addition amount of the antioxidant is preferably 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the cyclic olefin-based addition polymer.
  • an ultraviolet absorber is preferably used from the viewpoint of preventing deterioration of a polarizing plate or liquid crystal.
  • the ultraviolet absorber those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • Specific examples of ultraviolet absorbers preferably used in the present invention include, for example, hindered phenol compounds, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, and cyanoacrylate compounds. And nickel complex compounds.
  • hindered phenolic compounds examples include 2, 6-di tert butyl-p cresol, pentaerythrityl-tetrakis [3- (3,5-di tert butyl 4-hydroxyphenol) propionate], N, N, Hexamethylenebis (3,5 di-tert butyl 4-hydroxy monohydrocinnamide), 1, 3, 5 trimethyl 2, 4, 6 tris (3,5 di-tert butyl 4-hydroxybenzyl) benzene, tris-(3, 5 —Di-tert-butyl 4-hydroxybenzyl) monoisocyanurate.
  • benzotriazole compounds are 2- (2'-hydroxy-1 5'-methylphenol) benzotriazole, 2,2-methylenebis (4- (1, 1, 3, 3-tetramethylbutyl) —6— (2H benzotriazole-2-yl) phenol), (2,4 bis (n-octylthio) -6- (4-hydroxy-3,5 di-tert-butyl-lino) 1, 3, 5-triazine, triethylene glycol bis [3- (3-tert butyl-5-methyl-4-hydroxyphenol) propionate], N, N, monohexamethylene bis (3,5-di-tert-butyl-4-hydroxy Monohydrocinnamide), 1, 3, 5 trimethyl 2, 4, 6 tris ( 3, 5 di-tert-butyl-4-hydroxybenzyl) benzene, 2 (2, -hydroxy-3,, 5 'di-tert-butylphenol) -5 chlorbenzotriazole, (2 (2, -hydroxy-3, 5' —Di-tert-but
  • the amount of addition of these anti-ultraviolet agents is preferably lppm to 1.0 / 0 force, more preferably 10 to: LOOOppm force, based on the weight ratio of the cyclic olefin-based addition polymer! /.
  • fine particles are used.
  • the matting agent include inorganic compounds such as compounds containing silicon, silicon dioxide, titanium oxide, zinc oxide, aluminum oxide, barium oxide, zirconium oxide, strongtium oxide, antimony oxide, Preferred are oxides of tin, tin oxide, antimony, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate, more preferably Inorganic compounds containing silicon and zirconium oxide, but since the turbidity of the film can be reduced, nickel carbonate is particularly preferably used.
  • fine particles of silicon dioxide for example, commercially available products having trade names such as Aerosil R972, R974, R812, 200, 300, R202, 0X50, and TT600 (above, Nippon Aerosil Co., Ltd.) can be used.
  • fine particles of zirconium oxide those commercially available under trade names such as Aerosil R 976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • the primary average particle diameter of these matting agents is preferably from 1 ⁇ to 20 / ⁇ ⁇ , more preferably from 1 ⁇ to 10 / ⁇ m, and even more preferably from the viewpoint of keeping haze low. It is 2 nm to l ⁇ m, and particularly preferably 5 nm to 0.5 ⁇ m.
  • the measurement of the primary average particle diameter of the matting agent is obtained by the average particle diameter of the particles with a transmission electron microscope.
  • the purchased fine particles are often agglomerated and are preferably dispersed by a known method before use.
  • Force to make the secondary particle size 0.1 to 1 by dispersion S Preferably, 0.2 to 1.0 111 preferable. ⁇ matting agents from 0.01 to 0.3 mass 0/0 force S preferably in a substrate sheet of the annular Orefin based addition polymer, 0.05 to 0.15 mass 0/0 force S More preferably, 0.08 to 0.08 mass% is most preferred.
  • the cyclic polyolefin film with fine particles is preferred, the haze range is 2.0% or less, 1.2% or less is more preferred, and 0.5% or less is particularly preferred.
  • a preferable dynamic friction coefficient of the cyclic polyolefin film to which fine particles are added is 0.8 or less, and particularly preferably 0.5 or less.
  • the coefficient of dynamic friction can be measured using steel balls in accordance with the methods specified by JIS and ASTM.
  • the haze can be measured using a 1001DP type haze meter manufactured by Nippon Denshoku Industries Co., Ltd.
  • Endless metal support strength Dope as needed to reduce the peeling load (peeling resistance) when peeling the cyclic olefin-based addition polymer film and prevent the film from being irregularly stretched in the film-forming direction.
  • a surfactant as shown below can be added.
  • a phosphate ester-based surfactant a carboxylic acid or carboxylate-based surfactant, a sulfonic acid or sulfonate-based surfactant is used.
  • Surfactants and sulfate-based surfactants are illustrated below.
  • RZ- 13 iso-C H C H— O— (CH CH O) — (CH) SO Na
  • RZ- 14 (iso-C H) -C H— O— (CH CH O) — (CH) SO Na
  • the addition amount of the surfactant is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, and most preferably 0.05 to 0.5% by mass with respect to the cyclic polyolefin. .
  • a polymer having a fluorine atom such as a polymer of a monomer such as a perfluoroalkyl group or a monomer of a metatalylate is also preferable.
  • a polymer having a fluorine atom as a release agent hereinafter also referred to as a polymer having a fluorine atom of the present invention
  • examples of the polymer having a fluorine atom of the present invention include the polymers described in JP-A-2001-269564.
  • a preferred polymer having a fluorine atom is a polymer obtained by polymerizing a monomer containing an ethylenically unsaturated monomer (monomer A) containing a fluorinated alkyl group as an essential component.
  • the fluorinated alkyl group-containing ethylenically unsaturated monomer (monomer A) relating to the polymer is not particularly limited as long as it is a compound having an ethylenically unsaturated group and a fluorinated alkyl group in the molecule.
  • those containing an acrylic ester group and its related groups are suitable, and specific examples include fluorinated (meth) atalylate represented by the following general formula (III).
  • (meth) atalylate is a generic term for metatalylate, attalylate, fluoroatalylate, and chlorinated acrylate.
  • Rf is a perfluoroalkyl group having 1 to 20 carbon atoms, or a partially fluorinated alkyl group, and Rf may be linear or branched, and an oxygen atom and Z Alternatively, it may have a functional group containing a nitrogen atom in the main chain.
  • R 1 is H, fluorine An optionally substituted alkyl group, C and F represent F, X represents a divalent linking group, and n represents an integer of 0 or more.
  • the carbon number of the perfluoroalkyl group of Rf is preferably 1 to 18, more preferably 4 to 18, still more preferably 6 to 14, and most preferably 6 to 12.
  • the partially fluorinated alkyl group preferably has a perfluoroalkyl group in its part, and the preferred range of the carbon number of the perfluoroalkyl group is the same as described above.
  • the functional group containing an oxygen atom that may be present in the main chain is -so,
  • the alkyl group which may be fluorinated for R 1 may be any of an unsubstituted alkyl group, a perfluoroalkyl group and a partially fluorinated alkyl group. Preference is given to unsubstituted alkyl groups and partially fluorinated alkyl groups. Preferred as an unsubstituted alkyl group is a methinore group.
  • X is preferably a divalent linking group that can be taken by (CH)-, -CH CH (OH)-(C
  • R 2 is hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • n is an integer of 0 or more, 0 to 25 dynamics, 1 to 15 is more preferable, and 1 to 10 is particularly preferable.
  • the linking groups represented by each X may be the same or different.
  • CH 2 CHCOOCH 2 CH 2 C 12 F 25 A-4: CH 3
  • A-42 CH 3 CH
  • the fluorinated alkyl group-containing ethylenically unsaturated monomer (monomer A) may be used alone or in combination of two or more.
  • the fluorinated alkyl group in the ethylenically unsaturated monomer (monomer A) containing a fluorinated alkyl group is particularly preferably 6 to 18 carbon atoms from the viewpoint of releasability (peelability). Is 6 to 14, particularly 6 to 12.
  • the amount of the fluorinated alkyl group-containing ethylenically unsaturated monomer (monomer A) introduced into the polymer having fluorine atoms is not particularly limited, but it is preferable to polymerize 10% by mass or more. A content of 20% by mass or more is preferred.
  • a polyoxyalkylene group-containing unsaturated monomer may be contained in the polymer having a fluorine atom.
  • the polyoxyalkylene group-containing ethylenically unsaturated monomer (monomer B) is not particularly limited as long as it is a compound having a polyoxyalkylene group and an ethylenically unsaturated group in one molecule.
  • As the oxyalkylene group an ethylene oxide group and a Z or propylene oxide group are preferred.
  • the degree of polymerization is usually 1 to: LOO, preferably 5 to 50.
  • the ethylenically unsaturated group includes (meth) acrylic ester from the viewpoints of availability of raw materials, compatibility with formulations in various coating compositions, ease of controlling such compatibility, and polymerization reactivity. And those containing an alkyl group and its related groups are suitable. Only one unsaturated bond may be present per molecule, or two or more unsaturated bonds may be present.
  • the organic solvent in which the cyclic polyolefin of the present invention is dissolved will be described.
  • the organic solvent that can be used is not particularly limited as long as the purpose can be achieved as long as the cyclic polyolefin can be dissolved, cast, and formed into a film.
  • the organic solvent used in the present invention includes, for example, chlorinated solvents such as dichloromethane and chloroform, chain hydrocarbons having a carbon atom number of ⁇ 12, cyclic hydrocarbons, aromatic hydrocarbons, esters, ketones, ethers. Solvents selected from Telka are preferred. Esters, ketones and ethers may have a cyclic structure.
  • Examples of chain hydrocarbons having 3 to 12 carbon atoms include hexane, octane, isooctane and decane.
  • Examples of cyclic hydrocarbons having 3 to 12 carbon atoms include cyclopentane, cyclohexane and derivatives thereof.
  • Examples of aromatic hydrocarbons having 3 to 12 carbon atoms include benzene, toluene and xylene.
  • esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
  • ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, jetyl ketone, diisoptyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone.
  • ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3-dioxolane, tetrahydrofuran, ether and phenetole.
  • the organic solvent having two or more kinds of functional groups include 2-ethoxychetylacetate, 2-methoxyethanol and 2-butoxyethanol.
  • the organic solvent preferably has a boiling point of 35 ° C or higher and 110 ° C or lower.
  • the kind of the chlorinated organic solvent is not particularly limited as long as the object can be achieved within the range in which the cyclic polyolefin can be dissolved and cast and formed.
  • the chlorinated organic solvents dichloromethane and black mouth form are preferred. Tokuko Dichloromethane is preferred because of its low boiling point and excellent thermal efficiency during drying.
  • there is no particular problem in mixing the organic solvent other than the chlorinated organic solvent for example. In that case, it is preferable to use 50 to 99.5% by mass of the chlorinated organic solvent based on the total amount of the solvent.
  • Dichloromethane is preferably used at least 50% by weight of the total solvent.
  • Preferred non-chlorine organic solvents that can be used in combination with chlorinated organic solvents in the present invention are described below.
  • preferable non-chlorine organic solvents include esters, ketones having 3 to 12 carbon atoms, Solvents such as ethers, alcohols and hydrocarbons are preferred.
  • Esters, ketones, ethers and alcohols may have a cyclic structure.
  • a compound having two or more of ester, ketone and ether functional groups ie, oCO— and COO—
  • other functional groups such as alcoholic hydroxyl groups can be used simultaneously. You may have.
  • the number of carbon atoms may be within the specified range of the compound having any functional group.
  • the esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
  • ketones having 3 to 12 carbon atoms include acetone, methyl ethyl ketone, jetyl ketone, diisoptyl ketone, cyclopentanone, cyclohexanone and methylcyclohexanone.
  • ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4 dioxane, 1,3 dioxolane, tetrahydrofuran, azole and phenetole.
  • organic solvent having two or more kinds of functional groups include 2-ethoxycetyl acetate, 2-methoxyethanol and 2-butoxyethanol.
  • the present inventors have found that releasability can be remarkably improved by dissolving cyclic polyolefin in a solvent in which a small amount of a poor solvent that is hardly soluble in cyclic polyolefin is mixed with chlorine-based solvent as the main solvent. It was. Compared to film formation without using a poor solvent, when an appropriate poor solvent is used in combination, the peel resistance when the film is peeled off from the metal support is reduced from less than 1Z20, and the film can be formed at high speed. It becomes easy. The effect of lowering the peeling resistance due to the use of a poor solvent is significant compared to the attached (co) polymerized cyclic polyolefin.
  • a preferable poor solvent needs to be appropriately selected depending on the polymer type to be used.
  • a solvent having a boiling point of 10 ° C or higher than the main solvent (good solvent) to be used and lower volatility than the main solvent is preferable. If the boiling point of the poor solvent is higher than that of the main solvent, when the drying progresses and the support strength film is peeled off, the residual solvent in the film seems to be related to the increase of the poor solvent.
  • monohydric alcohols are particularly preferable because of their resistance to reducing peeling resistance. Alcohols with a boiling point of 120 ° C or less are particularly preferred depending on the boiling point of the good solvent selected. Alcohols having 1 to 4 carbon atoms, which are more preferable for monohydric alcohols having 1 to 6 carbon atoms, are particularly preferable.
  • the alcohol used in combination with the chlorinated organic solvent is preferably a linear, branched or cyclic alcohol, and among them, a saturated aliphatic hydrocarbon. preferable.
  • the hydroxyl group of the alcohol may be any of primary to tertiary. Examples of alcohols include methanol, ethanol, 1 propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol, 1 pentanol, 2-methyl-2-butanol and cyclohexanol. .
  • fluorine-based alcohol is also used. Examples include 2-fluoroethanol, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol.
  • a particularly preferred mixed solvent for preparing a cyclic polyolefin solution is a combination of dichloromethane as a main solvent and one or more alcohols selected from methanol, ethanol, propanol or isopropanol as a poor solvent.
  • a preferable amount of the alcohol poor solvent used is 3 to 100 parts by mass, more preferably 4 to 40 parts by mass with respect to 100 parts by mass of the cyclic polyolefin. Particularly preferred is 6 to 35 parts by mass.
  • a preferable range of the mixing ratio of the main solvent and the poor solvent is 0.5 to 30 parts by mass with respect to 100 parts by mass of the main solvent. 1 to 20 parts by mass is more preferred. 4 to 15 parts by mass is particularly preferred.
  • the film formation of the cyclic olefin-based addition polymer of the present invention includes a hot melt film formation method and a solution film formation method, both of which are applicable. First, a solution casting method will be described.
  • the method of stirring and dissolving at room temperature the polymer was swollen by stirring at room temperature, cooled to ⁇ 20 to ⁇ 100 ° C., and again from 20 to 100 ° C.
  • There are a cooling dissolution method that dissolves by heating a high temperature dissolution method that dissolves at a temperature higher than the boiling point of the main solvent in a closed container, and a method that dissolves at a high temperature and high pressure up to the critical point of the solvent.
  • Polymers with good solubility are preferably dissolved at room temperature, but polymers with poor solubility are dissolved by heating in a closed container.
  • dichloromethane is selected as the main solvent
  • Many cyclic polyolefins can be dissolved by heating at 20 to L00 ° C. If the solubility is not so bad, it is easier in the process to select a temperature as low as possible.
  • the viscosity of the cyclic polyolefin solution of the present invention is preferably in the range of 1 to 500 Pa's at 25 ° C. More preferably, it is the range of 5-200 Pa's.
  • the viscosity was measured as follows. 1 mL of the sample solution was measured using a rheometer (CLS 500) with a Steel C one (both manufactured by TA Instrumennts) having a diameter of 4 cmZ2 °.
  • the cyclic polyolefin solution is characterized in that a high-concentration dope can be obtained, and a cyclic polyolefin solution having a high concentration and excellent stability can be obtained without relying on the means of concentration.
  • it may be dissolved at a low concentration and then concentrated using a concentration means.
  • the concentration method is not particularly limited.
  • a low-concentration solution is introduced between the cylinder and the rotation trajectory of the outer periphery of the rotating blade rotating in the circumferential direction, and the temperature between the solution and the solution.
  • a method of obtaining a high-concentration solution while evaporating the solvent by giving a difference for example, Japanese Patent Publication No.
  • a filter having an absolute filtration accuracy of 0.1 to: LOO / zm is used, and a filter having an absolute filtration accuracy of 0.5 to 25 m is preferably used.
  • the thickness of the filter is 0.1 to: LOmm is preferable, and 0.2 to 2 mm is more preferable.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.3 MPa or less, further 1. OMPa or less, particularly preferably 0.6 MPa or less.
  • the filter medium conventionally known materials such as glass fiber, cellulose fiber, filter paper, and fluorinated resin such as tetrafluorinated styrene resin can be preferably used, and ceramics and metals are also preferably used.
  • the viscosity of the cyclic polyolefin solution immediately before film formation should be within the range that can be cast at the time of film formation, and it is usually preferable that the viscosity is adjusted in the range of 5? &'5 ⁇ 1000? &' 5. 's to 500 Pa's is more preferable. 30 Pa's to 200 Pa's force S is more preferable.
  • the temperature at this time is not particularly limited as long as it is a temperature at the time of casting, but is preferably 5 to 70 ° C, more preferably -5 to 35 ° C.
  • a method for producing a film using a cyclic polyolefin solution will be described.
  • the same solution casting film forming method and solution casting film forming apparatus as those conventionally used for cellulose triacetate film production are used. Melting machine
  • the dope (cyclic polyolefin solution) prepared from (pot) is temporarily stored in a storage pot, and the foam contained in the dope is defoamed for final preparation.
  • the dope is sent from the dope discharge port to the pressurizing die through a pressurizing quantitative gear pump that can feed the dope with high accuracy by the number of rotations, and the dope is fed endlessly by the die (slit) force of the pressurizing die.
  • the dough film also referred to as web
  • the dough film is peeled off from the metal support at the peeling point where the metal support is cast almost uniformly on the metal support and the metal support almost goes around.
  • the resulting web is sandwiched between clips, transported by a tenter and dried, and then transported by a roll group of a drying device to finish drying and wound up to a predetermined length by a winder.
  • the combination of tenter and roll group drying equipment varies depending on the purpose.
  • the surface coating on the film such as the undercoat layer, the antistatic layer, the anti-halation layer, the protective layer, etc.
  • a coating device is added for the purpose.
  • the dope is formed on an endless metal support, for example, a metal drum or a metal support (band or belt). It is preferable to cast it on top and evaporate the solvent to form a film. It is preferable to adjust the concentration of the dope before casting so that the amount of cyclic polyolefin is 10 to 35% by mass.
  • the surface of the drum or band is a mirror surface It is preferable to finish in a state.
  • the dope is preferably cast on a drum or band having a surface temperature of 30 ° C. or less, and particularly preferably a metal support temperature of ⁇ 10 to 20 ° C.
  • JP-A-276607, JP-A-55-014201, JP-A-2-111511, and JP-A-2-208650 can be applied in the present invention.
  • the cyclic polyolefin solution can be cast as a single layer liquid on a smooth band or drum as a metal support, or multiple cyclic polyolefin liquids of two or more layers can be cast. .
  • a film is produced while casting and laminating a solution containing a plurality of casting mouth forces provided at intervals in the advancing direction of the metal support, respectively.
  • the methods described in JP-A-61-158414, JP-A-1122419, JP-A-11-198285 and the like can be applied.
  • JP-B-60-27562 JP-A-61-94724, JP-A-61-61.
  • annular polyolefin film casting method in which a flow of a high-viscosity cyclic polyolefin solution described in JP-A-56-162617 is wrapped with a low-viscosity cyclic polyolefin solution and the high- and low-viscosity cyclic polyolefin solution is simultaneously extruded.
  • the method may be used.
  • the outer solution described in JP-A-61-94724 and JP-A-61-94725 contains a larger amount of alcohol component which is a poor solvent than the inner solution. is there.
  • the cyclic polyolefin solution to be cast may be the same solution or different cyclic polyolefin solutions, and is not particularly limited.
  • a cyclic polyolefin solution corresponding to the function may be extruded to each casting loca.
  • the cyclic polyolefin solution may be cast simultaneously with other functional layers (for example, an adhesive layer, a dye layer, an antistatic layer, an anti-halation layer, a UV absorbing layer, a polarizing layer, etc.).
  • the inner and outer thicknesses are not particularly limited, but the outer side is preferably 1 to 50% of the total film thickness, more preferably 2 to 30%.
  • the total thickness of the layer in contact with the metal support and the layer in contact with the air side is defined as the outer thickness.
  • a cyclic polyolefin film having a laminated structure can also be produced by co-casting the above-mentioned cyclic polyolefin solutions having different additive concentrations, such as deterioration inhibitors, ultraviolet absorbers and matting agents.
  • a cyclic polyolefin film having a structure of skin layer Z core layer Z skin layer can be produced.
  • the matting agent can be included in the skin layer more or only in the skin layer.
  • the deterioration inhibitor and the ultraviolet absorber can be contained in the core layer more than the skin layer, and may be contained only in the core layer. It is also possible to change the type of deterioration inhibitor and UV absorber in the core layer and skin layer.
  • the skin layer may contain a low-volatile deterioration inhibitor and Z or UV absorber to make the core layer plastic.
  • An excellent plasticizer or an ultraviolet absorber excellent in ultraviolet absorption can also be added.
  • the Tg of the core layer is preferably lower than the Tg of the skin layer, which may be different even if the Tg of the core layer and the core layer are different.
  • the viscosity of the solution containing the cyclic polyolefin during casting may be different between the skin layer and the core layer.
  • the viscosity of the skin layer is preferably smaller than the viscosity of the core layer. It may be smaller than the viscosity.
  • the prepared dope is uniformly pressed onto a metal support by a pressure die force, or the dope once cast on the metal support is adjusted by a doctor blade that adjusts the film thickness with a blade.
  • a method using a force-pressing die such as a method or a method using a reverse roll coater that adjusts with a reverse rotating roll is preferable.
  • the pressure die includes a coat hanger type and a T die type, and any of them can be preferably used.
  • it can be carried out by various methods of casting a cellulose triacetate solution known in the art, and by setting each condition in consideration of differences in the boiling point of the solvent used, etc. The same effects as described in the respective publications can be obtained.
  • the endlessly running metal support used for producing the annular polyolefin film of the present invention includes a drum whose surface is mirror-finished by chrome plating, and a stainless steel belt (such as a band) which is mirror-finished by surface polishing. May be used).
  • One or two or more pressure dies used for producing the cyclic polyolefin film of the present invention may be installed above the metal support. One or two groups are preferred. When two or more units are installed, the amount of dope to be cast can be divided into various proportions for each die, and multiple precision constant gear gear pump forces can be fed to the die at each proportion!
  • the temperature of the cyclic polyolefin solution used for casting is preferably ⁇ 10 to 55 ° C., more preferably 25 to 50 ° C. In that case, all of the processes may be the same or different at different points in the process. If they are different, the temperature may be a desired temperature just before casting.
  • the drying of the dope on the metal support involved in the production of the cyclic polyolefin film is generally a method of applying hot air to the surface side of the metal support (eg, drum or band), that is, the surface force of the web on the metal support, Drum or band backside force Method of applying hot air, temperature controlled liquid on the opposite side of the band or drum dope casting surface
  • the surface temperature of the metal support before casting may be any number as long as it is below the boiling point of the solvent used for the dope.
  • the temperature should be set to 1 to 10 degrees below the boiling point of the lowest boiling solvent used. Is preferred. However, this does not apply when the casting dope is cooled and peeled off without drying.
  • peeling a dry film with a metal support if the peeling resistance (peeling load) is large, the film is irregularly stretched in the film forming direction, resulting in uneven optical anisotropy.
  • peeling load when the peeling load is large, the film is stretched stepwise in the film forming direction and stretched, and wrinkles and cocoons are alternately generated, resulting in a distribution in the letter decision.
  • irregularities appear in the form of lines or strips. In order not to cause such a problem, it is preferable to set the film peeling load to 0.25 N or less per 1 cm of the film peeling width.
  • the peel load is more preferably 0.2 NZcm or less, further preferably 0.15 N or less, and particularly preferably 0.10 N or less.
  • the peel load is 0.2 NZcm or less, even in a liquid crystal display device in which unevenness is likely to appear, no unevenness due to peeling is observed, which is particularly preferable.
  • As a method for reducing the peeling load there are a method of adding a release agent as described above and a method of selecting a solvent composition to be used.
  • the peel load is measured as follows.
  • the dope is dropped on a metal plate having the same material as the metal support of the film forming apparatus, and is spread to a uniform thickness using a doctor blade and dried.
  • the volatile content in the peeled film is also measured. The same measurement is performed several times while changing the drying time, and the peeling load at the same time as the residual volatile content at the peeling in the actual film forming process is determined.
  • the peeling load tends to increase, and it is preferable to measure at a peeling speed close to actual.
  • the preferred residual volatile content during stripping is 5 to 60% by mass. 10-50% by mass The preferred range is 20 to 40% by mass. Peeling with a high volatile content is preferable because the drying rate can be increased and the productivity is improved. On the other hand, when the volatile content is high, the strength and elasticity of the film is small. In addition, deformation, wrinkles, and nicks that have poor self-holding power after peeling tend to occur. It also causes distribution in letter decisions.
  • the cyclic polyolefin film of the present invention is stretched, it is preferably carried out in a state where the solvent still remains in the film immediately after peeling.
  • the purpose of stretching is (
  • stretching is performed for the purpose of (1), stretching is performed at a relatively high temperature, and stretching is performed at a low magnification of up to 10% with a stretching ratio of 1%.
  • a stretch of 2 to 5% is particularly preferred.
  • the stretching temperature will be described.
  • the film containing residual solvent is put in a closed pan and the specific heat of the film is measured while raising the temperature with a differential scanning calorimeter.
  • the temperature at which the specific heat curve begins to change and the specific heat begins to drop is defined as Tc.
  • a relatively high stretching temperature is a temperature that is 10 ° C or higher, preferably 15 to 30 ° C higher than Tc. Even when the film is stretched at such a temperature, the letter shape of the cyclic polyolefin film hardly appears.
  • the relatively low temperature refers to the range of 10 ° C before and after Tc. When stretched in this temperature range, in-plane lettering will appear and it will be easy to adjust the desired optical properties.
  • Cyclic polyolefins are high, many polymers with a glass transition temperature (Tg), but can be stretched at a temperature lower than the inherent Tg of the polymer.
  • the film may be stretched uniaxially or longitudinally or laterally, or simultaneously or sequentially biaxially.
  • the birefringence of the retardation film for VA liquid crystal cell or OCB liquid crystal cell is preferably such that the refractive index in the width direction is larger than the refractive index in the length direction. Therefore, it is preferable to stretch more in the width direction.
  • the cyclic polyolefin film is further dried after stretching and wound with a residual volatile content of 2% or less. take. It is preferable to knurle both ends of the film before winding.
  • the width of the knurling is 3 mm to 50 mm, more preferably 5 mm to 30 mm, and the height is 1 to 50 m, preferably 2 to 20 ⁇ m, more preferably 3 to 10 ⁇ m. This can be either single push or double push.
  • the thickness of the finished (after drying) cyclic polyolefin film of the present invention varies depending on the purpose of use, usually 5 forces and 500 ⁇ m, preferably 30 to 150 ⁇ m in particular.
  • 40 ⁇ : L is preferably 10 ⁇ m.
  • the thickness of the film may be adjusted by adjusting the solid content concentration contained in the dope, the slit gap of the die base, the extrusion pressure of the die force, the metal support speed, and the like so as to obtain a desired thickness.
  • the width of the cyclic polyolefin film obtained as described above is preferably 0.5 to 3 m, more preferably 0.6 to 2.5 m, and still more preferably 0.8 to 2.2 m.
  • the length is preferably 100 to 10,000 m per roll, more preferable than the force of winding, ⁇ 500 to 7000 m, more preferably 1000 to 6000 m. When winding, it is preferable to add a knurling to at least one end.
  • the variation in the Re value of the entire width is preferably ⁇ 5 nm, more preferably ⁇ 3 nm.
  • the variation of the Rth value is preferably ⁇ 5 nm, more preferably ⁇ 5 nm.
  • the variation in the Re value and the Rth value in the length direction is preferably within the range of the variation in the width direction.
  • the haze is preferably 0.01 to 2%. In order to reduce the haze, the fine particle matting agent to be added is sufficiently dispersed. V The number of aggregated particles is reduced, or the matting agent is used only in the skin layer to reduce the addition amount.
  • the hot melt film forming method will be described.
  • the melted cyclic olefin-based addition polymer is extruded into a die force sheet of an extruder and cooled on a cooling roll to form a base film of the cyclic olefin-based addition polymer.
  • the cyclic olefin-based addition polymer pellet can be preheated.
  • Preheating temperature is Tg—90 ° C ⁇ Tg + 15 ° C, preferably Tg—75 ° C. to Tg—5 ° C., more preferably Tg—70 ° C. to Tg—5 ° C.
  • Preheating in the range of Tg—90 ° C to Tg + 15 ° C enables subsequent resin melt-kneading to be performed uniformly, and the desired H-V scattered light intensity and V-V scattered light intensity can be obtained. Obtainable.
  • the temperature is raised to a temperature of 200 to 300 ° C. using an extruder to melt the cyclic olefin-based addition polymer.
  • the temperature on the outlet side of the extruder is preferably 5 to 100 ° C, preferably 20 to 90 ° C, more preferably 30 to 80 ° C higher than the temperature on the inlet side.
  • the molten cyclic olefin-based addition polymer was then passed through a gear pump to remove the pulsation of the extruder, and then filtered with a metal mesh filter or the like, and attached to the extruder.
  • Die force of mold Extruded into a sheet on a cooling roll and 1-50%, preferably 2-40%, more preferably 3-40% of the cyclic olefin-based addition polymer film extruded on the cooling roll. Press 30%.
  • pressing is performed uniformly from both ends in the film width direction to press in the film width direction of 1 to 50%.
  • the pressing method in the production method of the present invention is not particularly limited, and for example, a method such as an air chamber, a vacuum nozzle, electrostatic pinning, and touch roll can be used.
  • the pressure at that time is not particularly limited, but 0.001 to 20 kgZcm 2 (98 Pa to: L 96 MPa) is preferable, and 0.01 to Lkg / cm 2 (980 Pa to 98 kPa) is more preferable.
  • the pressing can be performed while cooling on a cooling roll. At this time, the cooling is preferably performed as slowly as possible. In the film forming method generally performed, the cooling is performed at a cooling rate of 50 ° CZ seconds or more.
  • the cooling rate is suitably 0.2 to 20 ° CZ seconds, and 0.5. It is preferable that it is ⁇ 15 ° CZ second, and it is more preferable that it is 1-10 ° CZ second.
  • the above cooling is achieved by keeping the temperature within the cooling roll casing and adjusting the temperature of the cooling roll.
  • the former can obtain a favorable effect.
  • At least one of the cooling rolls is kept at Tg—100 ° C. to Tg + 30 ° C., more preferably Tg—80 ° C. to Tg + 10 ° C., more preferably Tg. — Achieved by placing in a casing temperature controlled from 70 ° C to Tg.
  • the sheet formed on the cooling roll is constrained by the frictional force and cannot be shrunk freely, so Re and Rth unevenness is likely to occur due to the shrinkage stress caused by this, but if this method is used, in the width direction Uniform gradual cooling is possible, and temperature unevenness on the cooling roll can be reduced. As a result, Re unevenness and Rth unevenness can be reduced.
  • (1) Die force attached to an extruder At least 2 to: LO, preferably 2 to 6 and more preferably, cyclic olefin-based calopolymers extruded in a sheet form are arranged at regular intervals Cast on 3-4 cooling rolls (dense rolls).
  • the cooling rate can be easily adjusted.
  • the temperature change between the cooling rolls can be reduced by arranging the cooling rolls at regular intervals.
  • the interval between the cooling rolls (the interval between the adjacent points on the outer periphery of adjacent rolls) is preferably 0.1 to 15 cm, more preferably 0.3 to 10 cm, and 0.5 to 5 cm. More preferably it is.
  • the temperature of at least the first cooling roll is Tg—40 ° C. to Tg (more preferably Tg—35 °) of the cyclic polyolefin-based polymer. C to Tg—3 ° C., more preferably Tg—30 ° C. to Tg, and most preferably Tg—30 ° C. to Tg—5 ° C.). Furthermore, it is preferable that the temperature of the second cooling roll is 1 to 30 ° C higher (preferably 1 to 20 ° C higher, more preferably 1 to 10 ° C higher) than the first cooling roll.
  • the viscosity of the film of the cyclic olefin-based addition polymer can be further increased, and the adhesion with the second cooling roll can be increased.
  • slip on the cooling hole can be suppressed and unevenness in the conveyance tension can be suppressed, so that Re and Rth unevenness can be reduced.
  • the conveyance speed of the second cooling roll is 0.1 to 5% (preferably 0.2 to 4%, more preferably 0.3 to 3%) of the conveyance speed of the first cooling roll. Make it faster. As a result, slip between the first cooling hole and the second cooling roll can be suppressed and unevenness in the conveyance tension can be reduced, so that Re and Rth unevenness can be reduced.
  • the third temperature lower than the second cooling roll by 1 to 30 ° C (preferably 1.5 to 20 ° C, more preferably 2 to 10 ° C). Pass the cooling roll.
  • the conveyance speed of the third cooling roll should be 0.1-5% (preferably 0.2-4%, more preferably 0.3-3%) slower than the conveyance speed of the second cooling roll. Is preferred. As a result, uneven transport tension between the second cooling roll and the third cooling roll can be buffered, so that Re and Rth unevenness can be reduced.
  • the film of the cyclic olefin-based addition polymer is cooled at a cooling rate of 0.2 to 20 ° CZ seconds by the above-described method, and then the cooling roll force is further peeled off from the film of the cyclic olefin-based addition polymer.
  • the process can be performed.
  • the peeled cyclic olefin-based addition polymer film has a 0.2-: LOm spacing, preferably Alternatively, it can be transported using a plurality of transport rolls arranged at intervals of 0.3 to 8 m, more preferably at intervals of 0.4 to 6 m. By transporting such a long span while cooling, uneven transport tension due to friction with the transport roll can be suppressed. In order to alleviate this, an unbalance in the transport tension due to uneven left and right shrinkage occurs during cooling, but a wide roll interval is required to allow the film to move freely and be buffered.
  • the cyclic olefin-based addition polymer film that does not cause friction between the cyclic olefin-based addition polymer film and the transport roll can move freely, resulting in uneven tension. The deviation of the optical axis can be reduced.
  • the film of the cyclic olefin-based addition polymer from which the cooling roll force is also peeled is 0.1 to 3 ° CZ seconds, preferably 0.2 to 2.5 ° CZ seconds, and more preferably 0.3 to 2 ° CZ. It is preferable to cool to 50 ° C in seconds. 0.1. Cooling within the range of 1 to 3 ° CZ seconds can prevent optical axis misalignment due to uneven tension on the left and right due to sudden contraction stress. Such control of the cooling rate can also be achieved by passing a film of cyclic olefin-based addition polymer through the casing and lowering the temperature blown into the casing from the upstream side to the upstream side. It can also be achieved by adjusting the temperature of the transport rolls on the side and downstream side
  • the film forming speed is suitably 40 to 150 mZ, more preferably 50 to 10 OmZ, and even more preferably 60 to 80 mZ.
  • the film forming width can be 1.5 to 5 m, preferably 1.6 to 4 m, and more preferably 1.7 to 3 m.
  • the substrate film of the cyclic olefin-based addition polymer has a great advantage that the moisture permeability and the equilibrium moisture content are smaller than those of cellulose silicate films conventionally used for polarizing plates.
  • the preferred water vapor transmission rate is 60oC, 95% RH for 24 hours and less than lOOOOg per square meter. More preferably, it is 400 g or less.
  • the preferred equilibrium moisture content is less than 2.0% at 25 ° C and 80% RH. More preferably, it is 1.0% or less.
  • Additives such as UV absorbers and letter-developing agents are volatile and degradable, and optical properties change when mass changes or dimensional changes occur in the film.
  • the amount of change in the mass of the film after 48 hours at 80 ° C. and 90% RH is preferably 5% or less.
  • the amount of dimensional change after 24 hours at 60 ° C 95% RH is preferably 5% or less. Even if there is a slight change in dimensions or mass, the amount of change in optical properties is small, such as the photoelastic coefficient of the film being small. Therefore, it is preferable that the film has a photoelastic coefficient of 30 X 10—13 cm 2 Zdyne (3 X 10—13 N / m 2 ) or less. 15 X 10 " 13 cm Vdyne (l. 5 X 10" 13 N / It is more preferable that m 2 ) or less.
  • the optical properties of the base film of the cyclic olefin-based addition polymer are slightly different depending on the mode of the liquid crystal cell used.
  • the in-plane letter Re (630) is preferably 15 nm or less, more preferably l nm or less.
  • the film thickness direction letter Rth (630) is preferably 40 to 120 nm, more preferably 60 to lOOnm.
  • An optical compensation sheet for a TN mode liquid crystal cell can be obtained by forming an alignment layer and a discotic liquid crystal layer on a substrate film of a cyclic olefin-based addition polymer.
  • Re (630) is preferably 15 nm or less, more preferably l nm or less.
  • Rth (630) i is preferably 120 to 300 mn, more preferably 150 to 260 nm.
  • An optical compensation sheet for VA mode liquid crystal cells can be obtained by forming an alignment layer and a rod-like liquid crystal layer on a substrate film of a cyclic olefin-based addition polymer.
  • Re (630) is preferably from 30 to 70 nm, more preferably from 35 to 55 nm.
  • Rth (630) is preferably from 120 to 300 nm, more preferably from 150 to 260 nm.
  • An optical compensation sheet for OCB mode liquid crystal cells can be obtained by forming an alignment layer and a discotic liquid crystal layer on a substrate film of a cyclic olefin-based addition polymer. [0079] [Polarizing plate]
  • a polarizing plate is composed of a polarizer and two transparent protective films disposed on both sides of the polarizer.
  • the optical compensation sheet of the present invention can be used as at least one protective film.
  • the other protective film may be a normal cellulose acetate film.
  • the polarizer include iodine-based polarizers, dye-based polarizers using dichroic dyes, and polyene-based polarizers.
  • a silicon-based polarizer and a dye-based polarizer are generally produced using a polyvinyl alcohol film.
  • the optical compensation sheet of the present invention is used as a polarizing plate protective film
  • the optical compensation sheet is subjected to a surface treatment as described later, and then the optical compensation sheet treated surface and a polarizer are bonded together using an adhesive.
  • the adhesive to be used include polybulal alcohol adhesives such as polyvinyl alcohol and polybutyl petital, vinyl latexes such as butyl acrylate, and gelatin.
  • the polarizing plate is composed of a polarizer and a protective film that protects both sides of the polarizer, and further comprises a protective film on one surface of the polarizing plate and a separate film on the other surface.
  • the protective film and separate film are used for the purpose of protecting the polarizing plate when the polarizing plate is shipped, during product inspection.
  • the protective film is bonded for the purpose of protecting the surface of the polarizing plate, and is used on the side opposite to the surface where the polarizing plate is bonded to the liquid crystal plate.
  • the separate film is used for the purpose of covering the adhesive layer to be bonded to the liquid crystal plate, and is used on the surface side of the polarizing plate to be bonded to the liquid crystal plate.
  • the optical compensation sheet of the present invention has an optically anisotropic layer on a substrate film of a cyclic olefin-based addition polymer.
  • the optically anisotropic layer include liquid crystal compounds, non-liquid crystal compounds, inorganic compounds, and organic Z inorganic composite compounds. Of these, liquid crystalline compounds are preferably used.
  • Liquid crystalline compounds include those in which a low molecular weight compound having a polymerizable group is aligned and then fixed by light or heat polymerization, or after a liquid crystalline polymer is heated and aligned. Those which are cooled and fixed in the glass state can be used.
  • liquid crystalline compound those having a disk-like structure, those having a rod-like structure, and those having a structure exhibiting optical biaxiality can be used.
  • non-liquid crystalline compound a polymer having an aromatic ring such as polyimide or polyester can be used. A method for forming an optically anisotropic layer using a liquid crystalline compound is described below.
  • Alignment film is organic compound (preferably polymer) rubbing treatment, oblique deposition of inorganic compound, formation of microgroup layer, or organic compound (eg, ⁇ -tricosanoic acid) by Langmuir 'Projet method (LB film) , Dioctadecylmethylammonium chloride, methyl stearylate).
  • LB film Langmuir 'Projet method
  • Dioctadecylmethylammonium chloride methyl stearylate
  • the alignment film is preferably formed by rubbing a polymer.
  • the rubbing treatment is performed by rubbing the surface of the alignment film several times in a certain direction with paper or cloth. It is preferable to use a cloth in which fibers having uniform length and thickness are uniformly planted.
  • the base film of the cyclic olefin-based addition polymer Prior to providing the alignment film between the base film of the cyclic olefin-based addition polymer and the optically anisotropic layer, it is preferable to subject the base film of the cyclic olefin-based addition polymer to a surface treatment.
  • Surface treatment includes corona discharge treatment, glow discharge treatment or flame treatment. Detailed methods of these surface treatments will be described later.
  • an undercoat layer adheresive layer may be further provided between the base film of the cyclic olefin-based addition polymer and the alignment film as necessary.
  • Examples of the organic compound for the alignment film include polymethyl methacrylate, acrylic acid-metatalic acid copolymer, styrene-maleimide copolymer, polybutyl alcohol, poly ( ⁇ -methylolacrylamide), Styrene ⁇ Bultoluene Copolymer, Chlorosulfonated Polyethylene, Nitrocellulose, Polychlorinated Bulle, Chlorinated Polyolefin, Polyester, Polyimide, Acetyl Butyl ⁇ Buluric Chloride Copolymer, Ethylene ⁇ ⁇ ⁇ Vinyl Acetate Copolymer, Carbonyl Examples thereof include polymers such as methylcellulose, polyethylene, polypropylene and polycarbonate, and compounds such as silane coupling agents.
  • polymers include polyimide, polystyrene, styrene derivative polymers, gelatin, polyvinyl chloride. -Alkyl alcohols and alkyl-modified polybutyl alcohols having an alkyl group (preferably having 6 or more carbon atoms! /,).
  • the alkyl-modified polybutyl alcohol is particularly excellent in the ability to uniformly align a particularly preferred liquid crystalline compound. This is presumably due to the strong interaction between the alkyl chain on the alignment film surface and the alkyl side chain of the liquid crystal.
  • the alkyl group preferably has 6 to 14 carbon atoms, and is further —through —S—, — (CH 2) C (CN) — or — (C H) N—CS—S—.
  • the alkyl-modified polyvinyl alcohol has an alkyl group at its end, and preferably has a saponification degree of 80% or more and a polymerization degree of 200 or more.
  • commercially available products such as MP103, MP203, Rl 130 manufactured by Kuraray Co., Ltd. can be used.
  • a polyimide film (preferably a fluorine atom-containing polyimide) widely used as an alignment film for LCD is also preferable as the organic alignment film. This is done by applying polyamic acid (for example, LQZLX series manufactured by Hitachi Chemical Co., Ltd., SE series manufactured by Nissan Chemical Co., Ltd., etc.) to the substrate surface and baking at 100-300 ° C for 0.5-1 hour. Thereafter, it is obtained by rubbing.
  • polyamic acid for example, LQZLX series manufactured by Hitachi Chemical Co., Ltd., SE series manufactured by Nissan Chemical Co., Ltd., etc.
  • the alignment film applied to the base film of the cyclic olefin-based addition polymer of the present invention may be obtained by introducing a reactive group into the polymer, or by combining the polymer with an isocyanate compound and an epoxy compound. It is preferably a cured film obtained by curing these polymers using a crosslinking agent such as a product.
  • the polymer used for the alignment film and the liquid crystalline compound of the optically anisotropic layer are chemically bonded via an interface between these layers.
  • the polymer strength of the alignment film is preferably formed by a polybutyl alcohol force in which at least one hydroxy group is substituted with a group having a vinyl part, an oxyl moiety or an azidyl moiety. It is preferably bonded to the polymer chain of the polybutyl alcohol derivative through a basic ether bond, urethane bond, acetal bond or ester bond having a beryl moiety, oxylanyl moiety or aziridinyl moiety.
  • the group having a vinyl moiety, an oxiral moiety or an aziridinyl moiety does not have an aromatic ring.
  • the polyvinyl alcohol power is preferably (Chemical Formula 22) described in JP-A-9-152509.
  • the optically anisotropic layer is laminated with a polarizer in a long form. Conveying force on a long film Continuously applying a solution of the alignment film composition to form an alignment film, continuously rubbing the surface, and liquid crystal By applying a solution containing the compound continuously, a long optically anisotropic layer can be obtained.
  • the slow axis direction of the long optically anisotropic layer is substantially parallel to the film surface.
  • the alignment film material can be selected as appropriate depending on which of the liquid crystal molecules is aligned.
  • a polyvinyl alcohol alignment film or the like can be used.
  • paragraphs [0 024] to [0210] of JP-A-2002-98836 Or the like can be used.
  • a widely used polarizer using iodine is manufactured by a continuous longitudinal uniaxial stretching process, and therefore has an absorption axis parallel to the longitudinal direction of the roll. Therefore, a general long uniaxially stretched long polarizer and a long optically anisotropic layer are roll-rolled so that the absorption axis of the polarizer and the slow axis of the optically anisotropic layer are orthogonal to each other. In the case of bonding, it is preferable to use the orthogonal alignment film.
  • liquid crystal used for the optically anisotropic layer a discotic compound or a rod-like compound is preferably used.
  • the optically anisotropic layer is a layer having a negative birefringence due to a compound force having a discotic structural unit. That is, the optically anisotropic layer is a low molecular weight liquid crystal discotic compound layer such as a monomer or a polymer layer obtained by polymerization (curing) of a polymerizable liquid crystal discotic compound. Examples of these discotic compounds are benzene derivatives described in the research report of C. Destrade et al., Mol. Cryst. 71, 111 (1981). Conductor, research report of C.
  • the above discotic (discotic) compound has a molecular core as a nucleus, and a linear alkyl group, an alkoxy group, a substituted benzoyloxy group, or the like is radially substituted as the linear chain. It has a liquid crystal structure and exhibits liquid crystallinity, and generally includes a so-called discotic liquid crystal.
  • the molecule itself is not limited to the above description as long as it has negative uniaxiality and can give a certain orientation.
  • the formation of a disk-like composite force does not require that the final product is the compound.
  • the low-molecular discotic compound has a group that reacts with heat, light, or the like.
  • the discoid composite is preferably a triphenylene derivative.
  • the compound represented by (Chemical Formula 2) described in JP-A-7-306317 is preferable.
  • rod-like compounds exhibiting liquid crystallinity examples include azomethines, azoxys, cyanobiphenols, cyanophyl esters, benzoates, cyclohexanecarboxylic acid ester esters, cyanophages.
  • azomethines azoxys
  • cyanobiphenols cyanophyl esters
  • benzoates cyclohexanecarboxylic acid ester esters
  • cyanophages cyanophages.
  • -Lucyclohexanes, cyano-substituted vinyl birimidines, alkoxy-substituted phenyl birimidines, ferrodioxanes, tolans and alkenylcyclohexyl benzonitriles are preferably used.
  • Polymer liquid crystalline compounds other than the above low molecular liquid crystalline compounds can also be used.
  • the liquid crystal molecules those having a partial structure capable of causing polymerization or a crosslinking reaction by actinic rays, electron beams, heat, or the like are preferably used.
  • the number of the partial structure is 1-6, preferably 1-3 is there.
  • Polymerizable rod-like liquid crystalline compounds include Makromol. Chem., 190 ⁇ , 2255 (1989), Advanced Materials 5 ⁇ , 107 (1993), U.S. Pat. No. 4,683,327, U.S. Pat. No. 5770107, International Publication No. W095Z22586, No. 95Z24455, No. 97,00600, No. 98,23580, No. 98Z52905, JP-A-1-272551, No. 6-16616, The compounds described in JP-A-7-110469, JP-A-11-80081, JP-A-2001-328973, and the like can be used.
  • the optically anisotropic layer can be formed by applying a liquid crystal compound and, if necessary, a coating liquid containing a polymerizable initiator and optional components on the alignment film.
  • a solvent used for preparing the coating solution an organic solvent is preferably used.
  • organic solvents examples include amides (eg N, N dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg Examples, including chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane) . Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • amides eg N, N dimethylformamide
  • sulfoxides eg dimethyl sulfoxide
  • heterocyclic compounds eg pyridine
  • hydrocarbons eg benzene, hexane
  • alkyl halides eg Examples, including chlor
  • the coating solution can be applied by a known method (eg, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method).
  • the thickness of the optically anisotropic layer is preferably 0.5 to: L00 m, and more preferably 0.5 to 30 ⁇ m.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator, and a photopolymerization reaction is preferred.
  • photopolymerization initiators include 0C carbonyl compounds (described in the specifications of U.S. Pat. Nos. 2,367,661 and 2,367,670), cash-in-ether (described in U.S. Pat. No. 2448828), Nylon compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos.
  • the amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution. It is preferable to use ultraviolet rays for light irradiation for polymerization of liquid crystalline molecules.
  • the irradiation energy is more preferably it is 20 ⁇ 5000MiZcm 2 is preferably tool 100 ⁇ 800mjZcm 2.
  • light irradiation may be performed under heating conditions.
  • a protective layer may be provided on the optically anisotropic layer.
  • a plasticizer, a surfactant, a polymerizable monomer, etc. are used in combination, so that the uniformity of the coating film, the strength of the film, the orientation of the liquid crystal compound, etc. Can be improved. These materials are preferably compatible with the liquid crystalline compound and do not inhibit the alignment.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Preferably, it is a polyfunctional radically polymerizable monomer, and is preferably copolymerizable with the above-mentioned polymerizable group-containing liquid crystalline compound.
  • the amount of the compound added is generally in the range of 1 to 50% by mass and preferably in the range of 5 to 30% by mass with respect to the liquid crystal molecules.
  • the optically anisotropic layer contains a polymer film
  • the non-liquid crystalline polymer used in the polymer film polyamide, polyimide, polyester, polyether ketone, polyamide imide, polyester imide, and at least one kind of polymer having a group strength that can also be polyaryl ether ketone can be preferably used.
  • a solution in which these polymers are dissolved in a solvent is applied to a substrate film of a cyclic olefin-based addition polymer, and the solvent is dried to form a film, thereby forming an optically anisotropic layer.
  • a method of stretching the polymer film and the base film to further develop optical anisotropy and using it as an optical anisotropic layer can be preferably used.
  • the non-liquid crystalline polymer film is prepared on another substrate, and after the non-liquid crystalline polymer film is also peeled off from the substrate, it is bonded to a substrate film of a cyclic olefin-based addition polymer. May be.
  • the thickness of one film is preferably 50 ⁇ m or less, more preferably 1 to 20 ⁇ m.
  • Japanese Patent Application Laid-Open No. 2003-315554 It is described in detail in the publication by the name of the optically anisotropic layer (B).
  • the letter direction R th in the film thickness direction satisfies the following formula.
  • the polarizing plate of the present invention is prepared by bonding a polarizer and two protective films (protective films) using an adhesive.
  • the optical compensation sheet of the present invention is preferably used for at least one protective film.
  • a common cellulose triacetate film can be used for the other protective film.
  • the polarizing layer can be formed by orienting a polarizing dye dispersed in PVA in one direction.
  • PVA is usually a saponified poly (acetic acid) but may contain a component copolymerizable with butyl acetate such as unsaturated carboxylic acid, unsaturated sulfonic acid, olefins and butyl ethers. Absent. Modified PVA containing a acetoacetyl group, a sulfonic acid group, a carboxyl group, an oxyalkylene group, or the like can also be used.
  • the saponification degree of PVA is not particularly limited, but from the viewpoint of solubility and the like, it is preferably from 80 to L00 mol%, and particularly preferably from 90 to L00 mol%. Further, the degree of polymerization of PVA is not particularly limited and is preferably 1,000 to 10,000, and more preferably 1,500 to 5,000.
  • the polarizing layer is dyed by immersing the PVA film in an aqueous solution of iodine and potassium iodide. It is appropriate that the iodine content is 0.1 to 20 g / l, and the potassium iodide content is 1 to 200 g / l, and the mass ratio of iodine to potassium iodide is preferably 1 to 200. .
  • the dyeing time is preferably 10 to 5,000 seconds.
  • the temperature of the dyeing solution is preferably 5 to 60 ° C.
  • any means such as application or spraying of an iodine dye solution that can be performed only by immersion can be used.
  • the dyeing step may be either before or after the stretching step, but it is particularly preferable to dye in the liquid phase before the stretching step because the film is appropriately swelled to facilitate stretching.
  • a dye other than iodine can be used.
  • Preferred dyes other than iodine include, for example, dye compounds such as azo dyes, stilbene dyes, pyrazolone dyes, triphenol-methane dyes, quinoline dyes, oxazine dyes, thiazine dyes and anthraquinone dyes. Etc.
  • the bridging agent for example, the power described in US Reissued Patent No. 232897 can be used. Boric acid and borax are preferably used practically. In addition, metal salts such as zinc, cobalt, zirconium, iron, nickel and manganese can be used together. Such hardening can be achieved by immersing PVA impregnated with dye in an aqueous solution of borax or boric acid.
  • the content of borax and boric acid is preferably 0.1 to 10 mol / 1, more preferably 0.2 to 5 mol Z1, and 0.2 to 2 mol Z1. Is more preferable.
  • the liquid temperature of the dura mater is 10 to 40 ° C, more preferably 15 to 35 ° C.
  • the immersion time is 10 seconds to 10 minutes, more preferably 20 seconds to 5 minutes.
  • an iodide salt such as sodium iodide or potassium iodide in the hardening solution.
  • concentration of iodide salt is preferably 0.1 to 10 mol Z1, more preferably 0.2 to 5 mol Z1, and even more preferably 0.2 to 2 mol Z1.
  • the film hardening may be performed before, during, or after stretching.
  • the PVA film Prior to stretching, the PVA film is swollen.
  • the degree of swelling is 1.2 to 2.0 times (mass ratio before swelling and after swelling).
  • an aqueous medium bath The film is stretched at a bath temperature of 15 to 50 ° C, preferably 17 to 40 ° C, in a dye bath for dissolving dichroic substances. Stretching can be achieved by gripping with two pairs of up-rolls and increasing the transport speed of the back-up rolls higher than that of the previous stage.
  • the draw ratio is based on the length ratio in the initial Z state after the draw (the same applies hereinafter), but the draw ratio is preferably 1.2 to 3.5 times, more preferably 1.5 to 3. 0 times. Thereafter, it is dried at 50 to 90 ° C. to obtain a polarizer.
  • the surface of the base film of the cyclic olefin-based addition polymer (optically anisotropic layer) is applied before applying the adhesive.
  • Surface treatment is performed on the side opposite to the coated surface.
  • a method that can improve the adhesiveness may be used.
  • Preferred surface treatments include, for example, glow discharge treatment, ultraviolet irradiation treatment, corona treatment, and flame treatment.
  • the glow discharge treatment here is so-called low-temperature plasma that occurs under low-pressure gas. In the present invention, plasma treatment under atmospheric pressure is also preferable. Other details of the glow discharge treatment are described in US Pat. No.
  • the degree of vacuum during the glow discharge treatment is preferably 0.5 to 3000 Pa, more preferably 2 to 300 Pa.
  • the voltage is more preferable than the force factor between 500 and 5000V ⁇ is 500 to 3000V.
  • the discharge frequency to be used is from DC to several thousand MHz, more preferably 50 Hz to 20 MHz, and still more preferably 1 ⁇ to 1 ⁇ .
  • the discharge treatment intensity is 0. OIKV'A 'min Zm 2 ⁇ 5 ⁇ ⁇ ⁇ ⁇ min Zm 2 is more preferable 0.15 ⁇ ⁇ ⁇ ⁇ min Zm 2 ⁇ : LKV'A' min Z m (? The
  • the mercury lamp is a high-pressure mercury lamp made of a quartz tube and preferably has an ultraviolet wavelength power of Sl 80 to 380 nm.
  • a high pressure mercury lamp with a dominant wavelength of 365 nm can be used as long as the surface temperature of the film rises to around 150 ° C as long as there is no problem with the performance of the support.
  • a low pressure mercury lamp with a dominant wavelength of 254 nm is preferred.
  • Ozone-less high-pressure mercury lamps and low-pressure mercury lamps can also be used.
  • the amount of processed light the greater the amount of processed light, the better the adhesion between the base film of the cyclic olefin-based addition polymer and the polarizer, but the problem is that the film becomes colored and becomes brittle as the amount of light increases. appear. Therefore, it is a high-pressure mercury lamp having a main wavelength of 365 nm, and the irradiation light quantity is 20 to 10,000 (nijZcm 2 ), more preferably 50 to 2000 (mjZcm 2 ). In the case of a low-pressure mercury lamp having a main wavelength of 254 nm, the irradiation light quantity is preferably from 100 to 10,000 (mjZcm 2 ), more preferably from 300 to 1500 (mjZcm 2 ).
  • a corona discharge treatment as the surface treatment.
  • it can be carried out by the processing methods described in JP-B-39-12838, JP-A-47-19824, JP-A-48-28067, and JP-A-52-42114.
  • a corona discharge treatment device a solid state corona treatment machine manufactured by Pillar, a LEPEL type surface treatment machine, a VETA PHON type treatment machine or the like can be used.
  • the treatment can be performed at normal pressure in air.
  • the discharge frequency during the treatment is 5 to 40 KV, more preferably 10 to 30 KV, and the waveform is preferably an alternating sine wave.
  • the gap transparent lance between the electrode and the dielectric roll is 0.1 to: LOmm, more preferably 1.0 to 2. Omm.
  • Discharge is processed above a dielectric support port provided in the discharge zone, and the processing amount is 0.3 to 0.40 ⁇ ⁇ ⁇ ⁇ min Zm 2 , more preferably 0.34 to 0.38 ⁇ ⁇ ⁇ . ⁇ Min Zm 2
  • the present invention it is also preferable to perform a flame treatment as the surface treatment.
  • the gas used may be natural gas, liquid propane gas, or city gas, but the mixing ratio with air is important.
  • the effect of surface treatment by flame treatment is thought to be brought about by plasma containing active oxygen, and how much the activity (temperature) of plasma, which is an important property of flame, and oxygen are present. It is a point.
  • the governing factor of this point is the gas Z oxygen ratio
  • the gas Z oxygen ratio In the case of reaction without excess or deficiency, the energy density is the highest and the plasma activity is increased.
  • the preferred mixing ratio of natural gas Z air is 1Z6 to 1Z10, preferably 1Z7 to 1Z9 in volume ratio.
  • 1Z14 to 1Z22 preferably 1Z16 to: LZ19
  • city gas Z air 1Z2 to: LZ8, preferably 1Z3 to: LZ7.
  • the flame treatment amount may be 1 to 50 KcalZm 2 , more preferably 3 to 20 KcalZm 2 .
  • the distance between the tip of the burner's internal flame and the film should be 3-7 cm, more preferably 4-6 cm.
  • the nozzle shape of the burner is the ribbon type of Flynn Burner (USA), the multi-hole type of Wise (USA), the ribbon type of Aerogen (UK), the staggered multi-hole type of Kasuga Electric (Japan), Koike Oxygen (Japan) 's staggered multi-hole type is preferred.
  • the backup roll that supports the film for flame treatment is a hollow roll, which should be cooled at a constant temperature of 20-50 ° C by cooling with cooling water.
  • the degree of surface treatment is such that the preferred range varies depending on the type of surface treatment and the type of cyclic olefin-based addition polymer.
  • the angle is preferably less than 50 °.
  • the contact angle is more preferably 25 ° or more and less than 45 °. When the contact angle of the film surface with pure water is within the above range, the adhesive strength between the base film of the cyclic olefin-based addition polymer and the polarizer becomes good.
  • an adhesive containing a water-soluble polymer is used when laminating a polarizer having a polyvinyl alcohol power and a base film of a surface-treated cyclic polyolefin-based addition polymer.
  • water-soluble polymers preferably used for the adhesive include N-butylpyrrolidone, acrylic acid, methacrylic acid, maleic acid, acrylate-hydroxyethyl, methacrylic acid j8-hydroxyethyl, butyl alcohol, methyl vinyl ether.
  • Homopolymers or copolymers having ethylenically unsaturated monomers such as butyl acetate, butyl amide, methacrylamide, diacetone acrylamide, butyl imidazole as constituents, and polyoxyethylene, boroxypropylene, poly-2-methyl oxalate Zolin, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose gelatin, etc. It is. Of these, PVA and gelatin are preferred in the present invention.
  • the preferable PVA characteristics when PVA is used for the adhesive are the same as the preferable characteristics of the PVA used for the polarizer described above.
  • the crosslinking agent that is preferably used in combination with PVA as an adhesive include boric acid, polyhydric aldehyde, polyfunctional isocyanate compound, polyfunctional epoxy compound, etc., but boric acid is particularly preferred in the present invention. .
  • gelatin When gelatin is used for the adhesive, so-called lime-processed gelatin, acid-processed gelatin, enzyme-processed gelatin, gelatin derivatives and modified gelatin can be used. Of these gelatins, lime-processed gelatin and acid-processed latin are preferably used.
  • the crosslinking agent preferably used in combination is an active halogen compound (2, 4 dichloro-6 hydroxy-1, 3, 5 triazine and its sodium salt) and an active bur compound (1, 4).
  • the preferred addition amount of the crosslinking agent is 0.1% by mass or more and less than 40% by mass, more preferably 0. 0% by mass with respect to the water-soluble polymer in the adhesive. 5% by mass or more and less than 30% by mass.
  • Adhesive is applied to at least one surface of the protective film or polarizer to form an adhesive layer, and the adhesive is applied to the surface-treated surface of the protective film that is preferably bonded.
  • An agent layer is preferably formed and bonded to the surface of the polarizer.
  • the thickness of the adhesive layer is preferably 0.01 to 5 111 m after drying, and particularly preferably 0.05 to 3 / ⁇ ⁇ .
  • a functional film such as an antireflection layer on the protective film disposed on the opposite side of the polarizing plate from the liquid crystal cell.
  • at least light scattering is performed on the protective film.
  • An antireflection layer in which a disordered layer and a low refractive index layer are laminated in this order or an antireflection layer in which a medium refractive index layer, a high refractive index layer, and a low refractive index layer are laminated in this order on a protective film is preferably used. . Preferred examples thereof are described below.
  • the light scattering layer of the present invention has mat particles dispersed therein, and the refractive index of the material other than the mat particles of the light scattering layer is preferably in the range of 1.50 to 2.00.
  • the refractive index of the refractive index layer is preferably in the range of 1.35 to L49.
  • the light scattering layer has both an antiglare property and a hard coat property, and may be a single layer or a plurality of layers, for example, 2 to 4 layers.
  • the antireflective layer has an uneven surface shape with a center line average roughness Ra of 0.08 to 0.40 ⁇ m, a 10-point average roughness Rz of 10 times or less of Ra, and an average mountain valley distance Sm of 1 ⁇ 100 m, standard deviation of convex height from the deepest part of the unevenness is 0 or less, average mountain valley distance with respect to the center line Sm standard deviation is 20 m or less, and a surface with an inclination angle of 0 to 5 degrees is 10 Designing to be at least% is preferable because sufficient antiglare properties and a visually uniform matte feeling can be achieved.
  • the ratio of the minimum and maximum reflectances within the range of a * value 2 to 2, b * value 3 to 3, and 380 nm to 780 nm, under the light source C is preferable because the color of the reflected light becomes neutral.
  • the b * value of the transmitted light under the C light source is 0 to 3 because the yellow color of white display when applied to a display device is reduced.
  • the standard deviation of the luminance distribution is 20 or less when a 120 m x 40 m grid is inserted between the surface light source and the antireflection layer and the luminance distribution is measured on the film, a high-definition panel is obtained.
  • the glare when applying the sheet of the present invention is reduced, which is preferable.
  • the optical properties of the antireflection layer of the present invention are such that the specular reflectance is 2.5% or less, the transmittance is 90% or more, and the 60 ° glossiness is 70% or less, thereby suppressing reflection of external light. This is preferable because the visibility is improved.
  • the specular reflectance is preferably 1% or less, more preferably 0.5% or less.
  • the refractive index of the low refractive index layer in the antireflection layer of the present invention is 1.20 to L49, preferably 1.30 to L44. Furthermore, the low refractive index layer preferably satisfies the following formula (IX) from the viewpoint of low reflectivity.
  • nl is the refractive index of the low refractive index layer
  • dl is the film thickness (nm) of the low refractive index layer
  • is a wavelength, which is a value in the range of 500 to 550 nm.
  • the low refractive index layer of the present invention contains a fluorine-containing polymer as a low refractive index binder.
  • the fluoropolymer is preferably a fluoropolymer that is crosslinked by heat or ionizing radiation with a coefficient of dynamic friction of 0.03-0.20, a contact angle with water of 90 to 120 °, and a sliding angle of pure water of 70 ° or less.
  • the antireflection layer of the present invention is attached to an image display device, the lower the peel strength from a commercially available adhesive tape, the easier it is to peel off after sticking a sticker or memo, and the preferred is 500 gf or less. Preferred is less than lOOgf.
  • the higher the surface hardness measured with a microhardness meter, the harder it is to scratch preferably 0.3 GPa or more, and more preferably 0.5 GPa or more.
  • the fluorine-containing polymer used in the low refractive index layer is a hydrolyzed perfluoroalkyl group-containing silane compound (eg, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) triethoxysilane).
  • fluorine-containing copolymers having a fluorine-containing monomer unit and a constituent unit for imparting crosslinking reactivity as constituent components.
  • fluorine-containing monomer examples include, for example, fluoroolefins (eg, fluoroethylene, bi-lidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoropropylene). , Perfluoro-2,2-dimethyl-1,3-dioxole, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (Osaka Organic Chemical) or M-2020 (Daikin)) ), Full or partially fluorinated butyl ethers, etc. It is an ins, and viewpoint powers such as refractive index, solubility, transparency, and availability. Hexafluoropropylene is particularly preferable.
  • fluoroolefins eg, fluoroethylene, bi-lidene fluoride, tetrafluoroethylene, perfluorooctylethylene, hexafluoro
  • Examples of the structural unit for imparting crosslinking reactivity include structural units obtained by polymerization of monomers having self-crosslinkable functional groups, such as glycidyl (meth) acrylate and glycidyl vinyl ether.
  • Carboxyl group, hydroxy group, amino group, sulfo group-containing monomer for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, aryl acrylate, hydroxyethyl beryl ether , Hydroxybutyl vinyl ether, maleic acid, crotonic acid, etc.
  • structural units obtained by introducing a bridge reactive group such as a (meth) acryloyl group into these structural units by polymer reaction (For example, it can be introduced by a method such as making acrylic acid chloride on the hydroxy group) It is below.
  • Acid 2-ethylhexyl methacrylic acid esters (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate), styrene derivatives (styrene, dibutylbenzene, butyltoluene, a- methylstyrene) Etc.), butyl ethers (such as methyl vinylenotenole, ethenolevinoreenotenole, cyclohexenolevenoreenotenole) vinyl esters (vinyl acetate, butyl propionate, cinnamate bur, etc.), acrylamides (N-tert-butylacrylamide) , N— Cyclohexylacrylamide), methacrylamides, acrylonitrile derivatives, and the like.
  • methacrylic acid esters methyl methacrylate, ethyl methacrylate, butyl me
  • a curing agent may be appropriately used in combination with the above polymer.
  • the light scattering layer is formed for the purpose of contributing to the film a light diffusibility due to surface scattering and Z or internal scattering, and a hard coat property for improving the scratch resistance of the film. Obedience
  • it includes a binder for imparting hard coat properties, matte particles for imparting light diffusibility, and inorganic fillers for increasing the refractive index, preventing crosslinking shrinkage, and increasing the strength as necessary. Is done.
  • the thickness of the light scattering layer is preferably from 1 to: LO / zm from the viewpoint of imparting hard coat properties and suppressing curling and brittleness deterioration. More preferred.
  • the binder of the light scattering layer is more preferably a polymer having a saturated hydrocarbon chain as a main chain, preferably a polymer having a saturated hydrocarbon chain or a polyether chain as the main chain.
  • the binder polymer preferably has a crosslinked structure.
  • a polymer of an ethylenically unsaturated monomer is preferable.
  • a (co) polymer of monomers having two or more ethylenically unsaturated groups is preferred.
  • the monomer structure that contains an aromatic ring, a halogen atom other than fluorine, a sulfur atom, a phosphorus atom, or a nitrogen atom and at least one selected atom.
  • Monomers having two or more ethylenically unsaturated groups include esters of polyhydric alcohols and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, butanediol (meth) acrylate, Hexanediol di (meth) acrylate, 1,4-cyclohexanediatalylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylol Tantri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol monopenta (meth) acrylate, dipentaerythritol hex (meth) acrylate, penta erythritol hex (meth) acrylate 1, 2, 3 to
  • the high refractive index monomer include bis (4-methacryloylthiophene) sulfuride, urnaphthalene, burfellsulfuride, 4-methacryloxyphenol 4'-methoxyphenyl thioether, and the like. It is done. Two or more of these monomers may be used in combination.
  • Polymerization of the monomer having an ethylenically unsaturated group can be carried out by irradiation with ionizing radiation or heating in the presence of a photo radical initiator or a thermal radical initiator.
  • a coating liquid containing a monomer having a photo radical, a thermal radical initiator, a thermal radical initiator, matte particles and an inorganic filler is prepared, and the coating liquid is coated on a support and then cured by ionizing radiation or heat polymerization reaction.
  • a light scattering layer can be formed.
  • photo radical initiators known ones can be used.
  • the polymer having a polyether as the main chain is preferably a ring-opening polymer of a polyfunctional epoxy compound.
  • the ring-opening polymerization of the polyfunctional epoxy compound can be performed by irradiation with ionizing radiation or heating in the presence of a photoacid generator or a thermal acid generator.
  • a coating solution containing a polyfunctional epoxy compound, a photoacid generator or a thermal acid generator, matte particles and an inorganic filler is prepared, and the coating solution is applied onto a transparent support and then ionized radiation or It can be cured by a polymerization reaction by heat to form an antireflection film.
  • a crosslinkable functional group is introduced into the polymer by using a monomer having a crosslinkable functional group, and this crosslinkable functional group By this reaction, a crosslinked structure may be introduced into the binder polymer.
  • the crosslinkable functional group include an isocyanate group, an epoxy group, an aziridine group, an oxazoline group, an aldehyde group, a carboxylic group, a hydrazine group, a carboxyl group, a methylol group, and an active methylene group.
  • Vinylsulfonic acid, acid anhydride, cyanoacrylate derivative, melamine, etherified methylol, ester and urethane, and metal alkoxides such as tetramethoxysilane can also be used as a monomer for introducing a crosslinked structure.
  • a functional group that exhibits crosslinkability as a result of the decomposition reaction such as a block isocyanate group, may be used. That is, in the present invention, the crosslinkable functional group shows a reaction immediately. Even if it is not, it may be reactive as a result of decomposition.
  • binder polymers having a crosslinkable functional group can form a crosslinked structure by heating after coating.
  • the light scattering layer has an average particle size larger than the filler particles of 1 to 10 for the purpose of imparting antiglare properties.
  • matte particles for example, inorganic compound particles or resin particles.
  • the mat particles include inorganic compounds such as silica particles and TiO particles.
  • Particles Preferred are resin particles such as acrylic particles, crosslinked acrylic particles, polystyrene particles, crosslinked styrene particles, melamine resin particles, and benzoguanamine resin particles. Of these, crosslinked styrene particles, crosslinked acrylic particles, crosslinked acrylic styrene particles, and silica particles are preferred.
  • the shape of the mat particles can be either spherical or irregular.
  • Two or more kinds of mat particles having different particle diameters may be used in combination. Anti-glare properties can be imparted with mat particles having a larger particle size, and different optical characteristics can be imparted with mat particles having a smaller particle size.
  • the particle size distribution of the mat particles it is most preferable that the particle size of each particle is most preferably monodispersed, and the closer the particle size is, the better.
  • the proportion of coarse particles is preferably 1% or less of the total number of particles, more preferably 0. It is 1% or less, more preferably 0.01% or less. Matt particles having such a particle size distribution are obtained by classification after a normal synthesis reaction, and a matting agent having a more preferable distribution can be obtained by increasing the number of classifications or increasing the degree of classification.
  • the diffusion particles is preferably matte particle amount of the formed light-scattering layer 10: more preferably LOOOmg contained in the light scattering layer so that 100 to 700 mg / m 2.
  • the particle size distribution of the matte particles is measured by the Coulter counter method, and the measured distribution is converted into a particle number distribution.
  • the light scattering layer in order to increase the refractive index of the layer, in addition to the above mat particles, at least one selected from titanium, zirconium, aluminum, indium, zinc, tin, and antimony is used.
  • the average particle size is less than 0, preferably less than 0. Below, it is preferable that an inorganic filler of 0.06 m or less is contained.
  • the light scattering layer using the high refractive index matte particles should use a key oxide to keep the refractive index of the layer low. Also like
  • the particle size is the same as the inorganic filler described above.
  • inorganic fillers used in the light scattering layer include TiO
  • a surface treatment agent having a functional group capable of reacting with a binder species on the filler surface which is preferably treated with a silane coupling treatment or a titanium force coupling treatment, is preferably used.
  • the addition amount of these inorganic fillers is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, particularly preferably 30 to 75% by mass, based on the total mass of the light scattering layer. .
  • Such a filler does not scatter because the particle size is sufficiently smaller than the wavelength of light, and the dispersion in which the filler is dispersed in a Noinder polymer behaves as an optically uniform substance.
  • the refractive index of the butter of the mixture of the binder and the inorganic filler in the light scattering layer is preferably 1.48 to 2.00, more preferably 1.50-1.80.
  • the type and amount ratio of the binder and the inorganic filler may be appropriately selected. How to select can be easily known experimentally in advance.
  • the light scattering layer contains either a fluorine-based surfactant or a silicone-based surfactant, or both in the coating composition. Contained in.
  • a fluorine-based surfactant is preferably used because an effect of improving surface defects such as coating unevenness, drying unevenness, and point defects of the antireflection layer of the present invention appears with a smaller addition amount. The purpose is to increase productivity by improving the surface uniformity while giving high-speed coating suitability.
  • the antireflection film made of the material is designed to have a refractive index satisfying the following relationship. High refractive index layer refractive index> Medium refractive index layer refractive index> Transparent support refractive index> Low refractive index Layer refractive index
  • a hard coat layer may be provided between the transparent support and the medium refractive index layer. Further, it may consist of a medium refractive index hard coat layer, a high refractive index layer and a low refractive index layer (for example, JP-A-8-122504, JP-A-8-110401, JP-A-10-300902, No. 20 02-243906 and JP-A 2000-111706). Further, other functions may be imparted to each layer. For example, an antifouling low refractive index layer and an antistatic high refractive index layer (eg, JP-A-10-206603, JP 2002-243906) and the like.
  • the haze of the antireflection layer is preferably 5% or less, more preferably 3% or less.
  • the strength of the film is most preferably 2H or higher, more preferably 3H or higher, more preferably H or higher in the pencil hardness test according to JIS K5400.
  • the antireflective layer having a high refractive index is composed of a curable film containing at least an inorganic compound ultrafine particle having a high refractive index having an average particle diameter of lOOnm or less and a matrix binder.
  • Examples of the high refractive index inorganic compound fine particles include inorganic compounds having a refractive index of 1.65 or more, preferably those having a refractive index of 1.9 or more.
  • examples thereof include oxides such as Ti, Zn, Sb, Sn, Zr, Ce, Ta, La, and In, and composite oxides containing these metal atoms.
  • a surface treatment agent for example, silane coupling agent, etc .: JP-A-11-295503, JP-A-11-153703, JP2000-9908).
  • Ionic compounds or organometallic coupling agents Japanese Patent Application Laid-Open No.
  • thermoplastic resin and curable resin film Etc As a material for forming the matrix, conventionally known thermoplastic resin and curable resin film Etc.
  • a polyfunctional compound-containing composition having at least two polymerizable groups of radically polymerizable and Z or cationic polymerizable properties, a composition containing an organometallic compound having a hydrolyzable group and a partial condensate thereof.
  • At least one composition selected from the following is preferred. Examples thereof include the compositions described in JP-A Nos. 2000-47004, 2001-315242, 2001-31871, 2001-296401, and the like.
  • a curable film obtained from a colloidal metal oxide obtained from a hydrolyzed condensate of metal alkoxide and a metal alkoxide composition is also preferred. For example, it is described in JP 2001-293818 A.
  • the refractive index of the high refractive index layer is generally 1.70-2.20.
  • the thickness of the high refractive index layer is preferably 5 nm to 10 ⁇ m, more preferably 10 nm to 1 ⁇ m.
  • the refractive index of the middle refractive index layer is adjusted to be a value between the refractive index of the low refractive index layer and the refractive index of the high refractive index layer.
  • the refractive index of the middle refractive index layer is preferably 1.50 to L70.
  • the thickness is 5 ⁇ ! It is preferable to be ⁇ 10m ⁇ ! More preferably, it is ⁇ 1 ⁇ m.
  • the low refractive index layer is formed by sequentially laminating on the high refractive index layer.
  • the refractive index of the low refractive index layer is from 1.20 to L55. Preferably 1.30 ⁇ : L50.
  • the outermost layer having scratch resistance and antifouling property.
  • As a means for greatly improving the scratch resistance it is effective to impart slipperiness to the surface, and conventionally known means for a thin film layer capable of introducing silicone and introducing fluorine can be applied.
  • the refractive index of the fluorine-containing compound is preferably from 1.35 to L50. More preferably, it is 1.36-1.47.
  • the fluorine-containing compound is preferably a compound containing a crosslinkable or polymerizable functional group containing a fluorine atom in a range of 35 to 80% by mass.
  • the silicone compound is a compound having a polysiloxane structure, preferably containing a curable functional group or a polymerizable functional group in the polymer chain and having a crosslinked structure in the film.
  • reactive silicones eg, Silaplane (manufactured by Chisso Corporation), silanol group-containing polysiloxanes at both ends (JP-A-11-258403, etc.) and the like can be mentioned.
  • the crosslinking or polymerization reaction of the fluorine-containing and Z or siloxane polymer having a crosslinking or polymerizable group is performed by applying a coating composition for forming the outermost layer containing a polymerization initiator, a sensitizer and the like. It is preferable to carry out by light irradiation or heating simultaneously or after coating.
  • sol-gel cured film in which an organometallic compound such as a silane coupling agent and a specific fluorine-containing hydrocarbon group-containing silane coupling agent are cured by a condensation reaction in the presence of a catalyst.
  • organometallic compound such as a silane coupling agent and a specific fluorine-containing hydrocarbon group-containing silane coupling agent are cured by a condensation reaction in the presence of a catalyst.
  • polyfluoroalkyl group-containing silane compounds or partially hydrolyzed condensates thereof JP-A 58-142958, JP-A 58-147483, JP-A 58-147484, JP-A 9-157582
  • silyl compounds containing a poly “perfluoroalkyl ether” group which is a fluorine-containing long chain group JP 2000-117902 A, 2001- 48590, 2002-53804, etc.
  • the low refractive index layer has an average primary particle diameter such as a filler (for example, silicon dioxide (silica), fluorine-containing particles (magnesium fluoride, calcium fluoride, barium fluoride)) as an additive other than the above. 1 to 150 nm low refractive index inorganic compound, organic fine particles described in paragraph Nos. [0020] to [0038] of JP-A-11-3820), silane coupling agent, slip agent, surfactant, etc. be able to.
  • a filler for example, silicon dioxide (silica), fluorine-containing particles (magnesium fluoride, calcium fluoride, barium fluoride)
  • the low refractive index layer When the low refractive index layer is located in the lower layer of the outermost layer, the low refractive index layer may be formed by a vapor phase method (vacuum deposition method, sputtering method, ion plating method, plasma CVD method, etc.).
  • the coating method is preferable because it can be manufactured at a low cost.
  • the film thickness of the low refractive index layer is preferably 30 to 200 nm, preferably 50 to 150 nm. Force S More preferably 60 to 120 nm. [0143] (Another layer of antireflection layer)
  • a hard coat layer a forward scattering layer, a primer layer, an antistatic layer, an undercoat layer or a protective layer may be provided.
  • the hard coat layer is used to give physical strength to the protective film provided with the antireflection layer.
  • the hard coat layer is preferably formed by a crosslinking reaction or a polymerization reaction of a curable compound of light and Z or heat.
  • a curable functional group a photopolymerizable functional group is preferred, and an organic metal compound containing a hydrolyzable functional group is preferably an organic alkoxysilyl compound.
  • the high refractive index layer can also serve as a hard coat layer. In such a case, it is preferable to form fine particles dispersed in the hard coat layer using the method described for the high refractive index layer.
  • the hard coat layer can also serve as an anti-glare layer imparted with an anti-glare function (anti-glare function) by containing particles having an average particle size of 0.2 to LO / z m.
  • the film thickness of the hard coat layer can be appropriately designed depending on the application.
  • the film thickness of the hard coat layer is preferably 0.2 to: LO / zm, more preferably 0.5 to 7 / ⁇ ⁇ .
  • the strength of the hard coat layer is preferably 2 mm or more, more preferably 3 mm or more, most preferably 3 mm or more in the pencil hardness test according to JIS 5400. In addition, in the Taber test according to JIS ⁇ 5400, the smaller the wear amount of the test piece before and after the test, the better.
  • the volume resistivity in the case of providing an antistatic layer is 10- 8 ( ⁇ cm "3) Rukoto be given the following conductivity preferred.
  • Hygroscopic substance, a water-soluble inorganic salts, certain surfactants, cationic Poly Mer, ⁇ - one polymer although imparting a volume resistivity of the use of such colloidal silica 10- 8 ( ⁇ « ⁇ 3) is possible, temperature and humidity dependency in securing sufficient conductivity in a large instrument humidity There is a problem that cannot be answered. Therefore, a metal oxide is preferable as the conductive layer material.
  • Zn, Ti, Al, In, Si, Mg, Ba, Mo, W, or V can be raised as the metal that forms the metal oxide without coloring, and metal oxides based on this can be used. It is preferable to use it. Specific examples include ZnO, TiO, SnO, AlO, InO, SiO, MgO, BaO, MoO, VO, etc.
  • ZnO, TiO, and SnO are preferred.
  • additives such as Al and In for ZnO, Sb, Nb, and halogen for SnO
  • a material obtained by adhering the above metal oxide to other crystalline metal particles or fibrous materials (for example, acid titanium) described in JP-B-59-6235 may be used.
  • Do can volume resistivity and surface resistivity compared simple is another physical property values, but in order to ensure a 10- 8 ( ⁇ cm "3) less conductive in the body volume resistivity is a conductive layer is generally 10- 1Q (Q / U) the following surface resistance, more preferably may be be a 10- 8 ( ⁇ Z port).
  • the surface resistance value of the conductive layer is charged It is necessary to be measured as a value when the protective layer is the outermost layer, and can be measured in the middle of forming the laminated film described in this patent.
  • the polarizing plate using the optical compensation sheet of the present invention can be used for liquid crystal cells and liquid crystal display devices in various display modes.
  • TN Transmission Nematic
  • IPS In— Plane Swit ching
  • FLC Fluoroelectric Liquid Crystal
  • AFLC Anti—ferroelectric Liquid Crystal
  • OCB Optically Compensatory Bend
  • STN Supper Twi sted Nematic
  • VA Very Various display modes such as Aligned
  • HAN Hybrid Aligned Nematic
  • the TN mode, OCB mode and VA mode can be preferably used.
  • the OCB mode liquid crystal cell is a liquid crystal display device using a bend alignment mode liquid crystal cell in which rod-like liquid crystal molecules are aligned in a substantially opposite direction (symmetrically) between the upper and lower portions of the liquid crystal cell.
  • OCB mode liquid crystal cells are disclosed in US Pat. Nos. 4,583,825 and 5,410,422. Since the rod-like liquid crystal molecules are symmetrically aligned at the upper and lower portions of the liquid crystal cell, the bend alignment mode liquid crystal cell has a self-optical compensation function. Therefore, this liquid crystal mode is also called OCB (Optically Compensatory Bend) liquid crystal mode.
  • the bend alignment mode liquid crystal display device has an advantage of a high response speed.
  • rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • the VA mode liquid crystal cell includes: (1) a narrowly defined VA mode liquid crystal cell in which rod-like liquid crystalline molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when a voltage is applied. (2) Liquid crystal cell (SID97, Digest of tech. Papers (Preliminary Collection) 28 (1997) 845 (3) A liquid crystal cell (n-ASM mode) in which rod-like liquid crystalline molecules are oriented substantially vertically when no voltage is applied and twisted multi-domain alignment is applied when a voltage is applied (Preliminary collection of Japan Liquid Crystal Society) 58-59 (1998)) and (4) SURVAIVAL mode liquid crystal cells (announced at LCD International 98).
  • the VA mode liquid crystal display device includes a liquid crystal cell and two polarizing plates arranged on both sides thereof.
  • the liquid crystal cell carries a liquid crystal between two electrode substrates.
  • one optical compensation sheet of the present invention is disposed between the liquid crystal cell and one polarizing plate, or between the liquid crystal cell and both polarizing plates. Place two in the box.
  • the optical compensation sheet of the present invention is used as a transparent protective film of a polarizing plate disposed between a liquid crystal cell and a polarizer.
  • the above optical compensation sheet may be used only for the transparent protective film (between the liquid crystal cell and the polarizer) of one polarizing plate, or between the polarizing plate (between the liquid crystal cell and the polarizer). Two transparent protective films You may use said optical compensation sheet.
  • the optical compensation sheet is used for only one polarizing plate, it is particularly preferable to use it as a protective film for the liquid crystal cell side of the backlight side polarizing plate of the liquid crystal cell.
  • the base film of the cyclic olefin-based addition polymer of the present invention is preferably on the VA cell side.
  • the protective film may be a normal cell mouth succinate film.
  • 40-80 m force is preferable, KC4UX 2M (40 ⁇ m manufactured by Co-Chapto Corporation), KC5UX (60 ⁇ m manufactured by Co-Chapto Corporation), TD80 (80 ⁇ m manufactured by Fuji Photo Film), etc. There are no limitations to these forces.
  • the optical compensation sheet of the present invention may be used as a support for an optical compensation sheet of a TN type liquid crystal display device having a TN mode liquid crystal cell.
  • TN mode liquid crystal cells and TN liquid crystal display devices have been well known for a long time. For example, there are descriptions in JP-A-3-9325, JP-A-6-148429, JP-A-8-50206, and JP-A-9-26572. Also described in Mori et al. (Jpn. J. Appl. Phys. Vol. 36 (1997) p. 143 and Jpn. J. Appl. Phys. Vol. 36 (1997) p. 1068) There is S.
  • part means “part by mass”.
  • Re (E) and Rth () respectively represent an in-plane retardation and a thickness direction retardation at the wavelength.
  • Re () is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments) with light of wavelength ⁇ nm incident in the normal direction of the film.
  • 13 ⁇ 411 (ee) is the above-mentioned 1 ⁇ (ee) with the in-plane slow axis (determined by KOBRA 21ADH or WR) as the tilt axis (rotary axis) (if there is no slow axis, the film surface Normal direction force with respect to the film normal direction (in any direction of the rotation axis) in one step up to 50 degrees on each side in 10 degree steps, and light of wavelength ⁇ nm is incident from each of the tilted directions in total 6 points Measurement Then, KOBRA 21ADH or WR calculates based on the measured retardation value, assumed value of average refractive index, and input film thickness value.
  • the slow axis is the tilt axis (rotary axis) (if there is no slow axis, the arbitrary direction in the film plane is the rotational axis), and any two-way force letter value is measured.
  • Rth can also be calculated from the following formula (1) and formula (2) based on the assumed average refractive index and the input film thickness value.
  • the assumed value of the average refractive index the values in the polymer handbook (JOHN WILEY & SONS, INC) and catalogs of various optical films can be used. If the average refractive index is not known, it can be measured with V or Abbe refractometer.
  • Examples of the average refractive index values of main optical films are as follows: Cellulose acylate (1.48), cycloolefin polymer (1.52), polycarbonate (1.59), polymethylol methacrylate ( 1. 49) and polystyrene (1.59).
  • KOBRA 21ADH or WR calculates nx, ny, and nz.
  • Nz (nx-nz) / (nx-ny) is further calculated from the calculated nx, ny, nz.
  • Re ( ⁇ ) above represents the value of the retardation in the direction of normal force angle ⁇ .
  • Sample 7mm X 35mm was measured by the Karl Fischer method using a moisture analyzer and sample drying equipment (CA-03, VA-05, both Mitsubishi Chemical Corporation). The water content (g) was divided by the sample mass (g).
  • the haze can be measured using a 1001DP type haze meter manufactured by Nippon Denshoku Industries Co., Ltd.
  • the peel load is measured as follows.
  • the dope is dropped on a metal plate having the same material as the metal support of the film forming apparatus, and is spread to a uniform thickness using a doctor blade and dried. Make a cut of equal width into the film with a cutter knife, peel off the tip of the film by hand, and hold it with a clip connected to the strain gauge. Measure the load change while pulling the strain gauge diagonally at 45 degrees.
  • the volatile content in the peeled film is also measured. The same measurement is performed several times while changing the drying time, and the peeling load at the same time as the residual volatile content at the peeling in the actual film forming process is determined.
  • the peel load was measured using the dope for film formation prepared in the following examples, and the peel resistance value per 1 cm of film width was calculated and shown in Table 1.
  • the maximum peel load value when the residual solvent concentration of the release film was 20 to 28% by mass was adopted.
  • the inlet temperature was 200 ° C and the outlet temperature was 140 ° C. It was extruded from the T-die through a sintered filter and gear pump at the outlet of the extruder.
  • the first cooling roll was pressed by 0.17 m against the sheet width of 1.7 m on the first cooling roll using an electrostatic application method.
  • the cooling rate between the cooling rolls arranged densely as described above was 2 ° CZ seconds.
  • the cooling rate was expressed as a value obtained by dividing the difference between the film temperature installed on the first cooling roll and the sheet temperature just before being peeled off from the final cooling roll by the time required to pass through this interval.
  • the solution was filtered through a 4 ⁇ m filter paper and a sintered metal filter having an average pore size of 10 ⁇ m.
  • Cyclic olefin-based addition polymer solution Cyclic olefin-based addition polymer P— 1 1 5 0 parts by mass Methylene chloride 4 0 0 parts by mass Methanol 5 0 parts by mass
  • the above dope was cast using a band casting machine.
  • the residual solvent amount is peeled even band power from 15 to 25 weight 0/0 film was stretched in the transverse direction using a tenter, while maintaining such from entering wrinkles on the film, applying a hot air 120 ° C And dried. After that, the tenter transport was switched to the roll transport, and further dried at 120 ° C to 140 ° C and wound up.
  • Table 1 shows the characteristics of the film (F-21).
  • a dope was prepared in the same manner as in F-21 film formation using the following composition.
  • Films were formed in the same manner as Film F-21 to produce Films F-31 and F-41.
  • a dope was prepared in the same manner as in F-21 film formation using the following composition.
  • a film F-51 was produced in the same manner as film F-21.
  • a dope was prepared in the same manner as in F-21 film formation using the following composition. [0174] [Table 7]
  • Mat agent dispersion he siri force particles with an average particle size of 16 nm
  • a film F-61 was produced in the same manner as Film F-21.
  • the base film F-11, F21, F-31, F-41, F-51, and F-61 with a cyclic olefin-based copolymer are glossed between the upper and lower electrodes made of brass (argon gas atmosphere).
  • Discharge treatment (frequency 3000Hz, 4200V high frequency voltage applied between upper and lower electrodes, treatment for 20 seconds), film F-12, F-22, F-32, F-42, F-52 and F-62 was made.
  • the contact angle of pure water on the surface of the protective film treated with glow discharge was all between 36 ° and 41 °. The contact angle was measured with a contact angle meter CA-X manufactured by Kyowa Interface Science Co., Ltd.
  • a coating solution having the following composition was coated at 24 mL / m 2 with a # 14 wire bar coater. It was dried for 60 seconds with warm air of 60 ° C and then with warm air of 90 ° C for 150 seconds. Next, the film formed was rubbed in the clockwise direction of 135 ° with the longitudinal direction (conveying direction) of the base film of the cyclic olefin-based addition polymer being 0 °.
  • the solvent is dried, and then the film surface wind speed corresponding to the discotic liquid crystalline compound layer is parallel to the film transport direction in the 135 ° C drying zone. 1. It was adjusted to 5 mZ seconds and heated for about 90 seconds to orient the discotic liquid crystal compound. Next, it is transported to a drying zone at 80 ° C, and the surface temperature of the film is about 100 ° C. Was irradiated for 4 seconds to cause the crosslinking reaction to proceed, and the discotic liquid crystalline compound was fixed in the orientation. Thereafter, it was allowed to cool to room temperature and wound into a cylindrical shape to form a roll. In this way, a roll-shaped optical compensation sheet L31 having an optically anisotropic layer was produced. The thickness of the optically anisotropic layer was 1.6 m.
  • Re of the optically anisotropic layer measured using an automatic birefringence measuring apparatus "KOBRA 21ADH" (manufactured by Oji Scientific Instruments) was 27 nm. Furthermore, only the optically anisotropic layer is peeled off from the optical compensation sheet, and the ⁇ value and the average direction of the molecular symmetry axis of the optically anisotropic layer are automatically duplicated. Measured with a refraction measuring device "KOBRA 21ADH” (manufactured by Oji Scientific Instruments), the ⁇ value was 33 °, and the average direction of the axis of molecular symmetry was 45.5 ° with respect to the longitudinal direction of the substrate cyclic polyolefin film. there were. To calculate the j8 value, 1.6 was entered as the average refractive index.
  • An alignment film was formed on films F-12 and F-42 that had been subjected to glow discharge treatment in the same manner as in Example 3-1. Subsequently, the longitudinal direction (conveying direction) of the film was set to 0 °, and the alignment film thus formed was rubbed in the clockwise direction of 180 °.
  • the discotic liquid crystalline compound 91 On the alignment layer, the discotic liquid crystalline compound 91.
  • Okg ethylene oxide-modified trimethylolpropane tritaladelide 'V # 360 " ⁇ manufactured by Osaka Organic Chemicals Co., Ltd. ⁇ 9.
  • Okg cell mouth acetoacetate Butylade 'CAB551- 0.2, (Eastman Chemical Co., Ltd.) 2.0kg, Cellulose Acetate Butylade' CAB531-1 "(Eastman Chemical Co., Ltd.) 0.5kg, Photopolymerization Initiator” Irgacure 907 ” ⁇ Ciba 'Specialty' Chemicals Co., Ltd. ⁇ 3.0 kg, Sensitizer“ Cacure 1 DETX ” ⁇ Nippon Yakuyaku Co., Ltd. ⁇ 1.
  • Re of the optically anisotropic layer measured using an automatic birefringence measuring apparatus "KOBRA 21ADH" (manufactured by Oji Scientific Instruments) was 46 nm. Furthermore, only the optically anisotropic layer was peeled off from the sampler, and the automatic birefringence measuring device "KOBRA 21ADH” ⁇ Oji Scientific Instruments Co., Ltd. As a result of measurement, the value was 38 °, and the average direction of the molecular symmetry axis was 0.3 ° with respect to the longitudinal direction of the optical compensation film. For the eight-value calculation, an average refractive index of 1.6 was entered.
  • the substrate solution F-12, F-22 and F-52 of the cyclic olefin-based addition polymer subjected to the glow discharge treatment was continuously applied onto the substrate film using a bar coater while being conveyed.
  • the coating layer was heated at 120 ° C. for 5 minutes and dried to form a 1 ⁇ m thick layer. Subsequently, the surface of the coating layer was continuously rubbed in the longitudinal direction (conveying direction) to form an alignment film.
  • a coating solution having the following composition was continuously applied using a bar coater.
  • the coating layer is heated at 100 ° C for 1 minute to align the rod-like liquid crystal molecules, and then irradiated with ultraviolet rays to polymerize the rod-like liquid crystal molecules, fix the alignment state, and optical compensation sheets L13, L23 and L53 (substrate The films were F-12, F-22, and F-52), respectively.
  • the thickness of the optically anisotropic layer was 1.7 m.
  • the rod-like liquid crystalline molecules are such that the long axis direction is a roll-shaped cyclic olefin-based addition polymer. (I.e., the slow axis direction of the optically anisotropic layer was perpendicular to the longitudinal direction of the base film of the roll-shaped cyclic olefin-based addition polymer) .
  • Re and Rth (measurement wavelength: 590 nm) of the obtained optical compensation sheet (L13) were 48 nm and 27 nm, respectively.
  • Re and Rth (measurement wavelength 590 nm) of the optical compensation sheet (L23) were 58 nm and 239 nm, respectively.
  • 2, 2'-bis (3,4 dicarboxylhexafluoropropane) and 2,2'-bis (trifluoromethyl) 4,4'-diaminobiphenol also synthesized polyimide (mass average) (Molecular weight 59,000) was dissolved in cyclohexanone to prepare a 15% by mass polyimide solution.
  • the prepared polyimide solution was applied onto a cyclic polyolefin film F22 that had been subjected to a glow discharge treatment, stretched 7% in the width direction at a temperature of 180 ° C., and dried.
  • the optical compensation sheet L24 made in this way has a total film thickness of 59 ⁇ m, Re of 45 nm, and Rth of 390 nm.
  • n is 6
  • sol solution a was prepared as follows. A reactor equipped with a stirrer and a reflux condenser, 120 parts of methyl ethyl ketone, 100 parts of acryloyloxypropyltrimethoxysilane (KBM5 103, manufactured by Shin-Etsu Chemical Co., Ltd.), diisopropoxyaluminum ethyl acetate After mixing 3 parts of the tate, 30 parts of ion-exchanged water was added and reacted at 60 ° C. for 4 hours, and then cooled to room temperature to obtain sol solution a. The mass average molecular weight was 1600, and among the components higher than the oligomer component, the component having a molecular weight of 1000 to 20000 was 100%. From the gas chromatographic analysis, the raw material, talyloxypropyltrimethoxysilane, did not remain at all.
  • silica sol sica, MEK-ST particle size difference, average particle size 45nm, solid content concentration 30%, manufactured by Nissan Chemical Co., Ltd.
  • the coating layer was cured by irradiating with UV light with an illuminance of 400 mWZ cm 2 and an irradiation amount of 250 mjZcm 2.
  • the functional layer was formed and wound up.
  • the triacetyl cellulose film coated with the functional layer is unwound again, and the prepared coating liquid for the low refractive index layer is formed on the light scattering layer side.
  • a micro gravure roll with a diameter of 50 mm and a doctor blade having a gravure pattern of m, coating was performed under the conditions of a gravure roll rotation speed of 30 rpm and a conveyance speed of 15 mZ, drying at 120 ° C for 150 seconds, and further at 140 ° C After drying for 8 minutes and using a 240 WZcm air-cooled metal nitride lamp (made by Eye Graphics Co., Ltd.) under a nitrogen purge, the illuminance is 400 m.
  • An ultraviolet ray with an irradiation dose of 900 mjZcm 2 was irradiated to form a low refractive index layer having a thickness of lOOnm and wound up.
  • the spectral reflectivity at an incident angle of 5 ° was also measured in the wavelength region of 380 to 780 nm, and the functional film side force was measured, and an integrating sphere of 450 to 650 nm The average reflectance was determined to be 2.3%.
  • a polarizer was produced by adsorbing iodine to a stretched polyvinyl alcohol film.
  • the surface of the produced transparent protective film TAC01 with a light scattering layer was subjected to an alkali ken treatment, and the side without the functional film and one side of the polarizer were attached using a polyvinyl alcohol-based adhesive.
  • Glow discharge treatment (frequency 3000Hz, 4200V high frequency voltage) between the upper and lower electrodes on the optical compensation sheets (L12, L13, L23, L24, L31, L42 and L53) produced in Examples 3-1 to 3-4
  • the base film surface was attached to the opposite side of the polarizer and dried at 70 ° C. for 10 minutes or more.
  • the transmission axis of the polarizer and the slow axis of the optical compensation sheet prepared in Examples 3-1 to 3-4 were arranged in parallel.
  • the transmission axis of the polarizer and the slow axis of the transparent protective film TAC01 with a light scattering layer were arranged so as to be orthogonal to each other. In this way, polarizing plates (A-12, A-13, A-23, A-24, A-31, A-42 and A-53) were produced.
  • Trimethylolpropane tritalylate (TMPTA, Nippon Kayaku Co., Ltd.) 75.0 parts by mass, poly (glycidyl methacrylate) having a mass average molecular weight of 3000 270.0 parts by mass, methyl ethyl ketone 730.
  • TMPTA Trimethylolpropane tritalylate
  • poly (glycidyl methacrylate) having a mass average molecular weight of 3000 270.0 parts by mass
  • methyl ethyl ketone 730 Og, cyclohexane Xanone 500.
  • Og and photopolymerization initiator (Irgacure 184, manufactured by Ciba Geigy Japan, Inc.) 50. Og were added and stirred.
  • the solution was filtered through a polypropylene filter having a pore diameter of 0.4 m to prepare a coating solution for a hard coat layer.
  • Titanium dioxide fine particles include cobalt, titanium dioxide fine particles (MPT-129, Ishihara Industry Co., Ltd.) that have been surface treated with aluminum hydroxide and zirconium hydroxide. )).
  • a copolymer represented by the following formula was dissolved in methylisobutyl ketone so as to have a concentration of 7% by mass, and a terminal metatalylate group-containing silicone resin X—22—164C (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • a coating solution for a low refractive index layer was prepared by adding 3% to the solid content and 5% by mass of the photoradical generator Irgacure 907 (trade name) based on the solid content.
  • the coating solution for hard coat layer was applied onto the product (by Rum Co., Ltd.) using a gravure coater. After drying at 100 ° C, using a 160WZcm air-cooled metal nitride lamp (made by Eye Graphics Co., Ltd.) while purging with nitrogen so that the oxygen concentration becomes 1.0 vol% or less, the illuminance is 400mWZcm 2. An ultraviolet ray with an irradiation amount of 300 mjZcm 2 was irradiated to cure the coating layer to form a hard coat layer having a thickness of 8 ⁇ m.
  • a medium refractive index layer coating solution, a high refractive index layer coating solution, and a low refractive index layer coating solution were successively applied using a gravure coater having three coating stations.
  • the drying condition of the medium refractive index layer is 100 ° C for 2 minutes, and the UV curing condition is 180 WZcm air-cooled metal nano lamp with nitrogen purge so that the oxygen concentration is 1.0 volume% or less ( Using an iGraphics Co., Ltd., the irradiance was 400 mWZcm 2 , and the irradiation amount was 400 3 ⁇ 4 [Zcm 2] .
  • the medium refractive index layer after curing had a refractive index of 1.630 and a film thickness of 67 nm.
  • the drying conditions of the high refractive index layer and the low refractive index layer are both 90 ° C, 1 minute, then 100 ° C, 1 minute, and the ultraviolet curing conditions are those in which the oxygen concentration is 1.0 vol% or less.
  • a nitrogen purge a 240 WZcm air-cooled metal nanoride lamp (manufactured by Eye Graphics Co., Ltd.) was used to obtain an irradiation intensity of 600 mWZcm 2 and an irradiation amount of 600 mjZcm 2 .
  • the cured high refractive index layer had a refractive index of 1.905 and a film thickness of 107 nm, and the low refractive index layer had a refractive index of 1.440 and a film thickness of 85 nm. In this way, a transparent protective film TAC02 with an antireflection layer was produced.
  • a polarizer was produced by adsorbing iodine to a stretched polyvinyl alcohol film.
  • the surface of the produced transparent protective film TAC02 was subjected to alkali saponification treatment, and the non-colored side of the functional film and one side of the polarizer were pasted using a polybutyl alcohol adhesive.
  • Glow discharge treatment (frequency 3000Hz, 4200V high frequency voltage) between the upper and lower electrodes on the optical compensation sheets (L12, L13, L23, L24, L31, L42 and L53) produced in Examples 3-1 to 3-4
  • the base film surface was attached to the opposite side of the polarizer and dried at 70 ° C. for 10 minutes or more.
  • the transmission axis of the polarizer and the slow axis of the optical compensation sheet prepared in Examples 3-1 to 3-4 were arranged in parallel.
  • the transmission axis of the polarizer and the slow axis of the transparent protective film TAC02 were arranged so as to be perpendicular to each other. In this way, polarizing plates (B-12, B-13, B-23, B-24, B-31, B-42 and B53) were produced.
  • a polarizer was produced by adsorbing iodine to a stretched polyvinyl alcohol film.
  • the surface of a triacetylcellulose film (Fujitac TD80UF, manufactured by Fuji Photo Film Co., Ltd.) having a film thickness of 80 ⁇ m was treated with alkali candy and attached to one side of a polarizer using a polybulal alcohol adhesive.
  • the transmission axis of the polarizer and the slow axis of the optical compensation sheet prepared in Examples 3-1 to 3-4 were arranged in parallel.
  • the transmission axis of the polarizer and the slow axis of the transparent protective film Fujitac TD80UF were arranged so as to be orthogonal to each other. In this way, polarizing plates (C-12, C-13, C-23, C-24, C-31, C-42 and C-53) were produced.
  • the dope was prepared by heating and dissolving in a pressure-resistant airtight container at 70 to 90 ° C. and then filtering.
  • Retardation enhancer solution The following retardation enhancer 2 0.0 part by mass Methylene chloride 5 8. 3 parts by mass Methanol 8.7 parts by mass Cellulose acetate solution 1 2. 8 parts by mass
  • the prepared cellulose acetate solution is pumped out with a gear pump, and a prescribed amount of matting agent dispersion, letter expression developer solution and UV absorber solution is injected in the middle, and mixed uniformly with a static mixer, and then used with a band casting machine. Casted.
  • the composition of the casting dope is shown in Table 2 below.
  • the film removed from the band with a residual solvent amount of 25 to 35% by mass was dried by applying hot air while being stretched in the width direction while being held by a tenter, and then transferred from the tenter conveyance to the roll conveyance. It was dried, knurled and wound up to 1440 mm width.
  • a 1.5 mol / L aqueous sodium hydroxide solution was prepared and kept at 55 ° C.
  • a 0.005 mol / L dilute sulfuric acid aqueous solution was prepared and kept at 35 ° C.
  • the produced cellulose phosphate film was immersed in the above aqueous sodium hydroxide solution for 2 minutes, and then immersed in water to thoroughly wash away the aqueous sodium hydroxide solution.
  • the sample was sufficiently dried at 120 ° C to prepare cellulose acetate films C1 and C2. Residual solvents were all 0.2% by mass or less.
  • the properties of the resulting film and the draw ratio are listed in Table 2 below.
  • composition was put into a mixing tank, stirred to dissolve each component, and then filtered through a filter paper having an average pore size of 34 ⁇ m and a sintered metal filter having an average pore size of 10 ⁇ m.
  • Cyclic polyolefin solution D-3 Arton G (manufactured by JSR Corporation) 1 5 0 parts by mass Methylene chloride 5 5 0 parts by mass Ethanol 50 parts by mass
  • the above-mentioned dope was cast using a band casting machine.
  • the film having a residual solvent amount of about 22% by mass and stripped of the bandka was stretched in the width direction using a tenter at a stretch rate of 50%. Thereafter, the tenter conveying force was also transferred to roll conveyance, and further dried at 120 ° C to 140 ° C and wound up.
  • the resulting cyclic polyolefin film had a thickness of 60 ⁇ m, a Re force of 3 nm, and an Rth of 80 ⁇ m.
  • This film is subjected to a glow discharge treatment between brass upper and lower electrodes (argon gas atmosphere) (frequency 3000Hz, 4200V high frequency voltage applied between the upper and lower electrodes, treated for 20 seconds), and a ring-opening polymerized cyclic polyolefin film C3 was produced.
  • the contact angle of pure water on the film surface was between 36 ° and 41 °.
  • Example 3-1 In the same manner as in Example 3-1, an alignment film is applied to the cellulose acetate film C1, rubbed, and a discotic liquid crystal layer (an optically anisotropic layer) is applied to the optical compensation sheet CL-1.
  • a discotic liquid crystal layer an optically anisotropic layer
  • the Re of the optically anisotropic layer measured using an automatic birefringence measuring apparatus “KOBRA 21ADH” (manufactured by Oji Scientific Instruments) was 27 nm. Furthermore, only the optically anisotropic layer was peeled off from the optical compensation sheet, and the automatic birefringence measurement device "KOBRA 21ADH” (Oji Scientific Instruments)
  • the ⁇ value was 33 °, and the average direction of the molecular symmetry axis was 45.5 ° with respect to the longitudinal direction of the base cellulose acylate film.
  • 1.6 was entered as the average refractive index.
  • Example 3-2 In the same manner as in Example 3-2, an orientation film was applied to the film C2 prepared in Comparative Example 1 and the film C3 prepared in Comparative Example 2, and a rubbing treatment was performed to form a discotic liquid crystal layer (optical anisotropy).
  • Optical compensation sheets CL-2 and CL-3 were prepared by applying a layer).
  • the Re of the optically anisotropic layer measured using an automatic birefringence measuring apparatus “KOBRA 21ADH” manufactured by Oji Scientific Instruments
  • the optically anisotropic layer is peeled off from the optical compensation sheet, and the ⁇ value and the average direction of the molecular symmetry axis of the optically anisotropic layer are automatically duplicated.
  • Polarizing plates CA-1, CA-2 and CA-3 were produced using optical compensation sheets CL-1, CL-2 and CL-3 in the same manner as in Example 4-1.
  • Polarizer plates CB-1, CB-2, and CB-3 were prepared using optical compensation sheets CL-1, CL-2, and CL-3 in the same manner as in Example 4-2.
  • Polarizing plates CC-1, CC-2 and CC-3 were produced using optical compensation sheets CL-1, CL-2 and CL-3 in the same manner as in Example 4-3.
  • a polyimide film was provided as an alignment film on a glass substrate with an ITO electrode, and the alignment film was rubbed.
  • the two glass substrates obtained were aligned with the rubbing directions parallel to each other, and the cell gap was set to 5.7 m.
  • a cell was fabricated by injecting a liquid crystal compound “ZLI1132” (manufactured by Merck) having ⁇ of 0.1396 into the cell gap.
  • Polarizing plates produced in Example 4 1 and Example 4 2 ⁇ -31, ⁇ -31, and polarizing plates produced in Comparative Examples 5 and 6 One of CA-1 and CB-1 was viewed on the viewing side. As a polarizing plate, combine one of the polarizing plates C-31 and CC-1 prepared in Example 4-3 and Comparative Example 7 as the backlight side polarizing plate, and sandwich the manufactured OCB cell. Further, a polarizing plate was attached via an adhesive (Diabond DA 753, manufactured by Nogawa Chemical) having a thickness of about 8 ⁇ m.
  • an adhesive Diabond DA 753, manufactured by Nogawa Chemical
  • the optically anisotropic layer of the polarizing plate faces the cell substrate, and the rubbing direction of the liquid crystal cell and the rubbing direction of the optically anisotropic layer facing the liquid crystal cell are arranged in antiparallel, and the liquid crystal display device OCB-1 ( Example) and OCB-C1 (comparative example) were prepared. Both were punched into a rectangle so that the absorption axis was 45 ° long with respect to the long side of the polarizing plate after punching in a 23 "wide size. After attaching the light plate, the plate was held at 50 ° C. and 5 kg / cm 2 for 20 minutes for adhesion.
  • the manufactured liquid crystal display device is placed on the backlight, white display voltage 2V and black display voltage 4.5V are applied to the liquid crystal cell, and the measuring instrument "EZ-Contrast 160D" (manufactured by ELDIM) is used.
  • the viewing angle (contrast ratio in the range of 10 or more) was calculated from the luminance measurement of the black and white displays. When any polarizing plate was used, good viewing angle characteristics with polar angles of 80 ° or more were obtained in all directions.
  • the OCB mode liquid crystal display devices of the obtained Examples and Comparative Examples were turned on for 12 hours, and light leakage on the four sides of the screen was compared. As a result, in the comparative example, light leakage was recognized. In the example, there was almost no light leakage.
  • the optically anisotropic layer of the polarizing plate faced the cell substrate and the rubbing direction of the liquid crystal cell and the optical anisotropy facing it.
  • the rubbing direction of the conductive layer was arranged to be antiparallel.
  • one of polarizing plates CA-2 and CB-2 produced in Comparative Examples 5 and 6 was viewed side polarized.
  • the optical plate, the polarizing plate CC 2 prepared in Comparative Example 7 was combined as a backlight side polarizing plate, and the rest was similarly processed to prepare a comparative TN mode liquid crystal display device TN-C2.
  • one of polarizing plates CA-3 and CB-3 prepared in Comparative Examples 5 and 6 was combined as a viewing side polarizing plate, and polarizing plate CC 3 prepared in Comparative Example 7 was combined as a backlight side polarizing plate.
  • the same TN mode liquid crystal display device TN-C3 was prepared in the same manner.
  • the viewing angle (contrast ratio in the range of 10 or more) was calculated from the luminance measurement of black display and white display.
  • the liquid crystal display device Ding 1 and Ding 2 obtained good viewing angle characteristics with polar angles of 60 ° or more in all directions.
  • the liquid crystal display device TN-C3 of the comparative example has a viewing angle characteristic of a polar angle of 40 ° or less, and the force cannot be obtained.
  • the TN mode liquid crystal display devices TN-1 and TN-C2 of Examples and Comparative Examples were turned on for 12 hours, and light leakage on the four sides of the screen was compared. As a result, the light leakage of the comparative example was strong, but the power of the example was almost non-light leakage.
  • the liquid crystal cell has a cell gap between substrates of 3.
  • a liquid crystal material having negative dielectric anisotropy (“MLC6608”, manufactured by Merck & Co., Inc.) is dropped and sealed between the substrates, and the liquid crystal cells are sealed between the substrates.
  • Liquid crystal layer letter d i.e., the thickness d (m) of the liquid crystal layer and The product An n'd
  • the liquid crystal material was aligned so as to be vertically aligned.
  • a polarizing plate C 0 was produced in the same manner as in Example 43 except that a transparent protective film obtained by alkali-cleaning Fujitac TD80UF was used on both the front and back sides of the polarizer.
  • A-23 produced in Example 4-1 was used for the viewing side polarizing plate of the liquid crystal display device using the above vertical alignment type liquid crystal cell, and polarizing plate C-0 was used for the backlight side polarizing plate.
  • the polarizing plate prepared in the example was attached through an adhesive (Diabond DA 753, manufactured by Nogawa Chemical Co., Ltd.) having a thickness of about 8 m so that the optically anisotropic layer of A-23 was on the liquid crystal cell side.
  • a cross-col arrangement was adopted so that the transmission axis of the viewing side polarizing plate was upward and downward, and the transmission axis of the knock light side polarizing plate was horizontal. In this way, a VA mode liquid crystal display device VA-1 was prepared.
  • VA mode liquid crystal display device VA-2 was produced in the same manner as described above except that B-53 produced in Example 4-2 was set as the viewing side.
  • the luminance of the VA liquid crystal display devices VA-1 and VA-2 of the example was measured for black and white display, and the viewing angle (contrast ratio) Range of 10 or more).
  • the liquid crystal display devices VA-1 and VA-2 have good viewing angle characteristics with polar angles of 60 ° or more in all directions.
  • the liquid crystal display was turned on for 12 hours, and the light leakage at the four corners of the screen was observed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)

Abstract

  環境温湿度変化に対して光学特性変化が少なく、かつ面内レターデーションReおよび膜厚方向レターデーションRthの設計の自由度の高い光学補償シートを提供すること。またこのような優れた光学補償シートを有する偏光板および液晶表示装置を提供すること。  環状オレフィン系付加重合体を含有する基体フィルム上に、光学異方性層を積層したことを特徴とする光学補償シート。偏光子と、その両側に配置された2枚の保護膜からなる偏光板において、前記保護膜のうちの少なくとも1枚が、該光学補償シートであることを特徴とする偏光板。該偏光板を少なくとも1枚使用したことを特徴とする液晶表示装置。

Description

光学補償シート、偏光板および液晶表示装置
技術分野
[0001] 本発明は、光学補償シート、偏光板、および液晶表示装置に関する。特に環状ォ レフイン系付加重合体を基体フィルムとして使用する光学補償シートに関する。 背景技術
[0002] 偏光板は通常、ヨウ素、もしくは二色性染料をポリビュルアルコールに配向吸着さ せた偏光子の両側に、保護フィルムとして、セルローストリアセテートを主成分とする フィルム貼り合わせることで製造されている。セルローストリアセテートは、強靭性、難 燃性、光学的等方性が高い(レターデーシヨンが低い)などの特徴があり、上述の偏 光板用保護フィルムとして広く使用されている。液晶表示装置は、偏光板と液晶セル 力 構成されている。現在、液晶表示装置の主流である TNモードの TFT液晶表示 装置においては、特開平 8— 50206号公報に記載のように、光学補償シートを偏光 板と液晶セルの間に挿入することにより、表示品位の高い液晶表示装置が実現され ている。し力し、セルローストリアセテートは水分の吸収や透過が多ぐそのため光学 補償性能が変化したり、偏光子が劣化しやすいという問題点があった。また TN液晶 表示装置では電源オン後経時により画面 4辺に光漏れを生じたり、また VAモード液 晶表示装置では電源オン後経時により 4隅に光漏れを生じるという問題があった。 一方、環状ポリオレフインフィルムはセルローストリアセテートフィルムの吸湿性や透 湿性を改良でき、環境温湿度変化に対する光学特性変化が小さ 、フィルムとして注 目され、熱溶融製膜および溶液製膜による偏光板用および液晶表示用フィルムとし ての開発が行われている。特許文献 1には環状ォレフィン系開環重合体よりなる基材 フィルム上に光学異方性層を積層した光学補償シートが開示されている。しかし開環 重合系のポリオレフインフィルムは、延伸しない場合には面内レターデーシヨン、膜厚 方向レターデーシヨンがともに低く光学等方的であり、また延伸すると面内レターデー シヨン、膜厚方向レターデーシヨンがともに上昇するという性質を有しており、単純な 光学補償ができるのみであった。このため、光学異方性層と組み合わせて光学補償 シートを作製したとしても、その光学補償シートの面内レターデーンヨン、膜厚方向レ ターデーシヨンの光学特性の設計の自由度は限られたものであり、 TN液晶表示装 置や OCB液晶表示装置に使用して視野角を改善する用途に適したものはな力つた 特許文献 1:特開 2004— 246338号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、環境温湿度変化に対して光学特性変化が少なぐかつ面内レタ 一デーシヨン Reおよび膜厚方向レターデーシヨン Rthの設計の自由度の高い光学補 償シートを提供することである。またこのような優れた光学補償シートを有する偏光板 および液晶表示装置を提供することである。
課題を解決するための手段
[0004] 本発明者らは鋭意検討した結果、光学補償シートの基体フィルムの構成ポリマーと して環状ォレフィン系付加重合体を用いることで、面内レターデーシヨンと膜厚方向 レターデーシヨンを自由にコントロールでき、様々なモードの液晶表示装置に用いる のに適した光学補償シートが設計可能となることを見出した。環状ォレフィン系付カロ 重合体を含有する基体フィルムにお ヽて、環状ォレフィン系付加重合体の構造を変 更したり、基体フィルムを延伸することで、光学等方的な基体フィルムや、光学異方 性の大き 、基体フィルムなど様々な光学特性の基体フィルムを得ることができる。特 に、これまで作製が困難であった面内レターデーシヨンに対して相対的に膜厚方向 レターデーシヨンが大きい基体フィルムを得ることが可能になり、光学異方性層と組み 合わせた光学補償シートの光学特性の設計の自由度を著しく高めることに成功した
[0005] 本発明は、以下のとおりである。
(1)環状ォレフィン系付加重合体を含有する基体フィルム上に、光学異方性層を積 層したことを特徴とする光学補償シート。
(2)前記環状ォレフィン系付加重合体が、一般式 (I)で表される少なくとも 1種の繰 返し単位および一般式 (II)で表される少なくとも 1種の環状繰返し単位力 なる共重 合体であることを特徴とする前記(1)に記載の光学補償シート。
[0006] [化 3]
-般式 ( I )
Rxcll
1一 1
RYCII
[0007] [化 4]
一般式 (I I)
Figure imgf000004_0001
[0008] 式中、 mは 0から 4の整数を表す。 1^〜1^は水素原子又は炭素数1〜10の炭化水 素基、 ^〜 、 Y Y2は水素原子、炭素数 1〜: L0の炭化水素基、ハロゲン原子、ハ ロゲン原子で置換された炭素数 1〜10の炭化水素基、 (CH ) COORu、 一 (CH )
2 n 2 n OOCR 、— (CH ) NCO、— (CH ) NO、— (CH ) CN、— (CH ) CONR R 、— (
2 n 2 n 2 2 n 2 n
CH ) NR13R"、— (CH ) OCOZ、— (CH ) OZ、— (CH ) W、または X1と Y1あるいは
2 η 2 η 2 η 2 η
X2と Υ2力も構成された (—CO) 0、 (-CO) NR15を示す。なお、 R11, R12, R13, R14, R1
2 2
5は炭素数 1〜20の炭化水素基、 Zは炭化水素基 ^またはハロゲンで置換された炭化 水素基、 Wは SiR16 D (R16は炭素数 1〜: L0の炭化水素基、 Dはハロゲン原子,
P 3-p
OCOR16または OR16、 pは 0〜3の整数を示す)、 nは 0〜10の整数を示す。
(3)前記環状ォレフィン系付加重合体力 一般式 (II)で表される 1種の環状繰返し 単位力もなる重合体、あるいは、一般式 (II)で表される少なくとも 2種の環状繰返し単 位力 なる共重合体であることを特徴とする前記(1)に記載の光学補償シート。
(4)前記光学補償シートの膜厚方向のレターデーシヨン Rthが下記式を満たすこと を特徴とする前記 (3)に記載の光学補償シート。
40nm≤Rth(630)≤300nm
ここで Rth( λ )は波長 λ nmで測定した Rthを表す。
(5)基体フィルム力 一次粒子径 lnmから 20 mまでの微粒子を、 0. 01力ら 0. 3 質量%の割合で含有することを特徴とする前記(1)〜 (4)の ヽずれかに記載の光学 補償シート。
(6)前記光学異方性層がディスコティック液晶層を含有することを特徴とする前記( 1)〜(5)の 、ずれかに記載の光学補償シート。
(7)前記光学異方性層が棒状液晶層を含有することを特徴とする前記(1)〜 (5)の いずれかに記載の光学補償シート。
(8)前記光学異方性層がポリマーフィルムを含有することを特徴とする前記(1)〜 (5)の 、ずれかに記載の光学補償シート。
(9)前記光学異方性層を形成するポリマーフィルムが、ポリアミド、ポリイミド、ポリエ ステル、ポリエーテルケトン、ポリアミドイミドポリエステルイミド、およびポリアリールェ ーテルケトン力 なる群力 選ばれる少なくとも一種のポリマー材料を含有することを 特徴とする請求項 8に記載の光学補償シート。
(10)前記環状ォレフィン付加重合体を含有する基体フィルムが、環状ォレフィン付 加重合体を 10〜35質量%含有し、かつ塩素系有機溶剤を主溶剤として含有する溶 液を出発原料として、順次、無端金属支持体上に流延する工程、残留揮発分が 5〜 60質量%になるまで乾燥する工程、該金属支持体から 0. 25NZcm以下の剥離抵 抗で剥離する工程、および、乾燥して巻き取る工程を経て製膜されたものであること を特徴とする(1)〜(9)のいずれかに記載の光学補償シート。
(11)前記塩素系有機溶剤の 50質量%以上がジクロロメタンであり、且つ 20〜100 °Cで該環状ォレフィン付加重合体を溶解して、前記溶液とすることを特徴とする、 (1 0)に記載の光学補償シート。
(12)前記溶液中に、環状ォレフィン付加重合体の貧溶媒を該環状ォレフィン付加 重合体 100質量部に対して 3〜: L00質量部含有することを特徴とする、(10)〜(11) の!、ずれかに記載の光学補償シート。
( 13)前記貧溶媒が沸点 120°C以下のアルコール類であることを特徴とする、 ( 12) に記載の光学補償シート。
(14)前記環状ォレフィン付加重合体を含有する基体フィルムが界面活性剤を 0. 0 5〜3質量%含有することを特徴とする(1)〜(9)の 、ずれかに記載の光学補償シー
(15)偏光子と、その両側に配置された 2枚の保護膜からなる偏光板において、前 記保護膜のうちの少なくとも 1枚が、前記(1)〜(14)のいずれかに記載の光学補償 シートであることを特徴とする偏光板。
( 16)前記( 15)に記載の偏光板を少なくとも 1枚使用したことを特徴とする液晶表 示装置。
また、液晶表示装置としては以下の形態が好ましい。
( 17)液晶表示装置に使用される偏光板を構成する保護膜の少なくとも 1枚が、面 内レターデーシヨン Re (630)が 15nm以下であり、膜厚方向のレターデーシヨン Rth (630)が 40nm以上 120nm以下であり、且つディスコティック液晶層が積層されてい る、 TNモードの前記(16)記載の液晶表示装置。
(18)液晶表示装置に使用される偏光板を構成する保護膜の少なくとも 1枚が、面 内レターデーシヨン Re (630)が 15nm以下であり、膜厚方向のレターデーシヨン Rth (630)が 120nm以上 300nm以下であり、且つ棒状液晶層が積層されている、 VA モードの前記(16)の VA液晶表示装置。
(19)液晶表示装置に使用される偏光板を構成する保護膜の少なくとも 1枚が、面 内レターデーシヨン Re (630)が 30nm以上 70以下であり、膜厚方向のレターデーシ ヨン Rth (630)が 120nm以上 300nm以下であり、且つディスコティック液晶層が積 層されている、 OCBモードの前記(16)の OCB液晶表示装置。
ここで Re (え)、 Rth( λ )は波長 λ nmで測定した Rthを表す。
発明の効果
[0011] 本発明により、環境温湿度変化に対して光学特性変化が少なぐかつ面内レター デーシヨン Reおよび膜厚方向のレターデーシヨン Rthの設計の自由度の高い光学補 償シートが得られた。またこのような優れた光学補償シートを有する偏光板および液 晶表示装置が得られた。
本発明によれば、環状ォレフィン系付加重合体を含有する基体フィルムの光学特 性を調節することで、 TN、 VA、 OCBおよび IPSといった様々なモードの液晶表示装 置に対応した光学補償機能を有する光学補償シートや偏光板を作製できる。
また本発明の液晶表示装置は、経時による光漏れが生じな 、かあるいは少な!/、。 発明を実施するための最良の形態
[0012] 以下、本発明を詳細に説明する。
[環状ォレフィン系付加重合体基体フィルム]
(環状ォレフィン系付加重合体)
環状ォレフィン系付加重合体 (以下、環状ポリオレフインとも称する)の例には、 (1) ノルボルネン系重合体、(2)単環の環状ォレフィンの重合体、(3)環状共役ジェンの 重合体、(4)ビニル脂環式炭化水素重合体、および(1)〜(4)の水素化物などが挙 げられる。これらの中でも、光学特性、耐熱性、機械的強度等の観点から、ノルボル ネン系重合体およびその水素化物、ビニル脂環式炭化水素重合体およびその水素 化物などが好ましい。
[0013] 本発明に好ましい重合体は、下記一般式 (I)で表される少なくとも 1種の繰返し単 位および一般式 (Π)で表される少なくとも 1種の環状繰返し単位カゝらなるノルボルネン 系付加 (共)重合体である。 [0014] [化 5] 般式 ( I )
Rxcll
1一 1
RYCII
1
[0015] [化 6]
般式 (I I )
Figure imgf000008_0001
[0016] 式中、 mは 0から 4の整数を表す。 1^〜1^は水素原子又は炭素数1〜10の炭化水 素基、 ^〜 、 Y Y2は水素原子、炭素数 1〜: LOの炭化水素基、ハロゲン原子、ハ ロゲン原子で置換された炭素数 1〜10の炭化水素基、 (CH ) COORu、 一 (CH )
2 n 2 n
OOCR12、— (CH ) NCO、— (CH ) NO 、— (CH ) CN、— (CH ) CONR13R14、— (
2 n 2 n 2 2 n 2 n
CH ) NR13R14、— (CH ) OCOZ、— (CH ) OZ、— (CH ) W、または X1と Y1あるいは
2 η 2 η 2 η 2 η
X2と Υ2力ら構成された (一CO) 0、 (-CO) NR15を示す。なお、 R11, R12, R13, R14, R1 5は炭素数 1〜20の炭化水素基、 Zは炭化水素基 (好ましくは炭素数が 1〜10の炭化 水素基)、またはハロゲンで置換された炭化水素基 (好ましくは炭素数が 1〜10の炭 化水素基)、 Wは SiR16 D (R16は炭素数 1〜: LOの炭化水素基、 Dはハロゲン原子,
P 3-p
— OCOR16または— OR16、 pは 0〜3の整数を示す)、 nは 0〜10の整数を示す。
[0017] ノルボルネン系付カロ(共)重合体は、特開平 10— 7732号、特表 2002— 504184 号の各公報、あるいは、 WO2004Z070463A1号等に開示されている。ノルボルネ ン系多環状不飽和化合物同士を付加重合したり、ノルボルネン系多環状不飽和化 合物と、エチレン、プロピレン、ブテン;ブタジエン、イソプレンのような共役ジェン;ェ チリデンノルボルネンのような非共役ジェン;アクリロニトリル、アクリル酸、メタアクリル 酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビ- ル、塩ィ匕ビュルなどの化合物とを付加重合してつくられる。このノルボルネン系付加( 共)重合体は、三井ィ匕学株式会社よりアベルの商品名で発売されており、ガラス転移 温度(Tg)の異なる例えば APL8008T(Tg70°C)、APL6013T(Tgl25°C)あるい は APL6015T(Tgl45°C)などのグレードがある。またポリプラスチック株式会社から ίま TOPAS8007、同 6013、同 6015など力 Ferrania社力ら ίま Appear3000など のペレットが発売されて 、る。
[0018] ノルボルネン系付カ卩(共)重合体にお 、て、一般式 (I)で表される繰返し単位と、一 般式 (II)で表される環状繰返し単位との比率は、モル比(前者:後者)として、 0 : 100 〜90: 10、好ましくは 0: 100〜70: 30である。
さらに好ましくは、ノルボルネン系付加(共)重合体は、膜厚方向レターデーシヨンを 大きくするという理由から、一般式 (II)で表される 1種の環状繰返し単位力 なる重合 体、あるいは、一般式 (II)で表される少なくとも 2種の環状繰返し単位力 なる共重合 体であるのがよい。ノルボルネン系付加(共)重合体力 一般式 (II)で表される少なく とも 2種の環状繰返し単位力もなる共重合体である場合は、一方の置換基 X2または Z及び Y2が親水性ある 、は極性の大きなものであり、他方の置換基 X2または Z及び Y2が疎水性あるいは極性の小さなものであるのがよい。これにより、フィルムの親水 性や水透過性を制御できると 、う効果が奏される。
[0019] また本発明の環状ォレフィン系付加重合体の構造を変更したり、基体フィルムを延 伸することにより、光学等方的な基体フィルムや、光学異方性の大きい基体フィルム など様々な光学特性の基体フィルムを得ることができる。特に、これまで作製が困難 であった面内レターデーシヨンに対して相対的に膜厚方向レターデーシヨンが大きい 基体フィルムを得ることが可能になる。具体的には、前記のノルボルネン系付加(共) 重合体の構造の変更する場合は、一般式 (I)の繰返し単位成分の比率を少なくし、一 般式 (II)の繰返し単位成分の比率を多くすることにより行うのが好ましい。基体フィル ムを延伸するには、セルロースァシレートフィルムに適用される手法を利用することが でき、例えばテンター延伸が挙げられる。延伸倍率を適宜変更することにより、所望 の光学特性が得られる。
[0020] (添加剤)
本発明の環状ォレフィン系付加重合体溶液には、各調製工程において用途に応じ た種々の添加剤 (例えば、劣化防止剤、紫外線防止剤、レターデーシヨン (光学異方 性)調節剤、微粒子、剥離促進剤、赤外吸収剤、など)を加えることができ、それらは 固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるも のではない。例えば 20°C以下と 20°C以上の紫外線吸収材料の混合や、同様に劣 化防止剤の混合などである。また、赤外吸収染料としては例えば特開平 2001— 19 4522号公報に記載されている。またその添加する時期はドープ作製工程において 何れで添加しても良いが、ドープ調製工程の最後の工程として、添加剤を添加する 工程をカ卩えて行ってもよい。更にまた、各添加剤の添加量は機能が発現する限り〖こ おいて特に限定されない。また、環状ォレフィン系付加重合体を含有する基体フィル ム(以下、環状ォレフィン系付加重合体の基体フィルム、環状ポリオレフインとも称す る)が多層から形成される場合、各層の添加物の種類や添加量が異なってもよい。
[0021] (劣化防止剤)
本発明の環状ォレフィン系付加重合体の基体フィルムには公知の劣化 (酸化)防止 剤、例えば、 2, 6 ジ—tーブチル, 4 メチルフエノール、 4, 4,ーチォビス (6-t —ブチルー 3—メチルフエノール)、 1, 1,一ビス(4 ヒドロキシフエ-ル)シクロへキ サン、 2, 2,ーメチレンビス(4ーェチルー 6 t—ブチルフエノール)、 2, 5 ジー t— ブチルヒドロキノン、ペンタエリスリチルーテトラキス [3— (3, 5—ジ tーブチルー 4 ーヒドロキシフエ-ル)プロピオネートなどのフエノール系あるいはヒドロキノン系酸化 防止剤を添加することができる。さらに、トリス (4—メトキシ一 3, 5—ジフエ-ル)ホスフ アイト、トリス(ノユルフェ-ル)ホスファイト、トリス(2, 4 ジー t ブチルフエ-ル)ホス ファイト、ビス(2, 6 ジ—tーブチルー 4 メチルフエ-ル)ペンタエリストールジホス ファイト、ビス(2, 4 ジ一 t—ブチルフエ-ル)ペンタエリスリトールジホスフアイトなど のリン系酸ィ匕防止剤をすることが好ましい。酸化防止剤の添加量は、環状ォレフィン 系付加重合体 100質量部に対して、 0. 05〜5. 0質量部が好ましい。
(紫外線吸収剤)
本発明の環状ォレフィン系付加重合体の基体フィルムには、偏光板または液晶等 の劣化防止の観点から、紫外線吸収剤が好ましく用いられる。紫外線吸収剤として は、波長 370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点か ら、波長 400nm以上の可視光の吸収が少ないものが好ましく用いられる。本発明に 好ましく用いられる紫外線吸収剤の具体例としては、例えばヒンダードフエノール系 化合物、ォキシベンゾフエノン系化合物、ベンゾトリアゾール系化合物、サリチル酸ェ ステル系化合物、ベンゾフエノン系化合物、シァノアクリレート系化合物、ニッケル錯 塩系化合物などが挙げられる。ヒンダードフ ノール系化合物の例としては、 2, 6— ジ tert ブチルー p クレゾール、ペンタエリスリチルーテトラキス〔3— (3, 5—ジー tert ブチル 4—ヒドロキシフエ-ル)プロピオネート〕、 N, N,一へキサメチレンビス (3, 5 ジ一 tert ブチル 4 ヒドロキシ一ヒドロシンナミド)、 1, 3, 5 トリメチルー 2, 4, 6 トリス(3, 5 ジ一 tert ブチル 4 ヒドロキシベンジル)ベンゼン、トリス - (3, 5—ジ一 tert ブチル 4—ヒドロキシベンジル)一イソシァヌレイトなどが挙げ られる。ベンゾトリアゾール系化合物の例としては、 2— (2' —ヒドロキシ一 5' —メチ ルフエ-ル)ベンゾトリァゾール、 2, 2—メチレンビス(4— (1, 1, 3, 3—テトラメチル ブチル)—6—(2H べンゾトリァゾールー 2 ィル)フエノール)、 (2, 4 ビス一(n ーォクチルチオ)ー6—(4ーヒドロキシ—3, 5 ジ—tert—ブチルァ-リノ) 1, 3, 5—トリアジン、トリエチレングリコール ビス〔3—(3— tert ブチルー 5—メチルー 4 —ヒドロキシフエ-ル)プロピオネート〕、 N, N,一へキサメチレンビス(3, 5—ジ一 tert —ブチルー 4 ヒドロキシ一ヒドロシンナミド)、 1, 3, 5 トリメチル 2, 4, 6 トリス( 3, 5 ジ tert—ブチルー 4ーヒドロキシベンジル)ベンゼン、 2 (2,ーヒドロキシー3, , 5' ジ—tert ブチルフエ-ル)ー5 クロルべンゾトリァゾール、 (2 (2,ーヒドロキ シ— 3,, 5 '—ジ— tert—ァミルフエ二ル)— 5 クロルべンゾトリァゾール、 2, 6 ジ tert—ブチルー p クレゾール、ペンタエリスリチルーテトラキス〔3—(3, 5—ジ t ert—ブチル 4—ヒドロキシフエ-ル)プロピオネート〕などが挙げられる。これらの紫 外線防止剤の添加量は、環状ォレフィン系付加重合体に対して質量割合で lppm〜 1. 00/0力好ましく、 10〜: LOOOppm力更に好まし!/、。
(マット剤)
本発明にお 、ては、作製された環状ォレフィン系付加重合体の基体フィルムがハ ンドリングされる際に、傷が付いたり搬送性が悪ィ匕することを防止するために、微粒子 (マット剤)を添加することが好ましい。マット剤の好ましい具体例は、無機化合物とし ては、ケィ素を含む化合物、二酸化ケイ素、酸化チタン、酸化亜鉛、酸ィ匕アルミ-ゥ ム、酸化バリウム、酸化ジルコニウム、酸化ストロングチウム、酸化アンチモン、酸化ス ズ、酸化スズ 'アンチモン、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケィ酸 カルシウム、水和ケィ酸カルシウム、ケィ酸アルミニウム、ケィ酸マグネシウムおよびリ ン酸カルシウム等が好ましく、更に好ましくはケィ素を含む無機化合物や酸化ジルコ -ゥムであるが、フィルムの濁度を低減できるので、ニ酸ィ匕ケィ素が特に好ましく用い られる。二酸化ケイ素の微粒子としては、例えば、ァエロジル R972、 R974、 R812、 200、 300、 R202、 0X50、 TT600 (以上日本ァェロジル (株)製)等の商品名を有 する市販品が使用できる。酸ィ匕ジルコニウムの微粒子としては、例えば、ァエロジル R 976および R811 (以上日本ァエロジル (株)製)等の商品名で市販されて 、るものが 使用できる。
これらのマット剤の 1次平均粒子径としては、ヘイズを低く抑えるという観点から、好 ましくは、 1ηπι〜20 /ζ πιであり、より好ましくは 1ηπι〜10 /ζ mであり更に好ましくは、 2nm〜l μ mであり、特に好ましくは、 5nm〜0. 5 μ mである。マット剤の 1次平均粒 子径の測定は、透過型電子顕微鏡で粒子を平均粒径で求められる。購入した微粒 子は凝集していることが多ぐ使用の前に公知の方法で分散することが好ましい。分 散により二次粒子径を 0. 1〜1. にすること力 S好ましく、 0. 2〜1. 0 111カ更に 好ましい。マット剤の添力卩量は環状ォレフィン系付加重合体の基体シート中に 0. 01 〜0. 3質量0 /0力 S好ましく、 0. 05〜0. 15質量0 /0力 Sさらに好ましく、 0. 08〜0. 08質 量%が最も好ましい。
微粒子を添カ卩した環状ポリオレフインフィルムの好まし 、ヘイズの範囲は 2. 0%以 下であり、 1. 2%以下が更に好ましぐ 0. 5%以下が特に好ましい。微粒子を添加し た環状ポリオレフインフィルムの好ましい動摩擦係数は 0. 8以下であり、 0. 5以下が 特に好ましい。
動摩擦係数は、 JISや ASTMが規定する方法に従 ヽ、鋼球を用いて測定できる。 ヘイズは日本電色工業 (株)製 1001DP型ヘイズ計を用いて測定できる。
[0024] (剥離剤)
エンドレス金属支持体力 環状ォレフィン系付加重合体フィルムを剥離する際の剥 離荷重 (剥離抵抗)を小さくし、製膜方向にフィルムが不規則に延伸されるのを防止 するため、必要に応じてドープ中に下記に示すような界面活性剤を添加することがで きる。
[0025] 環状ォレフィン系付加重合体フィルムの剥離抵抗を小さくする好ま 、界面活性剤 としては燐酸エステル系の界面活性剤、カルボン酸あるいはカルボン酸塩系の界面 活性剤、スルホン酸あるいはスルホン酸塩系の界面活性剤、硫酸エステル系の界面 活性剤などがある。以下に具体例の一部を例示する。
[0026] RZ- 1 C H 0-P(=0)-(OH)
8 17 2
RZ- 2 C H O— P(=0)— (OK)
12 25 2
RZ- 3 C H OCH CH O— P( = 0)— (OK)
12 25 2 2 2
RZ-4 C H (OCH CH ) O— P( = 0)_ (OK)
15 31 2 2 5 2
RZ- 5 {C H O(CH CH O) } — P(=0)— OH
12 25 2 2 5 2
RZ-6 {C H (OCH CH ) O} —P(=0)— ONH
18 35 2 2 8 2 4
RZ- 7 (t C H )— C H— OCH CH O— P(=0)— (OK)
4 9 3 6 2 2 2 2
RZ-8 (iso-C H — C H— O— (CH CH O)— P(=0)— (OKXOH)
9 19 6 4 2 2 5
RZ- 9 C H SO Na
12 25 3
RZ- 10 C H OSO Na RZ- 11 C H COOH
17 33
RZ- 12 C H COOH-N(CH CH OH)
17 33 2 2 3
RZ- 13 iso-C H C H— O— (CH CH O)— (CH ) SO Na
8 17 6 4 2 2 3 2 2 3
RZ- 14 (iso-C H ) -C H— O— (CH CH O)— (CH ) SO Na
9 19 2 6 3 2 2 3 2 4 3
RZ- 15 トリイソプロピルナフタレンスルフォン酸ナトリウム
RZ- 16 トリ— t ブチルナフタレンスルフォン酸ナトリゥム
RZ- 17 C H CON(CH )CH CH SO Na
17 33 3 2 2 3
RZ- 18 C H C H SO -NH
12 25 6 4 3 4
[0027] 界面活性剤の添加量は環状ポリオレフインに対して 0. 005〜5質量%が好ましぐ 0. 01〜2質量%が更に好ましぐ 0. 05〜0. 5質量%が最も好ましい。
[0028] 環状ォレフィン系付加重合体フィルムの剥離抵抗を小さくする界面活性剤としては 、パーフロロアルキル基を有するアタリレートある 、はメタタリレートなどのモノマーの 重合体等のフッ素原子を有する重合体も好ましい。以下、剥離剤としての、フッ素原 子を有する重合体 (以下、本発明のフッ素原子を有する重合体ともいう)について記 述する。本発明のフッ素原子を有する重合体としては、例えば、特開 2001— 26956 4号公報に記載の重合体を挙げることができる。フッ素原子を有する重合体として好 ま ヽものは、フッ素化アルキル基含有エチレン性不飽和単量体 (単量体 A)を必須 成分として含有してなる単量体を重合せしめた重合体である。重合体に係わるフッ素 化アルキル基含有エチレン性不飽和単量体(単量体 A)としては、分子中にエチレン 性不飽和基とフッ素化アルキル基を有する化合物であれば特に制限はな 、。好まし くはアクリルエステル基およびその類縁基を含有するものが適しており、具体的には 下記一般式 (III)で表されるフッ素化 (メタ)アタリレートが挙げられる。ここでの (メタ)ァ タリレートは、メタタリレート、アタリレート、フルォロアタリレート、塩素化アタリレートを 総称するものとする。
[0029] 一般式(III) CH =C(R1)-COO-(X)— Rf
2 n
[0030] 式中、 Rfは炭素数 1〜20のパーフロロアルキル基、または部分フッ素化アルキル 基であり、 Rfは直鎖状であっても分岐状であってもよぐまた酸素原子および Zまた は窒素原子を含む官能基を主鎖中に有するものであってもよい。 R1は H、フッ素ィ匕さ れていてもよいアルキル基、 Cほたは Fを表し、 Xは 2価の連結基を表し、 nは 0以上 の整数を表す。
[0031] Rfのパーフロロアルキル基の好ましい炭素数は 1〜 18であり、より好ましくは 4〜 18 であり、さらに好ましくは 6〜 14であり、最も好ましくは 6〜 12である。部分フッ素化ァ ルキル基は、その一部にパーフロロアルキル基を有するものが好ましぐそのパーフ ロロアルキル基の炭素数の好ましい範囲は上記と同じである。また、主鎖中に有して いてもよい酸素原子を含む官能基としては、 -so 一、
2 —c(=o)—、窒素原子を含 む官能基としては、一NH 、 一N(CH ) 、 一N(C H ) 、 一N(C H ) などを挙げ
3 2 5 3 7
ることがでさる。
R1が採りうるフッ素化されていてもよいアルキル基は、無置換のアルキル基、パーフ ロロアルキル基、部分フッ素化アルキル基のいずれであってもよい。好ましいのは、 無置換のアルキル基および部分フッ素化アルキル基である。無置換のアルキル基と して好ましいのは、メチノレ基である。
[0032] Xが採りうる 2価の連結基として好ましいものは、 (CH ) ―、 -CH CH(OH)— (C
2 m 2
H ) 一、 -(CH ) N(R2)— SO -、 -(CH ) N(R2)— CO—、— CH(CH ) -、— CH(
2 m 2 m 2 2 m 3
CH CH )—、 -C(CH ) 一、 一 CH(CF ) 、 一 C(CH )(CF ) 、 一 C(CF )—であり
2 3 3 2 3 3 3 3 2
、 R2は水素または炭素数 1〜6アルキル基である。
nは 0以上の整数であり、 0〜25力 子ましく、 1〜15がより好ましぐ 1〜10が特に好 ましい。 nが 2以上であるとき、各 Xが表す連結基は同一であっても異なっていてもよ い。
[0033] 以下にフッ素化アルキル基含有 (メタ)アタリレートの具体例を挙げる力 本発明で 用 、ることができるフッ素化アルキル基含有 (メタ)アタリレートはこれらに限定されるも のではない。
[0034] [化 7] A-1 : CH2=CHCOOCH2CH2C8F17
A-2 : CH3
CH2=CCOOCH2CH2C8F17
A- 3 : CH2=CHCOOCH2CH2C12F25 A - 4 : CH3
CH2― CCOOCH2CH2C12F25
A- 5 : CH2=CHCOOCH2CH2C10F21
A - 6 :
Figure imgf000016_0001
A-7 : CH2=CHCOOCH2CH2C6F13
A-8 : CH3
CH2=CCOOCH2CH2C6F13
A - 9 CH2=CHCOOCH2CH2C4F9
A— 10 : F
CH2― し JOCH^CH CgFi j 置s003 A- 41 : CH3
CH2=CCOOCH2CH2(CF2)7H
A-42 : CH3 CH
CH2=CCOOC(CF2)5H
CH3
A- 43: CH2=CHCOO -CHC8F17
CF3
A- 44: CH2=CHCOOCH2C2F5
A- 45 : CH2=CHCOOCH2CHCH2C8F17
OH
A-46 : CH3
CH2=CCOOCH2CH(CH2)4C18F37
OH
A-47 : C3H7
CH3=CHCOOCH2CH2NS02C8F17
A- 48 : CH3 CH3
CH3=CCOOCH2CH2NS02C8F19
A- 49 : CI H
CH2=CCOO(CH2)5NS02C12F25
A - 50 : C2H5
CH2=CHCOOCH2CH2NCOC7F15 [0036] フッ素化アルキル基含有エチレン性不飽和単量体 (単量体 A)は、 1種類だけを用 いても構わないし、 2種類以上を同時に用いても構わない。フッ素化アルキル基含有 エチレン性不飽和単量体 (単量体 A)におけるフッ素化アルキル基は、離型性 (剥離 性)の観点からは、その炭素数は 6〜18が特に好ましぐさらには 6〜14であり、特に は 6〜 12が好ましい。本発明において、フッ素化アルキル基含有エチレン性不飽和 単量体 (単量体 A)のフッ素原子を有する重合体中への導入量に特に制限はないが 、 10質量%以上重合せしめることが好ましぐ 15質量%以上がより好ましぐ 20質量 %以上の含有量が好ま U、。
[0037] 更に本発明においてはフッ素原子を有する重合体中に、ポリオキシアルキレン基含 有不飽和単量体 (単量体 B)を含有させることも可能である。ポリオキシアルキレン基 含有エチレン性不飽和単量体(単量体 B)としては、 1分子中にポリオキシアルキレン 基とエチレン性不飽和基を有する化合物であれば特に制限はな ヽ。ォキシアルキレ ン基としてはエチレンォキシド基および Zまたはプロピレンォキシド基が好まし 、。ま たその重合度は通常 1〜: LOOであり、 5〜50が好ましい。エチレン性不飽和基として は、原料の入手性、各種コーティング組成物中の配合物に対する相溶性、そのような 相溶性を制御することの容易性、或いは重合反応性の観点から (メタ)アクリルエステ ル基およびその類縁基を含有するものが適している。不飽和結合は 1分子中に 1個 だけでもよいし、 2個以上を有していてもよい。
[0038] (有機溶剤)
次に、本発明の環状ポリオレフインが溶解される有機溶剤について記述する。本発 明においては、環状ポリオレフインが溶解し流延,製膜できる範囲において、その目 的が達成できる限りは、使用できる有機溶剤は特に限定されない。本発明で用いら れる有機溶剤は、例えばジクロロメタン、クロ口ホルムの如き塩素系溶剤、炭素原子数 力^〜 12の鎖状炭化水素、環状炭化水素、芳香族炭化水素、エステル、ケトン、ェ 一テルカゝら選ばれる溶剤が好ましい。エステル、ケトンおよび、エーテルは、環状構 造を有していてもよい。炭素原子数が 3〜 12の鎖状炭化水素類の例としては、へキ サン、オクタン、イソオクタン、デカンなどが挙げられる。炭素原子数が 3〜12の環状 炭化水素類としてはシクロペンタン、シクロへキサン及びその誘導体が挙げられる。 炭素原子数が 3〜12の芳香族炭化水素としては、ベンゼン、トルエン、キシレンなど が挙げられる。炭素原子数が 3〜12のエステル類の例には、ェチルホルメート、プロ ピルホルメート、ペンチルホルメート、メチルアセテート、ェチルアセテートおよびペン チルアセテートが挙げられる。炭素原子数が 3〜12のケトン類の例には、アセトン、メ チルェチルケトン、ジェチルケトン、ジイソプチルケトン、シクロペンタノン、シクロへキ サノンおよびメチルシクロへキサノンが挙げられる。炭素原子数が 3〜12のエーテル 類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシェタン、 1, 4—ジォ キサン、 1, 3—ジォキソラン、テトラヒドロフラン、ァ-ソールおよびフエネトールが挙 げられる。二種類以上の官能基を有する有機溶剤の例には、 2—ェトキシェチルァセ テート、 2—メトキシエタノールおよび 2—ブトキシエタノールが挙げられる。有機溶剤 の好ま 、沸点は 35°C以上且つ 110°C以下である。
たとえば特開平 8— 43812号公報、特開 2001— 272534号公報、特開 2003— 3 06557号公報に開示されているように、環状ポリオレフインの溶液製膜には従来どち らかというと非塩素系有機溶剤が使用されていた。非塩素系溶剤は乾燥工程におい て、パスロールとの剥離により帯電し、放電による引火火災を発生しやすい。本発明 者らは、環状ポリオレフインの溶液を作製するに際しては、主溶剤として塩素系有機 溶剤が特に好ましいことを見出した。塩素系有機溶剤は溶解力が大きく且つ引火性 が無 、あるいは少な 、ために工業的利用にお 、て非常に有利である。またそれ以外 にも後述するようにフィルムの剥離性を改善しやす 、と 、う大きな利点を見出した。本 発明においては、環状ポリオレフインが溶解し流延,製膜できる範囲において、その 目的が達成できる限りはその塩素系有機溶剤の種類は特に限定されない。塩素系 有機溶剤のなかでも好ましくはジクロロメタン、クロ口ホルムである。特〖こジクロロメタン は沸点が低いため、乾燥時の熱効率に優れているため好ましい。また、塩素系有機 溶剤以外の、例えば前記の有機溶剤を混合することも特に問題ない。その場合は、 塩素系有機溶剤は、溶剤全体の 50〜99. 5質量%使用することが好ましい。ジクロ ロメタンは溶剤全体の少なくとも 50質量%使用することが好ま 、。本発明で塩素系 有機溶剤と併用されるのに好ましい非塩素系有機溶剤について以下に記す。すなわ ち、好ましい非塩素系有機溶剤としては、炭素原子数が 3〜12のエステル、ケトン、 エーテル、アルコール、炭化水素など力 選ばれる溶剤が好ましい。エステル、ケトン 、エーテルおよびアルコールは、環状構造を有していてもよい。エステル、ケトンおよ びエーテルの官能基(すなわち、 o CO—および COO—)のいずれかを 二つ以上有する化合物も溶剤として用いることができ、たとえばアルコール性水酸基 のような他の官能基を同時に有していてもよい。二種類以上の官能基を有する溶剤 の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であれ ばよい。炭素原子数が 3〜12のエステル類の例には、ェチルホルメート、プロピルホ ルメート、ペンチルホルメート、メチルアセテート、ェチルアセテートおよびペンチルァ セテート等が挙げられる。炭素原子数が 3〜12のケトン類の例には、アセトン、メチル ェチルケトン、ジェチルケトン、ジイソプチルケトン、シクロペンタノン、シクロへキサノ ンおよびメチルシクロへキサノン等が挙げられる。炭素原子数が 3〜 12のエーテル類 の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシェタン、 1, 4 ジォキ サン、 1, 3 ジォキソラン、テトラヒドロフラン、ァ-ソールおよびフエネトール等が挙 げられる。二種類以上の官能基を有する有機溶剤の例には、 2—ェトキシェチルァセ テート、 2—メトキシエタノールおよび 2—ブトキシエタノール等が挙げられる。
本発明者らは塩素系溶剤を主溶剤とし、環状ポリオレフインに対して溶解性のほと んどない貧溶媒を少量混合した溶剤に環状ポリオレフインを溶解することにより、剥離 性を著しく改善できることを見出した。貧溶媒を使用しないで製膜するときに比べて 適切な貧溶媒を併用すると、金属支持体からフィルムを剥離するときの剥離抵抗値 力 以下から 1Z20以下まで低下し、高速で製膜することが容易になる。貧溶媒 使用による剥離抵抗低下効果は、付カ卩(共)重合環状ポリオレフインに対して著 、。 好ましい貧溶媒は使用するポリマー種により適宜選択する必要がある。まず使用す る主溶剤(良溶剤)よりも沸点が 10°C以上高くて、主溶剤よりも揮発性が低い溶剤が 好ましい。貧溶媒の沸点が主溶剤よりも高いと、乾燥が進んで支持体力 フィルムを 剥離する時には、フィルム中の残留溶剤は貧溶媒が多くなることと関係していると思 われる。環状ポリオレフインに対する貧溶媒のなかでも特に 1価のアルコール類は、 剥離抵抗低減効果が著しく好ましい。選択する良溶剤の沸点によって特に好ましい アルコール類は変化する力 乾燥負荷を考慮すると、沸点が 120°C以下のアルコー ルが好ましぐ炭素数が 1〜6の 1価アルコールが更に好ましぐ炭素数 1〜4のアルコ ール類が特に好ましい。
[0041] また塩素系有機溶剤と併用されるアルコールとしては、好ましくは直鎖であっても分 枝を有していても環状であってもよぐその中でも飽和脂肪族炭化水素であることが 好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコ ールの例には、メタノール、エタノール、 1 プロパノール、 2—プロパノール、 1ーブ タノール、 2—ブタノール、 tーブタノール、 1 ペンタノール、 2—メチルー 2—ブタノ ールおよびシクロへキサノールが含まれる。なおアルコールとしては、フッ素系アルコ ールも用いられる。例えば、 2—フルォロエタノール、 2, 2, 2—トリフルォロエタノー ル、 2, 2, 3, 3—テトラフルオロー 1 プロパノールなども挙げられる。
環状ポリオレフイン溶液を作成する上で特に好ま ヽ混合溶剤は、ジクロロメタンを 主溶剤とし、メタノール、エタノール、プロパノールあるいはイソプロパノールから選ば れる 1種以上のアルコール類を貧溶媒にする組合わせである。
[0042] アルコール類貧溶媒の好ましい使用量は、環状ポリオレフイン 100質量部に対して 3〜100質量部であり、 4〜40質量部であると更に好ましい。特に好ましくは 6〜35 質量部である。また主溶剤と貧溶媒との混合割合の好ましい範囲は、主溶剤 100質 量部に対して 0. 5〜30質量部である。 1〜20質量部が更に好ましぐ 4〜15質量部 が特に好ましい。
[0043] <溶液製膜法による基体フィルムの製膜 >
本発明の環状ォレフィン系付加重合体の製膜は、熱溶融製膜の方法と溶液製膜の 方法がありいずれも適用可能である。まず溶液製膜方法について記述する。
[0044] (ドープ調製)
次に本発明の環状ポリオレフイン溶液 (ドープ)の調製については、室温攪拌溶解 による方法、室温で攪拌してポリマーを膨潤させた後― 20から - 100°Cまで冷却し 再度 20から 100°Cに加熱して溶解する冷却溶解法、密閉容器中で主溶剤の沸点以 上の温度にして溶解する高温溶解方法、さらには溶剤の臨界点まで高温高圧にして 溶解する方法などがある。溶解性のよいポリマーは室温溶解が好ましいが、溶解性 の悪いポリマーは密閉容器中で加熱溶解する。ジクロロメタンを主溶剤に選んだとき は、多くの環状ポリオレフインは 20〜: L00°Cの加熱により溶解することが出来る。溶解 性があまり悪くないものはできるだけ低い温度を選ぶほうが、工程的には楽になる。
[0045] 本発明の環状ポリオレフイン溶液の粘度は 25°Cで l〜500Pa' sの範囲であること が好ましい。さらに好ましくは 5〜200Pa' sの範囲である。粘度の測定は次のようにし て行った。試料溶液 lmLをレオメーター (CLS 500)に直径 4cmZ2° の Steel C one (共に TA Instrumennts社製)を用いて測定した。
試料溶液は予め測定開始温度にて液温一定となるまで保温した後に測定を開始し た。
[0046] 環状ポリオレフイン溶液は高濃度のドープが得られるのが特徴であり、濃縮という手 段に頼らずとも高濃度でし力も安定性の優れた環状ポリオレフイン溶液が得られる。 更に溶解し易くするために低い濃度で溶解してから、濃縮手段を用いて濃縮してもよ い。濃縮の方法としては、特に限定するものはないが、例えば、低濃度溶液を筒体と その内部の周方向に回転する回転羽根外周の回転軌跡との間に導くとともに、溶液 との間に温度差を与えて溶剤を蒸発させながら高濃度溶液を得る方法 (例えば、特 開平 4 259511号公報等)、加熱した低濃度溶液をノズルカゝら容器内に吹き込み、 溶液をノズルカゝら容器内壁に当たるまでの間で溶剤をフラッシュ蒸発させるとともに、 溶剤蒸気を容器から抜き出し、高濃度溶液を容器底力ゝら抜き出す方法 (例えば、米 国特許第 2, 541, 012号、米国特許第 2, 858, 229号、米国特許第 4, 414, 341 号、米国特許第 4, 504, 355号各明細書等などに記載の方法)等で実施できる。
[0047] 溶液は流延に先だって金網やネルなどの適当な濾材を用いて、未溶解物やゴミ、 不純物などの異物を濾過除去しておくのが好まし 、。環状ポリオレフイン溶液の濾過 には絶対濾過精度が 0. 1〜: LOO /z mのフィルタが用いられ、さらには絶対濾過精度 が 0. 5〜25 mであるフィルタを用いることが好ましく用いられる。フィルタの厚さは、 0. 1〜: LOmmが好ましぐ更には 0. 2〜2mmが好ましい。その場合、ろ過圧力は 1. 6MPa以下、より好ましくは 1. 3MPa以下、更には 1. OMPa以下、特に好ましくは 0 . 6MPa以下で濾過することが好ましい。濾材としては、ガラス繊維、セルロース繊維 、濾紙、四フッ化工チレン榭脂などのフッ素榭脂等の従来公知である材料を好ましく 用いることができ、またセラミックス、金属等も好ましく用いられる。 環状ポリオレフイン溶液の製膜直前の粘度は、製膜の際に流延可能な範囲であれ ばよぐ通常5?& ' 5〜1000?& ' 5の範囲に調製されることが好ましぐ 15Pa' s〜500 Pa ' sがより好ましぐ 30Pa' s〜200Pa' s力 S更に好ましい。なお、この時の温度はそ の流延時の温度であれば特に限定されないが、好ましくは 5〜70°Cであり、より好 ましくは— 5〜35°Cである。
[0048] (製膜)
環状ポリオレフイン溶液を用いたフィルムの製造方法について述べる。本発明の環 状ポリオレフインフィルムを製造する方法及び設備は、従来セルローストリアセテート フィルム製造に供するのと同様の溶液流延製膜方法及び溶液流延製膜装置が用い られる。溶解機
(釜)から調製されたドープ (環状ポリオレフイン溶液)を貯蔵釜で一旦貯蔵し、ドープ に含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回 転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに 送り、ドープを加圧型ダイの口金 (スリット)力もエンドレスに走行している流延部の金 属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのド ープ膜 (ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップ で挟み、テンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終 了して巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み 合わせはその目的により変わる。電子ディスプレイ用機能性保護膜に用いる溶液流 延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレー シヨン防止層、保護層等のフィルムへの表面カ卩ェのために、塗布装置が付加されるこ とが多い。以下に各製造工程について簡単に述べるが、これらに限定されるもので はない。
[0049] まず、調製した環状ポリオレフイン溶液 (ドープ)は、ソルベントキャスト法により環状 ポリオレフインフィルムを作製される際に、ドープは無端金属支持体上、例えば金属ド ラムまたは金属支持体 (バンドあるいはベルト)上に流延し、溶剤を蒸発させてフィル ムを形成することが好ましい。流延前のドープは、環状ポリオレフイン量が 10〜35質 量%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面 状態に仕上げておくことが好ましい。ドープは、表面温度が 30°C以下のドラムまたは バンド上に流延することが好ましく用いられ、特には— 10〜20°Cの金属支持体温度 であることが好ましい。
さらに特開 2000— 301555号、特開 2000— 301558号、特開平 7— 032391号、 特開平 3— 193316号、特開平 5— 086212号、特開昭 62— 037113号、特開平 2
— 276607号、特開昭 55— 014201号、特開平 2— 111511号、および特開平 2— 208650号の各公報に記載のセルロースァシレート製膜技術を本発明では応用でき る。
(重層流延)
環状ポリオレフイン溶液を、金属支持体としての平滑なバンド上或 、はドラム上に単 層液として流延してもょ 、し、 2層以上の複数の環状ポリオレフイン液を流延してもよ い。
複数の環状ポリオレフイン溶液を流延する場合、金属支持体の進行方向に間隔を 置 、て設けた複数の流延口力 環状ポリオレフインを含む溶液をそれぞれ流延させ て積層させながらフィルムを作製してもよぐ例えば特開昭 61— 158414号、特開平 1 122419号、および特開平 11— 198285号の各公報などに記載の方法が適応 できる。
また、 2つの流延ロカ 環状ポリオレフイン溶液を流延することによつてもフィルム化 することでもよく、例えば特公昭 60— 27562号、特開昭 61— 94724号、特開昭 61
— 947245号、特開昭 61— 104813号、特開昭 61— 158413号、および特開平 6 134933号の各公報に記載の方法で実施できる。また、特開昭 56— 162617号 公報に記載の高粘度環状ポリオレフイン溶液の流れを低粘度の環状ポリオレフイン 溶液で包み込み、その高,低粘度の環状ポリオレフイン溶液を同時に押出す環状ポ リオレフインフィルム流延方法でもよい。更にまた、特開昭 61— 94724号および特開 昭 61— 94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるァ ルコール成分を多く含有させることも好ま 、態様である。或いはまた 2個の流延口を 用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体 面に接していた側に第二の流延を行なうことにより、フィルムを作製することでもよぐ 例えば特公昭 44— 20235号公報に記載されて ヽる方法である。流延する環状ポリ ォレフィン溶液は同一の溶液でもよ 、し、異なる環状ポリオレフイン溶液でもよく特に 限定されない。複数の環状ポリオレフイン層に機能を持たせるために、その機能に応 じた環状ポリオレフイン溶液を、それぞれの流延ロカも押出せばよい。さらに環状ポリ ォレフィン溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレ ーシヨン層、 UV吸収層、偏光層など)を同時に流延することも実施しうる。
単層液では必要なフィルム厚さにするためには高濃度で高粘度の環状ポリオレフィ ン溶液を押出すことが必要であり、その場合環状ポリオレフイン溶液の安定性が悪く て固形物が発生し、ブッ故障となったり、平面性が不良であったりして問題となりやす い。この解決として、複数の環状ポリオレフイン溶液を流延ロカ 流延することにより、 高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面 状のフィルムが作製できるば力りでなぐ濃厚な環状ポリオレフイン溶液を用いること で乾燥負荷の低減ィ匕が達成でき、フィルムの生産スピードを高めることができる。 共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜 厚の 1〜50%であることが好ましぐより好ましくは 2〜30%の厚さである。ここで、 3層 以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚 を外側の厚さと定義する。共流延の場合、前述の劣化防止剤、紫外線吸収剤、マット 剤等の添加物濃度が異なる環状ポリオレフイン溶液を共流延して、積層構造の環状 ポリオレフインフィルムを作製することもできる。例えば、スキン層 Zコア層 Zスキン層 といった構成の環状ポリオレフインフィルムを作ることができる。例えば、マット剤は、ス キン層に多ぐまたはスキン層のみに入れることができる。劣化防止剤、紫外線吸収 剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。また、 コア層とスキン層で劣化防止剤、紫外線吸収剤の種類を変更することもでき、例えば スキン層に低揮発性の劣化防止剤及び Zまたは紫外線吸収剤を含ませ、コア層に 可塑性に優れた可塑剤、或 、は紫外線吸収性に優れた紫外線吸収剤を添加するこ ともできる。また、剥離促進剤を金属支持体側のスキン層のみ含有させることも好まし い態様である。また、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるため に、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキ ン層とコア層の Tgが異なっていても良ぐスキン層の Tgよりコア層の Tgが低いことが 好ましい。また、流延時の環状ポリオレフインを含む溶液の粘度もスキン層とコア層で 異なっていても良ぐスキン層の粘度がコア層の粘度よりも小さいことが好ましいが、コ ァ層の粘度がスキン層の粘度より小さくてもよい。
[0052] (流延)
溶液の流延方法としては、調製されたドープを加圧ダイ力 金属支持体上に均一 に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節す るドクターブレードによる方法、或 、は逆回転するロールで調節するリバースロールコ 一ターによる方法等がある力 加圧ダイによる方法が好ましい。加圧ダイにはコートハ ンガータイプや Tダイタイプ等があるがいずれも好ましく用いることができる。また、ここ で挙げた方法以外にも従来知られているセルローストリアセテート溶液を流延製膜す る種々の方法で実施でき、用いる溶剤の沸点等の違いを考慮して各条件を設定する ことによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明の環状ポリ ォレフィンフィルムを製造するのに使用されるエンドレスに走行する金属支持体として は、表面がクロムメツキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕 上げされたステンレスベルト (バンドといってもよい)が用いられる。本発明の環状ポリ ォレフィンフィルムの製造に用いられる加圧ダイは、金属支持体の上方に 1基或いは 2基以上の設置でもよい。好ましくは 1基または 2基である。 2基以上設置する場合に は流延するドープ量をそれぞれのダイに種々な割合にわけてもよぐ複数の精密定 量ギヤァポンプ力 それぞれの割合でダイにドープを送液してもよ!、。流延に用いら れる環状ポリオレフイン溶液の温度は、― 10〜55°Cが好ましくより好ましくは 25〜50 °Cである。その場合、工程のすべてが同一でもよぐあるいは工程の各所で異なって いてもよい。異なる場合は、流延直前で所望の温度であればよい。
[0053] (乾燥)
環状ポリオレフインフィルムの製造に係わる金属支持体上におけるドープの乾燥は 、一般的には金属支持体 (例えばドラム或いはバンド)の表面側、つまり金属支持体 上にあるウェブの表面力 熱風を当てる方法、ドラム或いはバンドの裏面力 熱風を 当てる方法、温度コントロールした液体をバンドやドラムのドープ流延面の反対側で ある裏面から接触させて、伝熱によりドラム或 、はバンドを加熱し表面温度をコントロ ールする液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前 の金属支持体の表面温度はドープに用いられて 、る溶剤の沸点以下であれば何度 でもよい。しかし乾燥を促進するためには、また金属支持体上での流動性を失わせる ためには、使用される溶剤の内の最も沸点の低い溶剤の沸点より 1〜10度低い温度 に設定することが好ましい。尚、流延ドープを冷却して乾燥することなく剥ぎ取る場合 はこの限りではない。
(剥離)
生乾きのフィルムを金属支持体力も剥離するとき、剥離抵抗 (剥離荷重)が大きいと 、製膜方向にフィルムが不規則に伸ばされて光学的な異方性むらを生じる。特に剥 離荷重が大き ヽときは、製膜方向に段状に伸ばされたところと伸ばされて ヽな ヽとこ ろが交互に生じて、レターデーシヨンに分布を生じる。液晶表示装置に装填すると線 状あるいは帯状にむらが見えるようになる。このような問題を発生させないためには、 フィルムの剥離荷重をフィルム剥離幅 lcmあたり 0. 25N以下にすることが好ましい。 剥離荷重はより好ましくは 0. 2NZcm以下、さらに好ましくは 0. 15N以下、特に好ま しくは 0. 10N以下である。剥離荷重 0. 2NZcm以下のときはむらが現れやすい液 晶表示装置においても剥離起因のむらは全く認められず、特に好ましい。剥離荷重 を小さくする方法としては、前述のように剥離剤を添加する方法と、使用する溶剤組 成の選択による方法がある。
剥離荷重の測定は次のようにして行う。製膜装置の金属支持体と同じ材質'表面粗 さの金属板上にドープを滴下し、ドクターブレードを用いて均等な厚さに展延し乾燥 する。カッターナイフでフィルムに均等幅の切れ込みを入れ、フィルムの先端を手で 剥がしてストレンゲージにつながったクリップで挟み、ストレンゲージを斜め 45度方向 に引き上げながら、荷重変化を測定する。剥離されたフィルム中の揮発分も測定する 。乾燥時間を変えて何回か同じ測定を行い、実際の製膜工程における剥離時残留 揮発分と同じ時の剥離荷重を定める。剥離速度が速くなると剥離荷重は大きくなる傾 向があり、実際に近い剥離速度で測定することが好ましい。
剥離時の好ましい残留揮発分濃度は 5〜60質量%である。 10〜50質量%が更に 好ましぐ 20〜40質量%が特に好ましい。高揮発分で剥離すると乾燥速度が稼げて 、生産性が向上して好ましい。一方、高揮発分ではフィルムの強度や弾性が小さぐ 剥離力に負けて切断したり伸びてしまう。また剥離後の自己保持力が乏しぐ変形、 しわ、クニックを生じやすくなる。またレターデーシヨンに分布を生じる原因になる。
[0055] (延伸処理)
本発明の環状ポリオレフインフィルムを延伸処理する場合は、剥離のすぐ後の未だ フィルム中に溶剤が十分に残留している状態で行うのが好ましい。延伸の目的は、(
1)しわや変形のな 、平面性に優れたフィルムを得るため及び、(2)フィルムの面内レ ターデーシヨンを大きくするために行う。 (1)の目的で延伸を行うときは、比較的高い 温度で延伸を行 、、延伸倍率も 1%からせ 、ぜぃ 10%までの低倍率の延伸を行う。 2から 5%の延伸が特に好ましい。(1)と(2)の両方の目的、あるいは(2)だけの目的 で延伸する場合は、比較的低い温度で、延伸倍率も 5から 150%で延伸する。
[0056] 延伸温度の選択について述べる。残留溶剤を含んだフィルムを密閉パンに入れて 示差走査熱量計で昇温しながらフィルムの比熱を測定し、温度対比熱カーブが変曲 し、比熱が低下し始める温度を Tcとする。比較的高い延伸温度とは Tcよりも 10°C以 上高い温度、好ましくは 15から 30°C高い温度である。このような温度で延伸しても環 状ポリオレフインフィルムのレターデーシヨンはほとんど発現しない。
一方比較的低い温度とは、 Tcの前後 10°Cの範囲をさす。この温度域で延伸すると 面内レターデーシヨンが発現しやすぐ所望の光学特性に調整しやすい。
フィルム中に残留溶媒が残って 、るときに延伸すると乾燥フィルムに比べて低 ヽ温 度で延伸できる。環状ポリオレフインは高 、ガラス転移点 (Tg)を有するポリマーが多 V、が、ポリマー固有の Tgよりも低 、温度で延伸することができる。
フィルムの延伸は、縦あるいは横だけの一軸延伸でもよく同時あるいは逐次 2軸延 伸でもよい。 VA液晶セルや OCB液晶セル用位相差フィルムの複屈折は、幅方向の 屈折率が長さ方向の屈折率よりも大きくなることが好ましい。従って幅方向により多く 延伸することが好ましい。
[0057] (後乾燥)
環状ポリオレフインフィルムは延伸後更に乾燥し、残留揮発分を 2%以下にして巻き 取る。巻き取る前にフィルムの両端にナーリングを施すことが好ましい。ナーリングの 幅は 3mm〜50mm、より好ましくは 5mm〜30mm、高さは 1〜50 mであり、好まし くは 2〜20 μ m、より好ましくは 3〜 10 μ mである。これは片押しであっても両押しで あっても良い。
[0058] 本発明の出来上がり(乾燥後)の環状ポリオレフインフィルムの厚さは、使用目的に よって異なる力 通常 5力ら 500 μ mの範囲であり、 30〜150 μ mの範囲が好ましぐ 特に液晶表示装置用には 40〜: L 10 μ mであることが好まし 、。
フィルム厚さの調製は、所望の厚さになるように、ドープ中に含まれる固形分濃度、 ダイの口金のスリット間隙、ダイ力 の押し出し圧力、金属支持体速度等を調節すれ ばよい。以上のようにして得られた環状ポリオレフインフィルムの幅は 0. 5〜3mが好 ましぐより好ましくは 0. 6〜2. 5m、さらに好ましくは 0. 8〜2. 2mである。長さは 1口 ールあたり 100〜 10000mで巻き取るの力 子ましぐより好まし <は 500〜7000mで あり、さらに好ましくは 1000〜6000mである。巻き取る際、少なくとも片端にナーリン グを付与するのが好ましぐ幅は 3mn!〜 50mm、より好ましくは 5m〜30mm、高さは 0. 5〜500 μ mであり、より好ましくは 1〜200 μ mである。これは片押しであっても両 押しであっても良い。全幅の Re値のばらつきが ± 5nmであることが好ましぐ ± 3nm であることが更に好ましい。また、 Rth値のバラツキは ± 10nmが好ましぐ ± 5nmで あることが更に好ましい。また、長さ方向の Re値、及び Rth値のバラツキも幅方向の バラツキの範囲内であることが好ましい。透明感を保っためヘイズは 0. 01〜2%が 好ましい。ヘイズを小さくするためには、添加する微粒子マット剤の分散を十分に行 Vヽ凝集粒子の数を少なくしたり、添加量を少なくするためにスキン層だけにマット剤を 使用したりする。
[0059] <熱溶融製膜による基体フィルムの製膜 >
次に熱溶融製膜方法にっ 、て記述する。溶融した環状ォレフィン系付加重合体を 押出機のダイ力 シート状に押し出し、冷却ロール上で冷却して環状ォレフィン系付 加重合体の基体フィルムを形成する工程を有する。
この製造方法において、環状ォレフィン系付加重合体を溶融させる場合、環状ォレ フィン系付加重合体ペレットを予熱しておくことができる。予熱温度は、 Tg— 90°C〜 Tg+ 15°C、好ましくは Tg— 75°C〜Tg— 5°C、さらに好ましくは Tg— 70°C〜Tg— 5 °Cである。 Tg— 90°C〜Tg+ 15°Cの範囲で予熱しておけば、この後の樹脂の溶融 混練を均一に行うことができ、所望の H— V散乱光強度および V— V散乱光強度を 得ることができる。
[0060] 前記製造方法は、前記予熱の後、押出機を用いて 200〜300°Cの温度まで昇温し 、環状ォレフィン系付加重合体を溶融させる。この際、押出機の出口側の温度を入 口側の温度より 5〜100°C、好ましくは 20〜90°C、さらに好ましくは 30〜80°C高くし ておくことが好ましい。押出機の出口側の温度を入口側の温度より高くしておくことに より、溶融した榭脂を均一に混練することができ、所望の H— V散乱強度および V— V散乱強度の値を得ることができる。
[0061] 前記製造方法は、次いで溶融した環状ォレフィン系付加重合体をギヤポンプに通 し、押出機の脈動を除去した後、金属メッシュフィルタ一等で濾過し、押出機に取り付 けられた T型のダイ力 冷却ロール上にシート状に押し出し、前記冷却ロール上で押 出された環状ォレフィン系付加重合体フィルムのフィルム幅方向 1〜50%、好ましく は 2〜40%、さらに好ましくは 3〜30%を押圧する。好ましくは、フィルム幅方向の両 端側から均等に押圧を行ってフィルム幅方向 1〜50%を押圧する。
[0062] 従来の方法のように押し出されたフィルムを冷却ロールの全面で押圧すると、押し 付けむらや冷却ロールの温度むらに起因する局部的な冷却むらが発生し、これらの 不均一な収縮応力はフィルムが全面で押圧されて 、るためフィルム外に逃がすこと はできない。また、押し出されたフィルムの全面を冷却ロールに押し付けた場合には 、フィルムの温度が急激に低下し、 Reむらおよび Rthむら、特に Rthむらが発生しや すい。これに対し、本発明における上記の押圧であれば、環状ォレフィン系付加重 合体の基体フィルムの不均一な収縮応力を回避することができ、 Reむらおよび Rth むらの発生を良好に抑えることができる。
[0063] 本発明の製造方法における押圧方法は特に制限されず、例えば、エアーチャンバ 一、バキュームノズル、静電ピニング、タツチロール等の方法を用いることができる。そ の際の圧力については特に制限はないが、 0. 001〜20kgZcm2 (98Pa〜: L 96M Pa)が好ましぐ 0. 01〜: Lkg/cm2 (980Pa〜98kPa)がさらに好ましい。 [0064] 前記製造方法において、前記押圧は冷却ロール上で冷却しながら行うことができる 。この際、冷却はできるだけゆっくり行うことが好ましい。一般に行われている製膜法 では 50°CZ秒以上の冷却速度で冷却されるが、前記製造方法では、冷却速度は 0 . 2〜20°CZ秒であることが適当であり、 0. 5〜15°CZ秒であることが好ましぐ 1〜 10°CZ秒であることがさらに好ましい。この冷却速度で冷却することにより、局所的な 冷却むらの発生を防ぎ、急激な収縮による収縮応力の発現を防止し、 Reむらおよび Rthむらの発現を抑制することができる。
[0065] 上記の冷却(徐冷)は、冷却ロールのケージング内における保温と、冷却ロールの 温度調整により達成される。好ましい効果が得られるのは前者である。
[0066] 冷却ロールのケージング内における保温は、冷却ロールの少なくとも 1本を Tg— 10 0°C〜Tg + 30°C、より好ましくは Tg— 80°C〜Tg+ 10°C、さらに好ましくは Tg— 70 °C〜Tgに温調されたケーシング内に配置することにより達成される。冷却ロール上で は製膜したシートは摩擦力で拘束され自由に収縮できないため、これに起因した収 縮応力により Reむらおよび Rthむらが発生しやすいが、この方法を用いれば、幅方 向における均一な徐冷が可能となり、冷却ロール上での温度むらを小さくすることが でき、その結果、 Reむらおよび Rthむらを小さくすることができる。
[0067] これに対し、特開 2003— 131006号公報に記載された方法では、 T型ダイから冷 却ドラム間(エアギャップ)を温調する力 この方法では Reむらおよび Rthむらを充分 小さくすることはできない。これは、エアギャップではフィルムを拘束する手段が存在 せず、 Reむらおよび Rthむらの低減効果が少な!/、ためである。
[0068] さらに、 Reむらおよび Rthむらを小さくするために、以下の方法を併用することがで きる。
(1)押出機に取り付けられたダイ力 シート状に押し出された環状ォレフィン系付カロ 重合体を、一定の間隔で配置された少なくとも 2〜: LO本、好ましくは 2〜6本、さらに 好ましくは 3〜4本の冷却ロール (密間ロール)上にキャストする。このように複数の冷 却ロールを用いて冷却温度を制御することにより、容易に冷却速度を調整することが できる。また、冷却ロールを一定間隔に配置することにより冷却ロール間における温 度変化を小さくすることができる。 冷却ロールどうしの間隔(隣接するロール外周の最も近接した箇所の間隔)は 0. 1 〜 15cmであることが好ましぐ 0. 3〜10cmであることがより好ましぐ 0. 5〜5cmで あることがさらに好ましい。
[0069] (2)前記 2〜10本の冷却ロールのうち、少なくとも第 1の冷却ロールの温度を環状 ォレフィン系付カ卩重合体の Tg— 40°C〜Tg (より好ましくは Tg— 35°C〜Tg— 3°C、さ らに好ましくは Tg— 30°C〜Tg、最も好ましくは Tg— 30°C〜Tg— 5°C)にする。さら に第 2の冷却ロールの温度を第 1の冷却ロールより 1〜30°C高く(好ましくは 1〜20°C 高ぐさらに好ましくは 1〜10°C高く)することが好ましい。第 1の冷却ロールよりも第 2 の冷却ロールの温度を高めることにより環状ォレフィン系付加重合体のフィルムの粘 性をより高め、第 2の冷却ロールとの密着性を高めることができる。これにより冷却口 ール上のスリップを抑制し、搬送張力むらを抑制することができるため、 Reおよび Rt hむらを/ Jヽさくすることができる。
[0070] (3)第 2の冷却ロールの搬送速度を第 1の冷却ロールの搬送速度より 0. 1〜5% ( 好ましくは 0. 2〜4%、さらに好ましくは 0. 3〜3%)速くする。これにより第 1の冷却口 ールおよび第 2冷却ロール間のスリップを抑え、搬送張力むらを低減することができ るため、 Reおよび Rthむらを小さくすることができる。
[0071] (4)第 2の冷却ロール通過後、第 2の冷却ロールより 1〜30°C (好ましくは 1. 5〜20 °C、さらに好ましくは 2〜10°C)低い温度の第 3の冷却ロールを通過させる。これによ りこの後、冷却ロール力 環状ォレフィン系付加重合体 フィルムを剥ぎ取る工程に おける冷却速度を小さくできるため、 Reおよび Rthむらを小さくすることができる。さら に、第 3の冷却ロールの搬送速度を第 2の冷却ロールの搬送速度より 0. 1〜5% (好ましくは 0. 2〜4%、さらに好ましくは 0. 3〜3%)遅くすることが好ましい。これによ り第 2の冷却ロールと第 3の冷却ロール間の搬送張力むらを緩衝できるため、 Reおよ び Rthむらを小さくできる。
[0072] 前記製造方法は、上述の方法により環状ォレフィン系付加重合体のフィルムを冷却 速度 0. 2〜20°CZ秒で冷却した後、さらに冷却ロール力 環状ォレフィン系付加重 合体のフィルムを剥離する工程を有することができる。
[0073] 剥離された環状ォレフィン系付加重合体のフィルムは、 0. 2〜: LOmの間隔、好まし くは 0. 3〜8mの間隔、さらに好ましくは 0. 4〜6mの間隔で配置された複数の搬送 ロールを用いて搬送することができる。このような長いスパン間を冷却しながら搬送す ることで、搬送ロールとの摩擦に起因する搬送張力むらを抑制できる。冷却時に収縮 量の左右不均一に伴う搬送張力のアンバランスが発生するが、これを緩和させるた めに、フィルムが自由に動いて緩衝できるだけの広いロール間隔が必要である。搬送 ロールの間隔が 0. 2〜: LOmであれば、環状ォレフィン系付加重合体のフィルムと搬 送ロールとの摩擦が生じることなぐ環状ォレフィン系付加重合体のフィルムが自由に 動け、張力むらによる光軸のズレを小さくすることができる。
[0074] 冷却ロール力も剥離した環状ォレフィン系付加重合体のフィルムは、 0. 1〜3°CZ 秒、好ましくは 0. 2〜2. 5°CZ秒、さらに好ましくは 0. 3〜2°CZ秒で 50°Cまで冷却 することが好ましい。 0. 1〜3°CZ秒の範囲内で冷却すれば、急激な収縮応力による 左右の張力不均一による光軸ズレの発生を防ぐことができる。このような冷却速度の 制御は、ケーシング内に環状ォレフィン系付加重合体のフィルムを通過させ、ケージ ング中に吹き込む温度を上流側より下流側の温度を下げることによつても達成でき、 さらに上流側および下流側の搬送ロールの温度を調整することによつても達成できる
[0075] 前記製造方法では、製膜速度を 40〜150mZ分とすることが適当であり、 50〜10 OmZ分とすることが好ましぐ 60〜80mZ分とすることがさらに好ましい。製膜速度 4 0〜 150mZ分で製膜することにより、第 1の冷却ロールと環状ォレフィン系付加重合 体のフィルムとの間に空気を巻き込み、全面に亘る押圧を抑制することができ、その 結果、 Reおよび Rthむらを抑制できる。
[0076] 製膜幅は 1. 5〜5m、好ましくは 1. 6〜4m、さらに好ましくは 1. 7〜3mで行うこと ができる。このような広幅にすることで、冷却ロール力 環状ォレフィン系付加重合体 のフィルムを剥離した後の搬送工程における幅方向の収縮応力むらを抑制すること ができる。すなわち幅狭であると発生した張力むらを幅方向で緩衝することは難し 、 力 幅広とすることで幅方向に緩衝することができ、光軸むらを低減することができる
[0077] (基体フィルムの特性) 環状ォレフィン系付加重合体の基体フィルムは従来偏光板に使用されているセル ロースァシレートフィルムに比べて、透湿度や平衡含水率が小さ 、ことが大きな利点 である。好ましい透湿度は 60°C、 95%RH24時間で 1平方メートル当たり lOOOg以 下である。さらに好ましくは 400g以下である。好ましい平衡含水率は 25°C、 80%RH における測定値が 2. 0%以下である。さらに好ましくは 1. 0%以下である。紫外線吸 収剤ゃレターデーシヨン発現剤などの添加剤に揮発性や分解性があってフィルムの 質量変化や寸法変化が発生すると光学特性変化が起こる。従って 80°C90%RHで 48時間経時した後のフィルムの質量変化量は 5%以下であることが好ましい。同様に 60°C95%RHで 24時間経時後の寸法変化量は 5%以下であることが好まし 、。また 寸法変化や質量変化が少々あっても、フィルムの光弾性係数が小さ!、と光学特性の 変化量は少なくなる。従ってフィルムの光弾性係数が 30 X 10— 13cm2Zdyne (3 X 10— 13N/m2)以下であることが好ましぐ 15 X 10"13cmVdyne (l . 5 X 10"13N/m2)以 下であることがさらに好ましい。
環状ォレフィン系付加重合体の基体フィルムの好ま 、光学特性は用途の液晶セ ルのモードによって若干異なる。 TNモードの液晶セル用途では、面内レターデーシ ヨン Re (630)は 15nm以下が好ましぐ l lnm以下が更に好ましい。膜厚方向レター デーシヨン Rth (630)は 40力ら 120nm力 子ましく、 60力ら lOOnm力更に好ましい。 TNモードの液晶セル用途の光学補償シートは環状ォレフィン系付加重合体の基体 フィルムの上に配向層とディスコティック液晶層を形成することで得られる。
VAモードの液晶セル用途では、 Re (630)は 15nm以下が好ましぐ l lnm以下が 更に好まし 、。 Rth (630) iま 120以上 300mn以下力好ましく、 150以上 260nm以 下が更に好ましい。 VAモードの液晶セル用途の光学補償シートは環状ォレフィン系 付加重合体の基体フィルムの上に配向層と棒状液晶層を形成することで得られる。
OCBモードの液晶セル用途では、 Re (630)は 30以上 70nm以下が好ましぐ 35 以上 55nm以下が更に好ましい。 Rth (630)は 120以上 300nm以下が好ましぐ 15 0以上 260nm以下が更に好ましい。 OCBモードの液晶セル用途の光学補償シート は環状ォレフィン系付加重合体の基体フィルムの上に配向層とディスコティック液晶 層を形成することで得られる。 [0079] [偏光板]
一般的に偏光板は、偏光子およびその両側に配置された 2枚の透明保護膜からな る。少なくとも一方の保護膜として、本発明の光学補償シートを用いることができる。 他方の保護膜は、通常のセルロースアセテートフィルムを用いてもよい。偏光子には 、ヨウ素系偏光子、二色性染料を用いる染料系偏光子やポリェン系偏光子がある。ョ ゥ素系偏光子および染料系偏光子は、一般にポリビニルアルコール系フィルムを用 いて製造する。本発明の光学補償シートを偏光板保護膜として用いる場合、光学補 償シートは後述の如き表面処理を行 、、しかる後に光学補償シート処理面と偏光子 を接着剤を用いて貼り合わせる。使用される接着剤としては、例えば、ポリビニルアル コール、ポリビュルプチラール等のポリビュルアルコール系接着剤や、ブチルアタリレ ート等のビニル系ラテックス、ゼラチン等が挙げられる。偏光板は偏光子およびその 両面を保護する保護膜で構成されており、更に該偏光板の一方の面にプロテクトフィ ルムを、反対面にセパレートフィルムを貼合して構成される。プロテクトフィルムおよび セパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的 で用いられる。この場合、プロテクトフィルムは、偏光板の表面を保護する目的で貼合 され、偏光板を液晶板へ貼合する面の反対面側に用いられる。また、セパレートフィ ルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ 貼合する面側に用いられる。
[0080] [光学異方性層の形成]
本発明の光学補償シートは、環状ォレフィン系付加重合体の基体フィルム上に光 学異方性層を有する。光学異方性層は、液晶性化合物、非液晶性化合物、無機化 合物、有機 Z無機複合化合物等がある。なかでも液晶性ィ匕合物が好ましく使用され る。液晶性ィ匕合物としては、重合性基を有する低分子化合物を配向させた後に光ま たは熱による重合により配向を固定ィヒするものや、液晶性高分子を加熱し配向させ た後に冷却しガラス状態で配向固定ィ匕するものを使うことができる。液晶性ィ匕合物と しては円盤状構造を有するもの、棒状構造を有するもの、光学的二軸性を示す構造 を有するものを使うことができる。非液晶性ィ匕合物としては、ポリイミド、ポリエステル等 の芳香族環を有する高分子を使うことができる。 以下に液晶性ィヒ合物による光学異方性層の形成方法を記載する。
[0081] (配向膜)
光学異方性層を形成する液晶性ィ匕合物の配向方向を規定するためには配向膜を 用いることが好ましい。配向膜は、有機化合物 (好ましくはポリマー)のラビング処理、 無機化合物の斜方蒸着、マイクログループを有する層の形成、あるいはラングミュア' プロジェット法 (LB膜)による有機化合物(例、 ω—トリコサン酸、ジォクタデシルメチ ルアンモ -ゥムクロライド、ステアリル酸メチル)の累積のような手段で、設けることがで きる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配 向膜も知られている。配向膜は、ポリマーのラビング処理により形成することが好まし い。ラビング処理は、配向膜の表面を、紙や布で一定方向に、数回こすることにより 実施する。長さおよび太さが均一な繊維を均一に植毛した布を用いることが好ましい 。なお、光学異方性層の液晶性分子が配向膜上で配向固定化された後は、配向膜 を除去しても液晶性分子の配向状態を保つことができる。すなわち、配向膜は、液晶 性分子を配向させるため光学補償シートの製造においては必須であるが、製造され た光学補償シートにぉ ヽては必須ではな!ヽ。配向膜を環状ォレフィン系付加重合体 の基体フィルムと光学異方性層との間に設けるに先立って、環状ォレフィン系付加重 合体の基体フィルムの表面処理を行うことが好まし 、。表面処理にはコロナ放電処理 、グロ一放電処理あるいは火炎処理などがある。これら表面処理の詳しい方法につ いては後述する。表面処理を行った後必要に応じてさらに下塗り層(接着層)を環状 ォレフィン系付加重合体の基体フィルムと配向膜との間に設けてもよい。
[0082] 配向膜用の有機化合物の例としては、ポリメチルメタタリレート、アクリル酸 Ζメタタリ ル酸共重合体、スチレン Ζマレインイミド共重合体、ポリビュルアルコール、ポリ(Ν— メチロールアクリルアミド)、スチレン Ζビュルトルエン共重合体、クロロスルホン化ポリ エチレン、ニトロセルロース、ポリ塩化ビュル、塩素化ポリオレフイン、ポリエステル、ポ リイミド、酢酸ビュル Ζ塩化ビュル共重合体、エチレン Ζ酢酸ビニル共重合体、カル ボキシメチルセルロース、ポリエチレン、ポリプロピレンおよびポリカーボネート等のポ リマーおよびシランカップリング剤等の化合物を挙げることができる。好まし 、ポリマー の例としては、ポリイミド、ポリスチレン、スチレン誘導体のポリマー、ゼラチン、ポリビ -ルアルコールおよびアルキル基 (炭素原子数 6以上が好まし!/、)を有するアルキル 変性ポリビュルアルコールを挙げることができる。
[0083] 中でもアルキル変性のポリビュルアルコールは特に好ましぐ液晶性化合物を均一 に配向させる能力に優れて 、る。これは配向膜表面のアルキル鎖と液晶のアルキル 側鎖との強い相互作用のためと推察される。また、アルキル基は、炭素原子数 6〜 14 が好ましぐ更に、— S—、—(CH ) C (CN)—または—(C H ) N— CS— S—を介
3 2 5
してポリビニルアルコールに結合して 、ることが好まし 、。上記アルキル変性ポリビ- ルアルコールは、未端にアルキル基を有するものであり、ケン化度 80%以上、重合 度 200以上が好ましい。また、上記側鎖にアルキル基を有するポリビニルアルコール は、クラレ (株)製の MP103、 MP203、 Rl 130などの市販品を利用することができる
[0084] また、 LCDの配向膜として広く用いられているポリイミド膜 (好ましくはフッ素原子含 有ポリイミド)も有機配向膜として好ましい。これはポリアミック酸 (例えば、 日立化成( 株)製の LQZLXシリーズ、 日産化学 (株)製の SEシリーズ等)を基体面に塗布し、 1 00〜300°Cで 0. 5〜1時間焼成した後、ラビングすることにより得られる。
[0085] 更に、本発明の環状ォレフィン系付加重合体の基体フィルムに適用される配向膜 は、上記ポリマーに反応性基を導入することにより、あるいは上記ポリマーをイソシァ ネートイ匕合物およびエポキシィ匕合物などの架橋剤と共に使用して、これらのポリマー を硬化させることにより得られる硬化膜であることが好ましい。
[0086] 配向膜に用いられるポリマーと、光学異方性層の液晶性化合物とが、これらの層の 界面を介して化学的に結合していることが好ましい。配向膜のポリマー力 ビニル部 分、ォキシラ-ル部分またはアジリジ -ル部分を有する基で、少なくとも一個のヒドロ キシル基が置換されたポリビュルアルコール力 形成されて 、ることが好まし 、。ビ- ル部分、ォキシラニル部分またはアジリジニル部分を有する基力 エーテル結合、ゥ レタン結合、ァセタール結合またはエステル結合を介してポリビュルアルコール誘導 体のポリマー鎖に結合していることが好ましい。ビニル部分、ォキシラ-ル部分または アジリジニル部分を有する基が、芳香族環を持たないことが好ましい。上記ポリビ- ルアルコール力 特開平 9— 152509号公報に記載の(化 22)であることが好ましい。 [0087] 光学異方性層は長尺の形態で偏光子と積層される。長尺のフィルム上を搬送しな 力 連続的に配向膜組成物の溶液を塗布することで配向膜を形成し、その表面を連 続的にラビング処理を行 、、その上に液晶性ィ匕合物を含む溶液を連続的に塗布す ることで、長尺の光学異方性層を得ることができる。
[0088] 前記長尺の光学異方性層の遅相軸方向は、フィルム面に対して実質的に平行方 向である。上記のように、長尺フィルム上に形成した配向膜を搬送しながら連続的に ラビング処理を行うことで液晶性ィ匕合物を配向させるときには、長手方向に対して平 行方向もしくは直交方向のどちらに液晶分子を配向させるかによつて適宜配向膜素 材を選ぶことができる。光学異方性層の遅相軸をラビング方向と平行に (すなわち、 長手方向と平行に)発現させたい場合には、ポリビニルアルコール系の配向膜などを 用いることができる。また、光学異方性層の遅相軸をラビング方向と直交に (すなわち 、長手方向と直交に)発現させたい場合には、特開 2002— 98836号公報の段落 [0 024]〜 [0210]に記載の直交配向膜などを用いることができる。広く一般に使用さ れているヨウ素を用いた偏光子は、連続縦一軸延伸プロセスによって製造されるため 、ロールの長手方向と平行に吸収軸がある。したがって、一般的な縦一軸延伸された 長尺の偏光子と長尺の光学異方性層を、偏光子の吸収軸と光学異方性層の遅相軸 が直交するようにロールトウロールにより貼り合せる場合には、上記直交配向膜を用 いるのが好ましい。
[0089] (液晶性化合物)
光学異方性層に用いる液晶は、ディスコティック化合物や棒状ィ匕合物が好ましく用 いられる。
ディスコティック化合物については特開平 7— 267902号、特開平 7— 281028号、 特開平 7— 306317号の各公報に詳細に記載されている。それらによると、光学異方 性層はディスコティック構造単位を有する化合物力 なる負の複屈折を有する層であ る。即ち、光学異方性層は、モノマー等の低分子量の液晶性ディスコティック化合物 層、または重合性の液晶性ディスコティック化合物の重合 (硬化)により得られるポリ マー層である。それらのディスコティック(円盤状)ィ匕合物の例としては、 C. Destrade らの研究報告、 Mol. Cryst. 71卷、 111頁(1981年)に記載されているベンゼン誘 導体、 C. Destradeらの研究報告、 Mol. Cryst. 122卷、 141頁(1985年)、 Physi cs lett, A, 78卷、 82頁(1990)に記載されているトルキセン誘導体、 B. Kohneら の研究報告、 Angew. Chem. 96卷、 70頁(1984年)に記載されたシクロへキサン 誘導体および J. M. Lehnらの研究報告、 J. Chem. Commun. , 1794頁(1985年 )、J. Zhangらの研究報告、 J. Am. Chem. Soc. 116卷、 2655頁(1994年)に記 載されているァザクラウン系やフエ-ルアセチレン系マクロサイクルなどを挙げること ができる。上記ディスコティック(円盤状)ィ匕合物は、一般的にこれらを分子中心の母 核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾィルォキシ基等がその直鎖と して放射線状に置換された構造であり、液晶性を示し、一般的にディスコティック液 晶とよばれるものが含まれる。ただし、分子自身が負の一軸性を有し、一定の配向を 付与できるものであれば上記記載に限定されるものではない。また、前記公報におい て円盤状ィ匕合物力 形成したとは、最終的にできた物が前記化合物である必要はな ぐ例えば前記低分子ディスコティック化合物が熱、光等で反応する基を有しており、 結果的に熱、光等で反応により重合または架橋し、高分子量化し液晶性を失ったも のも含まれる。さら〖こ、ディスコティックネマティック相または一軸性の柱状相を形成し 得る、円盤状化合物の少なくとも一種を含有し、かつ光学異方性を有することを特徴 とする化合物を用いることが好ましい。また円盤状ィ匕合物がトリフエ-レン誘導体であ ることが好ましい。ここで、トリフエ-レン誘導体力 特開平 7— 306317号公報に記載 の(化 2)で表される化合物であることが好ま 、。
液晶性を示す棒状化合物(棒状液晶性ィ匕合物)としては、ァゾメチン類、ァゾキシ 類、シァノビフエ-ル類、シァノフエ-ルエステル類、安息香酸エステル類、シクロへ キサンカルボン酸フエ-ルエステル類、シァノフエ-ルシクロへキサン類、シァノ置換 フエ-ルビリミジン類、アルコキシ置換フエ-ルビリミジン類、フエ-ルジォキサン類、ト ラン類およびアルケニルシクロへキシルベンゾニトリル類が好ましく用いられる。以上 のような低分子液晶性ィ匕合物だけではなぐ高分子液晶性ィ匕合物も用いることができ る。棒状液晶性ィ匕合物を重合によって配向を固定することがより好ましい。液晶分子 には活性光線や電子線、熱などによって重合や架橋反応を起こしうる部分構造を有 するものが好適に用いられる。その部分構造の個数は 1〜6個、好ましくは 1〜3個で ある。重合性棒状液晶性化合物としては、 Makromol. Chem. , 190卷、 2255頁( 1989年)、 Advanced Materials 5卷、 107頁(1993年)、米国特許 4683327号 明細書、同 5622648号明細書、同 5770107号明細書、国際公開 W095Z22586 号公報、同 95Z24455号公報、同 97,00600号公報、同 98,23580号公報、同 98Z52905号公報、特開平 1— 272551号公報、同 6— 16616号公報、同 7— 110 469号公報、同 11— 80081号公報、および特開 2001— 328973号公報などに記 載の化合物を用いることができる。
[0091] (液晶層の形成)
光学異方性層は、液晶性化合物および必要に応じて重合性開始剤や任意の成分 を含む塗布液を、配向膜の上に塗布することで形成できる。塗布液の調製に使用す る溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド (例、 N, N ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合 物(例、ピリジン)、炭化水素(例、ベンゼン、へキサン)、アルキルハライド(例、クロ口 ホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、ァセト ン、メチルェチルケトン)、エーテル(例、テトラヒドロフラン、 1, 2—ジメトキシェタン)が 含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用 してもよい。塗布液の塗布は、公知の方法 (例、押し出しコーティング法、ダイレクトグ ラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法)により実 施できる。光学異方性層の厚さは、 0. 5〜: L00 mであることが好ましぐ 0. 5〜30 μ mであることがさらに好ましい。
[0092] 配向させた液晶性分子の配向状態の固定ィ匕は、重合反応により実施することが好 ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる 光重合反応とが含まれるが、光重合反応が好ましい。光重合開始剤の例には、 0C カルボニル化合物(米国特許 2367661号、同 2367670号の各明細書記載)、ァシ 口インエーテル (米国特許 2448828号明細書記載)、 a—炭化水素置換芳香族ァシ 口インィ匕合物 (米国特許 2722512号明細書記載)、多核キノンィ匕合物 (米国特許 30 46127号、同 2951758号の各明細書記載)、トリアリールイミダゾールダイマーと p— ァミノフエ二ルケトンとの組み合わせ (米国特許 3549367号明細書記載)、アタリジン およびフエナジンィ匕合物(特開昭 60— 105667号公報、米国特許 4239850号明細 書記載)およびォキサジァゾ一ルイ匕合物 (米国特許 4212970号明細書記載)が含ま れる。光重合開始剤の使用量は、塗布液の固形分の 0. 01〜20質量%であることが 好ましぐ 0. 5〜5質量%であることがさらに好ましい。液晶性分子の重合のための光 照射は、紫外線を用いることが好ましい。照射エネルギーは、 20〜5000miZcm2で あることが好ましぐ 100〜800mjZcm2であることがさらに好ましい。また、光重合反 応を促進するため、加熱条件下で光照射を実施してもよい。保護層を、光学異方性 層の上に設けてもよい。
[0093] 上記の液晶性ィ匕合物と共に、可塑剤、界面活性剤、重合性モノマー等を併用して 、塗工膜の均一性、膜の強度、液晶性ィ匕合物の配向性等を向上させることが出来る 。これらの素材は液晶性ィ匕合物と相溶性を有し、配向を阻害しないことが好ましい。 重合性モノマーとしては、ラジカル重合性もしくはカチオン重合性の化合物が挙げ られる。好ましくは、多官能性ラジカル重合性モノマーであり、上記の重合性基含有 の液晶性化合物と共重合性のものが好ましい。例えば、特開 2002— 296423号公 報明細書中の段落番号 [0018]〜[0020]記載のものが挙げられる。上記化合物の 添加量は、液晶性分子に対して一般に 1〜50質量%の範囲にあり、 5〜30質量% の範囲にあることが好まし 、。
[0094] (光学異方性ポリマー層の形成)
次に光学異方性層がポリマーフィルムを含有する形態について説明する。ポリマー フィルムに使用される非液晶性ポリマーとしては、ポリアミド、ポリイミド、ポリエステル、 ポリエーテルケトン、ポリアミドイミド、ポリエステルイミド、およびポリアリールエーテル ケトン力もなる群力も選ばれる少なくとも一種のポリマーが好ましく使用できる。これら のポリマーを溶媒に溶解した溶液を、環状ォレフィン系付加重合体の基体フィルムに 塗布し、溶媒を乾燥させて膜化することによって光学異方性層を作成する。この際、 上記ポリマー膜と基体フィルムとを延伸して光学異方性を更に発現させて光学異方 性層として用いる手法も好ましく用いることができる。また、上記非液晶性ポリマー膜 を別の基材の上で作製しておき、非液晶性ポリマー膜を基材カも剥離させたのちに 、環状ォレフィン系付加重合体の基体フィルムと貼合してもよい。この非液晶性ポリマ 一膜の厚さは 50 μ m以下であることが好ましぐ 1〜20 μ mであることがより好ましい 非液晶性ポリマーよりなる光学異方性層の作成については、特開 2003— 315554 号公報に、光学異方性層(B)の呼称で詳細に記載されている。
[0095] (光学異方性層の特性)
このようにして得られた本発明の光学補償シートは、膜厚方向のレターデーンヨン R thが下記式を満たすことが好ま 、。
40nm≤Rth(630)≤300nm
さらに好ましくは 120nm≤Rth(630)≤260nmである。このような Rthの範囲であ ると VA型液晶表示装置の視野角改善に使用できるという効果を奏する。
[0096] [偏光板の作製]
本発明の偏光板は、偏光子と 2枚の保護膜 (保護フィルム)とを接着剤を用いて貼り あわせることにより作成する。少なくとも一方の保護フィルムには本発明の光学補償 シートを用いることが好ましい。もう一方の保護フィルムには一般的なセルローストリア セテートフィルムを用いることが出来る。以下本発明の偏光板の製造方法を順に説明 する。
(偏光層を形成する結合剤)
偏光層は、 PVA中に分散した偏光色素を一方向に配向させることにより形成できる 。 PVAは通常、ポリ酢酸ビュルをケン化したものであり、例えば不飽和カルボン酸、 不飽和スルホン酸、ォレフィン類、ビュルエーテル類のように酢酸ビュルと共重合可 能な成分を含有しても構わない。また、ァセトァセチル基、スルホン酸基、カルボキシ ル基、ォキシアルキレン基等を含有する変性 PVAも用いることができる。 PVAのケン 化度は特に限定されないが、溶解性等の観点から 80〜: L00mol%がであることが好 ましぐ 90〜: L00mol%であることが特に好ましい。また PVAの重合度は特に限定さ れな ヽカ 1,000〜10,000であること力 子ましく、 1,500〜5,000であること力特に 好ましい。
[0097] (偏光層の染色)
偏光層の染色は、ヨウ素 ヨウ化カリウム水溶液に PVAフィルムを浸漬させて行う。 ヨウ素の含有量は 0. l〜20g/l、ヨウ化カリウムの含有量は l〜200g/lであること が適当であり、ヨウ素とヨウ化カリウムの質量比は 1〜200であることが好ましい。染色 時間は 10〜5,000秒であることが好ましぐ染色液の温度は 5〜60°Cであることが好 ましい。染色方法は浸漬だけでなぐヨウ素 染料溶液の塗布又は噴霧等の任意の 手段を用いることができる。染色工程は、延伸工程の前および後のいずれでもよいが 、適度に膜が膨潤され延伸が容易になることから、延伸工程前に液相で染色すること が特に好ましい。
[0098] 本発明の偏光板では、上記ヨウ素以外の色素を用いることもできる。ヨウ素以外の 好ましい染料としては、例えば、ァゾ系色素、スチルベン系色素、ピラゾロン系色素、 トリフエ-ノレメタン系色素、キノリン系色素、ォキサジン系色素、チアジン系色素、アン トラキノン系色素等の色素系化合物などが挙げられる。
[0099] (偏光層の硬膜化)
延伸後の PVAの配向構造を固定するために、 PVAを架橋することが好ましい。架 橋剤としては、例えば、米国再発行特許第 232897号に記載されたものが使用でき る力 ホウ酸、ホウ砂が実用的に好ましく用いられる。また、亜鉛、コバルト、ジルコ二 ゥム、鉄、ニッケル、マンガン等の金属塩も併せて用いることができる。このような硬膜 化は、ホウ砂、ホウ酸の水溶液に染料を含浸させた PVAを浸漬させることにより達成 できる。ホウ砂、ホウ酸の含有量は 0. 1〜10モル /1であることが好ましぐ 0. 2〜5モ ル Z1であることがより好ましぐ 0. 2〜2モル Z1であることがさらに好ましい。硬膜ィ匕 の液温度は 10〜40°Cであり、より好ましくは 15〜35°Cである。浸漬時間は 10秒〜 1 0分であり、より好ましくは 20秒〜 5分である。この硬膜液の中にはヨウ化ナトリウム、ョ ゥ化カリウム等のヨウ化物塩を入れておくことも好ましい。ヨウ化物塩の濃度は 0. 1〜 10モル Z1であることが好ましぐ 0. 2〜5モル Z1であることがより好ましぐさらに好ま しくは 0. 2〜2モル Z1である。なお、硬膜化は、延伸前、延伸中および延伸後のいず れの工程にお!、て行ってもよ!、。
[0100] (偏光層の延伸)
延伸に先立ち、 PVAフィルムを膨潤させる。膨潤度は 1. 2〜2. 0倍 (膨潤前と膨潤 後の質量比)である。この後、ガイドロール等を介して連続搬送しつつ、水系媒体浴 内や二色性物質溶解の染色浴内で 15〜50°C、好ましくは 17〜40°Cの浴温で延伸 する。延伸は 2対の-ップロールで把持し、後段の-ップロールの搬送速度を前段の それより大きくすることで達成できる。延伸倍率は、延伸後 Z初期状態の長さ比 (以 下同じ)に基づくが前記作用効果の点より好ましい延伸倍率は 1. 2〜3. 5倍、好まし くは 1. 5〜3. 0倍である。この後、 50〜90°Cで乾燥させて偏光子を得る。
[0101] (環状ォレフィン系付加重合体の基体フィルムの表面処理)
本発明では、偏光子と環状ォレフィン系付加重合体の基体フィルムとの接着性を改 良するため接着剤を塗布する前に、環状ォレフィン系付加重合体の基体フィルムの 表面 (光学異方性層塗布面の反対側)を表面処理する。表面処理については、接着 性を改善できる限りいな力る方法を利用してもよいが、好ましい表面処理としては、例 えばグロ一放電処理、紫外線照射処理、コロナ処理および火炎処理が挙げられる。 ここでいうグロ一放電処理とは、低圧ガス下でおこる、いわゆる低温プラズマのことで ある。本発明では大気圧下でのプラズマ処理も好ましい。その他、グロ一放電処理の 詳細については、米国特許第 3462335号、米国特許第 3761299号、米国特許第 4072769号および英国特許第 891469号明細書に記載されている。放電雰囲気ガ ス組成を放電開始後にポリエステル支持体自身が放電処理を受けることにより容器 内に発生する気体種のみにした特表昭 59— 556430号公報に記載された方法も用 いられる。また真空グロ一放電処理する際に、フィルムの表面温度を 80°C以上 180 °C以下にして放電処理を行う特公昭 60— 16614号公報に記載された方法も適用で きる。
[0102] グロ一放電処理時の真空度は 0. 5〜3000Paが好ましぐより好ましくは 2〜300P aである。また、電圧は 500〜5000Vの間力 子ましぐより好まし <は 500〜3000Vで ある。使用する放電周波数は、直流から数千 MHz、より好ましくは 50Hz〜20MHz 、さらに好ましくは 1ΚΗζ〜1ΜΗζである。放電処理強度は、 0. OIKV'A'分 Zm2 〜5Κν·Α·分 Zm2が好ましぐより好ましくは 0. 15Κν·Α·分 Zm2〜: LKV'A'分 Z m (?める。
[0103] 本発明では、表面処理として紫外線照射法を行うことも好ま ヽ。例えば、特公昭 4 3— 2603号、特公昭 43— 2604号、特公昭 45— 3828号の各公報に記載の処理方 法によって行うことができる。水銀灯は石英管からなる高圧水銀灯で、紫外線の波長 力 Sl80〜380nmの間であるものが好ましい。紫外線照射の方法については、光源は フィルムの表面温度が 150°C前後にまで上昇することが支持体の性能上問題なけれ ば、主波長が 365nmの高圧水銀灯ランプを使用することができる。低温処理が必要 とされる場合には主波長が 254nmの低圧水銀灯が好まし、。またオゾンレスタイプ の高圧水銀ランプ、および低圧水銀ランプを使用する事も可能である。処理光量に 関しては処理光量が多いほど環状ォレフィン系付加重合体の基体フィルムと偏光子 との接着力は向上するが、光量の増加に伴い該フィルムが着色し、また脆くなるとい う問題が発生する。従って、 365nmを主波長とする高圧水銀ランプで、照射光量 20 〜10000 (nijZcm2)力 く、より好ましくは 50〜2000 (mjZcm2)である。 254nmを 主波長とする低圧水銀ランプの場合には、照射光量 100〜10000 (mjZcm2)がよく 、より好ましくは 300〜1500 (mjZcm2)である。
[0104] さらに、本発明では表面処理としてコロナ放電処理を行うことも好ましい。例えば、 特公昭 39— 12838号、特開昭 47— 19824号、特開昭 48— 28067号、特開昭 52 42114号の各公報に記載等の処理方法によって行うことができる。コロナ放電処 理装置は、 Pillar社製ソリッドステートコロナ処理機、 LEPEL型表面処理機、 VETA PHON型処理機等を用いることができる。処理は空気中での常圧にて行うことができ る。処理時の放電周波数は、 5〜40KV、より好ましくは 10〜30KVであり、波形は交 流正弦波が好ましい。電極と誘電体ロールのギャップ透明ランスは 0. 1〜: LOmm、よ り好ましくは 1. 0〜2. Ommである。放電は、放電帯域に設けられた誘電サポート口 一ラーの上方で処理し、処理量は、 0. 3〜0. 4Κν·Α·分 Zm2、より好ましくは 0. 34 〜0. 38Κν·Α·分 Zm2である。
[0105] 本発明では、表面処理として火炎処理を行うことも好ましい。用いるガスは天然ガス 、液ィ匕プロパンガス、都市ガスのいずれでもかまわないが、空気との混合比が重要で ある。
なぜなら、火炎処理による表面処理の効果は活性な酸素を含むプラズマによっても たらされると考えられるからであり、火炎の重要な性質であるプラズマの活性 (温度)と 酸素がどれだけ多くあるかがポイントである。このポイントの支配因子はガス Z酸素比 であり、過不足なく反応する場合にエネルギー密度が最も高くなりプラズマの活性が 高くなる。具体的には、天然ガス Z空気の好ましい混合比は容積比で 1Z6〜1Z10 、好ましくは 1Z7〜1Z9である。また、液ィ匕プロパンガス Z空気の場合は 1Z14〜1 Z22、好ましくは 1Z16〜: LZ19、都市ガス Z空気の場合は 1Z2〜: LZ8、好ましく は 1Z3〜: LZ7である。また、火炎処理量は l〜50KcalZm2、より好ましくは 3〜20 KcalZm2の範囲で行うとよい。またバーナーの内炎の先端とフィルムの距離は 3〜7 cm、より好ましくは 4〜6cmにするとよい。バーナーのノズル形状は、フリンバーナー 社 (米国)のリボン式、ワイズ社 (米国)の多穴式、エアロジェン(英国)のリボン式、春 日電機(日本)の千鳥型多穴式、小池酸素(日本)の千鳥型多穴式が好ま 、。火炎 処理にフィルムを支えるバックアップロールは中空型ロールであり、冷却水を通して 水冷し、常に 20〜50°Cの一定温度で処理するのがよい。
[0106] 表面処理の程度については、表面処理の種類、環状ォレフィン系付加重合体の種 類によって好ましい範囲も異なる力 表面処理の結果、表面処理を施されたフィルム の表面の純水との接触角が、 50° 未満となるのが好ましい。前記接触角は、 25° 以 上 45° 未満であるのがより好ましい。フィルム表面の純水との接触角が上記範囲に あると、環状ォレフィン系付加重合体の基体フィルムと偏光子との接着強度が良好と なる。
[0107] (接着剤)
本発明では、ポリビニルアルコール力 なる偏光子と、表面処理された環状ォレフィ ン系付加重合体の基体フィルムとを貼合する際には、水溶性ポリマーを含有する接 着剤を用いる。
前記接着剤に好ましく使用される水溶性ポリマーとしては、 N—ビュルピロリドン、ァ クリル酸、メタクリル酸、マレイン酸、アクリル酸 ーヒドロキシェチル、メタクリル酸 j8 —ヒドロキシェチル、ビュルアルコール、メチルビ-ルエーテル、酢酸ビュル、アタリ ルアミド、メタクリルアミド,ジアセトンアクリルアミド、ビュルイミダゾールなどエチレン 性不飽和モノマーを構成要素として有する単独重合体もしくは共重合体、またポリオ キシエチレン、ボリォキシプロピレン、ポリ 2—メチルォキサゾリン、メチルセルロース 、ヒドロキシェチルセルロース、ヒドロキシプロピルセルロースゼラチン、などが挙げら れる。本発明では、この中でも PVAおよびゼラチンが好ましい。
[0108] 接着剤に PVAを用いる場合の好ましい PVA特性は、前述の偏光子に用いる PVA の好ましい特性と同様である。本発明では、さらに架橋剤を併用することが好ましい。 PVAを接着剤に使用する場合に好ましく併用される架橋剤は、ホウ酸、多価アルデ ヒド、多官能イソシナネート化合物、多官能エポキシ化合物等が挙げられるが、本発 明ではホウ酸が特に好ま 、。
接着剤にゼラチンを用いる場合、いわゆる石灰処理ゼラチン、酸処理ゼラチン、酵 素処理ゼラチン、ゼラチン誘導体および変性ゼラチン等を用いることができる。これら のゼラチンのうち、好ましく用いられるのは石灰処理ゼラチン、酸処理ラチンである。 接着剤にゼラチンを用いる場合に、好ましく併用される架橋剤としては、活性ハロゲ ン化合物(2, 4 ジクロル— 6 ヒドロキシ— 1, 3, 5 トリァジンおよびそのナトリウム 塩など)および活性ビュル化合物(1, 3 ビスビニルスルホ-ルー 2 プロパノール、 1, 2—ビスビュルスルホ-ルァセトアミド)ェタン、ビス(ビュルスルホ -ルメチル)エー テルあるいはビニルスルホ-ル基を側鎖に有するビュル系ポリマーなど)、 N—カル バモイルピリジ -ゥム塩類(( 1 モルホリノカルボ-ルー 3 -ピリジ -ォ)メタンスルホ ナートなど)ゃハロアミジ -ゥム塩類(1— (1—クロ口 1—ピリジノメチレン)ピロリジ- ゥム 2—ナフタレンスルホナートなど)等が挙げられる。本発明では、活性ハロゲン化 合物および活性ビ-ルイ匕合物が特に好ましく使用される。
[0109] 上述の架橋剤を併用する場合の架橋剤の好ましい添加量は、接着剤中の水溶性 ポリマーに対し、 0. 1質量%以上、 40質量%未満であり、さらに好ましくは、 0. 5質 量%以上、 30質量%未満である。保護フィルムもしくは偏光子の少なくとも一方の表 面に接着剤を塗布して、接着剤層を形成して、貼合するのが好ましぐ保護フィルム の表面処理面に接着剤を塗布して、接着剤層を形成し、偏光子の表面に貼合する のが好ましい。接着剤層厚みは、乾燥後に 0. 01〜5 111カ 子ましく、 0. 05〜3 /ζ πι が特に好ましい。
[0110] (反射防止層)
偏光板の、液晶セルと反対側に配置される保護フィルムには反射防止層などの機 能性膜を設けることが好ましい。特に、本発明では保護フィルム上に少なくとも光散 乱層と低屈折率層がこの順で積層した反射防止層または保護フィルム上に中屈折 率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられ る。以下にそれらの好ましい例を記載する。
[0111] 保護フィルム上に光散乱層と低屈折率層を設けた反射防止層の好ましい例につい て述べる。
本発明の光散乱層にはマット粒子が分散しており、光散乱層のマット粒子以外の部 分の素材の屈折率は 1. 50〜2. 00の範囲にあることが好ましぐ低屈折率層の屈折 率は 1. 35〜: L 49の範囲にあることが好ましい。本発明においては光散乱層は、防 眩性とハードコート性を兼ね備えており、 1層でもよいし、複数層、例えば 2層〜 4層 で構成されていてもよい。
[0112] 反射防止層は、その表面凹凸形状として、中心線平均粗さ Raが 0. 08〜0. 40 μ m、 10点平均粗さ Rzが Raの 10倍以下、平均山谷距離 Smが 1〜100 m、凹凸最 深部からの凸部高さの標準偏差が 0. 以下、中心線を基準とした平均山谷距 離 Smの標準偏差が 20 m以下、傾斜角 0〜5度の面が 10%以上となるように設計 することで、十分な防眩性と目視での均一なマット感が達成され、好ましい。
また、 C光源下での反射光の色味が a*値 2〜2、 b*値 3〜3、 380nm〜780n mの範囲内での反射率の最小値と最大値の比 0. 5〜0. 99であることで、反射光の 色味が-ユートラルとなり、好ましい。また C光源下での透過光の b*値が 0〜3とする ことで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。
また、面光源上と反射防止層の間に 120 m X 40 mの格子を挿入してフィルム 上で輝度分布を測定した際の輝度分布の標準偏差が 20以下であると、高精細パネ ルに本発明のシートを適用したときのギラツキが低減され、好ましい。
[0113] 本発明の反射防止層は、その光学特性として、鏡面反射率 2. 5%以下、透過率 9 0%以上、 60度光沢度 70%以下とすることで、外光の反射を抑制でき、視認性が向 上するため好ましい。特に鏡面反射率は 1%以下がより好ましぐ 0.5%以下であるこ とが最も好ましい。ヘイズ 20%〜50%、内部ヘイズ Z全ヘイズ値 (比)が 0. 3〜1、光 散乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が 15%以内、くし 幅 0. 5mmにおける透過像鮮明度 20%〜50%、垂直透過光 Z垂直から 2度傾斜方 向の透過率比が 1. 5〜5. 0とすることで、高精細 LCDパネル上でのギラツキ防止、 文字等のボケの低減が達成され、好ましい。
[0114] (低屈折率層)
本発明の反射防止層における低屈折率層の屈折率は、 1. 20〜: L 49であり、好ま しくは 1. 30〜: L 44の範囲にある。さらに、低屈折率層は下記数式 (IX)を満たすこと が低反射率化の点で好まし 、。
数式(IX): (m /4) X O. 7<nldl < (m /4) X I. 3
式中、 mは正の奇数であり、 nlは低屈折率層の屈折率であり、そして、 dlは低屈折 率層の膜厚(nm)である。また、 λは波長であり、 500〜550nmの範囲の値である。
[0115] 本発明の低屈折率層を形成する素材について以下に説明する。
本発明の低屈折率層には、低屈折率バインダーとして、含フッ素ポリマーを含む。 フッ素ポリマーとしては動摩擦係数 0. 03-0. 20、水に対する接触角 90〜 120° 、 純水の滑落角が 70° 以下の熱または電離放射線により架橋する含フッ素ポリマーが 好ましい。本発明の反射防止層を画像表示装置に装着した時、市販の接着テープと の剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましぐ 500gf 以下が好ましぐ 300gf以下がより好ましぐ lOOgf以下が最も好ましい。また、微小 硬度計で測定した表面硬度が高いほど、傷がつき難ぐ 0. 3GPa以上が好ましぐ 0 . 5GPa以上がより好ましい。
[0116] 低屈折率層に用いられる含フッ素ポリマーとしてはパーフルォロアルキル基含有シ ランィ匕合物(例えば (ヘプタデカフルオロー 1, 1, 2, 2—テトラヒドロデシル)トリェトキ シシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与の ための構成単位を構成成分とする含フッ素共重合体が挙げられる。
[0117] 含フッ素モノマーの具体例としては、例えばフルォロォレフイン類(例えばフルォロ エチレン、ビ-リデンフルオライド、テトラフルォロエチレン、パーフルォロォクチルェ チレン、へキサフルォロプロピレン、パーフルオロー 2, 2—ジメチルー 1, 3—ジォキ ソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類 ( 例えばビスコート 6FM (大阪有機化学製)や M— 2020 (ダイキン製)等)、完全また は部分フッ素化ビュルエーテル類等が挙げられる力 好ましくはパーフルォロォレフ イン類であり、屈折率、溶解性、透明性、入手性等の観点力 特に好ましくはへキサ フルォロプロピレンである。
[0118] 架橋反応性付与のための構成単位としてはグリシジル (メタ)アタリレート、グリシジ ルビ-ルエーテルのように分子内にあら力じめ自己架橋性官能基を有するモノマー の重合によって得られる構成単位、カルボキシル基ゃヒドロキシ基、アミノ基、スルホ 基等を有するモノマー(例えば (メタ)アクリル酸、メチロール (メタ)アタリレート、ヒドロ キシアルキル(メタ)アタリレート、ァリルアタリレート、ヒドロキシェチルビ-ルエーテル 、ヒドロキシブチルビ-ルエーテル、マレイン酸、クロトン酸等)の重合によって得られ る構成単位、これらの構成単位に高分子反応によって (メタ)アクリルロイル基等の架 橋反応性基を導入した構成単位 (例えばヒドロキシ基に対してアクリル酸クロリドを作 用させる等の手法で導入できる)が挙げられる。
[0119] また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤へ の溶解性、皮膜の透明性等の観点力 適宜フッ素原子を含有しな 、モノマーを共重 合することもできる。併用可能なモノマー単位には特に限定はなぐ例えばォレフィン 類(エチレン、プロピレン、イソプレン、塩化ビュル、塩化ビ-リデン等)、アクリル酸ェ ステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸ェチル、アクリル酸 2—ェチ ルへキシル)、メタクリル酸エステル類 (メタクリル酸メチル、メタクリル酸ェチル、メタク リル酸ブチル、エチレングリコールジメタタリレート等)、スチレン誘導体 (スチレン、ジ ビュルベンゼン、ビュルトルエン、 aーメチルスチレン等)、ビュルエーテル類(メチル ビ-ノレエーテノレ、ェチノレビ-ノレエーテノレ、シクロへキシノレビ-ノレエーテノレ等) ビ- ルエステル類(酢酸ビニル、プロピオン酸ビュル、桂皮酸ビュル等)、アクリルアミド類 (N— tert—ブチルアクリルアミド、 N—シクロへキシルアクリルアミド等)、メタクリルァ ミド類、アクリロニトリル誘導体等を挙げることができる。
[0120] 上記のポリマーに対しては特開平 10— 25388号および特開平 10— 147739号各 公報に記載のごとく適宜硬化剤を併用しても良い。
[0121] (光散乱層)
光散乱層は、表面散乱および Zまたは内部散乱による光拡散性と、フィルムの耐 擦傷性を向上するためのハードコート性をフィルムに寄与する目的で形成される。従 つて、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット 粒子、および必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィ ラーを含んで形成される。
[0122] 光散乱層の膜厚は、ハードコート性を付与する観点並びにカールの発生および脆 性の悪化の抑制の観点から、 1〜: LO /z mが好ましぐ 1. 2〜6 mがより好ましい。
[0123] 光散乱層のバインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖とし て有するポリマーであることが好ましぐ飽和炭化水素鎖を主鎖として有するポリマー であることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ま しい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性 不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋 構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有する モノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、この モノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、 および窒素原子力 選ばれた少なくとも 1種の原子を含むものを選択することもできる
[0124] 二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと (メタ )アクリル酸とのエステル(例、エチレングリコールジ (メタ)アタリレート、ブタンジォー ルジ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、 1, 4ーシクロへキサン ジアタリレート、ペンタエリスリトールテトラ (メタ)アタリレート)、ペンタエリスリトールトリ( メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、トリメチロールェタントリ (メタ)アタリレート、ジペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリト 一ルペンタ(メタ)アタリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、ペンタ エリスリトールへキサ(メタ)アタリレート、 1, 2, 3 シクロへキサンテトラメタタリレート、 ポリウレタンポリアタリレート、ポリエステルポリアタリレート)、上記のエチレンォキサイ ド変性体、ビュルベンゼンおよびその誘導体(例、 1, 4ージビュルベンゼン、 4ービ- ル安息香酸 2—アタリロイルェチルエステル、 1, 4ージビュルシクロへキサノン)、 ビュルスルホン (例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド )およびメタクリルアミドが挙げられる。上記モノマーは 2種以上併用してもよい。 [0125] 高屈折率モノマーの具体例としては、ビス(4ーメタクリロイルチオフエ-ル)スルフィ ド、ビュルナフタレン、ビュルフエ-ルスルフイド、 4ーメタクリロキシフエ-ルー 4'ーメト キシフエ-ルチオエーテル等が挙げられる。これらのモノマーも 2種以上併用してもよ い。
[0126] これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるい は熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる 従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジ カル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を支持 体上に塗布後電離放射線または熱による重合反応により硬化して光散乱層を形成 することができる。これらの光ラジカル開始剤等は公知のものを使用することができる
[0127] ポリエーテルを主鎖として有するポリマーは、多官能エポキシィ匕合物の開環重合体 が好ましい。多官能エポキシィ匕合物の開環重合は、光酸発生剤あるいは熱酸発生 剤の存在下、電離放射線の照射または加熱により行うことができる。
従って、多官能エポキシィ匕合物、光酸発生剤あるいは熱酸発生剤、マット粒子およ び無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放 射線または熱による重合反応により硬化して反射防止膜を形成することができる。
[0128] 二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれにカ卩えて、 架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この 架橋性官能基の反応により、架橋構造をバインダーポリマーに導入してもよい。 架橋性官能基の例には、イソシアナ一ト基、エポキシ基、アジリジン基、ォキサゾリ ン基、アルデヒド基、カルボ-ル基、ヒドラジン基、カルボキシル基、メチロール基およ び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シァノアクリレート誘導 体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランの ような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブ ロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用い てもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すもので はなくとも、分解した結果反応性を示すものであってもよ ヽ。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって 架橋構造を形成することができる。
[0129] 光散乱層には、防眩性付与の目的で、フィラー粒子より大きぐ平均粒径が 1〜10
/z m、好ましくは 1. 5〜7. 0 mのマット粒子、例えば無機化合物の粒子または榭脂 粒子が含有される。
上記マット粒子の具体例としては、例えばシリカ粒子、 TiO粒子等の無機化合物の
2
粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミ ン榭脂粒子、ベンゾグアナミン榭脂粒子等の榭脂粒子が好ましく挙げられる。なかで も架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好 ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
[0130] また、粒子径の異なる 2種以上のマット粒子を併用して用いてもよい。より大きな粒 子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性 を付与することが可能である。
[0131] さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましぐ各 粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも 20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割 合は全粒子数の 1%以下であることが好ましぐより好ましくは 0. 1%以下であり、さら に好ましくは 0. 01%以下である。このような粒子径分布を持つマット粒子は通常の 合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くする ことにより、より好ましい分布のマット剤を得ることができる。
[0132] 上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは 10〜: LOOOmg より好ましくは 100〜700mg/m2となるように光散乱層に含有される。
マット粒子の粒度分布はコールターカウンタ一法により測定し、測定された分布を 粒子数分布に換算する。
[0133] 光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、 ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちょり選ばれる少な くとも 1種の金属の酸化物力 なり、平均粒径が 0. 以下、好ましくは 0. 以 下、より好ましくは 0. 06 m以下である無機フィラーが含有されることが好ましい。 また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用い た光散乱層では層の屈折率を低目に保っためにケィ素の酸ィ匕物を用いることも好ま
LV、。好まし 、粒径は前述の無機フィラーと同じである。
光散乱層に用いられる無機フィラーの具体例としては、 TiO
2、 ZrO
2、 Al O
2 3、 In O 2 3
、 ZnO、 SnO、 Sb O、 ITOと SiO等が挙げられる。 TiOおよび ZrOが高屈折率化
2 2 3 2 2 2
の点で特に好まし 、。該無機フイラ一は表面をシランカップリング処理またはチタン力 ップリング処理されることも好ましぐフィラー表面にバインダー種と反応できる官能基 を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の 10〜90質量%であること が好ましぐより好ましくは 20〜80質量%であり、特に好ましくは 30〜75質量%であ る。
なお、このようなフイラ一は、粒径が光の波長よりも十分小さいために散乱が生じず 、ノインダーポリマーに該フイラ一が分散した分散体は光学的に均一な物質として振 舞う。
[0134] 光散乱層のバインダーおよび無機フィラーの混合物のバルタの屈折率は、 1. 48〜 2. 00であることが好ましぐより好ましくは 1. 50-1. 80である。屈折率を上記範囲 とするには、バインダーおよび無機フィラーの種類および量割合を適宜選択すれば よい。どのように選択するかは、予め実験的に容易に知ることができる。
[0135] 光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、 フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を塗布組成物中 に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の 反射防止層の塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるた め、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより 生産性を高めることが目的である。
[0136] 次に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層につ いて述べる。
基体上に少なくとも中屈折率層、高屈折率層、低屈折率層 (最外層)の順序の層構 成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。 高屈折率層の屈折率 >中屈折率層の屈折率 >透明支持体の屈折率 >低屈折率 層の屈折率
また、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中 屈折率ハードコート層、高屈折率層および低屈折率層からなってもよい(例えば、特 開平 8— 122504号公報、同 8— 110401号公報、同 10— 300902号公報、特開 20 02— 243906号公報、特開 2000— 111706号公報等参照)。また、各層に他の機 能を付与させてもよぐ例えば、防汚性の低屈折率層、帯電防止性の高屈折率層と したもの(例、特開平 10— 206603号公報、特開 2002— 243906号公報等)等が挙 げられる。
反射防止層のヘイズは、 5%以下あることが好ましぐ 3%以下がさらに好ましい。ま た膜の強度は、 JIS K5400に従う鉛筆硬度試験で H以上であることが好ましぐ 2H 以上であることがさらに好ましぐ 3H以上であることが最も好ましい。
[0137] (高屈折率層および中屈折率層)
反射防止層の高い屈折率を有する層は、平均粒径 lOOnm以下の高屈折率の無 機化合物超微粒子およびマトリックスバインダーを少なくとも含有する硬化性膜から 成る。
高屈折率の無機化合物微粒子としては、屈折率 1. 65以上の無機化合物が挙げら れ、好ましくは屈折率 1. 9以上のものが挙げられる。例えば、 Ti、 Zn、 Sb、 Sn、 Zr、 Ce、 Ta、 La、 In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。 このような超微粒子とするには、粒子表面が表面処理剤で処理されること (例えば、 シランカップリング剤等:特開平 11— 295503号公報、同 11— 153703号公報、特 開 2000— 9908、ァ-オン性化合物或は有機金属カップリング剤:特開 2001— 31 0432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(:特開 2001 — 1661042001— 310432号公報等)、特定の分散剤併用(例、特開平 11 1537 03号公報、米国特許第 6210858号明細書、特開 2002— 2776069号公報等)等 挙げられる。
[0138] マトリックスを形成する材料としては、従来公知の熱可塑性榭脂、硬化性榭脂皮膜 等が挙げられる。
更に、ラジカル重合性および Zまたはカチオン重合性の重合性基を少なくとも 2個 有する多官能性化合物含有組成物と、加水分解性基を有する有機金属化合物およ びその部分縮合体を含有する組成物とから選ばれる少なくとも 1種の組成物が好まし い。例えば、特開 2000— 47004号公報、同 2001— 315242号公報、同 2001— 3 1871号公報、同 2001— 296401号公報等に記載の組成物が挙げられる。
また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属 アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開 2001— 29381 8号公報等に記載されて ヽる。
[0139] 高屈折率層の屈折率は、一般に 1. 70-2. 20である。高屈折率層の厚さは、 5n m〜10 μ mであることが好ましぐ 10nm〜l μ mであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値 となるように調整する。中屈折率層の屈折率は、 1. 50〜: L 70であることが好ましい 。また、厚さは 5ηπ!〜 10m であることが好ましぐ ΙΟηπ!〜 1 μ mであることがさらに 好ましい。
[0140] (低屈折率層)
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は 1. 20〜: L 55である。好ましくは 1. 30〜: L 50である。
耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大き く向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入 、フッ素の導入等力も成る薄膜層の手段を適用できる。
含フッ素化合物の屈折率は 1. 35〜: L 50であることが好ましい。より好ましくは 1. 36-1. 47である。また、含フッ素化合物はフッ素原子を 35〜80質量%の範囲で含 む架橋性若しくは重合性の官能基を含む化合物が好まし ヽ。
例えば、特開平 9 222503号公報明細書段落番号 [0018]〜[0026]、同 11 38202号公報明細書段落番号 [0019]〜 [0030]、特開 2001— 40284号公報明 細書段落番号 [0027]〜 [0028]、特開 2000— 284102号公報等に記載の化合物 が挙げられる。 シリコーンィ匕合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に 硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが 好ましい。例えば、反応性シリコーン (例、サイラプレーン (チッソ (株)製等)、両末端 にシラノール基含有のポリシロキサン (特開平 11 - 258403号公報等)等が挙げられ る。
[0141] 架橋または重合性基を有する含フッ素および Zまたはシロキサンのポリマーの架橋 または重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗 布組成物を塗布と同時または塗布後に光照射や加熱することにより実施することが 好ましい。
また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含 有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も 好ましい。
例えば、ポリフルォロアルキル基含有シランィ匕合物またはその部分加水分解縮合 物(特開昭 58— 142958号公報、同 58— 147483号公報、同 58— 147484号公報 、特開平 9— 157582号公報、同 11— 106704号公報記載等記載の化合物)、フッ 素含有長鎖基であるポリ「パーフルォロアルキルエーテル」基を含有するシリル化合 物(特開 2000— 117902号公報、同 2001— 48590号公報、同 2002— 53804号 公報記載の化合物等)等が挙げられる。
[0142] 低屈折率層は、上記以外の添加剤として充填剤 (例えば、二酸化珪素 (シリカ)、含 フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平 均径が l〜150nmの低屈折率無機化合物、特開平 11— 3820号公報の段落番号 [ 0020]〜 [0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性 剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法 (真空蒸着法 、スパッタリング法、イオンプレーティング法、プラズマ CVD法等)により形成されても 良い。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、 30〜200nmであることが好ましぐ 50〜150nmであること 力 Sさらに好ましぐ 60〜120nmであることが最も好ましい。 [0143] (反射防止層の他の層)
さらに、ハードコート層、前方散乱層、プライマー層、帯電防止層、下塗り層や保護 層等を設けてもよい。
[0144] (ハードコート層)
ハードコート層は、反射防止層を設けた保護フィルムに物理強度を付与するために
、保護フィルムの表面に設ける。特に、保護フィルムと前記高屈折率層の間に設ける ことが好ましい。ハードコート層は、光および Zまたは熱の硬化性化合物の架橋反応 、または、重合反応により形成されることが好ましい。硬化性官能基としては、光重合 性官能基が好ましぐまた加水分解性官能基含有の有機金属化合物は有機アルコ キシシリル化合物が好ま 、。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられ る。ハードコート層の具体的な構成組成物としては、例えば、特開 2002— 144913 号公報、同 2000— 9908号公報、国際公開第 00Z46617号パンフレット等記載の ものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で 記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成す ることが好ましい。
ハードコート層は、平均粒径 0. 2〜: LO /z mの粒子を含有させて防眩機能 (アンチグ レア機能)を付与した防眩層を兼ねることもできる。
ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の 膜厚は、 0. 2〜: LO /z mであることが好ましぐより好ましくは 0. 5〜7 /ζ πιである。 ハードコート層の強度は、 JIS Κ5400に従う鉛筆硬度試験で、 Η以上であることが 好ましぐ 2Η以上であることがさらに好ましぐ 3Η以上であることが最も好ましい。ま た、 JIS Κ5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど 好ましい。
[0145] (帯電防止層)
帯電防止層を設ける場合には体積抵抗率が 10— 8 ( Ω cm"3)以下の導電性を付与す ることが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリ マー、ァ-オンポリマー、コロイダルシリカ等の使用により 10— 8 ( Ω «η 3)の体積抵抗 率の付与は可能であるが、温湿度依存性が大きぐ低湿では十分な導電性を確保で きない問題がある。そのため、導電性層素材としては金属酸ィ匕物が好ましい。金属酸 化物には着色しているものがある力 これらの金属酸ィ匕物を導電性層素材として用い るとフィルム全体が着色してしま 、好ましくな 、。着色のな 、金属酸化物を形成する 金属として Zn、 Ti、 Al、 In、 Si、 Mg、 Ba、 Mo、 W、または Vをあげることができ、これ を主成分とした金属酸ィ匕物を用いることが好ましい。具体的な例としては、 ZnO、 Ti O 、 SnO 、 Al O 、 In O 、 SiO 、 MgO、 BaO、 MoO 、 V O等、あるいはこれらの複
2 2 2 3 2 3 2 3 2 5
合酸化物がよぐ特に ZnO、 TiO、および SnOが好ましい。異種原子を含む例とし
2 2
ては、例えば ZnOに対しては Al、 In等の添加物、 SnOに対しては Sb、 Nb、ハロゲ
2
ン元素等の添加、また TiOに対しては Nb、 TA等の添加が効果的である。更にまた
2
、特公昭 59— 6235号公報に記載の如ぐ他の結晶性金属粒子あるいは繊維状物( 例えば酸ィ匕チタン)に上記の金属酸ィ匕物を付着させた素材を使用しても良い。尚、 体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできな 、が、体 積抵抗値で 10— 8 ( Ω cm"3)以下の導電性を確保するためには、該導電層が概ね 10— 1Q ( Q /U)以下の表面抵抗値を有して 、ればよく更に好ましくは 10—8 ( Ω Z口)である 。導電層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが 必要であり、本特許に記載の積層フィルムを形成する途中の段階で測定することが できる。
[0146] [液晶表示装置]
本発明の光学補償シートを用いた偏光板は、様々な表示モードの液晶セル、液晶 表示装置に用いることができる。 TN (Twisted Nematic)、 IPS (In— Plane Swit ching)、 FLC (Ferroelectric Liquid Crystal)、 AFLC (Anti— ferroelectric L iquid Crystal)、 OCB (Optically Compensatory Bend)、 STN (Supper Twi sted Nematic) , VA (Vertically Aligned)および HAN (Hybrid Aligned Ne matic)のような様々な表示モードが提案されている。このうち特に、 TNモード、 OCB モードおよび VAモードに好ましく用いることができる。
[0147] (OCB型液晶表示装置) OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的 に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表 示装置である。 OCBモードの液晶セルは、米国特許第 4583825号、同 5410422 号の各明細書に開示されて 、る。棒状液晶分子が液晶セルの上部と下部とで対称 的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有す る。そのため、この液晶モードは、 OCB (Optically Compensatory Bend)液晶 モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点 がある。
(VA型液晶表示装置)
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に 配向している。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直 に配向させ、電圧印加時に実質的に水平に配向させる狭義の VAモードの液晶セル (特開平 2— 176625号公報記載)に加えて、(2)視野角拡大のため、 VAモードをマ ルチドメイン化した(MVAモードの)液晶セル(SID97、 Digest of tech. Papers (予稿 集) 28 (1997) 845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配 向させ、電圧印加時にねじれマルチドメイン配向させるモード(n— ASMモード)の液 晶セル(日本液晶討論会の予稿集 58〜59 (1998)記載)および (4) SURVAIVAL モードの液晶セル (LCDインターナショナル 98で発表)が含まれる。
VAモードの液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光 板カゝらなる。液晶セルは、二枚の電極基板の間に液晶を担持している。本発明の液 晶表示装置の一つの態様では、本発明の光学補償シートは、液晶セルと一方の偏 光板との間に、一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配 置する。
本発明の液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏 光板の透明保護膜として、本発明の光学補償シートが用いられる。一方の偏光板の( 液晶セルと偏光子との間の)透明保護膜のみに上記の光学補償シートを用いてもよ いし、あるいは双方の偏光板の (液晶セルと偏光子との間の)二枚の透明保護膜に、 上記の光学補償シートを用いてもよい。一方の偏光板のみに上記光学補償シートを 使用する場合は、液晶セルのバックライト側偏光板の液晶セル側保護膜として使用 するのが特に好ましい。液晶セルへの張り合わせは、本発明の環状ォレフィン系付 加重合体の基体フィルムは VAセル側にすることが好ま ヽ。保護膜は通常のセル口 一スァシレートフィルムでも良い。たとえば、 40〜80 m力好ましく、巿販の KC4UX 2M (コ-カオプト株式会社製 40 μ m)、 KC5UX (コ-カオプト株式会社製 60 μ m) 、 TD80 (富士写真フィルム製 80 μ m)等が挙げられる力 これらに限定されない。
[0149] (TN型液晶表示装置)
本発明の光学補償シートを、 TNモードの液晶セルを有する TN型液晶表示装置の 光学補償シートの支持体として用いてもょ 、。 TNモードの液晶セルと TN型液晶表 示装置については、古くから良く知られている。例えば、特開平 3— 9325号、特開平 6— 148429号、特開平 8— 50206号、特開平 9— 26572号の各公報に記載がある 。また、モリ(Mori)他の論文 (Jpn. J. Appl. Phys. Vol. 36 (1997) p. 143 や、 Jpn. J. Appl. Phys. Vol. 36 (1997) p. 1068)に記載力 Sある。
実施例
[0150] 以下、本発明を実施例に基づき具体的に説明するが、本発明は下記例に限定され ない。
尚、本実施例において、「部」とは「質量部」を示すものである。
[測定法]
以下、フィルムの諸特性は以下の方法で測定して実施した。
(レターデーシヨン)
本明細書において、 Re (え)、 Rth( )は各々、波長えにおける面内のリタ一デーシ ヨンおよび厚さ方向のリタ一デーシヨンを表す。 Re( )は KOBRA 21ADHまたは WR( 王子計測機器 (株)製)にお ヽて波長 λ nmの光をフィルム法線方向に入射させて測 定される。 1¾11(ぇ)は前記1^(ぇ)を、面内の遅相軸(KOBRA 21ADHまたは WRによ り判断される)を傾斜軸(回転軸)として (遅相軸がない場合にはフィルム面内の任意 の方向を回転軸とする)のフィルム法線方向に対して法線方向力 片側 50度まで 10 度ステップで各々その傾斜した方向から波長 λ nmの光を入射させて全部で 6点測定 し、その測定されたレタデーシヨン値と平均屈折率の仮定値及び入力された膜厚値 を基に KOBRA 21ADHまたは WRが算出する。尚、遅相軸を傾斜軸(回転軸)として( 遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の 2方向 力 レタデーンヨン値を測定し、その値と平均屈折率の仮定値及び入力された膜厚 値を基に、以下の式(1)及び式 (2)より Rthを算出することもできる。ここで平均屈折 率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS, INC)、各種光学フィ ルムのカタログの値を使用することができる。平均屈折率の値が既知でないものにつ V、てはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を 以下に例示する: セルロースァシレート(1. 48)、シクロォレフインポリマー(1. 52) 、ポリカーボネート(1. 59)、ポリメチノレメタタリレート(1. 49)、ポリスチレン(1. 59)で ある。これら平均屈折率の仮定値と膜厚を入力することで、 KOBRA 21ADHまたは W Rは nx、 ny、 nzを算出する。この算出された nx,ny,nzより Nz= (nx- nz)/(nx- ny)が更に 算出される。
[0151] [数 1]
( in ( - cos{si -n ί 、 )、)
Figure imgf000063_0001
-式(1 )
[0152] 注記:上記の Re( Θ )は法線方向力 角度 Θ傾斜した方向におけるレタデーシヨン値 をあらわす。
[0153] Rth=( (nx+ny) /2 - nz) x d --- 式(2)
[0154] (含水率)
試料 7mm X 35mmを水分測定器、試料乾燥装置(CA— 03、 VA—05、共に三菱 化学 (株) )にてカールフィッシャー法で測定。水分量 (g)を試料質量 (g)で除して算 出した。
(動摩擦係数) 動摩擦係数は、 JISや ASTMが規定する方法に従 ヽ、鋼球を用いて測定できる。 (ヘイズ)
ヘイズは日本電色工業 (株)製 1001DP型ヘイズ計を用いて測定できる。
[0155] (剥離抵抗)
剥離荷重の測定は次のようにして行う。製膜装置の金属支持体と同じ材質'表面粗 さの金属板上にドープを滴下し、ドクターブレードを用いて均等な厚さに展延し乾燥 する。カッターナイフでフィルムに均等幅の切れ込みを入れ、フィルムの先端を手で 剥がしてストレンゲージにつながったクリップで挟み、ストレンゲージを斜め 45度方向 に引き上げながら、荷重変化を測定する。剥離されたフィルム中の揮発分も測定する 。乾燥時間を変えて何回か同じ測定を行い、実際の製膜工程における剥離時残留 揮発分と同じ時の剥離荷重を定める。以下の実施例で調製した製膜用ドープを用い て剥離荷重を測定し、フィルム幅 lcm当たりの剥離抵抗値を算出し、表 1に示した。 剥離フィルムの残留溶剤濃度が 20から 28質量%のときの最大剥離荷重値を採用し た。
[0156] (実施例 1)
[基体フィルム製膜]
(環状ォレフィン系付加重合体の基体フィルム F— 11の製膜)
三井化学製ァペル APL5014 (Tgl35°C)を 90°Cで予熱したまま、内径 50mm、 L ZD = 28の単軸押出機を用いて溶融した。なお、入口側温度は 200°C、出口側温 度は 140°Cであった。押出機の出口に焼結フィルター、ギヤポンプを経て Tダイから 押し出した。
冷却工程では 3本の冷却ロールを用いた。これらの冷却ロールは、いずれも間隔が 3cmとなるように配置した。最もダイに近い第 1冷却ロールの温度(130°C)、および 第 2冷却ロールの温度力 第 1冷却ロールの温度を引いた値は 3°C、第 2冷却ロール の温度力 第 3冷却ロールの温度を引いた値は 13°Cであった。
[0157] また、これらのロールの搬送速度 (第 1冷却ロールの搬送速度(Sr = 50mZ分)に
1
対する、第 2冷却ロールの搬送速度 (Sr )と第 1冷却ロールの搬送速度 (Sr )との差
2 1 の比(A Sr (%)= 100 X (Sr Sr )ZSr )は 1%、第 2冷却ロールの搬送速度 (Sr )に対する、第 3冷却ロール (Sr )と第 2冷却ロールの搬送速度(Sr )との差の比(
2 3 2
A Sr (%)= 100 X (Sr Sr )ZSr )は 1%であった。これらの冷却ロールは、すべて
23 2 3 2
120°Cのケーシング内に配置した。また、第 1冷却ロールには、静電印加法を用い、 第 1冷却ロール上のシート幅 1. 7mに対し、 0. 17m幅だけ押圧した。
上記のようにして密に配置した冷却ロール間の冷却速度は 2°CZ秒であった。なお 、冷却速度は、第 1冷却ロールに設置したフィルム温度と、最終冷却ロールから剥ぎ 取られる直前のシート温度との差を、この間を通過するのに要した時間で除した値で 示した。
最終冷却ロールの後、ロール間隔 0. 5mで配置した間を冷却速度 2°CZ秒で搬送 した。得られたフィルムの厚みは 79 mであった。この後、片面にラミフィルムを付け た後、両端を 10%ずつトリミング(スリット)し 3,OOOm巻き取った。このフィルム(F— 1 1)を、 KOBRA 21ADH (王子計測機器 (株)製)で測定した面内レターデーシヨン Re は lnm、膜厚方向のレターデーシヨン Rthは 4nmであった。
[0158] (環状ォレフィン系付加重合体の基体フィルム F— 21の製膜)
<環状ポリオレフイン重合体 P— 1の合成 >
精製トルエン 100質量部とノルボルネンカルボン酸メチルエステル 100質量部を反 応釜に投入した。次いでトルエン中に溶解したェチルへキサノエ一トー Ni25mmol % (対モノマー質量)、トリ(ペンタフルォロフエ-ル)ボロン 0. 225mol% (対モノマー 質量)およびトルエンに溶解したトリェチルアルミニウム 0. 25mol% (対モノマー質量 )を反応釜に投入した。室温で攪拌しながら 18時間反応させた。反応終了後過剰の エタノール中に反応混合物を投入し、共重合物沈殿を生成させた。沈殿を精製し得 られた共重合体 (P— 1)を真空乾燥で 65°C 24時間乾燥した。
[0159] 共重合体 (P— 1)
[化 9]
Figure imgf000066_0001
[0160] 下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径 3
4 μ mのろ紙および平均孔径 10 μ mの焼結金属フィルターでろ過した。
[0161] [表 1]
環状ォレフィン系付加重合体溶液 環状ォレフィン系付加重合体 P— 1 1 5 0質量部 メチレンクロライド 4 0 0質量部 メタノール 5 0質量部
[0162] 次に上記方法で作成した環状ポリオレフイン溶液を含む下記組成物を分散機に投 入し、マット剤分散液を調製した。
[0163] [表 2] マツト剤分散液 平均粒径 1 6 n mのシリ力粒子
(a e r o s i 1 R 9 7 2 H本ァェ口ジル (株) 製 2. 0質量部 メチレンクロライ ド 7 2. 4質量部 メタノ一ル 1 0. 8質量部 環状ォレフィン系付加重合体溶液 1 0. 3質量部
[0164] 上記環状ォレフィン系付加重合体溶液を 100質量部、マット剤分散液を 1.35質量 を混合し、製膜用ドープを調製した。
上述のドープをバンド流延機を用いて流延した。残留溶剤量が 15から 25質量0 /0で バンド力も剥ぎ取ったフィルムを、テンターを用いて幅方向に延伸して、フィルムに皺 が入らないように保持しながら、 120°Cの熱風を当てて乾燥した。その後テンター搬 送からロール搬送に移行し、更に 120°Cから 140°Cで乾燥し巻き取った。できたフィ ルム(F— 21)の特性は表 1に示す。
[0165] (環状ォレフィン系付加重合体の基体フィルム F— 31、 F— 41の製膜)
下記組成物を用いて F— 21製膜と同様にしてドープを調製した。
[0166] [表 3]
環状ォレフィン系付加重合体溶液
Ap p e a r 3000 1 50質量部 メチレンクロライ ド 4 20質量部 メタノール 30質量部
[0167] [表 4] マツト剤分散液 平均粒径 1 6 nmのシリカ粒子
(a e r o s i l R 9 72 日本ァエロジル (株) 製 2. 0質量部 メチレンク口ライ ド 77. 6質量部 メタノール 5. 6質量部 環状ォレフィン系付加重合体溶液 1 0. 3質量部
[0168] フィルム F— 21と同じようにして製膜し、フィルム F— 31及び F— 41を作成した。
[0169] (環状ォレフィン系付加重合体の基体フィルム F— 51の製膜)
下記組成物を用いて F— 21製膜と同様にしてドープを調製した。
[0170] [表 5]
環状ォレフィン系付加重合体溶液
Ap p e a r 3000 1 50質量部 メチレンクロライ ド 4 1 0質量部 エタノーノレ 40質量部
[0171] [表 6]
マツト剤分散液 平均粒径 1 6 n mのシリ力粒子
(a e r o s i l R 9 7 2 日本ァエロジル (株) 製 2質量部 メチレンクロライ ド 78質量部 エタノーノレ 5質量部 環状ォレフィン系付加重合体溶液 1 0質量部
[0172] フィルム F— 21と同じようにして製膜し、フィルム F— 51を作成した。
[0173] (環状ォレフィン系付加重合体の基体フィルム F— 61の製膜)
下記組成物を用いて F— 21製膜と同様にしてドープを調製した。 [0174] [表 7]
環状ォレフィン系付加重合体溶液
Ap p e a r 3000 1 50質量部 メチレンク口ライ ド 450質量部
[0175] [表 8]
マツト剤分散彼 平均粒径 1 6 n mのシリ力粒子
(a e r o s i 1 R 972 日本ァエロジル (株) 製 2質量部 メチレンクロライ ド 83質量部 環状ォレフィン系付加重合体溶液 1 0質量部
[0176] フィルム F— 21と同じようにして製膜し、フィルム F— 61を作成した。
[0177] 下記表 1に作成した実施例 F-11 F-51及び比較例 F-61の環状ォレフィン系付加 重合体の基体フィルムの特性を記す。
[0178] [表 9] ほ 1 )
Figure imgf000069_0001
[0179] (実施例 2) [環状ォレフィン系付加重合体の基体フィルムの表面処理]
環状ォレフィン系付カ卩重合体の基体フィルム F— 11、 F21、F—31、F—41、F—5 1および F— 61を、真鍮製の上下電極間(アルゴンガス雰囲気)で、グロ一放電処理( 周波数 3000Hz、 4200Vの高周波数電圧を上下電極間に引加、 20秒処理)してフ イルム F— 12、 F— 22、 F— 32、 F— 42、 F— 52および F— 62を作製した。グロ一放 電処理した保護フィルム表面の純水の接触角はすべて 36° から 41° の間であった 。接触角は協和界面科学株式会社製の接触角計 CA—X型により測定した。
[0180] (実施例 3— 1)
[光学補償シート L— 31作成]
(配向膜の形成)
環状ォレフィン系付加重合体の基体フィルム F— 31上に、下記の組成の塗布液を # 14のワイヤーバーコ一ターで 24mL/m2塗布した。 60°Cの温風で 60禾少、さらに 9 0°Cの温風で 150秒乾燥した。次に、環状ォレフィン系付加重合体の基体フィルムの 長手方向(搬送方向)を 0° とし、時計方向の 135° 方向に、形成した膜にラビング 処理を実施した。
[0181] (配向膜塗布液の組成)
下記の変性ポリビュルアルコール 40質量部
水 728質量部
メタノーノレ 228質量咅
ダルタルアルデヒド (架橋剤) 2質量部
クェン酸エステル (AS3、三共化学 (株)) 0. 69質量部
[0182] [化 10] 変性ポリビニルアルコール
Figure imgf000070_0001
[0183] (光学異方性層の形成)
配向膜上に、下記のディスコティック液晶性ィ匕合物 41. 01kg,エチレンォキシド変 性トリメチロールプロパントリアタリレード 'V # 360" {大阪有機化学 (株)製 }4. 06kg 、セルロースアセテートブチレード' CAB531-1" (イーストマンケミカル社製) 0. 29k g、光重合開始剤「ィルガキュア 907」 {チバ'スペシャルティ ·ケミカルズ (株)製 } 1. 3 5kg、増感剤「カャキュア一 DETX」 {日本化薬 (株)製 }0. 45kg,クェン酸エステル" AS3" {三協化学 (株)製 }0. 45kgを、 102kgのメチルェチルケトンに溶解した塗布 液に、フルォロ脂肪族基含有共重合体「メガファック F780」 {大日本インキ (株)製 }を 0. 1kg加え、 # 2. 7のワイヤーバーを 391回転でフィルムの搬送方向と同じ方向に 回転させて、 20mZ分で搬送されて ヽるフィルム F - 31の配向膜面に連続的に塗布 した。室温から 100°Cに連続的に加温する工程で、溶媒を乾燥させ、その後、 135°C の乾燥ゾーンで、ディスコティック液晶性ィ匕合物層にあたる膜面風速がフィルム搬送 方向に平行に 1. 5mZ秒となるようにし、約 90秒間加熱し、ディスコティック液晶性ィ匕 合物を配向させた。次に、 80°Cの乾燥ゾーンに搬送させて、フィルムの表面温度が 約 100°Cの状態で、紫外線照射装置 (紫外線ランプ:出力 160WZcm、発光長 1. 6 m)により、照度 600mWの紫外線を 4秒間照射し、架橋反応を進行させ、ディスコテ イツク液晶性ィ匕合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き 取ってロール状の形態にした。このようにして、ロール状の、光学異方性層を有する 光学補償シート L31を作製した。光学異方性層の厚さは 1. 6 mであった。
[0184] [化 11] ディスコティック液晶性化合物
Figure imgf000071_0001
[0185] 自動複屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }を用いて測定し た光学異方性層の Reは 27nmであった。さらに、できた光学補償シートから光学異 方性層のみを剥離し、 β値および光学異方性層の分子対称軸の平均方向を自動複 屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }により測定したところ、 β 値は 33° 、分子対称軸の平均方向は基体環状ポリオレフインフィルムの長手方向に 対して、 45. 5° であった。 j8値の計算には平均屈折率として 1. 6を入力した。
[0186] (実施例 3— 2)
[光学補償シート L12、L42]
実施例 3— 1で配向膜を形成したのと同様の方法で、グロ一放電処理を施したフィ ルム F— 12および F— 42に配向膜を形成した。ついでフィルムの長手方向(搬送方 向)を 0° とし、時計方向の 180° 方向に、形成した配向膜にラビング処理を実施し た。
配向膜上に、前記ディスコティック液晶性ィ匕合物 91. Okg、エチレンォキ ド変性トリ メチロールプロパントリアタリレード 'V# 360" {大阪有機化学 (株)製 } 9. Okg、セル口 ースアセテートブチレード' CAB551- 0. 2,,(イーストマンケミカル社製) 2. 0kg、セル ロースアセテートブチレード' CAB531- 1" (イーストマンケミカル社製) 0. 5kg、光重 合開始剤「ィルガキュア 907」 {チバ'スペシャルティ'ケミカルズ (株)製 } 3. 0kg、増 感剤「カャキュア一 DETX」{日本ィ匕薬 (株)製 } 1. 0kgを、 207kgのメチルェチルケト ンに溶解した塗布液に、フルォロ脂肪族基含有共重合体「メガファック F780」 {大日 本インキ(株)製 }を 0. 4kg力!]え、 # 3. 2のワイヤーバーを 391回転でフィルムの搬送 方向と同じ方向に回転させて、 20mZ分で搬送されて 、るフィルムの配向膜面に連 続的に塗布した。
[0187] 室温から 100°Cに連続的に加温する工程で、溶媒を乾燥させ、その後、 135°Cの 乾燥ゾーンで、ディスコティック液晶性ィ匕合物層にあたる膜面風速力 Sフィルム搬送方 向に平行に 5. OmZ秒となるようにし、約 90秒間加熱し、ディスコティック液晶性ィ匕合 物を配向させた。次に、 80°Cの乾燥ゾーンに搬送させて、フィルムの表面温度が約 1 00°Cの状態で、紫外線照射装置 (紫外線ランプ:出力 160WZcm、発光長 1. 6m) により、照度 600mWの紫外線を 4秒間照射し、架橋反応を進行させ、ディスコテイツ ク液晶性ィ匕合物をその配向に固定した。その後、室温まで放冷し、円筒状に巻き取 つてロール状の形態にした。このようにして、ロール状の、光学異方性層を有する光 学補償シート L 12 (基体フィルムは F— 12)と L42 (基体フィルムは F— 42)を作製し た。光学異方性層の厚さは 1. 9 mであった。
[0188] 自動複屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }を用いて、測定 した光学異方性層の Reは 46nmであった。さら〖こ、サンプルカゝら光学異方性層のみ を剥離し、 β値および光学異方性層の分子対称軸の平均方向を自動複屈折測定装 置" KOBRA 21ADH" {王子計測器 (株)製 こより測定したところ、 値は 38° 、 分子対称軸の平均方向は光学補償フィルムの長手方向に対して、 0. 3° であつ た。 |8値の計算には平均屈折率として 1. 6を入力した。
[0189] (実施例 3— 3)
[光学補償シート L13, L23、 L53]
下記のアクリル酸コポリマーおよびトリェチルァミン(中和剤)を、メタノール Z水の混 合溶媒 (質量比 = 30Z70)に溶解して、 4質量%溶液を調製した。グロ一放電処理 を施した環状ォレフィン系付加重合体の基体フィルム F— 12、 F— 22および F— 52 を搬送しながら、この上に上記溶液をバーコ一ターを用いて連続的に塗布した。塗 布層を 120°Cで 5分間加熱して、乾燥し、厚さ 1 μ mの層を形成した。次いで長手方 向(搬送方向)に連続的に塗布層の表面をラビング処理して、配向膜を形成した。
[0190] [化 12] ァクリル酸コポリマ、 -
Figure imgf000073_0001
[0191] 上記配向膜の上に、以下の組成の塗布液をバーコ一ターを用いて連続的に塗布 した。塗布層を 100°Cで 1分間加熱して、棒状液晶分子を配向させた後、紫外線を 照射して棒状液晶分子を重合させ、配向状態を固定し光学補償シート L13、 L23お よび L53 (基体フィルムはそれぞれ F— 12、 F—22、 F— 52)を作成した。光学異方 性層の厚さは 1. 7 mであった。
[0192] [表 10] 光学異方性層の塗布液組成 下記の棒状液晶性化合物 38. 4質量% 下記の增感剤 0. 38質量% 下記の光重合開始剤 1. 1 5質量% 下記の空気界面水平配向剤 0. 06質量% トン 60. 0質量%
[0193] [化 13] 棒状液晶化合物
Figure imgf000074_0001
[0194] [化 14]
Figure imgf000074_0002
Figure imgf000074_0003
[0195] [化 15] 光重合開始剤
Figure imgf000075_0001
[0196] [化 16]
空気界面水平配向剤
Figure imgf000075_0002
[0197] 自動複屈折率計 (KOBRA 21ADH、王子計測機器 (株)社製)を用いて、光学 補償シート L13、および L23の Reの光入射角度依存性を測定し、予め測定した環状 ォレフィン系付加重合体の基体フィルムの寄与分を差し引くことによって、光学異方 性層のみの光学特性を算出した。 Reは 47nm、 Rthは 23nm、棒状液晶分子の長軸 の層平面に対する平均傾斜角は 0° であり、フィルム平面に対して平行に配向して いた。また、棒状液晶性分子は、長軸方向がロール状環状ォレフィン系付加重合体 の基体フィルムの長手方向と直交するように配向して 、た (すなわち、光学異方性層 の遅相軸方向はロール状環状ォレフィン系付加重合体の基体フィルムの長手方向と 直交していた)。
得られた光学補償シート (L13)の Re、および Rth (測定波長 590nm)は、それぞ れ 48nm、 27nmであった。一方、光学補償シート(L23)の Re、および Rth (測定波 長 590nm)は、それぞれ 58nm、 239nmであった。
[0198] (実施例 3— 4)
[光学補償シート L24]
2, 2 '—ビス(3, 4 ジカルボキジフエ-ル)へキサフルォロプロパン)および 2, 2'— ビス(トリフルォロメチル) 4, 4'—ジアミノビフエ-ルカも合成されたポリイミド(質量 平均分子量 59,000)をシクロへキサノンに溶解し、 15質量%のポリイミド溶液を調製 した。調製したポリイミド溶液を、グロ一放電処理を施した環状ポリオレフインフィルム F 22上に塗工し、温度 180°Cで幅方向に 7%延伸し乾燥した。このようにしてでき た光学補償シート L24のフィルム全体厚さは 59 μ m、 Reは 45nm、 Rthは 390nmで めつに。
[0199] (実施例 4 1)
[偏光板 Aの作成]
(光散乱層用塗布液の調製)
ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレートの混合物(
PETA、日本ィ匕薬 (株)製) 50gをトルエン 38. 5gで希釈した。更に、重合開始剤 (ィ ルガキュア 184、チバ'スペシャルティ ·ケミカルズ (株)製)を 2g添加し、混合攪拌した 。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は 1. 51であった。
さらにこの溶液にポリトロン分散機にて 1 OOOOrpmで 20分分散した平均粒径 3. 5 /z mの架橋ポリスチレン粒子 (屈折率 1. 60、 SX— 350、綜研ィ匕学 (株)製)の 30%ト ルェン分散液を 1. 7gおよび平均粒径 3. 5 mの架橋アクリル スチレン粒子(屈折 率 1. 55、綜研ィ匕学 (株)製)の 30%トルエン分散液を 13. 3g加え、最後に、フッ素系 表面改質剤 (FP— 1) 0. 75g、シランカップリング剤 (KBM— 5103、信越化学工業( 株)製)を 10gを加え、完成液とした。 上記混合液を孔径 30 μ mのポリプロピレン製フィルターでろ過して光散乱層の塗 布液を調製した。
[化 17] フッ素系表面改質剤 (F P - 1 ) -(C H2- C H)m-
I
Figure imgf000077_0001
mは約 3 6、 nは 6
[0201] (低屈折率層用塗布液の調製)
まず初めに、次のようにしてゾル液 aを調製した。攪拌機、還流冷却器を備えた反応 器、メチルェチルケトン 120部、アタリロイルォキシプロピルトリメトキシシラン (KBM5 103、信越化学工業 (株)製) 100部、ジイソプロポキシアルミニウムェチルァセトァセ テート 3部をカ卩ぇ混合したのち、イオン交換水 30部をカ卩え、 60°Cで 4時間反応させた のち、室温まで冷却し、ゾル液 aを得た。質量平均分子量は 1600であり、オリゴマー 成分以上の成分のうち、分子量が 1000〜20000の成分は 100%であった。また、 ガスクロマトグラフィー分析から、原料のアタリロイルォキシプロピルトリメトキシシラン は全く残存していな力つた。
屈折率 1. 42の熱架橋性含フッ素ポリマー CFN— 7228、固形分濃度 6%、 JSR (株 )製) 13g、シリカゾル(シリカ、 MEK— STの粒子サイズ違い、平均粒径 45nm、固形 分濃度 30%、 日産化学 (株)製) 1. 3g、上記ゾル液 aO. 6gおよびメチルェチルケト ン 5g、シクロへキサノン 0. 6gを添加、攪拌の後、孔径 1 μ mのポリプロピレン製フィル ターでろ過して、低屈折率層用塗布液を調製した。
[0202] (光散乱層付き透明保護膜 TAC01の作製) 80 μ mの厚さのトリァセチルセルロースフィルム(フジタック TD80UF、富士写真フ イルム (株)製)をロール形態で巻き出して、上記の機能層(光散乱層)用塗布液を線 数 180本/インチ、深度 40 μ mのグラビアパターンを有する直径 50mmのマイクログ ラビアロールとドクターブレードを用いて、グラビアロール回転数 30rpm、搬送速度 3 OmZ分の条件で塗布し、 60°Cで 150秒乾燥の後、さらに窒素パージ下で 160WZ cmの空冷メタルノヽライドランプ (アイグラフィックス (株)製)を用いて、照度 400mWZ cm2,照射量 250mjZcm2の紫外線を照射して塗布層を硬化させ、厚さ の機 能層を形成し、巻き取った。
該機能層(光散乱層)を塗設したトリァセチルセルロースフィルムを再び巻き出して その光散乱層側に、該調製した低屈折率層用塗布液を線数 180本 Zインチ、深度 4 0 μ mのグラビアパターンを有する直径 50mmのマイクログラビアロールとドクターブ レードを用いて、グラビアロール回転数 30rpm、搬送速度 15mZ分の条件で塗布し 、 120°Cで 150秒乾燥の後、更に 140°Cで 8分乾燥させてから窒素パージ下で 240 WZcmの空冷メタルノヽライドランプ (アイグラフィックス (株)製)を用いて、照度 400m
Figure imgf000078_0001
照射量 900mjZcm2の紫外線を照射し、厚さ lOOnmの低屈折率層を形 成し、巻き取った。
分光光度計(日本分光 (株)製)を用いて、 380〜780nmの波長領域にぉ 、て、入 射角 5° における分光反射率を機能性膜側力も測定し、 450〜650nmの積分球平 均反射率を求めたところ、 2. 3%であった。
(偏光板 Aの作製)
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。 作製した光散乱層付き透明保護膜 TAC01の表面をアルカリケンィ匕処理を行い、 ポリビニルアルコール系接着剤を用いて、機能性膜の無 、側と偏光子の片側を貼り 付けた。
実施例 3—1から 3— 4で作製した光学補償シート (L12、 L13、 L23、 L24、 L31、 L42および L53)にグロ一放電処理 (周波数 3000Hz、 4200Vの高周波数電圧を上 下電極間に引加、 20秒処理)を行い、ポリビニルアルコール系接着剤を用いて、基 体フィルム面を偏光子の反対側に貼り付け、 70°Cで 10分以上乾燥した。 偏光子の透過軸と実施例 3—1から 3— 4で作製した光学補償シートの遅相軸とは 平行になるように配置した。偏光子の透過軸と光散乱層付き透明保護膜 TAC01の 遅相軸とは、直交するように配置した。このようにして偏光板 (A— 12、 A— 13、 A— 2 3、 A— 24、 A— 31、 A— 42および A— 53)を作製した。
[0204] (実施例 4 2)
[偏光板 Bの作成]
(ハードコート層用塗布液の調製)
トリメチロールプロパントリアタリレート (TMPTA、 日本化薬 (株)製) 750. 0質量部 に、質量平均分子量 3000のポリ(グリシジルメタタリレート) 270. 0質量部、メチルェ チルケトン 730. Og、シクロへキサノン 500. Ogおよび光重合開始剤(ィルガキュア 1 84、 日本チバガイギー (株)製) 50. Ogを添加して攪拌した。孔径 0. 4 mのポリプロ ピレン製フィルターで濾過してハードコート層用の塗布液を調製した。
[0205] (二酸化チタン微粒子分散液の調製)
二酸ィ匕チタン微粒子としては、コバルトを含有し、かつ水酸ィ匕アルミニウムと水酸ィ匕 ジルコニウムを用いて表面処理を施した二酸ィ匕チタン微粒子(MPT— 129、石原産 業 (株)製)を使用した。
この粒子 257. lgに、下記分散剤 38. 6g、およびシクロへキサノン 704. 3gを添カロ してダイノミルにより分散し、質量平均径 70nmの二酸ィ匕チタン分散液を調製した。 分散剤
[0206] [化 18]
Figure imgf000079_0001
[0207] (中屈折率層用塗布液の調製) 上記の二酸化チタン分散液 88. 9gに、ジペンタエリスリトールペンタアタリレートとジ ペンタエリスリトールへキサアタリレートの混合物(DPHA) 58. 4g、光重合開始剤 (ィ ルガキュア 907) 3. lg、光増感剤 (カャキュア一 DETX、 日本化薬 (株)製) 1. lg、メ チルェチルケトン 482. 4gおよびシクロへキサノン 1869. 8gを添カ卩して攪拌した。十 分に攪拌ののち、孔径 0. 4 mのポリプロピレン製フィルターで濾過して中屈折率層 用塗布液を調製した。
[0208] (高屈折率層用塗布液の調製)
上記の二酸化チタン分散液 586. 8gに、ジペンタエリスリトールペンタアタリレートと ジペンタエリスリトールへキサアタリレートの混合物(DPHA、 日本化薬 (株)製) 47. 9 g、光重合開始剤 (ィルガキュア 907、 日本チバガイギー (株)製) 4. Og、光増感剤( カャキュア— DETX、 日本化薬 (株)製) 1. 3g、メチルェチルケトン 455. 8g、および シクロへキサノン 1427. 8gを添カ卩して攪拌した。孔径 0. 4 μ mのポリプロピレン製フ ィルターで濾過して高屈折率層用の塗布液を調製した。
[0209] (低屈折率層用塗布液の調製)
下記式で表される共重合体をメチルイソプチルケトンに 7質量%の濃度になるように 溶解し、末端メタタリレート基含有シリコーン榭脂 X— 22— 164C (信越ィ匕学 (株)製) を固形分に対して 3%、光ラジカル発生剤ィルガキュア 907 (商品名)を固形分に対 して 5質量%添加し、低屈折率層用塗布液を調製した。共重合体
[0210] [化 19]
CFク― CF- CH: CH-
50 50
II
OCH2CH2OCCH=CH2
(50:50はモル比を示す)
[0211] (反射防止層付透明保護膜 TAC02の作製)
膜厚 80 μ mのトリアセチルセルロースフィルム(フジタック TD80UF、富士写真フィ ルム (株)製)上に、ハードコート層用塗布液をグラビアコーターを用いて塗布した。 1 00°Cで乾燥した後、酸素濃度が 1. 0体積%以下の雰囲気になるように窒素パージ しながら 160WZcmの空冷メタルノヽライドランプ (アイグラフィックス (株)製)を用いて 、照度 400mWZcm2、照射量 300mjZcm2の紫外線を照射して塗布層を硬化させ 、厚さ 8 μ mのハードコート層を形成した。
ハードコート層の上に、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層 用塗布液を 3つの塗布ステーションを有するグラビアコーターを用いて連続して塗布 した。
[0212] 中屈折率層の乾燥条件は 100°C、 2分間とし、紫外線硬化条件は酸素濃度が 1. 0 体積%以下の雰囲気になるように窒素パージしながら 180WZcmの空冷メタルノヽラ イドランプ (アイグラフィックス (株)製)を用いて、照度 400mWZcm2、照射量 400¾[ Zcm2の照射量とした。硬化後の中屈折率層は屈折率 1. 630、膜厚 67nmであった
[0213] 高屈折率層および低屈折率層の乾燥条件はいずれも 90°C、 1分の後、 100°C、 1 分とし、紫外線硬化条件は酸素濃度が 1. 0体積%以下の雰囲気になるように窒素パ ージしながら 240WZcmの空冷メタルノヽライドランプ (アイグラフィックス (株)製)を用 いて、照度 600mWZcm2、照射量 600mjZcm2の照射量とした。
硬化後の高屈折率層は屈折率 1. 905、膜厚 107nm、低屈折率層は屈折率 1. 44 0、膜厚 85nmであった。このようにして、反射防止層付き透明保護膜 TAC02を作製 した。
[0214] (偏光板 Bの作製)
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。 作製した透明保護膜 TAC02の表面をアルカリケン化処理を行 ヽ、ポリビュルアル コール系接着剤を用いて、機能性膜の無!ヽ側と偏光子の片側を貼り付けた。
実施例 3—1から 3— 4で作製した光学補償シート (L12、 L13、 L23、 L24、 L31、 L42および L53)にグロ一放電処理 (周波数 3000Hz、 4200Vの高周波数電圧を上 下電極間に引加、 20秒処理)を行い、ポリビニルアルコール系接着剤を用いて、基 体フィルム面を偏光子の反対側に貼り付け、 70°Cで 10分以上乾燥した。 偏光子の透過軸と実施例 3—1から 3— 4で作製した光学補償シートの遅相軸とは 平行になるように配置した。偏光子の透過軸と透明保護膜 TAC02の遅相軸とは、直 交するように配置した。このようにして偏光板(B— 12、 B—13、 B— 23、 B— 24、 B— 31、 B— 42および B 53)を作製した。
[0215] (実施例 4 3)
[偏光板 Cの作製]
延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。 膜厚 80 μ mのトリアセチルセルロースフィルム(フジタック TD80UF、富士写真フィ ルム (株)製)の表面をアルカリケンィ匕処理し、ポリビュルアルコール系接着剤を用い て偏光子の片側に貼り付けた。
実施例 3—1から 3— 4で作製した光学補償シート (L12、 L13、 L23、 L24、 L31、 L42および L53)にグロ一放電処理 (周波数 3000Hz、 4200Vの高周波数電圧を上 下電極間に引加、 20秒処理)を行い、ポリビニルアルコール系接着剤を用いて、基 体フィルム面を偏光子の反対側に貼り付け、 70°Cで 10分以上乾燥した。
偏光子の透過軸と実施例 3—1から 3— 4で作製した光学補償シートの遅相軸とは 平行になるように配置した。偏光子の透過軸と透明保護膜フジタック TD80UFの遅 相軸とは、直交するように配置した。このようにして偏光板 (C— 12、 C—13、 C- 23 、 C— 24、 C— 31、 C— 42および C— 53)を作製した。
[0216] 比較例 1
(セルロースアセテートドープの調製)
ァセチル置換度 2. 79のセルロースアセテート、可塑剤(トリフエ-ルフォスフェイトと ビフエ-ルジフエ-ルフォスフェイトの 2対 1の混合物)、および溶剤(ジクロロメタン Z メタノール =87Z13質量部)を混合攪拌溶解し、耐圧密閉容器中で 70から 90°Cに 加熱溶解後ろ過することによりドープを調製した。
[0217] 次に上記方法で作成したセルロースアセテート溶液を含む下記組成物を分散機に 投入し、各マット剤分散液を調製した。
[0218] [表 11] マツト剤分散液 平均粒径 1 6 n mのシリ力粒子
(a e r o s i l R 9 7 2 日本ァエロジル (株) 製 2. 0質量部 メチレンク口ライド 7 2. 4質量部 メタノール 1 0. 8質量部 セルロースァセテ一ト溶液 1 0. 3質量部
[0219] 次に上記方法で作成したセルロースアセテート溶液を含む下記組成物をミキシング タンクに投入し、攪拌して溶解しレターデーシヨン発現剤溶液を調製した。
[0220] [表 12]
レターデ一ション発現剤溶液 下記レタ一デーション発現剤 2 0. 0質量部 メチレンク口ライ ド 5 8. 3質量部 メタノール 8. 7質量部 セルロースァセテ一ト溶液 1 2. 8質量部
[0221] 次に上記方法で作成したセルロースアセテート溶液を含む下記組成物をミキシング タンクに投入し、攪拌して溶解し UV吸収剤溶液を調製した。
[0222] [表 13]
UV吸収剤溶液 紫外線吸収剤 ( S u m i s o r b 1 65 F) 20. 0質量部
齚酸メチル 6 7. 0質量部
セルロースァセテ一ト溶液 1 2. 8質量部
[0223] レターデーシヨン発現剤
[0224] [化 20]
Figure imgf000084_0001
[0225] (セルロースアセテートフィルムの製膜)
調製したセルロースアセテート溶液をギアポンプで送り出し、途中マット剤分散液、 レターデーシヨン発現剤溶液および UV吸収剤溶液を規定量注入して、スタチックミ キサ一で均一に混合し、バンド流延機を用いて流延した。流延ドープの組成を下記 表 2に記載する。ついで残留溶媒量が 25から 35質量%でバンドから剥ぎ取ったフィ ルムを、テンターで保持して幅方向に延伸しながら熱風を当てて乾燥させ、その後テ ンター搬送からロール搬送に移行し、更に乾燥し、ナーリングし 1440mm幅で巻き 取った。
次いで 1. 5 mol/Lの水酸ィ匕ナトリウム水溶液を調製し、 55°Cに保温した。また 0. 005mol/Lの希硫酸水溶液を調製し、 35°Cに保温した。作製したセルロースァセ テートフィルムを上記の水酸ィ匕ナトリウム水溶液に 2分間浸漬した後、水に浸漬し水 酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に 1分間 浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を 120°Cで 十分に乾燥させ、セルロースアセテートフィルム C1及び C2を作成した。残留溶媒は すべて 0. 2質量%以下であった。できたフィルムの特性と延伸倍率を下記表 2に記 載する。
[0226] [表 14] フイルム ド―プ組成 (%〉 延伸 フィルム特性 セルロースァ レタ—デーシヨン UV吸収剤 倍率 含水率 厚さ Re Rth セテー卜溶液 発現剤溶液 溶液 (%) (%) (nm) (nm;
CI 17 0.37 0 16 1.87 92 40 200
C2 17 0 0.18 2 2.22 92 8 80
[0227] (開環重合環状ポリオレフインドープの調製)
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径 3 4 μ mのろ紙及び平均孔径 10 μ mの焼結金属フィルターでろ過した。
[0228] [表 15]
環状ポリオレフィン溶液 D— 3 アートン G ( J S R株式会社製) 1 5 0質量部 メチレンクロライド 5 5 0質量部 エタノール 5 0質量部
[0229] 次に上記方法で作成した開環重合環状ポリオレフイン溶液を含む下記組成物を分 散機に投入し、マット剤分散液を調製した。
[0230] [表 16]
マツト剤分散液 平均粒径 1 6 n mのシリ力粒子
( a e r o s i l R 9 7 2 日本ァエロジル (株) 製 2 質量部 メチレンクロライ ド 7 5 質量部 エタノール 5 質量部 環状ポリオレフイン溶液 D _ 3 1 0 質量部
[0231] 上記環状ポリオレフイン溶液を 100質量部、マット剤分散液を 1. 1質量を混合し、 製膜用ドープを調製した。
[0232] 上述のドープをバンド流延機を用いて流延した。残留溶剤量が約 22質量%でバン ドカも剥ぎ取ったフィルムを、テンターを用いて 50%の延伸率で幅方向に延伸した。 その後テンター搬送力もロール搬送に移行し、更に 120°Cから 140°Cで乾燥し巻き 取った。できた環状ポリオレフインフィルムの厚さは 60 μ m、 Re力 3nm、 Rthは 80η mであった。このフィルムを真鍮製の上下電極間(アルゴンガス雰囲気)で、グロ一放 電処理 (周波数 3000Hz、 4200Vの高周波数電圧を上下電極間に引加、 20秒処理 )して開環重合環状ポリオレフインフィルム C3を作製した。フィルム表面の純水の接 触角は 36° から 41° の間であった。
[0233] 比較例 3
(光学補償シート CL— 1)
実施例 3— 1と同様にしてセルロースアセテートフィルム C1に配向膜を塗付し、ラビ ング処理を行い、ディスコティック液晶層(光学異方性層)を塗付することにより光学 補償シート CL— 1を作製した。
自動複屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }を用いて測定し た光学異方性層の Reは 27nmであった。さらに、できた光学補償シートから光学異 方性層のみを剥離し、 β値および光学異方性層の分子対称軸の平均方向を自動複 屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }により測定したところ、 β 値は 33° 、分子対称軸の平均方向は基体セルロースァシレートフィルムの長手方向 に対して、 45. 5° であった。 j8値の計算には平均屈折率として 1. 6を入力した。
[0234] 比較例 4
(光学補償シート CL— 2、 CL- 3)
実施例 3— 2と同様にして、比較例 1で作成したフィルム C2及び比較例 2で作成し たフィルム C3に配向膜を塗付し、ラビング処理を行い、ディスコティック液晶層(光学 異方性層)を塗付することにより光学補償シート CL— 2及び CL— 3を作製した。 自動複屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }を用いて、測定 した光学異方性層の Reは 46nmであった。さらに、できた光学補償シートから光学異 方性層のみを剥離し、 β値および光学異方性層の分子対称軸の平均方向を自動複 屈折測定装置" KOBRA 21ADH" {王子計測器 (株)製 }により測定したところ、 β 値は 38° 、分子対称軸の平均方向は光学補償シートの長手方向に対して、 0. 3 ° であった。 j8値の計算には平均屈折率として 1. 6を入力した。
[0235] 比較例 5
実施例 4—1と同様に光学補償シート CL—1、 CL— 2および CL— 3を用いて、偏 光板 CA— 1、 CA- 2および CA— 3を作製した。
[0236] 比較例 6
実施例 4— 2と同様に光学補償シート CL—1、 CL— 2および CL— 3を用いて、偏 光板 CB—1、 CB— 2および CB— 3を作製した。
[0237] 比較例 7
実施例 4— 3と同様に光学補償シート CL—1、 CL— 2および CL— 3を用いて、偏 光板 CC— 1、 CC— 2および CC - 3を作製した。
[0238] <液晶表示装置への実装 >
実施例 5—1
(OCBパネルへの実装)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング 処理を行った。得られた 2枚のガラス基板をラビング方向が平行となる配置で向力 ヽ 合わせ、セルギャップを 5. 7 mに設定した。セルギャップに Δ ηが 0. 1396の液晶 性ィ匕合物" ZLI1132" (メルク社製)を注入し、セルを作製した。
[0239] 実施例 4 1、実施例 4 2で作製した偏光板 Α— 31、 Β— 31、比較例 5、 6で作製 した偏光板 CA— 1、 CB—1のいずれか 1つを視認側偏光板とし、実施例 4— 3およ び比較例 7でそれぞれ作製した偏光板 C— 31および CC— 1の 、ずれか 1つをバック ライト側偏光板として組み合わせ、作製した OCBセルを挟むように、厚さ約 8 μ mの 粘着剤 (ダイァボンド DA 753、ノガワケミカル製)を介して偏光板を貼り付けた。偏光 板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに対面する 光学異方性層のラビング方向とが反平行となるように配置し、液晶表示装置 OCB— 1 (実施例)および OCB— C1 (比較例)を作製した。共に、 23"ワイドのサイズで打抜 き後の偏光板の長辺に対して吸収軸が 45°長辺となるように、長方形に打抜いた。偏 光板貼り付け後、 50°C5kg/cm2で 20分間保持し、接着させた。
[0240] 液晶表示装置の偏光板の組み合わせは以下のとおりである。
OCB- 1
(偏光板 A— 31) - (OCBセル)―(偏光板 C— 31)
(偏光板 B— 31) - (OCBセル) - (偏光板 C— 31)
OCB-C1
(偏光板 CA— 1) - (OCBセル)―(偏光板 CC— 1)
(偏光板 CB— 1) - (OCBセル) - (偏光板 CC— 1)
[0241] 作製した液晶表示装置をバックライト上に配置し、液晶セルに白表示電圧 2V、黒 表示電圧 4. 5Vを印加し、測定機" EZ— Contrast 160D" (ELDIM社製)を用い て、黒表示および白表示の輝度測定から視野角(コントラスト比が 10以上の範囲)を 算出した。いずれの偏光板を使用した場合も、全方位で極角 80°以上の良好な視野 角特性が得られた。
得られた実施例および比較例の OCBモード液晶表示装置の電源を入れて 12時間 経時させ、画面 4辺の光漏れを比較した。その結果、比較例は光漏れが認められた 力 実施例はほとんど光漏れがな力つた。
[0242] 実施例 5— 2
(TNパネルへの実装)
実施例 4—1で作製した偏光板 A— 12を視認側偏光板、実施例 4— 3で作製した 偏光板 C— 42をバックライト側偏光板として組み合わせ、共に 17"のサイズで打抜き 後の偏光板の長辺に対して吸収軸力 長辺となるように、長方形に打抜いた。 TN モードの液晶モニター" SyncMaster 172X" (サムソン社製)の表裏の偏光板およ び位相差板を剥し、その代わりに厚さ約 8 mの粘着剤(ダイァボンド DA 753、ノガ ヮケミカル製)を介して上記の偏光板を貼り付け、実施例の液晶表示装置 TN— 1を 作製した。偏光板貼り付け後、 50°C、 5kg/cm2で 20分間保持し、接着させた。この 際、偏光板の光学異方性層がセル基板に対面し、液晶セルのラビング方向とそれに 対面する光学異方性層のラビング方向とが反平行となるように配置した。
また、比較例 5、 6で作製した偏光板 CA— 2、 CB— 2のいずれか一方を視認側偏 光板、比較例 7で作製した偏光板 CC 2をバックライト側偏光板として組み合わせ、 あとはすべて同様にして比較例の TNモード液晶表示装置 TN— C2を作成した。 更に、比較例 5、 6で作製した偏光板 CA— 3、 CB— 3のいずれか一方を視認側偏 光板、比較例 7で作製した偏光板 CC 3をバックライト側偏光板として組み合わせ、 あとはすべて同様にして比較例の TNモード液晶表示装置 TN— C3を作成した。
[0243] 液晶表示装置の偏光板の組み合わせは以下のとおりである。
TN- 1
(偏光板 A— 31) - (OCBセル)―(偏光板 C— 31)
(偏光板 B— 31) - (OCBセル) - (偏光板 C— 31)
TN-C2
(偏光板 CA— 2) - (OCBセル)―(偏光板 CC— 2)
(偏光板 CB— 2) - (OCBセル) - (偏光板 CC— 2)
TN-C3
(偏光板 CA— 3) - (OCBセル)―(偏光板 CC— 3)
(偏光板 CB— 3) - (OCBセル) - (偏光板 CC— 3)
[0244] 測定機" EZ— Contrast 160D" (ELDIM社製)を用いて、黒表示および白表示 の輝度測定から視野角(コントラスト比が 10以上の範囲)を算出した。液晶表示装置 丁?^ー1及び丁?^ーじ2は全方位で極角60°以上の良好な視野角特性が得られた。し 力し比較例の液晶表示装置 TN— C3は極角 40°以下の視野角特性し力得られなか つた o
実施例および比較例の TNモード液晶表示装置 TN— 1と TN— C2の電源を入れ て 12時間経時させ、画面 4辺の光漏れを比較した。その結果、比較例は光漏れが強 いが、実施例はほとんど光漏れがな力つた。
[0245] 実施例 5— 3
(VAパネルへの実装)
液晶セルは、基板間のセルギャップを 3. とし、負の誘電率異方性を有する液 晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶 層を形成して作製した。液晶層のレターデーシヨン (即ち、記液晶層の厚さ d( m)と 屈折率異方性 Δ ηとの積 A n'd)を 300nmとした。なお、液晶材料は垂直配向するよ うに配向させた。
偏光子の表も裏もフジタック TD80UFをアルカリケンィ匕した透明保護膜を使用した 以外は実施例 4 3と同様にして偏光板 C 0を作製した。上記の垂直配向型液晶 セルを使用した液晶表示装置の視認側偏光板に実施例 4— 1で作製した A— 23を、 バックライト側偏光板には偏光板 C— 0を使用した。 A— 23の光学異方性層が液晶 セル側になるように、厚さ約 8 mの粘着剤(ダイァボンド DA 753、ノガワケミカル製 )を介して実施例で作成した偏光板を貼り付けた。視認側偏光板の透過軸が上下方 向に、ノ ックライト側偏光板の透過軸が左右方向になるように、クロス-コル配置とし た。このようにして VAモード液晶表示装置 VA— 1を作成した。
また、実施例 4— 2で作製した B— 53を視認側にしたほかは上記と同様にして、 VA モード液晶表示装置 VA— 2を作成した。
測定機" EZ— Contrast 160D" (ELDIM社製)を用いて、実施例の VA液晶表 示装置 VA— 1及び VA— 2の黒表示および白表示の輝度測定を行 ヽ、視野角 (コントラスト比が 10以上の範囲)を算出した。液晶表示装置 VA— 1及び VA— 2は全 方位で極角 60°以上の良好な視野角特性が得られた。液晶表示装置の電源を入れ て 12時間経時させ、画面 4隅の光漏れを観察した力 光漏れは認められな力つた。

Claims

請求の範囲 [1] 環状ォレフィン系付加重合体を含有する基体フィルム上に、光学異方性層を積層 したことを特徴とする光学補償シート。 [2] 前記環状ォレフィン系付加重合体が、一般式 (I)で表される少なくとも 1種の繰返し 単位および一般式 (II)で表される少なくとも 1種の環状繰返し単位力 なる共重合体 であることを特徴とする請求項 1に記載の光学補償シート。
[化 1] 一般式 ( I )
Figure imgf000091_0001
[化 2]
一般式 (π)
Figure imgf000092_0001
式中、 mは 0から 4の整数を表す。 1^〜1^は水素原子又は炭素数1〜10の炭化水 素基、 1〜^、 Y -Y2は水素原子、炭素数 1〜: L0の炭化水素基、ハロゲン原子、ハ ロゲン原子で置換された炭素数 1〜10の炭化水素基、 (CH ) COORu、 一 (CH )
2 n 2 n
OOCR12、— (CH ) NCO、— (CH ) NO 、— (CH ) CN、— (CH ) CONR13R14、— (
2 n 2 n 2 2 n 2 n
CH ) NR13R14、— (CH ) OCOZ、— (CH ) OZ、— (CH ) W、または X1と Y1あるいは
2 n 2 n 2 n 2 n
X2と Y2力も構成された (—CO) 0、 (-CO) NR15を示す。なお、 R11, R12, R13, R14, R1
2 2
5は炭素数 1〜20の炭化水素基、 Zは炭化水素基 ^またはハロゲンで置換された炭化 水素基、 Wは SiR16 D (R16は炭素数 1〜: L0の炭化水素基、 Dはハロゲン原子,
P 3-p
OCOR16または OR16、 pは 0〜3の整数を示す)、 nは 0〜10の整数を示す。
[3] 前記環状ォレフィン系付加重合体が、一般式 (II)で表される 1種の環状繰返し単位 力もなる重合体、あるいは、一般式 (II)で表される少なくとも 2種の環状繰返し単位か らなる共重合体であることを特徴とする請求項 1に記載の光学補償シート。
[4] 前記光学補償シートの膜厚方向のレターデーンヨン Rthが下記式を満たすことを特 徴とする請求項 3に記載の光学補償シート。
40nm≤Rth(630)≤300nm ここで Rth( λ )は波長 λ nmで測定した Rthを表す。
[5] 基体フィルムが、一次粒子径 lnmから 20 μ mまでの微粒子を、 0. 01力ら 0. 3質量
%の割合で含有することを特徴とする請求項 1〜4のいずれかに記載の光学補償シ ート。
[6] 前記光学異方性層がディスコティック液晶層を含有することを特徴とする請求項 1
〜5の 、ずれかに記載の光学補償シート。
[7] 前記光学異方性層が棒状液晶層を含有することを特徴とする請求項 1〜5のいず れかに記載の光学補償シート。
[8] 前記光学異方性層がポリマーフィルムを含有することを特徴とする請求項 1〜5の いずれかに記載の光学補償シート。
[9] 前記光学異方性層を形成するポリマーフィルムが、ポリアミド、ポリイミド、ポリエステ ル、ポリエーテルケトン、ポリアミドイミドポリエステルイミド、およびポリアリールエーテ ルケトン力 なる群力 選ばれる少なくとも一種のポリマー材料を含有することを特徴 とする請求項 8に記載の光学補償シート。
[10] 前記環状ォレフィン付加重合体を含有する基体フィルムが、環状ォレフィン付加重 合体を 10〜35質量%含有し、かつ塩素系有機溶剤を主溶剤として含有する溶液を 出発原料として、順次、無端金属支持体上に流延する工程、残留揮発分が 5〜60質 量%になるまで乾燥する工程、該金属支持体から 0. 25NZcm以下の剥離抵抗で 剥離する工程、および、乾燥して巻き取る工程を経て製膜されたものであることを特 徴とする請求項 1〜9のいずれかに記載の光学補償シート。
[11] 前記塩素系有機溶剤の 50質量%以上がジクロロメタンであり、且つ 20〜100°Cで 該環状ォレフイン付加重合体を溶解して、前記溶液とすることを特徴とする、請求項 1
0に記載の光学補償シート。
[12] 前記溶液中に、環状ォレフィン付加重合体の貧溶媒を該環状ォレフィン付加重合 体 100質量部に対して 3〜: L00質量部含有することを特徴とする、請求項 10〜11の いずれかに記載の光学補償シート。
[13] 前記貧溶媒が沸点 120°C以下のアルコール類であることを特徴とする、請求項 12 に記載の光学補償シート。
[14] 前記環状ォレフィン付加重合体を含有する基体フィルムが界面活性剤を 0. 05〜3 質量%含有することを特徴とする請求項 1〜9のいずれかに記載の光学補償シート。
[15] 偏光子と、その両側に配置された 2枚の保護膜からなる偏光板において、前記保護 膜のうちの少なくとも 1枚力 請求項 1〜14のいずれかに記載の光学補償シートであ ることを特徴とする偏光板。
[16] 請求項 15に記載の偏光板を少なくとも 1枚使用したことを特徴とする液晶表示装置
PCT/JP2006/304810 2005-03-11 2006-03-10 光学補償シート、偏光板および液晶表示装置 WO2006095878A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005069713 2005-03-11
JP2005-069713 2005-03-11
JP2005-071249 2005-03-14
JP2005071249 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006095878A1 true WO2006095878A1 (ja) 2006-09-14

Family

ID=36953467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304810 WO2006095878A1 (ja) 2005-03-11 2006-03-10 光学補償シート、偏光板および液晶表示装置

Country Status (2)

Country Link
US (1) US20080107828A1 (ja)
WO (1) WO2006095878A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202546A1 (en) * 2007-10-10 2010-06-30 Nippon Oil Corporation Method for producing optical film
KR101272120B1 (ko) 2009-09-08 2013-06-10 에스케이이노베이션 주식회사 표면 몰폴로지가 조절된 광학필름 및 그 제조방법
JP2014503855A (ja) * 2010-12-31 2014-02-13 コーロン インダストリーズ インク 輝度増強フィルム及びこれを含むバックライトユニット
TWI465337B (zh) * 2007-08-20 2014-12-21 Fujifilm Corp 光學補償薄膜、其製法、及使用它之偏光板與液晶顯示裝置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080291369A1 (en) * 2007-05-23 2008-11-27 Fujifilm Corporation Optical Film, Optical Compensation Film, Polarizing Plate, and Liquid-Crystal Display Device
TWI373671B (en) * 2009-02-26 2012-10-01 Au Optronics Corp Alighment material composition and alignment layer
JP2011002813A (ja) * 2009-05-20 2011-01-06 Nitto Denko Corp 光学フィルム、偏光板、液晶パネル、液晶表示装置および光学フィルムの製造方法
JP5815492B2 (ja) * 2011-11-01 2015-11-17 富士フイルム株式会社 光学フィルム、偏光板、画像表示装置及び3d画像表示システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254451A (ja) * 2001-02-28 2002-09-11 Fuji Photo Film Co Ltd 溶液製膜方法
JP2003315554A (ja) * 2002-02-19 2003-11-06 Nitto Denko Corp 積層偏光板、およびそれを用いた画像表示装置
JP2004198952A (ja) * 2002-12-20 2004-07-15 Jsr Corp 光学用フィルムおよびその用途
WO2004070463A1 (en) * 2003-02-06 2004-08-19 Lg Chem, Ltd. Unified polarizing plate and method for preparing the same
JP2004325561A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 位相差フィルムとその製造方法
JP2004361712A (ja) * 2003-06-05 2004-12-24 Konica Minolta Opto Inc 楕円偏光板、楕円偏光板の作製方法及び液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807167B2 (ja) * 1999-10-21 2006-08-09 コニカミノルタホールディングス株式会社 セルロースエステルフィルム、偏光板保護フィルム及びセルロースエステルフィルムの製造方法
US20040114067A1 (en) * 2001-01-31 2004-06-17 Kyoichi Kubomura Lightguide plate and lighting unit
US20050099562A1 (en) * 2002-02-19 2005-05-12 Yuuichi Nishikouji Stacked phase shift sheet, stacked polarizing plate including the same and image display
US7038746B2 (en) * 2003-03-31 2006-05-02 Sumitomo Chemical Company, Limited Laminated polarizing film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254451A (ja) * 2001-02-28 2002-09-11 Fuji Photo Film Co Ltd 溶液製膜方法
JP2003315554A (ja) * 2002-02-19 2003-11-06 Nitto Denko Corp 積層偏光板、およびそれを用いた画像表示装置
JP2004198952A (ja) * 2002-12-20 2004-07-15 Jsr Corp 光学用フィルムおよびその用途
WO2004070463A1 (en) * 2003-02-06 2004-08-19 Lg Chem, Ltd. Unified polarizing plate and method for preparing the same
JP2004325561A (ja) * 2003-04-22 2004-11-18 Konica Minolta Opto Inc 位相差フィルムとその製造方法
JP2004361712A (ja) * 2003-06-05 2004-12-24 Konica Minolta Opto Inc 楕円偏光板、楕円偏光板の作製方法及び液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI465337B (zh) * 2007-08-20 2014-12-21 Fujifilm Corp 光學補償薄膜、其製法、及使用它之偏光板與液晶顯示裝置
EP2202546A1 (en) * 2007-10-10 2010-06-30 Nippon Oil Corporation Method for producing optical film
EP2202546A4 (en) * 2007-10-10 2012-12-12 Nippon Oil Corp METHOD FOR PRODUCING AN OPTICAL FILM
KR101272120B1 (ko) 2009-09-08 2013-06-10 에스케이이노베이션 주식회사 표면 몰폴로지가 조절된 광학필름 및 그 제조방법
JP2014503855A (ja) * 2010-12-31 2014-02-13 コーロン インダストリーズ インク 輝度増強フィルム及びこれを含むバックライトユニット

Also Published As

Publication number Publication date
US20080107828A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
JP2006293331A (ja) 光学補償シート、偏光板および液晶表示装置
US20080049323A1 (en) Optical film, production method of optical film, polarizing plate and liquid crystal display device
US20090021673A1 (en) Liquid Crystal Display Device
JP2008224763A (ja) 透明保護フィルム、光学補償フィルム、偏光板、及び液晶表示装置
JP2007261052A (ja) 多層構造環状オレフィン系樹脂フィルム、偏光板、及び液晶表示装置
JP2009237376A (ja) 偏光板およびそれを用いた液晶表示装置
JP2007099824A (ja) 環状オレフィン系樹脂フィルム、偏光板および液晶表示装置
WO2006095878A1 (ja) 光学補償シート、偏光板および液晶表示装置
JP2007112967A (ja) 環状オレフィン系樹脂フィルムとその製造方法、偏光板、及び液晶表示装置
JP2008020895A (ja) 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置
JP2004177642A (ja) 位相差フィルムとその製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2006257380A (ja) セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置
JP4585947B2 (ja) 環状ポリオレフィンフィルムの製造方法
JP2007261189A (ja) セルロースアシレートフィルムの製造方法、偏光板および液晶表示装置
JP5016834B2 (ja) 光学フィルム、これを用いた偏光板および液晶表示装置
JP2002122741A (ja) 光学補償シート、偏光板及び液晶表示装置
JP2003073485A (ja) セルロースエステルフィルム、その製造方法、光学補償フィルム、偏光板及び液晶表示装置
JP2007264287A (ja) 光学フィルム、偏光板および液晶表示装置
US20080113121A1 (en) Cyclic polyolefin film, and polarizing plate and liquid crystal display device using the same
JP4686247B2 (ja) ポリマーフィルム並びにそれを用いた光学フィルム、偏光板及び画像表示装置
US20070231506A1 (en) Optical film, polarizing plate and liquid crystal display device
US20070292680A1 (en) Optical film, production method of optical film, polarizing plate and liquid crystal display device
JP2007517234A (ja) 偏光板及び液晶表示装置
JP2008120905A (ja) 環状ポリオレフィンフィルム、それを用いた偏光板および液晶表示装置
JP2007277523A (ja) 環状ポリオレフィンフィルム及びその製造方法、並びにそれを用いた偏光板、液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015876.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11886106

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06728928

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11886106

Country of ref document: US