WO2006095653A1 - Method of extracting molten metal or molten metal chloride and apparatus therefor - Google Patents

Method of extracting molten metal or molten metal chloride and apparatus therefor Download PDF

Info

Publication number
WO2006095653A1
WO2006095653A1 PCT/JP2006/304109 JP2006304109W WO2006095653A1 WO 2006095653 A1 WO2006095653 A1 WO 2006095653A1 JP 2006304109 W JP2006304109 W JP 2006304109W WO 2006095653 A1 WO2006095653 A1 WO 2006095653A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
chamber
chloride
pipe
extracting
Prior art date
Application number
PCT/JP2006/304109
Other languages
French (fr)
Japanese (ja)
Inventor
Wataru Kagohashi
Junichi Suzuki
Bunji Akimoto
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2007507083A priority Critical patent/JP4731552B2/en
Publication of WO2006095653A1 publication Critical patent/WO2006095653A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method and apparatus for extracting molten metal or molten metal salt, and in particular, the operation can be performed safely and the molten metal or the like can be extracted efficiently.
  • the present invention relates to a refined technique such as molten metal. Background art
  • titanium sponge is produced by the crawl method
  • titanium tetrachloride is reduced with high-purity magnesium.
  • magnesium chloride is produced as a by-product, so the by-produced salt-magnesium is electrolyzed into magnesium and chlorine gas by the molten salt electrolysis process, and this magnesium is used again for the reduction reaction.
  • metal nitrides and metal oxides may be mixed as impurities into the produced magnesium during the molten salt electrolysis step of magnesium chloride.
  • the impurities migrate to the resulting sponge titanium, which may adversely affect the quality of the titanium ingot obtained in the subsequent process. is there.
  • Patent Document 3 a technique is disclosed in which solid impurities accumulated in a molten metal plating bath are separated and removed by providing a filter at the end of a pipe.
  • Patent Document 3 does not disclose a specific solution and a solution when the filter is clogged because there is no description about the specific structure and material of the filter.
  • Patent Document 1 Japanese Patent Laid-Open No. 02-243789 (Claims)
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-328052 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 02-156054 (Claims)
  • the present invention has been made in view of the various circumstances and requirements described above, and when efficiently producing magnesium for producing titanium having strict quality requirement characteristics,
  • the inventors have made extensive studies on a method and an apparatus for extracting molten metal or molten metal chloride in consideration of intensive situations. As a result, when the molten metal or molten metal chloride is led from the first chamber to the other chamber, the molten metal or molten metal chloride is extracted through the filter, so that the molten metal or molten metal chloride is converted into the molten metal or molten metal chloride.
  • the present inventors have found that the solid impurities contained therein can be effectively removed, and have completed the present invention.
  • a filter immersed in molten metal or molten metal chloride is provided at one end of a pipe disposed in the chamber, and the reduced pressure state of the pipe is controlled to a desired range, thereby allowing the filter to be removed. Clogging can be detected early. As a result, it is possible to achieve safe and efficient extraction of molten metal and the like.
  • the present invention has been made in view of such knowledge.
  • a filter including an internal screen and an external screen in a first chamber filled with molten metal or molten metal chloride.
  • the pipe is inserted, and the pipe is engaged with a pressure reducing device to detect the degree of pressure reduction of the pipe, and the molten metal or molten metal salt is guided to the second chamber through the filter. It is said.
  • the internal screen is engaged with a rotation mechanism.
  • the first chamber is tilted to remove the molten metal or molten salt remaining in the first chamber. It is highly desirable to lead to the second chamber.
  • magnesium and calcium can be applied as the molten metal
  • magnesium chloride and calcium chloride can be applied as the molten metal chloride.
  • the present invention also relates to an apparatus for suitably carrying out the method described above. That is, the apparatus for extracting molten metal or molten metal chloride of the present invention is provided at a position where one side is immersed in the first chamber and the first chamber filled with molten metal or molten metal salt.
  • a pipe through which an inert gas flows and a second chamber communicating with the other side of the pipe are provided, and a pipe is provided at the tip of the one side of the pipe.
  • a filter is provided, and the filter includes an internal screen that is an extension shape of the pipe and an external screen that is a shape surrounding the internal screen. Furthermore, it is preferable that the internal screen is engaged with a rotation mechanism.
  • a filter and a decompression means are provided.
  • removing solid impurities through the combination of these even if the filter is likely to become clogged, it is possible to detect clogging early due to the reduced pressure state of the piping.
  • safe and efficient extraction of molten metal or the like can be realized.
  • the above extraction method can be suitably applied not only when the melt is a molten metal but also when it is a molten chloride.
  • the present invention has the effect of effectively separating and removing solid impurities such as magnesium nitride while avoiding frequent clogging with conventional filters.
  • solid impurities such as magnesium nitride
  • molten metal with a very low impurity concentration for example, tetrasalt It can use for the reduction process and electrolysis process of titanium fluoride. For this reason, it is possible to produce a metal with very few impurities.
  • FIG. 1 is a side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention.
  • FIG. 2 is a side view showing the structure of the filter 4 shown in FIG. 1 in detail.
  • FIG. 3 is a side view showing an example of a maintenance mode of the apparatus shown in FIG.
  • FIG. 4 is a side view showing another example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention.
  • FIG. 5 is a partial side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride according to the present invention, (a) showing the initial extraction of molten metal, etc., (b) The latter half of the extraction is shown.
  • FIG. 6 is a side view showing a filter in which an internal screen is engaged with a rotation mechanism.
  • FIG. 1 is a side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention.
  • the first chamber 1 and the first chamber 1 are filled with molten metal or molten metal chloride (hereinafter sometimes referred to simply as “molten metal etc.”)
  • molten metal etc. one side thereof Pressure reducing or inert gas provided at the immersion position
  • the main components are the distribution pipe 2, the second chamber 3 communicating with the other side of the pipe 2, and the filter 4 attached to the end of one side of the pipe 2.
  • a lid is attached to the upper part of the first chamber 1, and a pressure adjusting pipe 5 capable of appropriately changing the pressure in the first chamber is disposed on the lid.
  • the first chamber 1 and the second chamber 3 can be made of carbon steel or stainless steel. These chambers 1 and 3 are preferably provided with heaters so that they can be heated and maintained above the melting point of the molten metal or molten metal chloride.
  • the pipe 2 is heated and held above the melting point of the molten metal to be applied.
  • the molten metal is magnesium
  • the melting point is around 680 ° C
  • pipe 2 is 750-800.
  • the finoleta 4 is an extension of the pipe 2 and has an inner screen 4a having a plurality of through holes, and a shape surrounding the inner screen 4a and having a plurality of through holes.
  • the external screen 4b is a main component, and these screens 4a and 4b are arranged so as to form a fixed space by the support member 4c.
  • the screens 4a and 4b both have a metal thread-like shape, and the finoleta 4 functions as a hook-like container as a whole by these 4a and 4b.
  • the space surrounded by the inner screen 4a and the outer screen 4b is preferably configured as a bowl-shaped container having an open ceiling. By adopting such a configuration, it is possible to easily replace the titanium material filled in the space.
  • the through holes of the internal screen 4a are made smaller than the through holes of the external screen 4b.
  • the external screen 4b can effectively shut off relatively large impurities contained in the molten metal.
  • the internal screen 4a can efficiently prevent the passage of solid impurities having a size that can pass through the external screen 4b.
  • the size of the through holes formed in the inner screen 4a and the outer screen 4b can be appropriately determined according to the size of the impurities to be separated and removed.
  • the diameter of the through hole of the inner screen 4a is preferably 1 to 5 mm, and the diameter of the through hole of the outer screen 4b is 10 to 20 mm. Do It is preferable.
  • the above-described through-hole of the internal screen has an opening that can capture a solid substance called an LDI source.
  • the diameter of the through-hole of the internal screen 4a is preferably 5 to 1 Omm. It is known that the above-mentioned LDI source has almost no influence on the mechanical properties because the LDI source is completely dissolved in the titanium material in the melting process when the diameter is reduced. This limit is said to be about 5mm, and it is preferable to configure it to match this.
  • the internal screen is disposed so as to engage with a rotation mechanism as shown in FIG.
  • a rotation mechanism as shown in FIG.
  • the pipe 2 etc. can be made of iron or stainless steel represented by SUS 304.
  • SUS303 , SUS301, SUS201, etc. are preferably used.
  • the pipe 2 or the like may be made of carbon showing excellent corrosion resistance against molten magnesium.
  • a titanium sponge having a particle size in the range of 0.2 mm to 15 mm.
  • the particle diameter is less than 0.2 mm, clogging is likely to occur due to impurities in the salty magnesium bath, while when the sponge titanium particle diameter exceeds 15 mm, The specific surface area is lowered, and the function of the filter is lowered, which is not preferable.
  • the titanium sponge those produced by a normal crawl method can be used.
  • the quality of the titanium sponge is not so important and there is no limitation as long as it has moderate pores. Therefore, it is possible to use sponge titanium that is slightly different from the quality standard required for standard grade sponge titanium.
  • the above-mentioned sponge titanium can be used by filling the filter 4 with a granular material as it is, or using sponge titanium in a form that is heated and sintered to each other.
  • sintering is preferably performed in an inert gas atmosphere or a vacuum atmosphere. By heating in such an atmosphere, no oxide film or nitride film is formed on the surface of the sintered body, so that impurities in the bath can be adsorbed and removed efficiently.
  • the filter 4 can be easily replaced by filling the filter 4 with such sponge titanium or the like. Further, as described above, the filter 4 can be easily replaced by configuring so as to open the space surrounded by the inner screen 4a and the outer screen 4b. However, in this case, it is preferable that the titanium material or the like filled in the space portion is filled firmly so that it does not easily come off.
  • sponge titanium As described above, it is preferable to use sponge titanium as a filler for the filter 4.
  • an aggregate of stainless steel or carbon steel chips may be filled into the filter 4. it can.
  • stainless steel chips that are more corrosion resistant than carbon steel are used for filtration of molten salt and magnesium, and carbon that is less expensive and less powerful than nickel and chromium and is used for magnesium filtration. It is preferable to use steel.
  • the length of the titanium chips is preferably 1 to 10 mm.
  • impurities in the molten magnesium chloride can be efficiently separated and removed. Even if the sponge titanium filled in the open space surrounded by the inner screen 4a and the outer screen 4b is clogged and becomes defective in reproduction, the sponge titanium is held in the open space. Can be easily replaced with new titanium sponge without clogging
  • an inert gas is supplied to the first chamber 1 from the pressure adjusting pipe 5 in FIG.
  • the molten metal held in the chamber 1 can also be extruded into the second chamber 3.
  • whether to use the above-mentioned extraction method or extrusion method for the molten metal can be selected as appropriate in consideration of the equipment specifications and the pressure resistance of the apparatus.
  • Molten magnesium with less impurities purified as described above can be effectively used as a reducing agent for titanium tetrachloride, and the quality of titanium sponge can be made extremely high. For this reason, the apparatus of FIG. 1 is suitable for the production of, for example, magnesium magnesium chloride used for the purification of titanium.
  • FIG. 3 is a side view showing an example of a maintenance mode of the apparatus shown in FIG. If molten metal or the like is guided to the second chamber 3 through the finertor 4 for a long period of time, the filter 4 may be clogged, which may hinder the extraction of the molten metal. is there. For this reason, it is necessary to periodically perform operations to eliminate clogging of the filter 4.
  • the time required for maintenance can be determined by monitoring the degree of decompression in the pipe 2 with a decompression degree measuring device (not shown) arranged downstream of the pipe 2. For this reason, it is preferable to stop the decompression operation when the degree of decompression reaches a predetermined value, and supply the inert gas to the pipe 2 to clean the filter 4.
  • This operation can be performed manually, but the pressure can be automatically detected and the above-described operation can be automatically controlled.
  • the filter 4 may be taken out of the bath of molten metal, etc., and the sponge titanium filled in the filter 4 may be replaced with a new one.
  • the sponge titanium can be easily replaced because it is only required to be held in an open space surrounded by the inner screen and the outer screen constituting the filter 4.
  • the impurities in the magnesium bath are solid magnesium oxide and magnesium nitride, but when the surface activity of the sponge titanium filling the filter 4 is high, the oxide dissolved in the molten magnesium bath is solid. It is also possible to separate and remove materials and nitrides. Under such an effect, the surface of the filler such as sponge titanium filled in the filter 4 is gradually contaminated with impurities as a result of continuous use. For this reason, since the function of the filter 4 is lowered, it is preferable to replace the filler such as sponge titanium as appropriate.
  • the apparatus shown in FIGS. 1 and 3 can be applied to molten metal chloride instead of molten metal.
  • the impurities in the molten metal chloride are molten metal, solid oxidation Or solid nitride, and these impurities can be efficiently separated and removed.
  • solid impurities typified by calcium oxide can be efficiently separated and removed as in the case of magnesium.
  • the residence time for passing the molten metal or the like in the sponge titanium or titanium chips filled in the filter 4 that is, the separation time is the molten metal It can be determined as appropriate in view of the state of separation of impurities contained in. If this separation time is set long, impurities contained in the molten metal can be separated and removed to a high level, but the productivity decreases, so the operator should always monitor the separation of impurities, Separation can be performed efficiently.
  • FIG. 4 is a side view showing another example of the apparatus for extracting molten metal or molten metal chloride of the present invention.
  • the example shown in FIG. 4 has the same basic configuration as the example shown in FIG. However, in the apparatus shown in FIG. 4, compared to the apparatus shown in FIG. 1, the pipe 6 communicated from the second chamber 3 and the third chamber 3 communicated on the opposite side of the pipe 6 from the second chamber 3 are further provided. A chamber 7 is provided.
  • the molten metal or the like held in the first chamber 1 can be guided to the second chamber 3 by holding the pipe 2 fitted with the filter 4 under reduced pressure. At this time, it is desirable to leave the molten metal or the like in the second chamber 3 standing. By allowing the molten metal or the like to stand in this way, solid impurities can be efficiently settled and separated at the bottom of the second chamber 3. Under such circumstances, the molten metal or the like can be guided to the third chamber by further reducing the pressure of the third chamber 7 relative to the second chamber 3.
  • solid impurities in the molten metal or the like can be further separated and removed at a higher level than when the apparatus shown in FIG. 1 is used. Note that the solid impurities deposited on the bottom of the second chamber 3 are periodically discharged to the outside, so that the solid impurities can be separated and removed more efficiently.
  • Fig. 5 is a partial side view showing an example of a more preferable molten metal or molten metal chloride extraction device of the present invention, (a) shows the initial extraction of molten metal, etc., (b) molten metal The latter half of the extraction of metals.
  • the apparatus shown in FIG. 1 further includes an inclined member 8 that can incline the first chamber 1 in a desired angle range in addition to the constituent members of the apparatus shown in FIG. It is provided.
  • the inclined member 8 includes a base 8a, and a tilter 8b that supports the base 8a and tilts another member (in this example, the first chamber 1) disposed in the base 8a to a desired angle range.
  • the pressure adjustment pipe 5 shown in FIG. 1 is omitted for the sake of simplicity of explanation, but in this example, a pressure adjustment pipe can also be provided.
  • Molten metal or the like held in the first chamber 1 is extracted to the second chamber 3 (not shown in FIG. 5) (see FIG. 1), and the remaining amount gradually decreases.
  • the inclined member 8 is operated to incline the first chamber 1 containing molten metal and the like, and the pipe 2 (see FIG. 1) is moved away from the bath surface once.
  • the filter 4 can be immersed again in a bath of molten metal or the like. As a result, molten metal that remains in the first chamber 1 and cannot be extracted can be minimized.
  • a flexible pipe is interposed in the pipe 2 near the upper portion of the first chamber 1, so that re-immersion as described above is performed. Can do.
  • a flexible pipe it is possible to efficiently extract the molten metal remaining in the first chamber 1 without leaving much.
  • the apparatus shown in Figs. 1, 4 and 5 has the power that can be used for scouring molten salt magnesium magnesium alone used when scouring titanium tetrachloride. In addition to these scours, It can also be used in the purification of an electrolytic bath of titanium tetrachloride. As a result, sponge titanium can be produced while maintaining high current efficiency.
  • magnesium oxide can be considerably removed from molten magnesium by the combination of the filter and the decompression means, and as a result, even when the impurity content is extremely low, efficient melting is achieved. It can be seen that extraction of metal or the like can be realized. In this example, clogging was not caused by controlling the reduced pressure state of the piping. Therefore, overflow of the melt could be avoided and work could be performed safely.
  • Example 2
  • magnesium nitride can be considerably removed from the molten magnesium by the combination of the filter and the decompression means, and as a result, even when the impurity content is extremely low, efficient melting can be achieved. It can be seen that extraction of metal or the like can be realized.
  • the molten magnesium was purified for a total of 15 hours.
  • the back pressure of a decompression device (not shown) engaged downstream of the pipe 2 in the first chamber 1 increased. Therefore, argon gas was allowed to flow backward from the downstream side of pipe 2 toward filter 4 for 1 hour, and then the supply of argon gas was stopped and allowed to stand for 30 minutes.
  • the second chamber 3 located downstream of the pipe 2 was held under reduced pressure at 0.1 lTorr, and the molten magnesium was introduced from the first chamber 1 to the second chamber 3.
  • the back pressure recovered to the original level, and by repeating this operation, purification for a total of 45 hours became possible.
  • molten magnesium is used under the same conditions as in Invention Example 7 except that pipe 2 that cannot flow an inert gas in the direction from second chamber 3 to first chamber 1 is used.
  • the work was carried out without performing any special maintenance such as flowing an inert gas from the second chamber 3 to the first chamber 1 or reversely flowing the molten magnesium. .
  • this device was used for a total of 17 hours, the filter 4 was blocked and the work could not be continued.
  • the present invention when the molten metal or molten metal chloride is led from the first chamber to the other chamber, the solid impurities are made efficient by the combination of the filter and the pressure reducing means. And safe to remove. For this reason, the present invention provides titanium tetrachloride. It is promising in that it can be applied to the purification of magnesium and magnesium chloride used for the reduction of iron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Acoustics & Sound (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

A method of extracting a molten metal, etc., in which for efficient production of magnesium for titanium production on which quality demand characteristics are strict, not only can operation be advanced safely but also extraction of molten metal, etc. can be performed efficiently. A pipe with filter having an internal screen and an external screen is inserted in a first chamber filled with a molten metal or molten metal chloride, and the molten metal or molten metal chloride is led through the above filter into a second chamber while maintaining the pipe at reduced pressure.

Description

明 細 書  Specification
溶融金属または溶融金属塩化物の抜き出し方法および装置  Method and apparatus for extracting molten metal or molten metal chloride
技術分野  Technical field
[0001] 本発明は、溶融金属または溶融金属塩ィ匕物の抜き出し方法および装置に関するも のであり、特に、作業を安全に進めることができるとともに、溶融金属等の抜き出しを 効率的に行うことができる溶融金属等の精鍊技術に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a method and apparatus for extracting molten metal or molten metal salt, and in particular, the operation can be performed safely and the molten metal or the like can be extracted efficiently. The present invention relates to a refined technique such as molten metal. Background art
[0002] 一般に、クロール法にてスポンジチタンを製造する場合には、四塩化チタンを純度 の高いマグネシウムで還元することが行われる。この還元工程においては、塩化マグ ネシゥムが副生されるため、副生された塩ィ匕マグネシウムを溶融塩電解工程によって マグネシウムと塩素ガスとに電解し、このマグネシウムを再度上記還元反応に使用す る。  [0002] Generally, when titanium sponge is produced by the crawl method, titanium tetrachloride is reduced with high-purity magnesium. In this reduction process, magnesium chloride is produced as a by-product, so the by-produced salt-magnesium is electrolyzed into magnesium and chlorine gas by the molten salt electrolysis process, and this magnesium is used again for the reduction reaction. .
[0003] このような状況下では、塩化マグネシウムの上記溶融塩電解工程にぉレ、て、金属窒 化物や金属酸化物が不純物として生成マグネシウムに混入するおそれがある。この ように不純物を含んだマグネシウムを使用して四塩ィ匕チタンを還元すると、生成され るスポンジチタンに不純物が移行し、その後の工程にて得られるチタンインゴットの品 質に悪影響を及ぼすおそれがある。  Under such circumstances, metal nitrides and metal oxides may be mixed as impurities into the produced magnesium during the molten salt electrolysis step of magnesium chloride. In this way, when magnesium containing impurities is used to reduce titanium tetrachloride and titanium, the impurities migrate to the resulting sponge titanium, which may adversely affect the quality of the titanium ingot obtained in the subsequent process. is there.
[0004] 上記不純物としては、とりわけ、固形の酸化マグネシウムゃ窒化マグネシウムがチタ ンインゴットに移行すると品質面で問題が生ずるため、これらの不純物を塩化マグネ シゥムの還元工程に供される前に予め分離除去しておくことが好ましいとされている。  [0004] As the above-mentioned impurities, since solid magnesium oxide or magnesium nitride is transferred to a titanium ingot, there is a problem in quality. Therefore, these impurities are separated in advance before being subjected to the reduction process of magnesium chloride. It is preferable to remove it.
[0005] このような事情に鑑み、酸化マグネシウムを含有した電解浴中に塩素ガスを導入し て酸化マグネシウムを塩ィ匕マグネシウムに変化させる技術が開示されてレ、る(特許文 献 1参照)。し力、しながら、特許文献 1に記載の技術は、意図的に酸化マグネシウムを 電解浴に投入し、これと塩素ガスとを接触反応させて塩化マグネシウムを得、電解浴 中の塩ィ匕マグネシウム濃度を高めるというものであり、電解浴に微量にしか含まれな い酸化マグネシウムの除去方法に適用することはできず、またそのような適用方法に 対する何らの記載もない。 [0006] また、塩化マグネシウム中に残留する溶融マグネシウム、酸化マグネシウムまたは 窒化マグネシウムを比重分離して除去する技術が開示されている(特許文献 2参照) 。しかしながら、特許文献 2に記載の技術では、沈降分離による方法における精製度 と沈降保持時間とが反比例するために、高純度を追求すると生産性が低下するとレヽ う問題がある。 [0005] In view of such circumstances, a technique is disclosed in which chlorine gas is introduced into an electrolytic bath containing magnesium oxide to change the magnesium oxide to salty magnesium (see Patent Document 1). . However, in the technique described in Patent Document 1, magnesium oxide is intentionally put into an electrolytic bath, and this is contacted with chlorine gas to obtain magnesium chloride. It is intended to increase the concentration, and it cannot be applied to a method for removing magnesium oxide contained only in a trace amount in an electrolytic bath, and there is no description of such an application method. [0006] In addition, a technique is disclosed in which molten magnesium, magnesium oxide, or magnesium nitride remaining in magnesium chloride is removed by specific gravity separation (see Patent Document 2). However, the technique described in Patent Document 2 has a problem in that productivity decreases when pursuing high purity because the degree of purification and the sedimentation retention time in the method using sedimentation separation are inversely proportional.
[0007] さらに、溶融金属のメツキ浴中に蓄積する固形不純物を配管の先端部にフィルタを 設けて分離除去する技術が開示されている(特許文献 3参照)。しかしながら、特許 文献 3に記載の技術は、フィルタの具体的な構造や材質についての記載がないだけ でなぐフィルタが目詰まりした際の解決策についての開示が見られない。  [0007] Further, a technique is disclosed in which solid impurities accumulated in a molten metal plating bath are separated and removed by providing a filter at the end of a pipe (see Patent Document 3). However, the technique described in Patent Document 3 does not disclose a specific solution and a solution when the filter is clogged because there is no description about the specific structure and material of the filter.
[0008] このように、上記特許文献 1〜3に記載の公知技術をもってしても、品質要求特性の 厳しいチタン製造用のマグネシウムを効率的に製造するには、上記のような種々の 課題が残されており、これらの課題を効果的に解決できる溶融金属または溶融金属 塩化物中に含まれる不純物の分離除去技術の開発が要請されてレ、る。  [0008] As described above, even with the known techniques described in Patent Documents 1 to 3, various problems as described above are required to efficiently produce magnesium for producing titanium having strict quality requirement characteristics. There is a need to develop a technology for separating and removing impurities contained in molten metal or molten metal chloride that can effectively solve these problems.
[0009] 特許文献 1:特開平 02— 243789号公報 (特許請求の範囲)  Patent Document 1: Japanese Patent Laid-Open No. 02-243789 (Claims)
特許文献 2 :特開 2003— 328052号公報(特許請求の範囲)  Patent Document 2: Japanese Patent Laid-Open No. 2003-328052 (Claims)
特許文献 3:特開平 02— 156054号公報 (特許請求の範囲)  Patent Document 3: Japanese Patent Laid-Open No. 02-156054 (Claims)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] よって、本発明は、以上のような諸事情や要請に鑑みてなされたものであり、品質 要求特性の厳しいチタン製造用のマグネシウムを効率的に製造する際に、上記のよ うな種々の課題を解決すベぐ特に、作業を安全に進めることができるとともに、溶融 金属等の抜き出しを効率的に行うことができる溶融金属等の抜き出し方法および装 置を提供することを目的としている。 [0010] Therefore, the present invention has been made in view of the various circumstances and requirements described above, and when efficiently producing magnesium for producing titanium having strict quality requirement characteristics, In particular, it is an object of the present invention to provide a method and an apparatus for extracting molten metal and the like that can safely proceed and can efficiently extract molten metal and the like.
課題を解決するための手段  Means for solving the problem
[0011] 発明者等は、力かる事情を考慮して、溶融金属または溶融金属塩化物の抜き出し 方法および装置について鋭意検討を重ねた。その結果、溶融金属または溶融金属 塩化物を第 1のチャンバから他のチャンバへ導く際に、該溶融金属または溶融金属 塩化物をフィルタを介して抜き出すことにより、該溶融金属または溶融金属塩化物に 含まれている固形不純物を効果的に除去できることを見出し、本発明を完成するに 至った。具体的には、溶融金属または溶融金属塩化物に浸漬配置させたフィルタを チャンバに配設される配管の一端に設けるとともに、この配管の減圧状態を所望の範 囲に制御することにより、フィルタの目詰まりを早期に発見できる。その結果、安全で かつ効率的な溶融金属等の抜き出しが実現できるという効果を奏するものである。本 発明は、このような知見に鑑みてなされたものである。 [0011] The inventors have made extensive studies on a method and an apparatus for extracting molten metal or molten metal chloride in consideration of intensive situations. As a result, when the molten metal or molten metal chloride is led from the first chamber to the other chamber, the molten metal or molten metal chloride is extracted through the filter, so that the molten metal or molten metal chloride is converted into the molten metal or molten metal chloride. The present inventors have found that the solid impurities contained therein can be effectively removed, and have completed the present invention. Specifically, a filter immersed in molten metal or molten metal chloride is provided at one end of a pipe disposed in the chamber, and the reduced pressure state of the pipe is controlled to a desired range, thereby allowing the filter to be removed. Clogging can be detected early. As a result, it is possible to achieve safe and efficient extraction of molten metal and the like. The present invention has been made in view of such knowledge.
[0012] すなわち、本発明の溶融金属または溶融金属塩ィ匕物の抜き出し方法は、溶融金属 または溶融金属塩化物が充填されている第 1チャンバに、内部スクリーンと外部スクリ 一ンとを備えるフィルタ付きの配管を揷入し、上記配管を減圧装置に係合して配管の 減圧度を検知しつつ、溶融金属または溶融金属塩ィヒ物を上記フィルタに通して第 2 チャンバに導くことを特徴としている。さらに、本発明においては、前記内部スクリーン が回転機構に係合されていることをさらに好ましい態様とするものである。  [0012] That is, in the method for extracting molten metal or molten metal salt according to the present invention, a filter including an internal screen and an external screen in a first chamber filled with molten metal or molten metal chloride. The pipe is inserted, and the pipe is engaged with a pressure reducing device to detect the degree of pressure reduction of the pipe, and the molten metal or molten metal salt is guided to the second chamber through the filter. It is said. Furthermore, in the present invention, it is further preferable that the internal screen is engaged with a rotation mechanism.
[0013] このような溶融金属または溶融金属塩化物の抜き出し方法においては、上記内部 スクリーンと上記外部スクリーンとにより形成された空間に、スポンジチタン、チタンス クラップ、チタン切粉、炭素鋼またはステンレス切粉を充填しておくことが望ましぐ上 記第 2チャンバに導かれた溶融金属または溶融金属塩化物を静置して不純物を沈 降させた後、さらに第 3チャンバに溶融金属または溶融金属塩ィ匕物を導くことがさら に望ましい。  [0013] In such a method for extracting molten metal or molten metal chloride, sponge titanium, titanium scrap, titanium chips, carbon steel or stainless steel chips are formed in the space formed by the inner screen and the outer screen. The molten metal or molten metal chloride introduced into the second chamber is allowed to settle to allow impurities to settle, and then the molten metal or molten metal salt is further introduced into the third chamber. It is even more desirable to guide the goods.
[0014] また、上記第 1チャンバ内の溶融物の量が少量となった場合には、上記第 1チャン バを傾斜させて、上記第 1チャンバに残留した溶融金属または溶融塩ィヒ物を上記第 2チャンバに導くことが極めて望ましい。なお、上記溶融金属としては、マグネシウム やカルシウムを適用することができ、上記溶融金属塩化物としては、塩化マグネシゥ ムゃ塩化カルシウムを適用することができる。  [0014] In addition, when the amount of the melt in the first chamber becomes small, the first chamber is tilted to remove the molten metal or molten salt remaining in the first chamber. It is highly desirable to lead to the second chamber. In addition, magnesium and calcium can be applied as the molten metal, and magnesium chloride and calcium chloride can be applied as the molten metal chloride.
[0015] カロえて、本発明は以上に示した方法を好適に実施するための装置に関するもので もある。すなわち、本発明の溶融金属または溶融金属塩化物の抜き出し装置は、第 1 チャンバと、溶融金属または溶融金属塩ィヒ物を充填した第 1チャンバに一方の側が これらに浸漬する位置に設けられた不活性ガスを流通させる配管と、上記配管の他 方の側に連通する第 2チャンバとを備え、上記配管の上記一方の側の先端部にフィ ルタを設け、上記フィルタが上記配管の延長形状である内部スクリーンと上記内部ス クリーンを包囲する形状である外部スクリーンとを備えることを特徴としている。さらに 、前記内部スクリーンが回転機構に係合されていることを好ましい態様とするものであ る。 [0015] The present invention also relates to an apparatus for suitably carrying out the method described above. That is, the apparatus for extracting molten metal or molten metal chloride of the present invention is provided at a position where one side is immersed in the first chamber and the first chamber filled with molten metal or molten metal salt. A pipe through which an inert gas flows and a second chamber communicating with the other side of the pipe are provided, and a pipe is provided at the tip of the one side of the pipe. A filter is provided, and the filter includes an internal screen that is an extension shape of the pipe and an external screen that is a shape surrounding the internal screen. Furthermore, it is preferable that the internal screen is engaged with a rotation mechanism.
[0016] このような溶融金属または溶融金属塩化物の抜き出し装置においては、上記内部 スクリーンと上記外部スクリーンとにより形成された空間に、スポンジチタン、チタンス クラップ、チタン切粉、炭素鋼またはステンレス切粉を充填したことが望ましぐ上記第 2チャンバから前記配管以外の配管を介して連通する第 3チャンバを設けたことがさ らに望ましぐ上記第 1チャンバを傾斜させる傾斜部材を設けてなることが極めて望ま しい。  In such an apparatus for extracting molten metal or molten metal chloride, sponge titanium, titanium scrap, titanium chips, carbon steel or stainless steel chips are formed in the space formed by the inner screen and the outer screen. It is provided with a tilting member for tilting the first chamber, which is further desired to be provided with a third chamber communicating with the second chamber via a pipe other than the pipe from the second chamber which is desirably filled. It is extremely desirable.
発明の効果  The invention's effect
[0017] 本発明の溶融金属または溶融金属塩化物の抜き出し方法によれば、溶融金属また は溶融金属塩ィ匕物を第 1のチャンバから他のチャンバへ導く際に、フィルタと減圧手 段との組み合わせにより固形不純物を除去することで、たとえフィルタに目詰まりが起 こりそうになった場合であっても、配管の減圧状態により、 目詰まりを早期に発見する こと力 Sできる。その結果、安全でかつ効率的な溶融金属等の抜き出しが実現できる。 なお、上記抜き出し方法は、融体が溶融金属の場合はもちろんのこと、溶融塩化物 の場合にも好適に適用することができる。  [0017] According to the method for extracting molten metal or molten metal chloride of the present invention, when the molten metal or molten metal chloride is introduced from the first chamber to another chamber, a filter and a decompression means are provided. By removing solid impurities through the combination of these, even if the filter is likely to become clogged, it is possible to detect clogging early due to the reduced pressure state of the piping. As a result, safe and efficient extraction of molten metal or the like can be realized. The above extraction method can be suitably applied not only when the melt is a molten metal but also when it is a molten chloride.
[0018] さらに、内部スクリーンを回転機構に係合させることで、外部スクリーンと内部スクリ ーンとの間に捕捉された半溶融状の酸化マグネシウムを含む溶融マグネシウムにせ ん断力が付与され、その結果、前記半溶融状の酸化マグネシウムを含む溶融マグネ シゥムを破壊して前記内部スクリーンを通過させることができ、内部スクリーンの目詰 まりを効果的に抑制することができる。また、 LDI (Low Density Impurities、低 密度介在物)の源と言われている窒化マグネシウムは、内部スクリーンによって効果 的に捕捉することができる。  [0018] Further, by engaging the inner screen with the rotating mechanism, a shearing force is applied to the molten magnesium containing the semi-molten magnesium oxide trapped between the outer screen and the inner screen. As a result, the molten magnesium containing the semi-molten magnesium oxide can be destroyed and passed through the inner screen, and clogging of the inner screen can be effectively suppressed. Magnesium nitride, which is said to be the source of LDI (Low Density Impurities), can be effectively captured by the internal screen.
[0019] 前記したように、本発明は、従来のフィルタで頻発した目詰まりを回避しつつ、窒化 マグネシウムのような固形不純物を効果的に分離除去することができるという効果を 奏するものである。その結果、不純物濃度の極めて低い溶融金属を、例えば、四塩 化チタンの還元工程や電解工程に供することができる。このため、不純物が極めて少 なレ、金属を製造することができる。 [0019] As described above, the present invention has the effect of effectively separating and removing solid impurities such as magnesium nitride while avoiding frequent clogging with conventional filters. As a result, molten metal with a very low impurity concentration, for example, tetrasalt It can use for the reduction process and electrolysis process of titanium fluoride. For this reason, it is possible to produce a metal with very few impurities.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の好適な溶融金属または溶融金属塩化物の抜き出し装置の一例を示 す側面図である。  FIG. 1 is a side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention.
[図 2]図 1に示すフィルタ 4の構造を詳細に示す側面図である。  2 is a side view showing the structure of the filter 4 shown in FIG. 1 in detail.
[図 3]図 1に示す装置のメンテナンス態様の一例を示す側面図である。  3 is a side view showing an example of a maintenance mode of the apparatus shown in FIG.
[図 4]本発明の好適な溶融金属または溶融金属塩化物の抜き出し装置の他の例を 示す側面図である。  FIG. 4 is a side view showing another example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention.
[図 5]本発明の好適な溶融金属または溶融金属塩化物の抜き出し装置の一例を示 す部分側面図であり、(a)は溶融金属等の抜き出し初期を示し、 (b)溶融金属等の 抜き出し後期を示す。  FIG. 5 is a partial side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride according to the present invention, (a) showing the initial extraction of molten metal, etc., (b) The latter half of the extraction is shown.
[図 6]内部スクリーンが回転機構に係合されたフィルタを示す側面図である。  FIG. 6 is a side view showing a filter in which an internal screen is engaged with a rotation mechanism.
符号の説明  Explanation of symbols
[0021] 1…第 1チャンバ [0021] 1 ... first chamber
2…配管  2 ... Piping
3…第 2チャンバ  3… Second chamber
4…フイノレタ  4 ... Finoleta
5…圧力調整管  5… Pressure adjustment pipe
6…配管  6 ... Piping
7…第 3チャンバ  7 ... Third chamber
8…傾斜部材  8 ... Inclined member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に、本発明の好適な実施形態を図面を参照して詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、本発明の好適な溶融金属または溶融金属塩化物の抜き出し装置の一例を 示す側面図である。同図に示す装置は、第 1チャンバ 1と、第 1チャンバ 1に溶融金属 または溶融金属塩化物 (以下、単に「溶融金属等」と称する場合がある)を充填した 際に一方の側がこれらに浸漬する位置に設けられた、減圧用のもしくは不活性ガス 流通用の配管 2と、配管 2の他方の側に連通する第 2チャンバ 3と、配管 2の一方の側 における端部に装着されたフィルタ 4とを主たる構成要素とするものである。なお、第 1チャンバ 1の上部には蓋が取り付けられており、この蓋には第 1チャンバ内の圧力を 適宜変更可能な圧力調整管 5が配置されている。 FIG. 1 is a side view showing an example of a preferred apparatus for extracting molten metal or molten metal chloride of the present invention. In the apparatus shown in the figure, when the first chamber 1 and the first chamber 1 are filled with molten metal or molten metal chloride (hereinafter sometimes referred to simply as “molten metal etc.”), one side thereof Pressure reducing or inert gas provided at the immersion position The main components are the distribution pipe 2, the second chamber 3 communicating with the other side of the pipe 2, and the filter 4 attached to the end of one side of the pipe 2. A lid is attached to the upper part of the first chamber 1, and a pressure adjusting pipe 5 capable of appropriately changing the pressure in the first chamber is disposed on the lid.
[0023] 第 1チャンバ 1および第 2チャンバ 3は、炭素鋼やステンレス鋼によって構成すること ができる。これらのチャンバ 1 , 3には、溶融金属や溶融金属塩化物の融点以上に加 熱保持できるようにヒーターを配置しておくことが好ましい。  [0023] The first chamber 1 and the second chamber 3 can be made of carbon steel or stainless steel. These chambers 1 and 3 are preferably provided with heaters so that they can be heated and maintained above the melting point of the molten metal or molten metal chloride.
[0024] 配管 2は、適用する溶融金属の融点以上に加熱'保持しておくことが好ましい。例え ば、溶融金属がマグネシウムの場合には、その融点が 680°C付近であるため、配管 2 を 750〜800。Cにカロ熱しておくこと力 S好ましレ、。  [0024] It is preferable that the pipe 2 is heated and held above the melting point of the molten metal to be applied. For example, if the molten metal is magnesium, the melting point is around 680 ° C, so pipe 2 is 750-800. The power to keep C heated to heat.
[0025] フイノレタ 4は、図 2に示すように、配管 2の延長形状であって複数の貫通口を有する 内部スクリーン 4aと、内部スクリーン 4aを包囲する形状であって複数の貫通口を有す る外部スクリーン 4bとを主たる構成要素とするものであり、これらのスクリーン 4a, 4b は、支持部材 4cによって一定の空間を形成するように配置されている。スクリーン 4a , 4bは、ともに金属製の糸罔目状をなしており、これら 4a, 4bにより、フイノレタ 4は全体と して籠状容器として機能する。  As shown in FIG. 2, the finoleta 4 is an extension of the pipe 2 and has an inner screen 4a having a plurality of through holes, and a shape surrounding the inner screen 4a and having a plurality of through holes. The external screen 4b is a main component, and these screens 4a and 4b are arranged so as to form a fixed space by the support member 4c. The screens 4a and 4b both have a metal thread-like shape, and the finoleta 4 functions as a hook-like container as a whole by these 4a and 4b.
[0026] 前記内部スクリーン 4aと外部スクリーン 4bで囲まれた空間部は、天井が開放された 籠状容器として構成しておくことが好ましい。このような構成をとることで、前記空間部 に充填されてレ、るチタン材を容易に交換することができる。  [0026] The space surrounded by the inner screen 4a and the outer screen 4b is preferably configured as a bowl-shaped container having an open ceiling. By adopting such a configuration, it is possible to easily replace the titanium material filled in the space.
[0027] 上記スクリーン 4a, 4bの貫通口につレ、ては、内部スクリーン 4aの貫通口を外部スク リーン 4bの貫通口に比して小さくすることが好ましい。このように構成することで、外 部スクリーン 4bによって、溶融金属中に含まれる比較的大きな不純物を効果的に遮 断すること力 Sできる。一方、内部スクリーン 4aによって、外部スクリーン 4bを通過する ことができた大きさの固形不純物の通過を効率的に防止することができる。  [0027] It is preferable that the through holes of the internal screen 4a are made smaller than the through holes of the external screen 4b. With such a configuration, the external screen 4b can effectively shut off relatively large impurities contained in the molten metal. On the other hand, the internal screen 4a can efficiently prevent the passage of solid impurities having a size that can pass through the external screen 4b.
[0028] 内部スクリーン 4aおよび外部スクリーン 4bに形成した貫通口の大きさは、分離除去 すべき不純物の大きさに応じて適宜決定することができる。例えば、窒化マグネシゥ ムゃ酸化マグネシウムを除去する場合には、内部スクリーン 4aの貫通口の径は、 1〜 5mmとすることが好適であり、外部スクリーン 4bの貫通口の径は、 10〜20mmとする ことが好ましい。 [0028] The size of the through holes formed in the inner screen 4a and the outer screen 4b can be appropriately determined according to the size of the impurities to be separated and removed. For example, when removing magnesium nitride magnesium oxide, the diameter of the through hole of the inner screen 4a is preferably 1 to 5 mm, and the diameter of the through hole of the outer screen 4b is 10 to 20 mm. Do It is preferable.
[0029] 前記した内部スクリーンの貫通口、 LDI源といわれている固形物を捕捉できるような 開口部を有するように構成することが好ましい。この観点からすると前記内部スクリー ン 4aの貫通口の径は、 5〜: 1 Ommの範囲力も選択することが好ましレ、。前記した LDI 源は、径が小さくなると溶解工程でチタン材に完全に溶解するため機械特性に及ぼ す影響はほとんどないことが知られている。この限界は、 5mm程度といわれており、 これと整合させるように構成することが好ましレ、。  [0029] It is preferable that the above-described through-hole of the internal screen has an opening that can capture a solid substance called an LDI source. From this point of view, the diameter of the through-hole of the internal screen 4a is preferably 5 to 1 Omm. It is known that the above-mentioned LDI source has almost no influence on the mechanical properties because the LDI source is completely dissolved in the titanium material in the melting process when the diameter is reduced. This limit is said to be about 5mm, and it is preferable to configure it to match this.
[0030] また、前記内部スクリーンは、図 6に示すように回転機構に係合して配置することが 好ましレ、。このような回転機構を内部スクリーンに付与することで、内部スクリーンと外 部スクリーンの間に捕捉された半溶融状の固形酸化物を含む溶融マグネシウムを微 小粒子に粉砕することができる。その結果、内部スクリーンの目詰まりを効果的に解 消することができるという効果を奏する。  [0030] In addition, it is preferable that the internal screen is disposed so as to engage with a rotation mechanism as shown in FIG. By applying such a rotation mechanism to the inner screen, the molten magnesium containing the semi-molten solid oxide trapped between the inner screen and the outer screen can be pulverized into fine particles. As a result, the clogging of the internal screen can be effectively eliminated.
[0031] 次に、配管 2、内部スクリーン 4aおよび外部スクリーン 4bの材質について説明する 。溶融マグネシウム中の不純物を分離除去する際には、上記配管 2等は、鉄や SUS 304で代表されるステンレス鋼で構成することができる力 溶融マグネシウム中への ニッケノレ汚染を抑制するには、 SUS303, SUS301 , SUS201等の低二ッケノレ系ス テンレス鋼で構成することが好ましい。また、不純物の除去工程において配管 2等の 強度がさほど問題にならないようであれば、上記配管 2等は、溶融マグネシウムに対 して優れた耐蝕性を示すカーボンで構成してもよい。  [0031] Next, materials of the pipe 2, the inner screen 4a, and the outer screen 4b will be described. When separating and removing impurities in molten magnesium, the pipe 2 etc. can be made of iron or stainless steel represented by SUS 304. To suppress Nikkenole contamination in molten magnesium, SUS303 , SUS301, SUS201, etc. are preferably used. Further, if the strength of the pipe 2 or the like does not matter so much in the impurity removal step, the pipe 2 or the like may be made of carbon showing excellent corrosion resistance against molten magnesium.
[0032] また、内部スクリーン 4aと外部スクリーン 4bとにより形成された空間に、スポンジチタ ンゃチタンスクラップ、あるいは、これらの切粉を充填することが好ましい。このような 材料を内部スクリーン 4aと外部スクリーン 4bの空間部に充填することで、溶融金属等 の中の不純物をさらに効率的に分離除去することができる。  [0032] Further, it is preferable to fill sponge titanium or titanium scrap or chips thereof into the space formed by the inner screen 4a and the outer screen 4b. By filling such a material into the space between the inner screen 4a and the outer screen 4b, impurities in the molten metal or the like can be separated and removed more efficiently.
[0033] 上記スポンジチタンは、その粒径が 0. 2mm〜: 15mmの範囲にあるものを用いるこ とが好ましい。上記粒径が 0. 2mm未満である場合には、塩ィ匕マグネシウム浴中の不 純物により目詰まりが起こり易ぐ一方、上記スポンジチタンの粒径が 15mmを超える 場合には、スポンジチタンの比表面積が低下してフィルタの機能が低下して好ましく ない。 [0034] また、上記スポンジチタンは、通常のクロール法で生産されるものを使用することが できる。スポンジチタンの品位はそれほど重要ではなぐ適度に気孔を有しているも のであれば制限はない。したがって、標準グレードのスポンジチタンに要求される品 質規格力 多少外れたスポンジチタンを利用することもできる。 [0033] It is preferable to use a titanium sponge having a particle size in the range of 0.2 mm to 15 mm. When the particle diameter is less than 0.2 mm, clogging is likely to occur due to impurities in the salty magnesium bath, while when the sponge titanium particle diameter exceeds 15 mm, The specific surface area is lowered, and the function of the filter is lowered, which is not preferable. [0034] Further, as the titanium sponge, those produced by a normal crawl method can be used. The quality of the titanium sponge is not so important and there is no limitation as long as it has moderate pores. Therefore, it is possible to use sponge titanium that is slightly different from the quality standard required for standard grade sponge titanium.
[0035] さらに、上記スポンジチタンは、粒状のものをそのままフィルタ 4の中に充填して用 レ、ることができ、またー且加熱して相互に焼結した形態のスポンジチタンを用いてもよ レ、。ただし、焼結に際しては不活性ガス雰囲気や真空雰囲気で行うことが好ましい。 このような雰囲気で加熱することで、焼結体表面に酸化膜ゃ窒化膜が形成されない ため、効率的に浴中の不純物を吸着 ·除去することができる。このようなスポンジチタ ン等をフィルタ 4内に充填することにより、フィルタ 4の交換を容易にすることができる。 また、前記したように、内部スクリーン 4aと外部スクリーン 4bとで囲まれた空間部を開 放するように構成することで前記のフィルタ 4を容易に交換することができる。ただし、 この場合には、前記した空間部に充填したチタン材等が容易に離脱しないように固 めに充填しておくことが好ましい。  [0035] Furthermore, the above-mentioned sponge titanium can be used by filling the filter 4 with a granular material as it is, or using sponge titanium in a form that is heated and sintered to each other. Yo! However, sintering is preferably performed in an inert gas atmosphere or a vacuum atmosphere. By heating in such an atmosphere, no oxide film or nitride film is formed on the surface of the sintered body, so that impurities in the bath can be adsorbed and removed efficiently. The filter 4 can be easily replaced by filling the filter 4 with such sponge titanium or the like. Further, as described above, the filter 4 can be easily replaced by configuring so as to open the space surrounded by the inner screen 4a and the outer screen 4b. However, in this case, it is preferable that the titanium material or the like filled in the space portion is filled firmly so that it does not easily come off.
[0036] このように、フィルタ 4への充填剤としてはスポンジチタンを用いることが好適である 、スポンジチタンに代えて、ステンレス鋼や炭素鋼の切粉の集合体をフィルタ 4に 充填することもできる。ただし、溶融塩ィ匕マグネシウムのろ過に対しては炭素鋼よりも 耐蝕性の高いステンレス切粉を、また、マグネシウムのろ過に対しては、ステンレス鋼 よりも安価でし力もニッケルやクロムの低い炭素鋼を用いることが好ましい。  [0036] As described above, it is preferable to use sponge titanium as a filler for the filter 4. Alternatively, instead of sponge titanium, an aggregate of stainless steel or carbon steel chips may be filled into the filter 4. it can. However, stainless steel chips that are more corrosion resistant than carbon steel are used for filtration of molten salt and magnesium, and carbon that is less expensive and less powerful than nickel and chromium and is used for magnesium filtration. It is preferable to use steel.
[0037] また、スポンジチタンに代えて、チタン切粉を用いる場合には、チタン切粉の長さは 、 1〜: 10mmとすることが好ましレ、。切粉の長さをこのようなサイズに規定しておくこと で、溶融塩化マグネシウム中の不純物を効率よく分離除去することができる。なお、 内部スクリーン 4aと外部スクリーン 4bとで囲まれる開空間に充填されたスポンジチタ ンが目詰まりを起こし再生不良になった場合においても、上記スポンジチタンは開空 間に保持されているため、 目詰まりのない新規のスポンジチタンと容易に交換できる  [0037] When titanium chips are used instead of sponge titanium, the length of the titanium chips is preferably 1 to 10 mm. By prescribing the length of the chips to such a size, impurities in the molten magnesium chloride can be efficiently separated and removed. Even if the sponge titanium filled in the open space surrounded by the inner screen 4a and the outer screen 4b is clogged and becomes defective in reproduction, the sponge titanium is held in the open space. Can be easily replaced with new titanium sponge without clogging
[0038] このような構成の下、実際にこの装置を使用する場合には、図 1に示すように、圧力 調整管 5により第 1チャンバ 1を外圧と平衡状態とした上で、配管 2を図示しない減圧 装置に係合することにより、第 1チャンバ 1に充填された溶融金属等を第 2チャンバ 3 に導く間に、溶融金属中に混入してレ、る固形不純物をフィルタ 4によって分離除去す ること力 Sできる。このように装置を稼働させることにより、第 2チャンバ 3には、不純物の 量を相当抑えた溶融金属等を導くことができる。 [0038] Under such a configuration, when this apparatus is actually used, as shown in Fig. 1, the first chamber 1 is brought into an equilibrium state with the external pressure by the pressure adjusting pipe 5, and then the pipe 2 is connected. Not shown decompression By engaging the apparatus, the solid impurities mixed in the molten metal are separated and removed by the filter 4 while the molten metal filled in the first chamber 1 is guided to the second chamber 3. Power S can be. By operating the apparatus in this way, molten metal or the like with a considerably reduced amount of impurities can be introduced into the second chamber 3.
[0039] また、配管 2の下流側を減圧保持する代わりに、図 1の圧力調整管 5から第 1チャン バ 1に不活性ガスを供給して第 1チャンバ 1の内部を加圧して第 1チャンバ 1に保持さ れた溶融金属を第 2チャンバ 3に押し出すこともできる。ちなみに、溶融金属を上記 抜き出し方式にするか、押し出し方式にするかは、設備仕様や装置の耐圧等を考慮 して適宜選択することができる。  [0039] Instead of holding the downstream side of the pipe 2 under reduced pressure, an inert gas is supplied to the first chamber 1 from the pressure adjusting pipe 5 in FIG. The molten metal held in the chamber 1 can also be extruded into the second chamber 3. Incidentally, whether to use the above-mentioned extraction method or extrusion method for the molten metal can be selected as appropriate in consideration of the equipment specifications and the pressure resistance of the apparatus.
[0040] 図 1に示す装置においてフィルタ 4に固形不純物による目詰まりが起こりそうになつ た場合には、配管 2の減圧を停止して Arガスをフィルタ 4に向かって逆流させることで フィルタも目詰まりを防止することができる。その結果、安全でかつ効率的な溶融金 属等の抜き出しが実現できる。また、上記抜き出し方法は、例えば、前記溶融金属が 溶融マグネシウムである場合はもちろんのこと、溶融塩ィ匕マグネシウムである場合に あ適用すること力 Sでさる。  [0040] When clogging due to solid impurities is likely to occur in the filter shown in Fig. 1, the filter is also blocked by stopping the decompression of the piping 2 and causing Ar gas to flow backward toward the filter 4. Clogging can be prevented. As a result, safe and efficient extraction of molten metal and the like can be realized. In addition, the above-described extraction method can be applied with the force S when the molten metal is molten magnesium or of course, when the molten metal is magnesium.
[0041] 以上のように精製された不純物の少ない溶融マグネシウムは、四塩化チタンの還元 剤として有効利用することができ、スポンジチタンの品質を極めて高いレベルとするこ とができる。このため、図 1の装置は、例えば、チタンの精鍊用に使用するマグネシゥ ムゃ塩化マグネシウムの製造に好適である。  [0041] Molten magnesium with less impurities purified as described above can be effectively used as a reducing agent for titanium tetrachloride, and the quality of titanium sponge can be made extremely high. For this reason, the apparatus of FIG. 1 is suitable for the production of, for example, magnesium magnesium chloride used for the purification of titanium.
[0042] 図 3は、図 1に示す装置のメンテナンス態様の一例を示す側面図である。フイノレタ 4 を介して溶融金属等を長期間にわたり第 1チャンバ 1力も第 2チャンバ 3へ導くと、フィ ルタ 4の目詰まりが発生するおそれがあり、溶融金属等の抜き出しに支障を来たす場 合がある。このため、定期的にフィルタ 4の目詰まりを解消するような操作が必要とな る。  FIG. 3 is a side view showing an example of a maintenance mode of the apparatus shown in FIG. If molten metal or the like is guided to the second chamber 3 through the finertor 4 for a long period of time, the filter 4 may be clogged, which may hinder the extraction of the molten metal. is there. For this reason, it is necessary to periodically perform operations to eliminate clogging of the filter 4.
[0043] 図 3に示すように、配管 2の下流側から溶融金属に向かってアルゴンガス等の不活 性ガスを流すことで、フィルタ 4の表面やフィルタ 4に充填した多孔質の充填材に付着 した固形不純物を分離除去することができる。また、上記不活性ガスに代えて、溶融 金属自身を逆流させることでも、同様の効果が得られる。このような操作を定期的に 行うことで、図 3に示すフィルタ 4の目詰まりを効果的に解消することができる。この操 作では、第 2チャンバ 3に排出する管を図示しないバルブ等で遮断しておくことが好 ましい。 [0043] As shown in FIG. 3, by flowing an inert gas such as argon gas from the downstream side of the pipe 2 toward the molten metal, the surface of the filter 4 or the porous filler filled in the filter 4 is formed. The attached solid impurities can be separated and removed. Further, the same effect can be obtained by reversely flowing the molten metal itself instead of the inert gas. Do this regularly By doing so, the clogging of the filter 4 shown in FIG. 3 can be effectively eliminated. In this operation, it is preferable to shut off the pipe discharged to the second chamber 3 with a valve (not shown).
[0044] メンテナンスの必要時期は、配管 2の下流に配置した図示しない減圧度測定器によ り配管 2内の減圧度を監視することで判断することができる。このため、減圧度が所定 の値に達した時点で減圧操作を停止するとともに、配管 2に不活性ガスを供給してフ ィルタ 4の洗浄を行うことが好ましい。この操作は、手動で行ってもょレ、が、 自動で圧 カを検知して上述のような動作を自動制御させることもできる。また、 目詰まりの程度 によっては、フィルタ 4を溶融金属等からなる浴の系外に抜き出してフィルタ 4に充填 したスポンジチタンを新規に交換してもよレ、。該スポンジチタンは、フィルタ 4を構成す る内部スクリーンと外部スクリーンで囲まれた開空間に保持するだけで済むので容易 に交換することができる。  The time required for maintenance can be determined by monitoring the degree of decompression in the pipe 2 with a decompression degree measuring device (not shown) arranged downstream of the pipe 2. For this reason, it is preferable to stop the decompression operation when the degree of decompression reaches a predetermined value, and supply the inert gas to the pipe 2 to clean the filter 4. This operation can be performed manually, but the pressure can be automatically detected and the above-described operation can be automatically controlled. Depending on the degree of clogging, the filter 4 may be taken out of the bath of molten metal, etc., and the sponge titanium filled in the filter 4 may be replaced with a new one. The sponge titanium can be easily replaced because it is only required to be held in an open space surrounded by the inner screen and the outer screen constituting the filter 4.
[0045] このようなメンテナンスを行った場合には、不活性ガスをフィルタ 4に所定時間供給 した後、溶融金属を静置させておくことが望ましい。このように溶融金属を静置させる ことで、フィルタ 4から離脱した固形不純物を第 1チャンバ 1の底部に効率的に沈降分 離させることができる。以上の操作により、固形不純物が浮遊しない清澄な溶融金属 が第 1チャンバ 1に形成されたことが確認された後、配管 2を減圧に保持することで溶 融金属に含まれている不純物を効率よく分離除去することができる。なお、溶融金属 を保持した第 1チャンバ 1の底部に沈積した固形不純物を定期的に外部に排出する ことにより、さらに効率的に固形不純物を分離除去することができる。  [0045] When such maintenance is performed, it is desirable to leave the molten metal stationary after supplying the inert gas to the filter 4 for a predetermined time. By allowing the molten metal to stand in this way, the solid impurities detached from the filter 4 can be efficiently settled and separated at the bottom of the first chamber 1. After the above operation confirms that a clear molten metal that does not float solid impurities is formed in the first chamber 1, the impurities contained in the molten metal are made efficient by holding the pipe 2 under reduced pressure. It can be separated and removed well. It should be noted that the solid impurities can be separated and removed more efficiently by periodically discharging the solid impurities deposited on the bottom of the first chamber 1 holding the molten metal to the outside.
[0046] マグネシウム浴中の不純物は、固形の酸化マグネシウムゃ窒化マグネシウムである が、フィルタ 4に充填するスポンジチタンの表面活性が高い場合には、溶融マグネシ ゥム浴中に固溶している酸化物や窒化物をも分離除去することができる。このような 効果の下、フィルタ 4に充填されたスポンジチタン等の充填剤は、継続使用の結果、 次第にその表面が不純物で汚染されていく。このため、フィルタ 4はその機能が低下 するので、スポンジチタン等の充填剤は適宜交換することが好ましい。  [0046] The impurities in the magnesium bath are solid magnesium oxide and magnesium nitride, but when the surface activity of the sponge titanium filling the filter 4 is high, the oxide dissolved in the molten magnesium bath is solid. It is also possible to separate and remove materials and nitrides. Under such an effect, the surface of the filler such as sponge titanium filled in the filter 4 is gradually contaminated with impurities as a result of continuous use. For this reason, since the function of the filter 4 is lowered, it is preferable to replace the filler such as sponge titanium as appropriate.
[0047] なお、図 1, 3に示す装置は、溶融金属の代わりに溶融金属塩化物に対しても適用 すること力 Sできる。この場合、溶融金属塩化物中の不純物は、溶融金属、固形の酸化 物、あるいは固形の窒化物であり、これらの不純物を効率的に分離除去することがで きる。また、溶融金属としてカルシウムを適用した場合にも、マグネシウムと同様に、 酸化カルシウムに代表される固形の不純物を効率的に分離除去することができる。 [0047] It should be noted that the apparatus shown in FIGS. 1 and 3 can be applied to molten metal chloride instead of molten metal. In this case, the impurities in the molten metal chloride are molten metal, solid oxidation Or solid nitride, and these impurities can be efficiently separated and removed. Also, when calcium is applied as the molten metal, solid impurities typified by calcium oxide can be efficiently separated and removed as in the case of magnesium.
[0048] 以上に示す図 1, 3の装置を使用する場合において、フィルタ 4に充填されたスポン ジチタンやチタン切粉の中に溶融金属等を通過させる滞留時間、すなわち分離時間 は、溶融金属等に含有される不純物の分離状況に鑑みて適宜決定することができる 。なお、この分離時間を長く設定すれば、溶融金属等に含有される不純物を高いレ ベルまで分離除去できるが、生産性が低下するので、作業者は不純物の分離状況を 常に監視することで、効率的に分離作用を行うことができる。  [0048] In the case of using the apparatus shown in Figs. 1 and 3 as described above, the residence time for passing the molten metal or the like in the sponge titanium or titanium chips filled in the filter 4, that is, the separation time is the molten metal It can be determined as appropriate in view of the state of separation of impurities contained in. If this separation time is set long, impurities contained in the molten metal can be separated and removed to a high level, but the productivity decreases, so the operator should always monitor the separation of impurities, Separation can be performed efficiently.
[0049] 図 4は、本発明の好適な溶融金属または溶融金属塩化物の抜き出し装置の他の例 を示す側面図である。図 4に示す例は、図 1に示す例と基本構成を同じくするもので ある。ただし、図 4に示す装置においては、図 1に示す装置に比して、さらに、第 2チ ヤンバ 3から連通する配管 6と、配管 6の第 2チャンバ 3とは反対側に連通する第 3チヤ ンバ 7とが設けられている。  [0049] Fig. 4 is a side view showing another example of the apparatus for extracting molten metal or molten metal chloride of the present invention. The example shown in FIG. 4 has the same basic configuration as the example shown in FIG. However, in the apparatus shown in FIG. 4, compared to the apparatus shown in FIG. 1, the pipe 6 communicated from the second chamber 3 and the third chamber 3 communicated on the opposite side of the pipe 6 from the second chamber 3 are further provided. A chamber 7 is provided.
[0050] このような構成の下、フィルタ 4を装着した配管 2を減圧保持することにより、第 1チヤ ンバ 1に保持された溶融金属等を第 2チャンバ 3に導くことができる。この際、第 2チヤ ンバ 3中の溶融金属等を静置させておくことが望ましい。このように溶融金属等を静 置させることで、固形不純物を第 2チャンバ 3の底部に効率的に沈降分離させること ができる。このような状況下で、さらに、第 3チャンバ 7を第 2チャンバ 3よりも減圧にす ることで、溶融金属等を第 3チャンバに導くことができる。  Under such a configuration, the molten metal or the like held in the first chamber 1 can be guided to the second chamber 3 by holding the pipe 2 fitted with the filter 4 under reduced pressure. At this time, it is desirable to leave the molten metal or the like in the second chamber 3 standing. By allowing the molten metal or the like to stand in this way, solid impurities can be efficiently settled and separated at the bottom of the second chamber 3. Under such circumstances, the molten metal or the like can be guided to the third chamber by further reducing the pressure of the third chamber 7 relative to the second chamber 3.
[0051] このようにすれば、図 1に示す装置を使用する場合に比して、さらに溶融金属等の 中の固形不純物を高いレベルで分離除去することができる。なお、第 2チャンバ 3の 底部に沈積した固形不純物を定期的に外部に排出することにより、さらに効率的に 固形不純物を分離除去することができる。  [0051] In this way, solid impurities in the molten metal or the like can be further separated and removed at a higher level than when the apparatus shown in FIG. 1 is used. Note that the solid impurities deposited on the bottom of the second chamber 3 are periodically discharged to the outside, so that the solid impurities can be separated and removed more efficiently.
[0052] 図 5は、本発明のさらに好適な溶融金属または溶融金属塩化物の抜き出し装置の 一例を示す部分側面図であり、(a)は溶融金属等の抜き出し初期を示し、(b)溶融金 属等の抜き出し後期を示す。同図に示す装置は、図 1に示す装置の構成部材に加 えて、第 1チャンバ 1を所望の角度範囲に傾斜させることのできる傾斜部材 8をさらに 設けたものである。この傾斜部材 8は、基台 8aと、基台 8aを支持するとともに基台 8a 中に配置する別部材 (本例においては第 1チャンバ 1)を所望の角度範囲に傾斜させ る傾斜器 8bとからなるものである。また、図 5に示す例では、図 1に示す圧力調整管 5 は、説明の簡素化のために省略したが、この例においても、圧力調整管を設けること はできる。 [0052] Fig. 5 is a partial side view showing an example of a more preferable molten metal or molten metal chloride extraction device of the present invention, (a) shows the initial extraction of molten metal, etc., (b) molten metal The latter half of the extraction of metals. The apparatus shown in FIG. 1 further includes an inclined member 8 that can incline the first chamber 1 in a desired angle range in addition to the constituent members of the apparatus shown in FIG. It is provided. The inclined member 8 includes a base 8a, and a tilter 8b that supports the base 8a and tilts another member (in this example, the first chamber 1) disposed in the base 8a to a desired angle range. It consists of In the example shown in FIG. 5, the pressure adjustment pipe 5 shown in FIG. 1 is omitted for the sake of simplicity of explanation, but in this example, a pressure adjustment pipe can also be provided.
[0053] 第 1チャンバ 1に保持された溶融金属等は、図 5では図示しなレ、(図 1参照)第 2チヤ ンバ 3へ抜き出され、その残量は次第に減少する。この残量に応じて、傾斜部材 8を 稼動させることにより、溶融金属等の入った第 1チャンバ 1を傾斜させるとともに、配管 2 (図 1参照)を移動させることにより一旦浴面から離脱していたフィルタ 4を溶融金属 等の浴中に再び浸漬させることができる。その結果、第 1チャンバ 1内に残留して抜き 出すことのできない溶融金属等を最小限に抑制することができる。  [0053] Molten metal or the like held in the first chamber 1 is extracted to the second chamber 3 (not shown in FIG. 5) (see FIG. 1), and the remaining amount gradually decreases. In response to this remaining amount, the inclined member 8 is operated to incline the first chamber 1 containing molten metal and the like, and the pipe 2 (see FIG. 1) is moved away from the bath surface once. The filter 4 can be immersed again in a bath of molten metal or the like. As a result, molten metal that remains in the first chamber 1 and cannot be extracted can be minimized.
[0054] 例えば、図 5 (a) , (b)に示すように、第 1チャンバ 1の上部付近で配管 2にフレキシ ブル配管を介装させることにより、前述したような再浸漬を行わせることができる。この ようなフレキシブル配管を用いることで、第 1チャンバ 1内に残留する溶融金属等をほ ぼ余すことなく効率的に抜き出すことができる。  [0054] For example, as shown in FIGS. 5 (a) and 5 (b), a flexible pipe is interposed in the pipe 2 near the upper portion of the first chamber 1, so that re-immersion as described above is performed. Can do. By using such a flexible pipe, it is possible to efficiently extract the molten metal remaining in the first chamber 1 without leaving much.
[0055] 以上、図 1 , 4, 5に示す装置は、四塩化チタンを精鍊する際に用いる溶融塩ィ匕マグ ネシゥムゃマグネシウム単体の精練に使用することができる力 これらの精鍊に加え て、四塩化チタンの電解浴の精製においても使用することができる。その結果、高い 電流効率を維持しつつ、スポンジチタンを製造することができる。  [0055] As described above, the apparatus shown in Figs. 1, 4 and 5 has the power that can be used for scouring molten salt magnesium magnesium alone used when scouring titanium tetrachloride. In addition to these scours, It can also be used in the purification of an electrolytic bath of titanium tetrachloride. As a result, sponge titanium can be produced while maintaining high current efficiency.
実施例 1  Example 1
[0056] 以下に、本発明の方法および装置の効果を、実施例により説明する。  [0056] Hereinafter, effects of the method and apparatus of the present invention will be described by way of examples.
<発明例:!〜 3 >  <Invention example:! ~ 3>
図 1に示す装置を用いて、粒径 10メッシュ〜 1Z2インチに破砕整粒したスポンジチ タンをフィルタ 4に充填して、第 1チャンバ 1および配管 2の全体を 800°Cまで加熱保 持した。第 1チャンバ 1の温度が安定したことを確認した後、図示しない電解槽から移 送された溶融マグネシウムを第 1チャンバ 1に注入した。第 1チャンバ 1に注入された 溶融マグネシウムを、フィルタ 4を介し内部が減圧状態に維持された配管 2を経由し て、第 2チャンバ 3に導いた。第 2チャンバ 3に導かれた溶融マグネシウムは、四塩ィ匕 チタンの還元剤に供されるものである。このように第 2チャンバ 3に導かれた溶融マグ ネシゥムの一部を抽出してマグネシウム中の酸化マグネシウムの存在を分析した。表 1に、フィルタ 4の通過前後のマグネシウム中の酸化マグネシウム濃度を示す。 Using the apparatus shown in FIG. 1, sponge titanium that had been crushed and sized to a particle size of 10 mesh to 1Z2 inches was filled into the filter 4, and the entire first chamber 1 and piping 2 were heated to 800 ° C. After confirming that the temperature of the first chamber 1 was stable, molten magnesium transferred from an electrolytic cell (not shown) was injected into the first chamber 1. The molten magnesium injected into the first chamber 1 was led to the second chamber 3 via the filter 4 and the pipe 2 whose inside was maintained in a reduced pressure state. The molten magnesium introduced into the second chamber 3 is tetrasalt salt. It is used as a reducing agent for titanium. In this way, a portion of the molten magnesium introduced into the second chamber 3 was extracted and analyzed for the presence of magnesium oxide in the magnesium. Table 1 shows the magnesium oxide concentration in the magnesium before and after passing through the filter 4.
[表 1]  [table 1]
Figure imgf000014_0001
Figure imgf000014_0001
[0058] 表 1によれば、フィルタと減圧手段との組み合わせにより溶融マグネシウムから酸化 マグネシウムを相当除去することができ、不純物の含有率が極めて低い場合であつ ても、結果的に効率的な溶融金属等の抜き出しを実現できることが判る。なお、本実 施例においては、配管の減圧状態の制御により目詰まりが生ずることはなぐこのた め、溶融物のオーバーフローを回避することができ、安全に作業を行うことができた。 実施例 2 [0058] According to Table 1, magnesium oxide can be considerably removed from molten magnesium by the combination of the filter and the decompression means, and as a result, even when the impurity content is extremely low, efficient melting is achieved. It can be seen that extraction of metal or the like can be realized. In this example, clogging was not caused by controlling the reduced pressure state of the piping. Therefore, overflow of the melt could be avoided and work could be performed safely. Example 2
[0059] <発明例 4〜6 >  [0059] <Invention Examples 4 to 6>
図 1に示す装置を用いて、スポンジチタン粒(1〜: 10mm)を充填して、第 1チャンバ 1および配管 2の全体を 800°Cまで加熱保持した。第 1チャンバ 1の温度が安定した ことを確認した後、図示しなレ、マグネシウムリザーバから移送された溶融マグネシウム を第 1チャンバ 1に注入した。第 1チャンバ 1に注入された溶融マグネシウム 100kgを 、フィルタ 4を介し内部が減圧状態に維持された配管 2を経由して、第 2チャンバ 3に 導いた。第 2チャンバ 3に導かれた溶融マグネシウムは、実施例 1と同様に、四塩化 チタンの還元剤に供されるものである。このように第 2チャンバ 3に導かれた溶融マグ ネシゥムの一部を抽出してマグネシウム中の窒化マグネシウムの存在を分析した。表 2に、フィルタ 4の通過前後のマグネシウム中の窒化マグネシウム濃度を示す。  Using the apparatus shown in FIG. 1, sponge titanium particles (1 to 10 mm) were filled, and the entire first chamber 1 and piping 2 were heated and held up to 800 ° C. After confirming that the temperature in the first chamber 1 was stable, molten magnesium transferred from the magnesium reservoir (not shown) was injected into the first chamber 1. 100 kg of molten magnesium injected into the first chamber 1 was led to the second chamber 3 through the filter 4 and through the pipe 2 whose inside was maintained in a reduced pressure state. The molten magnesium introduced into the second chamber 3 is used as a titanium tetrachloride reducing agent as in the first embodiment. In this way, a part of the molten magnesium introduced into the second chamber 3 was extracted and analyzed for the presence of magnesium nitride in the magnesium. Table 2 shows the magnesium nitride concentration in the magnesium before and after passing through the filter 4.
[0060] [表 2] 資料番号 フィルタ通過前 (質量%) フィルタ通過後 (質量%) [0060] [Table 2] Material number Before passing through the filter (mass%) After passing through the filter (mass%)
発明例 4 0 . 0 9 0 . 0 1  Invention Example 4 0 .0 9 0 .0 1
発明例 5 0 . 1 2 0 . 0 3  Invention Example 5 0 1 2 0. 0 3
発明例 6 0 . 0 4 0 . 0 3  Invention Example 6 0 .0 4 0 .0 3
[0061] 表 2によれば、フィルタと減圧手段との組み合わせにより溶融マグネシウムから窒化 マグネシウムを相当除去することができ、不純物の含有率が極めて低い場合であつ ても、結果的に効率的な溶融金属等の抜き出しを実現できることが判る。 [0061] According to Table 2, magnesium nitride can be considerably removed from the molten magnesium by the combination of the filter and the decompression means, and as a result, even when the impurity content is extremely low, efficient melting can be achieved. It can be seen that extraction of metal or the like can be realized.
実施例 3  Example 3
[0062] <発明例 7 >  <Invention Example 7>
図 4に示す装置を用いて、溶融マグネシウムを延べ 15時間精製した。その際、第 1 チャンバ 1において配管 2の下流に係合した図示しない減圧装置の背圧が上昇した 。そこで、配管 2の下流側からフィルタ 4に向けてアルゴンガスを 1時間逆流した後、ァ ルゴンガスの供給を停止して 30分静置させた。次いで、配管 2の下流に位置する第 2チャンバ 3を 0. lTorrに減圧保持して、溶融マグネシウムを第 1チャンバ 1から第 2 チャンバ 3へ導いた。この結果、上記背圧は元のレベルまで回復し、この操作を繰り 返すことで、計 45時間の精製を可能とした。  Using the apparatus shown in Fig. 4, the molten magnesium was purified for a total of 15 hours. At that time, the back pressure of a decompression device (not shown) engaged downstream of the pipe 2 in the first chamber 1 increased. Therefore, argon gas was allowed to flow backward from the downstream side of pipe 2 toward filter 4 for 1 hour, and then the supply of argon gas was stopped and allowed to stand for 30 minutes. Next, the second chamber 3 located downstream of the pipe 2 was held under reduced pressure at 0.1 lTorr, and the molten magnesium was introduced from the first chamber 1 to the second chamber 3. As a result, the back pressure recovered to the original level, and by repeating this operation, purification for a total of 45 hours became possible.
[0063] ぐ比較例 >  [0063] Gu Comparative Example>
図 4に示す装置のうち、第 2チャンバ 3から第 1チャンバ 1の方向に不活性ガスを流 すことのできない配管 2を用いた以外は、上記発明例 7と同じ条件で、溶融マグネシ ゥムを内部が減圧状態に維持された配管 2を経由して第 2チャンバ 3に導いた。すな わち、作業中には、第 2チャンバ 3から第 1チャンバ 1の方向に不活性ガス流すことや 、溶融マグネシウムを逆流させることなどの、特段のメンテナンスを施さないで、作業 を行った。その結果、この装置を延べ 17時間使用したところで、フィルタ 4が閉塞し、 作業を続行することができなかった。  In the apparatus shown in FIG. 4, molten magnesium is used under the same conditions as in Invention Example 7 except that pipe 2 that cannot flow an inert gas in the direction from second chamber 3 to first chamber 1 is used. Was led to the second chamber 3 via the pipe 2 whose inside was maintained in a reduced pressure state. In other words, during the work, the work was carried out without performing any special maintenance such as flowing an inert gas from the second chamber 3 to the first chamber 1 or reversely flowing the molten magnesium. . As a result, when this device was used for a total of 17 hours, the filter 4 was blocked and the work could not be continued.
産業上の利用可能性  Industrial applicability
[0064] 以上説明したように、本発明によれば、溶融金属または溶融金属塩化物を第 1のチ ヤンバから他のチャンバへ導く際に、フィルタと減圧手段との組み合わせにより、固形 不純物を効率的かつ安全に除去することができる。このため、本発明は、四塩化チタ ンの還元に用いるマグネシウムや塩化マグネシウムの精製に適用することができる点 で有望である。 [0064] As described above, according to the present invention, when the molten metal or molten metal chloride is led from the first chamber to the other chamber, the solid impurities are made efficient by the combination of the filter and the pressure reducing means. And safe to remove. For this reason, the present invention provides titanium tetrachloride. It is promising in that it can be applied to the purification of magnesium and magnesium chloride used for the reduction of iron.

Claims

請求の範囲 The scope of the claims
[1] 溶融金属または溶融金属塩化物が充填されている第 1チャンバに、内部スクリーン と外部スクリーンとを備えるフィルタ付きの配管を揷入し、上記配管を減圧装置に係 合して配管の減圧度を検知しつつ、溶融金属または溶融金属塩化物を上記フィルタ に通して第 2チャンバに導くことを特徴とする溶融金属または溶融金属塩ィヒ物の抜き 出し方法。  [1] A pipe with a filter having an internal screen and an external screen is inserted into the first chamber filled with molten metal or molten metal chloride, and the above pipe is connected to a pressure reducing device to reduce the pressure of the pipe. A method for extracting molten metal or molten metal chloride, wherein the molten metal or molten metal chloride is guided to the second chamber through the filter while detecting the degree.
[2] 前記内部スクリーンが回転機構に係合されていることを特徴とする請求項 1に記載 の溶融金属または溶融金属塩化物の抜き出し方法。  [2] The method for extracting molten metal or molten metal chloride according to claim 1, wherein the inner screen is engaged with a rotating mechanism.
[3] 前記内部スクリーンと前記外部スクリーンとにより形成された空間に、スポンジチタン 、チタンスクラップ、チタン切粉、炭素鋼またはステンレス切粉を充填することを特徴と する請求項 1または 2に記載の溶融金属または溶融金属塩化物の抜き出し方法。  [3] The space formed by the inner screen and the outer screen is filled with sponge titanium, titanium scrap, titanium chips, carbon steel, or stainless steel chips, according to claim 1 or 2. Method for extracting molten metal or molten metal chloride.
[4] 前記第 2チャンバに導かれた溶融金属または溶融金属塩化物を静置して不純物を 沈降させた後、さらに第 3チャンバに溶融金属または溶融金属塩ィ匕物を導き、第 2チ ヤンバに堆積した不純物を分離することを特徴とする請求項 1〜3のいずれかに記載 の溶融金属または溶融金属塩化物の抜き出し方法。  [4] The molten metal or molten metal chloride introduced into the second chamber is allowed to settle and impurities are allowed to settle, and then the molten metal or molten metal salt is introduced into the third chamber and the second chamber is introduced. The method for extracting molten metal or molten metal chloride according to any one of claims 1 to 3, wherein impurities deposited on the yamba are separated.
[5] 前記第 1チャンバを傾斜させて、上記第 1チャンバに残留した溶融金属または溶融 塩化物を前記第 2チャンバに導くことを特徴とする請求項 1〜4のいずれかに記載の 溶融金属または溶融金属塩化物の抜き出し方法。  [5] The molten metal according to any one of claims 1 to 4, wherein the first chamber is tilted to guide the molten metal or molten chloride remaining in the first chamber to the second chamber. Or a method for extracting molten metal chloride.
[6] 前記溶融金属がマグネシウムまたはカルシウムであり、前記溶融金属塩化物が、塩 化マグネシウムまたは塩ィ匕カルシウムであることを特徴とする請求項 1〜5のいずれか に記載の溶融金属または溶融金属塩ィヒ物の抜き出し方法。  6. The molten metal or molten metal according to any one of claims 1 to 5, wherein the molten metal is magnesium or calcium, and the molten metal chloride is magnesium chloride or calcium chloride. How to extract metal salt.
[7] 第 1チャンバと、溶融金属または溶融金属塩化物を充填した第 1チャンバに一方の 側がこれらに浸漬する位置に設けられた不活性ガスを流通させる配管と、上記配管 の他方の側に連通する第 2チャンバとを備える溶融金属または溶融金属塩化物の抜 き出し装置において、上記配管の上記一方の側の先端部にフィルタを設け、上記フ ィルタが上記配管の延長形状である内部スクリーンと上記内部スクリーンを包囲する 形状である外部スクリーンとを備えることを特徴とする溶融金属または溶融金属塩化 物の抜き出し装置。 [7] The first chamber, the first chamber filled with molten metal or molten metal chloride, one side of which is provided in a position where the inert gas is circulated, and the other side of the pipe An apparatus for extracting molten metal or molten metal chloride comprising a second chamber in communication, wherein an internal screen is provided with a filter at the tip of the one side of the pipe, and the filter is an extension of the pipe And an outer screen having a shape surrounding the inner screen. The apparatus for extracting molten metal or molten metal chloride is provided.
[8] 前記内部スクリーンと前記外部スクリーンとにより形成された空間に、スポンジチタン 、チタンスクラップ、チタン切粉、炭素鋼またはステンレス切粉力 構成した充填層を 形成したことを特徴とする請求項 7に記載の溶融金属または溶融金属塩化物の抜き 出し装置。 [8] The packing layer composed of sponge titanium, titanium scrap, titanium chips, carbon steel, or stainless steel chips is formed in the space formed by the inner screen and the outer screen. The apparatus for extracting molten metal or molten metal chloride described in 1.
[9] 前記内部スクリーンに設けた貫通口の大きさが、前記外部スクリーンに設けた貫通 口に比べて小さいことを特徴とする請求項 7または 8に記載の溶融金属または溶融金 属塩化物の抜き出し装置。  [9] The molten metal or molten metal chloride according to claim 7 or 8, wherein the size of the through-hole provided in the inner screen is smaller than that of the through-hole provided in the outer screen. Extraction device.
[10] 前記内部スクリーンと前記外部スクリーンで囲まれた空間の天井部が開放されてい ることを特徴とする請求項 7〜9のいずれかに記載の溶融金属または溶融金属塩化 物の抜き出し装置。 10. The apparatus for extracting molten metal or molten metal chloride according to any one of claims 7 to 9, wherein a ceiling portion of a space surrounded by the inner screen and the outer screen is opened.
[11] 前記第 2チャンバから前記配管以外の配管を介して連通する第 3チャンバを設けた ことを特徴とする請求項 7〜: 10のいずれかに記載の溶融金属または溶融金属塩ィ匕 物の抜き出し装置。  [11] The molten metal or the molten metal salt according to any one of [7] to [10], wherein a third chamber communicating from the second chamber via a pipe other than the pipe is provided. Extraction device.
[12] 前記第 1チャンバを傾斜させる傾斜部材を設けてなることを特徴とする請求項 7〜1 1のいずれかに記載の溶融金属または溶融金属塩化物の抜き出し装置。  12. The apparatus for extracting molten metal or molten metal chloride according to any one of claims 7 to 11, wherein an inclined member for inclining the first chamber is provided.
[13] 前記内部スクリーンが回転機構に係合されていることを特徴とする請求項 7〜: 12の いずれかに記載の溶融金属または溶融金属塩化物の抜き出し装置。  [13] The apparatus for extracting molten metal or molten metal chloride according to any one of [7] to [12], wherein the inner screen is engaged with a rotation mechanism.
PCT/JP2006/304109 2005-03-08 2006-03-03 Method of extracting molten metal or molten metal chloride and apparatus therefor WO2006095653A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007507083A JP4731552B2 (en) 2005-03-08 2006-03-03 Method and apparatus for extracting molten metal or molten metal chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-064248 2005-03-08
JP2005064248 2005-03-08

Publications (1)

Publication Number Publication Date
WO2006095653A1 true WO2006095653A1 (en) 2006-09-14

Family

ID=36953252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304109 WO2006095653A1 (en) 2005-03-08 2006-03-03 Method of extracting molten metal or molten metal chloride and apparatus therefor

Country Status (2)

Country Link
JP (1) JP4731552B2 (en)
WO (1) WO2006095653A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013686A (en) * 2008-07-02 2010-01-21 Osaka Titanium Technologies Co Ltd Method for producing sponge titanium
JP2010089098A (en) * 2008-10-03 2010-04-22 Toyota Motor Corp Apparatus and method for preventing filter clogging serving as apparatus and method for cleaning molten metal
WO2010147764A1 (en) * 2009-06-16 2010-12-23 Alcoa Inc. Systems, methods and apparatus for tapping metal electrolysis cells
JP2012251221A (en) * 2011-06-03 2012-12-20 Osaka Titanium Technologies Co Ltd Fused salt electrolytic method
IT202200006314A1 (en) * 2022-03-31 2023-10-01 Innsight Srl Apparatus for taking precise quantities of non-ferrous metal alloys in the molten state with protection from oxidation and slag impurities

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179090A (en) * 1987-01-21 1988-07-23 Nippon Light Metal Co Ltd Method for cleaning magnesium electrolytic bath
JPH04117047U (en) * 1991-04-01 1992-10-20 三菱重工業株式会社 Underwater working machinery
JP2002102379A (en) * 2000-10-03 2002-04-09 Iwasaki Seisakusho:Kk Sucking structure of suction hose for fire-fighting pump
JP2003096588A (en) * 2001-09-20 2003-04-03 Toho Titanium Co Ltd Method of manufacturing high-purity metal magnesium and method of manufacturing high-purity titanium
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
JP2006057143A (en) * 2004-08-20 2006-03-02 Toho Titanium Co Ltd Method and device for producing metal by molten salt electrolysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159132A (en) * 1984-12-29 1986-07-18 Sumitomo Light Metal Ind Ltd Inspection of quantity of inclusion in molten metal
US6036743A (en) * 1997-10-27 2000-03-14 Selee Corporation Method and apparatus for removing liquid salts from liquid metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179090A (en) * 1987-01-21 1988-07-23 Nippon Light Metal Co Ltd Method for cleaning magnesium electrolytic bath
JPH04117047U (en) * 1991-04-01 1992-10-20 三菱重工業株式会社 Underwater working machinery
JP2002102379A (en) * 2000-10-03 2002-04-09 Iwasaki Seisakusho:Kk Sucking structure of suction hose for fire-fighting pump
JP2003096588A (en) * 2001-09-20 2003-04-03 Toho Titanium Co Ltd Method of manufacturing high-purity metal magnesium and method of manufacturing high-purity titanium
JP2003306789A (en) * 2002-04-19 2003-10-31 Sumitomo Titanium Corp Method and apparatus for manufacturing sponge titanium
JP2006057143A (en) * 2004-08-20 2006-03-02 Toho Titanium Co Ltd Method and device for producing metal by molten salt electrolysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013686A (en) * 2008-07-02 2010-01-21 Osaka Titanium Technologies Co Ltd Method for producing sponge titanium
JP2010089098A (en) * 2008-10-03 2010-04-22 Toyota Motor Corp Apparatus and method for preventing filter clogging serving as apparatus and method for cleaning molten metal
WO2010147764A1 (en) * 2009-06-16 2010-12-23 Alcoa Inc. Systems, methods and apparatus for tapping metal electrolysis cells
JP2012251221A (en) * 2011-06-03 2012-12-20 Osaka Titanium Technologies Co Ltd Fused salt electrolytic method
IT202200006314A1 (en) * 2022-03-31 2023-10-01 Innsight Srl Apparatus for taking precise quantities of non-ferrous metal alloys in the molten state with protection from oxidation and slag impurities

Also Published As

Publication number Publication date
JP4731552B2 (en) 2011-07-27
JPWO2006095653A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JPH0157983B2 (en)
RU2383636C2 (en) Installation for producing or refining metals and methods related to this installation
WO2006095653A1 (en) Method of extracting molten metal or molten metal chloride and apparatus therefor
JPH06228669A (en) Method and device for removing from molten aluminum particle contained therein
IL140056A (en) Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt
FR2510610A1 (en) PROCESS FOR PROCESSING A MELT METAL CONTAINING SUSPENDED PARTICLES TO CAUSE AGGLOMERATION AND GRAVITY SEPARATION OF THESE PARTICLES
EP2443270B1 (en) Feedstock
JP2008190024A (en) Method for producing titanium sponge
WO2007034645A1 (en) PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR
JP3485086B2 (en) Method and apparatus for purifying aluminum or aluminum alloy
US20180354028A1 (en) Sludge Removal Devices, Systems, and Methods
JP4975244B2 (en) Method and apparatus for producing metal by molten salt electrolysis
JP2007239065A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY, AND APPARATUS THEREFOR
JP2004043972A (en) Method for refining aluminum or aluminum alloy
US9044701B2 (en) Gas purification apparatus and related method
JP4651335B2 (en) Method for producing titanium ingot
WO2009150961A2 (en) Metal manufacturing method
JP2013044046A (en) Method for manufacturing high-clean steel
JP2001181752A (en) Method for producing sponge titanium
JP4725077B2 (en) Filtration function recovery method
WO2016132965A1 (en) Sludge deliquoring/solidification apparatus
JP2014076927A (en) Contaminant removal furnace
JPH036969B2 (en)
JP5594953B2 (en) Cooling body, metal refining apparatus and method
RU2763059C1 (en) Production of aluminium with a moving electrolyte in an electrolyser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507083

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715192

Country of ref document: EP

Kind code of ref document: A1