WO2006095494A1 - Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same - Google Patents

Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same Download PDF

Info

Publication number
WO2006095494A1
WO2006095494A1 PCT/JP2006/300651 JP2006300651W WO2006095494A1 WO 2006095494 A1 WO2006095494 A1 WO 2006095494A1 JP 2006300651 W JP2006300651 W JP 2006300651W WO 2006095494 A1 WO2006095494 A1 WO 2006095494A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder resist
photosensitive solder
light
permanent pattern
group
Prior art date
Application number
PCT/JP2006/300651
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Iwasaki
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2006095494A1 publication Critical patent/WO2006095494A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/035Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyurethanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • Photosensitive solder resist composition photosensitive solder resist film, permanent pattern and method for forming the same
  • the present invention relates to a photosensitive solder resist composition, a photosensitive solder resist film using the same, and a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist).
  • Permanent pattern used in electronic component modules with excellent heat fatigue resistance against thermal history during mounting and temperature cycle test (TCT), excellent moisture resistance, storage stability, chemical resistance, surface hardness, insulation, etc. It relates to an efficient formation method.
  • such a build-up wiring board is formed by laminating a film made of a thermosetting resin on an insulating board made of glass fiber and epoxy resin, and heat-curing to form an insulating layer. After opening the opening with a gas laser and squeezing it, the surface of the insulating layer is chemically roughened, and a copper film is deposited using an electroless copper plating method and an electrolytic copper plating method. A conductor layer is formed on the insulating layer, a wiring conductor layer is formed on the surface of the insulating layer, and the formation of the insulating layer and the wiring conductor layer is repeated.
  • solder resist layer having a thickness of 20 to 50 / ⁇ ⁇ is deposited to protect the insulating layer from the thermal power when mounting the subcomponents.
  • This solder resist layer is generally composed of an alkali-soluble photocrosslinkable resin having good adhesion to the wiring conductor layer and the insulating layer, and a flexible resin, and has a thermal expansion coefficient of the insulating layer or the wiring conductor layer. In order to match with the thermal expansion coefficient of 5 to 75% by weight of inorganic filler.
  • this wiring board forms an opening in the solder resist layer on the wiring conductor layer by exposure and development, and electrically connects the electronic components to the wiring conductor layer in the opening via a conductor bump having a solder equal force.
  • an electronic component module such as a semiconductor device is obtained.
  • the solder resist layer used in such an electronic component module has an insulation resistance in a dry state. It is.
  • this solder resist layer generally has a hydroxyl group and an alkali-soluble photocrosslinkable resin in order to develop developability when an opening is formed in the solder resist layer by exposure and development. Because of its ability to contain carboxyl groups, it has a high water absorption rate and gradually absorbs moisture in the air. This moisture reduces the insulation resistance of the solder resist layer to 10 8 ⁇ or less and short-circuits the wiring conductor layers. In addition, the moisture corrodes the wiring conductor layer, and as a result, the electrical reliability of the wiring board is deteriorated.
  • Patent Document 1 a polyester elastomer having a hydroxyl group is used as an example, and a wide variety of other elastomers are exemplified.
  • the required elastomer content is required to be 2-30 parts by mass with respect to 100 parts by mass of the acidic beryl group-containing epoxy resin.
  • a mixed binder that combines a reaction product of an epoxy acrylate and polybasic acid anhydride with good alkali developability and hardness with other resins for the purpose of improving the adhesion of a photosensitive solder resist to a printed circuit board.
  • the use technique is also known.
  • a reaction product of carboxylic acid-added acrylonitrile butadiene rubber and epoxy resin has been proposed as a crosslinkable binder to be combined with a reaction product of epoxy acrylate and polybasic acid anhydride (see Patent Document 4). While doing it. Even when this composition is applied as a solder resist, the adhesion to the substrate is sufficient, but it is insufficient in terms of alkali developability and heat resistance.
  • carboxylic acid group-containing crosslinked elastomer fine particles have been proposed for improving the adhesion and reliability of the substrate and improving the color and alkali developability (see Patent Document 5).
  • reliability and developability are improved, the dispersion stability of the carboxylic acid group-containing crosslinked elastomer fine particles is difficult, so if the content ratio in the composition is increased to the required range, the solder resist layer will be improved. There may be a problem with applicability.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 240930
  • Patent Document 2 Japanese Patent Laid-Open No. 2-97502
  • Patent Document 3 JP-A-7-159998
  • Patent Document 4 JP-A-8-41167
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-13679
  • Patent Document 6 JP-A-1-134354
  • An object of the present invention is to solve the conventional problems and achieve the following objects. That is, according to the present invention, a high-performance cured film excellent in heat resistance, heat and humidity resistance, adhesion, mechanical properties, and electrical properties can be obtained, and production of printed wiring boards, high-density multilayer boards, semiconductor packages, and the like. It aims at providing the photosensitive soldering resist composition used suitably for.
  • the present invention also provides a photosensitive solder resist capable of obtaining a cured film having excellent heat resistance, moist heat resistance, adhesion, mechanical properties, and electrical insulation obtained by laminating a layer of this photosensitive solder resist composition on a support. The purpose is to provide a film.
  • a further object of the present invention is to provide a photosensitive solder resist film that is optimal for the blue-violet laser direct exposure method.
  • ⁇ 1> Containing an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, a colorant, and a thermosetting accelerator.
  • a photosensitive solder resist composition Containing an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, a colorant, and a thermosetting accelerator.
  • the alkali-soluble elastomer is contained, and the alkali-soluble elastomer is composed of a hard segment component and a soft segment component. Strength is improved, and the latter has the effect of improving flexibility and toughness. For this reason, the elastomer is contained in the photosensitive solder resist composition, so that the thermal stress caused when the electronic component is mounted on the wiring board or the temperature cycle test (TCT) is caused by the elastomer. It absorbs well and suppresses the generation of cracks in the permanent pattern (solder resist) after light and heat curing. As a result, a permanent pattern with high electrical connection reliability that does not break the wiring conductor layer. can get.
  • R represents a divalent aliphatic or aromatic hydrocarbon.
  • R is a hydrogen atom, 1 to 3 carbon atoms
  • R is hydrogen
  • R represents either an aryl group or a cyan group.
  • m is an integer from 2 to 4
  • n to n each represents an integer of 2 or more.
  • Alkali-soluble elastomer At least one selected from low molecular weight diols having a mass average molecular weight of 500 or less and containing no carboxylic acid groups, represented by general formulas (III-1) to (III-5) ⁇ 1> to ⁇ 2>, wherein the polyurethane resin is copolymerized so that the ratio of the total molar amount of the low molecular weight diol to the total molar amount of the high molecular weight diol is 0.5: 1 to 2.8: 1.
  • the photosensitive solder resist composition according to any one of the above.
  • thermo crosslinking agent is any one of an epoxy resin and a polyfunctional oxetane compound.
  • ⁇ 5> The photosensitive solder resist composition according to any one of ⁇ 1> to ⁇ 4>, which contains an inorganic filler.
  • the photosensitive solder resist composition according to any one of the above.
  • the photopolymerization initiator is a halogenated hydrocarbon derivative, phosphine oxide, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic oxime salt or ketoxime.
  • Ether power The photosensitive solder resist composition according to any one of ⁇ 1> to ⁇ 7>, comprising at least one selected from ether power.
  • ⁇ 9> a support, and a photosensitive solder resist layer obtained by laminating the photosensitive solder resist composition according to any one of ⁇ 1> to ⁇ 8> on the support.
  • ⁇ 14> a substrate, and a photosensitive solder resist layer laminated on the substrate by application of the photosensitive solder resist composition according to any one of the above items 1> to 8>. It is the photosensitive soldering resist composition laminated body characterized by these.
  • the photosensitive solder resist layer is transferred to the surface of the substrate and laminated, or the photosensitive solder resist composition according to the above item 13> is applied to the surface of the substrate. And dried to laminate the photosensitive solder resist layer. Any one of the photosensitive solder resist layers is exposed, and the exposed photosensitive solder resist layer is developed. As a result, a permanent pattern optimal for a protective film or insulating film having a high surface hardness is formed.
  • the base material is a printed wiring board on which wiring is already formed
  • the permanent pattern forming method since the base material is a printed wiring board on which wiring is already formed, by using the permanent pattern forming method, a multilayer wiring board for semiconductors and parts, High-density mounting on build-up wiring boards is possible.
  • the exposure is generated by generating a control signal based on the pattern information to be formed and using light modulated in accordance with the control signal. This is a permanent pattern forming method.
  • the light modulation unit further includes a pattern signal generation unit that generates a control signal based on pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit.
  • the light modulation means has n pixel parts, and forms any less than n of the pixel parts continuously arranged from the n pixel parts. 15.
  • any less than n pixel parts arranged continuously from n pixel parts in the light modulation means are used as pattern information.
  • the light from the light irradiation means is modulated at high speed.
  • ⁇ 23> The method for forming a permanent pattern according to 22 above, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
  • DMD digital 'micromirror' device
  • the light is modulated by the light modulation means, and then passes through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion in the light modulation means are arranged.
  • the permanent pattern forming method according to any one of the above 21> Karaku 24>.
  • the aspherical surface is a toric surface
  • the aberration due to the distortion of the radiation surface in the pixel portion is efficiently corrected, and the photosensitive solder resist layer is formed on the photosensitive solder resist layer.
  • the distortion of the image to be formed is efficiently suppressed.
  • the photosensitive solder resist layer is exposed with high definition. Thereafter, the photosensitive solder resist layer is developed to form a high-definition permanent pattern.
  • the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high precision. Thereafter, by developing the photosensitive solder resist layer, an extremely high-definition permanent pattern is formed.
  • ⁇ 28> The method for forming a permanent pattern according to any one of ⁇ 15> to ⁇ 27>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive solder resist layer!
  • the exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive solder resist layer.
  • ⁇ 29> The method for forming a permanent pattern according to any one of ⁇ 15> to ⁇ 28>, wherein the exposure is performed on a partial region of the photosensitive solder resist layer.
  • the light irradiation means can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive solder resist layer is performed with extremely high definition. Thereafter, the photosensitive solder resist layer is developed to form an extremely fine permanent pattern.
  • the light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. Having said ⁇ 15> to ⁇ 30>! This is a permanent pattern forming method described in the above.
  • the light irradiation means allows the laser beams irradiated from the plurality of lasers to be collected by the collective optical system and coupled to the multimode optical fiber. By doing so, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive solder resist layer is performed with extremely high definition. Thereafter, by developing the photosensitive solder resist layer, an extremely fine permanent pattern is formed.
  • ⁇ 32> The method for forming a permanent pattern according to any one of the above ⁇ 15> and ⁇ 31>, wherein the exposure is performed using a laser beam having a wavelength of 395 to 415 nm.
  • the curing treatment is performed on the photosensitive solder resist layer.
  • the photosensitive The film strength of the cured region of the conductive solder resist layer is increased.
  • ⁇ 34> The method for forming a permanent pattern according to ⁇ 33>, wherein the curing process is at least one of a whole-surface exposure process and a whole-surface heat treatment performed at 120 to 200 ° C.
  • the permanent pattern forming method described in ⁇ 34> curing of the resin in the photosensitive solder resist composition is promoted in the entire surface exposure treatment. Further, the film strength of the cured film is increased in the entire surface heat treatment performed under the above temperature conditions.
  • ⁇ 35> The method for forming a permanent pattern according to any one of ⁇ 15> to ⁇ 34>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
  • the wiring has an external force due to the insulating property, heat resistance, etc. of the film. Your shock and bends are protected.
  • ⁇ 36> A permanent pattern formed by the method for forming a permanent pattern according to any one of ⁇ 15> to ⁇ 35>.
  • the permanent pattern described in ⁇ 36> is formed by the permanent pattern forming method, it has excellent chemical resistance, surface hardness, heat resistance, and the like, and has high definition, and multi-layer wiring of semiconductors and parts. This is useful for high-density mounting on boards and build-up wiring boards.
  • the permanent pattern according to ⁇ 36> which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
  • the permanent pattern described in 37> is at least one of a protective film, an interlayer insulating film, and a solder resist pattern. Therefore, due to the insulating property, heat resistance, etc. of the film, the wiring is affected by the impact of external force. Forces such as bending are protected.
  • a high-performance cured film excellent in heat resistance, heat and humidity resistance, adhesion, mechanical properties, and electrical properties can be obtained, such as a printed wiring board, a high-density multilayer board, and a semiconductor package.
  • the photosensitive solder-resist composition used suitably for manufacture of can be provided.
  • the present invention also provides a cured film having excellent heat resistance, moist heat resistance, adhesion, mechanical properties, and electrical insulation obtained by laminating a layer of this photosensitive solder resist composition on a support.
  • a resist film can be provided.
  • a blue-violet laser dire It is possible to provide a photosensitive solder resist film that is optimal for the tatoo exposure method.
  • FIG. 1 is an explanatory view showing a layer structure of a photosensitive solder resist film.
  • FIG. 2 is an example of a partially enlarged view showing the configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 3A is an example of an explanatory diagram for explaining the operation of the DMD.
  • FIG. 3B is an example of an explanatory diagram for explaining the operation of the DMD similar to FIG. 3A.
  • FIG. 4A is an example of a plan view showing the arrangement of exposure beams and the scanning lines in a case where the DMD is not inclined and in a case where the DMD is inclined.
  • FIG. 4B is an example of a plan view showing the arrangement of exposure beams and the scanning lines in a case where DMDs similar to FIG. 4A are not inclined and in a case where they are inclined.
  • FIG. 5A is an example of a diagram illustrating an example of a DMD usage area.
  • FIG. 5B is an example of a diagram showing an example of a DMD usage area similar to FIG. 5A.
  • FIG. 6 is an example of a plan view for explaining an exposure method for exposing a pattern forming material by one scanning by a scanner.
  • FIG. 7A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
  • FIG. 7B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 7A.
  • FIG. 8 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
  • FIG. 9 is an example of a schematic perspective view showing a configuration of a scanner of the pattern forming apparatus.
  • FIG. 10A is an example of a plan view showing an exposed region formed on the pattern forming material.
  • FIG. 10B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 11 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means.
  • FIG. 12 is a cross-sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. It is an example of a surface view.
  • FIG. 13 is an example of a controller that controls DMD based on pattern information.
  • FIG. 14A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system.
  • FIG. 14B is an example of a plan view showing a light image projected on the exposed surface when a microlens array or the like is not used.
  • FIG. 14C is an example of a plan view showing an optical image projected on an exposed surface when a microlens array or the like is used.
  • FIG. 15 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines.
  • FIG. 16A is an example of a graph showing distortion of the reflection surface of the micromirror in two diagonal directions of the mirror.
  • FIG. 16B is an example of a graph showing distortion of the reflection surface of the micromirror similar to that in FIG. 16B in two diagonal directions of the mirror.
  • FIG. 17A is an example of a front view of a microlens array used in a pattern forming apparatus.
  • FIG. 17B is an example of a side view of a microlens array used in the pattern forming apparatus.
  • FIG. 18A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 18B is an example of a side view of a microlens constituting a microlens array.
  • FIG. 19A is an example of a schematic view showing a condensing state by a microlens in one cross section.
  • FIG. 19B is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
  • Fig. 20A shows the simulation of the beam diameter near the condensing position of the microlens. It is an example of the figure which shows the result obtained.
  • FIG. 20B is an example of a diagram showing the same simulation results as in FIG. 20A but at different positions.
  • FIG. 20C is an example of a diagram illustrating the simulation result similar to FIG. 20A at another position.
  • FIG. 20D is an example of a diagram showing a simulation result similar to FIG. 20A at another position.
  • FIG. 21A is an example of a diagram showing a result of simulating a beam diameter in the vicinity of a condensing position of a microlens in a conventional pattern forming method.
  • FIG. 21B is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
  • FIG. 21C is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
  • FIG. 21D is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
  • FIG. 22 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 23A is an example of a front view of a microlens constituting a microlens array.
  • FIG. 23B is an example of a side view of the microlens constituting the microlens array.
  • FIG. 24A is an example of a schematic diagram showing the condensing state by the microlens of FIGS. 23A and B in one cross section.
  • FIG. 24B is an example of a schematic diagram showing another cross section of the example of FIG. 24A.
  • FIG. 25A is an example of an explanatory diagram of the concept of correction by the light quantity distribution correction optical system.
  • FIG. 25B is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
  • FIG. 25C is an explanatory diagram of the concept of correction by the light quantity distribution correction optical system. It is an example.
  • FIG. 26 is an example of a graph showing a light amount distribution when the light irradiation means is a Gaussian distribution and the light amount distribution is not corrected.
  • FIG. 27 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system.
  • FIG. 28A is a perspective view showing the configuration of the fiber array light source
  • FIG. 28A (B) is an example of a partially enlarged view of FIG. 28A (A)
  • FIG. 28A (C) and FIG. (D) is an example of a plan view showing an array of light emitting points in the laser emitting section.
  • FIG. 28B is an example of a front view showing the arrangement of light emitting points in the laser emitting section of the fiber array light source.
  • FIG. 29 is an example of a diagram showing a configuration of a multimode optical fiber.
  • FIG. 30 is an example of a plan view showing a configuration of a combined laser light source.
  • FIG. 31 is an example of a plan view showing a configuration of a laser module.
  • FIG. 32 is an example of a side view showing the configuration of the laser module shown in FIG. 31.
  • FIG. 33 is a partial side view showing the configuration of the laser module shown in FIG. 31.
  • FIG. 34 is an example of a perspective view showing a configuration of a laser array.
  • FIG. 35A is an example of a perspective view showing a configuration of a multi-cavity laser.
  • FIG. 35B is an example of a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 35A are arranged in an array.
  • FIG. 36 is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 37A is an example of a plan view showing another configuration of the combined laser light source.
  • FIG. 37B is an example of a cross-sectional view along the optical axis of FIG. 37A.
  • FIG. 38A is a diagram illustrating the depth of focus in a conventional exposure apparatus and the pattern forming method of the present invention.
  • FIG. 3 is an example of a cross-sectional view along an optical axis showing a difference from a depth of focus by a (pattern forming device).
  • FIG. 38B is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention.
  • the photosensitive solder resist composition of the present invention comprises an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, an inorganic filler, and a coloring agent. It is a photosensitive solder resist composition containing an agent, a thermosetting accelerator, and other components appropriately selected as necessary.
  • the alkali-soluble photocrosslinkable resin has a function as a binder, and has a function of increasing the hardness of the first photosensitive solder resist layer and adding properties as an elastic body.
  • the photosensitive solder resist composition to be contained has a property of being dissolved by an alkaline developer. Specifically, the photosensitive solder resist composition only needs to be soluble to the extent that the intended development processing is performed.
  • the alkaline developer is not particularly limited and can be appropriately selected according to the purpose.
  • alkali metal hydroxide such as sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, potassium hydroxide, Amines such as hydroxyethylamine and triethylamine, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, and mixtures thereof with miscible organic solvents are used. pH is 8 to 14, 0.01 to 10 weight 0/0 aqueous solution of the alkali agent is preferred.
  • alkaline developers in the printed wiring board industry, 0.2 to 2 mass% sodium carbonate aqueous solution is generally used, and 1 mass% sodium carbonate aqueous solution is the most common.
  • the photosensitive solder resist layer is pressure-bonded using a laminator while the surface is leveled and the protective film of the photosensitive solder resist film is peeled off on the surface of the dried copper clad laminate.
  • a laminate comprising a copper-clad laminate, a photosensitive solder resist layer, and a support film is prepared.
  • the crimping conditions are: laminate temperature 70 ° C, crimping tool temperature 105 ° C, crimping roll pressure 3kgZcm 2 and crimping speed 1.2mZ.
  • Laminate strength Peel off the support film, and spray 1% sodium carbonate aqueous solution at 30 ° C at a pressure of 0. IMPa over the entire surface of the photosensitive solder resist layer on the copper-clad laminate. To do. If the photosensitive solder resist layer on the copper clad laminate is removed after at least 60 seconds of spraying, it will be developed.
  • Such a resin having alkali solubility can be suitably selected from those showing a solubility of 1% by mass or more in a 1% by mass sodium carbonate aqueous solution at 30 ° C., for example.
  • the photocrosslinking property means a property that a linear polymer molecule is changed to a molecule having a network three-dimensional structure by a photochemical reaction, and specifically, free radicals generated by photolysis of a photopolymerization initiator. This means a polymer that can be reticulated by polymerization reaction.
  • the alkali-soluble photocrosslinkable resin can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a bull polymer type photocrosslinkable resin and an epoxy resin type photocrosslinkable resin. Can be mentioned.
  • the bull polymer type photocrosslinkable resin is classified into the following types (A-1), (A-2) and (A-3), and at least one type force is also selected.
  • Type (A-1) Manufactured by a reaction between (a) a carboxyl group-containing copolymer resin and (b) an epoxy group-containing unsaturated compound.
  • Type (A-3) produced by the addition reaction of (f) an acid anhydride group-containing copolymer resin and (g) a compound having one hydroxyl group and at least one (meth) taroloyl group in the molecule. It is.
  • (meth) atalylate is a general term for atalylate, metaatherate, and a mixture thereof, and the same applies to other similar expressions.
  • the (a) strength lupoxyl group-containing copolymer resin used in the production of the type (A-1) bulle polymer type photocrosslinkable resin has one unsaturated group and at least one in one molecule. Cal It is obtained by copolymerizing a compound having a boxyl group or an acid anhydride group with at least one of (meth) acrylic acid ester and styrene.
  • the compound (a) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule having a carboxyl group-containing copolymer resin as a structural unit is (meta ) Acrylic acid, maleic acid, itaconic acid and other carboxyl groups containing 2 or more carboxyl groups in the molecule. Also included are maleic acid, itaconic acid monoesters, or monoamides.
  • the half ester compound which is a reaction product of a hydroxyl group-containing (meth) acrylate and a saturated or unsaturated dibasic acid anhydride can be mentioned. These half ester compounds can be obtained by reacting a hydroxyl group-containing (meth) acrylate with an equimolar ratio of a saturated or unsaturated dibasic acid anhydride.
  • Examples of the hydroxyl group-containing acrylate used in the synthesis of the half ester compound include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene Examples thereof include glycol mono (meth) acrylate, trimethylolpropane di (meth) acrylate, bendaerythritol tri (meth) acrylate, and diben erythritol penta (meth) acrylate.
  • Examples of the saturated or unsaturated dibasic acid anhydride used in the synthesis of the half ester compound include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, and methyl nadrahydrophthalic anhydride.
  • Examples thereof include acid, ethyltetrahydrophthalic anhydride, hexaldehyde oral phthalic anhydride, methylhexahydrophthalic anhydride, ethylhexahydrophthalic anhydride, and itaconic anhydride. Of these, (meth) acrylic acid is preferred.
  • These compounds having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule may be used alone or in combination of two or more.
  • Examples of (a) (meth) acrylic acid ester which is a structural unit of the carboxyl group-containing copolymer resin include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth).
  • Atalylate Isopropyl (meth) atalylate, n-Butyl (meth) atalylate, Isobutyl (meth) atalylate, t-Butyl (meth) atalylate, n-Hexyl (meth) atalylate, Cyclohexyl ( (Meth) Atarylate, t-Butylcyclohexyl (Meth) Atalylate, 2 —Ethylhexyl (Meth) Atalylate, t—Octyl (Meth) Atalylate, Dodecyl (Meth) Atalylate, Octadecyl (meth) atarylate, Acetoxychetyl (meth) atarylate, Phenol (meth) atarylate, 2-Hydroxyethyl (meth) atarylate, 2-Methoxyethyl (meth) talylate, 2-Ethoxyethyl (Met
  • styrenes that constitute the structural unit of the carboxyl group-containing copolymer resin (a) include, for example, styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, hydroxystyrene, methoxystyrene.
  • the (a) carboxyl group-containing copolymer resin includes a compound having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule and a (meth) acrylic acid ester. It can be obtained by copolymerizing a monomer and at least one of styrenes by a usual copolymerization method, for example, a solution polymerization method.
  • maleic acid monoester Z styrene copolymers maleic acid monoamide Z styrene copolymers, and itaconic acid, which are included in the above-mentioned
  • carboxyl group-containing copolymer resin monoester z Styrene copolymer ytaconic acid monoamide z
  • Examples of the alcohols used in the polymer reaction with the maleic anhydride include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, t-butanol, pentanol, hexanol, cyclohexane.
  • Preferable examples include hexanol, methoxyethanol, ethoxyethanol, methoxypropanol, ethoxypropanol and the like.
  • Examples of the primary amines include benzylamine, phenethylamine, 3-phenyl-1-propylamine, 4-phenyl-1-butylamine, 5-phenol-1-pentylamine, and 6-phenol.
  • preferable examples of the secondary amines include dimethylamine, jetylamine, methylethylamine, methylpropylamine, jetylamine, ethylpropylamine, dipropylamine, dibutylamine, N, N-methylbenzylamine and the like. be able to.
  • Epoxy group-containing unsaturated compound used in the production of the above-mentioned type (A-1) bulle polymer type photocrosslinkable resin includes one radical polymerizable unsaturated group in one molecule.
  • compounds represented by the following general formulas (IV-1) to (IV-14) may be used as long as they are compounds having an epoxy group.
  • R is a hydrogen atom or a methyl group
  • 14 15 is an alkylene group having 1 to 10 carbon atoms
  • R is a hydrocarbon group having 1 to 10 carbon atoms
  • p is 0 or 1 ′
  • epoxy group-containing unsaturated compounds may be used alone or in admixture of two or more.
  • glycidyl (meth) atarylate and 3 4-epoxycyclohe type (A-2) —
  • the epoxy group-containing copolymer resin (c) used in the production of the above-mentioned type (A-2) bulle polymer type photocrosslinkable resin has a non-reactive (meta) group containing an epoxy group-containing monomer and other epoxy groups. ) Obtained by copolymerization with acrylic esters and Z or styrenes.
  • the epoxy group-containing monomer the compounds described above are preferably used in the description of the above-mentioned type (A-1) bulle polymer type photocrosslinkable resin.
  • At least one of (meth) acrylic acid esters and styrenes that are non-reactive with epoxy groups is any of the above-described photocrosslinkable resins of type (A-1), carboxyl groups, alcoholic groups. Those containing no hydroxyl group, phenolic hydroxyl group, amino group, etc. are preferably used.
  • the production method is obtained by copolymerizing an epoxy group-containing monomer, a non-reactive (meth) acrylic acid ester and styrenes with a conventional method such as a solution polymerization method.
  • the molar ratio of the epoxy group-containing monomer and the non-reactive (meth) acrylic ester and styrenes to the displacement force of 60:40 to 20:80 force is suitable. If the amount of the epoxy group-containing monomer is too small and the molar ratio is greater than 20:80, the amount of the next unsaturated carboxylic acid and polybasic acid anhydride added to the copolymer decreases. As a result, UV curable properties and developability with dilute alkaline aqueous solution deteriorate, and conversely, if the amount of the epoxy group-containing monomer is too large and the molar ratio is less than 60:40, the soft spot is too low. Tend.
  • the carboxyl group-containing unsaturated compound (d) includes one unsaturated group and at least one carboxyl group in one molecule.
  • the compound having an acid anhydride group each of the aforementioned compounds can be suitably used.
  • Polybasic acid anhydrides include maleic anhydride, succinic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4 methylhexahydro Phthalic anhydride, 3-ethylhexahydrophthalic anhydride, 4-ethylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, 3 —Saturated or unsaturated aliphatic, alicyclic or ethyltetrahydrophthalic anhydride, 4-ethyltetrahydrophthalic anhydride, phthalic anhydride, etc. having one acid anhydride group in the molecule Aromatic compounds are preferred. Of these, tetrahydrophthalic anhydride is particularly preferred.
  • the reaction between the epoxy group-containing copolymer, the carboxyl group-containing unsaturated compound and the subsequent polybasic acid anhydride is preferably carried out as follows. After the addition of 0.8 to 1.2 moles of unsaturated carboxylic acid per 1 epoxy group equivalent of the copolymer to the epoxy group-containing monomer copolymer, the hydroxyl group of the resulting product is further increased. The polybasic acid anhydride is subjected to an addition reaction.
  • An acid anhydride group-containing resin (f) used in the production of the type (A-3) bulle polymer type photocrosslinkable resin is a copolymer of maleic acid anhydride and styrene or itaconic acid anhydride and styrene. It can be obtained by copolymerization.
  • the copolymer composition ratio of maleic anhydride or itaconic anhydride and styrene is preferably 90:10 to 10:90 force S, more preferably 80:20 to 20:80 force S, and particularly preferably 70:30 to 30:70 preferable. If it is 90:10 or more, the developing resistance of the cured part is inferior, and if it is 10:90 or less, the developing property is inferior.
  • a copolymer having a weight average molecular weight of about 1,000 to 5,000 obtained by copolymerizing styrene at a ratio of 1 to 3 moles with respect to 1 mole of maleic anhydride is preferable.
  • Examples include SMA ranges 1000, 2000, and 3000 manufactured by ARCO Chemical.
  • Examples of the compound (g) having one hydroxyl group and at least one (meth) atalyloyl group in the molecule include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl.
  • the ring-opening addition reaction between the acid anhydride copolymer and a monomer having one hydroxyl group and at least one (meth) attalyloyl group in the molecule is an organic solvent containing no active hydrogen. It can be produced by a known method of performing in the inside.
  • the solvent ethyl acetate, methoxypropyl acetate, methyl ethyl ketone and the like are preferable.
  • the molar ratio of the hydroxyl group in the monomer Z to the acid anhydride group in the copolymer is preferably 0.8 to 1.2.
  • the above ring-opening addition reaction is usually carried out at 50 ° C to 200 ° C, but is preferably about 80 ° C to 150 ° C in order to prevent formation of diester and gelation.
  • reaction accelerators tertiary amines such as triethylamine, triethanolamine, morpholine, and pentamethyljetylenetriamine, or quaternary ammonium salts can be used.
  • known polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butyl hydroquinone, t-butyl catechol, benzoquinone, and phenothiazine can be added and used to prevent the formation of a polymer during the reaction.
  • the obtained bulle polymer type photocrosslinkable resin comprising at least any one of the types (A-l), (A-2) and (A-3) is an acid.
  • the value should be in the range of 50 to 250 mg KOHZ g.
  • the acid value is preferably from 70 to 200 mg KOHZg, particularly preferably from 90 to 180 mg KOH / g. If the acid value is less than 50 mg KOHZg, it is difficult to remove the unexposed areas with a weak alkaline aqueous developer, whereas if it exceeds 250 mg KOHZg, the cured film has poor water resistance and electrical properties. .
  • the bulle polymer type photocrosslinkable polymer (A) preferably has a mass average molecular weight in the range of 5,000 to 200,000. Further, the mass average molecular weight is more preferably 10000 or more than 10,000 to 100,000 force S, and more preferably 30,000 to 80,000 force S.
  • the mass average molecular weight is less than 5,000, the dryness to touch is remarkably inferior, and the peelability from the support is inferior.
  • the mass average molecular weight exceeds 200,000, alkali development This is not preferable because it causes problems such as removability of unexposed parts by liquid and storage stability.
  • the solid content of the alkali-soluble photocrosslinkable resin in the total solid content of the photosensitive solder resist layer is preferably 15 to 70% by mass. If it is less than 15% by mass, the toughness of the cured film is inferior, and if it exceeds 70% by mass, the balance of performance deteriorates, such as a decrease in reliability.
  • a mixture of one of the types (A-1) to (A-3) and one of the epoxy rosin ester type photocrosslinkable oligomers described below can provide balanced performance.
  • the mixing ratio in that case is 10Z90 ⁇ 90ZlO by mass. 20 / 80-80 ⁇ 20 is more preferred, 30 ⁇ 70 ⁇ 70 ⁇ 30 is particularly preferred!
  • the epoxy rosin ester type photocrosslinkable rosin can be appropriately selected according to the purpose without any restriction.
  • the epoxy resin (h) includes YDCN-701, YDCN-704 manufactured by Toto Kasei Co., Ltd .; N-665, N-680, N-695 manufactured by Dainippon Ink & Chemicals, Inc .; Nippon Kayaku Co., Ltd. ) EOC N- 102, EOCN—104; Asahi Kasei Kogyo Co., Ltd. ECN— 265, ECN— 293, ECN— 2 85, ECN— 299, etc.
  • novolac type epoxy resin for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, bixylenol type epoxy resin
  • Epoxy resins such as fats, trishydroxyphenyl methane type epoxy resins, tetraphenyl type epoxy resins, alicyclic epoxy resins, salicylaldehyde type epoxy resins can also be used advantageously.
  • each compound described above in the description of the vinyl polymer type photocrosslinkable resin of the type (A-1) can be preferably used.
  • polybasic acid anhydride (j) may be the compound described above as component (e) in the description of the vinyl polymer type photocrosslinkable resin of type (A-2).
  • the method for producing the epoxy resin-type photocrosslinkable resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the epoxy resin (h) and 1 molecule in the production In the reaction of the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule per one equivalent of the epoxy group of the epoxy resin (h) It is preferable that the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group is reacted at a ratio of 0.8 to 1.05 equivalents 0.9 to 1 0 equivalent is more preferred.
  • the epoxy resin (h) and the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule are dissolved in an organic solvent and reacted to form an organic solvent.
  • organic solvent include ketones such as ethylmethylketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methylcetosolve, butylcetosolve, methylcarbitol, butylcarbitol, and propylene.
  • Glycol ethers such as glycol monomethyl ether, dipropylene glycol monoethyl ether ether, dipropylene glycol jet methanol, triethylene glycol monoethyl ether, etc., ethyl acetate, butyl acetate, butyl acetate sorb acetate, carbitol acetate
  • esters, octane, decane, etc. include petroleum hydrocarbons such as aliphatic hydrocarbons, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.
  • a catalyst to accelerate the reaction.
  • the catalyst used include triethylamine, benzylmethylamine, methyltriethylammum mouthlite, benzyltrimethylammonium chromite, benzyltrimethylammonium bromide, benzyltrimethylmethylammonium tide, and triphenylphosphine. Is mentioned.
  • the amount of the catalyst used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of epoxy resin and vinyl group-containing monocarboxylic acid (b).
  • a polymerization inhibitor because it prevents the polymerization during the reaction.
  • polymerization inhibitor examples include hydroquinone, methylo, idroquinone, hydroquinone monomethyl ether, catechol, pyrogallol and the like, and the amount used is that of epoxy resin (a) and vinyl group-containing monocarboxylic acid (b). 0.01 to 1 mass part is preferable with respect to 100 parts by mass in total.
  • the reaction temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C.
  • the epoxy rosin ester type photocrosslinkable rosin is obtained by reacting the reaction product thus obtained with a polybasic acid anhydride (j).
  • the reaction temperature between the reaction product and the polybasic acid anhydride (c) is preferably 60 to 120 ° C.
  • the epoxy rosin ester type photocrosslinkable resin By reacting 0.1 to 1.0 equivalent of the polybasic acid anhydride (j) with respect to 1 equivalent of hydroxyl group in the reaction product, the epoxy rosin ester type photocrosslinkable resin The acid value of can be adjusted.
  • the acid value of the epoxy rosin ester type photocrosslinkable rosin is preferably 30 to 150 mg KOH Zg, more preferably 50 to 120 mg KOH Zg. If the acid value is less than 30 mgKOHZg, the solubility of the photocurable resin composition in a dilute alkaline solution will decrease, and if it exceeds 150 mgKOHZg, the electrical properties of the cured film will tend to deteriorate.
  • the weight average molecular weight of the epoxy rosin ester type photocrosslinkable rosin is preferably 500 to 5,000, more preferably 1,000 to 4,000 force, and particularly preferably 1,500 to 3,500 force! /, . If it is 500 or less, the tackiness is too high to make it difficult to peel off the protective film, and if it exceeds 5,000, the production of the resin becomes difficult.
  • the alkali-soluble elastomer of the present invention has an acid value of 20 to 130 mgKOHZg, and can be used if the dynamic elastic modulus after curing of the photosensitive solder resist composition is 200 to 220 ° C. and 1 to lOOMPa.
  • the diisocyanate represented by the general formula (I) and the carboxylic acid group-containing diol force represented by the general formulas ( ⁇ -1) to ( ⁇ -3) are selected from the general formula ( High molecular weight diol force represented by III 1) to (III 5)
  • the specific molar ratio of the total molar amount of ( ⁇ -3) and the total molar amount of the general formulas (III 1) to (III 5) is obtained by reacting to have a ratio of 0.5: 1 to 2.8: 1.
  • An alkali-soluble polyurethane resin having an acid value of 20 to 130 mgK OHZg is preferred.
  • ( ⁇ -1) to ( ⁇ -3), (111 1) to (111 5), 1 ⁇ is a substituent (for example, an alkyl group, an aralkyl group, an aryl group, Each of an alkoxy group and a halogeno group is preferred.) It represents a divalent aliphatic or aromatic hydrocarbon which may have a group. If necessary, R may have other functional groups that do not react with isocyanate groups such as ester groups, urethane groups, amide groups, and ureido groups. R is a hydrogen atom, a substituent (e.g.
  • Halogen atom one F, one Cl, one Br ⁇ one
  • one CONH one COOR, one OR, one NHCO
  • 6 6 6 6 6 6 6 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 15 carbon atoms.
  • R 1, R 2 and R may be the same or different from each other, a single bond or a substituent (for example,
  • An alkyl group, an aralkyl group, an aryl group, an alkoxy group, and a halogen group are preferred.
  • An alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 15 carbon atoms are preferred, and an alkylene group having 1 to 8 carbon atoms is more preferred. If necessary, react with isocyanate groups in R, R, and R.
  • Ar may have a substituent and represents a trivalent aromatic hydrocarbon, preferably an aromatic group having 6 to 15 carbon atoms.
  • R 1, R 2, R 3, R 5 and R may be the same or different and may be divalent aliphatic or
  • R 1, R 2, R 3 and R are each an alkyl group having 2 to 20 carbon atoms.
  • a alkylene group having 2 to 10 carbon atoms or an arylene group having 6 to 10 carbon atoms is more preferable, and a alkylene group or an arylene group having 6 to 15 carbon atoms is more preferable.
  • R is a 1-20 carbon atom
  • An alkylene group having 1 to 10 carbon atoms or an arylene group having 6 to 10 carbon atoms is more preferable, which is preferably an alkylene group or an arylene group having 6 to 15 carbon atoms.
  • R is a hydrogen atom, alkyl group, aryl group, An alkyl group, a cyano group or a halogen atom, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, a cyan group or a halogen atom.
  • a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms is more preferable.
  • R does not react with isocyanate groups.
  • the functional group may be, for example, an alkoxy group, a carbonyl group, an olefin group, an ester group or a halogen atom.
  • R represents an aryl group or cyan group, and is an aryl group or cyan group having 6 to 10 carbon atoms.
  • n, n, n and n are each an integer of 2 or more
  • n represents 0 or an integer of 2 or more, 0 or 2 to 10
  • a low molecular weight diol containing no carboxylic acid group may be copolymerized.
  • the low molecular weight diol is represented by the general formulas ( ⁇ -1) to ( ⁇ -5) and has a mass average molecular weight of 500 or less.
  • Carboxylic acid group-free low molecular weight diol can be added within a range where the elastic modulus of the cured film can be kept sufficiently low as long as the alcoholic solubility is not lowered.
  • the ratio of the total amount of low molecular weight diols including the fourth component to the total molar amount of high molecular weight diols is preferably 0.5: 1 to 2.8: 1. In this case, if the low molecular weight diol force is less than 0.5, the developability is inferior, and if it exceeds 2.8, the dynamic elastic modulus of the solder resist layer after curing is not sufficiently lowered.
  • the carboxyl group has an acid value of 20 mgKOHZg or more, and it is particularly preferable that it is contained in the range of 20 to 130 mgKOH / g. If the acid value is less than 20 mgKOH / g, the developability is insufficient, and if it exceeds 130 mgKOHZg, the development speed is too high, and development control is difficult.
  • the content of these polymer compounds contained in the total solid content of the dyst composition is 2 to 30% by mass, preferably 5 to 25% by mass. If it is less than 2% by mass, a sufficiently low elasticity at a high temperature of the cured film cannot be obtained, and if it exceeds 30% by mass, the developability deteriorates and the toughness of the cured film decreases.
  • the alkali-soluble photocrosslinkable resin is prepared by adding the diisocyanate compound and the diol compound to an aprotic solvent with a known catalyst having an activity corresponding to the reactivity and heating the mixture. Synthesized.
  • the molar ratio of the diisocyanate and diol compound used is from 0.8: 1 to 1.2: 1. If an isocyanate group remains at the end of the polymer, it is best to treat it with alcohols or amines. In other words, it is synthesized in a cage form in which no isocyanate group remains.
  • diisocyanate compound represented by the general formula (I) examples include those shown below. 2,4 Tolylene Diisocyanate, Dimer of 2,4 Tolylene Diisocyanate, 2,6 Tolylene Diisocyanate, p-Xylylene Diisocyanate, m-Xylylene Diisocyanate, 4, 4, Diphenyl -Aromatic diisocyanate compounds such as methane diisocyanate, 1,5 naphthylene diisocyanate, 3,3, -dimethyl thiophene 4,4, -diisocyanate, etc .: hexamethylene diisocyanate Aliphatic diisocyanate compounds such as trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer diisocyanate, etc .; isophorone diisocyanate, 4,4,1-methylenebis (cyclohexylisocyanate), methylcyclohexane-1,2,4 (Or 2, 6) diis
  • high molecular weight diol compound represented by the general formulas (III 1) to (III 5) include those represented by the following chemical formulas (No. 1) to (No. 25).
  • n and n may be the same or different and each represents an integer of 2 or more.
  • diolic compound having a carboxyl group represented by the general formulas ( ⁇ -1) to ( ⁇ -3) include those shown below. 3,2-dihydroxybenzoic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (2-hydroxyethyl) propionic acid, 2,2bis (3 hydroxypropyl) propionic acid, Bis (hydroxymethyl ) Acetic acid, bis (4 hydroxyphenyl) acetic acid, 4, 4 bis (4 hydroxyphenyl) pentanoic acid, tartaric acid, N, N dihydroxyethylglycine, N, N-bis (2-hydroxyethyl) 3-carboxy —Propionamide and the like.
  • carboxylic acid group-free low molecular weight diols include ethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol, 1,3 butylene glycol, 2,3 butylene glycol, 1,4 butanediol, 2, 2,1-dimethyl-1,3-prononediol, diethylene glycol, triethylene glycol, 1,5 pendamethylene glycol, dipropylene glycol, neopentyl glycol, 1,6 hexamethylene glycol, cyclohexane-1,4-diol, cyclohexane 1,4-diol, cyclohexane 1,4 dimethanol, 1 butene 1,4 diol, 2, 2,4 trimethyl 1,3-pentanediol, xylylene glycol, 1,4 bis j8— Hydroxyethoxycyclohexane, Tridichlorodecane dimethanol, Hydrogenated bisphenol A, hydrogenated bisphenol, bisphenol A, bis(bis
  • 1,4 butanediol is especially preferred.
  • the copolymerization amount of the carboxylic acid group-free diol is 95 mol% or less in the low molecular weight diol, preferably 80 mol% or less, particularly preferably 50 mol% or less. If it exceeds 95 mol%, good developability and urethane resin may not be obtained.
  • the alkali-soluble polyurethane resin In the production of the alkali-soluble polyurethane resin, a small amount of a trifunctional and higher polyol polyisocyanate is reacted in addition to the diol diisocyanate for the purpose of adjusting the molecular weight of the polyurethane resin produced.
  • a trifunctional and higher polyol polyisocyanate examples include trimethylolpropane, pentaerythritol, Pentaerythritol, trimethylolpropane and ethylene oxide addition reaction products can be used.
  • the trifunctional or higher polyisocyanate includes 1 methylbenzene 2, 4. 6-triisocyanate, naphthalene 1, 3, 7 triisocyanate, biphenyl 1, 2, 4, 4, —Triisocyanate, triphenylmethane 4,4 ', 4 "—Triisocyanate, tolylene diisocyanate trimer, trimethylolpropane, and other polyols with the number of moles of diisocyanate corresponding to the number of active hydrogens. Examples thereof include urethane polyisocyanate compounds obtained by reaction.
  • the polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, and has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure.
  • Preferred examples of the compound include at least one selected from monomers having a (meth) acryl group.
  • the monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methacrylates such as acrylate, phenoxychetyl (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate To rate, trimethylolpropane diatalylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol Sa (meth) acrylate, dipentaerythritol penta (meth) acrylate,
  • Urethane acrylates described in various publications such as Japanese Patent Publication No. 48-41708, Japanese Patent Publication No. 50-6034, Japanese Patent Publication No. 51-37193; Polyester acrylates described in various publications such as Kaisho 48-64183, JP-B 49-43191, and JP-B 52-30490; reaction of epoxy resin and (meth) acrylic acid Examples of the product include polyfunctional acrylates such as epoxy acrylates and metatalates.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
  • the solid content of the polymerizable compound in the solid content of the photosensitive solder resist composition is preferably 5 to 75 mass%, more preferably 10 to 40 mass%. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur. If it exceeds 75% by mass, the adhesiveness of the photosensitive solder resist layer is strong. It is not preferable because it may become too much.
  • the photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound.
  • the photopolymerization initiator is visible from the ultraviolet region.
  • a photo-sensitive sensitizer that has photosensitivity to light causes some action with the photo-excited sensitizer and initiates cationic polymerization according to the type of monomer that may be an active agent that generates active radicals. Such an initiator may be used.
  • the photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 80011111 (330 to 50011111). .
  • Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxide, hexaryl biphenyl.
  • halogenated hydrocarbon derivatives for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.
  • phosphine oxide hexaryl biphenyl.
  • Examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoxime ethers.
  • Examples of the halogenated hydrocarbon compound having a triazine skeleton include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), British Patent 1388 492 Specification Compounds described in JP-A-53-133428, German No. 3337024, the compound described in FC Schaefer et al., J. Org. Chem .; 29, 1527 (1964), the compound described in JP-A-62-258241, JP-A-5-281728 And the compounds described in JP-A-5-34920, the compounds described in US Pat. No. 4,212,976, and the like.
  • Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2 phenol-4, 6 bis (trichloromethyl) -1, 3, 5 Triazine, 2 — (4 Chlorphenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4 Tolyl) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxyphenyl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2,4 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2, 4, 6 Tris (trichloromethyl) -1, 3, 5 Triazine, 2-methyl-4, 6 Bis (trichloromethyl) -1,
  • Examples of the compound described in the British Patent 1388492 include 2-styryl
  • Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (4-Ethoxy-naphtho-1-yl) -4,6 bis ( ⁇ lichloromethyl) -1,3,5 ⁇ riadine, 2- [4- (2-ethoxyethyl) -naphtho-1-yl] -4 , 6 bis (trichloromethyl) 1, 3, 5 triazine, 2- (4, 7 dimethoxy mononaphtho 1-yl) 4, 6 bis (trichloromethyl) — 1, 3, 5 ⁇ lyazine, and 2— (acenaphth ⁇ -5-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine.
  • Examples of the compound described in the specification of the above-mentioned German Patent 3337024 include, for example, 2- (4-striylolenobinole) 4,6 bis (trichloromethinole) -1,3,5 triazine, 2- (4— (4—Met Cistyryl) phenol) -4, 6 bis (trichloromethyl) -1,3,5 triazine, 2- (1—naphthylbi-lenphenol) 1,6 bis (trichloromethyl) 1,3,5 triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene, 1) 4, 6 Examples include bis (trichloromethyl
  • Examples of the compounds described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer and the like include, for example, 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) -1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) — 1, 3, 5 Triazine, 2 Amamino— 4-Methyl-6 Tri (Bromomethyl) ) — 1, 3, 5 triazine, and 2-methoxy-4-methyl 6 trichloromethyl 1, 3, 5 triazine.
  • Examples of the compound described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2— (4— Naphthyl 1-Ethurhue-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Tril-Ethyl) phenol) — 4, 6 Bis (trichloromethyl) —1 , 3, 5 — Triazine, 2- (4— (4-Methoxyphenyl) ether furol) 4, 6—Bis (Trimethylromethyl) 1, 3, 5 Triazine, 2— (4— (4-Isopropylphenol) -Luture) Hue) 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 ethyl fuse-rucheur) Grav) 1, 4, 6 Bis (trichloromethyl) 1, 3 , 5 Triazines.
  • Examples of the compounds described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1, 4, 6 bis (trichloromethyl) 1, 3, 5 triazine Can be mentioned.
  • Examples of the compounds described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromo. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
  • Examples of the compound described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl).
  • Examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxy minobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxy iminobutane 2 on, 2 acetoximinopentane 3 on, 2-acetoximino — 1-phenolpropane 1-one, 2-benzoyloximino 1-phenolpropane — 1-one, 3-— (4-toluenesulfo-loxy) iminobutane-2-one, and 2 eth Xylcarboloxymino 1-phenolpropane-1-one.
  • Atalidine derivatives for example, 9-phenol lysine, 1,7 bis (9, 9, 1-ataridyl) heptane, etc.), N-phenol glycine, etc.
  • Polyhalogen compounds for example, carbon tetrabromide, felt rib mouth momethyl sulfone, phenyl trichloromethyl ketone, etc.
  • coumarins for example, 3- (2-benzofuroyl) 7-deethylaminocoumarin, 3 — (2 Benzofuroyl) 7— (1—Pyrrolidyl) coumarin, 3—Benzyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylaminocoumarin, 3— (4-Dimethylaminobenzol) 7 —Jetylaminocoumarin, 3,3,1-carbonylbis (5,7-g-propoxycoumarin), 3,3,1-carbonylbis (7-jetylaminocoumarin), 3 Benzyl 7-methoxycoumarin, 3— (2 Froyl) 7-Jetylaminocoumarin, 3- (4-Jetylaminocinnamoyl) 7-Jetylamino
  • Lucirin TPO Lucirin TPO
  • meta port mosses e.g., bis (r 5 -? 2, 4 cyclopentadiene Jefferies emissions - 1-I le) - bis (2, 6-difluoro 3- (IH-pyrrol - 1-I le) —Fuel) Titanium, 5- cyclopentagel-tame-ru iron (1 +)-hexafluorophosphate (1), etc.
  • JP-A-53-133428 JP-B-57-1819, 57 — Examples of the compounds described in Japanese Patent No. 6096 and US Pat. No. 3,615,455.
  • Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-clobenbenzophenone, and 4-clobenbenzophenone.
  • the sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible light laser, or the like as a light irradiation means described later.
  • the sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
  • the sensitizer can be appropriately selected from known sensitizers that are not particularly limited, and examples thereof include known polynuclear aromatics (for example, pyrene, perylene, triphenylene), oxalates.
  • Nentines eg, fluorescein, eosin, erythrosine synth, rhodamine B, rose bengal
  • cyanines eg, indocarboyanine, thiacarboyanine, oxacarboyanine
  • merocyanines eg, merocyanine, carbomerocyanine
  • Thiazines eg, thionine, methylene blue, toluidine blue
  • atalidines eg, acridine orange, chloroflavin, acriflavine
  • anthraquinones eg, anthraquinone
  • squaliums eg, squalium
  • attaridones eg, , Ataridon,
  • Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like.
  • the content of the sensitizer is preferably 0.05 to 30% by mass and more preferably 0.1 to 20% by mass with respect to all components in the photosensitive solder resist composition. 0.2 to 10% by mass is particularly preferred. If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take a long time, and productivity may be reduced.
  • the sensitizer may be precipitated from the photosensitive solder resist layer.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • halogenated carbonization having the phosphine oxides, the ⁇ -aminoalkyl ketones, and the triazine skeleton capable of supporting laser light having a wavelength of 405 nm in the later-described exposure.
  • examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer described later are combined, a hexaarylbiimidazole compound, or titanocene.
  • the content of the photopolymerization initiator in the photosensitive solder resist composition is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. It is preferable.
  • the thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose.
  • examples thereof include epoxy resin and polyfunctional oxetane compound.
  • the epoxy resin and the polyfunctional oxetane compound can be appropriately selected according to the purpose without any particular limitation.
  • Oxetane compounds can be used.
  • the epoxy resin is not particularly limited and can be appropriately selected according to the purpose.
  • bixylenol type or biphenol type epoxy resin (“ ⁇ 4000; manufactured by Japan Epoxy Resin Co., Ltd.") Or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; manufactured by Nissan Chemical Industries Ltd.”, “Araldite PT810; Chinoku 'Specialty' Chemicals, etc.), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type Epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenol methane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenol ethane Type epoxy resin, glycidyl phthalate resin, tetraglycidyl xylenol ethane resin, naphthalen
  • the polyfunctional oxetane compound is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include bis [(3-methyl-3-oxeta-lmethoxy) methyl] ether, bis [( 3 ethyl-3-oxeta-methoxy) methyl] ether, 1,4 bis [(3-methyl-1-3-methoxy) methyl] benzene, 1,4 bis [(3 ethyl-3-oxeta-methoxy) methyl] Benzene, (3-Methyl-3-oxeta-l) methyl acrylate, (3-Ethyl-3-oxeta-l) methyl acrylate, (3-Methyl-3-oxeta-l) methyl metatalylate, (3-Ethyl 3 In addition to polyfunctional oxetanes such as —oxeta-methyl) methyl metatalylate or oligomers or copolymers thereof,
  • the solid content in the solid content of the photosensitive solder resist composition solution of the epoxy resin or polyfunctional oxetane compound is not particularly limited and may be appropriately selected depending on the purpose. For example, 2 to 50% by mass is preferable, and 3 to 30% by mass is more preferable. .
  • the solid content is less than 2% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to electrolysis, and the like. On the other hand, if it exceeds 50% by mass, the developability may deteriorate and the exposure sensitivity may decrease.
  • the other thermal crosslinking agent can be added separately from the epoxy resin or polyfunctional oxetane compound.
  • the thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose.
  • a polyisocyanate compound described in JP-A-5-9407 can be used.
  • the cyanate compound may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing at least two isocyanate groups.
  • a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4-xylylene range Bifunctional such as isocyanate, bis (4 isocyanate phenyl) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate Isocyanate; polyfunctional alcohol of the bifunctional isocyanate with trimethylolpropane, pentalysitol, glycerin, etc .; adduct of the alkylene oxide adduct of the polyfunctional alcohol with the bifunctional isocyanate; Cyclic trimers such as tylene diisocyanate, hexamethylene-1,6 diisocyanate and its derivatives Etc., and the like.
  • Bifunctional such as isocyanate, bis
  • the photosensitive solder resist composition is a blocking agent for the polyisocyanate and the isocyanate group of the derivative thereof. You can use the compound obtained by reaction!
  • the isocyanate group blocking agent is not particularly limited, and can be appropriately selected according to the purpose.
  • Examples thereof include alcohols such as isopropanol and tert-butanol; ⁇ ratatas such as prolatamate; phenol, cresol, ⁇ -tert Phenols such as butylphenol, p-sec butenolevenore, p-sec aminorefenore, p-year-old chinenophenol, pnoylphenol; 3-hydroxypyridine, 8-hydroxyquinori Heterocyclic alkyl compounds such as dialkyl malonate; active methylene compounds such as diethylmalonate, methylethylketoxime, acetylethylacetone, alkylacetoacetoxime, acetooxime, cyclohexanone oxime; and the like.
  • alcohols such as isopropanol and tert-butanol
  • ⁇ ratatas such as prolatamate
  • phenol, cresol, ⁇ -tert Phenols such
  • a compound having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
  • aldehyde condensation products can be used.
  • methylol compounds instead of these methylol compounds, the corresponding ester or butyl ether, or ester of acetic acid or propionic acid may be used.
  • Hexamethylated methylol melamine composed of a formaldehyde condensation product of melamine and urea or butyl ether of a melamine and formaldehyde condensation product may be used.
  • the inorganic filler has the functions of improving the surface hardness of the permanent pattern, keeping the coefficient of linear expansion low, and keeping the dielectric constant and dielectric loss tangent of the cured layer itself low.
  • the inorganic filler can be appropriately selected from known ones that are not particularly limited. For example, kaolin, barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, gas phase method silica. Amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, My strength and the like.
  • the average particle size of the inorganic filler is preferably less than 3 m, more preferably 0.1-2 / zm. If the average particle size is 3 m or more, resolution may deteriorate due to light scattering.
  • the added amount of the inorganic filler is preferably 5 to 75% by mass, more preferably 8 to 70% by mass, and particularly preferably 10 to 65% by mass. When the added amount is less than 5% by mass, the linear expansion is sufficiently achieved. In some cases, the tension coefficient cannot be reduced.
  • the content exceeds 90% by mass when a cured film is formed on the surface of the photosensitive solder resist layer, the film quality of the cured film becomes brittle, and wiring is performed using a permanent pattern. In the case of forming the wiring, the function as a protective film of the wiring may be impaired.
  • organic fine particles may be added as necessary.
  • Suitable organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin.
  • silica having an average particle diameter of 0.1 to 2 / ⁇ ⁇ , an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
  • the permanent pattern Since the inorganic filler contains particles having an average particle size of 0.1 to 2 m, the permanent pattern is thinned to a thickness of 5 to 20 m as the printed wiring board becomes thinner. As a result, the inorganic filler particles do not cross-link the front and back surfaces of the permanent pattern. As a result, the permanent pattern has excellent heat resistance and moisture resistance that does not cause ion migration even in the high acceleration test (HAST). It can be.
  • HAST high acceleration test
  • the colorant can be appropriately selected according to the purpose without any particular limitation.
  • a dye such as a color pigment appropriately selected from known dyes can be used.
  • the coloring pigment can be appropriately selected according to the purpose without any particular limitation. For example, Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11) Huster's' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolite 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, C.
  • Bikku! J Pure One Blue BO CI 42595
  • Auramin CI 41000
  • the solid content of the colored pigment in the solid content of the photosensitive solder resist composition solution takes into consideration the exposure sensitivity and resolution of the photosensitive solder resist layer during permanent pattern formation. Generally, 0.1 to 10% by mass is preferable, but 0.5 to 8% by mass is more preferable.
  • thermosetting accelerator has a function of accelerating the thermosetting of the epoxy resin compound or the polyfunctional oxetane compound, and is preferably added to the photosensitive resin.
  • thermosetting accelerator is not particularly limited and can be appropriately selected depending on the purpose.
  • dicyandiamide benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy 1) N, N dimethylbenzylamine, 4-methyl — amine compounds such as N, N dimethylbenzylamine; quaternary ammonium salt compounds such as triethylbenzyl ammonium chloride; block isocyanates such as dimethylamine Compound: Imidazole, 2-Methylimidazole, 2-Ethylimidazole, 2-Ethyl-4-Methylimidazole, 2-Phenolimidazole, 4-Phenolimidazole, 1-Cyanoethyl-2-Phenolimidazole, 1- ( 2 Cyanoethyl) -2-Imidyl derivatives such as 2-ethylimidazole bicyclic amidi Compounds and salts thereof; phosphorus compounds such as
  • the solid content in the solid content of the photosensitive solder resist composition solution of the epoxy resin, the polyfunctional oxetane compound, and a compound capable of accelerating thermal curing of these with a carboxylic acid is usually from 0.01 to 20% by mass.
  • the other components are not particularly limited and can be appropriately selected according to the purpose. Examples thereof include solvents, adhesion promoters, thermal polymerization inhibitors, plasticizers, and other additives. Adhesion promoters and other auxiliaries (such as conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, release promoters, antioxidants, fragrances, surface tension modifiers) , Chain transfer agents, etc.) may be used in combination. By appropriately containing these components, the properties such as stability, photographic properties, and film properties of the intended photosensitive solder resist composition or photosensitive solder resist film can be adjusted.
  • Adhesion promoters and other auxiliaries such as conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, release promoters, antioxidants, fragrances, surface tension modifiers
  • Chain transfer agents etc.
  • the solvent is not particularly limited and may be appropriately selected according to the purpose.
  • examples thereof include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl ethyl propionate, dimethyl phthalate, benzoic acid Esters such as ethyl and methoxypropyl acetate; toluene, Aromatic hydrocarbons such as xylene, benzene, and ethylbenzene; Halogenated carbonization such as tetrasalt carbon, trichloroethylene, chlor
  • the adhesion promoter has a function of improving adhesion between layers, adhesion between a photosensitive solder resist layer and a substrate, and electrolytic corrosion.
  • the adhesion promoter is not particularly limited and can be appropriately selected according to the purpose.
  • melamine acetateguanamine, benzoguatemine, melamine phenol formalin oil, ethyl diamino 1 S triazine, 2, 4 diamino 1 S triazine 2, 4 diamino-6-xylyl-S-triazine and the like.
  • triazine compounds include the following structural formulas (E) to (G) manufactured by Shikoku Kasei Kogyo Co., Ltd .; 2 MZ—AZINE (Structural Formula (E)), 2E4MZ—AZINE (Structural Formula (F)), C11Z—AZINE (structure (G)).
  • the blending amount of the adhesion promoter is preferably 0.1 to 40% by mass, more preferably 0.1 to 20% by mass with respect to the solid content of the photosensitive solder resist composition.
  • the thermal polymerization inhibitor is preferably added to prevent thermal polymerization or temporal polymerization of the polymerizable compound and to improve storage stability.
  • the thermal polymerization inhibitor can be appropriately selected according to the purpose without any particular limitation.
  • the content of the thermal polymerization inhibitor is preferably from 0.001 to 5 mass%, more preferably from 0.005 to 2 mass%, based on the polymerizable compound. Mass% is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may be reduced, and if it exceeds 5% by mass, the sensitivity to active energy rays may be reduced.
  • additives are not particularly limited and can be appropriately selected according to the purpose.
  • thixotropic additives such as benton, montmorillonite, aerosol, amide wax, silicone-based, fluorine-based, polymer-based Additives such as antifoaming agents and leveling agents can be used.
  • the photosensitive solder resist film has at least a support 1 and a photosensitive solder resist layer 2, preferably a protective film 3, and further, if necessary. And other layers such as a cushion layer and an oxygen barrier layer (hereinafter abbreviated as PC layer).
  • PC layer an oxygen barrier layer
  • the form of the photosensitive film is not particularly limited, and can be appropriately selected according to the purpose.
  • the photosensitive solder resist layer and the protective film are provided on the support in this order.
  • the form etc. which have a soldering resist layer and the said protective film in this order are mentioned.
  • the photosensitive solder resist layer may be a single layer or a plurality of layers.
  • the support is not particularly limited and may be appropriately selected depending on the purpose, and is preferably capable of peeling off the photosensitive solder resist layer and having good light transmittance, and further has a surface surface. U, more preferred to have good smoothness.
  • the support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated butyl, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl ''
  • plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, and nylon film can be mentioned.
  • polyethylene terephthalate is particularly preferable. These can be used alone Or two or more of them may be used in combination.
  • the support for example, the supports described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, and the like are used. I can do it.
  • the thickness of the support may be appropriately selected according to the purpose for which there is no particular restriction.
  • ⁇ column; t is preferably 4 to 300 111 pieces, preferably 5 to 175 111 pieces.
  • the shape of the support can be appropriately selected according to the purpose without particular limitation, and is preferably long.
  • the length of the long support is not particularly limited, and examples thereof include a length of 10 m to 20000 m.
  • the photosensitive solder resist layer is formed by the photosensitive solder resist composition of the present invention.
  • the portion of the photosensitive solder resist layer provided in the photosensitive solder resist film can be appropriately selected according to the purpose without any particular limitation, but is usually laminated on the support.
  • the photosensitive solder resist layer is formed by modulating light from the light irradiating means by light modulating means having n picture elements for receiving and emitting light from the light irradiating means in an exposure process described later. It is preferable that the exposure is performed with light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface in the picture element portion.
  • the thickness of the photosensitive solder resist layer can be appropriately selected according to the purpose without any particular limitation, and for example, 3 to 100 ⁇ m is preferable, and 5 to 70 ⁇ m is more preferable.
  • the photosensitive solder resist composition of the present invention is dissolved, emulsified or dispersed in water or the solvent on the support, and the photosensitive solder resist layer is formed.
  • a method of laminating by preparing a resist composition solution, applying the solution directly, and drying the solution is mentioned.
  • the method of coating can be appropriately selected according to the purpose without any particular limitation.
  • spin coater slit spin coater, roll coater, die coater, force
  • the drying conditions vary depending on each component, the type of solvent, the use ratio, etc.
  • the protective film has a function of preventing and protecting the photosensitive solder resist layer from being stained and damaged.
  • the portion provided in the photosensitive solder resist film of the protective film can be appropriately selected according to the purpose without any particular limitation, but is usually provided on the photosensitive solder resist layer.
  • protective film examples include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among these, polyethylene film, polypropylene, etc. A film is preferred.
  • the thickness of the protective film is a force that can be appropriately selected according to the purpose for which there is no particular limitation. For example, 5 to 100 ⁇ m is preferable, and 8 to 30 ⁇ m is more preferable.
  • the adhesive strength A of the photosensitive solder resist layer and the support and the adhesive strength B of the photosensitive solder resist layer and the protective film satisfy an adhesive strength A> adhesive strength B.
  • a relationship is preferred.
  • Examples of the combination of the support and the protective film include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc.
  • the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive strength with the photosensitive solder resist layer.
  • coating of a primer layer corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation Treatment, glow discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like.
  • the coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4. It is better than 0.5 ⁇ 1.2 power! / ⁇ .
  • the photosensitive solder resist film is preferably wound around a cylindrical core, wound into a long roll, and stored.
  • the length of the long photosensitive solder resist film is not particularly limited, for example, 10 ⁇ ! Range of ⁇ 20, OOOm Force can be selected as appropriate.
  • slitting may be performed to make it easy for the user to use, and a long body in the range of 1 OOm to l, OOOm may be rolled.
  • the support is wound up so that the support is on the outermost side.
  • the roll-shaped photosensitive solder resist film may be slit into a sheet shape.
  • a separator especially moisture-proof and containing a desiccant
  • the packaging has low moisture permeability. It is preferable to use materials.
  • the protective film may be subjected to a surface treatment in order to adjust the adhesion between the protective film and the photosensitive solder resist layer.
  • a surface treatment for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film.
  • the undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (especially 50 to 120 ° C) for 1 to 30 minutes. Can do.
  • a tack layer In addition to the photosensitive solder resist layer, the support, and the protective film, there are layers such as a tack layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, and a surface protective layer. Do it.
  • the cushion layer is a layer that melts and flows when laminated under vacuum and heating conditions that have no tackiness at room temperature.
  • the PC layer is a film of about 1. which is usually formed mainly of polybulal alcohol.
  • the photosensitive solder resist film of the present invention is excellent in storage stability and excellent after development. It has a photosensitive solder resist layer laminated with a photosensitive solder resist composition that exhibits chemical resistance, surface hardness, heat resistance, and the like. For this reason, it can be widely used for the formation of permanent patterns such as printed wiring boards, color filter pillars, ribs, spacers, partition members, display members, holograms, micromachines, proofs, etc. It can be suitably used for a permanent pattern and a method for forming the permanent pattern.
  • the photosensitive solder resist film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned when forming the permanent pattern, the film is high.
  • the acceleration test HAST
  • a high-definition permanent pattern with excellent heat resistance and moisture resistance that does not cause ion migration can be obtained, so that lamination to the substrate is performed more precisely.
  • the permanent pattern of the present invention is obtained by the permanent pattern forming method of the present invention.
  • the photosensitive solder resist composition of the present invention is applied to the surface of a substrate, dried to form a photosensitive solder resist layer, and then exposed. ,develop.
  • the photosensitive solder resist film of the present invention is laminated on the surface of the substrate under at least one of heating and pressurization, and then exposed. And develop.
  • the base material can be appropriately selected from publicly known materials that are not particularly limited to those having a high surface smoothness and a surface having an uneven surface, and a plate-like base material (substrate) is preferred.
  • Specific examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like.
  • the printed wiring board forming substrate has already been formed in terms of the high density mounting of semiconductors, etc. on the multilayer wiring board and build-up wiring board that are preferred by the printed wiring board forming substrate. Is particularly preferred.
  • the base material is, as the first aspect, a laminate in which a photosensitive solder resist layer made of the photosensitive solder resist composition is formed on the base material, or the second aspect.
  • a laminate in which the photosensitive solder resist layers in the photosensitive solder resist film are laminated so as to overlap each other That is, by exposing to the photosensitive solder resist layer in the laminate, the exposed area can be cured, and a permanent pattern can be formed by developing described later.
  • the method for forming the laminate of the first aspect can be appropriately selected according to the purpose without any particular limitation, and is formed by applying and drying the photosensitive solder resist composition on the substrate. It is preferable to laminate a photosensitive solder resist layer.
  • the coating and drying method can be appropriately selected depending on the purpose without any particular limitation.
  • the photosensitive solder resist layer is formed in the photosensitive solder resist film. It can be performed by the same method as the application and drying of the solder resist composition solution.
  • the photosensitive solder resist composition solution is used using a spin coater, slit spin coater, roll coater, die coater, curtain coater, etc. The method of apply
  • coating is mentioned.
  • the method for forming the laminate of the second aspect can be appropriately selected according to the purpose without any particular limitation, and the photosensitive solder resist film is heated and pressurized at least on the substrate. It is preferable to perform the lamination while performing either one.
  • the protective film is preferably peeled off and laminated so that the photosensitive solder resist layer overlaps the base material.
  • the heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 70 to 130 ° C is preferable, and 80 to 110 ° C is more preferable.
  • the pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular limitation. Excluded column, 0.01-: L OMPa force is preferable, 0.05-: L OMPa force is more preferable ⁇ It's better!
  • the apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation.
  • a heat press for example, Taisei Laminate Earthen, VP- ⁇
  • vacuum laminator for example, Meiki Seisakusho,
  • MVLP500 MVLP500
  • the like are preferable.
  • the exposure step is a step of exposing the photosensitive solder resist layer.
  • the subject of the exposure can be appropriately selected depending on the purpose without any limitation as long as it is a material having a photosensitive solder resist layer.
  • the photosensitive solder resist composition on a substrate. It is preferable to be performed on the above-mentioned laminated body in which the product or the photosensitive solder resist film is formed.
  • the exposure to the laminate can be appropriately selected depending on the purpose without any particular limitation.
  • the photosensitive solder resist layer is exposed through the support, the cushion layer, and the PC layer. After peeling off the support, the photosensitive solder resist layer may be exposed through the cushion layer and the PC layer. After peeling off the support and cushion layer, the PC layer is peeled off. The photosensitive solder resist layer may be exposed after the support, cushion layer and PC layer are peeled off.
  • the exposure can be appropriately selected according to the purpose without particular limitation, and includes digital exposure, analog exposure, and the like. Among these, digital exposure is preferable.
  • the digital exposure can be appropriately selected according to the purpose without any particular restriction.
  • a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal. I prefer to use light.
  • the digital exposure means can be appropriately selected according to the purpose without any particular restriction.
  • the light irradiation means for irradiating light and the light irradiation means for irradiation based on the pattern information to be formed.
  • a light modulation means for modulating the light to be emitted are appropriately selected according to the purpose without any particular restriction.
  • the light modulating means can be appropriately selected according to the purpose without any limitation as long as light can be modulated.
  • the light modulating means preferably has n pixel portions.
  • the light modulation means having the n picture elements can be appropriately selected according to the purpose without any particular limitation.
  • a spatial light modulation element is preferable.
  • the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (S LM; Special Light Modulator), and transmission by an electro-optic effect.
  • Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
  • the light modulation means has a pattern signal generation means for generating a control signal based on pattern information to be formed.
  • the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
  • control signal can be appropriately selected according to the purpose for which there is no particular limitation.
  • a digital signal is preferably used.
  • the DMD 50 has an SRAM cell (memory cell) 60 and a large number of micromirrors 62 (for example, 1024 x 768) that make up each pixel. It is a mirror device arranged in a shape. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a highly reflective material such as aluminum is deposited on the surface of the micromirror 62. Note that the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch thereof is 13. as an example in both the vertical and horizontal directions.
  • CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke, and the entire structure is monolithically configured. ing.
  • the microphone mirror 62 supported by the support is ⁇ degrees (eg ⁇ 12 °) with respect to the substrate side on which the DMD50 is arranged with the diagonal line as the center. ) Tilted within the range.
  • FIG. 3A shows a state tilted to + ⁇ degrees when the micromirror 62 is in the on state
  • FIG. 3B shows a state tilted to ⁇ degrees when the micromirror 62 is in the off state. Therefore, by controlling the tilt of the micro mirror 62 in each pixel of the DMD 50 according to the pattern information as shown in FIG. 2, the laser light incident on the DMD 50 is tilted in the direction of the tilt of each micro mirror 62. Reflected to.
  • FIG. 2 a part of the DMD 50 is enlarged, and the micromirror 62 is + ⁇ degrees or ⁇ degrees.
  • An example of the state of being controlled is shown below.
  • the on / off control of each micromirror 62 is performed by a controller 302 (see FIG. 13) connected to the DMD 50.
  • a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the micromirror 62 in the off state travels.
  • the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle ⁇ (for example, 0.1 ° to 5 °) with the sub-scanning direction.
  • 4A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted
  • FIG. 4B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • the DMD50 has a micromirror array force in which a large number of micromirrors are arranged in the longitudinal direction (for example, 1024). A force in which a large number of ⁇ 1_ (for example, 756 threads) is arranged in the short direction. As shown, by tilting the DMD 50, the pitch P of the scanning trajectory (scan line) of the exposure beam 53 by each micromirror P 1S, the pitch P of the scanning line when the DMD 50 is not tilted
  • the scanning width w in this case is substantially the same.
  • high-speed modulation a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
  • the light modulation unit can control any less than n pixel elements arranged continuously from the n pixel elements according to pattern information.
  • the data processing speed of the optical modulation means is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. Using only this increases the modulation rate per line.
  • the laser light B When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the microphone mouth mirror of the DMD 50 is turned on is coupled onto the photosensitive solder resist layer 150 by the lens systems 54 and 58. Imaged. In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive solder resist layer 150 has approximately the same number of pixel units as the number of pixels used in the DM D50 (exposure area 168). It is exposed with.
  • photosensitive solder resist layer 150 When the photosensitive solder resist layer 150 is moved at a constant speed together with the stage 152, the photosensitive solder resist layer 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
  • the DMD 50 has a force in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction.
  • the controller 302 (see FIG. 13) performs control so that only a part of the micromirror rows (for example, 1024 ⁇ 256 rows) is driven.
  • the micromirror array arranged at the end of DMD50 may be used as shown in FIG. 5B. May be used.
  • the micromirror array used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
  • the data processing speed of the DMD50 is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. The modulation speed per hit is increased. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
  • the stage 152 is moved to the guide 158 by the stage driving device 304. Along the uppermost stream side of the gate 160 along the guide 158 and moved again at a constant speed along the guide 158 from the upstream side of the gate 160 to the downstream side.
  • modulation can be performed twice as fast per line as compared to using all 768 sets. Also, when only 256 pairs are used in the 768 micromirror array, modulation can be performed three times faster per line than when all 768 pairs are used.
  • the micromirror row force in which 1024 micromirrors are arranged in the main scanning direction includes the DMD arranged in 768 threads in the subscanning direction.
  • Force controller drives only a part of the micromirror array As a result of this control, the modulation speed per line becomes faster than when all the micromirror arrays are driven.
  • the force described in the example of partially driving the micromirror of the DMD has a length in the direction corresponding to the predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even if a long and narrow DMD in which a number of micromirrors that can change the angle of the reflecting surface are arranged in two dimensions is used, the number of micromirrors that control the angle of the reflecting surface is reduced. Can be fast.
  • the exposure method is performed while relatively moving the exposure light and the photosensitive solder resist layer.
  • the exposure method is preferably used in combination with the high-speed modulation. Thereby, high-speed exposure can be performed in a short time.
  • the entire surface of the photosensitive solder resist layer 150 may be exposed by a single scan in the X direction by the scanner 162, as shown in FIGS. 7A and 7B.
  • the scanner 162 is moved one step in the Y direction and scanned in the X direction. Let's expose the entire surface of the photosensitive solder resist layer 150 by scanning.
  • the scanner 162 includes 18 exposure heads 166.
  • the exposure head includes at least the light irradiation unit and the light modulation unit.
  • the exposure is performed on a partial region of the photosensitive solder resist layer, whereby the partial region is cured, and in the development step described later, the cured partial region is performed. Uncured areas other than the areas are removed, and a permanent pattern is formed.
  • the pattern forming apparatus including the light modulation means includes a flat plate stage 152 for adsorbing and holding the laminated body having the photosensitive solder resist layer 150 on the surface.
  • the stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is reciprocated by the guide 158. Supported as possible.
  • the pattern forming apparatus includes a driving device (not shown) for driving the stage 152 along the guide 158.
  • a U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the photosensitive solder resist layer 150 are provided on the other side. It has been.
  • the scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152.
  • the scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (eg, 3 rows and 5 columns). I have. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive solder resist layer 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are represented as an exposure head 166.
  • An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Therefore, as the stage 152 moves, a strip-shaped exposed region 170 is formed for each exposure head 166 in the photosensitive solder resist layer 150. When the exposure area by each exposure head arranged in the m-th row and the n-th column is shown, it is expressed as an exposure area 168. mn
  • each of the exposure heads in each row arranged in a line so that the strip-shaped exposed region 170 is arranged without a gap in a direction orthogonal to the sub-scanning direction, Arranged at a predetermined interval in the arrangement direction (natural number times the long side of the exposure area, twice in this example). Therefore, the exposure between the exposure area 168 in the first row and the exposure area 168
  • each of the exposure heads 166 to 166 has an incident optical beam.
  • the light modulation means (spatial light modulation element for modulating each pixel in accordance with pattern information) As a child), it is equipped with a digital 'micromirror' device (DMD) 50 manufactured by Texas 'Instrumentum'.
  • the DMD 50 is connected to the controller 302 (see FIG. 13) having a data processing unit and a mirror drive control unit.
  • the data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information.
  • the areas to be controlled will be described later.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.
  • a fiber array light source having a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order.
  • the lens system 67 is schematically shown.
  • the lens system 67 has a condensing lens 71 that condenses laser light B as illumination light emitted from the fiber array light source 66, and an optical path of light that has passed through the condensing lens 71.
  • An inserted rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72, and an imaging lens 74 force arranged in front of the rod integrator 72, that is, on the mirror 69 side, are also configured.
  • the condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform intensity in the beam cross section.
  • the shape and action of the rod integrator 72 will be described in detail later.
  • the laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70.
  • the TIR prism 70 is omitted.
  • an imaging optical system 51 that forms an image of the laser light B reflected by the DMD 50 on the photosensitive solder resist layer 150 is disposed.
  • This imaging optical system 51 is schematically shown in FIG. 11, but as shown in detail in FIG.
  • the first imaging optical system consisting of the second imaging optical system consisting of lens systems 57 and 58, the microlens array 55 inserted between these imaging optical systems, and the aperture array 59 are also configured. Has been.
  • the microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the respective pixels of the DMD 50.
  • the microlens 55a is arranged by 1024 x 256 rows.
  • the arrangement pitch of microlenses 55a is 41 ⁇ m in both the vertical and horizontal directions.
  • the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed of the optical glass BK7.
  • the shape of the microlens 55a will be described in detail later.
  • the beam diameter of the laser beam B at the position of each microlens 55a is 41 ⁇ m.
  • the aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55.
  • the diameter of the aperture 59a is, for example, 10 m.
  • the first imaging optical system forms an image on the microlens array 55 by enlarging the image by the DMD 50 three times. Then, the second imaging optical system enlarges the image that has passed through the microlens array 55 by 1.6 times, and forms and projects it on the photosensitive solder resist layer 150. Therefore, as a whole, the DMD50 image is magnified by 4.8 times and formed on the photosensitive solder resist layer 150 and projected.
  • a prism pair 73 is provided between the second imaging optical system and the photosensitive solder resist layer 150, and the prism pair 73 is moved in the vertical direction in FIG. The focus of the image on the light solder resist layer 150 can be adjusted. In the figure, the photosensitive solder resist layer 150 is sub-scanned in the direction of arrow F.
  • the pixel part can be appropriately selected according to the purpose without any limitation as long as it can receive and emit light from the light irradiation means.
  • the permanent pattern of the present invention can be selected.
  • the permanent pattern formed by the forming method is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror.
  • the number of picture element portions (n mentioned above) of the light modulation element can be appropriately selected according to the purpose without particular limitation.
  • the arrangement of the picture element portions in the light modulation element can be appropriately selected according to the purpose for which there is no particular restriction.
  • the arrangement is preferably a two-dimensional arrangement in a lattice shape. More preferably.
  • the light irradiation means can be appropriately selected according to the purpose without any particular limitation.
  • a known light source such as a semiconductor laser or a means capable of combining and irradiating two or more lights is exemplified, and among these, means capable of combining and irradiating two or more lights is preferable.
  • the light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support.
  • ultraviolet to visible light, electron beam, X-ray, laser light, etc. are mentioned. Of these, laser light is preferred.
  • Laser light combining two or more lights hereinafter referred to as “combined laser light” Is more preferable. Similar light can be used even when the support is peeled off and light is irradiated with force.
  • the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ⁇ ! ⁇ 650mn force ⁇ especially preferred!
  • the wavelength of the laser beam is, for example, 200 to 1500 nm force S, preferably 300 to 800 nm, more preferably 330 nm to 500 nm force S, and particularly preferably 395 nm to 415 nm.
  • Examples of means capable of irradiating the combined laser beam include a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces to collect the multimode optical fiber.
  • U a means having a collective optical system coupled to U is preferred.
  • the fiber array light source 66 includes a plurality of (eg, 14) laser modules. And one end of the multimode optical fiber 30 is coupled to each laser module 64. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in detail in FIG. 28B, seven ends of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows. A laser emitting unit 68 is configured.
  • the laser emitting portion 68 constituted by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Moreover, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection.
  • the light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate.However, the protective plate as described above prevents the dust from adhering to the end face. Deterioration can be delayed.
  • the multimode optical fiber 30 between two adjacent multimode optical fibers 30 with a large cladding diameter is arranged.
  • the optical fiber 30 is stacked, and the output end of the optical fiber 31 coupled to the stacked multimode optical fiber 30 is connected to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large. They are arranged so as to be sandwiched between the two exit ends.
  • such an optical fiber has a light with a small cladding diameter of 1 to 30 cm in length at the tip of the multimode optical fiber 30 with a large cladding diameter on the laser light emission side. It can be obtained by coupling the fibers 31 coaxially.
  • the two optical fibers are fused and bonded to the incident end face force of the optical fiber 31 and the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide.
  • the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
  • a short optical fiber in which an optical fiber having a short length and a large cladding diameter is fused to the cladding diameter and the optical fiber is output from the multimode optical fiber 30 through a ferrule, an optical connector, or the like. It may be joined to the end. Removable coupling using a connector, etc. makes it easy to replace the tip when an optical fiber with a small cladding diameter is damaged. The cost required for the maintenance of the exposure head can be reduced.
  • the exit end of the multimode optical fiber 30 may be referred to as the exit end of the multimode optical fiber 30.
  • the multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber.
  • a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used.
  • the cladding thickness ⁇ (cladding diameter, one core diameter) Z2 ⁇ is set to the 800 nm wavelength band. About 1Z2 when propagating infrared light, 1.
  • the cladding diameter can be reduced to 60 m.
  • the clad diameter of the optical fiber 31 is not limited to 60 ⁇ m.
  • Conventional fiber array The optical fiber used in the light source has a cladding diameter of 125 m.
  • m is preferably 40 m or less.
  • the cladding diameter of the optical fiber 31 is preferably 10 ⁇ m or more.
  • the laser module 64 includes a combined laser light source (fiber array light source) shown in FIG.
  • This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 arranged and fixed on the heat block 10.
  • And LD7, and GaN-based semiconductor laser L D1 ⁇ Collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of LD7, one condenser lens 20, and 1 A multimode optical fiber 30 ing.
  • the number of semiconductor lasers is not limited to seven.
  • the GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser).
  • As the GaN-based semiconductor lasers LD1 to LD7 lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
  • the combined laser light source is housed in a box-shaped package 40 having an upper opening, together with other optical elements.
  • the package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged.
  • the combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
  • a base plate 42 is fixed to the bottom surface of the package 40.
  • the heat block 10 On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 that holds the condensing lens 20, and the multimode light.
  • a fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the package 40.
  • a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held.
  • An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
  • FIG. 32 in order to avoid the complexity of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses. The number is attached only to.
  • FIG. 33 shows the front shape of the mounting portion of the collimator lenses 11-17.
  • the Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane.
  • This elongated collimator lens can be formed, for example, by molding a resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the emission points so that the length direction is orthogonal to the arrangement direction of emission points of the GaN-based semiconductor lasers LD1 to LD 7 (left and right direction in FIG. 33). Yes.
  • each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 m, and the divergence angles in the direction parallel to the active layer and in the direction perpendicular thereto are, for example, 10 ° and 30 °, respectively. Lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
  • the laser beams B1 to B7 emitted from the respective light emitting points are spread in the direction in which the divergence angle is large with respect to the elongated collimator lenses 11 to 17 as described above.
  • the incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction).
  • the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm.
  • the condensing lens 20 is obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a thin plane in a parallel plane and perpendicular to the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a shape that is short in the direction.
  • the condensing lens 20 is also formed, for example, by molding a resin or optical glass.
  • the light emitting means for illuminating the DMD uses a high-luminance fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, a high output and deep focus A pattern forming apparatus having a depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced. [0224] Further, since the cladding diameter of the output end of the optical fiber is made smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased.
  • a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 ⁇ m or less and a resolution of 0.1 ⁇ m or less, a deep focal depth can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.
  • TFT thin film transistor
  • the light irradiation means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, laser light incident from a single semiconductor laser having one light emitting point.
  • a fiber array light source in which a fiber light source including one optical fiber emitting light is arrayed can be used.
  • the light irradiation means having a plurality of light emitting points for example, as shown in FIG. 34, a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 on a heat block 100: LD7 Can be used.
  • a chip-shaped multi-cavity laser 110 shown in FIG. 35A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction is known.
  • the light emitting points can be arranged with higher positional accuracy than in the case where the chip-shaped semiconductor lasers are arranged, so that the laser beams emitted from the respective light emitting point forces can be easily combined.
  • the number of light emitting points 110a is preferably 5 or less.
  • a plurality of multi-cavity lasers 110 are arranged on the heat block 100 as shown in FIG.
  • a multi-cavity laser array arranged in the same direction can be used as a laser light source.
  • the combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers.
  • a combined laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (for example, three) emission points 110a can be used.
  • the combined laser light source includes a multi-cavity laser 110, a single multimode optical fiber 130, and a condenser lens 120.
  • Ma The lucability laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
  • each of the laser beams B also emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is collected by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. To do.
  • the laser light incident on the core 130a is propagated in the optical fiber, combined into one, and emitted.
  • a plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fiber 130, and the multi-mode optical fiber 130 is used as the condenser lens 120.
  • V The coupling efficiency to the optical fiber 130 can be increased.
  • a plurality of (for example, nine) multi-carriers are provided on the heat block 111 using a multi-cavity laser 110 having a plurality of (for example, three) emission points.
  • a combined laser light source including a laser array 140 in which the bit lasers 110 are arranged at equal intervals can be used.
  • the plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
  • This combined laser light source is arranged between the laser array 140, the plurality of lens arrays 114 arranged corresponding to each multi-capacity laser 110, and the laser array 140 and the plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multimode optical fiber 130, and a condenser lens 120.
  • the lens array 114 includes a plurality of microlenses corresponding to the light emission points of the multi-capacity laser 110.
  • each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then the lens array 114.
  • the light is collimated by each microlens.
  • the collimated laser beam L is collected by the condensing lens 120 and enters the core 13 Oa of the multimode optical fiber 130.
  • the laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • this combined laser light source has a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and is stored between two heat blocks. A space is formed.
  • a plurality of (for example, two) multi-cavity lasers in which a plurality of light-emitting points (for example, five) are arranged in an array form 110 power light-emitting points for each chip 110a It is fixed and arranged at equal intervals in the same direction as the arrangement direction.
  • the substantially rectangular heat block 180 has a recess, and a plurality of light emitting points (for example, five) are arranged on the space side upper surface of the heat block 180 (for example, five).
  • the two multi-cavity lasers 110 are arranged so that their emission points are located on the same vertical plane as the emission points of the laser chips arranged on the upper surface of the heat block 182.
  • a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting points 110a of the respective chips is arranged.
  • the length direction of each collimating lens and the divergence angle of the laser beam are large V and the direction (fast axis direction) coincides, and the width direction of each collimating lens is divergence is small! /, Direction It is arranged so as to coincide with (slow axis direction).
  • collimating lenses are arrayed and integrated to improve the space utilization efficiency of the laser beam, increase the output of the combined laser light source, reduce the number of parts, and reduce the cost. it can.
  • the collimating lens array 184 there is a single multimode optical fiber 130 and a condensing unit that condenses the laser beam to the incident end of the multimode optical fiber 130.
  • An optical lens 120 is disposed.
  • each of the laser beams B also emitted from the plurality of light-emitting points 110a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184. And condensed by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
  • the combined laser light source can achieve particularly high output by the multistage arrangement of multi-cavity lasers and the array of collimating lenses.
  • a higher-intensity fiber array light source or bundle fiber light source is constructed. Therefore, it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus.
  • a laser module in which each of the combined laser light sources is housed in a casing and the emission end portion of the multimode optical fiber 130 is pulled out from the casing can be configured.
  • a fiber array is formed by coupling another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • Another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source.
  • a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 ⁇ m, etc. can be used without coupling another optical fiber to the output end. Also good.
  • each exposure head 166 of the scanner 162 laser light Bl, B2, B3, B4, GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 is emitted in the state of divergent light.
  • Each of B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17.
  • the collimated laser beams B1 to B7 are collected by the condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
  • the collimating lenses 11 to 17 and the condensing lens 20 constitute a condensing optical system
  • the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30 and propagate through the optical fiber. The light is output from the optical fiber 31 combined and coupled to the output end of the multimode optical fiber 30.
  • a conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has low output, so if the multiple rows are not arranged, the desired force cannot be obtained. Since the wave laser light source has high output, a desired output can be obtained even with a small number of columns, for example, one column.
  • a laser with an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber.
  • Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) 0.2 is used, so if you want to obtain an output of about 1 W (watt), 48 multimode optical fibers ( 8 X 6)
  • the luminous area is 0.62 mm 2 (0.675 mm X O. 925 mm)
  • the brightness at the laser emitting section 68 is 1.6 X 10 6 (W / m 2)
  • brightness per optical fiber is 3.2 X 10 6 (WZm 2 ).
  • the light irradiating means is a means capable of irradiating a combined laser beam
  • an output of about 1 W can be obtained with six multimode optical fibers. Since the area of the light emitting area is 0.0081 mm 2 (0.325 mm X 0.025 mm), the brightness at the laser emitting part 68 is 123 X 10 6 (WZm 2 ), which is about 80 times higher than the conventional brightness. Can be achieved.
  • the luminance per optical fiber is 90 X 10 6 (WZm 2 ), which is about 28 times higher than before.
  • the diameter of the light emission area of the bundled fiber light source of the conventional exposure head is 0.675 mm, and the diameter of the light emission area of the fiber array light source of the exposure head is 0.025 mm.
  • the light emitting means (bundle fiber light source) 1 has a large light emitting area, so the angle of the light beam incident on the DMD 3 increases, and as a result, the light beam enters the scanning surface 5. The angle of the light beam increases. For this reason, the beam diameter tends to increase with respect to the condensing direction (shift in the focus direction).
  • the exposure head in the pattern forming apparatus passes through the lens system 67 because the diameter of the light emitting area of the fiber array light source 66 in the sub-scanning direction is smaller.
  • the angle of the light beam incident on the DMD 50 decreases, and as a result, the angle of the light flux incident on the scanning surface 56 decreases. That is, the depth of focus becomes deep.
  • the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot.
  • DMD is a reflective spatial light modulator, but FIGS. 38A and 38B are developed views for explaining the optical relationship.
  • Pattern information power corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and stored in a frame memory in the controller.
  • This pattern information is data that represents the density of each pixel constituting the image as binary values (whether or not dots are recorded).
  • the stage 152 having the photosensitive solder resist film 150 having the photosensitive solder resist layer 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). Is done.
  • a driving device not shown.
  • the pattern information stored in the frame memory is stored for each of a plurality of lines.
  • a control signal is generated for each exposure head 166 based on the pattern information read out sequentially and read out by the data processing unit.
  • each of the micromirrors of the DMD 50 is turned on / off for each exposure head 166 based on the generated control signal by the mirror drive control unit.
  • the DMD 50 When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the microphone mouth mirror of the DMD 50 is in the ON state is reflected on the photosensitive solder resist layer 150 by the lens systems 54 and 58. An image is formed on the exposed surface 56. In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive solder resist layer 150 is in the same number of pixel units (exposure area 168) as the number of pixels used in the DMD50. Exposed. Further, since the photosensitive solder resist layer 150 is moved at a constant speed together with the stage 152, the photosensitive solder resist layer 150 is moved in the direction of stage movement by the scanner 162. Sub-scanning is performed in the opposite direction, and a strip-shaped exposed region 170 is formed for each exposure head 166.
  • the exposure is preferably performed through the microlens array with the modulated light, and may be performed through an aperture array, an imaging optical system, or the like.
  • the microlens array can be appropriately selected according to the purpose without any particular limitation.
  • the microlens array has a non-spherical surface capable of correcting aberration due to distortion of the exit surface in the pixel portion.
  • Preferred examples include those in which
  • the aspherical surface can be appropriately selected depending on the purpose without particular limitation, and for example, a toric surface is preferable.
  • FIG. 14A shows DMD50, DMD50 with light irradiation means 144 for irradiating laser light, and lens system (imaging optical system) 454, 458, DM D50 for enlarging and imaging the laser light reflected by DMD50.
  • a microlens array 472 in which a large number of microlenses 474 are arranged corresponding to each pixel part, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, and an aperture
  • FIG. 15 shows the result of measuring the flatness of the reflecting surface of the micromirror 62 constituting the DMD 50.
  • the same height position of the reflecting surface is shown connected by contour lines, and the contour line pitch is 5 nm.
  • the X direction and the y direction shown in the figure are the two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above.
  • 16A and 16B show the height position displacement of the reflecting surface of the micromirror 62 along the X direction and the y direction, respectively.
  • the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the center of the mirror, one diagonal direction (y direction) ) Distortion 1S
  • the distortion is larger than the distortion in another diagonal direction (X direction). Therefore, the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted. Problems may occur.
  • the microlens 55a of the microlens array 55 has a special shape different from the conventional one. This point will be explained in detail below.
  • FIG. 17A and FIG. 17B respectively show the front shape and the side shape of the entire microlens array 55 in detail. These figures also show the dimensions of each part of the microlens array 55, and their units are mm.
  • the 1024 ⁇ 256 micro mirrors 62 of the DMD 50 are driven, and the micro lens array is correspondingly driven.
  • 55 is configured by arranging 256 rows of 1024 microlenses 55a in the horizontal direction in parallel in the vertical direction.
  • the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction! /.
  • FIGS. 18A and 18B show the front and side shapes of one microphone opening lens 55a in the microlens array 55, respectively.
  • FIG. 18A also shows contour lines of the micro lens 55a.
  • the end surface of each microlens 55a on the light emission side has an aspherical shape that corrects aberration due to distortion of the reflection surface of the micromirror 62.
  • the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 19A and 19B, respectively.
  • the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. ing.
  • z This value indicates the evaluation position in the focus direction of the microlens 55a by the distance from the beam exit surface of the microlens 55a.
  • the surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
  • X is the lens optical axis in the X direction. This means the distance of O force
  • Y means the distance of the lens optical axis O force in the y direction.
  • the permanent pattern forming method of the present invention allows the microlens 55a to have a focal length in a cross section parallel to the y direction in the X direction.
  • a toric lens smaller than the focal length in the parallel cross section, distortion of the beam shape in the vicinity of the light collecting position is suppressed. If so, a higher-definition image without distortion can be exposed on the photosensitive solder resist layer 150. Further, it can be seen that the region where the direction beam diameter is small in this embodiment shown in FIGS. 20A to 20D is wider, that is, the depth of focus is larger.
  • the focal length in the cross section parallel to the X direction is parallel to the y direction. If the microlens is made up of a toric lens that is smaller than the focal length in the cross section, similarly, a higher-definition image without distortion can be exposed to the photosensitive solder resist layer 150.
  • the aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged such that only light that has passed through the corresponding microlens 55a is incident on each aperture 59a. That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
  • the diameter of the aperture 59a of the aperture array 59 that is installed for the above purpose is increased to a certain extent. If the degree is reduced, an effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can be obtained. However, if this is done, the amount of light blocked by the aperture array 59 will increase and the light utilization efficiency will decrease. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because light is not blocked.
  • the microlens 55a may have a higher-order (fourth-order, sixth-order ...
  • the beam shape can be further refined.
  • the end surface of the microlens 55a on the light emission side is an aspherical surface.
  • a microlens array is configured with one of the two light-passing end surfaces being a spherical surface and the other being a cylindrical surface, the same effect as in the above embodiment can be obtained. It can also be obtained.
  • the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62.
  • the same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflecting surface of the micromirror 62 instead of adopting the shape.
  • FIGS. 23A and 23B An example of such a microlens 155a is shown in FIGS. 23A and 23B.
  • FIG. 23A and FIG. 23B show a front shape and a side shape of the micro lens 155a, respectively.
  • the outer shape of the micro lens 155a is a parallel plate shape. The x and y directions in the figure are as described above.
  • FIGS. 24A and 24B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a.
  • the microlens 155a has a refractive index distribution in which the optical axis O force gradually increases outward, and the broken line shown in the microlens 155a in FIG. The position changed with the pitch is shown.
  • the latter cross section is the microlens 155a.
  • the rate of change in the refractive index is greater and the focal length is becoming shorter. Even when a microlens array composed of such refractive index distribution type lenses is used, it is possible to obtain the same effect as when the microlens array 55 is used.
  • a refractive index as described above is also applied to a microlens having an aspherical surface shape like the microlens 55a previously shown in FIGS. 18A, 18B, 19A, and 19B. It is possible to give a distribution and correct aberration due to distortion of the reflecting surface of the micromirror 62 by both the surface shape and the refractive index distribution.
  • the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected.
  • the present invention can be applied to correct the aberration caused by the distortion and prevent the beam shape from being distorted.
  • the cross-sectional area of the beam line reflected in the ON direction by the DMD 50 is several times (for example, twice) by the lens systems 454 and 458. Enlarged.
  • the expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476.
  • the laser beam that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.
  • the laser beam reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. .
  • the micro lens array 472 and the aperture array 476 are not arranged, as shown in FIG. 14B, one pixel size (spot size) of each beam spot BS projected onto the exposure surface 56 is the exposure area.
  • MTF Modulation Transfer Function
  • the laser light reflected by the DMD 50 is applied to each micro lens of the micro lens array 472.
  • the light is condensed corresponding to each pixel part of DMD50.
  • the spot size of each beam spot BS can be reduced to a desired size (for example, lO ⁇ mX lO ⁇ m). It is possible to perform high-definition exposure by preventing deterioration of characteristics.
  • the exposure area 468 is tilted because the DMD 50 is tilted in order to eliminate gaps between pixels.
  • the aperture array can shape the beam so that the spot size on the exposed surface 56 is constant. At the same time, by passing through an aperture array provided corresponding to each pixel, crosstalk between adjacent pixels can be prevented.
  • the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small, so It is possible to prevent a part of the light beam from entering. That is, a high extinction ratio can be realized.
  • the permanent pattern forming method of the present invention may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correction optical system composed of a pair of combination lenses. .
  • the light quantity distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis is smaller on the exit side than on the entrance side.
  • the light amount distribution on the irradiated surface is corrected so as to be substantially uniform.
  • the light quantity distribution correcting optical system expands the light flux width hO of the incident light flux at the central portion with respect to the light having the same light flux width hO, hi on the incident side. On the other hand, it acts to reduce the luminous flux width hi. That is, the width hlO of the emitted light beam at the center and the width hl l of the emitted light beam at the peripheral part are set to hl KhlO.
  • the central luminous flux which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the light utilization as a whole is improved.
  • the light amount distribution on the irradiated surface is made substantially uniform without reducing the use efficiency.
  • the degree of uniformity is, for example, preferably such that the unevenness in the amount of light within the effective region is within 30% and within 20%.
  • Figure 25B shows the case where the entire light flux width H0 on the incident side is “reduced” to the width H2 before being emitted (H0
  • the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side.
  • the luminous flux width hl l at the periphery is made smaller than at the center.
  • the reduction rate of the luminous flux the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion.
  • FIG. 25C shows a case where the entire light flux width H0 on the incident side is “expanded” to the width H3 and emitted (H0 and H3).
  • the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side.
  • the luminous flux width hl l at the periphery is made smaller than at the center.
  • the expansion rate for the incident light beam in the center is It is larger than the peripheral part and has a function of reducing the enlargement ratio of incident light to the peripheral part compared to the central part.
  • the light quantity distribution correction optical system changes the light flux width at each emission position, and outputs the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis Z1 compared to the incident side. Since the emission side is smaller, the light having the same luminous flux width on the incident side has a larger luminous flux width in the central part than in the peripheral part on the outgoing side, and the luminous flux width in the peripheral part is Smaller than the center. As a result, the light beam in the central part can be utilized to the peripheral part, and a light beam cross-section with a substantially uniform light quantity distribution can be formed without reducing the light use efficiency of the entire optical system.
  • lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source.
  • the light intensity distribution of the emitted light beam from the optical fino becomes a Gaussian distribution.
  • the permanent pattern forming method of the present invention can be applied to such a case.
  • the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion by reducing the core diameter of the multimode optical fiber to approach the configuration of the single mode optical fiber.
  • Table 1 below shows basic lens data.
  • a pair of combination lenses is composed of two rotationally symmetric aspherical lenses. It is configured. If the light incident side surface of the first lens arranged on the light incident side is the first surface and the light output side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.
  • the radius of curvature ri indicates the radius of curvature of the i-th surface
  • the surface distance di is i The distance between the first and i + 1th planes on the optical axis.
  • the unit of the surface distance di value is millimeter (mm).
  • Refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
  • Table 2 below shows the aspherical data for the first and fourth surfaces.
  • each coefficient is defined as follows.
  • FIG. 27 shows the light amount distribution of the illumination light obtained by the pair of combination lenses shown in Table 1 and Table 2.
  • the horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%).
  • Fig. 26 shows the light intensity distribution (Gaussian distribution) of illumination light when correction is applied.
  • the developing step exposes the photosensitive solder resist layer in the exposing step, cures the exposed area of the photosensitive solder resist layer, and then develops by removing the uncured area to form a permanent pattern. It is a process to do.
  • the removal method of the uncured region can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
  • the developer may be appropriately selected according to the purpose without any particular restriction.
  • an alkali metal or alkaline earth metal hydroxide or carbonate, hydrogen carbonate, ammonia, or the like Preferred examples include -a water and an aqueous solution of quaternary ammonia salt. Of these, an aqueous sodium carbonate solution is particularly preferred.
  • the developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine) and organic solvents (eg alcohols, ketones, esters, ethers, May be used in combination with amides, ratatones, etc.).
  • an organic base for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine
  • organic solvents eg alcohols, ketones, esters, ethers, May be used in combination with amides, ratatones, etc.
  • the developer may be an aqueous developer obtained by mixing water or an alkaline water solution and an organic solvent, or may be an organic solvent alone.
  • the permanent pattern forming method of the present invention preferably further includes a curing treatment step.
  • the curing treatment step is a step of performing a curing treatment on the photosensitive solder resist layer in the permanent pattern formed after the development step.
  • the curing treatment can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a full exposure process and a full heat treatment.
  • Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. By this overall exposure, curing of the resin in the photosensitive solder resist composition for forming the photosensitive solder resist layer is promoted, and the surface of the permanent pattern is cured.
  • the apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation.
  • a UV exposure machine such as an ultra-high pressure mercury lamp can be preferably used.
  • Examples of the method of the entire surface heat treatment include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the developing step. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
  • the heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, decomposition of the resin in the photosensitive solder resist composition occurs. The film quality may be weak and brittle.
  • the heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
  • the apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
  • the base material is a printed wiring board such as a multilayer wiring board
  • the printed circuit board The permanent pattern of the present invention can be formed on a wiring board, and soldering can be performed as follows.
  • the hardened layer which is the permanent pattern is formed by the developing step, and the metal layer is exposed on the surface of the printed wiring board.
  • Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, semiconductors and parts are mounted on the soldered parts.
  • the permanent pattern by the hardened layer exhibits a function as a protective film or an insulating film (interlayer insulating film), and prevents external impact and conduction between adjacent electrodes.
  • the method for forming a permanent pattern of the present invention it is preferable to form at least a V deviation between the protective film and the interlayer insulating film.
  • the permanent pattern formed by the permanent pattern forming method is the protective film or the interlayer insulating film, it is possible to protect the wiring from external impact and bending force, particularly when the interlayer insulating film is the interlayer insulating film. For example, it is useful for high-density mounting of semiconductors and components on multilayer wiring boards and build-up wiring boards.
  • the permanent pattern forming method of the present invention enables pattern formation at a high speed, it can be widely used for forming various patterns, and can be particularly suitably used for forming wiring patterns.
  • the permanent pattern formed by the method for forming a permanent pattern of the present invention has excellent surface hardness, insulation, heat resistance, moisture resistance, etc., and is suitable as a protective film, an interlayer insulation film, and a solder resist pattern. Can be used for
  • the mixture was heated to ° C and reacted until the solid content acid value reached 1 mgKOHZg.
  • 152 parts by mass of tetrahydrophthalic anhydride and 100 parts by mass of methoxypropyl acetate were added, heated to 80 ° C, reacted for about 6 hours, cooled, and methoxypropyl so that the solid content concentration became 60% by mass.
  • Dilution with acetate gave an alkali-soluble photocrosslinkable resin (pl) .
  • the solid content acid value of P 1 was 138 mgKOHZg, and the mass average molecular weight was 4,020.
  • Pigment Blue 15 3 (0.80 parts by mass), Pigment Yellow 180 (0.7 parts by mass), and 60 parts by mass of a 60% by mass methoxypropyl acetate solution of each alkali-soluble photocrosslinkable resin, were weighed. Dispersion was performed using a mill type disperser filled with your beads to obtain a green pigment dispersion.
  • a 25 m-thick polyethylene terephthalate film (PET) is used as the support 1, and the photosensitive solder resist composition coating solution is dried on the support 1 using a bar coater.
  • the photosensitive solder resist layer 2 is applied to a thickness of about 30 m, dried in a hot air circulating drier at 80 ° C. for 30 minutes, and then the protective film is coated on the photosensitive solder one resist layer.
  • a 12 ⁇ m thick polypropylene film was laminated to produce a photosensitive solder resist film.
  • a surface of a copper-clad laminate (with no through hole and a copper thickness of 12 ⁇ m) on which wiring was formed was prepared by subjecting it to chemical polishing treatment.
  • a vacuum laminator MVLP500 manufactured by Seisakusho was laminated to prepare a laminate in which the copper-clad laminate, the photosensitive solder resist layer, and the polyethylene terephthalate film (support) were laminated in this order.
  • the crimping conditions were a crimping temperature of 90 ° C, a crimping pressure of 0.4 MPa, and a laminating speed of lmZ.
  • a pattern forming apparatus by blue-violet laser exposure having a predetermined pattern from the polyethylene terephthalate film (support) side to the photosensitive solder resist layer in the prepared laminate a 405 nm laser beam was emitted. Then, exposure was performed by irradiating with an energy amount of 40 mjZcm 2 so as to obtain a predetermined pattern, and a partial region of the photosensitive solder resist layer was cured.
  • the laminate strength was also peeled off from the polyethylene terephthalate film (support), and 1% by mass as an Al force developer on the entire surface of the photosensitive solder resist layer on the copper clad laminate.
  • the entire surface of the laminate on which the permanent pattern was formed was heat treated at 150 ° C. for 1 hour to cure the surface of the permanent pattern and increase the film strength.
  • the insulation resistance after standing for 168 hours in an environment with the above composition at a temperature of 85 ° C. and a relative humidity of 85% should be 10 1 (> ⁇ or more). Therefore, even when used in a high temperature and high humidity atmosphere, the wiring conductor layers are short-circuited and the wiring conductor layers are not corroded, and the resulting printed wiring board has excellent moisture resistance. Since the wiring conductor layer is deposited on the surface of the insulating substrate, and the permanent pattern is deposited so as to cover a part of the insulating substrate, the permanent pattern mounts electronic components on the printed wiring board. In addition to protecting the insulating layer from the heat generated during the process, the wiring conductor layer can be protected from oxidation and corrosion caused by moisture. As a result, it has excellent heat resistance and moisture resistance.
  • the dynamic elastic modulus (storage elastic modulus) (MPa) of the permanent pattern peeled from the printed wiring board (copper-clad laminate) was measured by a dynamic viscoelasticity measurement test. Table 5 shows the measurement results. The measurement and evaluation by the reliability test are as follows.
  • test plate was subjected to an insulation resistance test described later.
  • dynamic viscoelasticity of the coating film peeled off from the substrate was measured.
  • Table 5 summarizes the evaluation results.
  • the test method and evaluation method are as follows.
  • the surface condition after coating and drying was visually observed to inspect the smoothness of the surface.
  • an unexposed photosensitive solder resist layer with a thickness of 10 m on the substrate can be removed by spray development at 30 ° C using a 1% by weight aqueous sodium carbonate solution in 10 to 60 seconds. evaluated.
  • the cured specimen was immersed in isopropyl alcohol for 30 minutes at room temperature, and after confirming that there was no abnormality in the appearance, a peel test was performed using a cellophane tape.
  • test piece After curing, the test piece was immersed in a 10% by weight aqueous hydrochloric acid solution at room temperature for 30 minutes. After confirming that the appearance was normal, a peel test was performed using a cellophane tape.
  • the cured specimen was immersed in a 5% by weight sodium hydroxide / sodium hydroxide solution at room temperature for 30 minutes. After confirming that the appearance was normal, a peel test was performed using a cellophane tape.
  • test piece was coated with rosin-based flux or water-soluble flux and immersed in a solder bath at 260 ° C for 10 seconds. This is one cycle, and after 6 cycles, the appearance of the coating film is visually observed.
  • the coating has an abnormal appearance (peeling, blistering) or has solder peeling
  • TCT temperature cycle test
  • Carboxylic acid group-containing second diol high acid value (m polyuretaol group-free low first isocyan mass average low molecular weight di-so-one molecular weight di-gKOH resin (mass-average molecular weight f Le h old
  • the photosensitive solder resist composition of the present invention and the photosensitive solder resist film using the photosensitive solder resist composition have excellent storage stability and excellent chemical resistance, surface hardness, heat resistance and the like after development. Is expressed.
  • the permanent pattern of the present invention (protective film, interlayer insulating film, solder resist, etc.) is thinned, a high-definition permanent pattern with excellent surface hardness, insulation, heat resistance, and moisture resistance can be obtained.
  • It can be suitably used as a protective film and interlayer insulation film, and for displays such as printed wiring boards (multilayer wiring boards, build-up wiring boards, etc.), color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be widely used for forming permanent patterns such as members, holograms, micromachines, and proofs.

Abstract

Disclosed is a photosensitive solder resist composition which enables to obtain a high-performance cured film which is excellent in heat resistance, wet heat resistance, adhesion, mechanical characteristics and electrical characteristics. This photosensitive solder resist composition is suitably used for manufacturing printed wiring boards, high-density multilayer boards, semiconductor packages and the like. Also disclosed is a photosensitive solider resist film obtained by arranging a layer of such a photosensitive solder resist composition on a supporting body, which enables to obtain a cured film which is excellent in heat resistance, wet heat resistance, adhesion, mechanical characteristics and electrical insulation. Further disclose is a photosensitive solider resist film which is most suitable for blue-violet laser direct exposure systems. Specifically disclosed is a photosensitive solder resist composition characterized by containing an alkali-soluble photo-crosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, an inorganic filler, a coloring agent and a heat curing accelerator.

Description

明 細 書  Specification
感光性ソルダーレジスト組成物及び感光性ソルダーレジストフイルム、並 びに、永久パターン及びその形成方法  Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming the same
技術分野  Technical field
[0001] 本発明は、感光性ソルダーレジスト組成物及びこれを用いた感光性ソルダーレジス トフイルム、並びに、高精細な永久パターン (保護膜、層間絶縁膜、ソルダーレジスト など)に関し、特に、配線基板や電子部品モジュールに用いられ、実装時の熱履歴 や温度サイクル試験 (TCT)に対する耐熱疲労性に優れ、耐湿性、保存安定性、耐 薬品性、表面硬度、絶縁性などに優れた永久パターン及びその効率的な形成方法 に関する。  [0001] The present invention relates to a photosensitive solder resist composition, a photosensitive solder resist film using the same, and a high-definition permanent pattern (such as a protective film, an interlayer insulating film, and a solder resist). Permanent pattern used in electronic component modules with excellent heat fatigue resistance against thermal history during mounting and temperature cycle test (TCT), excellent moisture resistance, storage stability, chemical resistance, surface hardness, insulation, etc. It relates to an efficient formation method.
背景技術  Background art
[0002] 近年、電子機器は、移動体通信機器に代表されるように小型、薄型、軽量と共に、 高性能、高機能、高品質、高信頼性が要求されるようになってきており、このような電 子機器に搭載される電子部品モジュールも小型、高密度化が要求されるようになつ てきている。このような要求に対して、近年、酸ィ匕アルミニウム質焼結体等のセラミック スを素材とするセラミック配線基板から、より軽量化、高密度化が可能なガラス繊維と エポキシ榭脂とから成る絶縁基板の表面に低抵抗金属である銅や金等を用いて薄 膜形成法により配線導体層を形成した、いわゆるプリント基板が電子部品モジュール に用いられるようになってきている。また、このプリント基板も、より高密度配線化が可 能なビルドアップ配線基板へ変わりつつある。  In recent years, as represented by mobile communication devices, electronic devices are required to have high performance, high functionality, high quality, and high reliability as well as small size, thinness, and light weight. Electronic component modules mounted on such electronic devices are also required to be small and dense. In response to these demands, in recent years, ceramic wiring boards made of ceramics such as acid-aluminum sintered bodies have been made of glass fiber and epoxy resin that can be made lighter and more dense. A so-called printed circuit board, in which a wiring conductor layer is formed by a thin film forming method using copper, gold, or the like, which is a low-resistance metal, on the surface of an insulating substrate has been used for electronic component modules. In addition, this printed circuit board is also changing to a build-up circuit board capable of higher density wiring.
このようなビルドアップ配線基板は、例えば、ガラス繊維とエポキシ榭脂とから成る 絶縁基板上に、熱硬化性榭脂から成るフィルムをラミネートし熱硬化して絶縁層を形 成した後にこれに炭酸ガスレーザーで開口を穿設し、し力る後、絶縁層表面を化学 粗化して無電解銅めつき法及び電解銅めつき法を用いて銅膜を被着形成することに より、開口内に導体層を形成するとともに絶縁層表面に配線導体層を形成し、更に、 このような絶縁層と配線導体層の形成を繰返すことにより製作される。  For example, such a build-up wiring board is formed by laminating a film made of a thermosetting resin on an insulating board made of glass fiber and epoxy resin, and heat-curing to form an insulating layer. After opening the opening with a gas laser and squeezing it, the surface of the insulating layer is chemically roughened, and a copper film is deposited using an electroless copper plating method and an electrolytic copper plating method. A conductor layer is formed on the insulating layer, a wiring conductor layer is formed on the surface of the insulating layer, and the formation of the insulating layer and the wiring conductor layer is repeated.
また、配線基板の表面には、配線導体層の酸化や腐蝕の防止及び配線基板に電 子部品を実装する際の熱力も絶縁層を保護するために厚みが 20〜50 /ζ πιのソルダ 一レジスト層が被着形成されている。このソルダーレジスト層は、一般に配線導体層 及び絶縁層との密着性が良好なアルカリ可溶性光架橋性榭脂と、可撓性を有する榭 脂とから成り、熱膨張係数を絶縁層や配線導体層の熱膨張係数と整合させるために 無機充填剤を 5〜75質量%含有して 、る。 In addition, on the surface of the wiring board, the wiring conductor layer is prevented from being oxidized and corroded and the wiring board is electrically charged. A solder resist layer having a thickness of 20 to 50 / ζ πι is deposited to protect the insulating layer from the thermal power when mounting the subcomponents. This solder resist layer is generally composed of an alkali-soluble photocrosslinkable resin having good adhesion to the wiring conductor layer and the insulating layer, and a flexible resin, and has a thermal expansion coefficient of the insulating layer or the wiring conductor layer. In order to match with the thermal expansion coefficient of 5 to 75% by weight of inorganic filler.
更に、この配線基板は、配線導体層上のソルダーレジスト層に露光'現像により開 口を形成し、開口内の配線導体層に半田等力 成る導体バンプを介して電子部品を 電気的に接続することにより半導体装置等の電子部品モジュールとなる。  Furthermore, this wiring board forms an opening in the solder resist layer on the wiring conductor layer by exposure and development, and electrically connects the electronic components to the wiring conductor layer in the opening via a conductor bump having a solder equal force. Thus, an electronic component module such as a semiconductor device is obtained.
一般に、このような電子部品モジュールに用いられるソルダーレジスト層は、乾燥状 態での絶縁抵抗が
Figure imgf000004_0001
である。し力しながら、このソルダーレジスト層は、一 般に、含有するアルカリ可溶性光架橋性榭脂がソルダーレジスト層に露光 ·現像によ り開口を形成する際の現像性を発現させるために水酸基やカルボキシル基を含有す ること力ら、吸水率が高く空気中の水分を徐々に吸収して、この水分がソルダーレジ スト層の絶縁抵抗を 108 Ω以下にまで低下させてしまい配線導体層間を短絡させたり 、更には、この水分が配線導体層を腐食させてしまい、その結果、配線基板の電気 信頼性を劣化させてしまうという問題点を有していた。また、 BGA (ボールグリッドァレ ィ)、 CSP (チップサイズパッケージ)等の半導体パッケージ基板において、予めタリ ームはんだを必要部分に印刷し、全体を赤外線で加熱し、はんだをリフローして固定 するので、ノ ッケージ内外部の到達温度は 220〜240°Cと著しく高くなり、熱衝撃に より塗膜にクラックが発生したり、基板や射止材から剥離してしまうという、いわゆる耐 リフロー性低下の問題がありこの改良が求められていた。
In general, the solder resist layer used in such an electronic component module has an insulation resistance in a dry state.
Figure imgf000004_0001
It is. However, this solder resist layer generally has a hydroxyl group and an alkali-soluble photocrosslinkable resin in order to develop developability when an opening is formed in the solder resist layer by exposure and development. Because of its ability to contain carboxyl groups, it has a high water absorption rate and gradually absorbs moisture in the air. This moisture reduces the insulation resistance of the solder resist layer to 10 8 Ω or less and short-circuits the wiring conductor layers. In addition, the moisture corrodes the wiring conductor layer, and as a result, the electrical reliability of the wiring board is deteriorated. Also, on semiconductor package substrates such as BGA (ball grid array) and CSP (chip size package), pre-printed solder on the necessary parts in advance, heat the whole with infrared rays, and reflow and fix the solder. Therefore, the temperature reached inside and outside of the knocker is extremely high at 220 to 240 ° C, and the coating film is cracked or peeled off from the substrate and the gun-stopping material due to thermal shock. There was a problem, and this improvement was demanded.
このような問題の解決のため、ソルダーレジスト中にエラストマ一を添加することが提 案されている(特許文献 1参照)。このエラストマ一には、水酸基を有するポリエステル 系エラストマ一が例として使用されて、それ以外にも広範なエラストマ一が例示されて いる。この前記エラストマ一の添カ卩によれば必要なエラストマ一の含有量は、酸性ビ -ル基含有エポキシ榭脂の 100質量部に対し 2〜30質量部含む必要があるとされて いる。  In order to solve these problems, it has been proposed to add an elastomer to the solder resist (see Patent Document 1). As this elastomer, a polyester elastomer having a hydroxyl group is used as an example, and a wide variety of other elastomers are exemplified. According to the elastomer additive, the required elastomer content is required to be 2-30 parts by mass with respect to 100 parts by mass of the acidic beryl group-containing epoxy resin.
し力しながら、これらのエラストマ一が耐クラック性を改善することは確かであるが、 一方でソルダーレジストの未露光部の現像性は十分ではない。 However, it is certain that these elastomers improve crack resistance, On the other hand, the developability of the unexposed part of the solder resist is not sufficient.
また、基板への密着性改良のため、アルカリ可溶性ブタジエン共重合体をバインダ 一として使用することはよく知られている。例えば、スチレン zブタジエン Zマレイン 酸アミド共重合体、ブタジエン Zメタクリル酸 Zジビュルベンゼン Zメチルメタタリレー ト共重合体などであり、ソルダーレジストなどへの応用が提案されている(特許文献 2 、3参照)。  In addition, it is well known to use an alkali-soluble butadiene copolymer as a binder for improving adhesion to a substrate. For example, styrene z butadiene Z maleic acid amide copolymer, butadiene Z methacrylate Z dibutene benzene Z methyl methacrylate copolymer, etc., and application to solder resists etc. has been proposed (Patent Document 2, 3).
また、感光性ソルダーレジストのプリント配線基板への密着性の改良を目的とした、 アルカリ現像性と硬度の良好なエポキシアタリレートと多塩基酸無水物との反応物を 他の樹脂と組み合わせる混合バインダーとしての使用技術も公知である。例えば、ェ ポキシアタリレートと多塩基酸無水物の反応物と組み合わせる架橋性バインダーとし て、カルボン酸付加アクリロニトリルブタジエンゴムとエポキシ榭脂の反応生成物が提 案されている(特許文献 4参照)。しカゝしながら。この組成物をソルダーレジストとして 適用しても、基板への密着性は十分であるが、アルカリ現像性や耐熱性の点で不十 分であった。  In addition, a mixed binder that combines a reaction product of an epoxy acrylate and polybasic acid anhydride with good alkali developability and hardness with other resins for the purpose of improving the adhesion of a photosensitive solder resist to a printed circuit board. The use technique is also known. For example, a reaction product of carboxylic acid-added acrylonitrile butadiene rubber and epoxy resin has been proposed as a crosslinkable binder to be combined with a reaction product of epoxy acrylate and polybasic acid anhydride (see Patent Document 4). While doing it. Even when this composition is applied as a solder resist, the adhesion to the substrate is sufficient, but it is insufficient in terms of alkali developability and heat resistance.
また、基板密着性、信頼性を向上ししカゝもアルカリ現像性も改善するとして、カルボ ン酸基含有架橋エラストマ一微粒子が提案されている (特許文献 5参照)。しかし、信 頼性や現像性は向上するが、カルボン酸基含有架橋エラストマ一微粒子の分散安 定性に難があるため、組成物中の含有率を必要な範囲にまで高めると、ソルダーレ ジスト層の塗布性に問題が生じる可能性がある。  In addition, carboxylic acid group-containing crosslinked elastomer fine particles have been proposed for improving the adhesion and reliability of the substrate and improving the color and alkali developability (see Patent Document 5). However, although reliability and developability are improved, the dispersion stability of the carboxylic acid group-containing crosslinked elastomer fine particles is difficult, so if the content ratio in the composition is increased to the required range, the solder resist layer will be improved. There may be a problem with applicability.
また、ポリウレタン榭脂として、高分子ジオールを構成要素とするアルカリ可溶性ポ リウレタン榭脂が提案されている(特許文献 6参照)。しかし、これを添加した場合、感 光性ソルダーレジストの現像性の確保には十分である力 エラストマ一としての性能 である硬化膜の高温での弾性率を実用レベルまで低下できず、加速テストでのクラッ ク防止には十分とはいえなかった。  Further, as polyurethane resin, alkali-soluble polyurethane resin having a polymer diol as a constituent element has been proposed (see Patent Document 6). However, when this is added, the strength sufficient to ensure the developability of the light-sensitive solder resist, the elastic modulus of the cured film, which is a performance as an elastomer, cannot be reduced to a practical level, and it has been It was not enough to prevent cracks.
特許文献 1 :特開平 11 240930号公報 Patent Document 1: Japanese Patent Laid-Open No. 11 240930
特許文献 2:特開平 2— 97502号公報 Patent Document 2: Japanese Patent Laid-Open No. 2-97502
特許文献 3 :特開平 7— 159998号公報 Patent Document 3: JP-A-7-159998
特許文献 4:特開平 8—41167号公報 特許文献 5:特開 2001— 13679号公報 Patent Document 4: JP-A-8-41167 Patent Document 5: Japanese Patent Laid-Open No. 2001-13679
特許文献 6:特開平 1― 134354号公報  Patent Document 6: JP-A-1-134354
発明の開示  Disclosure of the invention
[0004] 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題と する。即ち、本発明は、耐熱性、耐湿熱性、密着性、機械特性、電気特性に優れた 高性能な硬化膜を得ることができ、プリント配線板、高密度多層板及び半導体パッケ ージ等の製造に好適に用いられる感光性ソルダーレジスト組成物を提供することを 目的とする。本発明はまた、この感光性ソルダーレジスト組成物の層を支持体に積層 してなる優れた耐熱性、耐湿熱性、密着性、機械特性、電気絶縁性を有する硬化膜 が得られる感光性ソルダーレジストフイルムを提供することを目的とする。本発明のさ らなる目的は、青紫色レーザーダイレクト露光方式に最適な感光性ソルダーレジスト フィルムを提供することにある。  [0004] An object of the present invention is to solve the conventional problems and achieve the following objects. That is, according to the present invention, a high-performance cured film excellent in heat resistance, heat and humidity resistance, adhesion, mechanical properties, and electrical properties can be obtained, and production of printed wiring boards, high-density multilayer boards, semiconductor packages, and the like. It aims at providing the photosensitive soldering resist composition used suitably for. The present invention also provides a photosensitive solder resist capable of obtaining a cured film having excellent heat resistance, moist heat resistance, adhesion, mechanical properties, and electrical insulation obtained by laminating a layer of this photosensitive solder resist composition on a support. The purpose is to provide a film. A further object of the present invention is to provide a photosensitive solder resist film that is optimal for the blue-violet laser direct exposure method.
[0005] 前記課題を解決するための手段としては、以下の通りである。即ち、  [0005] Means for solving the above-described problems are as follows. That is,
< 1 > アルカリ可溶性光架橋性榭脂と、アルカリ可溶性エラストマ一と、重合性ィ匕 合物と、光重合開始剤と、熱架橋剤と、着色剤と、熱硬化促進剤とを含有することを 特徴とする感光性ソルダーレジスト組成物である。  <1> Containing an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, a colorant, and a thermosetting accelerator. A photosensitive solder resist composition.
該 < 1 >の感光性ソルダーレジスト組成物においては、前記アルカリ可溶性エラスト マーが含まれており、該アルカリ可溶性エラストマ一は、ハードセグメント成分とソフト セグメント成分力 成り立っているため、前者により耐熱性、強度が向上し、後者によ り柔軟性、強靱性が向上する作用がある。そのため、前記感光性ソルダーレジスト組 成物に、エラストマ一を含有することにより、配線基板に電子部品を実装する際や温 度サイクル試験 (TCT)を行った際の熱応力が、該エラストマ一により良好に吸収され 、光及び熱硬化後の永久パターン (ソルダーレジスト)に対しクラックの発生が抑制さ れ、その結果、配線導体層が断線することのない電気的な接続信頼性の高い永久 パターンが得られる。  In the photosensitive solder resist composition of <1>, the alkali-soluble elastomer is contained, and the alkali-soluble elastomer is composed of a hard segment component and a soft segment component. Strength is improved, and the latter has the effect of improving flexibility and toughness. For this reason, the elastomer is contained in the photosensitive solder resist composition, so that the thermal stress caused when the electronic component is mounted on the wiring board or the temperature cycle test (TCT) is caused by the elastomer. It absorbs well and suppresses the generation of cracks in the permanent pattern (solder resist) after light and heat curing. As a result, a permanent pattern with high electrical connection reliability that does not break the wiring conductor layer. can get.
< 2> アルカリ可溶性エラストマ一力 一般式 (I)で示されるジイソシァネートと、一 般式 (Π— 1)〜 (Π— 3)で示されるカルボン酸基含有ジオール力 選ばれた少なくと も 1種と、一般式 (III 1)〜 (III 5)で示される高分子量ジオール力 選ばれた、質 量平均分子量が 800〜3, 000の範囲にある少なくとも 1種の化合物との反応物であ つて、一般式 (II一 1 )〜(II一 3 )の合計モル量と (III一 1)〜(III一 5)の合計モル量の 比が、 0.5:1〜2.8:1となるように反応して得られ、酸価が 20〜: 130mgKOHZg である前記く ARI, 1 >に記載の感光性ソルダーレジスト組成物である。 <2> Alkali-soluble elastomer power Diisocyanate represented by general formula (I) and carboxylic acid group-containing diol power represented by general formulas (Π-1) to (〜-3) At least one selected And the high molecular weight diol power represented by the general formulas (III 1) to (III 5) A reaction product with at least one compound having a weight average molecular weight in the range of 800 to 3,000, wherein the total molar amount of the general formulas (II 1 1) to (II 1 3) and (III 1 1) to The photosensitivity described in the above ARI, 1> obtained by reacting so that the ratio of the total molar amount of (III-15) is 0.5: 1 to 2.8: 1, and the acid value is 20 to 130 mgKOHZg. It is a solder resist composition.
[化 1] [Chemical 1]
OCN— - NCO —般式 ( I )  OCN—-NCO — General formula (I)
[化 2]  [Chemical 2]
HO-R3-C-R4-OH —般式 _Ί ) HO-R 3 -CR 4 -OH — General formula _ Ί)
[化 3] [Chemical 3]
H0_ R OH 般式 (Π-2) H0_ R OH General formula (Π-2)
COOH COOH
化 4]  4
H HO— R N R OH  H HO— R N R OH
R —般式 (Π-3)  R — General formula (Π-3)
COOH  COOH
化 5] —般式 (m-1 ) 5] — General formula (m-1)
Figure imgf000007_0001
Figure imgf000007_0001
化 6]  [6]
—般式 (Π-2)—General formula (Π-2)
Figure imgf000007_0002
Figure imgf000007_0002
化 7]  7
—般式 (m-3)—General formula (m-3)
Figure imgf000007_0003
Figure imgf000007_0003
化 8] R 12 8 R 12
HO- -OH- CH-O- H 一般式 (Π_ 4 )  HO- -OH- CH-O- H General formula (Π_ 4)
m  m
」n4 N 4
[化 9]  [Chemical 9]
R 13  R 13
HO^— CH2-CH=CH-CH2-)—— ^CH2_CH^ ~ OH —般式 (Π_ 5 ) ただし、一般式(I)、 (Π— 1)〜(Π— 3)、(ΠΙ— 1)〜(ΙΠ— 5)中、 R、R〜R 及び HO ^ — CH 2 -CH = CH-CH 2- ) —— ^ CH 2 _CH ^ ~ OH — General formula (Π_ 5) where general formula (I), (Π— 1) to (Π— 3), (ΠΙ-1) to (ΙΠ-5), R, R to R and
1 3 10 1 3 10
R は二価の脂肪族又は芳香族炭化水素を表す。 Rは水素原子、炭素数 1〜3個のR represents a divalent aliphatic or aromatic hydrocarbon. R is a hydrogen atom, 1 to 3 carbon atoms
11 2 11 2
アルキル基及び炭素数 6〜15個のいずれ力からなるァリール基を表す。 R は水素 An alkyl group and an aryl group composed of any force of 6 to 15 carbon atoms are represented. R is hydrogen
12 原子、炭素数 1〜6個のアルキル基及び炭素数 6〜10個のいずれ力からなるァリー ル基を表す。 R はァリール基及びシァノ基のいずれかを表す。 mは 2〜4の整数を  It represents an aryl group composed of 12 atoms, an alkyl group having 1 to 6 carbon atoms, and any force having 6 to 10 carbon atoms. R represents either an aryl group or a cyan group. m is an integer from 2 to 4
13  13
表す。 n〜nはそれぞれ 2以上の整数を表す。 To express. n to n each represents an integer of 2 or more.
1 5  1 5
< 3 > アルカリ可溶性エラストマ一力 一般式 (III— 1)〜(III— 5)で示される、質 量平均分子量が 500以下のカルボン酸基非含有の低分子量ジオールから選ばれた 少なくとも 1種を、低分子量ジオール合計モル量と高分子量ジオール合計モル量の 比が 0. 5 : 1〜2. 8 : 1となるように共重合させたポリウレタン榭脂である前記 < 1 >か ら < 2 >の!、ずれかに記載の感光性ソルダーレジスト組成物である。  <3> Alkali-soluble elastomer At least one selected from low molecular weight diols having a mass average molecular weight of 500 or less and containing no carboxylic acid groups, represented by general formulas (III-1) to (III-5) <1> to <2>, wherein the polyurethane resin is copolymerized so that the ratio of the total molar amount of the low molecular weight diol to the total molar amount of the high molecular weight diol is 0.5: 1 to 2.8: 1. The photosensitive solder resist composition according to any one of the above.
<4> 熱架橋剤が、エポキシ榭脂及び多官能ォキセタンィ匕合物のいずれか 1種 である前記 < 1 >から < 3 >のいずれかに記載の感光性ソルダーレジスト組成物であ る。  <4> The photosensitive solder resist composition according to any one of <1> to <3>, wherein the thermal crosslinking agent is any one of an epoxy resin and a polyfunctional oxetane compound.
< 5 > 無機充填剤を含む前記 < 1 >から < 4 >のいずれかに記載の感光性ソル ダーレジスト組成物である。  <5> The photosensitive solder resist composition according to any one of <1> to <4>, which contains an inorganic filler.
< 6 > アルカリ可溶性光架橋性榭脂 15〜70質量%と、重合性化合物 5〜75質 量%、光重合開始剤 0. 5〜20質量%、熱架橋剤 2〜50質量%、アルカリ可溶性ェ ラストマー 2〜30質量%、無機充填剤 5〜75質量%、着色剤 0. 1〜: L0質量%、熱 硬化促進剤 0. 01〜20質量%及び溶剤を含む前記く 1 >からく 5 >のいずれかに 記載の感光性ソルダーレジスト組成物である。  <6> 15-70% by mass of alkali-soluble photocrosslinkable resin, 5-75% by mass of polymerizable compound, 0.5-20% by mass of photopolymerization initiator, 2-50% by mass of thermal crosslinking agent, alkali-soluble Elastomer 2-30% by mass, inorganic filler 5-75% by mass, colorant 0.1-: L0% by mass, thermosetting accelerator 0.01 to 20% by mass and solvent 1> karakaku 5 The photosensitive solder resist composition according to any one of the above.
< 7> 重合性化合物が、(メタ)アクリル基を有するモノマー力も選択される少なくと も 1種を含む前記 < 1 >から < 6 >のいずれかに記載の感光性ソルダーレジスト組成 物である。 <7> The photosensitive solder resist composition according to any one of <1> to <6>, wherein the polymerizable compound includes at least one monomer having a (meth) acryl group. It is a thing.
<8> 光重合開始剤が、ハロゲンィ匕炭化水素誘導体、ホスフィンオキサイド、へキ サァリールビイミダゾール、ォキシム誘導体、有機過酸化物、チォ化合物、ケトン化合 物、芳香族ォ-ゥム塩及びケトォキシムエーテル力 選択される少なくとも 1種を含む 前記 < 1 >から < 7 >のいずれかに記載の感光性ソルダーレジスト組成物である。  <8> The photopolymerization initiator is a halogenated hydrocarbon derivative, phosphine oxide, hexaarylbiimidazole, oxime derivative, organic peroxide, thio compound, ketone compound, aromatic oxime salt or ketoxime. Ether power The photosensitive solder resist composition according to any one of <1> to <7>, comprising at least one selected from ether power.
[0006] <9> 支持体と、該支持体上に、前記 <1>から <8>のいずれかに記載の感光 性ソルダーレジスト組成物が積層されてなる感光性ソルダーレジスト層と、を有するこ とを特徴とする感光性ソルダーレジストフイルムである。 [0006] <9> a support, and a photosensitive solder resist layer obtained by laminating the photosensitive solder resist composition according to any one of <1> to <8> on the support. This is a photosensitive solder resist film characterized by this.
<10> 感光性ソルダーレジスト層上に保護フィルムを有してなる前記 < 9 >に記 載の感光性ソルダーレジストフイルムである。  <10> The photosensitive solder resist film according to <9>, wherein a protective film is provided on the photosensitive solder resist layer.
<11> 感光性ソルダーレジスト層の厚み力 3〜100 111でぁる前記<9>から < 10 >の!、ずれかに記載の感光性ソルダーレジストフイルムである。  <11> The photosensitive solder resist film according to any one of <9> to <10>, wherein the thickness power of the photosensitive solder resist layer is 3 to 100 111.
<12> 支持体が、合成樹脂を含み、かつ透明である前記く 9>からく 11 >のい ずれかに記載の感光性ソルダーレジストフイルムである。  <12> The photosensitive solder resist film according to any one of <9> to <11>, wherein the support contains a synthetic resin and is transparent.
<13> 支持体が、長尺状である前記 < 9 >からく 12>のいずれかに記載の感 光性ソルダーレジストフイルムである。  <13> The light-sensitive solder resist film according to any one of <9> Karaku 12>, wherein the support is a long shape.
[0007] <14> 基体と、該基体上に、前記く 1>からく 8>のいずれかに記載の感光性 ソルダーレジスト組成物力 塗布により積層されてなる感光性ソルダーレジスト層と、 を有することを特徴とする感光性ソルダーレジスト組成物積層体である。 [0007] <14> a substrate, and a photosensitive solder resist layer laminated on the substrate by application of the photosensitive solder resist composition according to any one of the above items 1> to 8>. It is the photosensitive soldering resist composition laminated body characterized by these.
[0008] <15> 前記 <9>から <13>のいずれかに記載の感光性ソルダーレジストフィ ルムにおける感光性ソルダーレジスト層及び前記 < 14 >に記載の感光性ソルダーレ ジスト組成物積層体における感光性ソルダーレジスト層の!/、ずれかを、基材の表面 に積層した後、前記感光性ソルダーレジスト層に対し露光し、現像することを特徴と する永久パターン形成方法である。 <15> The photosensitive solder resist layer in the photosensitive solder resist film according to any one of <9> to <13> and the photosensitive solder resist composition laminate according to <14>. A permanent pattern forming method characterized in that the photosensitive solder resist layer is laminated on the surface of a base material, and then exposed to and developed on the photosensitive solder resist layer.
該< 15 >に記載の永久パターン形成方法にお!、ては、前記 < 8 >から < 12 >の V、ずれかに記載の感光性ソルダーレジストフイルム力 加熱及び加圧の少なくとも!/ヽ ずれかの下において基材の表面に転写され感光性ソルダーレジスト層が積層され、 又は前記く 13 >に記載の感光性ソルダーレジスト組成物が前記基材の表面に塗布 され、乾燥されて前記感光性ソルダーレジスト層が積層される。該いずれかの感光性 ソルダーレジスト層が露光され、該露光された感光性ソルダーレジスト層が現像され る。その結果、表面硬度が高ぐ保護膜あるいは絶縁膜に最適な永久パターンが形 成される。 In the method for forming a permanent pattern as described in <15>, the photosensitive solder resist film force described in <8> to <12>, or at least of the heating and pressurizing! The photosensitive solder resist layer is transferred to the surface of the substrate and laminated, or the photosensitive solder resist composition according to the above item 13> is applied to the surface of the substrate. And dried to laminate the photosensitive solder resist layer. Any one of the photosensitive solder resist layers is exposed, and the exposed photosensitive solder resist layer is developed. As a result, a permanent pattern optimal for a protective film or insulating film having a high surface hardness is formed.
く 16 > 基材が、配線形成済みのプリント配線基板である前記く 15 >に記載の永 久パターン形成方法である。  <16> The permanent pattern forming method according to <15>, wherein the substrate is a printed wiring board on which wiring has been formed.
該< 16 >に記載の永久パターン形成方法においては、前記基材が配線形成済み のプリント配線基板であるので、該永久パターン形成方法を利用することにより、半導 体や部品の多層配線基板やビルドアップ配線基板などへの高密度実装が可能であ る。  In the permanent pattern forming method according to <16>, since the base material is a printed wiring board on which wiring is already formed, by using the permanent pattern forming method, a multilayer wiring board for semiconductors and parts, High-density mounting on build-up wiring boards is possible.
< 17> 露光が、形成するパターン情報に基づいて像様に行われる前記く 15 > からく 16 >のいずれかに記載の永久パターン形成方法である。  <17> The method for forming a permanent pattern according to any one of the above <15> and <16>, wherein the exposure is performed imagewise based on pattern information to be formed.
< 18 > 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信 号に応じて変調させた光を用 、て行われる前記 < 15 >からく 17>の 、ずれかに記 載の永久パターン形成方法である。  <18> The exposure is generated by generating a control signal based on the pattern information to be formed and using light modulated in accordance with the control signal. This is a permanent pattern forming method.
< 19 > 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて 前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記 < 15 >から < 18 >のいずれかに記載の永久パターン形成方法である。  <19> From the above <15> to <18, wherein the exposure is performed using light irradiation means for irradiating light and light modulation means for modulating light emitted from the light irradiation means based on pattern information to be formed The permanent pattern forming method according to any one of the above.
< 20> 光変調手段が、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を更に有してなり、前記光照射手段から照射される光を該パ ターン信号生成手段が生成した制御信号に応じて変調させる前記 < 19 >に記載の 永久パターン形成方法である。  <20> The light modulation unit further includes a pattern signal generation unit that generates a control signal based on pattern information to be formed, and the pattern signal generation unit generates light emitted from the light irradiation unit. The method for forming a permanent pattern according to <19>, wherein modulation is performed according to a control signal.
< 21 > 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続 的に配置された任意の n個未満の前記描素部を、形成するパターン情報に応じて制 御可能である前記く 15 >からく 20 >のいずれかに記載の永久パターン形成方法 である。  <21> The light modulation means has n pixel parts, and forms any less than n of the pixel parts continuously arranged from the n pixel parts. 15. The permanent pattern forming method according to any one of 15> Karaku 20>, which can be controlled according to pattern information.
該< 21 >に記載の永久パターン形成方法においては、前記光変調手段における n個の描素部の中から連続的に配置された任意の n個未満の描素部をパターン情報 に応じて制御することにより、前記光照射手段からの光が高速で変調される。 In the method for forming a permanent pattern according to <21>, any less than n pixel parts arranged continuously from n pixel parts in the light modulation means are used as pattern information. By controlling according to the light, the light from the light irradiation means is modulated at high speed.
< 22> 光変調手段が、空間光変調素子である前記く 15 >からく 21 >のいずれ かに記載の永久パターン形成方法である。  <22> The method for forming a permanent pattern according to any one of the above <15> and <21>, wherein the light modulation means is a spatial light modulation element.
< 23 > 空間光変調素子が、デジタル 'マイクロミラー'デバイス (DMD)である前 記く 22 >に記載の永久パターン形成方法である。  <23> The method for forming a permanent pattern according to 22 above, wherein the spatial light modulator is a digital 'micromirror' device (DMD).
< 24> 描素部が、マイクロミラーである前記く 21 >からく 23 >のいずれかに記 載の永久パターン形成方法である。  <24> The permanent pattern forming method according to any one of the above <21>, <23>, wherein the pixel part is a micromirror.
< 25 > 露光が、光変調手段により光を変調させた後、前記光変調手段における 描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配 列したマイクロレンズアレイを通して行われる前記く 21 >からく 24 >のいずれかに 記載の永久パターン形成方法である。  <25> After exposure, the light is modulated by the light modulation means, and then passes through a microlens array in which microlenses having aspherical surfaces capable of correcting aberrations due to distortion of the exit surface of the picture element portion in the light modulation means are arranged. The permanent pattern forming method according to any one of the above 21> Karaku 24>.
< 26 > 非球面が、トーリック面である前記く 25 >に記載の永久パターン形成方 法である。  <26> The permanent pattern forming method according to 25, wherein the aspherical surface is a toric surface.
該< 26 >に記載の永久パターン形成方法においては、前記非球面がトーリック面 であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され 、前記感光性ソルダーレジスト層上に結像させる像の歪みが効率よく抑制される。そ の結果、前記感光性ソルダーレジスト層への露光が高精細に行われる。その後、前 記感光性ソルダーレジスト層を現像することにより、高精細な永久パターンが形成さ れる。  In the permanent pattern forming method according to <26>, since the aspherical surface is a toric surface, the aberration due to the distortion of the radiation surface in the pixel portion is efficiently corrected, and the photosensitive solder resist layer is formed on the photosensitive solder resist layer. The distortion of the image to be formed is efficiently suppressed. As a result, the photosensitive solder resist layer is exposed with high definition. Thereafter, the photosensitive solder resist layer is developed to form a high-definition permanent pattern.
< 27> 露光が、アパーチャアレイを通して行われる前記く 15 >からく 26 >のい ずれかに記載の永久パターン形成方法である。  <27> The permanent pattern forming method according to any one of 15) to 26), wherein the exposure is performed through an aperture array.
該< 27 >に記載の永久パターン形成方法においては、露光が前記アパーチャァ レイを通して行われることにより、消光比が向上する。その結果、露光が極めて高精 細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、極めて 高精細な永久パターンが形成される。  In the method for forming a permanent pattern according to <27>, the extinction ratio is improved by performing exposure through the aperture array. As a result, the exposure is performed with extremely high precision. Thereafter, by developing the photosensitive solder resist layer, an extremely high-definition permanent pattern is formed.
< 28 > 露光が、露光光と感光性ソルダーレジスト層とを相対的に移動させながら 行われる前記 < 15 >から < 27>の!、ずれかに記載の永久パターン形成方法である 該< 27 >に記載の永久パターン形成方法においては、前記変調させた光と前記 感光性ソルダーレジスト層とを相対的に移動させながら露光することにより、露光が高 速に行われる。 <28> The method for forming a permanent pattern according to any one of <15> to <27>, wherein the exposure is performed while relatively moving the exposure light and the photosensitive solder resist layer! In the method for forming a permanent pattern described in <27>, the exposure is performed at a high speed by performing exposure while relatively moving the modulated light and the photosensitive solder resist layer.
< 29 > 露光が、感光性ソルダーレジスト層の一部の領域に対して行われる前記 < 15 >から < 28 >の!、ずれかに記載の永久パターン形成方法である。  <29> The method for forming a permanent pattern according to any one of <15> to <28>, wherein the exposure is performed on a partial region of the photosensitive solder resist layer.
< 30> 光照射手段が、 2以上の光を合成して照射可能である前記く 15 >からく 29 >の 、ずれかに記載の永久パターン形成方法である。  <30> The method for forming a permanent pattern according to any one of the above <15> and <29>, wherein the light irradiation means can synthesize and irradiate two or more lights.
該< 30 >に記載の永久パターン形成方法においては、前記光照射手段が 2以上 の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われ る。その結果、前記感光性ソルダーレジスト層への露光が極めて高精細に行われる。 その後、前記感光性ソルダーレジスト層を現像することにより、極めて高精細な永久 パターンが形成される。  In the method for forming a permanent pattern described in <30>, since the light irradiation means can synthesize and irradiate two or more lights, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive solder resist layer is performed with extremely high definition. Thereafter, the photosensitive solder resist layer is developed to form an extremely fine permanent pattern.
< 31 > 光照射手段が、複数のレーザと、マルチモード光ファイバ一と、該複数の レーザ力 それぞれ照射されたレーザ光を集光して前記マルチモード光ファイバ一 に結合させる集合光学系とを有する前記 < 15 >から < 30>の!、ずれかに記載の永 久パターン形成方法である。  <31> The light irradiation means includes a plurality of lasers, a multimode optical fiber, and a collective optical system that collects the laser beams irradiated with the plurality of laser forces and couples the laser beams to the multimode optical fiber. Having said <15> to <30>! This is a permanent pattern forming method described in the above.
該< 31 >に記載の永久パターン形成方法においては、前記光照射手段により、前 記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され 、前記マルチモード光ファイバに結合可能とすることにより、露光が焦点深度の深い 露光光で行われる。その結果、前記感光性ソルダーレジスト層への露光が極めて高 精細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、極め て高精細な永久パターンが形成される。  In the method for forming a permanent pattern as described in <31>, the light irradiation means allows the laser beams irradiated from the plurality of lasers to be collected by the collective optical system and coupled to the multimode optical fiber. By doing so, exposure is performed with exposure light having a deep focal depth. As a result, the exposure to the photosensitive solder resist layer is performed with extremely high definition. Thereafter, by developing the photosensitive solder resist layer, an extremely fine permanent pattern is formed.
< 32> 露光が、 395〜415nmの波長のレーザ光を用いて行われる前記く 15 > からく 31 >の 、ずれかに記載の永久パターン形成方法である。  <32> The method for forming a permanent pattern according to any one of the above <15> and <31>, wherein the exposure is performed using a laser beam having a wavelength of 395 to 415 nm.
く 33 > 現像が行われた後、感光性ソルダーレジスト層に対して硬化処理を行う前 記 < 15 >から < 32>のいずれかに記載の永久パターン形成方法である。  <33> The permanent pattern forming method according to any one of <15> to <32>, wherein after the development is performed, the photosensitive solder resist layer is cured.
該< 33 >に記載の永久パターン形成方法においては、現像が行われた後、前記 感光性ソルダーレジスト層に対して前記硬化処理が行われる。その結果、前記感光 性ソルダーレジスト層の硬化領域の膜強度が高められる。 In the method for forming a permanent pattern described in <33>, after the development, the curing treatment is performed on the photosensitive solder resist layer. As a result, the photosensitive The film strength of the cured region of the conductive solder resist layer is increased.
< 34> 硬化処理が、全面露光処理及び 120〜200°Cで行われる全面加熱処理 の少なくとも 、ずれかである前記く 33 >に記載の永久パターン形成方法である。 該< 34 >に記載の永久パターン形成方法では、前記全面露光処理において、前 記感光性ソルダーレジスト組成物中の樹脂の硬化が促進される。また、前記温度条 件で行われる全面加熱処理において、硬化膜の膜強度が高められる。  <34> The method for forming a permanent pattern according to <33>, wherein the curing process is at least one of a whole-surface exposure process and a whole-surface heat treatment performed at 120 to 200 ° C. In the permanent pattern forming method described in <34>, curing of the resin in the photosensitive solder resist composition is promoted in the entire surface exposure treatment. Further, the film strength of the cured film is increased in the entire surface heat treatment performed under the above temperature conditions.
< 35 > 保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれか を形成する前記 < 15 >から < 34 >の 、ずれかに記載の永久パターン形成方法で ある。  <35> The method for forming a permanent pattern according to any one of <15> to <34>, wherein at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed.
該く 35 >に記載の永久パターン形成方法では、保護膜、層間絶縁膜及びソルダ 一レジストパターンの少なくともいずれかが形成されるので、該膜の有する絶縁性、 耐熱性などにより、配線が外部力ゝらの衝撃や曲げなどカゝら保護される。  In the permanent pattern forming method described in 35>, since at least one of a protective film, an interlayer insulating film, and a solder resist pattern is formed, the wiring has an external force due to the insulating property, heat resistance, etc. of the film. Your shock and bends are protected.
[0009] < 36 > 前記 < 15 >から < 35 >のいずれかに記載の永久パターン形成方法によ り形成されることを特徴とする永久パターンである。 [0009] <36> A permanent pattern formed by the method for forming a permanent pattern according to any one of <15> to <35>.
該< 36 >に記載の永久パターンは、前記永久パターン形成方法により形成される ので、優れた耐薬品性、表面硬度、耐熱性などを有し、かつ高精細であり、半導体や 部品の多層配線基板やビルドアップ配線基板などへの高密度実装に有用である。  Since the permanent pattern described in <36> is formed by the permanent pattern forming method, it has excellent chemical resistance, surface hardness, heat resistance, and the like, and has high definition, and multi-layer wiring of semiconductors and parts. This is useful for high-density mounting on boards and build-up wiring boards.
< 37> 保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれか である前記く 36 >に記載の永久パターンである。  <37> The permanent pattern according to <36>, which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
該く 37 >に記載の永久パターンは、保護膜、層間絶縁膜及びソルダーレジストパ ターンの少なくともいずれかであるので、該膜の有する絶縁性、耐熱性などにより、配 線が外部力 の衝撃や曲げなど力 保護される。  The permanent pattern described in 37> is at least one of a protective film, an interlayer insulating film, and a solder resist pattern. Therefore, due to the insulating property, heat resistance, etc. of the film, the wiring is affected by the impact of external force. Forces such as bending are protected.
[0010] 本発明によれば、耐熱性、耐湿熱性、密着性、機械特性、電気特性に優れた高性 能な硬化膜を得ることができ、プリント配線板、高密度多層板及び半導体パッケージ 等の製造に好適に用いられる感光性ソルダーレジスト組成物を提供することができる 。本発明はまた、この感光性ソルダーレジスト組成物の層を支持体に積層してなる優 れた耐熱性、耐湿熱性、密着性、機械特性、電気絶縁性を有する硬化膜が得られる 感光性ソルダーレジストフイルムを提供するこができる。また、青紫色レーザーダイレ タト露光方式に最適な感光性ソルダーレジストフイルムを提供することができる。 図面の簡単な説明 [0010] According to the present invention, a high-performance cured film excellent in heat resistance, heat and humidity resistance, adhesion, mechanical properties, and electrical properties can be obtained, such as a printed wiring board, a high-density multilayer board, and a semiconductor package. The photosensitive solder-resist composition used suitably for manufacture of can be provided. The present invention also provides a cured film having excellent heat resistance, moist heat resistance, adhesion, mechanical properties, and electrical insulation obtained by laminating a layer of this photosensitive solder resist composition on a support. A resist film can be provided. Also a blue-violet laser dire It is possible to provide a photosensitive solder resist film that is optimal for the tatoo exposure method. Brief Description of Drawings
[図 1]図 1は、感光性ソルダーレジストフイルムの層構成を示す説明図である。 FIG. 1 is an explanatory view showing a layer structure of a photosensitive solder resist film.
[図 2]図 2は、デジタル ·マイクロミラー ·デバイス (DMD)の構成を示す部分拡大図の 一例である。  [FIG. 2] FIG. 2 is an example of a partially enlarged view showing the configuration of a digital micromirror device (DMD).
[図 3A]図 3 Aは、 DMDの動作を説明するための説明図の一例である。  FIG. 3A is an example of an explanatory diagram for explaining the operation of the DMD.
[図 3B]図 3Bは、図 3Aと同様の DMDの動作を説明するための説明図の一例である  FIG. 3B is an example of an explanatory diagram for explaining the operation of the DMD similar to FIG. 3A.
[図 4A]図 4Aは、 DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビーム の配置及び走査線を比較して示した平面図の一例である。 [FIG. 4A] FIG. 4A is an example of a plan view showing the arrangement of exposure beams and the scanning lines in a case where the DMD is not inclined and in a case where the DMD is inclined.
[図 4B]図 4Bは、図 4Aと同様の DMDを傾斜配置しな ヽ場合と傾斜配置する場合と で、露光ビームの配置及び走査線を比較して示した平面図の一例である。  [FIG. 4B] FIG. 4B is an example of a plan view showing the arrangement of exposure beams and the scanning lines in a case where DMDs similar to FIG. 4A are not inclined and in a case where they are inclined.
[図 5A]図 5Aは、 DMDの使用領域の例を示す図の一例である。  FIG. 5A is an example of a diagram illustrating an example of a DMD usage area.
[図 5B]図 5Bは、図 5Aと同様の DMDの使用領域の例を示す図の一例である。  FIG. 5B is an example of a diagram showing an example of a DMD usage area similar to FIG. 5A.
[図 6]図 6は、スキャナによる 1回の走査でパターン形成材料を露光する露光方式を 説明するための平面図の一例である。  [FIG. 6] FIG. 6 is an example of a plan view for explaining an exposure method for exposing a pattern forming material by one scanning by a scanner.
[図 7A]図 7Aは、スキャナによる複数回の走査でパターン形成材料を露光する露光 方式を説明するための平面図の一例である。  FIG. 7A is an example of a plan view for explaining an exposure method for exposing a pattern forming material by a plurality of scans by a scanner.
[図 7B]図 7Bは、図 7Aと同様のスキャナによる複数回の走査でパターン形成材料を 露光する露光方式を説明するための平面図の一例である。  FIG. 7B is an example of a plan view for explaining an exposure method for exposing the pattern forming material by a plurality of scans by the same scanner as in FIG. 7A.
[図 8]図 8は、パターン形成装置の一例の外観を示す概略斜視図の一例である。 FIG. 8 is an example of a schematic perspective view showing an appearance of an example of a pattern forming apparatus.
[図 9]図 9は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。 FIG. 9 is an example of a schematic perspective view showing a configuration of a scanner of the pattern forming apparatus.
[図 10A]図 10Aは、パターン形成材料に形成される露光済み領域を示す平面図の一 例である。 FIG. 10A is an example of a plan view showing an exposed region formed on the pattern forming material.
[図 10B]図 10Bは、各露光ヘッドによる露光エリアの配列を示す図の一例である。  FIG. 10B is an example of a diagram showing an arrangement of exposure areas by each exposure head.
[図 11]図 11は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例であ る。 FIG. 11 is an example of a perspective view showing a schematic configuration of an exposure head including light modulation means.
[図 12]図 12は、図 11に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断 面図の一例である。 12 is a cross-sectional view in the sub-scanning direction along the optical axis showing the configuration of the exposure head shown in FIG. It is an example of a surface view.
[図 13]図 13は、パターン情報に基づいて、 DMDの制御をするコントローラの一例で ある。  FIG. 13 is an example of a controller that controls DMD based on pattern information.
[図 14A]図 14Aは、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った 断面図の一例である。  FIG. 14A is an example of a cross-sectional view along the optical axis showing the configuration of another exposure head having a different coupling optical system.
[図 14B]図 14Bは、マイクロレンズアレイ等を使用しな ヽ場合に被露光面に投影され る光像を示す平面図の一例である。  [FIG. 14B] FIG. 14B is an example of a plan view showing a light image projected on the exposed surface when a microlens array or the like is not used.
[図 14C]図 14Cは、マイクロレンズアレイ等を使用した場合に被露光面に投影される 光像を示す平面図の一例である。  FIG. 14C is an example of a plan view showing an optical image projected on an exposed surface when a microlens array or the like is used.
[図 15]図 15は、 DMDを構成するマイクロミラーの反射面の歪みを等高線で示す図 の一例である。  FIG. 15 is an example of a diagram showing the distortion of the reflection surface of the micromirror constituting the DMD with contour lines.
[図 16A]図 16Aは、前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方 向につ 、て示すグラフの一例である。  FIG. 16A is an example of a graph showing distortion of the reflection surface of the micromirror in two diagonal directions of the mirror.
[図 16B]図 16Bは、図 16Bと同様の前記マイクロミラーの反射面の歪みを、該ミラーの 2つの対角線方向について示すグラフの一例である。  FIG. 16B is an example of a graph showing distortion of the reflection surface of the micromirror similar to that in FIG. 16B in two diagonal directions of the mirror.
[図 17A]図 17Aは、パターン形成装置に用いられたマイクロレンズアレイの正面図の 一例である。  FIG. 17A is an example of a front view of a microlens array used in a pattern forming apparatus.
[図 17B]図 17Bは、パターン形成装置に用いられたマイクロレンズアレイの側面図の 一例である。  FIG. 17B is an example of a side view of a microlens array used in the pattern forming apparatus.
[図 18A]図 18Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  FIG. 18A is an example of a front view of a microlens constituting a microlens array.
[図 18B]図 18Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。  FIG. 18B is an example of a side view of a microlens constituting a microlens array.
[図 19A]図 19Aは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 19A] FIG. 19A is an example of a schematic view showing a condensing state by a microlens in one cross section.
[図 19B]図 19Bは、マイクロレンズによる集光状態を 1つの断面内について示す概略 図の一例である。  [FIG. 19B] FIG. 19B is an example of a schematic diagram showing a condensing state by a microlens in one cross section.
[図 20A]図 20Aは、マイクロレンズの集光位置近傍におけるビーム径をシミュレーショ ンした結果を示す図の一例である。 [Fig. 20A] Fig. 20A shows the simulation of the beam diameter near the condensing position of the microlens. It is an example of the figure which shows the result obtained.
[図 20B]図 20Bは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  [FIG. 20B] FIG. 20B is an example of a diagram showing the same simulation results as in FIG. 20A but at different positions.
[図 20C]図 20Cは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 20C is an example of a diagram illustrating the simulation result similar to FIG. 20A at another position.
[図 20D]図 20Dは、図 20Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  FIG. 20D is an example of a diagram showing a simulation result similar to FIG. 20A at another position.
[図 21A]図 21Aは、従来のパターン形成方法において、マイクロレンズの集光位置近 傍におけるビーム径をシミュレーションした結果を示す図の一例である。  FIG. 21A is an example of a diagram showing a result of simulating a beam diameter in the vicinity of a condensing position of a microlens in a conventional pattern forming method.
[図 21B]図 21Bは、図 21Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。 [FIG. 21B] FIG. 21B is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
[図 21C]図 21Cは、図 21Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  [FIG. 21C] FIG. 21C is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
[図 21D]図 21Dは、図 21Aと同様のシミュレーション結果を、別の位置について示す 図の一例である。  [FIG. 21D] FIG. 21D is an example of a diagram showing the same simulation results as in FIG. 21A but at different positions.
[図 22]図 22は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 22 is an example of a plan view showing another configuration of the combined laser light source.
[図 23A]図 23Aは、マイクロレンズアレイを構成するマイクロレンズの正面図の一例で ある。  [FIG. 23A] FIG. 23A is an example of a front view of a microlens constituting a microlens array.
[図 23B]図 23Bは、マイクロレンズアレイを構成するマイクロレンズの側面図の一例で ある。  [FIG. 23B] FIG. 23B is an example of a side view of the microlens constituting the microlens array.
[図 24A]図 24Aは、図 23A及び Bのマイクロレンズによる集光状態を 1つの断面内に つ!、て示す概略図の一例である。  [FIG. 24A] FIG. 24A is an example of a schematic diagram showing the condensing state by the microlens of FIGS. 23A and B in one cross section.
[図 24B]図 24Bは、図 24Aの一例と別の断面内について示す概略図の一例である。  FIG. 24B is an example of a schematic diagram showing another cross section of the example of FIG. 24A.
[図 25A]図 25Aは、光量分布補正光学系による補正の概念についての説明図の一 例である。 [FIG. 25A] FIG. 25A is an example of an explanatory diagram of the concept of correction by the light quantity distribution correction optical system.
[図 25B]図 25Bは、光量分布補正光学系による補正の概念についての説明図の一 例である。  [FIG. 25B] FIG. 25B is an example of an explanatory diagram of the concept of correction by the light quantity distribution correcting optical system.
[図 25C]図 25Cは、光量分布補正光学系による補正の概念についての説明図の一 例である。 [FIG. 25C] FIG. 25C is an explanatory diagram of the concept of correction by the light quantity distribution correction optical system. It is an example.
[図 26]図 26は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の 光量分布を示すグラフの一例である。  FIG. 26 is an example of a graph showing a light amount distribution when the light irradiation means is a Gaussian distribution and the light amount distribution is not corrected.
[図 27]図 27は、光量分布補正光学系による補正後の光量分布を示すグラフの一例 である。  FIG. 27 is an example of a graph showing the light amount distribution after correction by the light amount distribution correcting optical system.
[図 28A]図 28A(A)は、ファイバアレイ光源の構成を示す斜視図であり、図 28A(B) は、図 28A(A)の部分拡大図の一例であり、図 28A(C)及び (D)は、レーザ出射部 における発光点の配列を示す平面図の一例である。  FIG. 28A is a perspective view showing the configuration of the fiber array light source, FIG. 28A (B) is an example of a partially enlarged view of FIG. 28A (A), and FIG. 28A (C) and FIG. (D) is an example of a plan view showing an array of light emitting points in the laser emitting section.
[図 28B]図 28Bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す 正面図の一例である。  [FIG. 28B] FIG. 28B is an example of a front view showing the arrangement of light emitting points in the laser emitting section of the fiber array light source.
[図 29]図 29は、マルチモード光ファイバの構成を示す図の一例である。  FIG. 29 is an example of a diagram showing a configuration of a multimode optical fiber.
[図 30]図 30は、合波レーザ光源の構成を示す平面図の一例である。  FIG. 30 is an example of a plan view showing a configuration of a combined laser light source.
[図 31]図 31は、レーザモジュールの構成を示す平面図の一例である。  FIG. 31 is an example of a plan view showing a configuration of a laser module.
[図 32]図 32は、図 31に示すレーザモジュールの構成を示す側面図の一例である。  FIG. 32 is an example of a side view showing the configuration of the laser module shown in FIG. 31.
[図 33]図 33は、図 31に示すレーザモジュールの構成を示す部分側面図である。  FIG. 33 is a partial side view showing the configuration of the laser module shown in FIG. 31.
[図 34]図 34は、レーザアレイの構成を示す斜視図の一例である。  FIG. 34 is an example of a perspective view showing a configuration of a laser array.
[図 35A]図 35Aは、マルチキヤビティレーザの構成を示す斜視図の一例である。  FIG. 35A is an example of a perspective view showing a configuration of a multi-cavity laser.
[図 35B]図 35Bは、図 35Aに示すマルチキヤビティレーザをアレイ状に配列したマル チキヤビティレーザアレイの斜視図の一例である。  FIG. 35B is an example of a perspective view of a multi-cavity laser array in which the multi-cavity lasers shown in FIG. 35A are arranged in an array.
[図 36]図 36は、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 36 is an example of a plan view showing another configuration of the combined laser light source.
[図 37A]図 37Aは、合波レーザ光源の他の構成を示す平面図の一例である。  FIG. 37A is an example of a plan view showing another configuration of the combined laser light source.
[図 37B]図 37Bは、図 37Aの光軸に沿った断面図の一例である。  FIG. 37B is an example of a cross-sectional view along the optical axis of FIG. 37A.
[図 38A]図 38Aは、従来の露光装置における焦点深度と本発明のパターン形成方法 FIG. 38A is a diagram illustrating the depth of focus in a conventional exposure apparatus and the pattern forming method of the present invention.
(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。 FIG. 3 is an example of a cross-sectional view along an optical axis showing a difference from a depth of focus by a (pattern forming device).
[図 38B]図 38Bは、従来の露光装置における焦点深度と本発明のパターン形成方法 (パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例で ある。 発明を実施するための最良の形態 FIG. 38B is an example of a cross-sectional view along the optical axis showing the difference between the depth of focus in the conventional exposure apparatus and the depth of focus by the pattern forming method (pattern forming apparatus) of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0012] (感光性ソルダーレジスト組成物)  [0012] (Photosensitive solder resist composition)
本発明の感光性ソルダーレジスト組成物は、アルカリ可溶性光架橋性榭脂と、アル カリ可溶性エラストマ一と、重合性化合物と、光重合開始剤と、熱架橋剤と、無機充 填剤と、着色剤と、熱硬化促進剤と、必要に応じて適宜選択したその他の成分を含 有する感光性ソルダーレジスト組成物である。  The photosensitive solder resist composition of the present invention comprises an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, an inorganic filler, and a coloring agent. It is a photosensitive solder resist composition containing an agent, a thermosetting accelerator, and other components appropriately selected as necessary.
[0013] <アルカリ可溶性光架橋性榭脂 > [0013] <Alkali-soluble photocrosslinkable resin>
前記アルカリ可溶性光架橋性榭脂は、バインダーとしての機能があり、前記第 1の 感光性ソルダーレジスト層の硬度を高め、弾性体としての性質を付加する機能がある 前記アルカリ可溶性とは、それを含む感光性ソルダーレジスト組成物がアルカリ性 現像液によって溶解する性質をいい、具体的には、 目的とする現像処理が遂行され る程度に溶解性を有していればよい。アルカリ性現像液としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば、炭酸ナトリウム、炭酸カリウム、水酸 化ナトリウム、水酸ィ匕カリウムなどのアルカリ金属水酸ィ匕物や、ヒドロキシェチルァミン 、トリェチルァミンのようなアミン類、テトラメチルアンモ-ゥムヒドロキシドのような 4級ァ ンモニゥムヒドロキシド類の水溶液やそれらと混和性の有機溶剤との混合物が用いら れる。 pHは、 8〜14であり、これらアルカリ剤の 0. 01〜10質量0 /0水溶液が好ましい 。これらのアルカリ性現像液のうち、プリント配線板業界では、一般的に、 0. 2〜2質 量%の炭酸ナトリウム水溶液が用いられ、 1質量%炭酸ナトリウム水溶液が最も一般 的である。 The alkali-soluble photocrosslinkable resin has a function as a binder, and has a function of increasing the hardness of the first photosensitive solder resist layer and adding properties as an elastic body. The photosensitive solder resist composition to be contained has a property of being dissolved by an alkaline developer. Specifically, the photosensitive solder resist composition only needs to be soluble to the extent that the intended development processing is performed. The alkaline developer is not particularly limited and can be appropriately selected according to the purpose. For example, alkali metal hydroxide such as sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, potassium hydroxide, Amines such as hydroxyethylamine and triethylamine, aqueous solutions of quaternary ammonium hydroxides such as tetramethylammonium hydroxide, and mixtures thereof with miscible organic solvents are used. pH is 8 to 14, 0.01 to 10 weight 0/0 aqueous solution of the alkali agent is preferred. Among these alkaline developers, in the printed wiring board industry, 0.2 to 2 mass% sodium carbonate aqueous solution is generally used, and 1 mass% sodium carbonate aqueous solution is the most common.
現像方法の一例を示すと、表面を整面し、乾燥した銅張積層板の表面に、感光性 ソルダーレジストフイルムの保護フィルムを剥がしながら、感光性ソルダーレジスト層を 、ラミネーターを用いて圧着して、銅張り積層板、感光性ソルダーレジスト層、そして 支持体フィルムからなる積層体を作製する。圧着条件は、積層板温度 70°C、圧着口 ール温度 105°C、圧着ロール圧力 3kgZcm2そして圧着速度 1. 2mZ分とする。 積層体力 支持体フィルムを剥がし取り、銅張り積層板上の感光性ソルダーレジス ト層の全面に 30°Cの 1質量%炭酸ナトリウム水溶液を 0. IMPaの圧力にてスプレー する。少なくとも 60秒間のスプレーの後で銅張り積層板上の感光性ソルダーレジスト 層が除去された場合、現像されことになる。 As an example of the development method, the photosensitive solder resist layer is pressure-bonded using a laminator while the surface is leveled and the protective film of the photosensitive solder resist film is peeled off on the surface of the dried copper clad laminate. A laminate comprising a copper-clad laminate, a photosensitive solder resist layer, and a support film is prepared. The crimping conditions are: laminate temperature 70 ° C, crimping tool temperature 105 ° C, crimping roll pressure 3kgZcm 2 and crimping speed 1.2mZ. Laminate strength Peel off the support film, and spray 1% sodium carbonate aqueous solution at 30 ° C at a pressure of 0. IMPa over the entire surface of the photosensitive solder resist layer on the copper-clad laminate. To do. If the photosensitive solder resist layer on the copper clad laminate is removed after at least 60 seconds of spraying, it will be developed.
このようなアルカリ可溶性を示す榭脂としては、例えば、 30°Cの 1質量%炭酸ナトリ ゥム水溶液中に 1質量%以上の溶解度を示すものから、好適に選ぶことができる。 前記光架橋性とは、光化学反応により、線状のポリマー分子を網状の三次元構造と なる分子に変わる性質をいい、具体的には、光重合開始剤の光分解により、発生す る遊離ラジカルの作用により、重合反応をして網状ィ匕しうるポリマーをいう。  Such a resin having alkali solubility can be suitably selected from those showing a solubility of 1% by mass or more in a 1% by mass sodium carbonate aqueous solution at 30 ° C., for example. The photocrosslinking property means a property that a linear polymer molecule is changed to a molecule having a network three-dimensional structure by a photochemical reaction, and specifically, free radicals generated by photolysis of a photopolymerization initiator. This means a polymer that can be reticulated by polymerization reaction.
[0014] 前記アルカリ可溶性光架橋性榭脂は、分子中にアルカリ可溶基と光重合に関与す る架橋性基を含有する 1%炭酸ソーダ水溶液 (pH= 10)に可溶性の榭脂である。 前記アルカリ可溶性光架橋性榭脂としては、特に制限はなぐ 目的に応じて適宜選 択することができ、例えば、ビュルポリマー型光架橋性榭脂、エポキシ榭脂エステル 型光架橋性榭脂などが挙げられる。 [0014] The alkali-soluble photocrosslinkable rosin is soluble in 1% aqueous sodium carbonate solution (pH = 10) containing an alkali-soluble group and a crosslinkable group involved in photopolymerization in the molecule. . The alkali-soluble photocrosslinkable resin can be appropriately selected according to the purpose for which there is no particular limitation, and examples thereof include a bull polymer type photocrosslinkable resin and an epoxy resin type photocrosslinkable resin. Can be mentioned.
[0015] ビュルポリマー型光架橋性榭脂ー [0015] Bull polymer type photocrosslinkable resin
前記ビュルポリマー型光架橋性榭脂としては、下記タイプ (A— 1)、(A— 2)及び( A- 3)に分類され、少なくともいずれかのタイプ力も選ばれる。  The bull polymer type photocrosslinkable resin is classified into the following types (A-1), (A-2) and (A-3), and at least one type force is also selected.
タイプ (A— 1): (a)カルボキシル基含有共重合樹脂と、(b)エポキシ基含有不飽和 化合物との反応により製造される。  Type (A-1): Manufactured by a reaction between (a) a carboxyl group-containing copolymer resin and (b) an epoxy group-containing unsaturated compound.
タイプ (A—2): (c)エポキシ基含有共重合樹脂と、(d)カルボキシル基含有不飽和 化合物を付加反応し更に得られる生成物のヒドロキシル基への(e)多塩基酸無水物 の付加反応により製造される。  Type (A-2): (c) An epoxy group-containing copolymer resin and (d) a carboxyl group-containing unsaturated compound are added to the hydroxyl group of the resulting product, and (e) a polybasic acid anhydride Produced by addition reaction.
タイプ (A— 3): (f)酸無水物基含有共重合樹脂と、(g)分子中に 1個のヒドロキシル 基及び少なくとも 1個の (メタ)アタリロイル基を有する化合物の付加反応により製造さ れる。  Type (A-3): produced by the addition reaction of (f) an acid anhydride group-containing copolymer resin and (g) a compound having one hydroxyl group and at least one (meth) taroloyl group in the molecule. It is.
なお、本明細書中において、(メタ)アタリレートとは、アタリレート、メタアタリレート及 びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。  In the present specification, the term “(meth) atalylate” is a general term for atalylate, metaatherate, and a mixture thereof, and the same applies to other similar expressions.
[0016] タイプ (A— 1) [0016] Type (A— 1)
前記タイプ (A—1)のビュルポリマー型光架橋性榭脂の製造に用いられる、(a)力 ルポキシル基含有共重合榭脂は、 1分子中に 1個の不飽和基と少なくとも 1個のカル ボキシル基又は酸無水物基を有する化合物と、(メタ)アクリル酸エステル及びスチレ ン類の少なくともいずれかとを共重合させて得られる。 The (a) strength lupoxyl group-containing copolymer resin used in the production of the type (A-1) bulle polymer type photocrosslinkable resin has one unsaturated group and at least one in one molecule. Cal It is obtained by copolymerizing a compound having a boxyl group or an acid anhydride group with at least one of (meth) acrylic acid ester and styrene.
[0017] 前記 (a)カルボキシル基含有共重合榭脂を構成単位とする 1分子中に 1個の不飽 和基と少なくとも 1個のカルボキシル基又は酸無水物基を有する化合物とは、(メタ) アクリル酸、更にはマレイン酸、ィタコン酸等のカルボキシル基を分子中に 2個以上 含むものが挙げられる。また、マレイン酸、ィタコン酸のモノエステル、又はモノアミド も含まれる。また、ヒドロキシル基含有 (メタ)アタリレートと飽和あるいは不飽和二塩基 酸無水物との反応生成物である半エステルイ匕合物が挙げられる。これら半エステル 化合物は、ヒドロキシル基含有 (メタ)アタリレートと飽和あるいは不飽和二塩基酸無 水物とを等モル比で反応させることで得られる。  [0017] The compound (a) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule having a carboxyl group-containing copolymer resin as a structural unit is (meta ) Acrylic acid, maleic acid, itaconic acid and other carboxyl groups containing 2 or more carboxyl groups in the molecule. Also included are maleic acid, itaconic acid monoesters, or monoamides. Moreover, the half ester compound which is a reaction product of a hydroxyl group-containing (meth) acrylate and a saturated or unsaturated dibasic acid anhydride can be mentioned. These half ester compounds can be obtained by reacting a hydroxyl group-containing (meth) acrylate with an equimolar ratio of a saturated or unsaturated dibasic acid anhydride.
[0018] 前記半エステルイ匕合物の合成に用いられるヒドロキシル基含有アタリレートとしては 、例えば、ヒドロキシェチル (メタ)アタリレート、ヒドロキシプロピル (メタ)アタリレート、ヒ ドロキシブチル (メタ)アタリレート、ポリエチレングリコールモノ (メタ)アタリレート、トリメ チロールプロパンジ(メタ)アタリレート、ベンダエリスルトールトリ(メタ)アタリレート、ジ ベンタエリスリトールペンタ (メタ)アタリレート等が挙げられる。  [0018] Examples of the hydroxyl group-containing acrylate used in the synthesis of the half ester compound include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene Examples thereof include glycol mono (meth) acrylate, trimethylolpropane di (meth) acrylate, bendaerythritol tri (meth) acrylate, and diben erythritol penta (meth) acrylate.
[0019] 前記半エステル化合物の合成に用いられる飽和あるいは不飽和二塩基酸無水物 としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フ タル酸、メチルナドラヒドロ無水フタル酸、ェチルテトラヒドロ無水フタル酸、へキサヒド 口無水フタル酸、メチルへキサヒドロ無水フタル酸、ェチルへキサヒドロ無水フタル酸 、無水ィタコン酸等が挙げられる。これらの中で、(メタ)アクリル酸が好ましい。  [0019] Examples of the saturated or unsaturated dibasic acid anhydride used in the synthesis of the half ester compound include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, and methyl nadrahydrophthalic anhydride. Examples thereof include acid, ethyltetrahydrophthalic anhydride, hexaldehyde oral phthalic anhydride, methylhexahydrophthalic anhydride, ethylhexahydrophthalic anhydride, and itaconic anhydride. Of these, (meth) acrylic acid is preferred.
これら 1分子中に 1個の不飽和基と少なくとも 1個のカルボキシル基又は酸無水物 基を有する化合物は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  These compounds having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule may be used alone or in combination of two or more.
[0020] 前記 (a)カルボキシル基含有共重合樹脂の構成単位となる (メタ)アクリル酸エステ ルとしては、例えば、メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n—プロピル (メタ)アタリレート、イソプロピル (メタ)アタリレート、 n—ブチル (メタ)アタリレート、イソ ブチル (メタ)アタリレート、 t—ブチル (メタ)アタリレート、 n—へキシル (メタ)アタリレー ト、シクロへキシル (メタ)アタリレート、 t—ブチルシクロへキシル (メタ)アタリレート、 2 —ェチルへキシル (メタ)アタリレート、 t—ォクチル (メタ)アタリレート、ドデシル (メタ) アタリレート、ォクタデシル (メタ)アタリレート、ァセトキシェチル (メタ)アタリレート、フ ェ-ル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレート、 2—メトキシェチル( メタ)アタリレート、 2—エトキシェチル (メタ)アタリレート、 2— (2—メトキシエトキシ)ェ チル (メタ)アタリレート、 3 フエノキシ 2 ヒドロキシプロピル (メタ)アタリレート、ベ ンジル (メタ)アタリレート、ジエチレングリコールモノメチルエーテル (メタ)アタリレート 、ジエチレングリコールモノェチルエーテル(メタ)アタリレート、ジエチレングリコール モノフエ-ルエーテル(メタ)アタリレート、トリエチレングリコールモノメチルエーテル ( メタ)アタリレート、トリエチレングリコールモノェチルエーテル (メタ)アタリレート、ポリエ チレングリコールモノメチルエーテル(メタ)アタリレート、ポリエチレングリコールモノエ チルエーテル (メタ)アタリレート、 β—フエノキシエトキシェチルアタリレート、ノ -ルフ エノキシポリエチレングリコール (メタ)アタリレート、ジシクロペンタ-ル (メタ)アタリレー ト、ジシクロペンテ-ル (メタ)アタリレート、ジシクロペンテ-ルォキシェチル (メタ)ァク リレート、トリフロロェチル (メタ)アタリレート、オタタフロロペンチル (メタ)アタリレート、 パーフロロォクチルェチル (メタ)アタリレート、トリブロモフエ-ル (メタ)アタリレート、ト リブロモフエ-ルォキシェチル (メタ)アタリレートなどが挙げられる。 [0020] Examples of (a) (meth) acrylic acid ester which is a structural unit of the carboxyl group-containing copolymer resin include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth). Atalylate, Isopropyl (meth) atalylate, n-Butyl (meth) atalylate, Isobutyl (meth) atalylate, t-Butyl (meth) atalylate, n-Hexyl (meth) atalylate, Cyclohexyl ( (Meth) Atarylate, t-Butylcyclohexyl (Meth) Atalylate, 2 —Ethylhexyl (Meth) Atalylate, t—Octyl (Meth) Atalylate, Dodecyl (Meth) Atalylate, Octadecyl (meth) atarylate, Acetoxychetyl (meth) atarylate, Phenol (meth) atarylate, 2-Hydroxyethyl (meth) atarylate, 2-Methoxyethyl (meth) talylate, 2-Ethoxyethyl (Meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 3 phenoxy 2 hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, diethylene glycol monomethyl ether (meth) acrylate, Diethylene glycol monoethyl ether (meth) acrylate, diethylene glycol monophenyl ether (meth) acrylate, triethylene glycol monomethyl ether (meth) acrylate, triethylene glycol monoethyl ether (meth) acrylate , Polyethylene glycol monomethyl ether (meth) acrylate, polyethylene glycol monoethyl ether (meth) acrylate, β-phenoxyethoxyethyl acrylate, norphenoxy polyethylene glycol (meth) acrylate, dicyclopenta -(R) (meth) atrelate, dicyclopentayl (meth) atarylate, dicyclopente-roxchetil (meth) acrylate, trifluoroethyl (meth) atalylate, otatafluoropentyl (meth) atalylate, perfluorooctylethyl ( Examples include (meth) acrylate, tribromophenol (meth) acrylate, tribromophenol luxhetyl (meth) acrylate.
また、前記 (a)カルボキシル基含有共重合樹脂の構成単位となるスチレン類として は、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、ェチル スチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレ ン、ブトキシスチレン、ァセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモス チレン、クロロメチルスチレン、酸性物質により脱保護可能な基 (例えば、 t— Boc等) で保護されたヒドロキシスチレン、ビュル安息香酸メチル、 aーメチルスチレンなどが 挙げられる。  Examples of the styrenes that constitute the structural unit of the carboxyl group-containing copolymer resin (a) include, for example, styrene, methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, hydroxystyrene, methoxystyrene. , Butoxystyrene, acetyl styrene, chlorostyrene, dichlorostyrene, bromostyrene, chloromethyl styrene, hydroxystyrene protected with a group that can be deprotected by an acidic substance (for example, t-Boc, etc.), methyl butyl benzoate, Examples include a-methylstyrene.
前記 (a)カルボキシル基含有共重合榭脂は、これら 1分子中に 1個の不飽和基と少 なくとも 1個のカルボキシル基、又は、酸無水物基を有する化合物と (メタ)アクリル酸 エステルモノマーとスチレン類の少なくともいずれ力との通常の共重合法、例えば、 溶液重合法により共重合して得られる。  The (a) carboxyl group-containing copolymer resin includes a compound having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule and a (meth) acrylic acid ester. It can be obtained by copolymerizing a monomer and at least one of styrenes by a usual copolymerization method, for example, a solution polymerization method.
また、前記 (a)カルボキシル基含有共重合樹脂に包含される、マレイン酸モノエス テル Zスチレン類共重合体、マレイン酸モノアミド Zスチレン類共重合体、ィタコン酸 モノエステル zスチレン類共重合体ゃィタコン酸モノアミド zスチレン類共重合体の 場合は、それぞれ無水マレイン酸 Zスチレン類共重合体や無水ィタコン酸 Zスチレ ン類共重合体のアルコール類又は一級又は二級アミン類との高分子反応により得る ことができる。 In addition, (a) maleic acid monoester Z styrene copolymers, maleic acid monoamide Z styrene copolymers, and itaconic acid, which are included in the above-mentioned (a) carboxyl group-containing copolymer resin. Monoester z Styrene copolymer ytaconic acid monoamide z In the case of styrene copolymers, maleic anhydride Z styrene copolymers and itaconic anhydride Z styrene copolymers or primary or secondary alcohols, respectively. It can be obtained by polymer reaction with secondary amines.
前記マレイン酸無水物との高分子反応に使用する前記アルコール類としては、例 えば、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 s ec ブタノール、 tーブタノール、ペンタノール、へキサノール、シクロへキサノール、 メトキシエタノール、エトキシエタノール、メトキシプロパノール、エトキシプロパノール などを好適に挙げることができる。  Examples of the alcohols used in the polymer reaction with the maleic anhydride include methanol, ethanol, n-propanol, isopropanol, n-butanol, sec butanol, t-butanol, pentanol, hexanol, cyclohexane. Preferable examples include hexanol, methoxyethanol, ethoxyethanol, methoxypropanol, ethoxypropanol and the like.
また、前記一級アミン類としては、例えば、ベンジルァミン、フエネチルァミン、 3—フ ェ-ル—1—プロピルァミン、 4—フエ-ル— 1—ブチルァミン、 5—フエ-ル— 1—ぺ ンチルァミン、 6—フエ-ルー 1—へキシルァミン、 α—メチルベンジルァミン、 2—メ チルベンジルァミン、 3 メチルベンジルァミン、 4 メチルベンジルァミン、 2 (ρ— トリル)ェチルァミン、 j8—メチルフエネチルァミン、 1ーメチルー 3—フエ-ルプロピル ァミン、 2 クロ口ベンジルァミン、 3 クロ口ベンジルァミン、 4 クロ口ベンジルァミン 、 2 フロロベンジルァミン、 3 フロロベンジルァミン、 4 フロロベンジルァミン、 4— ブロモフエネチルァミン、 2— (2 クロ口フエ-ル)ェチルァミン、 2— (3 クロ口フエ二 ル)ェチルァミン、 2 - (4 クロ口フエ-ル)ェチルァミン、 2— (2 フロロフエ-ル)ェ チルァミン、 2—(3 フロロフエ-ル)ェチルァミン、 2—(4 フロロフエ-ル)ェチル ァミン、 4 フロロ一 at , a—ジメチルフエネチルァミン、 2—メトキシベンジルァミン、 3 ーメトキシベンジルァミン、 4ーメトキシベンジルァミン、 2 エトキシベンジルァミン、 2 ーメトキシフエネチルァミン、 3—メトキシフエネチルァミン、 4ーメトキシフエネチルアミ ン、メチノレアミン、ェチノレアミン、イソプロピルァミン、 n—プロピルァミン、 n—ブチノレア ミン、 tーブチルァミン、 sec ブチルァミン、ペンチルァミン、へキシルァミン、シクロ へキシルァミン、ヘプチルァミン、ォクチルァミン、ラウリルァミン、フエ-ルァミン、 1 ナフチルァミン、メトキシメチルァミン、 2—メトキシェチルァミン、 2—エトキシェチルァ ミン、 3—メトキシプロピルァミン、 2 ブトキシェチルァミン、 2 シクロへキシルォキシ ェチルァミン、 3—エトキシプロピルァミン、 3—プロポキシプロピルァミン、 3—イソプロ ポキシプロピルァミンなどが好適に挙げられる。 Examples of the primary amines include benzylamine, phenethylamine, 3-phenyl-1-propylamine, 4-phenyl-1-butylamine, 5-phenol-1-pentylamine, and 6-phenol. -Lu 1-hexylamine, α-methylbenzylamine, 2-methylbenzylamine, 3 methylbenzylamine, 4 methylbenzylamine, 2 (ρ-tolyl) ethylamine, j8-methylphenethylamine, 1-methyl-3-phenylpropylamine, 2-chlorobenzylamine, 3-chlorobenzylamine, 4-chlorobenzylamine, 2 fluorobenzylamine, 3 fluorobenzylamine, 4 fluorobenzylamine, 4-bromophenethylamine, 2— (2 black mouth) ethylamine, 2— (3 black mouth) ethylamine, 2-(4 black mouth) ethylamine 2-, (2-fluorophenyl) ethylamine, 2- (3-fluorophenyl) ethylamine, 2- (4-fluorophenyl) ethylamine, 4-fluoro at, a-dimethylphenethylamine, 2-methoxy Benzylamine, 3-methoxybenzylamine, 4-methoxybenzylamine, 2-ethoxybenzylamine, 2-methoxyphenethylamine, 3-methoxyphenethylamine, 4-methoxyphenethylamine, methinoreamine , Ethynoleamine, isopropylamine, n-propylamine, n-butynoleamine, t-butylamine, sec butylamine, pentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, laurylamine, phenol-lamine, 1 naphthylamine, methoxymethylamine, 2 —Methoxyethylamine, 2-E Toxetylamine, 3-methoxypropylamine, 2 Butoxystilamine, 2 Cyclohexylethylamine, 3-Ethoxypropylamine, 3-Propoxypropylamine, 3-Isopro Poxypropylamine and the like are preferred.
更に、前記二級アミン類としては、例えば、ジメチルァミン、ジェチルァミン、メチル ェチルァミン、メチルプロピルァミン、ジェチルァミン、ェチルプロピルァミン、ジプロピ ルァミン、ジブチルァミン、 N, N—メチルベンジルァミンなどを好適に挙げることがで きる。  Further, preferable examples of the secondary amines include dimethylamine, jetylamine, methylethylamine, methylpropylamine, jetylamine, ethylpropylamine, dipropylamine, dibutylamine, N, N-methylbenzylamine and the like. be able to.
[0023] (b)エポキシ基含有不飽和化合物  [0023] (b) Epoxy group-containing unsaturated compound
前記タイプ (A— 1)のビュルポリマー型光架橋性榭脂の製造に用いられる (b)ェポ キシ基含有不飽和化合物としては、 1分子中に 1個のラジカル重合性の不飽和基と エポキシ基とを有する化合物であればよぐ例えば、下記一般式 (IV— 1)〜(IV— 1 4)で示される化合物などが挙げられる。  (B) Epoxy group-containing unsaturated compound used in the production of the above-mentioned type (A-1) bulle polymer type photocrosslinkable resin includes one radical polymerizable unsaturated group in one molecule. For example, compounds represented by the following general formulas (IV-1) to (IV-14) may be used as long as they are compounds having an epoxy group.
[0024] [化 10]
Figure imgf000023_0001
[0024] [Chemical 10]
Figure imgf000023_0001
[0025] [化 11] [0025] [Chemical 11]
—般式(IV-2)—General formula (IV-2)
Figure imgf000023_0002
Figure imgf000023_0002
[0026] [化 12] [0026] [Chemical 12]
—般式(IV-3)—General formula (IV-3)
Figure imgf000023_0003
Figure imgf000023_0003
[0027] [化 13]
Figure imgf000023_0004
[0027] [Chemical 13]
Figure imgf000023_0004
[0028] [化 14] 一般式(IV- 5)[0028] [Chemical 14] General formula (IV-5)
Figure imgf000024_0001
Figure imgf000024_0001
[0029] [化 15] [0029] [Chemical 15]
—般式(IV - 6)—General formula (IV-6)
Figure imgf000024_0002
Figure imgf000024_0002
[0030] [化 16] [0030] [Chemical 16]
—般式(IV- 7)—General formula (IV-7)
Figure imgf000024_0003
Figure imgf000024_0003
[0031] [化 17] —般式(IV-8)
Figure imgf000024_0004
[0031] [Chemical Formula 17] — General Formula (IV-8)
Figure imgf000024_0004
[0032] [化 18] 一般式(IV- 9)
Figure imgf000024_0005
[0032] [Chemical Formula 18] General formula (IV-9)
Figure imgf000024_0005
[0033] [化 19] [0033] [Chemical 19]
CH2=CR14COO R15- 0 0 —般式(17-10) CH 2 = CR 14 COO R 15 - 0 0 - general formula (17-10)
OH  OH
[0034] [化 20] —般式(IV- 11)[0034] [Chemical 20] —General formula (IV-11)
Figure imgf000025_0001
Figure imgf000025_0001
[0035] [化 21] 一般式(IV-12)[0035] [Chemical Formula 21] General formula (IV-12)
Figure imgf000025_0002
Figure imgf000025_0002
[0036] [化 22] [0036] [Chemical 22]
一般式(IV-13)
Figure imgf000025_0003
General formula (IV-13)
Figure imgf000025_0003
[0037] [化 23] [0037] [Chemical 23]
R 16  R 16
COO-R 5-O^COR15O^^CON COO-R 5 -O ^ COR 15 O ^^ CON
R15 一般式(IV-14) R15 General formula (IV-14)
Figure imgf000025_0004
ただし、一般式 (IV— 1)〜 (IV— 14)において、 R は水素原子又はメチル基、 R
Figure imgf000025_0004
However, in the general formulas (IV-1) to (IV-14), R is a hydrogen atom or a methyl group, R
14 15 は炭素数 1〜10のアルキレン基、 R は炭素数 1〜10の炭化水素基、 pは 0又は 1'  14 15 is an alkylene group having 1 to 10 carbon atoms, R is a hydrocarbon group having 1 to 10 carbon atoms, p is 0 or 1 ′
16  16
10の整数を表す。 これら (b)エポキシ基含有不飽和化合物は、単独で用いても 2種以上を混合して用 いてもよい。これらの中でも、グリシジル (メタ)アタリレートや 3, 4—エポキシシクロへ タイプ (A— 2)— Represents an integer of 10. These (b) epoxy group-containing unsaturated compounds may be used alone or in admixture of two or more. Among these, glycidyl (meth) atarylate and 3, 4-epoxycyclohe type (A-2) —
前記タイプ (A— 2)のビュルポリマー型光架橋性榭脂の製造に用いられるエポキシ 基含有共重合榭脂 (c)は、エポキシ基含有モノマーとそれ以外のエポキシ基と非反 応性の (メタ)アクリルエステル及び Z又はスチレン類との共重合により得られる。 エポキシ基含有モノマーとしては、前記タイプ (A— 1)のビュルポリマー型光架橋 性榭脂の説明にお 、て既述の化合物が好適に用いられる。  The epoxy group-containing copolymer resin (c) used in the production of the above-mentioned type (A-2) bulle polymer type photocrosslinkable resin has a non-reactive (meta) group containing an epoxy group-containing monomer and other epoxy groups. ) Obtained by copolymerization with acrylic esters and Z or styrenes. As the epoxy group-containing monomer, the compounds described above are preferably used in the description of the above-mentioned type (A-1) bulle polymer type photocrosslinkable resin.
エポキシ基と非反応性の (メタ)アクリル酸エステル及びスチレン類の少なくとも 、ず れかは、前記タイプ (A— 1)の光架橋性榭脂において既述のもののうち、カルボキシ ル基、アルコール性ヒドロキシル基、フエノール性ヒドロキシル基、アミノ基などを含ま ないものが好適に用いられる。  At least one of (meth) acrylic acid esters and styrenes that are non-reactive with epoxy groups is any of the above-described photocrosslinkable resins of type (A-1), carboxyl groups, alcoholic groups. Those containing no hydroxyl group, phenolic hydroxyl group, amino group, etc. are preferably used.
製造法としては、エポキシ基含有モノマーとそれ以外のエポキシ基と非反応性の (メ タ)アクリル酸エステル、スチレン類を常法、例えば溶液重合法等により共重合して得 られる。  The production method is obtained by copolymerizing an epoxy group-containing monomer, a non-reactive (meth) acrylic acid ester and styrenes with a conventional method such as a solution polymerization method.
ここでエポキシ基含有モノマーとそれ以外のエポキシ基と非反応性の (メタ)アクリル エステル及びはスチレン類の少なくとも 、ずれ力とのモル比は 60: 40〜20: 80力 子 適である。なお、エポキシ基含有モノマーの配合量が少な過ぎてこのモル比が 20 : 8 0より大きいと、次の不飽和カルボン酸、更に多塩基酸無水物の前記共重合体への 付加量が少なくなる結果、紫外線硬化性及び希アルカリ水溶液による現像性が悪く なり、また逆にエポキシ基含有モノマーの配合量が多過ぎて前記モル比が 60 :40よ り小さいと、軟ィ匕点が低くなり過ぎる傾向がある。  Here, the molar ratio of the epoxy group-containing monomer and the non-reactive (meth) acrylic ester and styrenes to the displacement force of 60:40 to 20:80 force is suitable. If the amount of the epoxy group-containing monomer is too small and the molar ratio is greater than 20:80, the amount of the next unsaturated carboxylic acid and polybasic acid anhydride added to the copolymer decreases. As a result, UV curable properties and developability with dilute alkaline aqueous solution deteriorate, and conversely, if the amount of the epoxy group-containing monomer is too large and the molar ratio is less than 60:40, the soft spot is too low. Tend.
また、カルボキシル基含有不飽和化合物(d)は、タイプ (A— 1)のビニルポリマー型 光架橋性榭脂の説明中で 1分子中に 1個の不飽和基と少なくとも 1個のカルボキシル 基又は酸無水物基を有する化合物として既述の各化合物が好適に使用できる。 また、多塩基酸無水物(e)としては、マレイン酸無水物、コハク酸無水物、へキサヒ ドロフタル酸無水物、 3—メチルへキサヒドロフタル酸無水物、 4 メチルへキサヒドロ フタル酸無水物、 3—ェチルへキサヒドロフタル酸無水物、 4 ェチルへキサヒドロフ タル酸無水物、テトラヒドロフタル酸無水物、 3—メチルテトラヒドロフタル酸無水物、 4 ーメチルテトラヒドロフタル酸無水物、 3—ェチルテトラヒドロフタル酸無水物、 4ーェ チルテトラヒドロフタル酸無水物、フタル酸無水物などの、分子中に 1ケの酸無水物基 を有する飽和又は不飽和の脂肪族、脂環族又は芳香族化合物が好ましい。これらの 中でも、テトラヒドロフタル酸無水物が特に好ま U、。 In addition, in the description of the vinyl polymer type photocrosslinkable resin of type (A-1), the carboxyl group-containing unsaturated compound (d) includes one unsaturated group and at least one carboxyl group in one molecule. As the compound having an acid anhydride group, each of the aforementioned compounds can be suitably used. Polybasic acid anhydrides (e) include maleic anhydride, succinic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4 methylhexahydro Phthalic anhydride, 3-ethylhexahydrophthalic anhydride, 4-ethylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, 3 —Saturated or unsaturated aliphatic, alicyclic or ethyltetrahydrophthalic anhydride, 4-ethyltetrahydrophthalic anhydride, phthalic anhydride, etc. having one acid anhydride group in the molecule Aromatic compounds are preferred. Of these, tetrahydrophthalic anhydride is particularly preferred.
前記エポキシ基含有共重合体とカルボキシル基含有不飽和化合物と引き続く多塩 基酸無水物との反応は次のように実施するのが好ま 、。前記エポキシ基含有モノ マーの共重合体に対し、この共重合体の 1エポキシ基当量当り 0. 8〜1. 2モルの不 飽和カルボン酸を付加反応した後、更に得られる生成物のヒドロキシル基に多塩基 酸無水物を付加反応する。  The reaction between the epoxy group-containing copolymer, the carboxyl group-containing unsaturated compound and the subsequent polybasic acid anhydride is preferably carried out as follows. After the addition of 0.8 to 1.2 moles of unsaturated carboxylic acid per 1 epoxy group equivalent of the copolymer to the epoxy group-containing monomer copolymer, the hydroxyl group of the resulting product is further increased. The polybasic acid anhydride is subjected to an addition reaction.
[0039] タイプ (A— 3)— [0039] Type (A— 3) —
前記タイプ (A— 3)のビュルポリマー型光架橋性榭脂の製造に用いられる酸無水 物基含有榭脂 (f)は、マレイン酸無水物とスチレン類の共重合又はィタコン酸無水物 とスチレン類の共重合により得られる。  An acid anhydride group-containing resin (f) used in the production of the type (A-3) bulle polymer type photocrosslinkable resin is a copolymer of maleic acid anhydride and styrene or itaconic acid anhydride and styrene. It can be obtained by copolymerization.
共重合成分であるスチレン類は、前記タイプ (A— 1)の光架橋性榭脂の説明中で 既述のものが好適に用いられる。マレイン酸無水物又はィタコン酸無水物とスチレン 類の共重合組成比は 90: 10〜10: 90力 S好ましく、 80: 20〜20: 80力 S更に好ましく、 70 : 30〜30 : 70が特に好ましい。 90 : 10以上では硬化部の耐現像性が劣り、 10 : 9 0以下では現像性が劣る。  As the styrene as the copolymer component, those already described in the description of the photocrosslinkable resin of type (A-1) are preferably used. The copolymer composition ratio of maleic anhydride or itaconic anhydride and styrene is preferably 90:10 to 10:90 force S, more preferably 80:20 to 20:80 force S, and particularly preferably 70:30 to 30:70 preferable. If it is 90:10 or more, the developing resistance of the cured part is inferior, and if it is 10:90 or less, the developing property is inferior.
前記無水マレイン酸 1モルに対してスチレンを 1モルから 3モルの割合で共重合さ せて得られる質量平均分子量が、 1, 000から 5, 000程度の共重合体が好ましぐ例 えば、 ARCO Chemical社製 SMAレンジ 1000、 2000、 3000などが挙げられる。  For example, a copolymer having a weight average molecular weight of about 1,000 to 5,000 obtained by copolymerizing styrene at a ratio of 1 to 3 moles with respect to 1 mole of maleic anhydride is preferable. Examples include SMA ranges 1000, 2000, and 3000 manufactured by ARCO Chemical.
[0040] 分子中に 1個のヒドロキシル基及び少なくとも 1個の (メタ)アタリロイル基を有するィ匕 合物(g)としては、例えば 2—ヒドロキシェチル (メタ)アタリレート、 2—ヒドロキシプロピ ル (メタ)アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、ポリエチレングリコール モノ (メタ)アタリレート、ポリプロピレングリコールモノ (メタ)アタリレート、ポリ力プロラタ トンモノ (メタ)アタリレート、ベンダエリスリトールトリ(メタ)アタリレート、トリメチロールプ 口パンジ (メタ)アタリレート、ネオペンチルグリコールモノ(メタ)アタリレート、 1, 6—へ キサンジオールモノ(メタ)アタリレート、モノ(2— (メタ)アタリロイ口キシェチル)ァシッ ドホスフェート、ジ(2—(メタ)アタリロイロキシェチノレ)アシッドホスフェート、グリセロー ルジ (メタ)アタリレートが挙げられる。 [0040] Examples of the compound (g) having one hydroxyl group and at least one (meth) atalyloyl group in the molecule include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl. (Meth) acrylate, 2-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, poly force prolatate mono (meth) acrylate, vendor erythritol tri (meth) Atarilate, trimethylol group Mouth punji (meth) acrylate, neopentyl glycol mono (meth) acrylate, 1, 6-hexanediol mono (meth) acrylate, mono (2— (meth) ateroloy mouth quichetil) acid phosphate, di (2 — (Meth) Atariloy Lochichechinole) Acid phosphate, Glycerol di (Meth) acrylate.
[0041] 前記酸無水物共重合体と、分子中に 1個のヒドロキシル基及び少なくとも 1個の (メ タ)アタリロイル基を有するモノマーの開環付加反応は、活性水素を含まな 、有機溶 剤中で行うという公知の方法で製造できる。溶剤として好ましいものは、酢酸ェチル、 メトキシプロピルアセテート、メチルェチルケトン等が好ましい。その際の前記モノマ 一中ヒドロキシル基 Z前記共重合体中酸無水物基のモル比は 0. 8〜1. 2が好まし い。 [0041] The ring-opening addition reaction between the acid anhydride copolymer and a monomer having one hydroxyl group and at least one (meth) attalyloyl group in the molecule is an organic solvent containing no active hydrogen. It can be produced by a known method of performing in the inside. As the solvent, ethyl acetate, methoxypropyl acetate, methyl ethyl ketone and the like are preferable. In this case, the molar ratio of the hydroxyl group in the monomer Z to the acid anhydride group in the copolymer is preferably 0.8 to 1.2.
上記開環付加反応は通常 50°Cから 200°Cで行なうがジエステルの生成及びゲル 化を防止するために 80°Cから 150°C程度が好ましい。なお、反応促進剤としてトリエ チルァミン、トリエタノールァミン、モリホリン、ペンダメチルジェチレントリァミンなどの 第三級ァミン類又は第四級アンモ-ゥム塩などを使用することができる。一方反応中 に重合物が生成するのを防止するためにヒドロキノン、ヒドロキノンモノメチルエーテ ル、 tーブチルヒドロキノン、 tーブチルカテコール、ベンゾキノン、フエノチアジンなど の公知の重合禁止剤を添加使用することもできる。  The above ring-opening addition reaction is usually carried out at 50 ° C to 200 ° C, but is preferably about 80 ° C to 150 ° C in order to prevent formation of diester and gelation. As reaction accelerators, tertiary amines such as triethylamine, triethanolamine, morpholine, and pentamethyljetylenetriamine, or quaternary ammonium salts can be used. On the other hand, known polymerization inhibitors such as hydroquinone, hydroquinone monomethyl ether, t-butyl hydroquinone, t-butyl catechol, benzoquinone, and phenothiazine can be added and used to prevent the formation of a polymer during the reaction.
[0042] 以上のように、得られた前記タイプ (A—l)、 (A— 2)及び (A— 3)の少なくともいず れカからなるビュルポリマー型光架橋性榭脂は、その酸価が、 50〜250mgKOHZ gの範囲にあることが必要である。 [0042] As described above, the obtained bulle polymer type photocrosslinkable resin comprising at least any one of the types (A-l), (A-2) and (A-3) is an acid. The value should be in the range of 50 to 250 mg KOHZ g.
前記酸価は、 70〜200mgKOHZg力 り好ましく、 90〜180mgKOH/gが特に 好ましい。前記酸価が、 50mgKOHZg未満であると、弱アルカリ水溶液である現像 液での未露光部の除去が難しぐ一方、 250mgKOHZgを超えると、硬化被膜の耐 水性、電気特性が劣るなどの弊害がある。また、ビュルポリマー型光架橋性ポリマー( A)は、質量平均分子量が 5, 000-200, 000の範囲にあるものが好ましい。また、 質量平均分子量 ίま 10, 000〜100, 000力 Sより好まし <、 30, 000〜80, 000力 S特に 好ましい。質量平均分子量が 5, 000未満であると、指触乾燥性が著しく劣り、支持 体との剥離性が劣る。一方、質量平均分子量が 200, 000を超えると、アルカリ現像 液による未露光部の除去性、貯蔵安定性が著しく悪くなる等の問題を生じるので好ま しくない。 The acid value is preferably from 70 to 200 mg KOHZg, particularly preferably from 90 to 180 mg KOH / g. If the acid value is less than 50 mg KOHZg, it is difficult to remove the unexposed areas with a weak alkaline aqueous developer, whereas if it exceeds 250 mg KOHZg, the cured film has poor water resistance and electrical properties. . The bulle polymer type photocrosslinkable polymer (A) preferably has a mass average molecular weight in the range of 5,000 to 200,000. Further, the mass average molecular weight is more preferably 10000 or more than 10,000 to 100,000 force S, and more preferably 30,000 to 80,000 force S. When the mass average molecular weight is less than 5,000, the dryness to touch is remarkably inferior, and the peelability from the support is inferior. On the other hand, if the mass average molecular weight exceeds 200,000, alkali development This is not preferable because it causes problems such as removability of unexposed parts by liquid and storage stability.
感光性ソルダーレジスト層の全固形分中のアルカリ可溶性光架橋性榭脂の固形分 含有量は 15〜70質量%が好ましい。 15質量%未満であると、硬化膜の強靱性が劣 り、 70質量%を越えると信頼性の低下など、性能バランスが劣化する。  The solid content of the alkali-soluble photocrosslinkable resin in the total solid content of the photosensitive solder resist layer is preferably 15 to 70% by mass. If it is less than 15% by mass, the toughness of the cured film is inferior, and if it exceeds 70% by mass, the balance of performance deteriorates, such as a decrease in reliability.
特に前記タイプ (A— 1)〜 (A— 3)からの 1種と後述のエポキシ榭脂エステル型光 架橋性オリゴマー力 の 1種の混合物はバランスのとれた性能を付与することができ るので好ましい。その場合の混合比は質量で 10Z90〜90ZlOである。 20/80- 80Ζ20がより好ましく、 30Ζ70〜70Ζ30が殊に好まし!/ヽ。  In particular, a mixture of one of the types (A-1) to (A-3) and one of the epoxy rosin ester type photocrosslinkable oligomers described below can provide balanced performance. preferable. The mixing ratio in that case is 10Z90 ~ 90ZlO by mass. 20 / 80-80 ~ 20 is more preferred, 30 ~ 70 ~ 70 ~ 30 is particularly preferred!
[0043] エポキシ榭脂エステル型光架橋性榭脂ー [0043] Epoxy rosin ester type photocrosslinkable rosin
前記エポキシ榭脂エステル型光架橋性榭脂としては、特に制限はなぐ 目的に応じ て適宜選択することができ、例えば、(h)エポキシ榭脂と (i) l分子中に 1個の不飽和 基と少なくとも 1個のカルボキシル基又は酸無水物基を有する化合物とのエステルイ匕 反応生成物に、更に G)多塩基酸無水物を反応することにより生成する。  The epoxy rosin ester type photocrosslinkable rosin can be appropriately selected according to the purpose without any restriction. For example, (h) epoxy rosin and (i) one unsaturated in one molecule. It is produced by further reacting G) a polybasic acid anhydride with a reaction product of an ester group of a group and a compound having at least one carboxyl group or acid anhydride group.
前記エポキシ榭脂 (h)としては、東都化成 (株)製 YDCN— 701, YDCN- 704 ; 大日本インキ化学工業 (株)製 N— 665, N-680, N— 695 ;日本化薬 (株)製 EOC N- 102, EOCN—104 ;旭化成工業 (株)製 ECN— 265, ECN— 293, ECN— 2 85, ECN— 299などのクレゾ一ルノボラック型エポキシ榭脂や、東都化成 (株)製 YD PN-638, YDPN— 602 ;ダウ'ケミカル日本(株)製 DEN— 431, DEN— 438, DEN— 439 ;チノく'スペシャルティ'ケミカルズ (株)製 EPN— 1138, EPN— 1235 , EPN— 1299 ;大日本インキ化学工業 (株)製 N— 730, N— 770などのフエノー ルノボラック型エポキシ榭脂が挙げられる。また、ノボラック型エポキシ榭脂の一部を 、例えばビスフエノール A型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、ビスフ ェノール S型エポキシ榭脂、ビフエ-ル型エポキシ榭脂、ビキシレノール型エポキシ 榭脂、トリスヒドロキシフエニルメタン型エポキシ榭脂、テトラフエニルェタン型エポキシ 榭脂、脂環式エポキシ榭脂、サリチルアルデヒド型エポキシ榭脂等のエポキシ榭脂も 有利に使用できる。  The epoxy resin (h) includes YDCN-701, YDCN-704 manufactured by Toto Kasei Co., Ltd .; N-665, N-680, N-695 manufactured by Dainippon Ink & Chemicals, Inc .; Nippon Kayaku Co., Ltd. ) EOC N- 102, EOCN—104; Asahi Kasei Kogyo Co., Ltd. ECN— 265, ECN— 293, ECN— 2 85, ECN— 299, etc. YD PN-638, YDPN—602; Dow Chemical Japan DEN—431, DEN—438, DEN—439; Chinoku 'Specialty' Chemicals EPN— 1138, EPN— 1235, EPN— 1299 And phenol novolac type epoxy resins such as N-730 and N-770 manufactured by Dainippon Ink & Chemicals, Inc. In addition, a part of the novolac type epoxy resin, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, bixylenol type epoxy resin Epoxy resins such as fats, trishydroxyphenyl methane type epoxy resins, tetraphenyl type epoxy resins, alicyclic epoxy resins, salicylaldehyde type epoxy resins can also be used advantageously.
[0044] 次に、 1分子中に 1個の不飽和基と少なくとも 1個のカルボキシル基又は酸無水物 基を有する化合物 (i)は、前記タイプ (A— 1)のビニルポリマー型光架橋性榭脂の説 明中で既述の各化合物が好適に使用できる。 [0044] Next, one unsaturated group and at least one carboxyl group or acid anhydride in one molecule As the compound (i) having a group, each compound described above in the description of the vinyl polymer type photocrosslinkable resin of the type (A-1) can be preferably used.
また、前記多塩基酸無水物 (j)は同様にタイプ前記 (A— 2)のビニルポリマー型光 架橋性榭脂の説明中で成分 (e)として既述の化合物を使用することができる。  Similarly, the polybasic acid anhydride (j) may be the compound described above as component (e) in the description of the vinyl polymer type photocrosslinkable resin of type (A-2).
[0045] エポキシ榭脂エステル型光架橋性榭脂の製造方法 [0045] Method for producing epoxy rosin ester type photocrosslinkable rosin
前記エポキシ榭脂エステル型光架橋性榭脂の製造方法としては、特に制限はなく 、 目的に応じて適宜選択することができ、例えば、製造の際のエポキシ榭脂 (h)と 1分 子中に 1個の不飽和基と少なくとも 1個のカルボキシル基又は酸無水物基を有する化 合物 (i)との反応において、エポキシ榭脂 (h)のエポキシ基 1当量に対して、 1分子中 に 1個の不飽和基と少なくとも 1個のカルボキシル基又は酸無水物基を有する化合物 (i)が 0. 8〜1. 05当量となる比率で反応させることが好ましぐ 0. 9〜1. 0当量がよ り好ましい。  The method for producing the epoxy resin-type photocrosslinkable resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the epoxy resin (h) and 1 molecule in the production In the reaction of the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule per one equivalent of the epoxy group of the epoxy resin (h) It is preferable that the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group is reacted at a ratio of 0.8 to 1.05 equivalents 0.9 to 1 0 equivalent is more preferred.
前記エポキシ榭脂 (h)と 1分子中に 1個の不飽和基と少なくとも 1個のカルボキシル 基又は酸無水物基を有する化合物 (i)は有機溶剤に溶かして反応させられ、有機溶 剤としては、例えば、ェチルメチルケトン、シクロへキサノン等のケトン類、トルエン、キ シレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセ口ソルブ、ブチルセ口 ソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルェ 一テル、ジプロピレングリコーノレモノェチノレエーテル、ジプロピレングリコールジェチ ノレエーテノレ、トリエチレングリコールモノェチルエーテル等のグリコールエーテル類、 酢酸ェチル、酢酸ブチル、ブチルセ口ソルブアセテート、カルビトールアセテート等の エステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ 、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが挙げられる。  The epoxy resin (h) and the compound (i) having one unsaturated group and at least one carboxyl group or acid anhydride group in one molecule are dissolved in an organic solvent and reacted to form an organic solvent. Are, for example, ketones such as ethylmethylketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methylcetosolve, butylcetosolve, methylcarbitol, butylcarbitol, and propylene. Glycol ethers such as glycol monomethyl ether, dipropylene glycol monoethyl ether ether, dipropylene glycol jet methanol, triethylene glycol monoethyl ether, etc., ethyl acetate, butyl acetate, butyl acetate sorb acetate, carbitol acetate Such as esters, octane, decane, etc. Examples include petroleum hydrocarbons such as aliphatic hydrocarbons, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.
[0046] 更に、反応を促進させるために触媒を用いるのが好ましい。用いられる触媒として は、例えば、トリェチルァミン、ベンジルメチルァミン、メチルトリェチルアンモ-ゥムク 口ライト、ベンジルトリメチルアンモ -ゥムクロライト、ベンジルトリメチルアンモ-ゥムブ ロマイド、ベンジルトリメチルメチルアンモ -ゥムアイオタイド、トリフエ-ルホスフィンな どが挙げられる。触媒の使用量は、エポキシ榭脂とビニル基含有モノカルボン酸 (b) の合計 100質量部に対して、 0. 1〜 10質量部が好ましい。 また、反応中の重合を防止する日的で、重合防止剤を使用するのが好ましい。重 合禁止剤としては、例えば、ハイドロキノン、メチルノ、イドロキノン、ハイドロキノンモノメ チルエーテル、カテコール、ピロガロール等が挙げられ、その使用量は、エポキシ榭 脂(a)とビニル基含有モノカルボン酸 (b)の合計 100質量部に対して、 0. 01〜1質 量部が好ましい。反応温度は、 60〜150°Cが好ましぐ 80〜120°Cがより好ましい。 [0046] Furthermore, it is preferable to use a catalyst to accelerate the reaction. Examples of the catalyst used include triethylamine, benzylmethylamine, methyltriethylammum mouthlite, benzyltrimethylammonium chromite, benzyltrimethylammonium bromide, benzyltrimethylmethylammonium tide, and triphenylphosphine. Is mentioned. The amount of the catalyst used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of epoxy resin and vinyl group-containing monocarboxylic acid (b). Further, it is preferable to use a polymerization inhibitor because it prevents the polymerization during the reaction. Examples of the polymerization inhibitor include hydroquinone, methylo, idroquinone, hydroquinone monomethyl ether, catechol, pyrogallol and the like, and the amount used is that of epoxy resin (a) and vinyl group-containing monocarboxylic acid (b). 0.01 to 1 mass part is preferable with respect to 100 parts by mass in total. The reaction temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C.
[0047] 前記のエポキシ榭脂エステル型光架橋性榭脂は、こうして得られた反応生成物に 多塩基酸無水物 (j)を反応させて得られる。前記反応生成物と多塩基酸無水物 (c)と の反応温度は、 60〜120°Cが好ましい。  [0047] The epoxy rosin ester type photocrosslinkable rosin is obtained by reacting the reaction product thus obtained with a polybasic acid anhydride (j). The reaction temperature between the reaction product and the polybasic acid anhydride (c) is preferably 60 to 120 ° C.
[0048] 前記反応生成物中のヒドロキシル基 1当量に対して、多塩基酸無水物 (j)を 0. 1〜 1. 0当量反応させることで、前記エポキシ榭脂エステル型光架橋性榭脂の酸価を調 整できる。前記エポキシ榭脂エステル型光架橋性榭脂の酸価は 30〜150mgKOH Zgであることが好ましぐ 50〜120mgKOHZgであることがより好ましい。酸価が 30 mgKOHZg未満であると、光硬化性榭脂組成物の希アルカリ溶液への溶解性が低 下し、 150mgKOHZgを超えると硬化膜の電気特性が低下する傾向がある。  [0048] By reacting 0.1 to 1.0 equivalent of the polybasic acid anhydride (j) with respect to 1 equivalent of hydroxyl group in the reaction product, the epoxy rosin ester type photocrosslinkable resin The acid value of can be adjusted. The acid value of the epoxy rosin ester type photocrosslinkable rosin is preferably 30 to 150 mg KOH Zg, more preferably 50 to 120 mg KOH Zg. If the acid value is less than 30 mgKOHZg, the solubility of the photocurable resin composition in a dilute alkaline solution will decrease, and if it exceeds 150 mgKOHZg, the electrical properties of the cured film will tend to deteriorate.
前記エポキシ榭脂エステル型光架橋性榭脂の質量平均分子量は 500〜5, 000が 好ましく、 1, 000〜4, 000力より好ましく、 1, 500〜3, 500力 ^特に好まし!/、。 500以 下であると、粘着性が高すぎ保護フィルムの剥離が困難になり、 5, 000を越えると該 榭脂の製造が困難になる。  The weight average molecular weight of the epoxy rosin ester type photocrosslinkable rosin is preferably 500 to 5,000, more preferably 1,000 to 4,000 force, and particularly preferably 1,500 to 3,500 force! /, . If it is 500 or less, the tackiness is too high to make it difficult to peel off the protective film, and if it exceeds 5,000, the production of the resin becomes difficult.
[0049] <アルカリ可溶性エラストマ一 >  [0049] <Alkali-soluble elastomer>
本発明のアルカリ可溶性エラストマ一は、酸価が 20〜130mgKOHZgであり、感 光性ソルダーレジスト組成物の硬化後の動的弾性率が 200〜220°Cにおいて、 1〜 lOOMPaであれば使用可能である力 特に、一般式 (I)で示されるジイソシァネート と、一般式 (Π— 1)〜 (Π— 3)で示されるカルボン酸基含有ジオール力 選ばれた少 なくとも 1種と、一般式 (III 1)〜 (III 5)で示される高分子量ジオール力 選ばれ た、質量平均分子量が 800〜3, 000の範囲にある少なくとも 1種との反応物であつ て、一般式 (Π— 1)〜 (Π— 3)の合計モル量と一般式 (III 1)〜 (III 5)の合計モ ル量の比力 0. 5 : 1〜2. 8 : 1となるように反応して得られる、酸価が 20〜130mgK OHZgであるアルカリ可溶性ポリウレタン榭脂が好適である。 [0050] [化 24] The alkali-soluble elastomer of the present invention has an acid value of 20 to 130 mgKOHZg, and can be used if the dynamic elastic modulus after curing of the photosensitive solder resist composition is 200 to 220 ° C. and 1 to lOOMPa. In particular, the diisocyanate represented by the general formula (I) and the carboxylic acid group-containing diol force represented by the general formulas (Π-1) to (Π-3) are selected from the general formula ( High molecular weight diol force represented by III 1) to (III 5) A reaction product of at least one selected from the group having a mass average molecular weight in the range of 800 to 3,000, represented by the general formula (Π-1) ~ The specific molar ratio of the total molar amount of (Π-3) and the total molar amount of the general formulas (III 1) to (III 5) is obtained by reacting to have a ratio of 0.5: 1 to 2.8: 1. An alkali-soluble polyurethane resin having an acid value of 20 to 130 mgK OHZg is preferred. [0050] [Chemical 24]
OCN ^ NCO —般式 ( I )  OCN ^ NCO — General formula (I)
[0051] [化 25]  [0051] [Chemical 25]
HO-R3一 C-R4— OH —般式(Π-1) COOH HO-R 3 1 CR 4 — OH — General formula (Π-1) COOH
[0052] [化 26]  [0052] [Chemical 26]
HO— R3—— Ar- R4—— OH —般式 (Π-2) HO— R 3 —— Ar- R 4 —— OH — General formula (Π-2)
COOH COOH
[0053] [化 27]  [0053] [Chemical 27]
HO-R3—— N— R4—— OH HO-R 3 —— N— R 4 —— OH
R. —般式 (Π-3)  R. — General formula (Π-3)
COOH  COOH
[0054] [化 28]  [0054] [Chemical 28]
HO-R7^0-C-R8 C-0-R7^— OH —般式 (m_ 1 ) HO-R 7 ^ 0-CR 8 C-0-R 7 ^ — OH — General formula ( m _ 1 )
o o  o o
[0055] [化 29]  [0055] [Chemical 29]
HO-R9^O-C-R10^ ~ OH 一般式 (Π-2) HO-R 9 ^ OCR 10 ^ ~ OH General formula (Π-2)
n2 n 2
O  O
[0056] [化 30] —般式 (m-3) [0056] [Chemical 30] — General formula (m-3)
Figure imgf000032_0001
Figure imgf000032_0001
[0057] [化 31] —般式 (m- 4) [0057] [Chemical 31] — General formula (m-4)
Figure imgf000032_0002
Figure imgf000032_0002
[0058] [化 32]  [0058] [Chemical 32]
Rl3  Rl3
HO^^CH2 CH=CH CH2^ ^ ^CH2- CH^ ^ OH —般式 (Π_5) HO ^^ CH 2 CH = CH CH 2 ^ ^ ^ CH 2 -CH ^ ^ OH — General formula (Π_5)
Π5 Π6 ただし、一般式 (1)、(Π—1)〜(Π— 3)、(111 1)〜(111 5)中、1^は置換基(例ぇ ば、アルキル基、ァラルキル基、ァリール基、アルコキシ基、ハロゲノ基の各基が好ま しい。)を有していてもよい二価の脂肪族又は芳香族炭化水素を表す。必要に応じ、 Rはイソシァネート基と反応しない他の官能基例えばエステル基、ウレタン基、アミド 基、ウレイド基を有していてもよい。 Rは水素原子、置換基 (例えば、シァ入ニトロ、 Π5 Π6 However, in the general formulas (1), (Π-1) to (Π-3), (111 1) to (111 5), 1 ^ is a substituent (for example, an alkyl group, an aralkyl group, an aryl group, Each of an alkoxy group and a halogeno group is preferred.) It represents a divalent aliphatic or aromatic hydrocarbon which may have a group. If necessary, R may have other functional groups that do not react with isocyanate groups such as ester groups, urethane groups, amide groups, and ureido groups. R is a hydrogen atom, a substituent (e.g.
2  2
ハロゲン原子(一F、 一 Cl、 一Brゝ 一1)、 一 CONH 、 一 COOR 、 一 OR 、 一 NHCO Halogen atom (one F, one Cl, one Br ゝ one), one CONH, one COOR, one OR, one NHCO
2 6 6  2 6 6
NHR 、 一 NHCOOR 、 一 NHCOR 、 一 OCONHR 、 一 CONHR (ここで、 Rは NHR, I NHCOOR, I NHCOR, I OCONHR, I CONHR (where R is
6 6 6 6 6 6 炭素数 1〜10のアルキル基、炭素数 7〜 15のァラルキル基のいずれかを表す。)を 有していてもよいアルキル基、ァラルキル基、ァリール基、アルコキシ基、ァリーロキシ 基を表し、水素原子、炭素数 1〜3個のアルキル、炭素数 6〜15個のァリール基が好 ましい。 R 、 R 、 Rはそれぞれ同一でも相異していてもよぐ単結合、置換基 (例えば 6 6 6 6 6 6 represents an alkyl group having 1 to 10 carbon atoms or an aralkyl group having 7 to 15 carbon atoms. Represents an alkyl group, an aralkyl group, an aryl group, an alkoxy group or an aryloxy group, which may have a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and an aryl group having 6 to 15 carbon atoms. . R 1, R 2 and R may be the same or different from each other, a single bond or a substituent (for example,
3 4 5  3 4 5
、アルキル基、ァラルキル基、ァリール基、アルコキシ基、ハロゲン基の各基が好まし い。)を有していてもよい二価の脂肪族又は芳香族炭化水素を表す。炭素数 1〜20 個のアルキレン基、炭素数 6〜15個のァリーレン基が好ましぐ炭素数 1〜8個のァ ルキレン基がより好ましい。また、必要に応じ、 R 、 R 、 R中にイソシァネート基と反  An alkyl group, an aralkyl group, an aryl group, an alkoxy group, and a halogen group are preferred. ) Represents a divalent aliphatic or aromatic hydrocarbon which may have. An alkylene group having 1 to 20 carbon atoms and an arylene group having 6 to 15 carbon atoms are preferred, and an alkylene group having 1 to 8 carbon atoms is more preferred. If necessary, react with isocyanate groups in R, R, and R.
3 4 5  3 4 5
応しない他の官能基、例えば、カルボニル基、エステル基、ウレタン基、アミド基、ウレ イド基、エーテル基を有していてもよい。なお、 R 、 R 、 R 、 Rのうちの 2又は 3個で Other functional groups that do not respond, for example, a carbonyl group, an ester group, a urethane group, an amide group, a urea group, or an ether group may be included. 2 or 3 of R, R, R, R
2 3 4 5  2 3 4 5
環を形成してもよ 、。 Arは置換基を有して 、てもよ 、三価の芳香族炭化水素を表し 、炭素数 6〜15個の芳香族基が好ましい。 You can form a ring. Ar may have a substituent and represents a trivalent aromatic hydrocarbon, preferably an aromatic group having 6 to 15 carbon atoms.
R 、 R 、 R 、 R 及び R はそれぞれ同一でも相異していてもよく二価の脂肪族又 R 1, R 2, R 3, R 5 and R may be the same or different and may be divalent aliphatic or
7 8 9 10 11 7 8 9 10 11
は芳香族炭化水素を表す。 R 、 R 、 R 及び R はそれぞれ炭素数 2〜20個のアル Represents an aromatic hydrocarbon. R 1, R 2, R 3 and R are each an alkyl group having 2 to 20 carbon atoms.
7 9 10 11  7 9 10 11
キレン基又は炭素数 6〜15個のァリーレン基が好ましぐ炭素数 2〜10個のアルキレ ン基又は炭素数 6〜10個のァリーレン基がより好ましい。 Rは炭素数 1〜20個のァ A alkylene group having 2 to 10 carbon atoms or an arylene group having 6 to 10 carbon atoms is more preferable, and a alkylene group or an arylene group having 6 to 15 carbon atoms is more preferable. R is a 1-20 carbon atom
8  8
ルキレン基又は炭素数 6〜15個のァリーレン基が好ましぐ炭素数 1〜10個のアル キレン基又は炭素数 6〜10個のァリーレン基がより好ましい。また、 R、 R、 R、 R An alkylene group having 1 to 10 carbon atoms or an arylene group having 6 to 10 carbon atoms is more preferable, which is preferably an alkylene group or an arylene group having 6 to 15 carbon atoms. R, R, R, R
7 8 9 10 及び R 中にはイソシァネート基と反応しない他の官能基、例えば、エーテル基、力 7 8 9 10 and other functional groups that do not react with isocyanate groups such as ether groups,
11 11
ルポ-ル基、エステル基、シァノ基、ォレフィン基、ウレタン基、アミド基、ウレイド基又 はハロゲン原子などがあってもよい。 R は水素原子、アルキル基、ァリール基、ァラ ルキル基、シァノ基又はハロゲン原子を表し、水素原子、炭素数 1〜10個のアルキ ル基、炭素数 6〜 15個のァリール基、炭素数 7〜 15個のァラルキル基、シァノ基又 はハロゲン原子が好ましぐ水素原子、炭素数 1〜6個のアルキル基又は炭素数 6〜 10個のァリール基がより好ましい。また、 R 中にはイソシァネート基と反応しない他 There may be a diol group, an ester group, a cyano group, an olefin group, a urethane group, an amide group, a ureido group or a halogen atom. R is a hydrogen atom, alkyl group, aryl group, An alkyl group, a cyano group or a halogen atom, a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 15 carbon atoms, a cyan group or a halogen atom. A hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms is more preferable. In addition, R does not react with isocyanate groups.
12  12
の官能基、例えば、アルコキシ基、カルボニル基、ォレフィン基、エステル基又はハロ ゲン原子等などあってもよ 、。  The functional group may be, for example, an alkoxy group, a carbonyl group, an olefin group, an ester group or a halogen atom.
R はァリール基又はシァノ基を表し、炭素数 6〜10個のァリール基又はシァノ基 R represents an aryl group or cyan group, and is an aryl group or cyan group having 6 to 10 carbon atoms.
13 13
が好ましい。 mは 2〜4の整数を表す。 n、 n , n、 n及び nはそれぞれ 2以上の整  Is preferred. m represents an integer of 2 to 4. n, n, n, n and n are each an integer of 2 or more
1 2 3 4 5  1 2 3 4 5
数を表し、 2〜 100の整数が好ましい。 nは 0又は 2以上の整数を表し、 0又は 2〜10  Represents an integer, and an integer of 2 to 100 is preferred. n represents 0 or an integer of 2 or more, 0 or 2 to 10
6  6
0の整数が好ましい。  An integer of 0 is preferred.
[0060] また、更に第 4成分として、カルボン酸基非含有の低分子量ジオールを共重合させ てもよい。低分子量ジオールとしては一般式 (ΠΙ— 1)〜(ΠΙ— 5)で表され、質量平 均分子量が 500以下のものである。カルボン酸基非含有低分子量ジオールはアル力 リ溶解性が低下しない限り、硬化膜の弾性率が十分低く保つことができる範囲で添加 することができる。  [0060] Further, as the fourth component, a low molecular weight diol containing no carboxylic acid group may be copolymerized. The low molecular weight diol is represented by the general formulas (ΠΙ-1) to (ΠΙ-5) and has a mass average molecular weight of 500 or less. Carboxylic acid group-free low molecular weight diol can be added within a range where the elastic modulus of the cured film can be kept sufficiently low as long as the alcoholic solubility is not lowered.
また、前記第 4成分を含めた低分子量ジオールの合計と高分子量ジオールの合計 モル量との比は 0. 5 : 1〜2. 8 : 1が好ましぐこの比が高分子量ジオールを 1とした場 合、低分子量ジオール力 0. 5未満では現像性が劣り、 2. 8を超えると硬化後のソ ルダーレジスト層の動的弾性率が十分低くならない。  In addition, the ratio of the total amount of low molecular weight diols including the fourth component to the total molar amount of high molecular weight diols is preferably 0.5: 1 to 2.8: 1. In this case, if the low molecular weight diol force is less than 0.5, the developability is inferior, and if it exceeds 2.8, the dynamic elastic modulus of the solder resist layer after curing is not sufficiently lowered.
[0061] 前記アルカリ可溶性ポリウレタン榭脂は、カルボキシル基が酸価で 20mgKOHZg 以上含まれて!/、ることが適当であり、特に 20〜 130mgKOH/gの範囲で含まれて いることが好ましい。酸価が 20mgKOH/g未満では現像性が不十分で、 130mgK OHZgを越えると現像速度が高すぎるため現像のコントロールが難しい。 [0061] In the alkali-soluble polyurethane resin, it is appropriate that the carboxyl group has an acid value of 20 mgKOHZg or more, and it is particularly preferable that it is contained in the range of 20 to 130 mgKOH / g. If the acid value is less than 20 mgKOH / g, the developability is insufficient, and if it exceeds 130 mgKOHZg, the development speed is too high, and development control is difficult.
前記アルカリ可溶性光架橋性榭脂の分子量は、質量平均分子量で 3, 000以上が 好ましぐ 5, 000〜20万がより好ましい。質量平均分子量が 3, 000未満では、硬化 膜の高温時の十分な低弾性率が得られな ヽことがあり、 20万を超えると現像性が悪 ィ匕することがある。  The molecular weight of the alkali-soluble photocrosslinkable resin is preferably 5,000 to 200,000, more preferably 3,000 or more in terms of mass average molecular weight. When the weight average molecular weight is less than 3,000, a sufficiently low elastic modulus at a high temperature of the cured film may not be obtained, and when it exceeds 200,000, developability may be deteriorated.
これらの高分子化合物は単独で用いても混合して用いてもょ 、。感光性ソルダーレ ジスト組成物全固形分中に含まれる、これらの高分子化合物の含有量は 2〜30質量 %で、 5〜25質量%が好ましい。 2質量%未満では硬化膜の高温時の十分な低弾 性率が得られず、 30質量%を超えると現像性劣化や硬化膜の強靱性低下が起きる ので好ましくない。 These polymer compounds can be used alone or in combination. Photosensitive solderale The content of these polymer compounds contained in the total solid content of the dyst composition is 2 to 30% by mass, preferably 5 to 25% by mass. If it is less than 2% by mass, a sufficiently low elasticity at a high temperature of the cured film cannot be obtained, and if it exceeds 30% by mass, the developability deteriorates and the toughness of the cured film decreases.
[0062] —アルカリ可溶性ポリウレタン榭脂の合成法一  [0062] —Synthesis of alkali-soluble polyurethane resin
前記アルカリ可溶性光架橋性榭脂は、前記ジイソシァネートイ匕合物及びジオール 化合物を非プロトン性溶媒中、それぞれの反応性に応じた活性の公知な触媒を添カロ し、加熱することにより合成される。使用するジイソシァネート及びジオール化合物の モル比は、 0. 8 : 1〜1. 2 : 1が好ましぐポリマー末端にイソシァネート基が残存した 場合、アルコール類又はアミン類等で処理することにより、最絡的にイソシァネート基 が残存しな ヽ形で合成される。  The alkali-soluble photocrosslinkable resin is prepared by adding the diisocyanate compound and the diol compound to an aprotic solvent with a known catalyst having an activity corresponding to the reactivity and heating the mixture. Synthesized. The molar ratio of the diisocyanate and diol compound used is from 0.8: 1 to 1.2: 1. If an isocyanate group remains at the end of the polymer, it is best to treat it with alcohols or amines. In other words, it is synthesized in a cage form in which no isocyanate group remains.
[0063] ージイソシァネート  [0063] Diisocyanate
一般式 (I)で示されるジイソシァネートイ匕合物として、具体的には以下に示すものが 含まれる。即ち、 2, 4 トリレンジイソシァネート、 2, 4 トリレンジイソシァネートの二 量体、 2, 6 トリレンジイソシァネート、 p キシリレンジイソシァネート、 m—キシリレン ジイソシァネート、 4, 4,ージフエ-ルメタンジイソシァネート、 1, 5 ナフチレンジイソ シァネート、 3, 3,ージメチルヒフエ-ルー 4, 4,ージイソシァネート等の如き芳香族ジ イソシァネートイ匕合物:へキサメチレンジイソシァネート、トリメチルへキサメチレンジィ ソシァネート、リジンジイソシァネート、ダイマー酸ジイソシァネート等の如き脂肪族ジ イソシァネート化合物;イソホロンジイソシァネート、 4, 4,一メチレンビス(シクロへキシ ルイソシァネート)、メチルシクロへキサン一 2, 4 (又は 2, 6)ジイソシァネート、 1, 3 - (イソシァネートメチル)シクロへキサン等の如き脂環族ジイソシァネートイ匕合物; 1, 3 ブチレングリコール 1モルとトリレンジイソシァネート 2モルとの付カ卩体等の如きジ オールとジイソシァネートとの反応物であるジイソシァネートイ匕合物等が挙げられる。  Specific examples of the diisocyanate compound represented by the general formula (I) include those shown below. 2,4 Tolylene Diisocyanate, Dimer of 2,4 Tolylene Diisocyanate, 2,6 Tolylene Diisocyanate, p-Xylylene Diisocyanate, m-Xylylene Diisocyanate, 4, 4, Diphenyl -Aromatic diisocyanate compounds such as methane diisocyanate, 1,5 naphthylene diisocyanate, 3,3, -dimethyl thiophene 4,4, -diisocyanate, etc .: hexamethylene diisocyanate Aliphatic diisocyanate compounds such as trimethylhexamethylene diisocyanate, lysine diisocyanate, dimer diisocyanate, etc .; isophorone diisocyanate, 4,4,1-methylenebis (cyclohexylisocyanate), methylcyclohexane-1,2,4 (Or 2, 6) diisocyanate, 1, 3- (isocyanate methyl) cyclohex Alicyclic diisocyanate compounds such as styrene, etc .; 1, 3 Butylene glycol 1 mol and tolylene diisocyanate adduct of diol and diisocyanate such as adduct Examples include diisocyanate compounds.
[0064] 高分子量ジオール [0064] High molecular weight diol
一般式 (III 1)〜 (III 5)で示される高分子量ジオールィ匕合物としては、具体的 には以下の(No. l)〜(No. 25)の化学式に示すものが含まれる。  Specific examples of the high molecular weight diol compound represented by the general formulas (III 1) to (III 5) include those represented by the following chemical formulas (No. 1) to (No. 25).
[0065] [化 33] o o [0065] [Chemical 33] oo
, II II \  , II II \
H〇一 CH2 CH2~{"〇一 C一 CH2 C H2— C一〇一 C H2CH2-)-OH H〇1 CH 2 CH 2 ~ {"〇 一 C 一 CH 2 CH 2 — C〇ichi CH 2 CH2-)-OH
[0066] [化 3 [0066] [Chemical 3
HO - (No.2)HO-(No.2)
Figure imgf000036_0001
Figure imgf000036_0001
[0067] [化 35] [0067] [Chemical 35]
O o  O o
II II II II
HO - ( CH2 )--0-C-(-cH2-¾-C-0-( CH2 )4"^OH (No.3) HO-(CH 2 )-0-C-(- c H2-¾-C-0- (CH 2 ) 4 "^ OH (No.3)
[0068] H2 + O H (No. 4)
Figure imgf000036_0002
[0068] H 2 + OH (No. 4)
Figure imgf000036_0002
[0069] [化 37] [0069] [Chemical 37]
O O  O O
r II , II 1 r II, II 1
HO - CH2CH2-0-CH2CH2~^0-C+CH2 C- O- CH2CH2-0- CH2CH2^;OH HO-CH 2 CH 2 -0-CH 2 CH 2 ~ ^ 0-C + CH2 C- O- CH 2 CH 2 -0- CH 2 CH 2 ^; OH
(No.5)  (No.5)
[0070] [化 38] [0070] [Chemical 38]
O O
Figure imgf000036_0003
OO
Figure imgf000036_0003
[0071] [化 39]
Figure imgf000037_0001
[0071] [Chemical 39]
Figure imgf000037_0001
(No.7)  (No.7)
[0072] [化 40]
Figure imgf000037_0002
[0072] [Chemical 40]
Figure imgf000037_0002
[0073] [化 41]  [0073] [Chemical 41]
HO-fHO-f
Figure imgf000037_0003
-O— CH2 No.9)
Figure imgf000037_0003
-O— CH 2 No. 9)
4H- n°H ( 4H- n ° H (
[0074] [化 42] [0074] [Chemical 42]
[0075] [0075]
[0076]
Figure imgf000037_0004
[0076]
Figure imgf000037_0004
[0077] [化 45]  [0077] [Chemical 45]
Figure imgf000037_0005
[0078] [化 46]
Yes
Figure imgf000037_0005
[0078] [Chem 46]
O II O II
HO-f CH2 j" -o-c- ■0H-CH2½½0H (No. 14) HO-f CH 2 j "-oc- ■ 0H-CH 2 ½½0H (No. 14)
[0079] [化 47] [0079] [Chemical 47]
(No. 15)
Figure imgf000038_0001
(No. 15)
Figure imgf000038_0001
[0080] [化 48] [0080] [Chemical 48]
O II O II
HO-f CH2 j" -o-c- ■0H-CH2] ½0H (No. 16) HO-f CH 2 j "-oc- ■ 0H-CH 2 ] ½0H (No. 16)
[0081] [化 49]
Figure imgf000038_0002
[0081] [Chemical 49]
Figure imgf000038_0002
[化 50]
Figure imgf000038_0003
[Chemical 50]
Figure imgf000038_0003
[化 51]
Figure imgf000038_0004
[Chemical 51]
Figure imgf000038_0004
CH3 CH 3
[化 52]
Figure imgf000038_0005
[Chemical 52]
Figure imgf000038_0005
2n5 [化 53] 2 n 5 [Chemical 53]
Figure imgf000039_0001
Figure imgf000039_0001
[0086] [化 54]
Figure imgf000039_0002
[0086] [Chemical 54]
Figure imgf000039_0002
[0087] [化 55]
Figure imgf000039_0003
[0087] [Chemical 55]
Figure imgf000039_0003
[0088] [化 56] [0088] [Chemical 56]
Figure imgf000039_0004
Figure imgf000039_0004
[0089] [化 57] [0089] [Chemical 57]
HO - CH2 -CH =CH— CH2-)^-(CH2CH2-)^OH (No. 25) HO-CH 2 -CH = CH— CH 2- ) ^-(CH 2 CH 2- ) ^ OH (No. 25)
CN  CN
前記上記の具体例中 m, nはそれぞれ同じでも異なっても良ぐ 2以上の整数を表 す。  In the above specific examples, m and n may be the same or different and each represents an integer of 2 or more.
[0090] 一力ルボン酸基含有ジオール  [0090] Diol containing rubonic acid group
また、一般式 (Π— 1)〜 (Π— 3)で示されるカルボキシル基を有するジオールィ匕合 物としては具体的には以下に示すものが含まれる。即ち、 3, 5—ジヒドロキシ安息香 酸、 2, 2—ビス(ヒドロキシメチル)プロピオン酸、 2, 2—ビス(2—ヒドロキシェチル)プ ロピオン酸、 2, 2 ビス(3 ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル )酢酸、ビス(4 ヒドロキジフエ-ル)酢酸、 4, 4 ビス(4 ヒドロキジフエ-ル)ペンタ ン酸、酒石酸、 N, N ジヒドロキシェチルグリシン、 N, N—ビス(2—ヒドロキシェチ ル) 3—カルボキシ—プロピオンアミド等が挙げられる。 Specific examples of the diolic compound having a carboxyl group represented by the general formulas (Π-1) to (Π-3) include those shown below. 3,2-dihydroxybenzoic acid, 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (2-hydroxyethyl) propionic acid, 2,2bis (3 hydroxypropyl) propionic acid, Bis (hydroxymethyl ) Acetic acid, bis (4 hydroxyphenyl) acetic acid, 4, 4 bis (4 hydroxyphenyl) pentanoic acid, tartaric acid, N, N dihydroxyethylglycine, N, N-bis (2-hydroxyethyl) 3-carboxy —Propionamide and the like.
[0091] 一力ルボン酸基非含有低分子量ジオール [0091] Low molecular weight diol containing no rubonic acid group
カルボン酸基非含有低分子量ジオールの代表例としては、エチレングリコール、 1, 2 プロピレングリコール、 1, 3 プロピレングリコール、 1, 3 ブチレングリコーノレ、 2, 3 ブチレングリコール、 1, 4 ブタンジオール、 2, 2,一ジメチルー 1, 3 プロ ノ ンジオール、ジエチレングリコール、トリエチレングリコール、 1, 5 ペンダメチレン グリコール、ジプロピレングリコール、ネオペンチルグリコール、 1, 6 へキサメチレン グリコール、シクロへキサン— 1, 4ージオール、シクロへキサン— 1, 4ージオール、シ クロへキサン一 1, 4 ジメタノール、 2 ブテン一 1, 4 ジオール、 2, 2, 4 トリメチ ルー 1, 3—ペンタンジオール、キシリレングリコール、 1, 4 ビス j8—ヒドロキシエト キシシクロへキサン、トリジクロデカンジメタノール、水添ビスフエノール A、水添ビスフ エノール 、ビスフエノーノレ A、ビスフエノーノレ S、ヒドロキノンジヒドロキシェチルエーテ ル、 p キシリレングリコール、ジヒドロキシェチルスルホン、ビス(2—ヒドロキシェチル )ー2, 4 トリレンジ力ルバメート、 2, 4 トリレン ビス(2 ヒドロキシェチルカルバミ ド)、ビス(2—ヒドロキシェチル) m—キシリレンジ力ルバメート、ビス(2—ヒドロキシ ェチノレ)イソフタレート、 1, 4 ビス(j8—ヒドロキシエトキシ)ベンゼン、ビス(j8—ヒド 口キシェチル)テレフタレートなどの単独あるいは混合物が挙げられる。特に 1, 4 ブタンジオールが好まし 、。好まし 、カルボン酸基非含有ジオールの共重合量は低 分子量ジオール中の 95モル%以下であり、 80モル%以下が好ましぐ 50モル%以 下が特に好ま U、。 95モル%を超えると現像性の良 、ウレタン榭脂が得られな 、こと がある。  Representative examples of carboxylic acid group-free low molecular weight diols include ethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol, 1,3 butylene glycol, 2,3 butylene glycol, 1,4 butanediol, 2, 2,1-dimethyl-1,3-prononediol, diethylene glycol, triethylene glycol, 1,5 pendamethylene glycol, dipropylene glycol, neopentyl glycol, 1,6 hexamethylene glycol, cyclohexane-1,4-diol, cyclohexane 1,4-diol, cyclohexane 1,4 dimethanol, 1 butene 1,4 diol, 2, 2,4 trimethyl 1,3-pentanediol, xylylene glycol, 1,4 bis j8— Hydroxyethoxycyclohexane, Tridichlorodecane dimethanol, Hydrogenated bisphenol A, hydrogenated bisphenol, bisphenol A, bisphenol S, hydroquinone dihydroxyethyl ether, p-xylylene glycol, dihydroxyethyl sulfone, bis (2-hydroxyethyl) -2, 4 tolylene power rubamate, 2, 4 Tolylene bis (2hydroxyethylcarbamide), bis (2-hydroxyethyl) m-xylylene dirubamate, bis (2-hydroxyethynole) isophthalate, 1,4 bis (j8-hydroxyethoxy) benzene, bis ( j8-Hydroquichetil) terephthalate or the like alone or as a mixture. 1,4 butanediol is especially preferred. Preferably, the copolymerization amount of the carboxylic acid group-free diol is 95 mol% or less in the low molecular weight diol, preferably 80 mol% or less, particularly preferably 50 mol% or less. If it exceeds 95 mol%, good developability and urethane resin may not be obtained.
[0092] 前記アルカリ可溶性ポリウレタン榭脂の製造に当たって、生成するポリウレタン榭脂 の分子量の調節を目的として、前記ジオールゃジイソシァネートの他に少量の 3官能 及びそれ以上のポリオールゃヮポリイソシァネートを反応液中に添加することもできる そのようなポリオールの例としては、トリメチロールプロパン、ペンタエリスリトール、ジ ペンタエリスリトール、トリメチロールプロパンとエチレンォキシド付加反応生成物など が使用できる。 [0092] In the production of the alkali-soluble polyurethane resin, a small amount of a trifunctional and higher polyol polyisocyanate is reacted in addition to the diol diisocyanate for the purpose of adjusting the molecular weight of the polyurethane resin produced. Examples of such polyols that can be added to the liquid include trimethylolpropane, pentaerythritol, Pentaerythritol, trimethylolpropane and ethylene oxide addition reaction products can be used.
また、前記 3官能以上のポリイソシァネートとしては、 1 メチルベンゼン 2, 4. 6 —トリイソシァネート、ナフタレン一 1, 3, 7 トリイソシァネート、ビフエ-ル一 2, 4, 4, —トリイソシァネート、トリフエ-ルメタン一 4, 4' , 4"—トリイソシァネート、トリレンジィ ソシァネートの 3量体、トリメチロールプロパンなどのポリオールにその活性水素の数 に対応するモル数のジイソシァネートを反応して得られるウレタンポリイソシァネート 化合物などが挙げられる。  The trifunctional or higher polyisocyanate includes 1 methylbenzene 2, 4. 6-triisocyanate, naphthalene 1, 3, 7 triisocyanate, biphenyl 1, 2, 4, 4, —Triisocyanate, triphenylmethane 4,4 ', 4 "—Triisocyanate, tolylene diisocyanate trimer, trimethylolpropane, and other polyols with the number of moles of diisocyanate corresponding to the number of active hydrogens. Examples thereof include urethane polyisocyanate compounds obtained by reaction.
[0093] <重合性化合物 > [0093] <Polymerizable compound>
前記重合性化合物としては、特に制限はなぐ 目的に応じて適宜選択することがで き、分子中に少なくとも 1個の付加重合可能な基を有し、沸点が常圧で 100°C以上で ある化合物が好ましぐ例えば、(メタ)アクリル基を有するモノマーから選択される少 なくとも 1種が好適に挙げられる。  The polymerizable compound is not particularly limited and can be appropriately selected depending on the purpose, and has at least one addition-polymerizable group in the molecule and has a boiling point of 100 ° C. or higher at normal pressure. Preferred examples of the compound include at least one selected from monomers having a (meth) acryl group.
[0094] 前記 (メタ)アクリル基を有するモノマーとしては、特に制限はなぐ 目的に応じて適 宜選択することができ、例えば、ポリエチレングリコールモノ (メタ)アタリレート、ポリプ ロピレングリコールモノ(メタ)アタリレート、フエノキシェチル(メタ)アタリレートなどの単 官能アタリレートや単官能メタタリレート;ポリエチレングリコールジ (メタ)アタリレート、 ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールェタントリアタリレート、トリ メチロールプロパントリアタリレート、トリメチロールプロパンジアタリレート、ネオペンチ ルグリコールジ (メタ)アタリレート、ペンタエリトリトールテトラ (メタ)アタリレート、ペンタ エリトリトールトリ(メタ)アタリレート、ジペンタエリトリトールへキサ(メタ)アタリレート、ジ ペンタエリトリトールペンタ(メタ)アタリレート、へキサンジオールジ (メタ)アタリレート、 トリメチロールプロパントリ(アタリロイルォキシプロピル)エーテル、トリ(アタリロイルォ キシェチル)イソシァヌレート、トリ(アタリロイルォキシェチル)シァヌレート、グリセリン トリ(メタ)アタリレート、トリメチロールプロパンやグリセリン、ビスフエノールなどの多官 能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で (メ タ)アタリレートイ匕したもの、特公昭 48— 41708号公報、特公昭 50— 6034号公報、 特開昭 51— 37193号公報などの各公報に記載されているウレタンアタリレート類;特 開昭 48— 64183号公報、特公昭 49— 43191号公報、特公昭 52— 30490号公報 などの各公報に記載されているポリエステルアタリレート類;エポキシ榭脂と (メタ)ァク リル酸の反応生成物であるエポキシアタリレート類などの多官能アタリレートやメタタリ レートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アタリレート 、ペンタエリトリトールテトラ (メタ)アタリレート、ジペンタエリトリトールへキサ (メタ)ァク リレート、ジペンタエリトリトールペンタ (メタ)アタリレートが特に好ましい。 [0094] The monomer having a (meth) acryl group is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include polyethylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate. Monofunctional acrylates and monofunctional methacrylates such as acrylate, phenoxychetyl (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylol ethane triacrylate, trimethylol propane triacrylate To rate, trimethylolpropane diatalylate, neopentyl glycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, penta erythritol tri (meth) acrylate, dipentaerythritol Sa (meth) acrylate, dipentaerythritol penta (meth) acrylate, hexanediol di (meth) acrylate, trimethylol propane tri (atalylooxypropyl) ether, tri (atalylooxychetyl) isocyanurate, tri (atari) Royloxetyl) cyanurate, glycerin tri (meth) atarylate, trimethylolpropane, glycerin, bisphenol, etc. Urethane acrylates described in various publications such as Japanese Patent Publication No. 48-41708, Japanese Patent Publication No. 50-6034, Japanese Patent Publication No. 51-37193; Polyester acrylates described in various publications such as Kaisho 48-64183, JP-B 49-43191, and JP-B 52-30490; reaction of epoxy resin and (meth) acrylic acid Examples of the product include polyfunctional acrylates such as epoxy acrylates and metatalates. Among these, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and dipentaerythritol penta (meth) acrylate are particularly preferable.
[0095] 前記重合性化合物の前記感光性ソルダーレジスト組成物固形分中の固形分含有 量は、 5〜75質量%が好ましぐ 10〜40質量%がより好ましい。該固形分含有量が 5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあ り、 75質量%を超えると、感光性ソルダーレジスト層の粘着性が強くなりすぎることが あり、好ましくない。  [0095] The solid content of the polymerizable compound in the solid content of the photosensitive solder resist composition is preferably 5 to 75 mass%, more preferably 10 to 40 mass%. If the solid content is less than 5% by mass, problems such as deterioration in developability and reduction in exposure sensitivity may occur. If it exceeds 75% by mass, the adhesiveness of the photosensitive solder resist layer is strong. It is not preferable because it may become too much.
[0096] <光重合開始剤 >  [0096] <Photopolymerization initiator>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限 り、特に制限はなぐ公知の光重合開始剤の中から適宜選択することができ、例えば 、紫外線領域から可視の光線に対して感光性を有するものが好ましぐ光励起された 増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよぐモノマ 一の種類に応じてカチオン重合を開始させるような開始剤であってもよい。  The photopolymerization initiator can be appropriately selected from known photopolymerization initiators that are not particularly limited as long as it has the ability to initiate polymerization of the polymerizable compound. For example, the photopolymerization initiator is visible from the ultraviolet region. A photo-sensitive sensitizer that has photosensitivity to light causes some action with the photo-excited sensitizer and initiates cationic polymerization according to the type of monomer that may be an active agent that generates active radicals. Such an initiator may be used.
また、前記光重合開始剤は、約300〜80011111 (330〜50011111カょり好ましぃ。)の 範囲内に少なくとも約 50の分子吸光係数を有する成分を少なくとも 1種含有している ことが好ましい。  The photopolymerization initiator preferably contains at least one component having a molecular extinction coefficient of at least about 50 within a range of about 300 to 80011111 (330 to 50011111). .
[0097] 前記光重合開始剤としては、例えば、ハロゲンィ匕炭化水素誘導体 (例えば、トリアジ ン骨格を有するもの、ォキサジァゾール骨格を有するもの、ォキサジァゾール骨格を 有するものなど)、ホスフィンオキサイド、へキサァリールビイミダゾール、ォキシム誘 導体、有機過酸化物、チォ化合物、ケトンィ匕合物、芳香族ォ -ゥム塩、ケトォキシム エーテルなどが挙げられる。  [0097] Examples of the photopolymerization initiator include halogenated hydrocarbon derivatives (for example, those having a triazine skeleton, those having an oxadiazole skeleton, those having an oxadiazole skeleton, etc.), phosphine oxide, hexaryl biphenyl. Examples include imidazole, oxime derivatives, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, and ketoxime ethers.
[0098] 前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物としては、例えば、若林ら 著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載のィ匕合物、英国特許 1388 492号明細書記載の化合物、特開昭 53— 133428号公報記載の化合物、独国特 許 3337024号明細書記載の化合物、 F. C. Schaeferなどによる J. Org. Chem. ; 29、 1527 (1964)記載の化合物、特開昭 62— 58241号公報記載の化合物、特開 平 5— 281728号公報記載の化合物、特開平 5— 34920号公報記載化合物、米国 特許第 4212976号明細書に記載されている化合物、などが挙げられる。 [0098] Examples of the halogenated hydrocarbon compound having a triazine skeleton include compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969), British Patent 1388 492 Specification Compounds described in JP-A-53-133428, German No. 3337024, the compound described in FC Schaefer et al., J. Org. Chem .; 29, 1527 (1964), the compound described in JP-A-62-258241, JP-A-5-281728 And the compounds described in JP-A-5-34920, the compounds described in US Pat. No. 4,212,976, and the like.
[0099] 前記若林ら著、 Bull. Chem. Soc. Japan, 42、 2924 (1969)記載の化合物とし ては、例えば、 2 フエ-ル— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2 — (4 クロルフエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- ( 4 トリル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシフ ェ-ル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (2, 4 ジクロル フエ-ル)— 4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2, 4, 6 トリス(トリ クロルメチル)—1, 3, 5 トリアジン、 2—メチル—4, 6 ビス(トリクロルメチル)—1,[0099] Examples of the compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969) include, for example, 2 phenol-4, 6 bis (trichloromethyl) -1, 3, 5 Triazine, 2 — (4 Chlorphenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4 Tolyl) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxyphenyl) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2,4 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2, 4, 6 Tris (trichloromethyl) -1, 3, 5 Triazine, 2-methyl-4, 6 Bis (trichloromethyl) -1,
3, 5 トリアジン、 2— n—ノ-ル—4, 6 ビス(トリクロルメチル)—1 , 3, 5 トリアジ ン、及び 2— , α , β—トリクロルェチル) -4, 6 ビス(トリクロルメチル)—1, 3, 5—トリァジンなどが挙げられる。 3, 5 Triazine, 2-n-nor-4,6 bis (trichloromethyl) -1,3,5 triazine, and 2-, α, β-trichloroethyl) -4,6 bis (trichloromethyl) ) -1, 3, 5-triazine.
[0100] 前記英国特許 1388492号明細書記載の化合物としては、例えば、 2—スチリルー [0100] Examples of the compound described in the British Patent 1388492 include 2-styryl
4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メチルスチリル)— 4, 6 —ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4, 6 - ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2— (4—メトキシスチリル)— 4 ァミノ — 6 トリクロルメチル—1, 3, 5 トリァジンなどが挙げられる。 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (4-Methylstyryl) — 4, 6 —Bis (trichloromethyl) —1, 3, 5 Triazine, 2— (4-Methoxystyryl) — 4, 6-bis (trichloromethyl) -1,3,5 triazine, 2— (4-methoxystyryl) —4 amino—6 trichloromethyl-1,3,5 triazine.
前記特開昭 53— 133428号公報記載の化合物としては、例えば、 2— (4—メトキシ —ナフト— 1—ィル)—4, 6 ビス(トリクロルメチル)—1, 3, 5 トリアジン、 2- (4- エトキシ—ナフ卜— 1—ィル)—4, 6 ビス(卜リクロルメチル)—1, 3, 5 卜リアジン、 2 -〔4— (2—エトキシェチル)—ナフトー 1—ィル〕—4, 6 ビス(トリクロルメチル) 1 , 3, 5 トリァジン、 2- (4, 7 ジメトキシ一ナフトー 1—ィル) 4, 6 ビス(トリクロ ルメチル)— 1, 3, 5 卜リアジン、及び 2— (ァセナフ卜— 5—ィル)—4, 6 ビス(トリ クロルメチル)—1, 3, 5 トリァジンなどが挙げられる。  Examples of the compounds described in JP-A-53-133428 include 2- (4-methoxy-naphth-1-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (4-Ethoxy-naphtho-1-yl) -4,6 bis (卜 lichloromethyl) -1,3,5 卜 riadine, 2- [4- (2-ethoxyethyl) -naphtho-1-yl] -4 , 6 bis (trichloromethyl) 1, 3, 5 triazine, 2- (4, 7 dimethoxy mononaphtho 1-yl) 4, 6 bis (trichloromethyl) — 1, 3, 5 卜 lyazine, and 2— (acenaphth卜 -5-yl) -4,6 bis (trichloromethyl) -1,3,5 triazine.
[0101] 前記独国特許 3337024号明細書記載の化合物としては、例えば、 2—(4ースチリ ノレフエ二ノレ) 4、 6 ビス(トリクロロメチノレ)一 1, 3, 5 トリァジン、 2- (4— (4—メト キシスチリル)フエ-ル)—4、 6 ビス(トリクロロメチル)—1, 3, 5 トリァジン、 2- (1 —ナフチルビ-レンフエ-ル)一 4、 6 ビス(トリクロロメチル) 1, 3, 5 トリァジン、 2 クロロスチリルフエ-ル一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4 チォフェン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5— トリアジン、 2— (4 チォフェン一 3 ビ-レンフエ-ル)一 4, 6 ビス(トリクロロメチ ル)一 1 , 3, 5 トリアジン、 2— (4 フラン一 2 ビ-レンフエ-ル)一 4, 6 ビス(トリ クロロメチル) 1, 3, 5 トリァジン、及び 2— (4—ベンゾフラン一 2 ビ-レンフエ- ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが挙げられる。 [0101] Examples of the compound described in the specification of the above-mentioned German Patent 3337024 include, for example, 2- (4-striylolenobinole) 4,6 bis (trichloromethinole) -1,3,5 triazine, 2- (4— (4—Met Cistyryl) phenol) -4, 6 bis (trichloromethyl) -1,3,5 triazine, 2- (1—naphthylbi-lenphenol) 1,6 bis (trichloromethyl) 1,3,5 triazine, 2 Chlorostyryl 1,4,6 Bis (trichloromethyl) 1, 3,5 Triazine, 2— (4 Thiophene-1,2 Bilenphenol) 1,4,6 Bis (trichloromethyl) 1, 3, 5— Triazine, 2— (4 thiophene, 3 bilenphenol), 1, 4, 6 Bis (trichloromethyl), 1, 3, 5 Triazine, 2— (4 furan, 1 biphenylene, 1) 4, 6 Examples include bis (trichloromethyl) 1, 3, 5 triazine, and 2- (4-benzofuran-2-bilenphenol) 4, 6 bis (trichloromethyl) 1, 3, 5 triazine.
[0102] 前記 F. C. Schaeferなどによる J. Org. Chem. ; 29、 1527 (1964)記載のィ匕合 物としては、例えば、 2—メチルー 4, 6 ビス(トリブロモメチル)一1, 3, 5 トリァジン 、 2, 4, 6 トリス(トリブロモメチル)—1, 3, 5 トリアジン、 2, 4, 6 トリス(ジブロモ メチル)— 1 , 3, 5 トリアジン、 2 ァミノ— 4—メチル—6 トリ(ブロモメチル)— 1, 3 , 5 トリァジン、及び 2—メトキシ一 4—メチル 6 トリクロロメチル一 1 , 3, 5 トリア ジンなどが挙げられる。 [0102] Examples of the compounds described in J. Org. Chem .; 29, 1527 (1964) by FC Schaefer and the like include, for example, 2-methyl-4,6 bis (tribromomethyl) -1,3,5 Triazine, 2, 4, 6 Tris (tribromomethyl) -1, 3, 5 Triazine, 2, 4, 6 Tris (dibromomethyl) — 1, 3, 5 Triazine, 2 Amamino— 4-Methyl-6 Tri (Bromomethyl) ) — 1, 3, 5 triazine, and 2-methoxy-4-methyl 6 trichloromethyl 1, 3, 5 triazine.
[0103] 前記特開昭 62— 58241号公報記載の化合物としては、例えば、 2— (4—フエニル ェチ -ルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2— (4— ナフチルー 1ーェチュルフエ-ルー 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジ ン、 2— (4— (4 トリルェチュル)フエ-ル)— 4, 6 ビス(トリクロロメチル)—1 , 3, 5 —トリァジン、 2- (4— (4—メトキシフエ-ル)ェチュルフエ-ル) 4, 6—ビス(トリク 口ロメチル) 1, 3, 5 トリァジン、 2— (4— (4—イソプロピルフエ-ルェチュル)フエ -ル) 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリアジン、 2— (4— (4 ェチルフ ェ -ルェチュル)フエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなど が挙げられる。  [0103] Examples of the compound described in JP-A-62-58241 include 2- (4-phenylethyl-sulfur) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2— (4— Naphthyl 1-Ethurhue-Lu 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 Tril-Ethyl) phenol) — 4, 6 Bis (trichloromethyl) —1 , 3, 5 — Triazine, 2- (4— (4-Methoxyphenyl) ether furol) 4, 6—Bis (Trimethylromethyl) 1, 3, 5 Triazine, 2— (4— (4-Isopropylphenol) -Luture) Hue) 4, 6 Bis (trichloromethyl) 1, 3, 5 Triazine, 2— (4— (4 ethyl feu-rucheur) Fehl) 1, 4, 6 Bis (trichloromethyl) 1, 3 , 5 Triazines.
[0104] 前記特開平 5— 281728号公報記載の化合物としては、例えば、 2— (4 トリフル ォロメチルフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2, 6 —ジフルオロフェ-ル)—4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジクロロフエ-ル)— 4, 6 ビス(トリクロロメチル)—1, 3, 5 トリアジン、 2- (2 , 6 ジブロモフエ-ル)一 4, 6 ビス(トリクロロメチル) 1, 3, 5 トリァジンなどが 挙げられる。 [0104] Examples of the compounds described in JP-A-5-281728 include 2- (4 trifluoromethylphenol) -4,6 bis (trichloromethyl) -1,3,5 triazine, 2- (2, 6—Difluorophenol) —4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine, 2- (2, 6 Dichlorophenol) — 4, 6 Bis (trichloromethyl) —1, 3, 5 Triazine 2- (2, 6 dibromophenol) 1, 4, 6 bis (trichloromethyl) 1, 3, 5 triazine Can be mentioned.
[0105] 前記特開平 5— 34920号公報記載化合物としては、例えば、 2, 4 ビス(トリクロ口 メチル)— 6— [4— (N, N—ジエトキシカルボ-ルメチルァミノ)—3—ブロモフエ-ル ]— 1, 3, 5 トリァジン、米国特許第 4239850号明細書に記載されているトリハロメ チル— s トリァジン化合物、更に 2, 4, 6 トリス(トリクロロメチル)—s トリァジン、 2 - (4—クロ口フエ-ル) 4, 6—ビス(トリブロモメチル) s トリァジンなどが挙げら れる。  [0105] Examples of the compounds described in JP-A-5-34920 include 2,4 bis (trichloromethyl) -6- [4- (N, N-diethoxycarboromethylamino) -3-bromo. ] — 1, 3, 5 triazine, trihalomethyl-s triazine compounds described in US Pat. No. 4,239,850, and 2, 4, 6 tris (trichloromethyl) —s triazine, 2- (4-chloro) (Fuel) 4, 6-bis (tribromomethyl) s triazine.
[0106] 前記米国特許第 4212976号明細書に記載されている化合物としては、例えば、ォ キサジァゾール骨格を有する化合物(例えば、 2 トリクロロメチル— 5 フエ二ルー 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4 クロ口フエ二ル)一 1, 3, 4 —ォキサジァゾール、 2 トリクロロメチル一 5— (1—ナフチル) 1, 3, 4—ォキサジ ァゾール、 2 トリクロロメチル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール、 2 トリブ口モメチルー 5—フエ二ルー 1, 3, 4 ォキサジァゾール、 2 トリブ口モメチ ル— 5— (2 ナフチル)—1, 3, 4—ォキサジァゾール; 2 トリクロロメチル— 5—ス チリル— 1, 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (4 クロルスチリル) —1, 3, 4—ォキサジァゾール、 2 トリクロロメチル一 5— (4—メトキシスチリル)一 1 , 3, 4—ォキサジァゾール、 2 トリクロロメチル— 5— (1—ナフチル)—1, 3, 4—ォ キサジァゾール、 2 トリクロロメチル— 5— (4— n—ブトキシスチリル)— 1, 3, 4—ォ キサジァゾール、 2 トリプロモメチルー 5—スチリルー 1, 3, 4 ォキサジァゾールな ど)などが挙げられる。  Examples of the compound described in the above-mentioned US Pat. No. 4,212,976 include compounds having an oxadiazole skeleton (for example, 2 trichloromethyl-5 phenyl 1,3,4-oxadiazole, 2 trichloromethyl). 1-5— (4 Phenyl Phenyl) 1 1, 3, 4 — Oxadiazole, 2 Trichloromethyl 1 5— (1—Naphtyl) 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (2 Naphthyl) —1, 3, 4—Oxadiazole, 2 trimethyl oral methyl-5-phenyl 2, 3, 4 oxadiazole, 2 trimethyl oral — 5— (2 naphthyl) —1, 3, 4-oxadiazole; 2 Trichloromethyl— 5—Styryl— 1, 3, 4-Oxadiazole, 2 Trichloromethyl— 5— (4 Chlorstyryl) —1, 3, 4-Oxadiazole, 2 Trichloromethyl mono 5-— (4-Methoxystyryl) 1,3,4-Oxadiazole, 2 Trichloromethyl-5- (1-Naphtyl) -1,3,4-Oxadiazole, 2Trichloromethyl-5- (4-n-Butoxystyryl) — 1, 3, 4— Oxaziazole, 2-tripromomethyl-5-styryl-1,3,4 oxaziazole, etc.).
[0107] 本発明で好適に用いられるォキシム誘導体としては、例えば、 3 べンゾイロキシィ ミノブタン 2 オン、 3 ァセトキシィミノブタン 2 オン、 3 プロピオニルォキシ イミノブタン 2 オン、 2 ァセトキシィミノペンタン 3 オン、 2 ァセトキシィミノ —1—フエ-ルプロパン一 1—オン、 2—ベンゾイロキシィミノ一 1—フエ-ルプロパン — 1—オン、 3— (4—トルエンスルホ -ルォキシ)イミノブタン一 2—オン、及び 2 エト キシカルボ-ルォキシィミノ一 1—フエ-ルプロパン一 1—オンなどが挙げられる。  [0107] Examples of the oxime derivative suitably used in the present invention include, for example, 3 benzoyloxy minobutane 2 on, 3 acetoximininobutane 2 on, 3 propionyloxy iminobutane 2 on, 2 acetoximinopentane 3 on, 2-acetoximino — 1-phenolpropane 1-one, 2-benzoyloximino 1-phenolpropane — 1-one, 3-— (4-toluenesulfo-loxy) iminobutane-2-one, and 2 eth Xylcarboloxymino 1-phenolpropane-1-one.
[0108] また、上記以外の光重合開始剤として、アタリジン誘導体 (例えば、 9 フエ-ルァク リジン、 1, 7 ビス(9、 9,一アタリジ-ル)ヘプタンなど)、 N フエ-ルグリシンなど、 ポリハロゲン化合物(例えば、四臭化炭素、フエ-ルトリブ口モメチルスルホン、フエ- ルトリクロロメチルケトンなど)、クマリン類(例えば、 3— (2—ベンゾフロイル) 7—ジ ェチルァミノクマリン、 3— (2 ベンゾフロイル) 7— (1—ピロリジ -ル)クマリン、 3— ベンゾィル 7 ジェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチ ルァミノクマリン、 3— (4—ジメチルァミノべンゾィル) 7—ジェチルァミノクマリン、 3 , 3,一カルボニルビス(5, 7—ジー n プロポキシクマリン)、 3, 3,一カルボニルビス (7 ジェチルァミノクマリン)、 3 ベンゾィル 7—メトキシクマリン、 3— (2 フロイ ル) 7—ジェチルァミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェ チルァミノクマリン、 7—メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィ ルー 5, 7 ジプロポキシクマリン、 7 ベンゾトリアゾール 2—イルクマリン、また、特 開平 5— 19475号公報、特開平 7— 271028号公報、特開 2002— 363206号公報 、特開 2002— 363207号公報、特開 2002— 363208号公報、特開 2002— 3632 09号公報などに記載のクマリンィ匕合物など)、アミン類 (例えば、 4 ジメチルァミノ安 息香酸ェチル、 4ージメチルァミノ安息香酸 n—ブチル、 4ージメチルァミノ安息香酸 フエネチル、 4ージメチルァミノ安息香酸 2 フタルイミドエチル、 4ージメチルァミノ安 息香酸 2—メタクリロイルォキシェチル、ペンタメチレンビス(4ージメチルァミノべンゾ エート)、 3—ジメチルァミノ安息香酸のフエネチル、ペンタメチレンエステル、 4ージメ チルァミノべンズアルデヒド、 2 クロルー4ージメチルァミノべンズアルデヒド、 4ージ メチルァミノべンジルアルコール、ェチル(4ージメチルァミノべンゾィル)アセテート、 4—ピベリジノアセトフエノン、 4—ジメチルァミノべンゾイン、 N, N ジメチル一 4—ト ルイジン、 N, N ジェチノレ一 3—フエネチジン、トリベンジノレアミン、ジベンジノレフエ -ルァミン、 N—メチル N—フエ-ルペンジルァミン、 4—ブロム一 N, N ジメチル ァ-リン、トリドデシルァミン、ァミノフルオラン類(ODB, ODBIIなど)、クリスタルバイ ォレツトラクトン、ロイコクリスタルバイオレットなど)、ァシルホスフィンオキサイド類(例 えば、ビス(2, 4, 6 トリメチルベンゾィル)一フエ-ルホスフィンオキサイド、ビス(2, 6 ジメトキシベンゾィル)ー 2, 4, 4 トリメチルーペンチルフエニルホスフィンォキサ イド、 LucirinTPOなど)、メタ口セン類(例えば、ビス( r? 5— 2, 4 シクロペンタジェ ン— 1—ィル)—ビス(2, 6 ジフロロ 3— (1H ピロール— 1—ィル)—フエ-ル) チタニウム、 5 シクロペンタジェ -ル一 —タメ-ルーアイアン(1 +)—へキサフ ロロホスフェート(1一)など)、特開昭 53— 133428号公報、特公昭 57— 1819号公 報、同 57— 6096号公報、及び米国特許第 3615455号明細書に記載されたィ匕合 物などが挙げられる。 [0108] Further, as photopolymerization initiators other than those described above, atalidine derivatives (for example, 9-phenol lysine, 1,7 bis (9, 9, 1-ataridyl) heptane, etc.), N-phenol glycine, etc. Polyhalogen compounds (for example, carbon tetrabromide, felt rib mouth momethyl sulfone, phenyl trichloromethyl ketone, etc.), coumarins (for example, 3- (2-benzofuroyl) 7-deethylaminocoumarin, 3 — (2 Benzofuroyl) 7— (1—Pyrrolidyl) coumarin, 3—Benzyl 7 Jetylaminocoumarin, 3— (2-Methoxybenzoyl) 7 Jetylaminocoumarin, 3— (4-Dimethylaminobenzol) 7 —Jetylaminocoumarin, 3,3,1-carbonylbis (5,7-g-propoxycoumarin), 3,3,1-carbonylbis (7-jetylaminocoumarin), 3 Benzyl 7-methoxycoumarin, 3— (2 Froyl) 7-Jetylaminocoumarin, 3- (4-Jetylaminocinnamoyl) 7-Jetylaminocoumarin, 7-Methoxy-1- (3-Pyridyl Rubole) coumarin, 3-benzoyl 5,5 dipropoxycoumarin, 7 benzotriazole 2-ylcoumarin, and Japanese Patent Application Laid-Open No. 5-19475, Japanese Patent Application Laid-Open No. 7-271028, Japanese Patent Application Laid-Open No. 2002-363206, JP-A-2002-363207, JP-A-2002-363208, JP-A-2002-336309, etc.), amines (eg, 4-dimethylaminobenzoyl ethyl, 4-dimethylamino) Benzoic acid n-butyl, 4-dimethylaminobenzoic acid phenethyl, 4-dimethylaminobenzoic acid 2 phthalimidoethyl, 4-dimethylaminobenzoic acid 2-methacryloyloxychetyl, pentamethylenebis (4-dimethylaminominobenzoate), 3-dimethylaminobenzoic acid Acid phenethyl, pentamethylene ester, 4-dimethylaminobenzaldehyde, 2 chloro 4- Dimethylaminobenzaldehyde, 4-dimethylaminobenzil alcohol, ethyl (4-dimethylaminobenzoyl) acetate, 4-piveridinoacetophenone, 4-dimethylaminobenzoin, N, N Dimethyl 4-toluidine, N, N Jetinore 1-phenethidine, tribenzinoreamine, dibenzenole-lamine, N-methyl N-phenol-penzylamine, 4-bromo 1 N, N dimethylaline, tridodecylamine, aminofluoranes (ODB, ODBII, etc.) , Crystal biolet lactone, leuco crystal violet, etc.), acyl phosphine oxides (for example, bis (2, 4, 6 trimethylbenzoyl) monophenylphosphine oxide, bis (2, 6 dimethoxybenzoyl)) 2, 4, 4 Trimethyl-pentylphenylphosphine Id, etc. Lucirin TPO), meta port mosses (e.g., bis (r 5 -? 2, 4 cyclopentadiene Jefferies emissions - 1-I le) - bis (2, 6-difluoro 3- (IH-pyrrol - 1-I le) —Fuel) Titanium, 5- cyclopentagel-tame-ru iron (1 +)-hexafluorophosphate (1), etc.), JP-A-53-133428, JP-B-57-1819, 57 — Examples of the compounds described in Japanese Patent No. 6096 and US Pat. No. 3,615,455.
[0109] 前記ケトン化合物としては、例えば、ベンゾフエノン、 2 メチルベンゾフエノン、 3— メチルベンゾフエノン、 4 メチルベンゾフエノン、 4ーメトキシベンゾフエノン、 2 クロ 口べンゾフエノン、 4 クロ口べンゾフエノン、 4 ブロモベンゾフエノン、 2—カノレボキ シベンゾフエノン、 2—エトキシカルボニルベンゾルフェノン、ベンゾフエノンテトラカル ボン酸又はそのテトラメチルエステル、 4, 4,一ビス(ジアルキルァミノ)ベンゾフエノン 類(例えば、 4, 4,一ビス(ジメチルァミノ)ベンゾフエノン、 4, 4,一ビスジシクロへキシ ルァミノ)ベンゾフエノン、 4, 4,一ビス(ジェチルァミノ)ベンゾフエノン、 4, 4,一ビス( ジヒドロキシェチルァミノ)ベンゾフエノン、 4—メトキシ一 4'—ジメチルァミノべンゾフエ ノン、 4, 4'—ジメトキシベンゾフエノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチ ルアミノアセトフエノン、ベンジル、アントラキノン、 2—t—ブチルアントラキノン、 2—メ チノレアントラキノン、フエナントラキノン、キサントン、チォキサントン、 2—クロノレーチォ キサントン、 2, 4 ジェチルチオキサントン、フルォレノン、 2 べンジルージメチルァ ミノー 1一(4 モルホリノフエ-ル) 1ーブタノン、 2—メチルー 1一〔4 (メチルチオ )フエ-ル〕 2 モルホリノ一 1—プロパノン、 2 ヒドロキシー 2—メチルー〔4— (1— メチルビ-ル)フエ-ル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類 (例えば、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインプロピ ノレエーテノレ、ベンゾインイソプロピノレエーテノレ、ベンゾインフエ-ノレエーテノレ、ベンジ ルジメチルケタール)、アタリドン、クロロアタリドン、 N—メチルアタリドン、 N ブチル アタリドン、 N ブチル一クロロアタリドンなどが挙げられる。  [0109] Examples of the ketone compound include benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 4-methoxybenzophenone, 2-clobenbenzophenone, and 4-clobenbenzophenone. , 4 Bromobenzophenone, 2-canoleboxibenzophenone, 2-ethoxycarbonylbenzolphenone, benzophenonetetracarboxylic acid or its tetramethyl ester, 4,4,1 bis (dialkylamino) benzophenones (for example, 4 , 4, 1 bis (dimethylamino) benzophenone, 4, 4, 1 bisdicyclohexylamino) benzophenone, 4, 4, 1 bis (jetylamino) benzophenone, 4, 4, 1 bis (dihydroxyethylamino) benzophenone, 4- Methoxy mono 4'-dimethylaminobenzophenone, 4 , 4'-dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone, benzyl, anthraquinone, 2-t-butylanthraquinone, 2-methinoanthraquinone, phenanthraquinone, xanthone, thixanthone , 2-Chronolethioxanthone, 2, 4 Jetylthioxanthone, Fluorenone, 2-Benzyldimethylaminone 1 (4 morpholinophenol) 1-butanone, 2-methyl-11 (4 (methylthio) phenol) 2 morpholino 1-propanone, 2-hydroxy-2-methyl- [4- (1-methylvinyl) phenol] propanol oligomer, benzoin, benzoin ethers (for example, benzoin methyl ether, benzoin ether, benzoin propyleneate, benzoin isopropylene Nore Ethenore, benzoinphenol-benzylateol, benzyldimethyl ketal), attaridone, chloroattaridone, N-methyl attaridone, N-butyl attaridone, N-butyl monochloro attaridone and the like.
[0110] また、後述する感光性ソルダーレジスト層への露光における露光感度や感光波長 を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能であ る。  [0110] In addition to the photopolymerization initiator, it is possible to add a sensitizer for the purpose of adjusting the exposure sensitivity and the photosensitive wavelength in exposure to the photosensitive solder resist layer described later.
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ、可視光レ 一ザなどにより適宜選択することができる。 前記増感剤は、活性エネルギー線により励起状態となり、他の物質 (例えば、ラジカ ル発生剤、酸発生剤など)と相互作用(例えば、エネルギー移動、電子移動など)す ることにより、ラジカルや酸などの有用基を発生することが可能である。 The sensitizer can be appropriately selected by a visible light, an ultraviolet laser, a visible light laser, or the like as a light irradiation means described later. The sensitizer is excited by active energy rays and interacts with other substances (for example, radical generator, acid generator, etc.) (for example, energy transfer, electron transfer, etc.), thereby causing radicals and It is possible to generate useful groups such as acids.
[0111] 前記増感剤としては、特に制限はなぐ公知の増感剤の中から適宜選択することが でき、例えば、公知の多核芳香族類 (例えば、ピレン、ペリレン、トリフエ-レン)、キサ ンテン類(例えば、フルォレセイン、ェォシン、エリス口シン、ローダミン B、ローズベン ガル)、シァニン類(例えば、インドカルボシァニン、チアカルボシァニン、ォキサカル ボシァニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン 類(例えば、チォニン、メチレンブルー、トルイジンブルー)、アタリジン類(例えば、ァ クリジンオレンジ、クロロフラビン、ァクリフラビン)、アントラキノン類 (例えば、アントラ キノン)、スクァリウム類 (例えば、スクァリウム)、アタリドン類 (例えば、アタリドン、クロ ロアタリドン、 N—メチルアタリドン、 N ブチルアタリドン、 N ブチル一クロロアクリド ンなど)、クマリン類(例えば、 3—(2 べンゾフロイル) 7 ジェチルァミノクマリン、 3— (2 ベンゾフロイル) 7— (1—ピロリジ -ル)クマリン、 3 ベンゾィル 7 ジ ェチルァミノクマリン、 3— (2—メトキシベンゾィル) 7 ジェチルァミノクマリン、 3— (4—ジメチルァミノベンゾィル)一7—ジェチルァミノクマリン、 3, 3'—カルボ二ルビ ス(5, 7—ジ n—プロポキシクマリン)、 3, 3,一カルボ-ルビス(7—ジェチルァミノ クマリン)、 3—ベンゾィル 7—メトキシクマリン、 3— (2—フロイル) 7—ジェチルァ ミノクマリン、 3—(4ージェチルァミノシンナモイル) 7—ジェチルァミノクマリン、 7— メトキシ一 3— (3—ピリジルカルボ-ル)クマリン、 3—ベンゾィル 5, 7—ジプロポキ シクマリンなどがあげられ、他に特開平 5— 19475号公報、特開平 7— 271028号公 報、特開 2002— 363206号公報、特開 2002— 363207号公報、特開 2002— 363 208号公報、特開 2002— 363209号公報などの各公報に記載のクマリンィ匕合物な ど)が挙げられる。  [0111] The sensitizer can be appropriately selected from known sensitizers that are not particularly limited, and examples thereof include known polynuclear aromatics (for example, pyrene, perylene, triphenylene), oxalates. Nentines (eg, fluorescein, eosin, erythrosine synth, rhodamine B, rose bengal), cyanines (eg, indocarboyanine, thiacarboyanine, oxacarboyanine), merocyanines (eg, merocyanine, carbomerocyanine), Thiazines (eg, thionine, methylene blue, toluidine blue), atalidines (eg, acridine orange, chloroflavin, acriflavine), anthraquinones (eg, anthraquinone), squaliums (eg, squalium), attaridones (eg, , Ataridon, Chloroata Don, N—methyl attaridone, N butyl attaridone, N butyl monochloroacridone, etc.), coumarins (eg, 3— (2 benzofuroyl) 7 Jetylaminocoumarin, 3— (2 benzofuroyl) 7— (1 —Pyrrolidyl) coumarin, 3 benzoyl 7 dimethylaminocoumarin, 3— (2-methoxybenzoyl) 7 Jetylaminocoumarin, 3— (4-dimethylaminobenzoyl) 1 7-je Tyraminocoumarin, 3, 3'-Carbonylbis (5,7-di-n-propoxycoumarin), 3,3,1-Carborubis (7-Jetylaminocoumarin), 3-Benzyl 7-methoxycoumarin, 3 — (2-Furoyl) 7-Jetylamino minocoumarin, 3 -— (4-Jetylamino cinnamoyl) 7-Jetylaminocoumarin, 7—Methoxy-1- (3-pyridylcarbole) coumarin, 3-benzo In addition, JP-A-5-19475, JP-A-7-271028, JP-A-2002-363206, JP-A-2002-363207, JP-A-5,475, No. 2002-363 208, and JP-A 2002-363209, etc.).
[0112] 前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開 2001— 3057 34号公報に記載の電子移動型開始系 [ (1)電子供与型開始剤及び増感色素、 (2) 電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容 型開始剤 (三元開始系)]などの組合せが挙げられる。 [0113] 前記増感剤の含有量としては、前記感光性ソルダーレジスト組成物中の全成分に 対し、 0. 05〜30質量%が好ましぐ 0. 1〜20質量%がより好ましぐ 0. 2〜10質量 %が特に好ましい。該含有量が、 0. 05質量%未満であると、活性エネルギー線への 感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、 30質量 %を超えると、保存時に前記感光性ソルダーレジスト層から前記増感剤が析出するこ とがある。 [0112] Examples of the combination of the photopolymerization initiator and the sensitizer include, for example, an electron transfer-type initiator system described in JP-A-2001-305734 [(1) an electron-donating initiator and a sensitizing dye (2) Electron-accepting initiators and sensitizing dyes, (3) Electron-donating initiators, sensitizing dyes and electron-accepting initiators (ternary initiation system)], and the like. [0113] The content of the sensitizer is preferably 0.05 to 30% by mass and more preferably 0.1 to 20% by mass with respect to all components in the photosensitive solder resist composition. 0.2 to 10% by mass is particularly preferred. If the content is less than 0.05% by mass, the sensitivity to active energy rays may be reduced, the exposure process may take a long time, and productivity may be reduced. The sensitizer may be precipitated from the photosensitive solder resist layer.
[0114] 前記光重合開始剤は、 1種単独で使用してもよぐ 2種以上を併用してもよい。  [0114] The photopolymerization initiator may be used alone or in combination of two or more.
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が 40 5nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記 α—アミノア ルキルケトン類、前記トリァジン骨格を有するハロゲンィ匕炭化水素化合物と後述する 増感剤としてのアミンィ匕合物とを組合せた複合光開始剤、へキサァリールビイミダゾ ール化合物、あるいは、チタノセンなどが挙げられる。  As a particularly preferred example of the photopolymerization initiator, halogenated carbonization having the phosphine oxides, the α-aminoalkyl ketones, and the triazine skeleton capable of supporting laser light having a wavelength of 405 nm in the later-described exposure. Examples thereof include a composite photoinitiator in which a hydrogen compound and an amine compound as a sensitizer described later are combined, a hexaarylbiimidazole compound, or titanocene.
[0115] 前記光重合開始剤の前記感光性ソルダーレジスト組成物における含有量としては 、 0. 5〜20質量%が好ましぐ 1〜15質量%がより好ましぐ 2〜10質量%が特に好 ましい。  [0115] The content of the photopolymerization initiator in the photosensitive solder resist composition is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. It is preferable.
[0116] <熱架橋剤 >  [0116] <Thermal crosslinking agent>
前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、 例えば、エポキシ榭脂及び多官能ォキセタンィ匕合物などが好適に挙げられる。 前記エポキシ榭脂及び多官能ォキセタン化合物としては、特に制限はなぐ 目的に 応じて適宜選択することができ、例えば、前記感光性ソルダーレジスト組成物を用い て形成される感光性ソルダーレジスト層の硬化後の膜強度を改良するために、現像 性などなどに悪影響を与えない範囲で、 1分子内に少なくとも 2つのォキシラン基を 有するエポキシ榭脂化合物、 1分子内に少なくとも 2つのォキセタ-ル基を有するォ キセタンィ匕合物などを用いることができる。  The thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include epoxy resin and polyfunctional oxetane compound. The epoxy resin and the polyfunctional oxetane compound can be appropriately selected according to the purpose without any particular limitation. For example, after curing of the photosensitive solder resist layer formed using the photosensitive solder resist composition In order to improve the film strength of an epoxy resin compound having at least two oxsilane groups in one molecule and at least two oxetal groups in one molecule within a range that does not adversely affect developability, etc. Oxetane compounds can be used.
[0117] 前記エポキシ榭脂としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、ビキシレノール型若しくはビフエノール型エポキシ榭脂(「ΥΧ4000 ;ジャ パンエポキシレジン社製」など)又はこれらの混合物、イソシァヌレート骨格などを有 する複素環式エポキシ榭脂(「TEPIC ;日産化学工業社製」、「ァラルダイト PT810 ; チノく'スペシャルティ'ケミカルズ社製」など)、ビスフエノール A型エポキシ榭脂、ノボ ラック型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、水添ビスフエノール A型ェ ポキシ榭脂、グリシジルァミン型エポキシ榭脂、ヒダントイン型エポキシ榭脂、脂環式 エポキシ榭脂、トリヒドロキシフエ-ルメタン型エポキシ榭脂、ビスフエノール S型ェポ キシ榭脂、ビスフエノール Aノボラック型エポキシ榭脂、テトラフエ-ロールエタン型ェ ポキシ榭脂、グリシジルフタレート榭脂、テトラグリシジルキシレノィルエタン榭脂、ナ フタレン基含有エポキシ榭脂(「ESN— 190, ESN— 360 ;新日鉄化学社製」、「HP -4032, EXA-4750, EXA— 4700 ;大日本インキイ匕学工業社製」など)、ジシク 口ペンタジェン骨格を有するエポキシ榭脂(「HP— 7200, HP— 7200H ;大日本ィ ンキ化学工業社製」など)、グリシジルメタアタリレート共重合系エポキシ榭脂(「CP— 50S, CP- 50M ;日本油脂社製」など)、シクロへキシルマレイミドとグリシジルメタァ タリレートとの共重合エポキシ榭脂などが挙げられる。これらのエポキシ榭脂は、 1種 単独で使用してもよいし、 2種以上を併用してもよい。 [0117] The epoxy resin is not particularly limited and can be appropriately selected according to the purpose. For example, bixylenol type or biphenol type epoxy resin ("ΥΧ4000; manufactured by Japan Epoxy Resin Co., Ltd.") Or a mixture thereof, a heterocyclic epoxy resin having an isocyanurate skeleton (“TEPIC; manufactured by Nissan Chemical Industries Ltd.”, “Araldite PT810; Chinoku 'Specialty' Chemicals, etc.), bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type Epoxy resin, hydantoin type epoxy resin, cycloaliphatic epoxy resin, trihydroxyphenol methane type epoxy resin, bisphenol S type epoxy resin, bisphenol A novolac type epoxy resin, tetraphenol ethane Type epoxy resin, glycidyl phthalate resin, tetraglycidyl xylenol ethane resin, naphthalene group-containing epoxy resin (“ESN-190, ESN—360; manufactured by Nippon Steel Chemical Co., Ltd.”, “HP-4032, EXA -4750, EXA— 4700; manufactured by Dainippon Ink & Chemicals, Inc.), epoxy resin having a dicyclopentapentene skeleton (“HP-7200, HP-7200H; large NIPPON INK CHEMICAL INDUSTRY CO., LTD.), Glycidyl methacrylate copolymer epoxy resin (such as “CP-50S, CP-50M; Nippon Oil & Fats” etc.), cyclohexylmaleimide and glycidyl methacrylate Examples thereof include copolymerized epoxy resin. These epoxy resins may be used alone or in combination of two or more.
[0118] 前記多官能ォキセタンィ匕合物としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、ビス [ (3—メチル 3—ォキセタ -ルメトキシ)メチル]エーテル 、ビス [ (3 ェチルー 3—ォキセタ -ルメトキシ)メチル]エーテル、 1, 4 ビス [ (3—メ チル一 3—ォキセタ -ルメトキシ)メチル]ベンゼン、 1, 4 ビス [ (3 ェチル 3—ォ キセタ -ルメトキシ)メチル]ベンゼン、(3—メチルー 3—ォキセタ -ル)メチルアタリレ ート、(3—ェチルー 3—ォキセタ -ル)メチルアタリレート、(3—メチルー 3—ォキセタ -ル)メチルメタタリレート、( 3—ェチル 3—ォキセタ -ル)メチルメタタリレート又は これらのオリゴマーあるいは共重合体などの多官能ォキセタン類の他、ォキセタン基 と、ノボラック榭脂、ポリ(p ヒドロキシスチレン)、力ルド型ビスフエノール類、カリック スァレーン類、力リックスレゾルシンアレーン類、シルセスキォキサンなどの水酸基を 有する榭脂など、とのエーテルィ匕合物が挙げられ、この他、ォキセタン環を有する不 飽和モノマーとアルキル (メタ)アタリレートとの共重合体なども挙げられる。  [0118] The polyfunctional oxetane compound is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include bis [(3-methyl-3-oxeta-lmethoxy) methyl] ether, bis [( 3 ethyl-3-oxeta-methoxy) methyl] ether, 1,4 bis [(3-methyl-1-3-methoxy) methyl] benzene, 1,4 bis [(3 ethyl-3-oxeta-methoxy) methyl] Benzene, (3-Methyl-3-oxeta-l) methyl acrylate, (3-Ethyl-3-oxeta-l) methyl acrylate, (3-Methyl-3-oxeta-l) methyl metatalylate, (3-Ethyl 3 In addition to polyfunctional oxetanes such as —oxeta-methyl) methyl metatalylate or oligomers or copolymers thereof, oxetane groups, novolac resin, poly (p-hydroxystyrene), force-type Etheric compounds such as bisphenols, calixarenes, force-resorcinarenes, and silsesquioxanes having hydroxyl groups, and the like. In addition, unsaturated monomers having an oxetane ring and alkyl ( Examples thereof include a copolymer with (meth) acrylate.
[0119] 前記エポキシ榭脂又は多官能ォキセタンィ匕合物の前記感光性ソルダーレジスト組 成物溶液の固形分中の固形分含有量としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、 2〜50質量%が好ましぐ 3〜30質量%がより好ましい 。該固形分含有量が 2質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣 化を生ずる、あるいは、半田耐熱性ゃ耐無電解メツキ性などなどが低下することがあ り、 50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ま しくない。 [0119] The solid content in the solid content of the photosensitive solder resist composition solution of the epoxy resin or polyfunctional oxetane compound is not particularly limited and may be appropriately selected depending on the purpose. For example, 2 to 50% by mass is preferable, and 3 to 30% by mass is more preferable. . When the solid content is less than 2% by mass, the hygroscopicity of the cured film is increased, resulting in deterioration of insulation, or solder heat resistance, electroless resistance to electrolysis, and the like. On the other hand, if it exceeds 50% by mass, the developability may deteriorate and the exposure sensitivity may decrease.
[0120] その他の熱架橋剤 [0120] Other thermal crosslinking agents
前記その他の熱架橋剤は、前記エポキシ榭脂ゃ多官能ォキセタンィ匕合物とは別に 添加することができる。前記熱架橋剤としては、特に制限はなぐ 目的に応じて適宜 選択することができ、例えば、特開平 5— 9407号公報記載のポリイソシァネートイ匕合 物を用いることができ、該ポリイソシァネートイ匕合物としては、少なくとも 2つのイソシァ ネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導され ていてもよい。  The other thermal crosslinking agent can be added separately from the epoxy resin or polyfunctional oxetane compound. The thermal crosslinking agent is not particularly limited and can be appropriately selected according to the purpose. For example, a polyisocyanate compound described in JP-A-5-9407 can be used. The cyanate compound may be derived from an aliphatic, cycloaliphatic or aromatic group-substituted aliphatic compound containing at least two isocyanate groups.
具体的には、 1, 3 フエ-レンジイソシァネートと 1, 4 フエ-レンジイソシァネート との混合物、 2, 4 及び 2, 6 トルエンジイソシァネート、 1, 3 及び 1, 4ーキシリレ ンジイソシァネート、ビス(4 イソシァネート フエ-ル)メタン、ビス(4 イソシァネー トシクロへキシル)メタン、イソホロンジイソシァネート、へキサメチレンジイソシァネート 、トリメチルへキサメチレンジイソシァネートなどの 2官能イソシァネート;該 2官能イソ シァネートと、トリメチロールプロパン、ペンタリスルトール、グリセリンなどとの多官能 アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記 2官能イソシ ァネートとの付カ卩体;へキサメチレンジイソシァネート、へキサメチレン一 1, 6 ジイソ シァネート及びその誘導体などの環式三量体などが挙げられる。  Specifically, a mixture of 1,3 phenolic diisocyanate and 1,4 phenolic diisocyanate, 2, 4 and 2,6 toluene diisocyanate, 1, 3 and 1,4-xylylene range Bifunctional such as isocyanate, bis (4 isocyanate phenyl) methane, bis (4 isocyanate cyclohexyl) methane, isophorone diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate Isocyanate; polyfunctional alcohol of the bifunctional isocyanate with trimethylolpropane, pentalysitol, glycerin, etc .; adduct of the alkylene oxide adduct of the polyfunctional alcohol with the bifunctional isocyanate; Cyclic trimers such as tylene diisocyanate, hexamethylene-1,6 diisocyanate and its derivatives Etc., and the like.
[0121] 更に、前記感光性ソルダーレジスト組成物、ある 、は、前記感光性ソルダーレジスト フィルムの保存性を向上させることを目的として、前記ポリイソシァネート及びその誘 導体のイソシァネート基にブロック剤を反応させて得られる化合物を用いてもよ!、。 前記イソシァネート基ブロック剤としては、特に制限はなぐ 目的に応じて適宜選択 することができ、例えば、イソプロパノール、 tert ブタノールなどのアルコール類; ε 一力プロラタタムなどのラタタム類;フエノール、クレゾール、 ρ— tert ブチルフエノー ノレ、 p— sec ブチノレフエノーノレ、 p— sec アミノレフエノーノレ、 p 才クチノレフエノーノレ 、 p ノユルフェノールなどのフエノール類; 3—ヒドロキシピリジン、 8—ヒドロキシキノリ ンなどの複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルェチルケトキシ ム、ァセチルアセトン、アルキルァセトアセテートォキシム、ァセトォキシム、シクロへキ サノンォキシムなどの活性メチレンィ匕合物;などが挙げられる。これらの他に、特開平[0121] Further, for the purpose of improving the preservability of the photosensitive solder resist film, the photosensitive solder resist composition is a blocking agent for the polyisocyanate and the isocyanate group of the derivative thereof. You can use the compound obtained by reaction! The isocyanate group blocking agent is not particularly limited, and can be appropriately selected according to the purpose. Examples thereof include alcohols such as isopropanol and tert-butanol; ε ratatas such as prolatamate; phenol, cresol, ρ-tert Phenols such as butylphenol, p-sec butenolevenore, p-sec aminorefenore, p-year-old chinenophenol, pnoylphenol; 3-hydroxypyridine, 8-hydroxyquinori Heterocyclic alkyl compounds such as dialkyl malonate; active methylene compounds such as diethylmalonate, methylethylketoxime, acetylethylacetone, alkylacetoacetoxime, acetooxime, cyclohexanone oxime; and the like. In addition to these,
6 - 295060号公報記載の分子内に少なくとも 1つの重合可能な二重結合及び少な くとも 1つのブロックイソシァネート基のいずれかを有する化合物などを用いることがで きる。 A compound having at least one polymerizable double bond and at least one block isocyanate group in the molecule described in JP-A-6-295060 can be used.
[0122] また、アルデヒド縮合生成物、榭脂前駆体などを用いることができる。具体的には、 N, N,—ジメチロール尿素、 N, N,—ジメチロールマロンアミド、 N, N,—ジメチロー ルスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、へキサメチロールメ ラミン、 1, 3— N, N, 一ジメチロールテレフタルアミド、 2, 4, 6—トリメチロールフエノ ール、 2, 6—ジメチロール— 4—メチロア-ノール、 1, 3—ジメチロール— 4, 6—ジィ ソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、 対応するェチル若しくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステ ルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなる へキサメチル化メチロールメラミンや、メラミンとホルムアルデヒド縮合生成物のブチル エーテルなどを使用してもよ 、。  [0122] Also, aldehyde condensation products, rosin precursors, and the like can be used. Specifically, N, N, —dimethylolurea, N, N, —dimethylolmalonamide, N, N, —dimethylolsuccinimide, trimethylolmelamine, tetramethylolmelamine, hexamethylolmelamine, 1, 3— N, N, monodimethylol terephthalamide, 2, 4, 6-trimethylol phenol, 2, 6-dimethylol— 4-methyloanol, 1, 3-dimethylol— 4, 6-disopropylbenzene, etc. Is mentioned. Instead of these methylol compounds, the corresponding ester or butyl ether, or ester of acetic acid or propionic acid may be used. Hexamethylated methylol melamine composed of a formaldehyde condensation product of melamine and urea or butyl ether of a melamine and formaldehyde condensation product may be used.
[0123] <無機充填剤 >  [0123] <Inorganic filler>
前記無機充填剤は、永久パターンの表面硬度を向上でき、線膨張係数を低く抑え ることができ、硬化層自体の誘電率や誘電正接を低く抑えることができる機能がある。 前記無機充填剤としては、特に制限はなぐ公知のものの中から適宜選択すること ができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケィ素粉、微粉状酸 化ケィ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タル ク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミ-ゥ ム、マイ力などが挙げられる。  The inorganic filler has the functions of improving the surface hardness of the permanent pattern, keeping the coefficient of linear expansion low, and keeping the dielectric constant and dielectric loss tangent of the cured layer itself low. The inorganic filler can be appropriately selected from known ones that are not particularly limited. For example, kaolin, barium sulfate, barium titanate, key oxide powder, fine powder oxide oxide, gas phase method silica. Amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, My strength and the like.
[0124] 前記無機充填剤の平均粒径は、 3 m未満が好ましぐ 0. l〜2 /z mがより好ましい 。該平均粒径が 3 m以上であると、光錯乱により解像度が劣化することがある。 前記無機充填剤の添加量は、 5〜75質量%が好ましぐ 8〜70質量%がより好まし く、 10〜65質量%が特に好ましい。該添加量が 5質量%未満であると、十分に線膨 張係数を低下させることができないことがあり、 90質量%を超えると、感光性ソルダー レジスト層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パター ンを用いて配線を形成する場合にぉ ヽて、配線の保護膜としての機能が損なわれる ことがある。 [0124] The average particle size of the inorganic filler is preferably less than 3 m, more preferably 0.1-2 / zm. If the average particle size is 3 m or more, resolution may deteriorate due to light scattering. The added amount of the inorganic filler is preferably 5 to 75% by mass, more preferably 8 to 70% by mass, and particularly preferably 10 to 65% by mass. When the added amount is less than 5% by mass, the linear expansion is sufficiently achieved. In some cases, the tension coefficient cannot be reduced. When the content exceeds 90% by mass, when a cured film is formed on the surface of the photosensitive solder resist layer, the film quality of the cured film becomes brittle, and wiring is performed using a permanent pattern. In the case of forming the wiring, the function as a protective film of the wiring may be impaired.
[0125] 更に必要に応じて有機微粒子を添加することも可能である。好適な有機微粒子とし ては、特に制限はなぐ目的に応じて適宜選択することができ、例えば、メラミン榭脂 、ベンゾグアナミン榭脂、架橋ポリスチレン榭脂などが挙げられる。また、平均粒径 0. 1〜2 /ζ πι、吸油量 100〜200m2Zg程度のシリカ、架橋樹脂からなる球状多孔質微 粒子などを用いることができる。 [0125] Further, organic fine particles may be added as necessary. Suitable organic fine particles can be appropriately selected according to the purpose without particular limitation, and examples thereof include melamine resin, benzoguanamine resin, and crosslinked polystyrene resin. Further, silica having an average particle diameter of 0.1 to 2 / ζ πι, an oil absorption of about 100 to 200 m 2 Zg, spherical porous fine particles made of a crosslinked resin, and the like can be used.
[0126] 前記無機充填剤に、平均粒径が 0. 1〜2 mの粒子を含有していることから、永久 パターンをプリント配線基板の薄型化にともなって、厚み 5〜20 mに薄層化したと しても、無機充填剤粒子が永久パターンの表裏両面を架橋することはなぐその結果 、高加速度試験 (HAST)においてもイオンマイグレーションの発生がなぐ耐熱性、 耐湿性に優れた永久パターンとすることができる。  [0126] Since the inorganic filler contains particles having an average particle size of 0.1 to 2 m, the permanent pattern is thinned to a thickness of 5 to 20 m as the printed wiring board becomes thinner. As a result, the inorganic filler particles do not cross-link the front and back surfaces of the permanent pattern. As a result, the permanent pattern has excellent heat resistance and moisture resistance that does not cause ion migration even in the high acceleration test (HAST). It can be.
[0127] <着色剤 >  [0127] <Colorant>
前記着色剤としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、公知の染料の中から、適宜選択した着色顔料などの染料を使用することができる  The colorant can be appropriately selected according to the purpose without any particular limitation. For example, a dye such as a color pigment appropriately selected from known dyes can be used.
[0128] 一着色顔料 [0128] Monochromatic pigment
前記着色顔料としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、ビク卜! J ピュア一ブルー BO (C. I. 42595)、オーラミン(C. I. 41000)、 フアット'ブラック HB (C. I. 26150)、モノライト'エロー GT(C. I.ビグメント 'エロー 1 2)、パーマネント 'エロー GR(C. I.ピグメント 'エロー 17)、パーマネント 'エロー HR( C. I.ビグメント 'エロー 83)、パーマネント 'カーミン FBB (C. I.ビグメント 'レッド 146 )、ホスターバームレッド ESB (C. I.ピグメント 'バイオレット 19)、パーマネント 'ルビ 一 FBH (C. I.ビグメント 'レッド 11)フアステル 'ピンク Bスプラ(C. I.ビグメント 'レッド 81)モナストラル'ファースト 'ブルー(C. I.ピグメント 'ブルー 15)、モノライト'ファー スト'ブラック B (C. I.ビグメント 'ブラック 1)、カーボン、 C. I.ビグメント 'レッド 97、 C. I.ビグメント 'レッド 122、 C. I.ビグメント 'レッド 149、 C. I.ビグメント 'レッド 168、 C. I.ビグメント 'レッド 177、 C. I.ビグメント 'レッド 180、 C. I.ビグメント 'レッド 192、 C. I.ピグメント.レッド 215、 C. I.ピグメント.グリーン 7、 C. I.ピグメント.グリーン 36、 C . I.ビグメント 'ブルー 15 : 1、 C. I.ビグメント 'ブルー 15 :4、 C. I.ビグメント 'ブルー 15 : 6、 C. I.ピグメント.ブルー 22、 C. I.ピグメント.ブルー 60、 C. I.ピグメント.ブ ルー 64などが挙げられる。これらは 1種単独で用いてもよいし、 2種以上を併用しても よい。 The coloring pigment can be appropriately selected according to the purpose without any particular limitation. For example, Bikku! J Pure One Blue BO (CI 42595), Auramin (CI 41000), Fat 'Black HB (CI 26150) , Monolight 'Yellow GT (CI Pigment' Yellow 1 2), Permanent 'Yellow GR (CI Pigment' Yellow 17), Permanent 'Yellow HR (CI Pigment' Yellow 83), Permanent 'Carmin FBB (CI Pigment' Red 146) , Hoster Balm Red ESB (CI Pigment 'Violet 19), Permanent' Rubi I FBH (CI Pigment 'Red 11) Huster's' Pink B Supra (CI Pigment 'Red 81) Monastral' First 'Blue (CI Pigment' Blue 15), Monolite 'Fast' Black B (CI Pigment 'Black 1), Carbon, CI Pigment' Red 97, C. I. Pigment 'Red 122, CI Pigment' Red 149, CI Pigment 'Red 168, CI Pigment' Red 177, CI Pigment 'Red 180, CI Pigment' Red 192, CI Pigment. Red 215, CI Pigment.Green 7, CI Pigment Green 36, C.I. Pigment 'Blue 15: 1, CI Pigment' Blue 15: 4, CI Pigment 'Blue 15: 6, CI Pigment.Blue 22, CI Pigment.Blue 60, CI Pigment.Blue 64 Etc. These may be used alone or in combination of two or more.
[0129] 前記着色顔料の前記感光性ソルダーレジスト組成物溶液の固形分中の固形分含 有量は、永久パターン形成の際の感光性ソルダーレジスト層の露光感度、解像性な どを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には 0. 1〜10質量%が好ましぐ 0. 5〜8質量%がより好ましい。  [0129] The solid content of the colored pigment in the solid content of the photosensitive solder resist composition solution takes into consideration the exposure sensitivity and resolution of the photosensitive solder resist layer during permanent pattern formation. Generally, 0.1 to 10% by mass is preferable, but 0.5 to 8% by mass is more preferable.
[0130] <熱硬化促進剤 >  [0130] <Thermosetting accelerator>
前記熱硬化促進剤は、前記エポキシ榭脂化合物や前記多官能ォキセタン化合物 の熱硬化を促進する機能があり、前記感光性榭脂に好適に添加される。  The thermosetting accelerator has a function of accelerating the thermosetting of the epoxy resin compound or the polyfunctional oxetane compound, and is preferably added to the photosensitive resin.
前記熱硬化促進剤としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、ジシアンジアミド、ベンジルジメチルァミン、 4— (ジメチルァミノ) N, N —ジメチルベンジルァミン、 4—メトキシ一 N, N ジメチルベンジルァミン、 4—メチル — N, N ジメチルベンジルァミンなどのアミン化合物;トリェチルベンジルアンモ-ゥ ムクロリドなどの 4級アンモ-ゥム塩化合物;ジメチルァミンなどのブロックイソシァネー ト化合物;イミダゾール、 2—メチルイミダゾール、 2—ェチルイミダゾール、 2—ェチル —4—メチルイミダゾール、 2 フエ-ルイミダゾール、 4 フエ-ルイミダゾール、 1— シァノエチル— 2 フエ-ルイミダゾール、 1— (2 シァノエチル)—2 ェチル—4 ーメチルイミダゾールなどのイミダゾール誘導体二環式アミジンィ匕合物及びその塩;ト リフエ-ルホスフィンなどのリン化合物;メラミン、グアナミン、ァセトグアナミン、ベンゾ グアナミンなどのグアナミン化合物; 2, 4 ジアミノー 6—メタクリロイルォキシェチル —S トリァジン、 2 ビニル 2, 4 ジァミノ一 S トリアジン、 2 ビニル 4, 6 ジ ァミノ一 S トリアジン'イソシァヌル酸付カ卩物、 2, 4 ジァミノ一 6—メタクリロイルォキ シェチル— S -トリァジン 'イソシァヌル酸付カ卩物などの S -トリァジン誘導体、三フッ 化ホウ素ーァミンコンプレックス、有機ヒドラジド累、無水フタル酸、無水トリメリット酸、 エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリ テート)、ベンゾフヱノンテトラカルボン酸無水物などの芳香族酸無水物、無水マレイ ン酸、テトラヒドロ無水フタル酸などの脂肪族酸無水物類、ポリビュルフエノール、ポリ ビュルフエノール臭素化物、フエノールノボラック、アルキルフエノールノボラックなど のポリフエノール類などなどを用いることができる。これらは 1種単独で使用してもよく 、 2種以上を併用してもよい。なお、前記エポキシ榭脂化合物や前記多官能ォキセタ ン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することがで きるものであれば、特に制限はなぐ上記以外の熱硬化を促進可能な化合物を用い てもよい。 The thermosetting accelerator is not particularly limited and can be appropriately selected depending on the purpose. For example, dicyandiamide, benzyldimethylamine, 4- (dimethylamino) N, N-dimethylbenzylamine, 4-methoxy 1) N, N dimethylbenzylamine, 4-methyl — amine compounds such as N, N dimethylbenzylamine; quaternary ammonium salt compounds such as triethylbenzyl ammonium chloride; block isocyanates such as dimethylamine Compound: Imidazole, 2-Methylimidazole, 2-Ethylimidazole, 2-Ethyl-4-Methylimidazole, 2-Phenolimidazole, 4-Phenolimidazole, 1-Cyanoethyl-2-Phenolimidazole, 1- ( 2 Cyanoethyl) -2-Imidyl derivatives such as 2-ethylimidazole bicyclic amidi Compounds and salts thereof; phosphorus compounds such as triphenylphosphine; guanamine compounds such as melamine, guanamine, acetoguanamine, benzoguanamine; 2, 4 diamino-6-methacryloyloxetyl —S triazine, 2 vinyl 2, 4 Diamino S Triazine, 2 Vinyl 4, 6 Diamino S Triazine 'Carbonated with Isocyanuric Acid, 2, 4 Diamino 1-Methacryloyloxy Shetyl- S -Triazine' Carbonated with Isocyanuric Acid S- Triazine derivatives, three Borohydride complex, organic hydrazide, phthalic anhydride, trimellitic anhydride, ethylene glycol bis (anhydrotrimellitate), glycerol tris (anhydrotrimellitate), benzophenone tetracarboxylic anhydride Aromatic anhydrides such as maleic anhydride, aliphatic anhydrides such as maleic anhydride, tetrahydrophthalic anhydride, polyphenols such as polybutanol, polybutanol bromide, phenol novolak, alkylphenol novolak, etc. Can be used. These may be used alone or in combination of two or more. It is possible to promote thermal curing other than the above as long as it is a curing catalyst for the epoxy resin compound or the polyfunctional oxetane compound, or a catalyst capable of promoting the reaction of these with a carboxyl group. Such compounds may be used.
前記エポキシ榭脂、前記多官能ォキセタン化合物、及びこれらとカルボン酸との熱 硬化を促進可能な化合物の前記感光性ソルダーレジスト組成物溶液の固形分中の 固形分含有量は、通常 0. 01〜20質量%である。  The solid content in the solid content of the photosensitive solder resist composition solution of the epoxy resin, the polyfunctional oxetane compound, and a compound capable of accelerating thermal curing of these with a carboxylic acid is usually from 0.01 to 20% by mass.
[0131] <その他の成分 >  [0131] <Other ingredients>
前記その他の成分としては、特に制限はなぐ 目的に応じて適宜選択することがで き、例えば、溶剤、密着促進剤、熱重合禁止剤、可塑剤及びその他の添加剤などが 挙げられ、更に基材表面への密着促進剤及びその他の助剤類 (例えば、導電性粒 子、充填剤、消泡剤、難燃剤、レべリング剤、剥離促進剤、酸化防止剤、香料、表面 張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させること により、 目的とする感光性ソルダーレジスト組成物あるいは感光性ソルダーレジストフ イルムの安定性、写真性、膜物性などの性質を調整することができる。  The other components are not particularly limited and can be appropriately selected according to the purpose. Examples thereof include solvents, adhesion promoters, thermal polymerization inhibitors, plasticizers, and other additives. Adhesion promoters and other auxiliaries (such as conductive particles, fillers, antifoaming agents, flame retardants, leveling agents, release promoters, antioxidants, fragrances, surface tension modifiers) , Chain transfer agents, etc.) may be used in combination. By appropriately containing these components, the properties such as stability, photographic properties, and film properties of the intended photosensitive solder resist composition or photosensitive solder resist film can be adjusted.
[0132] 溶剤  [0132] Solvent
前記溶剤としては、特に制限はなぐ 目的に応じて適宜選択することができ、例えば 、メタノール、エタノール、 n—プロパノール、イソプロパノール、 n—ブタノール、 sec ーブタノール、 n—へキサノール等のアルコール類;アセトン、メチルェチルケトン、メ チルイソブチルケトン、シクロへキサノン、ジイソプチルケトンなどのケトン類;酢酸ェチ ル、酢酸ブチル、酢酸 n—ァミル、硫酸メチル、プロピオン酸ェチル、フタル酸ジメ チル、安息香酸ェチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、 キシレン、ベンゼン、ェチルベンゼンなどの芳香族炭化水素類;四塩ィ匕炭素、トリクロ 口エチレン、クロ口ホルム、 1, 1, 1—トリクロロェタン、塩化メチレン、モノクロ口べンゼ ンなどのハロゲンィ匕炭化水素類;テトラヒドロフラン、ジェチルエーテル、エチレンダリ コーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、 1ーメトキシー 2 プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルァセトアミド、ジメチ ルスルホオキサイド、スルホランなどが挙げられる。これらは、 1種単独で使用してもよ ぐ 2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。 The solvent is not particularly limited and may be appropriately selected according to the purpose. Examples thereof include alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, and n-hexanol; acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diisoptyl ketone; ethyl acetate, butyl acetate, n-amyl acetate, methyl sulfate, ethyl ethyl propionate, dimethyl phthalate, benzoic acid Esters such as ethyl and methoxypropyl acetate; toluene, Aromatic hydrocarbons such as xylene, benzene, and ethylbenzene; Halogenated carbonization such as tetrasalt carbon, trichloroethylene, chloroform, 1,1,1-trichloroethane, methylene chloride, and monochrome benzene Hydrogens; ethers such as tetrahydrofuran, jetyl ether, ethylene diolene monomethino ethenore, ethylene glycol eno mino eno enotenole, 1-methoxy-2-propanol; dimethylformamide, dimethylacetamide, dimethyl sulfoxide, Examples include sulfolane. These may be used alone or in combination of two or more. Moreover, you may add a well-known surfactant.
[0133] 密着促進剤 [0133] Adhesion promoter
前記密着促進剤は、各層間の密着性、又は感光性ソルダーレジスト層と基材との 密着性、電食性を向上させる機能がある。  The adhesion promoter has a function of improving adhesion between layers, adhesion between a photosensitive solder resist layer and a substrate, and electrolytic corrosion.
前記密着促進剤としては、特に制限はなぐ 目的に応じて適宜選択することができ 、例えば、メラミン、ァセトグアナミン、ベンゾグァテミン、メラミン フエノールホルマリ ン榭脂、ェチルジァミノ一 S トリァジン、 2, 4 ジァミノ一 S トリァジン、 2, 4 ジァ ミノ— 6—キシリル— S -トリァジンなどのトリァジン化合物が挙げられる。市販されて いるトリァジン化合物としては、下記構造式 (E)〜(G)に示す四国化成工業社製; 2 MZ— AZINE (構造式(E) ), 2E4MZ— AZINE (構造式(F) ), C11Z— AZINE (構 造式 (G) )などが挙げられる。  The adhesion promoter is not particularly limited and can be appropriately selected according to the purpose. For example, melamine, acetateguanamine, benzoguatemine, melamine phenol formalin oil, ethyl diamino 1 S triazine, 2, 4 diamino 1 S triazine 2, 4 diamino-6-xylyl-S-triazine and the like. Commercially available triazine compounds include the following structural formulas (E) to (G) manufactured by Shikoku Kasei Kogyo Co., Ltd .; 2 MZ—AZINE (Structural Formula (E)), 2E4MZ—AZINE (Structural Formula (F)), C11Z—AZINE (structure (G)).
[0134] [化 58]  [0134] [Chemical 58]
Figure imgf000056_0001
Figure imgf000056_0001
Figure imgf000056_0002
[0136] [化 60]
Figure imgf000056_0002
[0136] [Chemical 60]
構造式 (G )
Figure imgf000057_0001
Structural formula (G)
Figure imgf000057_0001
[0137] これらの化合物は、銅回路との密着性を高め、耐 PCT性を向上させ、電食性にも 効果がある。これらは単独であるいは 2種以上を組み合わせて用いることができる。 密着促進剤の配合量は、感光性ソルダーレジスト組成物固形分に対して 0. 1〜40 質量%が好ましぐ 0. 1〜20質量%がより好ましい。  [0137] These compounds increase adhesion to a copper circuit, improve PCT resistance, and are effective in electrolytic corrosion. These can be used alone or in combination of two or more. The blending amount of the adhesion promoter is preferably 0.1 to 40% by mass, more preferably 0.1 to 20% by mass with respect to the solid content of the photosensitive solder resist composition.
[0138] 熱重合禁止剤  [0138] Thermal polymerization inhibitor
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止 し、保存安定性を向上させるために添加することが好ま 、。  The thermal polymerization inhibitor is preferably added to prevent thermal polymerization or temporal polymerization of the polymerizable compound and to improve storage stability.
前記熱重合禁止剤としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、 4ーメトキシフエノール、ハイドロキノン、ハイドロキノンモノメチルエーテル 、アルキル又はァリール置換ノヽイドロキノン、 tーブチルカテコール、ピロガロール、 2 —ヒドロキシベンゾフエノン、 4—メトキシ一 2 ヒドロキシベンゾフエノン、塩化第一銅 、フエノチアジン、クロラニル、ナフチルァミン、 13 ナフトール、 2, 6 ジ tーブチ ルー 4 クレゾール、 2, 2,ーメチレンビス(4ーメチルー 6 t—ブチルフエノール)、 ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、 4ートルイジン、メチレンブル 一、銅と有機キレート剤反応物、サリチル酸メチル、及びフエノチアジン、ニトロソ化合 物、ニトロソ化合物と A1とのキレートなどが挙げられる。  The thermal polymerization inhibitor can be appropriately selected according to the purpose without any particular limitation. For example, 4-methoxyphenol, hydroquinone, hydroquinone monomethyl ether, alkyl or aryl substituted nanodroquinone, t-butylcatechol, pyrogallol , 2-hydroxybenzophenone, 4-methoxy-2-hydroxybenzophenone, cuprous chloride, phenothiazine, chloranil, naphthylamine, 13 naphthol, 2, 6-dibutyl 4-cresol, 2, 2, -methylenebis (4-methyl- 6 t-Butylphenol), pyridine, nitrobenzene, dinitrobenzene, picric acid, 4-toluidine, methylene blue, copper and organic chelating agent reactant, methyl salicylate, and phenothiazine, nitroso compound, nitroso compound and A1 chelate Etc.
[0139] 前記熱重合禁止剤の含有量としては、前記重合性化合物に対して 0. 001〜5質 量%が好ましぐ 0. 005〜2質量%がより好ましぐ 0. 01〜1質量%が特に好ましい 。該含有量が、 0. 001質量%未満であると、保存時の安定性が低下することがあり、 5質量%を超えると、活性エネルギー線に対する感度が低下することがある。  [0139] The content of the thermal polymerization inhibitor is preferably from 0.001 to 5 mass%, more preferably from 0.005 to 2 mass%, based on the polymerizable compound. Mass% is particularly preferred. If the content is less than 0.001% by mass, the stability during storage may be reduced, and if it exceeds 5% by mass, the sensitivity to active energy rays may be reduced.
[0140] その他の添加剤 前記その他の添加剤としては、特に制限はなぐ 目的に応じて適宜選択することが でき、例えば、ベントン、モンモリロナイト、エアロゾル、アミドワックスなどのチキソ性付 与剤、シリコーン系、フッ素系、高分子系などの消泡剤、レべリング剤のような添加剤 類を用いることができる。 [0140] Other additives The other additives are not particularly limited and can be appropriately selected according to the purpose. For example, thixotropic additives such as benton, montmorillonite, aerosol, amide wax, silicone-based, fluorine-based, polymer-based Additives such as antifoaming agents and leveling agents can be used.
[0141] (感光性ソルダーレジストフイルム)  [0141] (Photosensitive solder resist film)
前記感光性ソルダーレジストフイルムは、図 1に示すように、少なくとも支持体 1と、 感光性ソルダーレジスト層 2とを有してなり、好ましくは保護フィルム 3を有してなり、更 に必要に応じて、クッション層、酸素遮断層(以下 PC層と省略する。)などのその他の 層を有してなる。  As shown in FIG. 1, the photosensitive solder resist film has at least a support 1 and a photosensitive solder resist layer 2, preferably a protective film 3, and further, if necessary. And other layers such as a cushion layer and an oxygen barrier layer (hereinafter abbreviated as PC layer).
前記感光性トフイルムの形態としては、特に制限はなぐ 目的に応じて適宜選択す ることができ、例えば、前記支持体上に、前記感光性ソルダーレジスト層、前記保護 膜フィルムをこの順に有してなる形態、前記支持体上に、前記 PC層、前記感光性ソ ルダーレジスト層、前記保護フィルムをこの順に有してなる形態、前記支持体上に、 前記クッション層、前記 PC層、前記感光性ソルダーレジスト層、前記保護フィルムを この順に有してなる形態などが挙げられる。なお、前記感光性ソルダーレジスト層は、 単層であってもよいし、複数層であってもよい。  The form of the photosensitive film is not particularly limited, and can be appropriately selected according to the purpose. For example, the photosensitive solder resist layer and the protective film are provided on the support in this order. A form in which the PC layer, the photosensitive solder resist layer, and the protective film are provided in this order on the support, and the cushion layer, the PC layer, and the photosensitive on the support. The form etc. which have a soldering resist layer and the said protective film in this order are mentioned. The photosensitive solder resist layer may be a single layer or a plurality of layers.
[0142] 支持体  [0142] Support
前記支持体としては、特に制限はなぐ 目的に応じて適宜選択することができ、前 記感光性ソルダーレジスト層を剥離可能であり、かつ光の透過性が良好であるのが 好ましく、更に表面の平滑性が良好であるのがより好ま U、。  The support is not particularly limited and may be appropriately selected depending on the purpose, and is preferably capable of peeling off the photosensitive solder resist layer and having good light transmittance, and further has a surface surface. U, more preferred to have good smoothness.
[0143] 前記支持体は、合成樹脂製で、かつ透明であるものが好ましぐ例えば、ポリエチレ ンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セ ルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アタリ ル酸エステル共重合体、ポリ塩化ビュル、ポリビュルアルコール、ポリカーボネート、 ポリスチレン、セロファン、ポリ塩ィ匕ビユリデン共重合体、ポリアミド、ポリイミド、塩ィ匕ビ -ル '酢酸ビュル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セル口 ース系フィルム、ナイロンフィルムなどの各種のプラスチックフィルムが挙げられ、これ らの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、 1種単独で使用し てもよく、 2種以上を併用してもよい。 [0143] The support is preferably made of a synthetic resin and transparent, for example, polyethylene terephthalate, polyethylene naphthalate, polypropylene, polyethylene, cellulose triacetate, cellulose diacetate, poly (meth) acrylic. Alkyl ester, poly (meth) acrylate ester copolymer, polychlorinated butyl, polybulal alcohol, polycarbonate, polystyrene, cellophane, polysalt-vinylidene copolymer, polyamide, polyimide, salt-vinyl '' Various plastic films such as butyl acetate copolymer, polytetrafluoroethylene, polytrifluoroethylene, cellulose-based film, and nylon film can be mentioned. Among these, polyethylene terephthalate is particularly preferable. These can be used alone Or two or more of them may be used in combination.
なお、前記支持体としては、例えば、特開平 4- 208940号公報、特開平 5— 8050 3号公報、特開平 5— 173320号公報、特開平 5— 72724号公報などに記載の支持 体を用いることちできる。  As the support, for example, the supports described in JP-A-4-208940, JP-A-5-80503, JP-A-5-173320, JP-A-5-72724, and the like are used. I can do it.
[0144] 前記支持体の厚みとしては、特に制限はなぐ目的に応じて適宜選択することがで さ、 ί列; tは、、 4〜300 111カ^好ましく、 5〜175 111カ^ょり好まし1ヽ0 [0144] The thickness of the support may be appropriately selected according to the purpose for which there is no particular restriction. Ί column; t is preferably 4 to 300 111 pieces, preferably 5 to 175 111 pieces. Preferred 1 ヽ0
前記支持体の形状としては、特に制限はなぐ目的に応じて適宜選択することがで き、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなぐ例え ば、 10m〜20000mの長さのものが挙げられる。  The shape of the support can be appropriately selected according to the purpose without particular limitation, and is preferably long. The length of the long support is not particularly limited, and examples thereof include a length of 10 m to 20000 m.
[0145] (感光性ソルダーレジスト層) [0145] (Photosensitive solder resist layer)
前記感光性ソルダーレジスト層は、本発明の前記感光性ソルダーレジスト組成物に より形成される。  The photosensitive solder resist layer is formed by the photosensitive solder resist composition of the present invention.
前記感光性ソルダーレジスト層の前記感光性ソルダーレジストフイルムにおいて設 けられる箇所としては、特に制限はなぐ目的に応じて適宜選択することができるが、 通常、前記支持体上に積層される。  The portion of the photosensitive solder resist layer provided in the photosensitive solder resist film can be appropriately selected according to the purpose without any particular limitation, but is usually laminated on the support.
前記感光性ソルダーレジスト層は、後述する露光工程において、光照射手段から の光を受光し出射する描素部を n個有する光変調手段により、前記光照射手段から の光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な 非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光さ れるのが好ましい。  The photosensitive solder resist layer is formed by modulating light from the light irradiating means by light modulating means having n picture elements for receiving and emitting light from the light irradiating means in an exposure process described later. It is preferable that the exposure is performed with light passing through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface in the picture element portion.
[0146] 前記感光性ソルダーレジスト層の厚みとしては、特に制限はなぐ目的に応じて適 宜選択することができ、例えば、 3-100 μ mが好ましぐ 5〜70 μ mがより好ましい。  [0146] The thickness of the photosensitive solder resist layer can be appropriately selected according to the purpose without any particular limitation, and for example, 3 to 100 μm is preferable, and 5 to 70 μm is more preferable.
[0147] 前記感光性ソルダーレジスト層の形成方法としては、前記支持体の上に、本発明の 前記感光性ソルダーレジスト組成物を、水又は前記溶剤に溶解、乳化又は分散させ て前記感光性ソルダーレジスト組成物溶液を調製し、該溶液を直接塗布し、乾燥さ せることにより積層する方法が挙げられる。  [0147] As a method for forming the photosensitive solder resist layer, the photosensitive solder resist composition of the present invention is dissolved, emulsified or dispersed in water or the solvent on the support, and the photosensitive solder resist layer is formed. A method of laminating by preparing a resist composition solution, applying the solution directly, and drying the solution is mentioned.
[0148] 前記塗布の方法としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、力 一テンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。 [0148] The method of coating can be appropriately selected according to the purpose without any particular limitation. For example, spin coater, slit spin coater, roll coater, die coater, force The method of apply | coating directly to the said support body using a ten coater etc. is mentioned.
前記乾燥の条件としては、各成分、溶媒の種類、使用割合などによっても異なるが The drying conditions vary depending on each component, the type of solvent, the use ratio, etc.
、通常 60〜 110°Cの温度で 30秒間〜 15分間程度である。 Usually, it is about 30 to 15 minutes at a temperature of 60 to 110 ° C.
[0149] 一保護フィルム [0149] One protective film
前記保護フィルムは、前記感光性ソルダーレジスト層の汚れや損傷を防止し、保護 する機能を有する。  The protective film has a function of preventing and protecting the photosensitive solder resist layer from being stained and damaged.
前記保護フィルムの前記感光性ソルダーレジストフイルムにおいて設けられる箇所 としては、特に制限はなぐ目的に応じて適宜選択することができるが、通常、前記感 光性ソルダーレジスト層上に設けられる。  The portion provided in the photosensitive solder resist film of the protective film can be appropriately selected according to the purpose without any particular limitation, but is usually provided on the photosensitive solder resist layer.
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、 ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフイン又はポリテトラフルォ ルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピ レンフィルムが好ましい。  Examples of the protective film include those used for the support, silicone paper, polyethylene, paper laminated with polypropylene, polyolefin or polytetrafluoroethylene sheet, and among these, polyethylene film, polypropylene, etc. A film is preferred.
前記保護フィルムの厚みとしては、特に制限はなぐ目的に応じて適宜選択するこ とができる力 例えば、 5-100 μ mが好ましぐ 8〜30 μ mがより好ましい。  The thickness of the protective film is a force that can be appropriately selected according to the purpose for which there is no particular limitation. For example, 5 to 100 μm is preferable, and 8 to 30 μm is more preferable.
[0150] 前記保護フィルムを用いる場合、前記感光性ソルダーレジスト層及び前記支持体 の接着力 Aと、前記感光性ソルダーレジスト層及び保護フィルムの接着力 Bとが、接 着力 A>接着力 Bの関係であることが好ましい。 [0150] When the protective film is used, the adhesive strength A of the photosensitive solder resist layer and the support and the adhesive strength B of the photosensitive solder resist layer and the protective film satisfy an adhesive strength A> adhesive strength B. A relationship is preferred.
前記支持体と保護フィルムとの組合せ (支持体 Z保護フィルム)としては、例えば、 ポリエチレンテレフタレート zポリプロピレン、ポリエチレンテレフタレート zポリエチレ ン、ポリ塩化ビュル Zセロファン、ポリイミド Zポリプロピレン、ポリエチレンテレフタレ ート zポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルム の少なくとも 、ずれかを表面処理することにより、上述のような接着力の関係を満たす ことができる。前記支持体の表面処理は、前記感光性ソルダーレジスト層との接着力 を高めるために施されてもよぐ例えば、下塗層の塗設、コロナ放電処理、火炎処理、 紫外線照射処理、高周波照射処理、グロ一放電照射処理、活性プラズマ照射処理、 レーザ光線照射処理などを挙げることができる。  Examples of the combination of the support and the protective film (support Z protective film) include, for example, polyethylene terephthalate z polypropylene, polyethylene terephthalate z polyethylene, polychlorinated bur Z cellophane, polyimide Z polypropylene, polyethylene terephthalate z polyethylene terephthalate. Etc. In addition, the above-described adhesive force relationship can be satisfied by surface-treating at least one of the support and the protective film. The surface treatment of the support may be performed in order to increase the adhesive strength with the photosensitive solder resist layer. For example, coating of a primer layer, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency irradiation Treatment, glow discharge irradiation treatment, active plasma irradiation treatment, laser beam irradiation treatment and the like.
[0151] また、前記支持体と前記保護フィルムとの静摩擦係数としては、 0. 3〜1. 4が好ま しく、 0. 5〜1. 2力より好まし!/ヽ。 [0151] The coefficient of static friction between the support and the protective film is preferably 0.3 to 1.4. It is better than 0.5 ~ 1.2 power! / ヽ.
前記静摩擦係数が、 0. 3未満であると、滑り過ぎるため、ロール状にした場合に卷 ズレが発生することがあり、 1. 4を超えると、良好なロール状に巻くことが困難となるこ とがある。  If the coefficient of static friction is less than 0.3, slipping may occur excessively, so that a deviation may occur when the roll is formed, and if it exceeds 1.4, it is difficult to wind in a good roll. Sometimes.
[0152] 前記感光性ソルダーレジストフイルムは、例えば、円筒状の卷芯に巻き取って、長 尺状でロール状に巻かれて保管されるのが好まし 、。前記長尺状の感光性ソルダー レジストフイルムの長さとしては、特に制限はなぐ例えば、 10η!〜 20, OOOmの範囲 力 適宜選択することができる。また、ユーザーが使いやすいようにスリットカ卩ェし、 1 OOm〜l, OOOmの範囲の長尺体をロール状にしてもよい。なお、この場合には、前 記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の 感光性ソルダーレジストフイルムをシート状にスリットしてもよい。保管の際、端面の保 護、エッジフュージョンを防止する観点から、端面にはセパレーター (特に防湿性のも の、乾燥剤入りのもの)を設置するのが好ましぐまた梱包も透湿性の低い素材を用 いるのが好ましい。  [0152] The photosensitive solder resist film is preferably wound around a cylindrical core, wound into a long roll, and stored. The length of the long photosensitive solder resist film is not particularly limited, for example, 10η! Range of ~ 20, OOOm Force can be selected as appropriate. In addition, slitting may be performed to make it easy for the user to use, and a long body in the range of 1 OOm to l, OOOm may be rolled. In this case, it is preferable that the support is wound up so that the support is on the outermost side. The roll-shaped photosensitive solder resist film may be slit into a sheet shape. In order to protect the end face and prevent edge fusion during storage, it is preferable to install a separator (especially moisture-proof and containing a desiccant) on the end face, and the packaging has low moisture permeability. It is preferable to use materials.
[0153] 前記保護フィルムは、前記保護フィルムと前記感光性ソルダーレジスト層との接着 性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィ ルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフイン、ポリフルォロエチレン 、ポリビニルアルコールなどのポリマーからなる下塗層を形成させる。該下塗層の形 成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、 30〜150°C (特に 50〜120°C)で 1〜30分間乾燥させることにより形成させることができる。 また、前記感光性ソルダーレジスト層、前記支持体、前記保護フィルムの他に、タツ シヨン層、酸素遮断層 (PC層)、剥離層、接着層、光吸収層、表面保護層などの層を 有してちょい。  [0153] The protective film may be subjected to a surface treatment in order to adjust the adhesion between the protective film and the photosensitive solder resist layer. In the surface treatment, for example, an undercoat layer made of a polymer such as polyorganosiloxane, fluorinated polyolefin, polyfluoroethylene, or polyvinyl alcohol is formed on the surface of the protective film. The undercoat layer is formed by applying the polymer coating solution to the surface of the protective film and then drying at 30 to 150 ° C (especially 50 to 120 ° C) for 1 to 30 minutes. Can do. In addition to the photosensitive solder resist layer, the support, and the protective film, there are layers such as a tack layer, an oxygen blocking layer (PC layer), a release layer, an adhesive layer, a light absorption layer, and a surface protective layer. Do it.
前記クッション層は、常温ではタック性が無ぐ真空及び加熱条件で積層した場合 に溶融し、流動する層である。  The cushion layer is a layer that melts and flows when laminated under vacuum and heating conditions that have no tackiness at room temperature.
前記 PC層は、通常ポリビュルアルコールを主成分として形成された 1. 程度 の被膜である。  The PC layer is a film of about 1. which is usually formed mainly of polybulal alcohol.
本発明の感光性ソルダーレジストフイルムは、保存安定性に優れ、現像後に優れた 耐薬品性、表面硬度、耐熱性などを発揮する感光性ソルダーレジスト組成物が積層 された感光性ソルダーレジスト層を有してなる。このため、プリント配線板、カラーフィ ルタゃ柱材、リブ材、スぺーサ一、隔壁などのディスプレイ用部材、ホログラム、マイク ロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の 永久パターン及びその形成方法に好適に用いることができる。 The photosensitive solder resist film of the present invention is excellent in storage stability and excellent after development. It has a photosensitive solder resist layer laminated with a photosensitive solder resist composition that exhibits chemical resistance, surface hardness, heat resistance, and the like. For this reason, it can be widely used for the formation of permanent patterns such as printed wiring boards, color filter pillars, ribs, spacers, partition members, display members, holograms, micromachines, proofs, etc. It can be suitably used for a permanent pattern and a method for forming the permanent pattern.
特に、本発明の感光性ソルダーレジストフイルムは、該フィルムの厚みが均一である ため、永久パターンの形成に際し、永久パターン (保護膜、層間絶縁膜、ソルダーレ ジストなど)を薄層化しても、高加速度試験 (HAST)においてイオンマイグレーション の発生がなぐ耐熱性、耐湿性に優れた高精細な永久パターンが得られるため、基 材への積層がより精細に行われる。  In particular, since the photosensitive solder resist film of the present invention has a uniform thickness, even when the permanent pattern (protective film, interlayer insulating film, solder resist, etc.) is thinned when forming the permanent pattern, the film is high. In the acceleration test (HAST), a high-definition permanent pattern with excellent heat resistance and moisture resistance that does not cause ion migration can be obtained, so that lamination to the substrate is performed more precisely.
[0154] <永久パターン及び永久パターン形成方法 > <Permanent pattern and method for forming permanent pattern>
本発明の永久パターンは、本発明の永久パターン形成方法により得られる。  The permanent pattern of the present invention is obtained by the permanent pattern forming method of the present invention.
本発明の永久パターン形成方法は、第 1の態様として、本発明の感光性ソルダーレ ジスト組成物を、基材の表面に塗布し、乾燥して感光性ソルダーレジスト層を形成し た後、露光し、現像する。  In the method for forming a permanent pattern of the present invention, as a first aspect, the photosensitive solder resist composition of the present invention is applied to the surface of a substrate, dried to form a photosensitive solder resist layer, and then exposed. ,develop.
また、本発明の永久パターン形成方法は、第 2の態様として、本発明の感光性ソル ダーレジストフイルムを、加熱及び加圧の少なくともいずれかの下において基材の表 面に積層した後、露光し、現像する。  In the permanent pattern forming method of the present invention, as a second aspect, the photosensitive solder resist film of the present invention is laminated on the surface of the substrate under at least one of heating and pressurization, and then exposed. And develop.
以下、本発明の永久パターン形成方法の説明を通じて、本発明の永久パターンの 詳細も明らかにする。  Hereinafter, the details of the permanent pattern of the present invention will be clarified through the description of the method for forming a permanent pattern of the present invention.
[0155] 一基材ー [0155] One substrate
前記基材としては、特に制限はなぐ公知の材料の中から表面平滑性の高いもの 力も凸凹のある表面を有するものまで適宜選択することができ、板状の基材 (基板)が 好ましぐ具体的には、公知のプリント配線板形成用基板 (例えば、銅張積層板)、ガ ラス板 (例えば、ソーダガラス板など)、合成樹脂性のフィルム、紙、金属板などが挙 げられ、これらの中でも、プリント配線板形成用基板が好ましぐ多層配線基板やビル ドアップ配線基板などへの半導体などの高密度実装化が可能となる点で、該プリント 配線板形成用基板が配線形成済みであるのが特に好ましい。 [0156] 前記基材は、前記第 1の態様として、該基材上に前記感光性ソルダーレジスト組成 物による感光性ソルダーレジスト層が形成されてなる積層体、又は前記第 2の態様と して、前記感光性ソルダーレジストフイルムにおける感光性ソルダーレジスト層が重な るようにして積層されてなる積層体を形成して用いることができる。即ち、前記積層体 における前記感光性ソルダーレジスト層に対して後述する露光することにより、露光し た領域を硬化させ、後述する現像により永久パターンを形成することができる。 The base material can be appropriately selected from publicly known materials that are not particularly limited to those having a high surface smoothness and a surface having an uneven surface, and a plate-like base material (substrate) is preferred. Specific examples include known printed wiring board forming substrates (for example, copper-clad laminates), glass plates (for example, soda glass plates), synthetic resin films, paper, metal plates, and the like. Among these, the printed wiring board forming substrate has already been formed in terms of the high density mounting of semiconductors, etc. on the multilayer wiring board and build-up wiring board that are preferred by the printed wiring board forming substrate. Is particularly preferred. [0156] The base material is, as the first aspect, a laminate in which a photosensitive solder resist layer made of the photosensitive solder resist composition is formed on the base material, or the second aspect. In addition, it is possible to use by forming a laminate in which the photosensitive solder resist layers in the photosensitive solder resist film are laminated so as to overlap each other. That is, by exposing to the photosensitive solder resist layer in the laminate, the exposed area can be cured, and a permanent pattern can be formed by developing described later.
[0157] 一積層体一  [0157] One laminate
前記第 1の態様の積層体の形成方法としては、特に制限はなぐ目的に応じて適宜 選択することができ、前記基材上に、前記感光性ソルダーレジスト組成物を塗布及び 乾燥して形成した感光性ソルダーレジスト層を積層するのが好ましい。  The method for forming the laminate of the first aspect can be appropriately selected according to the purpose without any particular limitation, and is formed by applying and drying the photosensitive solder resist composition on the substrate. It is preferable to laminate a photosensitive solder resist layer.
前記塗布及び乾燥の方法としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記感光性ソルダーレジストフイルムにおける感光性ソルダーレジ スト層を形成する際に行われる、前記感光性ソルダーレジスト組成物溶液の塗布及 び乾燥と同様な方法で行うことができ、例えば、該感光性ソルダーレジスト組成物溶 液をスピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテン コーターなどを用いて塗布する方法が挙げられる。  The coating and drying method can be appropriately selected depending on the purpose without any particular limitation. For example, the photosensitive solder resist layer is formed in the photosensitive solder resist film. It can be performed by the same method as the application and drying of the solder resist composition solution. For example, the photosensitive solder resist composition solution is used using a spin coater, slit spin coater, roll coater, die coater, curtain coater, etc. The method of apply | coating is mentioned.
[0158] 前記第 2の態様の積層体の形成方法としては、特に制限はなぐ目的に応じて適宜 選択することができ、前記基材上に前記感光性ソルダーレジストフイルムを加熱及び 加圧の少なくともいずれかを行いながら積層するのが好ましい。なお、前記感光性ソ ルダーレジストフイルムが前記保護フィルムを有する場合には、該保護フィルムを剥 離し、前記基材に前記感光性ソルダーレジスト層が重なるようにして積層するのが好 ましい。 [0158] The method for forming the laminate of the second aspect can be appropriately selected according to the purpose without any particular limitation, and the photosensitive solder resist film is heated and pressurized at least on the substrate. It is preferable to perform the lamination while performing either one. When the photosensitive solder resist film has the protective film, the protective film is preferably peeled off and laminated so that the photosensitive solder resist layer overlaps the base material.
前記加熱温度としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、 70〜130°Cが好ましぐ 80〜110°Cがより好ましい。  The heating temperature can be appropriately selected according to the purpose for which there is no particular limitation. For example, 70 to 130 ° C is preferable, and 80 to 110 ° C is more preferable.
前記加圧の圧力としては、特に制限はなぐ目的に応じて適宜選択することができ 、 ί列免ば、、 0. 01〜: L OMPa力好ましく、 0. 05〜: L OMPa力 ^より好まし!/ヽ。  The pressure of the pressurization can be appropriately selected according to the purpose for which there is no particular limitation. Excluded column, 0.01-: L OMPa force is preferable, 0.05-: L OMPa force is more preferable ^ It's better!
[0159] 前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなぐ目 的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター( 例えば、大成ラミネータネ土製、 VP— Π)、真空ラミネーター (例えば、名機製作所製、[0159] The apparatus for performing at least one of the heating and pressurization can be appropriately selected according to the purpose without particular limitation. For example, a heat press, a heat roll laminator ( For example, Taisei Laminate Earthen, VP-Π), vacuum laminator (for example, Meiki Seisakusho,
MVLP500)などが好適に挙げられる。 MVLP500) and the like are preferable.
[0160] <露光工程 >  [0160] <Exposure process>
前記露光工程は、前記感光性ソルダーレジスト層に対し、露光を行う工程である。  The exposure step is a step of exposing the photosensitive solder resist layer.
[0161] 前記露光の対象としては、感光性ソルダーレジスト層を有する材料である限り、特に 制限はなぐ目的に応じて適宜選択することができ、例えば、基材上に前記感光性ソ ルダーレジスト組成物又は前記感光性ソルダーレジストフイルムが形成されてなる前 記積層体に対して行われることが好まし 、。  [0161] The subject of the exposure can be appropriately selected depending on the purpose without any limitation as long as it is a material having a photosensitive solder resist layer. For example, the photosensitive solder resist composition on a substrate. It is preferable to be performed on the above-mentioned laminated body in which the product or the photosensitive solder resist film is formed.
[0162] 前記積層体への露光としては、特に制限はなぐ目的に応じて適宜選択することが でき、例えば、前記支持体、クッション層及び PC層を介して前記感光性ソルダーレジ スト層を露光してもよぐ前記支持体を剥離した後、前記クッション層及び PC層を介し て前記感光性ソルダーレジスト層を露光してもよぐ前記支持体及びクッション層を剥 離した後、前記 PC層を介して前記感光性ソルダーレジスト層を露光してもよぐ前記 支持体、クッション層及び PC層を剥離した後、前記感光性ソルダーレジスト層を露光 してちよい。 [0162] The exposure to the laminate can be appropriately selected depending on the purpose without any particular limitation. For example, the photosensitive solder resist layer is exposed through the support, the cushion layer, and the PC layer. After peeling off the support, the photosensitive solder resist layer may be exposed through the cushion layer and the PC layer. After peeling off the support and cushion layer, the PC layer is peeled off. The photosensitive solder resist layer may be exposed after the support, cushion layer and PC layer are peeled off.
[0163] 前記露光としては、特に制限はなぐ目的に応じて適宜選択することができ、デジタ ル露光、アナログ露光などが挙げられ、これらの中でもデジタル露光が好ましい。  [0163] The exposure can be appropriately selected according to the purpose without particular limitation, and includes digital exposure, analog exposure, and the like. Among these, digital exposure is preferable.
[0164] 前記デジタル露光としては、特に制限はなぐ目的に応じて適宜選択することがで き、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号 に応じて変調させた光を用 、て行うのが好まし 、。 [0164] The digital exposure can be appropriately selected according to the purpose without any particular restriction. For example, a control signal is generated based on pattern formation information to be formed, and modulated according to the control signal. I prefer to use light.
[0165] 前記デジタル露光の手段としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該 光照射手段から照射される光を変調させる光変調手段などが挙げられる。 [0165] The digital exposure means can be appropriately selected according to the purpose without any particular restriction. For example, the light irradiation means for irradiating light, and the light irradiation means for irradiation based on the pattern information to be formed. And a light modulation means for modulating the light to be emitted.
[0166] <光変調手段 > [0166] <Light modulation means>
前記光変調手段としては、光を変調することができる限り、特に制限はなぐ目的に 応じて適宜選択することができ、例えば、 n個の描素部を有するのが好ましい。  The light modulating means can be appropriately selected according to the purpose without any limitation as long as light can be modulated. For example, the light modulating means preferably has n pixel portions.
前記 n個の描素部を有する光変調手段としては、特に制限はなぐ目的に応じて適 宜選択することができ、例えば、空間光変調素子が好ましい。 [0167] 前記空間光変調素子としては、例えば、デジタル ·マイクロミラー ·デバイス (DMD) 、 MEMS (Micro Electro Mechanical Systems)タイプの空間光変調素子(S LM ; Special Light Modulator)、電気光学効果により透過光を変調する光学素 子(PLZT素子)、液晶光シャツタ(FLC)などが挙げられ、これらの中でも DMDが好 適に挙げられる。 The light modulation means having the n picture elements can be appropriately selected according to the purpose without any particular limitation. For example, a spatial light modulation element is preferable. Examples of the spatial light modulator include a digital micromirror device (DMD), a MEMS (Micro Electro Mechanical Systems) type spatial light modulator (S LM; Special Light Modulator), and transmission by an electro-optic effect. Examples include optical elements that modulate light (PLZT elements) and liquid crystal light shirts (FLC). Among these, DMD is preferred.
[0168] また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成する パターン信号生成手段を有するのが好ましい。この場合、前記光変調手段は、前記 パターン信号生成手段が生成した制御信号に応じて光を変調させる。  [0168] Further, it is preferable that the light modulation means has a pattern signal generation means for generating a control signal based on pattern information to be formed. In this case, the light modulating means modulates light according to the control signal generated by the pattern signal generating means.
前記制御信号としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、デジタル信号が好適に挙げられる。  The control signal can be appropriately selected according to the purpose for which there is no particular limitation. For example, a digital signal is preferably used.
[0169] 以下、前記光変調手段の一例について図面を参照しながら説明する。  Hereinafter, an example of the light modulation means will be described with reference to the drawings.
DMD50は図 2に示すように、 SRAMセル (メモリセル) 60上〖こ、各々描素(ピクセ ル)を構成する多数 (例えば、 1024個 X 768個)の微小ミラー(マイクロミラー) 62が 格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支 柱に支えられたマイクロミラー 62が設けられており、マイクロミラー 62の表面にはアル ミニゥムなどの反射率の高い材料が蒸着されている。なお、マイクロミラー 62の反射 率は 90%以上であり、その配列ピッチは縦方向、横方向とも一例として 13. で ある。また、マイクロミラー 62の直下には、ヒンジ及びヨークを含む支柱を介して通常 の半導体メモリの製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60 が配置されており、全体はモノリシックに構成されている。  As shown in FIG. 2, the DMD 50 has an SRAM cell (memory cell) 60 and a large number of micromirrors 62 (for example, 1024 x 768) that make up each pixel. It is a mirror device arranged in a shape. In each pixel, a micromirror 62 supported by a support column is provided at the top, and a highly reflective material such as aluminum is deposited on the surface of the micromirror 62. Note that the reflectance of the micromirror 62 is 90% or more, and the arrangement pitch thereof is 13. as an example in both the vertical and horizontal directions. In addition, a silicon gate CMOS SRAM cell 60 manufactured on a normal semiconductor memory manufacturing line is disposed directly below the micromirror 62 via a support including a hinge and a yoke, and the entire structure is monolithically configured. ing.
[0170] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 3Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 3Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。したがって、パターン情報に応じて、 DMD50の各ピクセルにお けるマイクロミラー 62の傾きを、図 2に示すように制御することによって、 DMD50に入 射したレーザ光 Βはそれぞれのマイクロミラー 62の傾き方向へ反射される。  [0170] When a digital signal is written in the SRAM cell 60 of the DMD50, the microphone mirror 62 supported by the support is ±± degrees (eg ± 12 °) with respect to the substrate side on which the DMD50 is arranged with the diagonal line as the center. ) Tilted within the range. FIG. 3A shows a state tilted to + α degrees when the micromirror 62 is in the on state, and FIG. 3B shows a state tilted to α degrees when the micromirror 62 is in the off state. Therefore, by controlling the tilt of the micro mirror 62 in each pixel of the DMD 50 according to the pattern information as shown in FIG. 2, the laser light incident on the DMD 50 is tilted in the direction of the tilt of each micro mirror 62. Reflected to.
[0171] なお、図 2には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度 に制御されて ヽる状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は 、 DMD50に接続されたコントローラ 302 (図 13参照)によって行われる。また、オフ 状態のマイクロミラー 62で反射したレーザ光 Bが進行する方向には、光吸収体(図示 せず)が配置されている。 [0171] In FIG. 2, a part of the DMD 50 is enlarged, and the micromirror 62 is + α degrees or α degrees. An example of the state of being controlled is shown below. The on / off control of each micromirror 62 is performed by a controller 302 (see FIG. 13) connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam B reflected by the micromirror 62 in the off state travels.
[0172] また、 DMD50は、その短辺が副走査方向と所定角度 Θ (例えば、 0. 1° 〜5° ) を成すように僅かに傾斜させて配置するのが好まし 、。図 4Aは DMD50を傾斜させ ない場合の各マイクロミラーによる反射光像 (露光ビーム) 53の走査軌跡を示し、図 4 Bは DMD50を傾斜させた場合の露光ビーム 53の走査軌跡を示している。  [0172] Further, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle Θ (for example, 0.1 ° to 5 °) with the sub-scanning direction. 4A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 4B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
[0173] DMD50には、長手方向にマイクロミラーが多数個(例えば、 1024個)配列された マイクロミラー列力 短手方向に多数^ 1_ (例えば、 756糸且)配列されている力 図 4Bに 示すように、 DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム 53の 走査軌跡(走査線)のピッチ P 1S DMD50を傾斜させない場合の走査線のピッチ P  [0173] The DMD50 has a micromirror array force in which a large number of micromirrors are arranged in the longitudinal direction (for example, 1024). A force in which a large number of ^ 1_ (for example, 756 threads) is arranged in the short direction. As shown, by tilting the DMD 50, the pitch P of the scanning trajectory (scan line) of the exposure beam 53 by each micromirror P 1S, the pitch P of the scanning line when the DMD 50 is not tilted
2 1 より狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角は微 小であるので、 DMD50を傾斜させた場合の走査幅 Wと、 DMD50を傾斜させない  It is narrower than 2 1 and can greatly improve the resolution. On the other hand, since the tilt angle of DMD50 is very small, the scan width W when DMD50 is tilted and DMD50 are not tilted.
2  2
場合の走査幅 wとは略同一である。  The scanning width w in this case is substantially the same.
[0174] 次に、前記光変調手段における変調速度を速くさせる方法 (以下「高速変調」と称 する)について説明する。  Next, a method for increasing the modulation speed in the optical modulation means (hereinafter referred to as “high-speed modulation”) will be described.
前記光変調手段は、前記 n個の描素の中から連続的に配置された任意の n個未満 の前記描素部をパターン情報に応じて制御可能であるのが好まし 、。前記光変調手 段のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当りの変調 速度が決定されるので、連続的に配列された任意の n個未満の描素部だけを使用す ることで 1ライン当りの変調速度が速くなる。  It is preferable that the light modulation unit can control any less than n pixel elements arranged continuously from the n pixel elements according to pattern information. The data processing speed of the optical modulation means is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. Using only this increases the modulation rate per line.
[0175] 以下、前記高速変調について図面を参照しながら更に説明する。  Hereinafter, the high-speed modulation will be further described with reference to the drawings.
ファイバアレイ光源 66から DMD50にレーザ光 Bが照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58により感光性ソ ルダーレジスト層 150上に結像される。このようにして、ファイバアレイ光源 66から出 射されたレーザ光が描素毎にオンオフされて、感光性ソルダーレジスト層 150が DM D50の使用描素数と略同数の描素単位 (露光エリア 168)で露光される。また、感光 性ソルダーレジスト層 150がステージ 152と共に一定速度で移動されることにより、感 光性ソルダーレジスト層 150がスキャナ 162によりステージ移動方向と反対の方向に 副走査され、露光ヘッド 166毎に帯状の露光済み領域 170が形成される。 When the laser light B is irradiated from the fiber array light source 66 to the DMD 50, the laser light reflected when the microphone mouth mirror of the DMD 50 is turned on is coupled onto the photosensitive solder resist layer 150 by the lens systems 54 and 58. Imaged. In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive solder resist layer 150 has approximately the same number of pixel units as the number of pixels used in the DM D50 (exposure area 168). It is exposed with. Also photosensitive When the photosensitive solder resist layer 150 is moved at a constant speed together with the stage 152, the photosensitive solder resist layer 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposure is performed for each exposure head 166. Region 170 is formed.
[0176] なお本例では、図 5A及び図 5Bに示すように、 DMD50には、主走査方向にマイク 口ミラーが 1024個配列されたマイクロミラー列が副走査方向に 768組配列されてい る力 本例では、前記コントローラ 302 (図 13参照)により一部のマイクロミラー列(例 えば、 1024個 X 256列)だけが駆動するように制御がなされる。  In this example, as shown in FIG. 5A and FIG. 5B, the DMD 50 has a force in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction. In this example, the controller 302 (see FIG. 13) performs control so that only a part of the micromirror rows (for example, 1024 × 256 rows) is driven.
[0177] この場合、図 5Aに示すように DMD50の中央部に配置されたマイクロミラー列を使 用してもよぐ図 5Bに示すように、 DMD50の端部に配置されたマイクロミラー列を使 用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生して いないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適 宜変更してもよい。  [0177] In this case, as shown in FIG. 5B, the micromirror array arranged at the end of DMD50 may be used as shown in FIG. 5B. May be used. In addition, when a defect occurs in some of the micromirrors, the micromirror array used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
[0178] DMD50のデータ処理速度には限界があり、使用する描素数に比例して 1ライン当 りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで 1ライ ン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動 させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。  [0178] The data processing speed of the DMD50 is limited, and the modulation speed per line is determined in proportion to the number of pixels to be used. The modulation speed per hit is increased. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
[0179] スキャナ 162による感光性ソルダーレジスト層 150の副走査が終了し、センサ 164 で感光性ソルダーレジスト層 150の後端が検出されると、ステージ 152は、ステージ 駆動装置 304により、ガイド 158に沿ってゲート 160の最上流側にある原点に復帰し 、再度、ガイド 158に沿ってゲート 160の上流側から下流側に一定速度で移動される  [0179] When the sub-scan of the photosensitive solder resist layer 150 by the scanner 162 is completed and the rear end of the photosensitive solder resist layer 150 is detected by the sensor 164, the stage 152 is moved to the guide 158 by the stage driving device 304. Along the uppermost stream side of the gate 160 along the guide 158 and moved again at a constant speed along the guide 158 from the upstream side of the gate 160 to the downstream side.
[0180] 例えば、 768組のマイクロミラー列の内、 384組だけ使用する場合には、 768組全 部使用する場合と比較すると 1ライン当り 2倍速く変調することができる。また、 768組 のマイクロミラー列の内、 256組だけ使用する場合には、 768組全部使用する場合と 比較すると 1ライン当り 3倍速く変調することができる。 [0180] For example, when only 384 sets of 768 micromirror arrays are used, modulation can be performed twice as fast per line as compared to using all 768 sets. Also, when only 256 pairs are used in the 768 micromirror array, modulation can be performed three times faster per line than when all 768 pairs are used.
[0181] 以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミ ラーが 1, 024個配列されたマイクロミラー列力 副走査方向に 768糸且配列された D MDを備えている力 コントローラにより一部のマイクロミラー列だけが駆動されるよう に制御することにより、全部のマイクロミラー列を駆動する場合に比べて、 1ライン当り の変調速度が速くなる。 [0181] As described above, according to the pattern forming method of the present invention, the micromirror row force in which 1024 micromirrors are arranged in the main scanning direction includes the DMD arranged in 768 threads in the subscanning direction. Force controller drives only a part of the micromirror array As a result of this control, the modulation speed per line becomes faster than when all the micromirror arrays are driven.
[0182] また、 DMDのマイクロミラーを部分的に駆動する例について説明した力 所定方向 に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各 々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが 2次元状に 配列された細長い DMDを用いても、反射面の角度を制御するマイクロミラーの個数 が少なくなるので、同様に変調速度を速くすることができる。  [0182] In addition, the force described in the example of partially driving the micromirror of the DMD has a length in the direction corresponding to the predetermined direction is longer than the length in the direction intersecting the predetermined direction. Even if a long and narrow DMD in which a number of micromirrors that can change the angle of the reflecting surface are arranged in two dimensions is used, the number of micromirrors that control the angle of the reflecting surface is reduced. Can be fast.
[0183] また、前記露光の方法として、露光光と前記感光性ソルダーレジスト層とを相対的 に移動しながら行うのが好ましぐこの場合、前記高速変調と併用するのが好ましい。 これにより、短時間で高速の露光を行うことができる。  [0183] In addition, it is preferable that the exposure method is performed while relatively moving the exposure light and the photosensitive solder resist layer. In this case, the exposure method is preferably used in combination with the high-speed modulation. Thereby, high-speed exposure can be performed in a short time.
[0184] その他、図 6に示すように、スキャナ 162による X方向への 1回の走査で感光性ソル ダーレジスト層 150の全面を露光してもよぐ図 7A及び図 7Bに示すように、スキャナ 162により感光性ソルダーレジスト層 150を X方向へ走査した後、スキャナ 162を Y方 向に 1ステップ移動し、 X方向へ走査を行うというように、走査と移動を繰り返して、複 数回の走査で感光性ソルダーレジスト層 150の全面を露光するようにしてもょ 、。な お、この例では、スキャナ 162は 18個の露光ヘッド 166を備えている。なお、露光へ ッドは、前記光照射手段と前記光変調手段とを少なくとも有する。  In addition, as shown in FIGS. 6A and 7B, the entire surface of the photosensitive solder resist layer 150 may be exposed by a single scan in the X direction by the scanner 162, as shown in FIGS. 7A and 7B. After scanning the photosensitive solder resist layer 150 in the X direction by the scanner 162, the scanner 162 is moved one step in the Y direction and scanned in the X direction. Let's expose the entire surface of the photosensitive solder resist layer 150 by scanning. In this example, the scanner 162 includes 18 exposure heads 166. The exposure head includes at least the light irradiation unit and the light modulation unit.
[0185] 前記露光は、前記感光性ソルダーレジスト層の一部の領域に対してされることによ り該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領 域以外の未硬化領域が除去され、永久パターンが形成される。  [0185] The exposure is performed on a partial region of the photosensitive solder resist layer, whereby the partial region is cured, and in the development step described later, the cured partial region is performed. Uncured areas other than the areas are removed, and a permanent pattern is formed.
[0186] 次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しな がら説明する。  [0186] Next, an example of a pattern forming apparatus including the light modulation means will be described with reference to the drawings.
前記光変調手段を含むパターン形成装置は、図 8に示すように、感光性ソルダーレ ジスト層 150を有する前記積層体を表面に吸着して保持する平板状のステージ 152 を備えている。  As shown in FIG. 8, the pattern forming apparatus including the light modulation means includes a flat plate stage 152 for adsorbing and holding the laminated body having the photosensitive solder resist layer 150 on the surface.
4本の脚部 154に支持された厚い板状の設置台 156の上面には、ステージ移動方 向に沿って延びた 2本のガイド 158が設置されている。ステージ 152は、その長手方 向がステージ移動方向を向くように配置されると共に、ガイド 158によって往復移動 可能に支持されている。なお、前記パターン形成装置には、ステージ 152をガイド 15 8に沿って駆動するための図示しな 、駆動装置を有して 、る。 Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-like installation table 156 supported by the four legs 154. The stage 152 is arranged so that the longitudinal direction thereof faces the stage moving direction, and is reciprocated by the guide 158. Supported as possible. The pattern forming apparatus includes a driving device (not shown) for driving the stage 152 along the guide 158.
[0187] 設置台 156の中央部には、ステージ 152の移動経路を跨ぐようにコ字状のゲート 1 60が設けられている。コ字状のゲート 160の端部の各々は、設置台 156の両側面に 固定されている。このゲート 160を挟んで一方の側にはスキャナ 162が設けられ、他 方の側には感光性ソルダーレジスト層 150の先端及び後端を検知する複数 (例えば 、 2個)の検知センサ 164が設けられている。スキャナ 162及び検知センサ 164は、ゲ ート 160に各々取り付けられて、ステージ 152の移動経路の上方に固定配置されて いる。なお、スキャナ 162及び検知センサ 164は、これらを制御する図示しないコント ローラに接続されている。  [0187] A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the movement path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) detection sensors 164 for detecting the front and rear ends of the photosensitive solder resist layer 150 are provided on the other side. It has been. The scanner 162 and the detection sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the detection sensor 164 are connected to a controller (not shown) that controls them.
[0188] スキャナ 162は、図 9及び図 10Bに示すように、 m行 n列(例えば、 3行 5列)の略マト リックス状に配列された複数 (例えば、 14個)の露光ヘッド 166を備えている。この例 では、感光性ソルダーレジスト層 150の幅との関係で、 3行目には 4個の露光ヘッド 1 66を配置した。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、 露光ヘッド 166 と表記する。  As shown in FIGS. 9 and 10B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a substantially matrix of m rows and n columns (eg, 3 rows and 5 columns). I have. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive solder resist layer 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are represented as an exposure head 166.
mn  mn
[0189] 露光ヘッド 166による露光エリア 168は、副走査方向を短辺とする矩形状である。し たがって、ステージ 152の移動に伴い、感光性ソルダーレジスト層 150には露光へッ ド 166毎に帯状の露光済み領域 170が形成される。なお、 m行目の n列目に配列さ れた個々の露光ヘッドによる露光エリアを示す場合は、露光エリア 168 と表記する mn  An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction. Therefore, as the stage 152 moves, a strip-shaped exposed region 170 is formed for each exposure head 166 in the photosensitive solder resist layer 150. When the exposure area by each exposure head arranged in the m-th row and the n-th column is shown, it is expressed as an exposure area 168. mn
[0190] また、図 10A及び図 10Bに示すように、帯状の露光済み領域 170が副走査方向と 直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々 は、配列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらして配 置されている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露光 In addition, as shown in FIGS. 10A and 10B, each of the exposure heads in each row arranged in a line so that the strip-shaped exposed region 170 is arranged without a gap in a direction orthogonal to the sub-scanning direction, Arranged at a predetermined interval in the arrangement direction (natural number times the long side of the exposure area, twice in this example). Therefore, the exposure between the exposure area 168 in the first row and the exposure area 168
11 12  11 12
できない部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光  Parts that cannot be exposed are exposed by exposure area 168 in the second row and exposure area 168 in the third row.
21 31  21 31
することができる。  can do.
[0191] 露光ヘッド 166 〜166 各々は、図 11及び図 12に示すように、入射された光ビ  [0191] As shown in Figs. 11 and 12, each of the exposure heads 166 to 166 has an incident optical beam.
11 mn  11 mn
ームをパターン情報に応じて前記光変調手段 (各描素毎に変調する空間光変調素 子)として、米国テキサス 'インスツルメンッ社製のデジタル 'マイクロミラ一'デバイス( DMD) 50を備えている。 DMD50は、データ処理部とミラー駆動制御部とを備えた 前記コントローラ 302 (図 13参照)に接続されている。このコントローラ 302のデータ 処理部では、入力されたパターン情報に基づいて、露光ヘッド 166毎に DMD50の 制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制 御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処 理部で生成した制御信号に基づいて、露光ヘッド 166毎に DMD50の各マイクロミラ 一の反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。 The light modulation means (spatial light modulation element for modulating each pixel in accordance with pattern information) As a child), it is equipped with a digital 'micromirror' device (DMD) 50 manufactured by Texas 'Instrumentum'. The DMD 50 is connected to the controller 302 (see FIG. 13) having a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input pattern information. The areas to be controlled will be described later. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the pattern information processing unit. The control of the angle of the reflecting surface will be described later.
[0192] DMD50の光入射側には、光ファイバの出射端部 (発光点)が露光エリア 168の長 辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバァ レイ光源 66、ファイバアレイ光源 66から出射されたレーザ光を補正して DMD上に集 光させるレンズ系 67、レンズ系 67を透過したレーザ光を DMD50に向けて反射する ミラー 69がこの順に配置されている。なお、図 11では、レンズ系 67を概略的に示し てある。 [0192] On the light incident side of the DMD 50, a fiber array light source having a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 for correcting the laser light emitted from the fiber array light source 66 and collecting it on the DMD, and a mirror 69 for reflecting the laser light transmitted through the lens system 67 toward the DMD 50 are arranged in this order. . In FIG. 11, the lens system 67 is schematically shown.
[0193] レンズ系 67は、図 12に詳しく示すように、ファイバアレイ光源 66から出射した照明 光としてのレーザ光 Bを集光する集光レンズ 71、集光レンズ 71を通過した光の光路 に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータと 、う) 72、及びロッドインテグレータ 72の前方つまりミラー 69側に配置された結像レンズ 74 力も構成されている。集光レンズ 71、ロッドインテグレータ 72及び結像レンズ 74は、 ファイバアレイ光源 66から出射したレーザ光を、平行光に近くかつビーム断面内強 度が均一化された光束として DMD50に入射させる。このロッドインテグレータ 72の 形状や作用については、後に詳しく説明する。  As shown in detail in FIG. 12, the lens system 67 has a condensing lens 71 that condenses laser light B as illumination light emitted from the fiber array light source 66, and an optical path of light that has passed through the condensing lens 71. An inserted rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72, and an imaging lens 74 force arranged in front of the rod integrator 72, that is, on the mirror 69 side, are also configured. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform intensity in the beam cross section. The shape and action of the rod integrator 72 will be described in detail later.
[0194] レンズ系 67から出射したレーザ光 Bはミラー 69で反射し、 TIR (全反射)プリズム 70 を介して DMD50に照射される。なお、図 11では、この TIRプリズム 70は省略してあ る。  The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via the TIR (total reflection) prism 70. In FIG. 11, the TIR prism 70 is omitted.
[0195] また、 DMD50の光反射側には、 DMD50で反射されたレーザ光 Bを、感光性ソル ダーレジスト層 150上に結像する結像光学系 51が配置されて 、る。この結像光学系 51は、図 11では概略的に示してあるが、図 12に詳細を示すように、レンズ系 52, 54 からなる第 1結像光学系と、レンズ系 57, 58からなる第 2結像光学系と、これらの結 像光学系の間に挿入されたマイクロレンズアレイ 55と、アパーチャアレイ 59と力も構 成されている。 Further, on the light reflection side of the DMD 50, an imaging optical system 51 that forms an image of the laser light B reflected by the DMD 50 on the photosensitive solder resist layer 150 is disposed. This imaging optical system 51 is schematically shown in FIG. 11, but as shown in detail in FIG. The first imaging optical system consisting of the second imaging optical system consisting of lens systems 57 and 58, the microlens array 55 inserted between these imaging optical systems, and the aperture array 59 are also configured. Has been.
[0196] マイクロレンズアレイ 55は、 DMD50の各描素に対応する多数のマイクロレンズ 55 aが 2次元状に配列されてなるものである。本例では、後述するように DMD50の 102 4個 X 768列のマイクロミラーのうち 1024個 X 256列だけが駆動されるので、それに 対応させてマイクロレンズ 55aは 1024個 X 256列配置されている。またマイクロレン ズ 55aの配置ピッチは縦方向、横方向とも 41 μ mである。このマイクロレンズ 55aは、 一例として焦点距離が 0. 19mm、NA (開口数)が 0. 11で、光学ガラス BK7から形 成されている。なおマイクロレンズ 55aの形状については、後に詳しく説明する。 そして、各マイクロレンズ 55aの位置におけるレーザ光 Bのビーム径は、 41 μ mであ る。  [0196] The microlens array 55 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to the respective pixels of the DMD 50. In this example, as will be described later, only 1024 x 256 rows of the 1024 x 768 rows of micromirrors of the DMD50 are driven, and accordingly, the microlens 55a is arranged by 1024 x 256 rows. . The arrangement pitch of microlenses 55a is 41 μm in both the vertical and horizontal directions. As an example, the micro lens 55a has a focal length of 0.19 mm, an NA (numerical aperture) of 0.11, and is formed of the optical glass BK7. The shape of the microlens 55a will be described in detail later. The beam diameter of the laser beam B at the position of each microlens 55a is 41 μm.
[0197] また、アパーチャアレイ 59は、マイクロレンズアレイ 55の各マイクロレンズ 55aに対 応する多数のアパーチャ(開口) 59aが形成されてなるものである。アパーチャ 59aの 径は、例えば、 10 mである。  The aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the respective microlenses 55a of the microlens array 55. The diameter of the aperture 59a is, for example, 10 m.
[0198] 前記第 1結像光学系は、 DMD50による像を 3倍に拡大してマイクロレンズアレイ 5 5上に結像する。そして、前記第 2結像光学系は、マイクロレンズアレイ 55を経た像を 1. 6倍に拡大して感光性ソルダーレジスト層 150上に結像、投影する。したがって全 体では、 DMD50による像が 4. 8倍に拡大して感光性ソルダーレジスト層 150上に 結像、投影されること〖こなる。  The first imaging optical system forms an image on the microlens array 55 by enlarging the image by the DMD 50 three times. Then, the second imaging optical system enlarges the image that has passed through the microlens array 55 by 1.6 times, and forms and projects it on the photosensitive solder resist layer 150. Therefore, as a whole, the DMD50 image is magnified by 4.8 times and formed on the photosensitive solder resist layer 150 and projected.
[0199] なお、前記第 2結像光学系と感光性ソルダーレジスト層 150との間にプリズムペア 7 3が配設され、このプリズムペア 73を図 12中で上下方向に移動させることにより、感 光性ソルダーレジスト層 150上における像のピントを調節可能となって 、る。なお同 図中にお 、て、感光性ソルダーレジスト層 150は矢印 F方向に副走査送りされる。  [0199] A prism pair 73 is provided between the second imaging optical system and the photosensitive solder resist layer 150, and the prism pair 73 is moved in the vertical direction in FIG. The focus of the image on the light solder resist layer 150 can be adjusted. In the figure, the photosensitive solder resist layer 150 is sub-scanned in the direction of arrow F.
[0200] 前記描素部としては、前記光照射手段からの光を受光し出射することができる限り 、特に制限はなぐ目的に応じて適宜選択することができ、例えば、本発明の永久パ ターン形成方法により形成される永久パターンが画像パターンである場合には、画素 であり、前記光変調手段が DMDを含む場合にはマイクロミラーである。 前記光変調素子が有する描素部の数 (前記 n)としては、特に制限はなぐ目的に 応じて適宜選択することができる。 [0200] The pixel part can be appropriately selected according to the purpose without any limitation as long as it can receive and emit light from the light irradiation means. For example, the permanent pattern of the present invention can be selected. When the permanent pattern formed by the forming method is an image pattern, it is a pixel, and when the light modulation means includes a DMD, it is a micromirror. The number of picture element portions (n mentioned above) of the light modulation element can be appropriately selected according to the purpose without particular limitation.
前記光変調素子における描素部の配列としては、特に制限はなぐ目的に応じて 適宜選択することができ、例えば、 2次元状に配列しているのが好ましぐ格子状に配 列しているのがより好ましい。  The arrangement of the picture element portions in the light modulation element can be appropriately selected according to the purpose for which there is no particular restriction. For example, the arrangement is preferably a two-dimensional arrangement in a lattice shape. More preferably.
[0201] <光照射手段 > [0201] <Light irradiation means>
前記光照射手段としては、特に制限はなぐ目的に応じて適宜選択することができ 、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機 用などの蛍光管、 LED,半導体レーザなどの公知光源、又は 2以上の光を合成して 照射可能な手段が挙げられ、これらの中でも 2以上の光を合成して照射可能な手段 が好ましい。  The light irradiation means can be appropriately selected according to the purpose without any particular limitation. For example, (ultra) high pressure mercury lamp, xenon lamp, carbon arc lamp, halogen lamp, copier, etc. fluorescent tube, LED, A known light source such as a semiconductor laser or a means capable of combining and irradiating two or more lights is exemplified, and among these, means capable of combining and irradiating two or more lights is preferable.
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う 場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化す る電磁波、紫外から可視光線、電子線、 X線、レーザ光などが挙げられ、これらの中 でもレーザ光が好ましぐ 2以上の光を合成したレーザ光(以下、「合波レーザ光」と称 することがある)がより好ましい。また支持体を剥離して力も光照射を行う場合でも、同 様の光を用いることができる。  The light emitted from the light irradiation means is, for example, an electromagnetic wave that passes through the support and activates the photopolymerization initiator and sensitizer used when the light is irradiated through the support. In particular, ultraviolet to visible light, electron beam, X-ray, laser light, etc. are mentioned. Of these, laser light is preferred. Laser light combining two or more lights (hereinafter referred to as “combined laser light”) Is more preferable. Similar light can be used even when the support is peeled off and light is irradiated with force.
[0202] 前記紫外力も可視光線の波長としては、例えば、 300〜1500nmが好ましぐ 320 〜800mn力より好ましく、 330ηπ!〜 650mn力 ^特に好まし!/、。 [0202] As the wavelength of the visible light, the ultraviolet power is preferably 300 to 1500 nm, more preferably 320 to 800 mn, and 330 ηπ! ~ 650mn force ^ especially preferred!
前記レーザ光の波長としては、例えば、 200〜1500nm力 S好ましく、 300〜800nm がより好ましぐ 330nm〜500nm力 S更に好ましく、 395nm〜415nmが特に好ましい  The wavelength of the laser beam is, for example, 200 to 1500 nm force S, preferably 300 to 800 nm, more preferably 330 nm to 500 nm force S, and particularly preferably 395 nm to 415 nm.
[0203] 前記合波レーザ光を照射可能な手段としては、例えば、複数のレーザと、マルチモ ード光ファイバと、該複数のレーザ力 それぞれ照射したレーザ光を集光して前記マ ルチモード光ファイバに結合させる集合光学系とを有する手段が好ま U、。 [0203] Examples of means capable of irradiating the combined laser beam include a plurality of lasers, a multimode optical fiber, and a laser beam irradiated with each of the plurality of laser forces to collect the multimode optical fiber. U, a means having a collective optical system coupled to U is preferred.
[0204] 以下、前記合波レーザ光を照射可能な手段 (ファイバアレイ光源)につ 、て図を参 照しながら説明する。  [0204] The means (fiber array light source) capable of irradiating the combined laser beam will be described below with reference to the drawings.
[0205] ファイバアレイ光源 66は図 28Aに示すように、複数(例えば、 14個)のレーザモジュ ール 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 30の一 端が結合されている。マルチモード光ファイバ 30の他端には、コア径がマルチモード 光ファイバ 30と同一で且つクラッド径がマルチモード光ファイバ 30より小さい光フアイ ノ 31が結合されている。図 28Bに詳しく示すように、マルチモード光ファイバ 31の光 ファイバ 30と反対側の端部は副走査方向と直交する主走査方向に沿って 7個並べら れ、それが 2列に配列されてレーザ出射部 68が構成されている。 [0205] As shown in FIG. 28A, the fiber array light source 66 includes a plurality of (eg, 14) laser modules. And one end of the multimode optical fiber 30 is coupled to each laser module 64. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in detail in FIG. 28B, seven ends of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction, and they are arranged in two rows. A laser emitting unit 68 is configured.
[0206] マルチモード光ファイバ 31の端部で構成されるレーザ出射部 68は、図 28Bに示す ように、表面が平坦な 2枚の支持板 65に挟み込まれて固定されている。また、マルチ モード光ファイバ 31の光出射端面には、その保護のために、ガラスなどの透明な保 護板が配置されるのが望ましい。マルチモード光ファイバ 31の光出射端面は、光密 度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端 面への塵埃の付着を防止し、また劣化を遅らせることができる。  [0206] As shown in Fig. 28B, the laser emitting portion 68 constituted by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Moreover, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has high light density and is likely to collect dust and easily deteriorate.However, the protective plate as described above prevents the dust from adhering to the end face. Deterioration can be delayed.
[0207] この例では、クラッド径が小さい光ファイバ 31の出射端を隙間無く 1列に配列するた めに、クラッド径が大きい部分で隣接する 2本のマルチモード光ファイバ 30の間にマ ルチモード光ファイバ 30を積み重ね、積み重ねられたマルチモード光ファイバ 30に 結合された光ファイバ 31の出射端が、クラッド径が大きい部分で隣接する 2本のマル チモード光ファイバ 30に結合された光ファイバ 31の 2つの出射端の間に挟まれるよう に配列されている。  [0207] In this example, in order to arrange the output ends of the optical fibers 31 with a small cladding diameter in a single row without a gap, the multimode optical fiber 30 between two adjacent multimode optical fibers 30 with a large cladding diameter is arranged. The optical fiber 30 is stacked, and the output end of the optical fiber 31 coupled to the stacked multimode optical fiber 30 is connected to the two multimode optical fibers 30 adjacent to each other at the portion where the cladding diameter is large. They are arranged so as to be sandwiched between the two exit ends.
[0208] このような光ファイバは、例えば、図 29に示すように、クラッド径が大きいマルチモー ド光ファイバ 30のレーザ光出射側の先端部分に、長さ l〜30cmのクラッド径が小さ い光ファイバ 31を同軸的に結合することにより得ることができる。 2本の光ファイバは、 光ファイバ 31の入射端面力 マルチモード光ファイバ 30の出射端面に、両光フアイ バの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ 3 1のコア 31aの径は、マルチモード光ファイバ 30のコア 30aの径と同じ大きさである。  For example, as shown in FIG. 29, such an optical fiber has a light with a small cladding diameter of 1 to 30 cm in length at the tip of the multimode optical fiber 30 with a large cladding diameter on the laser light emission side. It can be obtained by coupling the fibers 31 coaxially. The two optical fibers are fused and bonded to the incident end face force of the optical fiber 31 and the outgoing end face of the multimode optical fiber 30 so that the central axes of both optical fibers coincide. As described above, the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
[0209] また、長さが短くクラッド径が大きい光ファイバにクラッド径カ 、さい光ファイバを融 着させた短尺光ファイバを、フェルールゃ光コネクタなどを介してマルチモード光ファ ィバ 30の出射端に結合してもよい。コネクタなどを用いて着脱可能に結合することで 、クラッド径が小さい光ファイバが破損した場合などに先端部分の交換が容易になり 、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ[0209] Further, a short optical fiber in which an optical fiber having a short length and a large cladding diameter is fused to the cladding diameter and the optical fiber is output from the multimode optical fiber 30 through a ferrule, an optical connector, or the like. It may be joined to the end. Removable coupling using a connector, etc. makes it easy to replace the tip when an optical fiber with a small cladding diameter is damaged. The cost required for the maintenance of the exposure head can be reduced. In the following, optical fiber
31を、マルチモード光ファイバ 30の出射端部と称する場合がある。 31 may be referred to as the exit end of the multimode optical fiber 30.
[0210] マルチモード光ファイバ 30及び光ファイバ 31としては、ステップインデックス型光フ アイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい 。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いること ができる。本実施の形態では、マルチモード光ファイバ 30及び光ファイバ 31は、ステ ップインデックス型光ファイバであり、マルチモード光ファイバ 30は、クラッド径 = 125
Figure imgf000074_0001
πι, NA=0. 2、入射端面コートの透過率 = 99. 5%以上であり 、光ファイバ 31は、クラッド径 =60 μ m、コア径 = 50 μ m、 NA=0. 2である。
[0210] The multimode optical fiber 30 and the optical fiber 31 may be any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In the present embodiment, the multimode optical fiber 30 and the optical fiber 31 are step index optical fibers, and the multimode optical fiber 30 has a cladding diameter of 125.
Figure imgf000074_0001
πι, NA = 0.2, the transmittance of the incident end face coat = 99.5% or more, and the optical fiber 31 has a cladding diameter = 60 μm, a core diameter = 50 μm, and NA = 0.2.
[0211] 一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失 が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されて いる。し力しながら、波長が短いほど伝搬損失は少なくなり、 GaN系半導体レーザか ら出射された波長 405nmのレーザ光では、クラッドの厚み { (クラッド径一コア径) Z2 }を 800nmの波長帯域の赤外光を伝搬させる場合の 1Z2程度、通信用の 1. [0211] In general, with laser light in the infrared region, propagation loss increases as the cladding diameter of the optical fiber is reduced. For this reason, a suitable cladding diameter is determined according to the wavelength band of the laser beam. However, the shorter the wavelength, the smaller the propagation loss. With laser light with a wavelength of 405 nm emitted from a GaN-based semiconductor laser, the cladding thickness {(cladding diameter, one core diameter) Z2} is set to the 800 nm wavelength band. About 1Z2 when propagating infrared light, 1.
の波長帯域の赤外光を伝搬させる場合の約 1Z4にしても、伝搬損失は殆ど増加し ない。したがって、クラッド径を 60 mと小さくすることができる。  Even if it is about 1Z4 when infrared light in the wavelength band is propagated, the propagation loss hardly increases. Therefore, the cladding diameter can be reduced to 60 m.
[0212] 但し、光ファイバ 31のクラッド径は 60 μ mには限定されない。従来のファイバアレイ 光源に使用されている光ファイバのクラッド径は 125 mである力 クラッド径が小さく なるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 80 m 以下が好ましぐ 60 m以下がより好ましぐ 40 m以下が更に好ましい。一方、コア 径は少なくとも 3〜4 μ m必要であることから、光ファイバ 31のクラッド径は 10 μ m以 上が好ましい。 [0212] However, the clad diameter of the optical fiber 31 is not limited to 60 μm. Conventional fiber array The optical fiber used in the light source has a cladding diameter of 125 m. The smaller the cladding diameter, the deeper the focal depth. Therefore, the cladding diameter of multimode optical fibers is preferably 80 m or less. m is preferably 40 m or less. On the other hand, since the core diameter needs to be at least 3 to 4 μm, the cladding diameter of the optical fiber 31 is preferably 10 μm or more.
[0213] レーザモジュール 64は、図 30に示す合波レーザ光源(ファイバアレイ光源)によつ て構成されている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複 数(例えば、 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体 レーザ LD1, LD2, LD3, LD4, LD5, LD6,及び LD7と、 GaN系半導体レーザ L D1〜: LD7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16, 及び 17と、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30と、から構成され ている。なお、半導体レーザの個数は 7個には限定されない。例えば、クラッド径 =6 O ^ m,コア径 = 50 πι、 NA=0. 2のマルチモード光ファイバには、 20個もの半導 体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光 ファイバ本数をより減らすことができる。 [0213] The laser module 64 includes a combined laser light source (fiber array light source) shown in FIG. This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD1, LD2, LD3, LD4, LD5, LD6 arranged and fixed on the heat block 10. , And LD7, and GaN-based semiconductor laser L D1 ~: Collimator lenses 11, 12, 13, 14, 15, 16, and 17 provided corresponding to each of LD7, one condenser lens 20, and 1 A multimode optical fiber 30 ing. The number of semiconductor lasers is not limited to seven. For example, a multimode optical fiber with a cladding diameter of 6 O ^ m, a core diameter of 50 πι, and NA = 0.2 can receive as many as 20 semiconductor laser beams, which requires an exposure head. The amount of light can be realized and the number of optical fibers can be further reduced.
[0214] GaN系半導体レーザ LD1〜LD7は、発振波長が総て共通(例えば、 405nm)で あり、最大出力も総て共通(例えば、マルチモードレーザでは 100mW、シングルモ 一ドレーザでは 30mW)である。なお、 GaN系半導体レーザ LD1〜LD7としては、 3 50nm〜450nmの波長範囲で、上記の 405nm以外の発振波長を備えるレーザを 用いてもよい。 [0214] The GaN semiconductor lasers LD1 to LD7 all have the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also common (for example, 100 mW for the multimode laser and 30 mW for the single mode laser). As the GaN-based semiconductor lasers LD1 to LD7, lasers having an oscillation wavelength other than the above-described 405 nm in a wavelength range of 350 nm to 450 nm may be used.
[0215] 前記合波レーザ光源は、図 31及び図 32に示すように、他の光学要素と共に、上方 が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開口を 閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを導入 し、ノ ッケージ 40の開口をパッケージ蓋 41で閉じることにより、パッケージ 40とパッケ ージ蓋 41とにより形成される閉空間 (封止空間)内に上記合波レーザ光源が気密封 止されている。  [0215] As shown in FIGS. 31 and 32, the combined laser light source is housed in a box-shaped package 40 having an upper opening, together with other optical elements. The package 40 is provided with a package lid 41 created so as to close the opening thereof. After the degassing process, a sealing gas is introduced, and the opening of the knock 40 is closed by the package lid 41, whereby the package 40 and the package 40 are packaged. The combined laser light source is hermetically sealed in a closed space (sealed space) formed by the cage lid 41.
[0216] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、集光レンズ 20を保持する集光レンズホルダー 45と、マ ルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付けら れている。マルチモード光ファイバ 30の出射端部はパッケージ 40の壁面に形成され た開口からパッケージ外に引き出されている。  [0216] A base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 that holds the condensing lens 20, and the multimode light. A fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is drawn out of the package through an opening formed in the wall surface of the package 40.
[0217] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており 、コリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口が形 成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給する 配線 47がパッケージ外に引き出されている。  In addition, a collimator lens holder 44 is attached to the side surface of the heat block 10, and the collimator lenses 11 to 17 are held. An opening is formed in the lateral wall surface of the package 40, and wiring 47 for supplying a driving current to the GaN-based semiconductor lasers LD1 to LD7 is drawn out of the package through the opening.
[0218] なお、図 32においては、図の煩雑ィ匕を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。  In FIG. 32, in order to avoid the complexity of the figure, only the GaN-based semiconductor laser LD7 among the plurality of GaN-based semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses. The number is attached only to.
[0219] 図 33は、前記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものであ る。コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領 域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメ一 タレンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成するこ とができる。コリメータレンズ 11〜17は、長さ方向が GaN系半導体レーザ LD1〜LD 7の発光点の配列方向(図 33の左右方向)と直交するように、上記発光点の配列方 向に密接配置されている。 [0219] FIG. 33 shows the front shape of the mounting portion of the collimator lenses 11-17. The Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane. This elongated collimator lens can be formed, for example, by molding a resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the emission points so that the length direction is orthogonal to the arrangement direction of emission points of the GaN-based semiconductor lasers LD1 to LD 7 (left and right direction in FIG. 33). Yes.
[0220] 一方、 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 mの活性層を備え 、活性層と平行な方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で 各々レーザ光 B1〜B7を発するレーザが用いられている。これら GaN系半導体レー ザ LD1〜LD7は、活性層と平行な方向に発光点が 1列に並ぶように配設されている [0220] On the other hand, each of the GaN-based semiconductor lasers LD1 to LD7 includes an active layer having an emission width of 2 m, and the divergence angles in the direction parallel to the active layer and in the direction perpendicular thereto are, for example, 10 ° and 30 °, respectively. Lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
[0221] したがって、各発光点から発せられたレーザ光 B1〜B7は、上述のように細長形状 の各コリメータレンズ 11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し 、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入 射することになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6m mであり、それらに入射するレーザ光 B1〜B7の水平方向、垂直方向のビーム径は 各々 0. 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距離 f = 3mm、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。 [0221] Therefore, the laser beams B1 to B7 emitted from the respective light emitting points are spread in the direction in which the divergence angle is large with respect to the elongated collimator lenses 11 to 17 as described above. The incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction). In other words, the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm. Each of the collimator lenses 11 to 17 has a focal length f = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.
[0222] 集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細 長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそれと 直角な方向に短い形状に形成されている。この集光レンズ 20は、焦点距離 f = 23m  [0222] The condensing lens 20 is obtained by cutting a region including the optical axis of a circular lens having an aspherical surface into a thin plane in a parallel plane and perpendicular to the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a shape that is short in the direction. This condenser lens 20 has a focal length f = 23m
2 m、 NA=0. 2である。この集光レンズ 20も、例えば、榭脂又は光学ガラスをモールド 成形することにより形成される。  2 m, NA = 0.2. The condensing lens 20 is also formed, for example, by molding a resin or optical glass.
[0223] また、 DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部を アレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深 い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバァ レイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光 源数が少なくなり、パターン形成装置の低コストィ匕が図られる。 [0224] また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので 、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、 より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビー ム径 1 μ m以下、解像度 0. 1 μ m以下の超高解像度露光の場合にも、深い焦点深 度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が 必要とされる薄膜トランジスタ (TFT)の露光工程に好適である。 [0223] Further, since the light emitting means for illuminating the DMD uses a high-luminance fiber array light source in which the output ends of the optical fibers of the combined laser light source are arranged in an array, a high output and deep focus A pattern forming apparatus having a depth can be realized. Furthermore, since the output of each fiber array light source is increased, the number of fiber array light sources required to obtain a desired output is reduced, and the cost of the pattern forming apparatus can be reduced. [0224] Further, since the cladding diameter of the output end of the optical fiber is made smaller than the cladding diameter of the incident end, the diameter of the light emitting portion is further reduced, and the brightness of the fiber array light source can be increased. Thereby, a pattern forming apparatus having a deeper depth of focus can be realized. For example, even in the case of ultra-high resolution exposure with a beam diameter of 1 μm or less and a resolution of 0.1 μm or less, a deep focal depth can be obtained, and high-speed and high-definition exposure is possible. Therefore, it is suitable for a thin film transistor (TFT) exposure process that requires high resolution.
[0225] また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ 光源に限定されず、例えば、 1個の発光点を有する単一の半導体レーザから入射さ れたレーザ光を出射する 1本の光ファイバを備えたファイバ光源をアレイ化したフアイ バアレイ光源を用いることができる。  [0225] The light irradiation means is not limited to a fiber array light source including a plurality of the combined laser light sources, and for example, laser light incident from a single semiconductor laser having one light emitting point. A fiber array light source in which a fiber light source including one optical fiber emitting light is arrayed can be used.
[0226] また、複数の発光点を備えた光照射手段としては、例えば、図 34に示すように、ヒ ートブロック 100上に、複数(例えば、 7個)のチップ状の半導体レーザ LD1〜: LD7を 配列したレーザアレイを用いることができる。また、図 35Aに示す、複数 (例えば、 5個 )の発光点 110aが所定方向に配列されたチップ状のマルチキヤビティレーザ 110が 知られている。マルチキヤビティレーザ 110は、チップ状の半導体レーザを配列する 場合と比べ、発光点を位置精度良く配列できるので、各発光点力 出射されるレー ザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキヤビティレー ザ 110に橈みが発生し易くなるため、発光点 110aの個数は 5個以下とするのが好ま しい。  Further, as the light irradiation means having a plurality of light emitting points, for example, as shown in FIG. 34, a plurality of (for example, seven) chip-shaped semiconductor lasers LD1 to LD7 on a heat block 100: LD7 Can be used. Further, a chip-shaped multi-cavity laser 110 shown in FIG. 35A in which a plurality of (for example, five) light emitting points 110a are arranged in a predetermined direction is known. In the multi-cavity laser 110, the light emitting points can be arranged with higher positional accuracy than in the case where the chip-shaped semiconductor lasers are arranged, so that the laser beams emitted from the respective light emitting point forces can be easily combined. However, as the number of light emitting points increases, it becomes easy for the multi-cavity laser 110 to stagnate during laser manufacturing. Therefore, the number of light emitting points 110a is preferably 5 or less.
[0227] 前記光照射手段としては、このマルチキヤビティレーザ 110や、図 35Bに示すように 、ヒートブロック 100上に、複数のマルチキヤビティレーザ 110が各チップの発光点 1 10aの配列方向と同じ方向に配列されたマルチキヤビティレーザアレイを、レーザ光 源として用いることができる。  [0227] As the light irradiation means, as shown in FIG. 35B, a plurality of multi-cavity lasers 110 are arranged on the heat block 100 as shown in FIG. A multi-cavity laser array arranged in the same direction can be used as a laser light source.
[0228] また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光 を合波するものには限定されない。例えば、図 22に示すように、複数 (例えば、 3個) の発光点 110aを有するチップ状のマルチキヤビティレーザ 110を備えた合波レーザ 光源を用いることができる。この合波レーザ光源は、マルチキヤビティレーザ 110と、 1 本のマルチモード光ファイバ 130と、集光レンズ 120と、を備えて構成されている。マ ルチキヤビティレーザ 110は、例えば、発振波長が 405nmの GaN系レーザダイォー ドで構成することができる。 [0228] The combined laser light source is not limited to one that combines laser beams emitted from a plurality of chip-shaped semiconductor lasers. For example, as shown in FIG. 22, a combined laser light source including a chip-shaped multi-cavity laser 110 having a plurality of (for example, three) emission points 110a can be used. The combined laser light source includes a multi-cavity laser 110, a single multimode optical fiber 130, and a condenser lens 120. Ma The lucability laser 110 can be composed of, for example, a GaN-based laser diode having an oscillation wavelength of 405 nm.
[0229] 前記構成では、マルチキヤビティレーザ 110の複数の発光点 110aの各々力も出射 したレーザ光 Bの各々は、集光レンズ 120によって集光され、マルチモード光フアイ バ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝 搬し、 1本に合波されて出射する。  [0229] In the above-described configuration, each of the laser beams B also emitted from each of the plurality of light emitting points 110a of the multi-cavity laser 110 is collected by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. To do. The laser light incident on the core 130a is propagated in the optical fiber, combined into one, and emitted.
[0230] マルチキヤビティレーザ 110の複数の発光点 110aを、上記マルチモード光フアイ ノ 130のコア径と略などしい幅内に並設すると共に、集光レンズ 120として、マルチ モード光ファイバ 130のコア径と略などしい焦点距離の凸レンズや、マルチキヤビティ レーザ 110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッド レンズを用 V、ることにより、レーザ光 Bのマルチモード光ファイバ 130への結合効率を 上げることができる。  [0230] A plurality of light emitting points 110a of the multi-cavity laser 110 are juxtaposed within a width substantially equal to the core diameter of the multi-mode optical fiber 130, and the multi-mode optical fiber 130 is used as the condenser lens 120. By using a convex lens with a focal length approximately equal to the core diameter or a rod lens that collimates the outgoing beam from the multi-cavity laser 110 only in the plane perpendicular to its active layer, V The coupling efficiency to the optical fiber 130 can be increased.
[0231] また、図 36に示すように、複数 (例えば、 3個)の発光点を備えたマルチキヤビティレ 一ザ 110を用い、ヒートブロック 111上に複数(例えば、 9個)のマルチキヤビティレー ザ 110が互いになど間隔で配列されたレーザアレイ 140を備えた合波レーザ光源を 用いることができる。複数のマルチキヤビティレーザ 110は、各チップの発光点 110a の配列方向と同じ方向に配列されて固定されている。  Further, as shown in FIG. 36, a plurality of (for example, nine) multi-carriers are provided on the heat block 111 using a multi-cavity laser 110 having a plurality of (for example, three) emission points. A combined laser light source including a laser array 140 in which the bit lasers 110 are arranged at equal intervals can be used. The plurality of multi-cavity lasers 110 are arranged and fixed in the same direction as the arrangement direction of the light emitting points 110a of each chip.
[0232] この合波レーザ光源は、レーザアレイ 140と、各マルチキヤピティレーザ 110に対 応させて配置した複数のレンズアレイ 114と、レーザアレイ 140と複数のレンズアレイ 114との間に配置された 1本のロッドレンズ 113と、 1本のマルチモード光ファイバ 13 0と、集光レンズ 120と、を備えて構成されている。レンズアレイ 114は、マルチキヤピ ティレーザ 110の発光点に対応した複数のマイクロレンズを備えて ヽる。  [0232] This combined laser light source is arranged between the laser array 140, the plurality of lens arrays 114 arranged corresponding to each multi-capacity laser 110, and the laser array 140 and the plurality of lens arrays 114. Further, it is configured to include one rod lens 113, one multimode optical fiber 130, and a condenser lens 120. The lens array 114 includes a plurality of microlenses corresponding to the light emission points of the multi-capacity laser 110.
[0233] 上記の構成では、複数のマルチキヤビティレーザ 110の複数の発光点 110aの各 々力も出射したレーザ光 Bの各々は、ロッドレンズ 113により所定方向に集光された 後、レンズアレイ 114の各マイクロレンズにより平行光化される。平行光化されたレー ザ光 Lは、集光レンズ 120によって集光され、マルチモード光ファイバ 130のコア 13 Oaに入射する。コア 130aに入射したレーザ光は、光ファイバ内を伝搬し、 1本に合 波されて出射する。 [0234] 更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図 37A及び図 37B に示すように、略矩形状のヒートブロック 180上に光軸方向の断面が L字状のヒートブ ロック 182が搭載され、 2つのヒートブロック間に収納空間が形成されている。 L字状 のヒートブロック 182の上面には、複数の発光点(例えば、 5個)がアレイ状に配列さ れた複数(例えば、 2個)のマルチキヤビティレーザ 110力 各チップの発光点 110a の配列方向と同じ方向になど間隔で配列されて固定されて 、る。 [0233] In the above configuration, each of the laser beams B emitted from each of the plurality of light emitting points 110a of the plurality of multi-cavity lasers 110 is condensed in a predetermined direction by the rod lens 113, and then the lens array 114. The light is collimated by each microlens. The collimated laser beam L is collected by the condensing lens 120 and enters the core 13 Oa of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted. [0234] Still another example of the combined laser light source will be described. As shown in FIGS. 37A and 37B, this combined laser light source has a heat block 182 having an L-shaped cross section in the optical axis direction mounted on a substantially rectangular heat block 180, and is stored between two heat blocks. A space is formed. On the upper surface of the L-shaped heat block 182, a plurality of (for example, two) multi-cavity lasers in which a plurality of light-emitting points (for example, five) are arranged in an array form 110 power light-emitting points for each chip 110a It is fixed and arranged at equal intervals in the same direction as the arrangement direction.
[0235] 略矩形状のヒートブロック 180には凹部が形成されており、ヒートブロック 180の空 間側上面には、複数の発光点 (例えば、 5個)がアレイ状に配列された複数 (例えば、 2個)のマルチキヤビティレーザ 110が、その発光点がヒートブロック 182の上面に配 置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。  [0235] The substantially rectangular heat block 180 has a recess, and a plurality of light emitting points (for example, five) are arranged on the space side upper surface of the heat block 180 (for example, five). The two multi-cavity lasers 110 are arranged so that their emission points are located on the same vertical plane as the emission points of the laser chips arranged on the upper surface of the heat block 182.
[0236] マルチキヤビティレーザ 110のレーザ光出射側には、各チップの発光点 110aに対 応してコリメートレンズが配列されたコリメートレンズアレイ 184が配置されている。コリ メートレンズアレイ 184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大き V、方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さ!/、方向( 遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化し て一体ィヒすることで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力 化が図られると共に、部品点数が減少し低コストィ匕することができる。  [0236] On the laser beam emission side of the multi-cavity laser 110, a collimating lens array 184 in which collimating lenses are arranged corresponding to the light emitting points 110a of the respective chips is arranged. In the collimating lens array 184, the length direction of each collimating lens and the divergence angle of the laser beam are large V and the direction (fast axis direction) coincides, and the width direction of each collimating lens is divergence is small! /, Direction It is arranged so as to coincide with (slow axis direction). In this way, collimating lenses are arrayed and integrated to improve the space utilization efficiency of the laser beam, increase the output of the combined laser light source, reduce the number of parts, and reduce the cost. it can.
[0237] また、コリメートレンズアレイ 184のレーザ光出射側には、 1本のマルチモード光ファ ィバ 130と、このマルチモード光ファイバ 130の入射端にレーザ光を集光して結合す る集光レンズ 120と、が配置されている。  [0237] Further, on the laser beam emitting side of the collimating lens array 184, there is a single multimode optical fiber 130 and a condensing unit that condenses the laser beam to the incident end of the multimode optical fiber 130. An optical lens 120 is disposed.
[0238] 前記構成では、レーザブロック 180、 182上に配置された複数のマルチキヤビティ レーザ 110の複数の発光点 110aの各々力も出射したレーザ光 Bの各々は、コリメ一 トレンズアレイ 184により平行光化され、集光レンズ 120によって集光されて、マルチ モード光ファイバ 130のコア 130aに入射する。コア 130aに入射したレーザ光は、光 ファイバ内を伝搬し、 1本に合波されて出射する。  [0238] In the above configuration, each of the laser beams B also emitted from the plurality of light-emitting points 110a of the plurality of multi-cavity lasers 110 arranged on the laser blocks 180 and 182 is collimated by the collimating lens array 184. And condensed by the condenser lens 120 and incident on the core 130a of the multimode optical fiber 130. The laser light incident on the core 130a propagates in the optical fiber, and is combined into one and emitted.
[0239] 前記合波レーザ光源は、上記の通り、マルチキヤビティレーザの多段配置とコリメ一 トレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を 用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成する ことができるので、前記パターン形成装置のレーザ光源を構成するファイバ光源とし て特に好適である。 [0239] As described above, the combined laser light source can achieve particularly high output by the multistage arrangement of multi-cavity lasers and the array of collimating lenses. By using this combined laser light source, a higher-intensity fiber array light source or bundle fiber light source is constructed. Therefore, it is particularly suitable as a fiber light source constituting the laser light source of the pattern forming apparatus.
[0240] なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ 13 0の出射端部をそのケーシングから引き出したレーザモジュールを構成することがで きる。  [0240] A laser module in which each of the combined laser light sources is housed in a casing and the emission end portion of the multimode optical fiber 130 is pulled out from the casing can be configured.
[0241] また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモー ド光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光フアイ バを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、 クラッド径が 125 m、 80 m、 60 μ mなどのマルチモード光ファイバを、出射端に 他の光ファイバを結合せずに使用してもよい。  [0241] Further, a fiber array is formed by coupling another optical fiber having the same core diameter as the multimode optical fiber and a cladding diameter smaller than the multimode optical fiber to the output end of the multimode optical fiber of the combined laser light source. An example of increasing the brightness of a light source has been explained. For example, a multimode optical fiber with a cladding diameter of 125 m, 80 m, 60 μm, etc., can be used without coupling another optical fiber to the output end. Also good.
[0242] ここで、本発明の前記永久パターン形成方法について更に説明する。  [0242] Here, the permanent pattern forming method of the present invention will be further described.
スキャナ 162の各露光ヘッド 166において、ファイバアレイ光源 66の合波レーザ光 源を構成する GaN系半導体レーザ LD1〜LD7の各々力 発散光状態で出射したレ 一ザ光 Bl, B2, B3, B4, B5, B6,及び B7の各々は、対応するコリメータレンズ 11 〜17によって平行光化される。平行光化されたレーザ光 B1〜B7は、集光レンズ 20 によって集光され、マルチモード光ファイバ 30のコア 30aの入射端面に収束する。  In each exposure head 166 of the scanner 162, laser light Bl, B2, B3, B4, GaN-based semiconductor lasers LD1 to LD7 constituting the combined laser light source of the fiber array light source 66 is emitted in the state of divergent light. Each of B5, B6, and B7 is collimated by the corresponding collimator lenses 11-17. The collimated laser beams B1 to B7 are collected by the condenser lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
[0243] 本例では、コリメータレンズ 11〜17及び集光レンズ 20によって集光光学系が構成 され、その集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成さ れている。即ち、集光レンズ 20によって上述のように集光されたレーザ光 B1〜B7が 、このマルチモード光ファイノく 30のコア 30aに入射して光ファイバ内を伝搬し、 1本の レーザ光 Bに合波されてマルチモード光ファイバ 30の出射端部に結合された光ファ ィバ 31から出射する。  In this example, the collimating lenses 11 to 17 and the condensing lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beams B1 to B7 condensed as described above by the condenser lens 20 are incident on the core 30a of the multimode optical fiber 30 and propagate through the optical fiber. The light is output from the optical fiber 31 combined and coupled to the output end of the multimode optical fiber 30.
[0244] 各レーザモジュールにおいて、レーザ光 B1〜: B7のマルチモード光ファイバ 30へ の結合効率が 0. 85で、 GaN系半導体レーザ LD1〜LD7の各出力が 30mWの場 合には、アレイ状に配列された光ファイバ 31の各々について、出力 180mW( = 30 mWX O. 85 X 7)の合波レーザ光 Bを得ることができる。したがって、 6本の光フアイ ノ 31がアレイ状に配列されたレーザ出射部 68での出力は約 1W ( = 180mW X 6) である。 [0245] ファイバアレイ光源 66のレーザ出射部 68には、この通り高輝度の発光点が主走査 方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を 1本の 光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなけ れば所望の出力を得ることができな力つた力 前記合波レーザ光源は高出力である ため、少数列、例えば 1列でも所望の出力を得ることができる。 [0244] In each laser module, when the coupling efficiency of laser light B1 to B7 to the multimode optical fiber 30 is 0.85 and each output of the GaN-based semiconductor lasers LD1 to LD7 is 30 mW, an array shape For each of the optical fibers 31 arranged in the above, a combined laser beam B with an output of 180 mW (= 30 mWX O. 85 X 7) can be obtained. Therefore, the output from the laser emitting section 68 in which the six optical fibers 31 are arranged in an array is about 1 W (= 180 mW × 6). [0245] In the laser emitting section 68 of the fiber array light source 66, light emission points with high luminance are arranged in a line along the main scanning direction as described above. A conventional fiber light source that couples laser light from a single semiconductor laser to a single optical fiber has low output, so if the multiple rows are not arranged, the desired force cannot be obtained. Since the wave laser light source has high output, a desired output can be obtained even with a small number of columns, for example, one column.
[0246] 例えば、半導体レーザと光ファイバを 1対 1で結合させた従来のファイバ光源では、 通常、半導体レーザとしては出力 30mW (ミリワット)程度のレーザが使用され、光ファ ィバとしてはコア径 50 m、クラッド径 125 m、 NA (開口数) 0. 2のマルチモード光 ファイバが使用されているので、約 1W (ワット)の出力を得ようとすれば、マルチモー ド光ファイバを 48本(8 X 6)束ねなければならず、発光領域の面積は 0. 62mm2 (0. 675mm X O. 925mm)である力ら、レーザ出射部 68での輝度は 1. 6 X 106 (W/m 2)、光ファイバ 1本当りの輝度は 3. 2 X 106(WZm2)である。 [0246] For example, in a conventional fiber light source in which a semiconductor laser and an optical fiber are coupled on a one-to-one basis, a laser with an output of about 30 mW (milliwatt) is usually used as a semiconductor laser, and a core diameter is used as an optical fiber. Multimode optical fiber with 50 m, clad diameter 125 m, NA (numerical aperture) 0.2 is used, so if you want to obtain an output of about 1 W (watt), 48 multimode optical fibers ( 8 X 6) The luminous area is 0.62 mm 2 (0.675 mm X O. 925 mm), and the brightness at the laser emitting section 68 is 1.6 X 10 6 (W / m 2), brightness per optical fiber is 3.2 X 10 6 (WZm 2 ).
[0247] これに対し、前記光照射手段が合波レーザ光を照射可能な手段である場合には、 マルチモード光ファイバ 6本で約 1Wの出力を得ることができ、レーザ出射部 68での 発光領域の面積は 0. 0081mm2 (0. 325mmX 0. 025mm)であるから、レーザ出 射部 68での輝度は 123 X 106(WZm2)となり、従来に比べ約 80倍の高輝度化を図 ることができる。また、光ファイバ 1本当りの輝度は 90 X 106(WZm2)であり、従来に 比べ約 28倍の高輝度化を図ることができる。 [0247] On the other hand, when the light irradiating means is a means capable of irradiating a combined laser beam, an output of about 1 W can be obtained with six multimode optical fibers. Since the area of the light emitting area is 0.0081 mm 2 (0.325 mm X 0.025 mm), the brightness at the laser emitting part 68 is 123 X 10 6 (WZm 2 ), which is about 80 times higher than the conventional brightness. Can be achieved. In addition, the luminance per optical fiber is 90 X 10 6 (WZm 2 ), which is about 28 times higher than before.
[0248] ここで、図 38A及び図 38Bを参照して、従来の露光ヘッドと本実施の形態の露光 ヘッドとの焦点深度の違いにっ 、て説明する。従来の露光ヘッドのバンドル状フアイ バ光源の発光領域の副走査方向の径は 0. 675mmであり、露光ヘッドのファイバァ レイ光源の発光領域の副走査方向の径は 0. 025mmである。図 37Aに示すように、 従来の露光ヘッドでは、光照射手段 (バンドル状ファイバ光源) 1の発光領域が大き いので、 DMD3へ入射する光束の角度が大きくなり、結果として走査面 5へ入射する 光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径 が太りやすい。  Here, with reference to FIG. 38A and FIG. 38B, the difference in the focal depth between the conventional exposure head and the exposure head of the present embodiment will be described. The diameter of the light emission area of the bundled fiber light source of the conventional exposure head is 0.675 mm, and the diameter of the light emission area of the fiber array light source of the exposure head is 0.025 mm. As shown in FIG. 37A, in the conventional exposure head, the light emitting means (bundle fiber light source) 1 has a large light emitting area, so the angle of the light beam incident on the DMD 3 increases, and as a result, the light beam enters the scanning surface 5. The angle of the light beam increases. For this reason, the beam diameter tends to increase with respect to the condensing direction (shift in the focus direction).
[0249] 一方、図 37Bに示すように、前記パターン形成装置における露光ヘッドでは、フアイ バアレイ光源 66の発光領域の副走査方向の径カ 、さいので、レンズ系 67を通過し て DMD50へ入射する光束の角度が小さくなり、結果として走査面 56へ入射する光 束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査 方向の径は従来の約 30倍になっており、略回折限界に相当する焦点深度を得ること ができる。したがって、微小スポットの露光に好適である。この焦点深度への効果は、 露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に 投影された 1描素サイズは 10 m X 10 mである。なお、 DMDは反射型の空間光 変調素子であるが、図 38A及び図 38Bは、光学的な関係を説明するために展開図と した。 On the other hand, as shown in FIG. 37B, the exposure head in the pattern forming apparatus passes through the lens system 67 because the diameter of the light emitting area of the fiber array light source 66 in the sub-scanning direction is smaller. As a result, the angle of the light beam incident on the DMD 50 decreases, and as a result, the angle of the light flux incident on the scanning surface 56 decreases. That is, the depth of focus becomes deep. In this example, the diameter of the light emitting region in the sub-scanning direction is about 30 times that of the conventional one, and a depth of focus corresponding to the diffraction limit can be obtained. Therefore, it is suitable for exposure of a minute spot. This effect on the depth of focus is more prominent and effective as the required amount of light from the exposure head increases. In this example, the size of one pixel projected on the exposure surface is 10 m x 10 m. DMD is a reflective spatial light modulator, but FIGS. 38A and 38B are developed views for explaining the optical relationship.
[0250] 露光パターンに応じたパターン情報力 DMD50に接続された図示しないコント口 ーラに入力され、コントローラ内のフレームメモリにー且記憶される。このパターン情 報は、画像を構成する各描素の濃度を 2値 (ドットの記録の有無)で表したデータであ る。  [0250] Pattern information power corresponding to the exposure pattern is input to a controller (not shown) connected to the DMD 50 and stored in a frame memory in the controller. This pattern information is data that represents the density of each pixel constituting the image as binary values (whether or not dots are recorded).
[0251] 感光性ソルダーレジスト層 150を有する感光性ソルダーレジストフイルムを表面に吸 着したステージ 152は、図示しない駆動装置により、ガイド 158に沿ってゲート 160の 上流側から下流側に一定速度で移動される。ステージ 152がゲート 160下を通過す る際に、ゲート 160に取り付けられた検知センサ 164により感光性ソルダーレジスト層 150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン 分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各 露光ヘッド 166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成さ れた制御信号に基づいて露光ヘッド 166毎に DMD50のマイクロミラーの各々がォ ンオフ制御される。  [0251] The stage 152 having the photosensitive solder resist film 150 having the photosensitive solder resist layer 150 adsorbed on the surface thereof is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a driving device (not shown). Is done. When the leading edge of the photosensitive solder resist layer 150 is detected by the detection sensor 164 attached to the gate 160 when the stage 152 passes under the gate 160, the pattern information stored in the frame memory is stored for each of a plurality of lines. A control signal is generated for each exposure head 166 based on the pattern information read out sequentially and read out by the data processing unit. Then, each of the micromirrors of the DMD 50 is turned on / off for each exposure head 166 based on the generated control signal by the mirror drive control unit.
[0252] ファイバアレイ光源 66から DMD50にレーザ光が照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 54、 58により感光性ソ ルダーレジスト層 150の被露光面 56上に結像される。このようにして、ファイバアレイ 光源 66から出射されたレーザ光が描素毎にオンオフされて、感光性ソルダーレジス ト層 150が DMD50の使用描素数と略同数の描素単位 (露光エリア 168)で露光され る。また、感光性ソルダーレジスト層 150がステージ 152と共に一定速度で移動され ることにより、感光性ソルダーレジスト層 150がスキャナ 162によりステージ移動方向と 反対の方向に副走査され、露光ヘッド 166毎に帯状の露光済み領域 170が形成さ れる。[0252] When the DMD 50 is irradiated with laser light from the fiber array light source 66, the laser light reflected when the microphone mouth mirror of the DMD 50 is in the ON state is reflected on the photosensitive solder resist layer 150 by the lens systems 54 and 58. An image is formed on the exposed surface 56. In this way, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive solder resist layer 150 is in the same number of pixel units (exposure area 168) as the number of pixels used in the DMD50. Exposed. Further, since the photosensitive solder resist layer 150 is moved at a constant speed together with the stage 152, the photosensitive solder resist layer 150 is moved in the direction of stage movement by the scanner 162. Sub-scanning is performed in the opposite direction, and a strip-shaped exposed region 170 is formed for each exposure head 166.
Figure imgf000083_0001
Figure imgf000083_0001
また、前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うのが好 ましぐ更にアパーチャアレイ、結像光学系などなどを通して行ってもよい。  The exposure is preferably performed through the microlens array with the modulated light, and may be performed through an aperture array, an imaging optical system, or the like.
[0254] 前記マイクロレンズアレイとしては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、前記描素部における出射面の歪みによる収差を補正可能な非球 面を有するマイクロレンズを配列したものが好適に挙げられる。  [0254] The microlens array can be appropriately selected according to the purpose without any particular limitation. For example, the microlens array has a non-spherical surface capable of correcting aberration due to distortion of the exit surface in the pixel portion. Preferred examples include those in which
[0255] 前記非球面としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、トーリック面が好ましい。  [0255] The aspherical surface can be appropriately selected depending on the purpose without particular limitation, and for example, a toric surface is preferable.
[0256] 以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系など について図面を参照しながら説明する。  [0256] Hereinafter, the microlens array, the aperture array, the imaging optical system, and the like will be described with reference to the drawings.
[0257] 図 14Aは、 DMD50、 DMD50にレーザ光を照射する光照射手段 144、 DMD50 で反射されたレーザ光を拡大して結像するレンズ系(結像光学系) 454、 458、 DM D50の各描素部に対応して多数のマイクロレンズ 474が配置されたマイクロレンズァ レイ 472、マイクロレンズアレイ 472の各マイクロレンズに対応して多数のアパーチャ 4 78が設けられたアパーチャアレイ 476、アパーチャを通過したレーザ光を被露光面 5 6に結像するレンズ系(結像光学系) 480、 482で構成される露光ヘッドを表す。 ここで、図 15に、 DMD50を構成するマイクロミラー 62の反射面の平面度を測定し た結果を示す。同図においては、反射面の同じ高さ位置をなど高線で結んで示して あり、など高線のピッチは 5nmである。なお同図に示す X方向及び y方向は、マイクロ ミラー 62の 2つ対角線方向であり、マイクロミラー 62は y方向に延びる回転軸を中心 として前述のように回転する。また、図 16A及び図 16Bにはそれぞれ、上記 X方向、 y 方向に沿ったマイクロミラー 62の反射面の高さ位置変位を示す。  [0257] Fig. 14A shows DMD50, DMD50 with light irradiation means 144 for irradiating laser light, and lens system (imaging optical system) 454, 458, DM D50 for enlarging and imaging the laser light reflected by DMD50. A microlens array 472 in which a large number of microlenses 474 are arranged corresponding to each pixel part, an aperture array 476 in which a large number of apertures 478 are provided corresponding to each microlens of the microlens array 472, and an aperture This represents an exposure head composed of lens systems (imaging optical systems) 480 and 482 for forming an image of the passing laser beam on the exposed surface 56. Here, FIG. 15 shows the result of measuring the flatness of the reflecting surface of the micromirror 62 constituting the DMD 50. In the figure, the same height position of the reflecting surface is shown connected by contour lines, and the contour line pitch is 5 nm. Note that the X direction and the y direction shown in the figure are the two diagonal directions of the micromirror 62, and the micromirror 62 rotates around the rotation axis extending in the y direction as described above. 16A and 16B show the height position displacement of the reflecting surface of the micromirror 62 along the X direction and the y direction, respectively.
[0258] 図 15、図 16A、及び図 16Bに示した通り、マイクロミラー 62の反射面には歪みが存 在し、そして特にミラー中央部に注目してみると、 1つの対角線方向(y方向)の歪み 1S 別の対角線方向(X方向)の歪みよりも大きくなつている。このため、マイクロレンズ アレイ 55のマイクロレンズ 55aで集光されたレーザ光 Bの集光位置における形状が歪 むという問題が発生し得る。 [0258] As shown in Figs. 15, 16A, and 16B, the reflection surface of the micromirror 62 is distorted, and when attention is paid particularly to the center of the mirror, one diagonal direction (y direction) ) Distortion 1S The distortion is larger than the distortion in another diagonal direction (X direction). Therefore, the shape of the laser beam B collected by the microlens 55a of the microlens array 55 is distorted. Problems may occur.
[0259] 本発明の永久パターン形成方法においては前記問題を防止するために、マイクロ レンズアレイ 55のマイクロレンズ 55aが、従来とは異なる特殊な形状とされている。以 下、その点について詳しく説明する。  [0259] In the permanent pattern forming method of the present invention, in order to prevent the above problem, the microlens 55a of the microlens array 55 has a special shape different from the conventional one. This point will be explained in detail below.
[0260] 図 17A及び図 17Bはそれぞれ、マイクロレンズアレイ 55全体の正面形状及び側面 形状を詳しく示すものである。これらの図にはマイクロレンズアレイ 55の各部の寸法も 記入してあり、それらの単位は mmである。本発明の永久パターン形成方法では、先 に図 5A及び図 5Bを参照して説明したように DMD50の 1024個 X 256列のマイクロ ミラー 62が駆動されるものであり、それに対応させてマイクロレンズアレイ 55は、横方 向に 1024個並んだマイクロレンズ 55aの列を縦方向に 256列並設して構成されて!ヽ る。なお、図 17Aでは、マイクロレンズアレイ 55の並び順を横方向については jで、縦 方向につ ヽては kで示して!/、る。  FIG. 17A and FIG. 17B respectively show the front shape and the side shape of the entire microlens array 55 in detail. These figures also show the dimensions of each part of the microlens array 55, and their units are mm. In the permanent pattern forming method of the present invention, as described above with reference to FIGS. 5A and 5B, the 1024 × 256 micro mirrors 62 of the DMD 50 are driven, and the micro lens array is correspondingly driven. 55 is configured by arranging 256 rows of 1024 microlenses 55a in the horizontal direction in parallel in the vertical direction. In FIG. 17A, the arrangement order of the microlens array 55 is indicated by j in the horizontal direction and k in the vertical direction! /.
[0261] また、図 18A及び図 18Bはそれぞれ、マイクロレンズアレイ 55における 1つのマイク 口レンズ 55aの正面形状及び側面形状を示すものである。なお図 18Aには、マイクロ レンズ 55aのなど高線を併せて示してある。各マイクロレンズ 55aの光出射側の端面 は、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされて 、る 。より具体的には、マイクロレンズ 55aはトーリックレンズとされており、上記 X方向に光 学的に対応する方向の曲率半径 Rx=—0. 125mm,上記 y方向に対応する方向の 曲率半径 Ry=— 0. 1mmである。  [0261] FIGS. 18A and 18B show the front and side shapes of one microphone opening lens 55a in the microlens array 55, respectively. FIG. 18A also shows contour lines of the micro lens 55a. The end surface of each microlens 55a on the light emission side has an aspherical shape that corrects aberration due to distortion of the reflection surface of the micromirror 62. More specifically, the micro lens 55a is a toric lens, and has a radius of curvature Rx = −0.125 mm in the direction optically corresponding to the X direction, and a radius of curvature Ry = in the direction corresponding to the y direction. — 0.1 mm.
[0262] したがって、上記 X方向及び y方向に平行な断面内におけるレーザ光 Bの集光状態 は、概略、それぞれ図 19A及び図 19Bに示す通りとなる。つまり、 X方向に平行な断 面内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 55 aの曲率半径がより小であって、焦点距離がより短くなつている。  Accordingly, the condensing state of the laser beam B in the cross section parallel to the X direction and the y direction is roughly as shown in FIGS. 19A and 19B, respectively. In other words, comparing the cross section parallel to the X direction and the cross section parallel to the y direction, the radius of curvature of the microlens 55a is smaller and the focal length is shorter in the latter cross section. ing.
[0263] マイクロレンズ 55aを前記形状とした場合の、該マイクロレンズ 55aの集光位置(焦 点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図 20A、 図 20B、図 20C、及び図 20Dに示す。また比較のために、マイクロレンズ 55aが曲率 半径 Rx=Ry=—0. 1mmの球面形状である場合について、同様のシミュレーション を行った結果を図 21A、図 21B、図 21C及び図 21Dに示す。なお、各図における z の値は、マイクロレンズ 55aのピント方向の評価位置を、マイクロレンズ 55aのビーム 出射面からの距離で示して 、る。 [0263] When the microlens 55a has the above-described shape, the simulation results of the beam diameter in the vicinity of the condensing position (focal point position) of the microlens 55a are shown in Figs. 20A, 20B, 20C, and 20D. Shown in For comparison, FIG. 21A, FIG. 21B, FIG. 21C, and FIG. 21D show the results of similar simulations when the microlens 55a has a spherical shape with a curvature radius of Rx = Ry = −0.1 mm. In each figure, z This value indicates the evaluation position in the focus direction of the microlens 55a by the distance from the beam exit surface of the microlens 55a.
[0264] また、前記シミュレーションに用いたマイクロレンズ 55aの面形状は、下記計算式で 計算される。 [0264] The surface shape of the microlens 55a used in the simulation is calculated by the following calculation formula.
[数 1]  [Number 1]
_ C χ 2 X 2+ C y 2 Y 2 _ C χ 2 X 2 + C y 2 Y 2
― 1 + S Q R T ( 1 - C 2 X 2 - C y 2 Y 2 ) ― 1 + SQRT (1-C 2 X 2 -C y 2 Y 2 )
[0265] 但し、前記計算式において、 Cxは、 X方向の曲率( = lZRx)を意味し、 Cyは、 y方 向の曲率( = lZRy)を意味し、 Xは、 X方向に関するレンズ光軸 O力もの距離を意味 し、 Yは、 y方向に関するレンズ光軸 O力 の距離を意味する。 [0265] However, in the above formula, Cx means the curvature in the X direction (= lZRx), Cy means the curvature in the y direction (= lZRy), and X is the lens optical axis in the X direction. This means the distance of O force, and Y means the distance of the lens optical axis O force in the y direction.
[0266] 図 20A〜図 20Dと図 21A〜図 21Dとを比較すると明らかなように、本発明の永久 パターン形成方法ではマイクロレンズ 55aを、 y方向に平行な断面内の焦点距離が X 方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集 光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、よ り高精細な画像を感光性ソルダーレジスト層 150に露光可能となる。また、図 20A〜 図 20Dに示す本実施形態の方力 ビーム径の小さい領域がより広い、すなわち焦点 深度がより大であることが分かる。  20A to 20D and 21A to 21D are compared, the permanent pattern forming method of the present invention allows the microlens 55a to have a focal length in a cross section parallel to the y direction in the X direction. By using a toric lens smaller than the focal length in the parallel cross section, distortion of the beam shape in the vicinity of the light collecting position is suppressed. If so, a higher-definition image without distortion can be exposed on the photosensitive solder resist layer 150. Further, it can be seen that the region where the direction beam diameter is small in this embodiment shown in FIGS. 20A to 20D is wider, that is, the depth of focus is larger.
[0267] なお、マイクロミラー 62の X方向及び y方向に関する中央部の歪の大小関係力 上 記と逆になつている場合は、 X方向に平行な断面内の焦点距離が y方向に平行な断 面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様 に、歪みの無い、より高精細な画像を感光性ソルダーレジスト層 150に露光可能とな る。  [0267] It should be noted that when the micromirror 62 is in the opposite direction to the magnitude of distortion at the center in the X and y directions, the focal length in the cross section parallel to the X direction is parallel to the y direction. If the microlens is made up of a toric lens that is smaller than the focal length in the cross section, similarly, a higher-definition image without distortion can be exposed to the photosensitive solder resist layer 150.
[0268] また、マイクロレンズアレイ 55の集光位置近傍に配置されたアパーチャアレイ 59は 、その各アパーチャ 59aに、それと対応するマイクロレンズ 55aを経た光のみが入射 するように配置されたものである。すなわち、このアパーチャアレイ 59が設けられてい ることにより、各アパーチャ 59aに、それと対応しない隣接のマイクロレンズ 55aからの 光が入射することが防止され、消光比が高められる。  [0268] In addition, the aperture array 59 arranged in the vicinity of the condensing position of the microlens array 55 is arranged such that only light that has passed through the corresponding microlens 55a is incident on each aperture 59a. . That is, by providing this aperture array 59, it is possible to prevent light from adjacent microlenses 55a not corresponding to each aperture 59a from entering, and to enhance the extinction ratio.
[0269] 本来、上記目的で設置されるアパーチャアレイ 59のアパーチャ 59aの径をある程 度小さくすれば、マイクロレンズ 55aの集光位置におけるビーム形状の歪みを抑制す る効果も得られる。しカゝしそのようにした場合は、アパーチャアレイ 59で遮断される光 量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ 55a を非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれ る。 [0269] Originally, the diameter of the aperture 59a of the aperture array 59 that is installed for the above purpose is increased to a certain extent. If the degree is reduced, an effect of suppressing the distortion of the beam shape at the condensing position of the microlens 55a can be obtained. However, if this is done, the amount of light blocked by the aperture array 59 will increase and the light utilization efficiency will decrease. On the other hand, when the microlens 55a has an aspherical shape, the light utilization efficiency is kept high because light is not blocked.
[0270] また、本発明の永久パターン形成方法において、マイクロレンズ 55aは、 2次の非球 面形状であってもよぐより高次 (4次、 6次 · · · の非球面形状であってもよい。前記 高次の非球面形状を採用することにより、ビーム形状を更に高精細にすることができ る。  [0270] Further, in the permanent pattern forming method of the present invention, the microlens 55a may have a higher-order (fourth-order, sixth-order ... By adopting the higher-order aspherical shape, the beam shape can be further refined.
[0271] また、以上説明した実施形態では、マイクロレンズ 55aの光出射側の端面が非球面  [0271] In the embodiment described above, the end surface of the microlens 55a on the light emission side is an aspherical surface.
(トーリック面)とされているが、 2つの光通過端面の一方を球面とし、他方をシリンドリ カル面としたマイクロレンズカゝらマイクロレンズアレイを構成して、上記実施形態と同 様の効果を得ることもできる。  Although a microlens array is configured with one of the two light-passing end surfaces being a spherical surface and the other being a cylindrical surface, the same effect as in the above embodiment can be obtained. It can also be obtained.
[0272] 更に、以上説明した実施形態においては、マイクロレンズアレイ 55のマイクロレンズ 55aが、マイクロミラー 62の反射面の歪みによる収差を補正する非球面形状とされて いるが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する 各マイクロレンズに、マイクロミラー 62の反射面の歪みによる収差を補正する屈折率 分布を持たせても、同様の効果を得ることができる。  [0272] Furthermore, in the embodiment described above, the microlens 55a of the microlens array 55 has an aspherical shape that corrects aberration due to distortion of the reflecting surface of the micromirror 62. The same effect can be obtained even if each microlens constituting the microlens array has a refractive index distribution that corrects aberration due to distortion of the reflecting surface of the micromirror 62 instead of adopting the shape.
[0273] そのようなマイクロレンズ 155aの一例を図 23A及び図 23Bに示す。図 23A及び図 23Bはそれぞれ、このマイクロレンズ 155aの正面形状及び側面形状を示すものであ り、図示の通りこのマイクロレンズ 155aの外形形状は平行平板状である。なお、同図 における x、 y方向は、既述した通りである。  [0273] An example of such a microlens 155a is shown in FIGS. 23A and 23B. FIG. 23A and FIG. 23B show a front shape and a side shape of the micro lens 155a, respectively. As shown, the outer shape of the micro lens 155a is a parallel plate shape. The x and y directions in the figure are as described above.
[0274] また、図 24A及び図 24Bは、このマイクロレンズ 155aによる上記 x方向及び y方向 に平行な断面内におけるレーザ光 Bの集光状態を概略的に示している。このマイクロ レンズ 155aは、光軸 O力も外方に向かって次第に増大する屈折率分布を有するもの であり、同図においてマイクロレンズ 155a内に示す破線は、その屈折率が光軸 Oか ら所定のなどピッチで変化した位置を示している。図示の通り、 X方向に平行な断面 内と y方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ 155a の屈折率変化の割合がより大であって、焦点距離がより短くなつている。このような屈 折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレン ズアレイ 55を用いる場合と同様の効果を得ることが可能である。 [0274] FIGS. 24A and 24B schematically show the condensing state of the laser beam B in the cross section parallel to the x direction and the y direction by the microlens 155a. The microlens 155a has a refractive index distribution in which the optical axis O force gradually increases outward, and the broken line shown in the microlens 155a in FIG. The position changed with the pitch is shown. As shown in the figure, comparing the cross section parallel to the X direction with the cross section parallel to the y direction, the latter cross section is the microlens 155a. The rate of change in the refractive index is greater and the focal length is becoming shorter. Even when a microlens array composed of such refractive index distribution type lenses is used, it is possible to obtain the same effect as when the microlens array 55 is used.
[0275] なお、先に図 18A、図 18B、図 19A、及び図 19Bに示したマイクロレンズ 55aのよう に面形状を非球面としたマイクロレンズにぉ 、て、併せて上述のような屈折率分布を 与え、面形状と屈折率分布の双方によって、マイクロミラー 62の反射面の歪みによる 収差を補正するようにしてもょ ヽ。  Note that a refractive index as described above is also applied to a microlens having an aspherical surface shape like the microlens 55a previously shown in FIGS. 18A, 18B, 19A, and 19B. It is possible to give a distribution and correct aberration due to distortion of the reflecting surface of the micromirror 62 by both the surface shape and the refractive index distribution.
[0276] また、上記の実施形態では、 DMD50を構成するマイクロミラー 62の反射面の歪み による収差を補正しているが、 DMD以外の空間光変調素子を用いる本発明の永久 ノターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在す る場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生 じることを防止可能である。  [0276] In the above embodiment, the aberration due to the distortion of the reflection surface of the micromirror 62 constituting the DMD 50 is corrected. However, in the permanent pattern forming method of the present invention using a spatial light modulation element other than the DMD as well. If there is distortion on the surface of the picture element portion of the spatial light modulator, the present invention can be applied to correct the aberration caused by the distortion and prevent the beam shape from being distorted.
[0277] 次に、前記結像光学系について更に説明する。  Next, the imaging optical system will be further described.
前記露光ヘッドでは、光照射手段 144からレーザ光が照射されると、 DMD50によ りオン方向に反射される光束線の断面積が、レンズ系 454、 458により数倍 (例えば、 2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ 472の各マイクロレ ンズにより DMD50の各描素部に対応して集光され、アパーチャアレイ 476の対応す るアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系 480、 482に より被露光面 56上に結像される。  In the exposure head, when the laser beam is irradiated from the light irradiation means 144, the cross-sectional area of the beam line reflected in the ON direction by the DMD 50 is several times (for example, twice) by the lens systems 454 and 458. Enlarged. The expanded laser light is condensed by each microlens of the microlens array 472 so as to correspond to each pixel part of the DMD 50, and passes through the corresponding aperture of the aperture array 476. The laser beam that has passed through the aperture is imaged on the exposed surface 56 by the lens systems 480 and 482.
[0278] この結像光学系では、 DMD50により反射されたレーザ光は、拡大レンズ 454、 45 8により数倍に拡大されて被露光面 56に投影されるので、全体の画像領域が広くな る。このとき、マイクロレンズアレイ 472及びアパーチャアレイ 476が配置されていなけ れば、図 14Bに示すように、被露光面 56に投影される各ビームスポット BSの 1描素 サイズ (スポットサイズ)が露光エリア 468のサイズに応じて大きなものとなり、露光エリ ァ 468の鮮鋭度を表す MTF (Modulation Transfer Function)特性が低下する  In this imaging optical system, the laser beam reflected by the DMD 50 is magnified several times by the magnifying lenses 454 and 458 and projected onto the exposed surface 56, so that the entire image area is widened. . At this time, if the micro lens array 472 and the aperture array 476 are not arranged, as shown in FIG. 14B, one pixel size (spot size) of each beam spot BS projected onto the exposure surface 56 is the exposure area. MTF (Modulation Transfer Function), which represents the sharpness of exposure area 468, decreases as the size of 468 increases.
[0279] 一方、マイクロレンズアレイ 472及びアパーチャアレイ 476を配置した場合には、 D MD50により反射されたレーザ光は、マイクロレンズアレイ 472の各マイクロレンズに より DMD50の各描素部に対応して集光される。これにより、図 14Cに示すように、露 光エリアが拡大された場合でも、各ビームスポット BSのスポットサイズを所望の大きさ (例えば、 lO ^ mX lO ^ m)に縮小することができ、 MTF特性の低下を防止して高 精細な露光を行うことができる。なお、露光エリア 468が傾いているのは、描素間の隙 間を無くす為に DMD50を傾けて配置しているからである。 On the other hand, when the micro lens array 472 and the aperture array 476 are arranged, the laser light reflected by the DMD 50 is applied to each micro lens of the micro lens array 472. The light is condensed corresponding to each pixel part of DMD50. As a result, as shown in FIG. 14C, even when the exposure area is enlarged, the spot size of each beam spot BS can be reduced to a desired size (for example, lO ^ mX lO ^ m). It is possible to perform high-definition exposure by preventing deterioration of characteristics. The exposure area 468 is tilted because the DMD 50 is tilted in order to eliminate gaps between pixels.
[0280] また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによつ て被露光面 56上でのスポットサイズが一定の大きさになるようにビームを整形するこ とができると共に、各描素に対応して設けられたアパーチャアレイを通過させることに より、隣接する描素間でのクロストークを防止することができる。  [0280] Even if the beam is thick due to the aberration of the microlens, the aperture array can shape the beam so that the spot size on the exposed surface 56 is constant. At the same time, by passing through an aperture array provided corresponding to each pixel, crosstalk between adjacent pixels can be prevented.
[0281] 更に、光照射手段 144に後述する高輝度光源を使用することにより、レンズ 458か らマイクロレンズアレイ 472の各マイクロレンズに入射する光束の角度が小さくなるの で、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光 比を実現することができる。  [0281] Furthermore, by using a high-intensity light source, which will be described later, as the light irradiation means 144, the angle of the light beam incident on each microlens of the microlens array 472 from the lens 458 becomes small, so It is possible to prevent a part of the light beam from entering. That is, a high extinction ratio can be realized.
[0282] <その他の光学系 >  [0282] <Other optical systems>
本発明の永久パターン形成方法では、公知の光学系の中から適宜選択したその 他の光学系と併用してもよぐ例えば、 1対の組合せレンズからなる光量分布補正光 学系などが挙げられる。  In the permanent pattern forming method of the present invention, it may be used in combination with other optical systems appropriately selected from known optical systems, for example, a light quantity distribution correction optical system composed of a pair of combination lenses. .
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束 幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅 を変化させて、光照射手段からの平行光束を DMDに照射するときに、被照射面で の光量分布が略均一になるように補正する。以下、前記光量分布補正光学系につい て図面を参照しながら説明する。  The light quantity distribution correcting optical system changes the light flux width at each exit position so that the ratio of the light flux width in the peripheral portion to the light flux width in the central portion close to the optical axis is smaller on the exit side than on the entrance side. When the DMD is irradiated with the parallel light beam from the light irradiation means, the light amount distribution on the irradiated surface is corrected so as to be substantially uniform. Hereinafter, the light quantity distribution correcting optical system will be described with reference to the drawings.
[0283] まず、図 25Aに示したように、入射光束と出射光束とで、その全体の光束幅 (全光 束幅) HO、 HIが同じである場合について説明する。なお、図 25Aにおいて、符号 5 1、 52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮 想的に示したものである。  First, as shown in FIG. 25A, a description will be given of a case where the entire luminous flux width (total luminous flux width) HO and HI is the same for the incident luminous flux and the outgoing luminous flux. In FIG. 25A, the portions denoted by reference numerals 51 and 52 virtually represent the entrance surface and the exit surface of the light quantity distribution correcting optical system.
[0284] 前記光量分布補正光学系において、光軸 Z1に近い中心部に入射した光束と、周 辺部に入射した光束とのそれぞれの光束幅 hO、 hi力 同一であるものとする(hO = hl)。前記光量分布補正光学系は、入射側において同一の光束幅 hO, hiであった 光に対し、中心部の入射光束については、その光束幅 hOを拡大し、逆に、周辺部の 入射光束に対してはその光束幅 hiを縮小するような作用を施す。すなわち、中心部 の出射光束の幅 hlOと、周辺部の出射光束の幅 hl lとについて、 hl KhlOとなるよ うにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部 の光束幅の比「hllZhlO」力 入射側における比(hlZhO= l)に比べて小さくな つている((hllZhlO)く 1)。 [0284] In the light quantity distribution correcting optical system, the light flux width hO and hi force of the light beam incident on the central part near the optical axis Z1 and the light beam incident on the peripheral part are the same (hO = hl). The light quantity distribution correcting optical system expands the light flux width hO of the incident light flux at the central portion with respect to the light having the same light flux width hO, hi on the incident side. On the other hand, it acts to reduce the luminous flux width hi. That is, the width hlO of the emitted light beam at the center and the width hl l of the emitted light beam at the peripheral part are set to hl KhlO. In terms of the ratio of the luminous flux width, the ratio of the luminous flux width in the peripheral part to the luminous flux width in the central part on the exit side is smaller than the ratio (hlZhO = l) on the incident side (hllZhlO). ).
[0285] このように光束幅を変化させることにより、通常では光量分布が大きくなつている中 央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利 用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは 、例えば、有効領域内における光量ムラが 30%以内となるようにし、 20%以内となる ようにすることがより好ましい。  [0285] By changing the luminous flux width in this way, the central luminous flux, which normally has a large light quantity distribution, can be utilized in the peripheral part where the light quantity is insufficient, and the light utilization as a whole is improved. The light amount distribution on the irradiated surface is made substantially uniform without reducing the use efficiency. The degree of uniformity is, for example, preferably such that the unevenness in the amount of light within the effective region is within 30% and within 20%.
[0286] 前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束 幅を変える場合(図 25B,図 25C)においても同様である。  [0286] The effects and effects of the light quantity distribution correcting optical system are the same when the entire light flux width is changed between the incident side and the exit side (FIGS. 25B and 25C).
[0287] 図 25Bは、入射側の全体の光束幅 H0を、幅 H2に"縮小"して出射する場合 (H0  [0287] Figure 25B shows the case where the entire light flux width H0 on the incident side is “reduced” to the width H2 before being emitted (H0
>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hl lが中心部に比べて小 さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を 周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大き くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「H11ZH10」が、入射側における比 (hlZhO= l)に比べて小さくなる(( hllZhlO)く 1)。  > H2). Even in such a case, the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side. Conversely, the luminous flux width hl l at the periphery is made smaller than at the center. Considering the reduction rate of the luminous flux, the reduction rate for the incident light flux in the central portion is made smaller than that in the peripheral portion, and the reduction rate for the incident light flux in the peripheral portion is made larger than that in the central portion. Also in this case, the ratio “H11ZH10” of the light flux width in the peripheral part to the light flux width in the central part is smaller than the ratio (hlZhO = l) on the incident side ((hllZhlO) 1).
[0288] 図 25Cは、入射側の全体の光束幅 H0を、幅 H3に"拡大"して出射する場合 (H0 く H3)を示している。このような場合においても、前記光量分布補正光学系は、入射 側において同一の光束幅 h0、 hiであった光を、出射側において、中央部の光束幅 hlOが周辺部に比べて大きくなり、逆に、周辺部の光束幅 hl lが中心部に比べて小 さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を 周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さ くするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光 束幅の比「hl lZhlO」力 入射側における比 (hlZhO= l)に比べて小さくなる((h l lZhlO) < l)。 FIG. 25C shows a case where the entire light flux width H0 on the incident side is “expanded” to the width H3 and emitted (H0 and H3). Even in such a case, the light quantity distribution correcting optical system has the same light flux width h0, hi on the incident side, and the light flux width hlO in the central portion is larger than that in the peripheral portion on the outgoing side. Conversely, the luminous flux width hl l at the periphery is made smaller than at the center. Considering the expansion rate of the light beam, the expansion rate for the incident light beam in the center is It is larger than the peripheral part and has a function of reducing the enlargement ratio of incident light to the peripheral part compared to the central part. Also in this case, the ratio of the light flux width in the peripheral portion to the light flux width in the central portion becomes smaller than the ratio (hlZhO = l) on the incident side (hlZhO = l) ((hl lZhlO) <l).
[0289] このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、 光軸 Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出 射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、 出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅 は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことが でき、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された 光束断面を形成することができる。  As described above, the light quantity distribution correction optical system changes the light flux width at each emission position, and outputs the ratio of the light flux width at the peripheral portion to the light flux width at the central portion close to the optical axis Z1 compared to the incident side. Since the emission side is smaller, the light having the same luminous flux width on the incident side has a larger luminous flux width in the central part than in the peripheral part on the outgoing side, and the luminous flux width in the peripheral part is Smaller than the center. As a result, the light beam in the central part can be utilized to the peripheral part, and a light beam cross-section with a substantially uniform light quantity distribution can be formed without reducing the light use efficiency of the entire optical system.
[0290] 次に、前記光量分布補正光学系として使用する 1対の組合せレンズの具体的なレ ンズデータの 1例を示す。この例では、前記光照射手段がレーザアレイ光源である場 合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータ を示す。なお、シングルモード光ファイバの入射端に 1個の半導体レーザを接続した 場合には、光ファイノ からの射出光束の光量分布がガウス分布になる。本発明の永 久パターン形成方法では、このような場合の適用も可能である。また、マルチモード 光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付けるなどによ り光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。 下記表 1に基本レンズデータを示す。  [0290] Next, an example of specific lens data of a pair of combination lenses used as the light quantity distribution correcting optical system is shown. In this example, lens data is shown in the case where the light amount distribution in the cross section of the emitted light beam is a Gaussian distribution, as in the case where the light irradiation means is a laser array light source. When one semiconductor laser is connected to the incident end of the single-mode optical fiber, the light intensity distribution of the emitted light beam from the optical fino becomes a Gaussian distribution. The permanent pattern forming method of the present invention can be applied to such a case. In addition, the present invention can be applied to a case where the light amount in the central portion near the optical axis is larger than the light amount in the peripheral portion by reducing the core diameter of the multimode optical fiber to approach the configuration of the single mode optical fiber. Table 1 below shows basic lens data.
[0291] [表 1]  [0291] [Table 1]
Figure imgf000090_0001
Figure imgf000090_0001
表 1から分力るように、 1対の組合せレンズは、回転対称の 2つの非球面レンズから 構成されている。光入射側に配置された第 1のレンズの光入射側の面を第 1面、光出 射側の面を第 2面とすると、第 1面は非球面形状である。また、光出射側に配置され た第 2のレンズの光入射側の面を第 3面、光出射側の面を第 4面とすると、第 4面が 非球面形状である。 As shown in Table 1, a pair of combination lenses is composed of two rotationally symmetric aspherical lenses. It is configured. If the light incident side surface of the first lens arranged on the light incident side is the first surface and the light output side surface is the second surface, the first surface is aspherical. In addition, when the surface on the light incident side of the second lens disposed on the light emitting side is the third surface and the surface on the light emitting side is the fourth surface, the fourth surface is aspherical.
[0293] 表 1にお!/、て、面番号 Siは i番目(i= 1 4)の面の番号を示し、曲率半径 riは i番目 の面の曲率半径を示し、面間隔 diは i番目の面と i+ 1番目の面との光軸上の面間隔 を示す。面間隔 di値の単位はミリメートル (mm)である。屈折率 Niは i番目の面を備え た光学要素の波長 405nmに対する屈折率の値を示す。  [0293] In Table 1,! /, The surface number Si indicates the number of the i-th surface (i = 14), the radius of curvature ri indicates the radius of curvature of the i-th surface, and the surface distance di is i The distance between the first and i + 1th planes on the optical axis. The unit of the surface distance di value is millimeter (mm). Refractive index Ni indicates the value of the refractive index with respect to the wavelength of 405 nm of the optical element having the i-th surface.
下記表 2に、第 1面及び第 4面の非球面データを示す。  Table 2 below shows the aspherical data for the first and fourth surfaces.
[0294] [表 2]  [0294] [Table 2]
Figure imgf000091_0002
Figure imgf000091_0002
[0295] 上記の非球面データは、非球面形状を表す下記数式 (A)における係数で表される [0295] The above aspheric surface data is represented by a coefficient in the following mathematical formula (A) representing the aspheric surface shape.
[0296] [数 2] [0296] [Equation 2]
Z = +∑" (A)
Figure imgf000091_0001
Z = + ∑ "(A)
Figure imgf000091_0001
[0297] 上記数式 (A)にお 、て各係数を以下の通り定義する。 In the above formula (A), each coefficient is defined as follows.
Z :光軸から高さ pの位置にある非球面上の点から、非球面の頂点の接平面 (光軸に 垂直な平面)に下ろした垂線の長さ(mm)  Z: The length of the perpendicular (mm) drawn from the point on the aspheric surface at a height p from the optical axis to the tangent plane (plane perpendicular to the optical axis) of the apex of the aspheric surface
P:光軸からの距離 (mm) K:円錐係数 P: Distance from optical axis (mm) K: Conic coefficient
じ:近軸曲率(17 r:近軸曲率半径)  J: paraxial curvature (17 r: paraxial radius of curvature)
ai:第 i次 (i= 3〜: LO)の非球面係数  ai: i-th order (i = 3 ~: LO) aspheric coefficient
表 2に示した数値において、記号" E"は、その次に続く数値が 10を底とした"べき指 数 であることを示し、その 10を底とした指数関数で表される数値力 E"の前の数値 に乗算されることを示す。例えば、「1. OE— 02」であれば、「1. 0 X 10_2」であること を示す。 In the numerical values shown in Table 2, the symbol “E” indicates that the next numerical value is an exponent that has a base of 10, and the numerical force E expressed by an exponential function with the base of 10 Indicates that the number before "is multiplied. For example, “1. OE—02” indicates “1. 0 X 10 _2 ”.
[0298] 図 27は、前記表 1及び表 2に示す 1対の組合せレンズによって得られる照明光の光 量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。な お、比較のために、図 26に、補正を行わな力つた場合の照明光の光量分布 (ガウス 分布)を示す。図 26及び図 27から分力ゝるように、光量分布補正光学系で補正を行う ことにより、補正を行わな力つた場合と比べて、略均一化された光量分布が得られて いる。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行う ことができる。  FIG. 27 shows the light amount distribution of the illumination light obtained by the pair of combination lenses shown in Table 1 and Table 2. The horizontal axis indicates coordinates from the optical axis, and the vertical axis indicates the light amount ratio (%). For comparison, Fig. 26 shows the light intensity distribution (Gaussian distribution) of illumination light when correction is applied. As can be seen from FIG. 26 and FIG. 27, by performing correction with the light amount distribution correcting optical system, a substantially uniform light amount distribution is obtained compared to the case where the correction is not performed. As a result, it is possible to perform uniform exposure with uniform laser light without reducing the light utilization efficiency.
[0299] 現像工程  [0299] Development process
前記現像工程は、前記露光工程により前記感光性ソルダーレジスト層を露光し、該 感光性ソルダーレジスト層の露光した領域を硬化させた後、未硬化領域を除去する ことにより現像し、永久パターンを形成する工程である。  The developing step exposes the photosensitive solder resist layer in the exposing step, cures the exposed area of the photosensitive solder resist layer, and then develops by removing the uncured area to form a permanent pattern. It is a process to do.
[0300] 前記未硬化領域の除去方法としては、特に制限はなぐ目的に応じて適宜選択す ることができ、例えば、現像液を用いて除去する方法などが挙げられる。  [0300] The removal method of the uncured region can be appropriately selected depending on the purpose without any particular limitation, and examples thereof include a method of removing using a developer.
[0301] 前記現像液としては、特に制限はなぐ目的に応じて適宜選択することができ、例え ば、アルカリ金属又はアルカリ土類金属の水酸ィ匕物若しくは炭酸塩、炭酸水素塩、ァ ンモ-ァ水、 4級アンモ-ゥム塩の水溶液などが好適に挙げられる。これらの中でも、 炭酸ナトリウム水溶液が特に好まし 、。  [0301] The developer may be appropriately selected according to the purpose without any particular restriction. For example, an alkali metal or alkaline earth metal hydroxide or carbonate, hydrogen carbonate, ammonia, or the like. Preferred examples include -a water and an aqueous solution of quaternary ammonia salt. Of these, an aqueous sodium carbonate solution is particularly preferred.
[0302] 前記現像液は、界面活性剤、消泡剤、有機塩基 (例えば、ベンジルァミン、ェチレ ンジァミン、エタノールァミン、テトラメチルアンモ -ゥムハイドロキサイド、ジエチレント リアミン、トリエチレンペンタミン、モルホリン、トリエタノールァミンなど)や、現像を促進 させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、ァ ミド類、ラタトン類など)などと併用してもよい。また、前記現像液は、水又はアルカリ水 溶液と有機溶剤を混合した水系現像液であってもよぐ有機溶剤単独であってもよい [0302] The developer includes a surfactant, an antifoaming agent, an organic base (for example, benzylamine, ethylenediamine, ethanolamine, tetramethylammonium hydroxide, diethylenetriamine, triethylenepentamine, morpholine, Triethanolamine) and organic solvents (eg alcohols, ketones, esters, ethers, May be used in combination with amides, ratatones, etc.). Further, the developer may be an aqueous developer obtained by mixing water or an alkaline water solution and an organic solvent, or may be an organic solvent alone.
[0303] 硬化処理工程 [0303] Curing process
本発明の永久パターン形成方法は、更に、硬化処理工程を含むことが好ましい。 前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターン〖こ おける感光性ソルダーレジスト層に対して硬化処理を行う工程である。  The permanent pattern forming method of the present invention preferably further includes a curing treatment step. The curing treatment step is a step of performing a curing treatment on the photosensitive solder resist layer in the permanent pattern formed after the development step.
[0304] 前記硬化処理としては、特に制限はなぐ目的に応じて適宜選択することができ、 例えば、全面露光処理、全面加熱処理などが好適に挙げられる。 [0304] The curing treatment can be appropriately selected according to the purpose without any particular limitation, and examples thereof include a full exposure process and a full heat treatment.
[0305] 前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久バタ ーンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光 により、前記感光性ソルダーレジスト層を形成する感光性ソルダーレジスト組成物中 の榭脂の硬化が促進され、前記永久パターンの表面が硬化される。 [0305] Examples of the entire surface exposure processing method include a method of exposing the entire surface of the laminate on which the permanent pattern is formed after the developing step. By this overall exposure, curing of the resin in the photosensitive solder resist composition for forming the photosensitive solder resist layer is promoted, and the surface of the permanent pattern is cured.
前記全面露光を行う装置としては、特に制限はなぐ目的に応じて適宜選択するこ とができ、例えば、超高圧水銀灯などの UV露光機が好適に挙げられる。  The apparatus for performing the entire surface exposure can be appropriately selected according to the purpose without any particular limitation. For example, a UV exposure machine such as an ultra-high pressure mercury lamp can be preferably used.
[0306] 前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形 成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前 記永久パターンの表面の膜強度が高められる。 [0306] Examples of the method of the entire surface heat treatment include a method of heating the entire surface of the laminate on which the permanent pattern is formed after the developing step. By heating the entire surface, the film strength of the surface of the permanent pattern is increased.
前記全面加熱における加熱温度としては、 120〜250でカ 子ましく、 120〜200°C 力 り好ましい。該加熱温度が 120°C未満であると、加熱処理による膜強度の向上が 得られないことがあり、 250°Cを超えると、前記感光性ソルダーレジスト組成物中の榭 脂の分解が生じ、膜質が弱く脆くなることがある。  The heating temperature for the entire surface heating is 120 to 250, preferably 120 to 200 ° C. If the heating temperature is less than 120 ° C, the film strength may not be improved by heat treatment. If the heating temperature exceeds 250 ° C, decomposition of the resin in the photosensitive solder resist composition occurs. The film quality may be weak and brittle.
前記全面加熱における加熱時間としては、 10〜120分が好ましぐ 15〜60分がよ り好ましい。  The heating time for the entire surface heating is preferably 10 to 120 minutes, more preferably 15 to 60 minutes.
前記全面加熱を行う装置としては、特に制限はなぐ公知の装置の中から、目的に 応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、 IRヒーター などが挙げられる。  The apparatus for performing the entire surface heating can be appropriately selected according to the purpose from known apparatuses that are not particularly limited, and examples thereof include a dry oven, a hot plate, and an IR heater.
[0307] なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント 配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うこと ができる。 [0307] When the base material is a printed wiring board such as a multilayer wiring board, the printed circuit board The permanent pattern of the present invention can be formed on a wiring board, and soldering can be performed as follows.
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリ ント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属 層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った 部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが 、保護膜あるいは絶縁膜 (層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣 同士の電極の導通が防止される。  That is, the hardened layer which is the permanent pattern is formed by the developing step, and the metal layer is exposed on the surface of the printed wiring board. Gold plating is performed on the portion of the metal layer exposed on the surface of the printed wiring board, and then soldering is performed. Then, semiconductors and parts are mounted on the soldered parts. At this time, the permanent pattern by the hardened layer exhibits a function as a protective film or an insulating film (interlayer insulating film), and prevents external impact and conduction between adjacent electrodes.
[0308] 本発明の永久パターン形成方法においては、保護膜及び層間絶縁膜の少なくとも Vヽずれかを形成するのが好ま ヽ。前記永久パターン形成方法により形成される永 久パターンが、前記保護膜又は前記層間絶縁膜であると、配線を外部からの衝撃や 曲げ力も保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層 配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装に有用であ る。  [0308] In the method for forming a permanent pattern of the present invention, it is preferable to form at least a V deviation between the protective film and the interlayer insulating film. When the permanent pattern formed by the permanent pattern forming method is the protective film or the interlayer insulating film, it is possible to protect the wiring from external impact and bending force, particularly when the interlayer insulating film is the interlayer insulating film. For example, it is useful for high-density mounting of semiconductors and components on multilayer wiring boards and build-up wiring boards.
[0309] 本発明の永久パターン形成方法は、高速でパターン形成が可能であるため、各種 ノターンの形成に広く用いることができ、特に配線パターンの形成に好適に使用する ことができる。  [0309] Since the permanent pattern forming method of the present invention enables pattern formation at a high speed, it can be widely used for forming various patterns, and can be particularly suitably used for forming wiring patterns.
また、本発明の永久パターン形成方法により形成される永久パターンは、優れた表 面硬度、絶縁性、耐熱性、耐湿性などを有し、保護膜、層間絶縁膜、ソルダーレジス トパターン、として好適に使用することができる。  The permanent pattern formed by the method for forming a permanent pattern of the present invention has excellent surface hardness, insulation, heat resistance, moisture resistance, etc., and is suitable as a protective film, an interlayer insulation film, and a solder resist pattern. Can be used for
実施例  Example
[0310] 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定され るものではない。  [0310] Examples of the present invention will be described below, but the present invention is not limited to the following examples.
[0311] 感光性ソルダーレジスト組成物に含まれるアルカリ可溶性光架橋性榭脂(P1)〜(P 2) (合成例 1〜2)、アルカリ可溶性ポリウレタン榭脂 (a)〜(k) (合成例 3〜13)、顔料 と無機充填剤分散液の調製 (合成例 14)を以下のように合成した。  [0311] Alkali-soluble photocrosslinkable resins (P1) to (P2) (Synthesis Examples 1 to 2) and alkali-soluble polyurethane resins (a) to (k) (Synthesis Examples) contained in the photosensitive solder resist composition 3 to 13), Preparation of pigment and inorganic filler dispersion (Synthesis Example 14) was synthesized as follows.
[0312] (合成例 1)アルカリ可溶性光架橋性榭脂 P1の合成  [0312] (Synthesis Example 1) Synthesis of alkali-soluble photocrosslinkable rosin P1
YDCN704 (東都化成 (株)製、クレゾ一ルノボラック型エポキシ榭脂(エポキシ当量 = 220)、 220質量部、アクリル酸 72質量部、ハイドロキノン 1. 0質量部、メトキシプロ ピルアセテート 180質量部を仕込み、 90°Cに加熱、撹件して反応混合物を溶解したYDCN704 (manufactured by Tohto Kasei Co., Ltd., Cresol Monovolak type epoxy resin (epoxy equivalent) = 220), 220 parts by mass, 72 parts by mass of acrylic acid, 1.0 part by mass of hydroquinone, 180 parts by mass of methoxypropyl acetate, heated to 90 ° C and stirred to dissolve the reaction mixture
。次に、 60°Cに冷却し、塩ィ匕べンジルトリメチルアンモ -ゥム 1質量部を仕込み、 100. Next, it is cooled to 60 ° C and charged with 1 part by mass of salted benzyltrimethylammonium.
°Cに加熱して、固形分酸価が lmgKOHZgになるまで反応した。次にテトラヒドロフ タル酸無水物 152質量部とメトキシプロピルアセテート 100質量部を仕込み、 80°Cに 加熱し、約 6時間反応し冷却し、固形分濃度が 60質量%になるようにメトキシプロピ ルアセテートで希釈してアルカリ可溶性光架橋性樹脂 (p l)を得た。 P 1の固形分酸 価は 138mgKOHZgで、質量平均分子量は 4, 020であった。 The mixture was heated to ° C and reacted until the solid content acid value reached 1 mgKOHZg. Next, 152 parts by mass of tetrahydrophthalic anhydride and 100 parts by mass of methoxypropyl acetate were added, heated to 80 ° C, reacted for about 6 hours, cooled, and methoxypropyl so that the solid content concentration became 60% by mass. Dilution with acetate gave an alkali-soluble photocrosslinkable resin (pl) . The solid content acid value of P 1 was 138 mgKOHZg, and the mass average molecular weight was 4,020.
[0313] (合成例 2)アルカリ可溶性光架橋性榭脂 P2の合成  [0313] (Synthesis Example 2) Synthesis of alkali-soluble photocrosslinkable rosin P2
撹件装置、滴下ロート、コンデンサー、温度計、ガス導入管を備えたフラスコにメトキ シプロピルアセテート 145質量部を取り、窒素置換しながら撹件し、 120°Cに昇温し た。次に、スチレン 10. 4質量部、グリシジルメタタリレート 71質量部及びジシクロペン テュルアタリレート(日立化成 (株)製 FA— 511A) 82質量部力もなるモノマー混合物 に t—プチルヒドロパーオキサイド(日本油脂 (株)製パーブチル O)を 7. 6質量部添 カロした。この混合溶液を滴下ロートから 2時間かけてフラスコ中に滴下し、更に 120°C で 2時間撹件し続けた。次に、フラスコ内を空気置換に替え、アクリル酸 34. 2質量部 にトリスジメチルァミノメチルフエノール 0. 9質量部及びハイドロキノン 0. 145質量部 を、上記フラスコ中に投入し、 120°Cで 6時間反応を続け固形分酸価 =0. 8となった ところで反応を終了し、更に引き続きテトラヒドロフタル酸無水物 60. 8質量部(生成し た水酸基の 84. 2モル%)、トリエチルァミン 0. 8質量部を加え 120°Cで 3. 5時間反 応させ、メトキシプロピルアセテートで固形分濃度が 60質量%になるように希釈し、ァ ルカリ可溶性光架橋性榭脂 (P2)を得た。 P2の固形分酸価 =84で、質量平均分子 量は 12, 000であった。  Into a flask equipped with a stirring device, a dropping funnel, a condenser, a thermometer, and a gas introduction tube, 145 parts by mass of methoxypropyl acetate was placed, stirred while being purged with nitrogen, and heated to 120 ° C. Next, 10.4 parts by mass of styrene, 71 parts by mass of glycidyl metatalylate and dicyclopentyl acrylate (FA-511A manufactured by Hitachi Chemical Co., Ltd.) 7.6 parts by mass of perbutyl O) manufactured by Co., Ltd. was added. This mixed solution was dropped into the flask from the dropping funnel over 2 hours, and further stirred at 120 ° C for 2 hours. Next, the inside of the flask was replaced with air, and 0.9 parts by mass of trisdimethylaminomethylphenol and 0.145 parts by mass of hydroquinone were added to 34.2 parts by mass of acrylic acid at 120 ° C. The reaction was continued for 6 hours, and the reaction was terminated when the solid content acid value was 0.8, and further, 60.8 parts by mass of tetrahydrophthalic anhydride (84.2 mol% of the generated hydroxyl group), triethylamine Add 8 parts by mass, react at 120 ° C for 3.5 hours, and dilute with methoxypropyl acetate to a solid content concentration of 60% by mass to obtain alkali-soluble photocrosslinkable resin (P2). It was. The solid content acid value of P2 was 84 and the mass average molecular weight was 12,000.
[0314] (合成例 3)アルカリ可溶性ポリウレタン榭脂(a)の合成  [Synthesis Example 3] Synthesis of alkali-soluble polyurethane resin (a)
500mlの三つ口フラスコに 4, 4,一ジフエ-ノレメタンジイソシァネート 41. 07gとポリ ォキシテトラメチレングリコール(ィ匕合物例 22、分子量 =981) 58. 6gと 2, 2—ビス(ヒ ドロキシメチル)プロピオン酸 18. 8gをジォキサン 90mlに溶解した。 N, N—ジェチ ルァ-リンを 0. 3g入れた後、ジォキサン還流下 6時間撹拌した。反応後、水 1. 31酢 酸 13mlの溶液に少しずつ加えポリマーを析出させた。この固体を真空乾燥させるこ とにより 127gのアルカリ可溶性ポリウレタン榭脂(a)を得た。酸価は 62mgKOHZg であった。 GPCにて分子量を測定したところ質量平均 (ポリスチレン標準)で 30, 000 であった。 In a 500 ml three-necked flask, 41,07 g of 4,4,1-dimethane-diisocyanate and polyoxytetramethylene glycol (Compound example 22, molecular weight = 981) 58.6 g and 2, 2— Bis (hydroxymethyl) propionic acid 18.8 g was dissolved in dioxane 90 ml. After adding 0.3 g of N, N-jetyl phosphorus, the mixture was stirred for 6 hours under reflux of dioxane. After reaction, water 1.31 vinegar The polymer was precipitated in small portions in a solution of 13 ml of acid. This solid was vacuum-dried to obtain 127 g of an alkali-soluble polyurethane resin (a). The acid value was 62 mgKOHZg. When the molecular weight was measured by GPC, the mass average (polystyrene standard) was 30,000.
[0315] (合成例 4〜13)アルカリ可溶性ポリウレタン榭脂 (b)〜 (k)の合成  [0315] (Synthesis Examples 4 to 13) Synthesis of alkali-soluble polyurethane resin (b) to (k)
表 3に示すように、合成例 3と同様にして、アルカリ可溶性ポリウレタン榭脂 (b)〜(k )を合成した。  As shown in Table 3, in the same manner as in Synthesis Example 3, alkali-soluble polyurethane resin (b) to (k) were synthesized.
[0316] (合成例 14)顔料と無機充填剤分散液の調製  [Synthesis Example 14] Preparation of pigment and inorganic filler dispersion
ビグメントブルー 15 : 3を 0. 80質量部と、ビグメントイエロー 180を 0. 7質量部と、各 アルカリ可溶性光架橋性榭脂の 60質量%メトキシプロピルアセテート溶液 15質量部 を秤量し、ジルコユアビーズが充填されたミル型分散機を用いて分散し、緑色顔料分 散液を得た。  Pigment Blue 15: 3 (0.80 parts by mass), Pigment Yellow 180 (0.7 parts by mass), and 60 parts by mass of a 60% by mass methoxypropyl acetate solution of each alkali-soluble photocrosslinkable resin, were weighed. Dispersion was performed using a mill type disperser filled with your beads to obtain a green pigment dispersion.
引き続き、無機充填剤である硫酸バリウム 18質量部を前記緑色顔料分散液中に混 合撹拌し、緑色顔料との共分散液 81. 4質量部(固形分濃度 35質量%)を得た。  Subsequently, 18 parts by mass of barium sulfate, which is an inorganic filler, was mixed and stirred in the green pigment dispersion to obtain 81.4 parts by mass of a co-dispersed liquid with a green pigment (solid content concentration: 35% by mass).
[0317] (実施例 1) [0317] (Example 1)
<感光性ソルダーレジスト組成物塗布液の調製 >  <Preparation of coating solution for photosensitive solder resist composition>
下記の各成分 (表 4参照)を混合し、感光性ソルダーレジスト組成物塗布液を調製し た。  The following components (see Table 4) were mixed to prepare a photosensitive solder resist composition coating solution.
アルカリ可溶性光架橋性榭脂 (P1)溶液  Alkali-soluble photocrosslinkable rosin (P1) solution
(固形分濃度 60質量%) 40. 3質量部  (Solid concentration 60% by mass) 40.3 parts by mass
合成例 3で合成したアルカリ可溶性ポリウレタン榭脂(a) 9. 5質量部 ビスフエノール A型エポキシ榭脂  Alkali-soluble polyurethane resin synthesized in Synthesis Example 3 (a) 9.5 parts by mass Bisphenol A type epoxy resin
(ジャパンエポキシレジン (株)製ェピコート 1004) 17質量部  (Japan Epoxy Resin Co., Ltd. Epicoat 1004) 17 parts by mass
ジペンタエリスリトールへキサアタリレート  Dipentaerythritol hexaatalylate
(日本化薬 (株)製 DPHA) 11質量部  (Nippon Kayaku Co., Ltd. DPHA) 11 parts by mass
ビスアシノレホスフィン才キシド  Bisacinolephosphine-born xoxide
(チバスペシャルティケミカルス社製 Irgacure819) 7質量部 (Manufactured by Ciba Specialty Chemicals, Inc. I rgacur e819) 7 parts by weight
顔料分散液 (合成例 14) 81. 4質量部 ジシアンジアミド 2. 8質量部 Pigment dispersion (Synthesis Example 14) 81.4 parts by mass Dicyandiamide 2.8 parts by mass
[0318] 感光性ソルダーレジストフイルムの作製  [0318] Fabrication of photosensitive solder resist film
図 1に示すように、支持体 1として、厚み 25 mのポリエチレンテレフタレートフィム( PET)を用い、該支持体 1上に前記感光性ソルダーレジスト組成物塗布液をバーコ 一ターにより、乾燥後の感光性ソルダーレジスト層 2の厚みが約 30 mになるように 塗布し、 80°C、 30分間熱風循環式乾燥機中で乾燥させ、次いで、該感光性ソルダ 一レジスト層の上に、前記保護フィルムとして厚み 12 μ mのポリプロピレンフィルムを ラミネートで積層し、感光性ソルダーレジストフイルムを作製した。  As shown in FIG. 1, a 25 m-thick polyethylene terephthalate film (PET) is used as the support 1, and the photosensitive solder resist composition coating solution is dried on the support 1 using a bar coater. The photosensitive solder resist layer 2 is applied to a thickness of about 30 m, dried in a hot air circulating drier at 80 ° C. for 30 minutes, and then the protective film is coated on the photosensitive solder one resist layer. As a result, a 12 μm thick polypropylene film was laminated to produce a photosensitive solder resist film.
[0319] <永久パターンの形成 >  [0319] <Permanent pattern formation>
一積層体の調製  Preparation of one laminate
次に、前記基材として、配線形成済みの銅張積層板 (スルーホールなし、銅厚み 1 2 μ mのプリント配線板)の表面に化学研磨処理を施して調製した。該銅張積層板上 に、前記感光性ソルダーレジストフイルムの感光性ソルダーレジスト層が前記銅張積 層板に接するようにして前記感光性ソルダーレジストフイルムにおける保護フィルムを 剥がしながら、真空ラミネーター (名機製作所製、 MVLP500)を用いて積層させ、前 記銅張積層板と、前記感光性ソルダーレジスト層と、前記ポリエチレンテレフタレート フィルム (支持体)とがこの順に積層された積層体を調製した。  Next, as the base material, a surface of a copper-clad laminate (with no through hole and a copper thickness of 12 μm) on which wiring was formed was prepared by subjecting it to chemical polishing treatment. On the copper clad laminate, while peeling the protective film on the photosensitive solder resist film so that the photosensitive solder resist layer of the photosensitive solder resist film is in contact with the copper clad laminate, a vacuum laminator MVLP500) manufactured by Seisakusho was laminated to prepare a laminate in which the copper-clad laminate, the photosensitive solder resist layer, and the polyethylene terephthalate film (support) were laminated in this order.
圧着条件は、圧着温度 90°C、圧着圧力 0. 4MPa、ラミネート速度 lmZ分とした。  The crimping conditions were a crimping temperature of 90 ° C, a crimping pressure of 0.4 MPa, and a laminating speed of lmZ.
[0320] 露光工程 [0320] Exposure process
前記調製した積層体における感光性ソルダーレジスト層に対し、ポリエチレンテレフ タレートフィルム(支持体)側から、所定のパターンを有する青紫色レーザー露光によ るパターン形成装置を用いて、 405nmのレーザ光を、所定のパターンが得られるよう にエネルギー量 40mjZcm2を照射し露光し、前記感光性ソルダーレジスト層の一部 の領域を硬化させた。 Using a pattern forming apparatus by blue-violet laser exposure having a predetermined pattern from the polyethylene terephthalate film (support) side to the photosensitive solder resist layer in the prepared laminate, a 405 nm laser beam was emitted. Then, exposure was performed by irradiating with an energy amount of 40 mjZcm 2 so as to obtain a predetermined pattern, and a partial region of the photosensitive solder resist layer was cured.
[0321] 現像工程 [0321] Development process
室温にて 10分間静置した後、前記積層体力もポリエチレンテレフタレートフィルム( 支持体)を剥がし取り、銅張積層板上の感光性ソルダーレジスト層の全面に、アル力 リ現像液として、 1質量%炭酸ナトリウム水溶液を用い、 30°Cにて 60秒間、 0. 18MP a (l. 8kgfZcm2)の圧力でスプレー現像し、未露光の領域を溶解除去した。その後 、水洗し、乾燥させ、永久パターンを形成した。 After standing at room temperature for 10 minutes, the laminate strength was also peeled off from the polyethylene terephthalate film (support), and 1% by mass as an Al force developer on the entire surface of the photosensitive solder resist layer on the copper clad laminate. Use sodium carbonate aqueous solution at 30 ° C for 60 seconds, 0.1MP Spray development was performed at a pressure of a (l. 8 kgfZcm 2 ) to dissolve and remove unexposed areas. Thereafter, it was washed with water and dried to form a permanent pattern.
[0322] 硬化処理工程 [0322] Curing process
前記永久パターンが形成された積層体の全面に対して、 150°Cで 1時間、加熱処 理を施し、永久パターンの表面を硬化し、膜強度を高めた。  The entire surface of the laminate on which the permanent pattern was formed was heat treated at 150 ° C. for 1 hour to cure the surface of the permanent pattern and increase the film strength.
このように得られた前記永久パターン一レジストによれば、上記組成で温度が 85°C で相対湿度が 85%の環境中に 168時間放置後の絶縁抵抗を 101(> Ω以上になるよう に処理されていることから、高温及び高湿雰囲気で使用したとしても配線導体層間が 短絡したり、配線導体層が腐蝕することがなぐ耐湿性に優れる。更に、得られたプリ ント配線基板は、絶縁基板の表面に、配線導体層を被着形成するとともに、この絶縁 基板の一部を覆って、前記永久パターンを被着形成したことから、該永久パターンが プリント配線基板に電子部品を実装する際の熱から絶縁層を保護するとともに、配線 導体層を湿気による酸化や腐蝕から保護することができ、その結果、耐熱性、耐湿性 に優れる。 According to the permanent pattern-one resist thus obtained, the insulation resistance after standing for 168 hours in an environment with the above composition at a temperature of 85 ° C. and a relative humidity of 85% should be 10 1 (> Ω or more). Therefore, even when used in a high temperature and high humidity atmosphere, the wiring conductor layers are short-circuited and the wiring conductor layers are not corroded, and the resulting printed wiring board has excellent moisture resistance. Since the wiring conductor layer is deposited on the surface of the insulating substrate, and the permanent pattern is deposited so as to cover a part of the insulating substrate, the permanent pattern mounts electronic components on the printed wiring board. In addition to protecting the insulating layer from the heat generated during the process, the wiring conductor layer can be protected from oxidation and corrosion caused by moisture. As a result, it has excellent heat resistance and moisture resistance.
[0323] 前記永久パターン (ソルダーレジスト)につ 、て、後述の絶縁抵抗 ( Ω )を測定した。  [0323] With respect to the permanent pattern (solder resist), an insulation resistance (Ω) described later was measured.
また、プリント配線基板 (銅張り積層板)から剥がした前記永久パターンについて、動 的粘弾性測定試験により動的弾性率 (貯蔵弾性率)(MPa)を測定した。測定結果を 表 5に示す。なお、信頼性試験による測定及び評価は以下のとおりである。  The dynamic elastic modulus (storage elastic modulus) (MPa) of the permanent pattern peeled from the printed wiring board (copper-clad laminate) was measured by a dynamic viscoelasticity measurement test. Table 5 shows the measurement results. The measurement and evaluation by the reliability test are as follows.
[0324] <感光性ソルダーレジストフイルム及びソルダーレジストの作製 >  [0324] <Production of photosensitive solder resist film and solder resist>
これをバーコ一ターにより、乾燥後の厚みが約 30 μ mになるように厚み 25 μ mの Ρ ET支持体上に塗布し、 80°C、 30分間熱風循環式乾燥機中で乾燥させ、得られた 感光性ソルダーレジストフイルムをラミネ一タで銅張り積層板に積層した。次に、所定 のパターンを有する青紫色レーザー照射装置を用いて、 40mjZcm2露光した。その 後、 30°Cの 1質量%の炭酸ナトリウム水溶液で 60秒間、 0. 18MPa (l. 8kgf/cm2 )の圧力でスプレー現像し、未露光部を溶解現像した。得られた画像を用いて現像 性、光感度を評価し、次に 150°Cで 1時間加熱し試験板を作製した。 This was coated on a μ ET support with a thickness of 25 μm with a bar coater so that the thickness after drying was about 30 μm, and dried in a hot air circulating dryer for 30 minutes at 80 ° C. The obtained photosensitive solder resist film was laminated on a copper-clad laminate with a laminator. Next, 40 mjZcm 2 exposure was performed using a blue-violet laser irradiation apparatus having a predetermined pattern. Thereafter, spray development was performed with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 60 seconds at a pressure of 0.18 MPa (l. 8 kgf / cm 2 ), and the unexposed area was dissolved and developed. The obtained image was used to evaluate developability and photosensitivity, and then heated at 150 ° C. for 1 hour to prepare a test plate.
試験板について、後述の絶縁抵抗試験を行った。また、基板 (銅張り積層板)から 剥がした塗膜について、動的粘弾性を測定した。表 5に評価結果をまとめて示した。 なお、試験方法及び評価方法は以下のとおりである。 The test plate was subjected to an insulation resistance test described later. In addition, the dynamic viscoelasticity of the coating film peeled off from the substrate (copper-clad laminate) was measured. Table 5 summarizes the evaluation results. The test method and evaluation method are as follows.
[0325] <評価方法 >  [0325] <Evaluation method>
塗布面状  Application surface
塗布乾燥後の面状を、 目視により観察し、表面の平滑性を検査した。  The surface condition after coating and drying was visually observed to inspect the smoothness of the surface.
〇:平滑である。  ◯: Smooth.
X:異物又はハジキあり。  X: Foreign matter or repellency is present.
[0326] 感度 [0326] Sensitivity
基板上の厚み 10 μ mの未露光の感光性ソルダーレジスト層に対し、ポリエチレンフ タレートフィルム側から、所定のステップゥエッジパターン(A logE=0. 15、 15段)を 有する青紫色レーザー露光によるパターン形成装置を用いて 405nmのレーザー光 を 40mjZcm2照射し、 1質量%炭酸ナトリウム水溶液を用いて、 30°Cで、 60秒間ス プレー現像し、得られるステップゥエッジパターンの段数で評価した。 Blue-violet laser exposure with a predetermined step-to-edge pattern (A logE = 0.15, 15 steps) from the polyethylene phthalate film side to an unexposed photosensitive solder resist layer with a thickness of 10 μm on the substrate Irradiate 40mjZcm 2 of 405nm laser light using the pattern forming device by, spray development at 30 ° C for 60 seconds using 1% by weight sodium carbonate aqueous solution, and evaluate the number of stepped edge patterns obtained .
〇:8段以上  ○: 8 steps or more
△ : 5〜7段  △: 5 to 7 steps
X :4段以下  X: 4 steps or less
[0327] 現像性一  [0327] Developability
基板上の厚み 10 mの未露光の感光性ソルダーレジスト層を、 1質量%炭酸ナトリ ゥム水溶液を用いて、 30°Cで、スプレー現像し、 10秒から 60秒で除去できるか否か で評価した。  Whether or not an unexposed photosensitive solder resist layer with a thickness of 10 m on the substrate can be removed by spray development at 30 ° C using a 1% by weight aqueous sodium carbonate solution in 10 to 60 seconds. evaluated.
〇: 10秒〜 60秒未満で除去され、現像残渣無し  ◯: Removed in 10 seconds to less than 60 seconds, no development residue
X: 10秒未満で除去される  X: Removed in less than 10 seconds
X X : 60秒後でも現像残渣有り  X X: Development residue still exists after 60 seconds
[0328] 密着性 [0328] Adhesion
JISK5400に準じて、硬化後の試験片に lmm碁盤目を 100個作製してセロハンテ ープにより剥離試験を行った。碁盤目の剥離状態を観察し、以下の基準で評価した  In accordance with JISK5400, 100 lmm grids were prepared on the cured specimen and a peel test was performed using a cellophane tape. Observed the peeling state of the grid, and evaluated according to the following criteria
〇: 90Z100以上で剥離無し ○: No peeling at 90Z100 or higher
△: 50Z100以上〜 90Z100未満で剥離無し X : 0Z100〜50Z100未満で剥離無し △: 50Z100 or more and less than 90Z100, no peeling X: 0Z100 to less than 50Z100, no peeling
[0329] ー耐溶剤性 [0329]-Solvent resistance
硬化後の試験片をイソプロピルアルコールに室温で 30分間浸漬し、外観に異常が な!、かを確認後、セロハンテープにより剥離試験を行った。  The cured specimen was immersed in isopropyl alcohol for 30 minutes at room temperature, and after confirming that there was no abnormality in the appearance, a peel test was performed using a cellophane tape.
〇:塗膜外観に異常がなぐ剥離のないもの  ◯: No peeling with abnormal appearance on coating film
X:塗膜外観に異常があるか、あるいは剥離するもの  X: Appearance is abnormal or peels off
[0330] 耐酸性— [0330] Acid resistance—
硬化後試験片を 10重量%塩酸水溶液に室温で 30分間浸漬し、外観に異常がな いかを確認後、セロハンテープにより剥離試験を行った。  After curing, the test piece was immersed in a 10% by weight aqueous hydrochloric acid solution at room temperature for 30 minutes. After confirming that the appearance was normal, a peel test was performed using a cellophane tape.
〇:塗膜外観に異常がなぐ剥離のないもの  ◯: No peeling with abnormal appearance on coating film
X:塗膜外観に異常があるか、あるいは剥離するもの  X: Appearance is abnormal or peels off
[0331] 耐アルカリ性 [0331] Alkali resistance
硬化後の試験片を 5質量%水酸ィ匕ナトリウム水溶液に室温で 30分間浸漬し、外観 に異常がないかを確認後、セロハンテープにより剥離試験を行った。  The cured specimen was immersed in a 5% by weight sodium hydroxide / sodium hydroxide solution at room temperature for 30 minutes. After confirming that the appearance was normal, a peel test was performed using a cellophane tape.
〇:塗膜外観に異常が無ぐ剥離の無いもの  A: No abnormality in the appearance of the coating film and no peeling
X:塗膜外観に異常が有るか、あるいは剥離するもの  X: Appearance is abnormal or peels off
[0332] 一はんだ耐熱性 [0332] One solder heat resistance
試験片にロジン系フラックス又は水溶性フラックスを塗布し、 260°Cのはんだ槽に 1 0秒間浸漬した。これを 1サイクルとして、 6サイクル繰り返した後、塗膜外観を目視観 The test piece was coated with rosin-based flux or water-soluble flux and immersed in a solder bath at 260 ° C for 10 seconds. This is one cycle, and after 6 cycles, the appearance of the coating film is visually observed.
¾πίした。 ¾πί.
〇:塗膜外観に異常 (剥離、フクレ)が無ぐはんだのもぐりの無いもの  ○: No abnormal soldering (peeling, blistering) on the coating film appearance
X:塗膜外観に異常 (剥離、フクレ)が有る力 又ははんだのもぐりの有るもの  X: The coating has an abnormal appearance (peeling, blistering) or has solder peeling
[0333] 耐熱衝撃性 [0333] Thermal shock resistance
信頼性試験項目として、温度サイクル試験 (TCT)によりクラックや剥れ等の外観と 抵抗値変化率を評価した。 TCTは気相冷熱試験機を用い、電子部品モジュールを 温度が 55°C及び 125°Cの気相中に各 30分間放置し、これを 1サイクルとして 1, 0 00サイクルの条件で行った。  As a reliability test item, the appearance of cracks and peeling and the rate of change in resistance value were evaluated by a temperature cycle test (TCT). TCT was conducted using a vapor phase thermal test machine, and the electronic component module was left in the vapor phase at temperatures of 55 ° C and 125 ° C for 30 minutes each, and this was performed under the conditions of 1,000 cycles.
〇:クラック発生無し X :クラック発生有り ○: No crack X: Crack is generated
[0334] 動的粘弾性  [0334] Dynamic viscoelasticity
ソリッドアナライザー RSAII (レオメトリックス社製)を用い、振動周波数 lHz (6. 28r adZ秒)で動的粘弾性を測定した。サンプルサイズを長さ 22. 5 X幅 3. O X厚み 0. 06mmとし、測定温度 40〜250°C (昇温 5°CZmin)、引っ張り量 0. 15%、モードを スタティックフォーストラッキングダイナミックフォースとし、初期スタティックフォース 15 . Ogとして行い、 220°Cにおける動的弾性率を調べた。  Using a solid analyzer RSAII (Rheometrics), dynamic viscoelasticity was measured at a vibration frequency of 1 Hz (6.28 adZ seconds). Sample size is length 22.5 X width 3. OX thickness 0.06mm, measurement temperature 40 ~ 250 ° C (temperature rise 5 ° CZmin), pull amount 0.15%, mode is static force tracking dynamic force, The initial static force was 15. Og, and the dynamic elastic modulus at 220 ° C was examined.
[0335] (実施例 2)〜(実施例 11)  [Example 2] to (Example 11)
前記実施例 2〜実施例 11については、表 3に示すように、(合成例 3〜9、 12、 13) に示す (a)〜 (g)、 (j)、(k)のポリウレタン榭脂を用いた各処方の塗布液を、実施例 1 と同様に調製した塗布液を用い、実施例 1と同様に感光性ソルダーレジストフイルム を作製し、引き続き、ソルダーレジスト層を形成して信頼性評価を行った。  For the above Examples 2 to 11, as shown in Table 3, the polyurethane resins of (a) to (g), (j) and (k) shown in (Synthesis Examples 3 to 9, 12, 13) Using the coating solution prepared in the same manner as in Example 1 for each formulation using, a photosensitive solder resist film was prepared in the same manner as in Example 1, and then a solder resist layer was formed to evaluate the reliability. Went.
[0336] (比較例 1)〜(比較例 4)  [0336] (Comparative Example 1) to (Comparative Example 4)
前記比較例 1〜比較例 4については、表 3に示すように、(合成例 10、 11)に示す( h)、(i)のポリウレタン榭脂、アルカリ不溶のエラストマ一であるスチレン エチレン ブタジエン スチレンブロックコポリマー(SEBS)及び、平均粒径 0. のカル ボキシル基変性架橋アクリルゴム(日本合成ゴム (株)製 DHS2)を添加した処方によ り得られた塗布液を用いて、実施例 1と同様に感光性ソルダーレジストフイルムを作製 し、引き続き、ソルダーレジスト層を形成して信頼性評価を行った。結果を表 5に示す  For Comparative Examples 1 to 4, as shown in Table 3, (h) and (i) polyurethane resins and styrene that is an alkali-insoluble elastomer shown in (Synthesis Examples 10 and 11), ethylene butadiene styrene Example 1 and Example 1 were prepared using a coating solution obtained by a formulation in which a block copolymer (SEBS) and a carboxyl group-modified crosslinked acrylic rubber having an average particle size of 0 (DHS2 manufactured by Nippon Synthetic Rubber Co., Ltd.) were added. Similarly, a photosensitive solder resist film was prepared, and a solder resist layer was subsequently formed to evaluate the reliability. The results are shown in Table 5.
[0337] [表 3] [0337] [Table 3]
共重合組成 ボリウレタン樹脂性状 一般式(m) 一般式(π ) 一般式( I ) Copolymerization composition Polyurethane resin properties General formula (m) General formula (π) General formula (I)
低分子量ジ  Low molecular weight
咼分ナ Iン カルボン酸  Proportional carboxylic acid
カルポン酸基含有 第 2のジィ オール:高 酸価(m ポリウレタ オール 基非含有低 第 1の イソシァ 質量平均 低分子量ジォー ソシァネ一 分子量ジ gKOH ン樹脂 (質量平均分子 分 f里ソ ネー卜 分 f里 ル h 才ール  Carboxylic acid group-containing second diol: high acid value (m polyuretaol group-free low first isocyan mass average low molecular weight di-so-one molecular weight di-gKOH resin (mass-average molecular weight f Le h old
量) オール /  Amount) All /
(モル比)  (Molar ratio)
化合物例 22 ジヒドロキシメチ 4.4· ニルメタ  Compound Example 22 Dihydroxymethy 4.4 · Nilmeta
(a)  (a)
合成例 3 (981 ) ルプロピオン酸 ンジイソシァネー卜 2. 34 1 62 30,000Synthesis Example 3 (981) Rupropionic acid diisocyanate 2. 34 1 62 30,000
(添加量) 58. 6g 1 S. Sg 50. 1 g (Addition amount) 58.6 g 1 S. Sg 50. 1 g
化合物例 22 ジヒ キシメチ 4.4' フ ニルメタ  Compound Example 22 Dihydroxymethyl 4.4 'phenylmeta
(b)  (b)
合成例 4 (1700) ルプロピオン酸 ンジイソシァネー卜 1. 5 1 35 56,000Synthesis example 4 (1700) dipropionate dipropionate 1. 5 1 35 56,000
(添加量〕 132. 3g 16. 4g 50. 1g (Addition amount) 132.3g 16.4g 50.1g
化台袍例 22 ジヒドロキシメチ 4.4· ニルメタ  化 台 袍 例 22 Dihydroxymethy 4.4 · Nilmeta
(c)  (c)
合成例 5 (2300) ルプロピオン酸 ンジイソシァネート 1. 57: 1 28 74,000Synthesis Example 5 (2300) Rupropionic acid diisocyanate 1. 57: 1 28 74,000
(添加量〕 1 9. g 6. 4g 50.5g (Addition amount) 1 9. g 6. 4 g 50.5 g
化合物例 22 ジヒドロキシメチ 1.4 ブタン 4.4' フ ニルメタ  Compound Example 22 Dihydroxymethyl 1.4 Butane 4.4 'Phenylmeta
(d)  (d)
合成例 6 (981 ) ルプロピオン酸 ジオール ンジイソシァネー卜 2. 35 1 47 26,000Synthesis Example 6 (981) Lupropionic acid Diol diisocyanate 2. 35 1 47 26,000
(添加量〕 58. 6g 14. 2g 3. 1g 50. 1g (Addition amount) 58.6 g 14. 2 g 3.1 g 50.1 g
化合物例 22 ジヒドロキシメチ 1.4 ブタン 4.4· フエニルメタ  Compound Example 22 Dihydroxymethyl 1.4 Butane 4.4 · Phenyl Meta
(β)  (β)
合成例 7 (981 ) ルプロピオン酸 ジオール ンジイソシァネート 2. 35: 1 32 25,000Synthesis Example 7 (981) Lupropionic acid Diol diisocyanate 2. 35: 1 32 25,000
(添加量〕 58. 6g 9- 5s 6.4g 50. 1 g (Addition amount) 58.6 g 9-5s 6.4 g 50.1 g
3,3' へキサメチレ  3,3 'Hexametile
化合物例 19 ジヒドロキシメチ  Compound Example 19 Dihydroxymethyl
(f ) ニール 4,4'ージィ ンジイソシァ  (f) Neal 4,4 '
合成例 8 (1240) ルプロピオン酸 Synthesis Example 8 (1240) lupropionic acid
ソシァネート ネート 3. 00 1 63 25,000 Societyate 3.00 1 63 25,000
(添加量〕 62. Og 20. 1g 3Ί.0g 10. 1 g (Addition amount) 62. Og 20. 1g 3Ί.0g 10. 1 g
化合物例 22 ジヒドロキシメチ 1 ,4 ブタン 4.4'ー フ ニルメタ  Compound Example 22 Dihydroxymethyl 1,4 butane 4.4'-phenylmeta
(g)  (g)
合成例 9 (981 ) ルプロピオン酸 ジ才ール ンジイソシァネート 5. 9 1 16 23,000Synthesis Example 9 (981) Lupropionic acid Di-L-diisocyanate 5. 9 1 16 23,000
(添加量〕 59. Og 4.8g 9.6g 50. 1g (Addition amount) 59. Og 4.8g 9.6g 50. 1g
化合物例 22 1 ,4—ブタン 4.4'ー フ ニルメタ  Compound Example 22 1,4-Butane 4.4'-phenylmeta
(h)  (h)
合成例 10 (981 ) ジ才ール ンジイソシァネート 2. 37: 1 0 43,000Synthesis Example 10 (981) Di-Lion Diisocyanate 2.37: 1 0 43,000
(添加量〕 59. Og 12. 8g 50. 1g (Addition amount) 59. Og 12.8 g 50.1 g
ジヒドロキシメチ 4,4'ージフ ニルメタ  Dihydroxymethy 4,4'-diphenyl
( i )  (i)
合成例 11 ルプロピ才ン酸 ンジイソシァネー卜 138 28,000Synthesis Example 11 Rupropidium diisocyanate 138 28,000
(添加量〕 26. 8g 50. 1 g (Addition amount) 26.8 g 50.1 g
化合物例 1 ジヒドロキシメチ 4.4·ー フ ニルメタ  Compound Example 1 Dihydroxymethy 4.4 · -Finylmeta
台成例 12 (j ) (19フ 3) ルプロピオン酸 ンジイソシァネー卜 4. 01 : 1 59 52,000Example of formation 12 (j) (19 3) dipropionate diisocyanate 4.01: 1 59 52,000
(添加量〕 8. 9g 21. 5g 50. 1g (Addition amount) 8.9 g 21.5 g 50.1 g
3,3'  3,3 '
ジエチレングリ ジヒドロキシメチ  Diethylene glycol dihydroxymethy
(k) ニール 4.4' ジィ  (k) Neil 4.4 '
合成例 13 コール ルプロピオン酸 Synthesis Example 13 Colelupropionic acid
ソシァネート 107 8,000 Society 107 8,000
(添加量) 6. Og 19. Og 49. 6g (Addition amount) 6. Og 19. Og 49. 6 g
表 4]
Figure imgf000103_0001
5]
Table 4]
Figure imgf000103_0001
Five]
実施例 比較例 成能 1 2 3 4 5 6 7 8 9 10 1 1 1 2 3 4 厚み(jU m) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 塗布面状 〇 〇 〇 〇 O 〇 o 〇 o o 〇 〇 O 〇 X 感度 o 〇 O O o o o o o o o O (評価 (評価 (評価 せず) せす〕 せす) 現像性 O 〇 O O o o o o o X o X X X X X O 耐酸性 O 〇 O o o o o o o o o O O O o 耐アルカリ性 〇 O O o o o o o 〇 o 〇 O O 〇 o 耐溶剤性 〇 o 〇 o o 〇 o 〇 o o o O O 〇 o 密着性 O 〇 o o o o o o o o o O O O o はんだ耐熱性 O o o o o o o o 〇 o 〇 〇 O O o 熱衝撃性(TCT1 00 Example Comparative example Competency 1 2 3 4 5 6 7 8 9 10 1 1 1 2 3 4 Thickness (jU m) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Applicable surface ○ ○ ○ ○ O 〇 o 〇 oo 〇 〇 O X sensitivity o 〇 OO ooooooo O (Evaluation (Evaluation (not evaluated)) Develop) O 〇 OO ooooo X o XXXXXO Acid resistance O 〇 O oooooooo OOO o Alkali resistance 〇 OO ooooo 〇 o 〇 OO 〇 o Solvent resistance 〇 o 〇 oo 〇 o 〇 ooo OO 〇 o Adhesion O 〇 ooooooooo OOO o Solder heat resistance O ooooooo 〇 o 〇 OO OO o Thermal shock resistance (TCT1 00
0サイクル) 〇 〇 〇 〇 o 〇 o X X X X 〇 X 〇 〇 動的弾性率 75 50 50 45 50 60 100 70 205 260 400 35 300 46 64  0 cycle) ○ ○ ○ ○ o ○ o X X X X ○ X ○ ○ Dynamic elastic modulus 75 50 50 45 50 60 100 70 205 260 400 35 300 46 64
[0340] 表 5に示す結果より、本発明のアルカリ可溶性エラストマ一を感光性ソルダーレジス ト組成物中に含有させることにより、基板への密着性が劣化せず、現像性が改善され 、信頼性の高 ヽ感光性ソルダーレジストを形成することができる優れた感光性ソルダ 一レジスト組成物が得られた。 [0340] From the results shown in Table 5, by including the alkali-soluble elastomer of the present invention in the photosensitive solder resist composition, adhesion to the substrate is not deteriorated, developability is improved, and reliability is improved. An excellent photosensitive solder-one resist composition capable of forming a high-sensitivity photosensitive solder resist was obtained.
産業上の利用可能性  Industrial applicability
[0341] 本発明の感光性ソルダーレジスト組成物及び該感光性ソルダーレジスト組成物を 用いた感光性ソルダーレジストフイルムは、保存安定性に優れ、現像後に優れた耐 薬品性、表面硬度、耐熱性などを発現する。また、本発明の永久パターン (保護膜、 層間絶縁膜、ソルダーレジストなど)を薄層化しても、表面硬度、絶縁性、耐熱性、耐 湿性に優れた高精細な永久パターンが得られるため、保護膜、層間絶縁膜として好 適に使用することができ、プリント配線板 (多層配線基板、ビルドアップ配線基板など )、カラーフィルタや柱材、リブ材、スぺーサ一、隔壁などのディスプレイ用部材、ホロ グラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることが できる。 [0341] The photosensitive solder resist composition of the present invention and the photosensitive solder resist film using the photosensitive solder resist composition have excellent storage stability and excellent chemical resistance, surface hardness, heat resistance and the like after development. Is expressed. In addition, even if the permanent pattern of the present invention (protective film, interlayer insulating film, solder resist, etc.) is thinned, a high-definition permanent pattern with excellent surface hardness, insulation, heat resistance, and moisture resistance can be obtained. It can be suitably used as a protective film and interlayer insulation film, and for displays such as printed wiring boards (multilayer wiring boards, build-up wiring boards, etc.), color filters, pillar materials, rib materials, spacers, partition walls, etc. It can be widely used for forming permanent patterns such as members, holograms, micromachines, and proofs.

Claims

請求の範囲 [1] アルカリ可溶性光架橋性榭脂と、アルカリ可溶性エラストマ一と、重合性化合物と、 光重合開始剤と、熱架橋剤と、着色剤と、熱硬化促進剤とを含有することを特徴とす る感光性ソル ACRダII ーレジスト組成物。 5 o o [2] アルカリ可溶性エ H Rラストマ一が、一般式 (I)で示されるジイソシァネートと、一般式 (II 1)〜 (Π— 3)で示されるカルボン酸基含有ジオール力 選ばれた少なくとも 1種と 、一般式 (ΠΙ— 1)〜(ΠΙ— 5)で示される高分子量ジオール力も選ばれた、質量平均 分子量が 800〜3, 000の範囲にある少なくとも 1種の化合物との反応物であって、 一般式 (Π— 1)〜(Π— 3)の合計モル量と (III 1)〜(III 5)の合計モル量の比力 0.5:1〜2.8:1となるように反応して得られ、酸価が 20〜130mgKOHZgである 請求項 1に記載の感光性ソルダーレジスト組成物。 Claims [1] Containing an alkali-soluble photocrosslinkable resin, an alkali-soluble elastomer, a polymerizable compound, a photopolymerization initiator, a thermal crosslinking agent, a colorant, and a thermosetting accelerator. Photosensitive Sol ACR DA II-resist composition characterized by 5 oo [2] The alkali-soluble ester HR elastomer is a diisocyanate represented by general formula (I) and a diol group-containing diol force represented by general formulas (II 1) to (II—3). A reaction product of at least one compound having a weight average molecular weight in the range of 800 to 3,000, in which a high molecular weight diol force represented by the general formulas (ΠΙ-1) to (ΠΙ-5) is also selected. The specific molar ratio between the total molar amount of the general formulas (一般 -1) to (Π-3) and the total molar amount of (III 1) to (III 5) is 0.5: 1 to 2.8: 1. The photosensitive solder resist composition according to claim 1, wherein the acid value is 20 to 130 mg KOHZg.
[化 1]  [Chemical 1]
OCN ^ NCO —般式 ( I )  OCN ^ NCO — General formula (I)
[化 2]  [Chemical 2]
2 ? 2
HO R3 C R, OH HO R 3 CR, OH
—般式 (Π-1 )  —General formula (Π-1)
CO5OH CO 5 OH
[化 3]  [Chemical 3]
HO R3 OH —般式 (Π-2) HO R 3 OH — General formula (Π-2)
[化 4] [Chemical 4]
HO R3 N R 4— OH HO R 3 NR 4— OH
—般式 (Π-3)  —General formula (Π-3)
COOH  COOH
[化 5]  [Chemical 5]
HO-R7 -O-C-Rfi-C-O— R7- HO-R 7 -OC-Rfi- CO- R 7 -
II II —OH —般式 (m-1 ) II II — OH — General formula (m-1)
o o  o o
[化 6] —般式 (Π- 2 )[Chemical 6] —General formula (Π-2)
Figure imgf000106_0001
Figure imgf000106_0001
[化 7]  [Chemical 7]
—般式 (m- 3 )—General formula (m-3)
Figure imgf000106_0002
Figure imgf000106_0002
[化 8]  [Chemical 8]
Rl2  Rl2
HO- -OH- CH-O- H 一般式 (Π_ 4 )  HO- -OH- CH-O- H General formula (Π_ 4)
m  m
」n4 N 4
[化 9] —般式 (Π- 5 )
Figure imgf000106_0003
[Chemical 9] — General formula (Π- 5)
Figure imgf000106_0003
ただし、一般式(I)、 (Π— 1)〜(Π— 3)、(ΠΙ— 1)〜(ΙΠ— 5)中、 R  However, in general formula (I), (Π-1) to (Π-3), (ΠΙ-1) to (ΙΠ-5), R
1、R  1, R
3〜R 及び 10 3 to R and 10
R は二価の脂肪族又は芳香族炭化水素を表す。 Rは水素原子、炭素数 1 R represents a divalent aliphatic or aromatic hydrocarbon. R is a hydrogen atom, carbon number 1
11 2 〜3個の アルキル基及び炭素数 6〜15個のいずれ力からなるァリール基を表す。 R は水素  11 represents an aryl group consisting of any one of 2 to 3 alkyl groups and 6 to 15 carbon atoms. R is hydrogen
12 原子、炭素数 1〜6個のアルキル基及び炭素数 6〜10個のいずれ力からなるァリー ル基を表す。 R はァリール基及びシァノ基のいずれかを表す。 mは 2  It represents an aryl group composed of 12 atoms, an alkyl group having 1 to 6 carbon atoms, and any force having 6 to 10 carbon atoms. R represents either an aryl group or a cyan group. m is 2
13 〜4の整数を 表す。 n〜nはそれぞれ 2以上の整数を表す。  Represents an integer from 13 to 4. n to n each represents an integer of 2 or more.
1 5  1 5
[3] アルカリ可溶性エラストマ一力 一般式 (III— 1)〜(III— 5)で示される、質量平均 分子量が 500以下のカルボン酸基非含有の低分子量ジオール力 選ばれた少なく とも 1種を、低分子量ジオール合計モル量と高分子量ジオール合計モル量との比が 、0. 5 : 1〜2. 8 : 1となるように共重合させたポリウレタン榭脂である請求項 1から 2の いずれか〖こ記載の感光性ソルダーレジスト組成物。  [3] Alkali-soluble elastomer power A low molecular weight diol power not containing a carboxylic acid group having a mass average molecular weight of 500 or less represented by the general formulas (III-1) to (III-5). The polyurethane resin that is copolymerized so that the ratio of the total molar amount of the low molecular weight diol to the total molar amount of the high molecular weight diol is 0.5: 1 to 2.8: 1. A photosensitive solder resist composition described in KAKOKO.
[4] 熱架橋剤が、エポキシ榭脂及び多官能ォキセタンィ匕合物の 、ずれ力 1種である請 求項 1から 3のいずれかに記載の感光性ソルダーレジスト組成物。  [4] The photosensitive solder resist composition according to any one of claims 1 to 3, wherein the thermal cross-linking agent is one kind of deviation force of an epoxy resin and a polyfunctional oxetane compound.
[5] 無機充填剤を含む請求項 1から 4の 、ずれか〖こ記載の感光性ソルダーレジスト組 成物。  [5] The photosensitive solder resist composition according to any one of claims 1 to 4, which contains an inorganic filler.
[6] アルカリ可溶性光架橋性榭脂 15〜70質量%と、重合性化合物 5〜75質量%、光 重合開始剤 0. 5〜20質量%、熱架橋剤 2〜50質量%、アルカリ可溶性エラストマ一 2〜30質量%、無機充填剤 5〜75質量%、着色剤 0. 1〜10質量%、熱硬化促進剤 0. 01〜20質量%及び溶剤を含む請求項 1から 5のいずれかに記載の感光性ソルダ 一レジスト組成物。 [6] 15-70% by mass of alkali-soluble photocrosslinkable resin, 5-75% by mass of polymerizable compound, 0.5-20% by mass of photopolymerization initiator, 2-50% by mass of thermal crosslinking agent, alkali-soluble elastomer one 2 to 30% by weight, inorganic filler 5 to 75% by weight, colorant 0.1 to 10% by weight, thermosetting accelerator 0.01 to 20% by weight and a solvent according to any one of claims 1 to 5. Photosensitive solder of one resist composition.
[7] 支持体と、該支持体上に、請求項 1から 5の 、ずれかに記載の感光性ソルダーレジ スト組成物が積層されてなる感光性ソルダーレジスト層と、を有することを特徴とする 感光性ソルダーレジストフイルム。  [7] It has a support and a photosensitive solder resist layer in which the photosensitive solder resist composition according to any one of claims 1 to 5 is laminated on the support. Photosensitive solder resist film.
[8] 感光性ソルダーレジスト層上に保護フィルムを有してなる請求項 7に記載の感光性 ソルダーレジストフイルム。 8. The photosensitive solder resist film according to claim 7, further comprising a protective film on the photosensitive solder resist layer.
[9] 感光性ソルダーレジスト層の厚み力 3〜: LOO μ mである請求項 7から 8のいずれか に記載の感光性ソルダーレジストフイルム。 [9] The photosensitive solder resist film according to any one of [7] to [8], wherein the thickness of the photosensitive solder resist layer is 3 to: LOO μm.
[10] 請求項 7から 9のいずれかに記載の感光性ソルダーレジストフイルムにおける、感光 性ソルダーレジスト層を、基体の表面に転写した後、露光し、現像することを特徴とす る永久パターン形成方法。 [10] In the photosensitive solder resist film according to any one of [7] to [9], the photosensitive solder resist layer is transferred to the surface of the substrate, and then exposed and developed. Method.
[11] 請求項 1から 6のいずれかに記載の感光性ソルダーレジスト組成物を、基体の表面 に塗布し、乾燥して感光性ソルダーレジスト層積層体を形成した後、露光し、現像す る請求項 10に記載の永久パターン形成方法。 [11] The photosensitive solder resist composition according to any one of claims 1 to 6 is applied to the surface of a substrate and dried to form a photosensitive solder resist layer laminate, which is then exposed and developed. The method for forming a permanent pattern according to claim 10.
[12] 基体が、配線形成済みのプリント配線基板である請求項 10から 11のいずれかに記 載の永久パターン形成方法。 [12] The permanent pattern forming method according to any one of [10] to [11], wherein the substrate is a printed wiring board on which wiring has been formed.
[13] 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照 射手段から照射される光を変調させる光変調手段とを用いて行われる請求項 10から[13] The exposure is performed using light irradiation means for irradiating light and light modulation means for modulating light emitted from the light irradiation means based on pattern information to be formed.
12のいずれかに記載の永久パターン形成方法。 13. The permanent pattern forming method according to any one of 12 above.
[14] 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信 号生成手段を更に有してなり、前記光照射手段から照射される光を該パターン信号 生成手段が生成した制御信号に応じて変調させる請求項 13に記載の永久パターン 形成方法。 [14] The light modulation means further includes a pattern signal generation means for generating a control signal based on the pattern information to be formed, and the pattern signal generation means generates light emitted from the light irradiation means. 14. The permanent pattern forming method according to claim 13, wherein modulation is performed in accordance with a control signal.
[15] 光変調手段が、 n個の描素部を有してなり、該 n個の描素部の中から連続的に配置 された任意の n個未満の前記描素部を、形成するパターン情報に応じて制御可能で ある請求項 13から 14のいずれかに記載の永久パターン形成方法。 [15] The light modulation means includes n pixel parts, and forms less than any n pixel parts arranged continuously from the n pixel parts. 15. The permanent pattern forming method according to claim 13, wherein the permanent pattern forming method can be controlled according to pattern information.
[16] 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の 出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイ クロレンズアレイを通して行われる請求項 13から 15のいずれかに記載の永久パター ン形成方法。 [16] After the light is modulated by the light modulation means, the exposure is performed through a microlens array in which microlenses having aspherical surfaces capable of correcting aberration due to distortion of the exit surface of the picture element portion in the light modulation means are arranged. The permanent pattern forming method according to claim 13, wherein the method is performed.
[17] 非球面が、トーリック面である請求項 16に記載の永久パターン形成方法。  17. The permanent pattern forming method according to claim 16, wherein the aspherical surface is a toric surface.
[18] 現像が行われた後、感光性ソルダーレジスト層に対して硬化処理を行う請求項 10 力も 17のいずれかに記載の永久パターン形成方法。  18. The permanent pattern forming method according to claim 10, wherein after the development, the photosensitive solder resist layer is cured.
[19] 硬化処理が、全面露光処理及び 120〜200°Cで行われる全面加熱処理の少なくと もいずれかである請求項 18に記載の永久パターン形成方法。 19. The permanent pattern forming method according to claim 18, wherein the curing process is at least one of an entire surface exposure process and an entire surface heating process performed at 120 to 200 ° C.
[20] 請求項 10から 19のいずれかに記載の永久パターン形成方法により形成されること を特徴とする永久パターン。 [20] A permanent pattern formed by the method for forming a permanent pattern according to any one of claims 10 to 19.
[21] 保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかである請 求項 20に記載の永久パターン。 [21] The permanent pattern according to claim 20, which is at least one of a protective film, an interlayer insulating film, and a solder resist pattern.
PCT/JP2006/300651 2005-03-04 2006-01-18 Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same WO2006095494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005061619A JP2006243563A (en) 2005-03-04 2005-03-04 Photosensitive solder resist composition and photosensitive solder resist film, and permanent pattern and method for forming the same
JP2005-061619 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006095494A1 true WO2006095494A1 (en) 2006-09-14

Family

ID=36953099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300651 WO2006095494A1 (en) 2005-03-04 2006-01-18 Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same

Country Status (3)

Country Link
JP (1) JP2006243563A (en)
TW (1) TWI385481B (en)
WO (1) WO2006095494A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001484A1 (en) * 2009-07-02 2011-01-06 太陽インキ製造株式会社 Photocurable thermosetting resin composition
JP2012118295A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Polymerizable composition, as well as photosensitive layer, permanent pattern, wafer level lens, solid state imaging element and patterning method using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935565B2 (en) * 2007-08-01 2012-05-23 住友化学株式会社 Photosensitive resin composition
CN104320920B (en) * 2014-10-13 2017-05-10 北京卫星制造厂 Electronic product coating method based on low internal stress
WO2018207294A1 (en) * 2017-05-10 2018-11-15 日立化成株式会社 Positive-type photosensitive resin composition, thermal crosslinking agent for positive-type photosensitive resins, patterned cured film and method for producing same, semiconductor element, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134354A (en) * 1987-11-19 1989-05-26 Fuji Photo Film Co Ltd Photosensitive composition
JPH0841167A (en) * 1994-07-27 1996-02-13 Hitachi Ltd Photosensitive resin composition
JPH09258446A (en) * 1996-03-22 1997-10-03 Toshiba Chem Corp Photosensitive resin composition
JPH10282666A (en) * 1997-04-01 1998-10-23 Mitsui Chem Inc Photosensitive resin composition
JPH11240930A (en) * 1997-11-28 1999-09-07 Hitachi Chem Co Ltd Photocurable resin composition and photosensitive element using the same
JP2001013679A (en) * 1999-04-30 2001-01-19 Toagosei Co Ltd Resist composition
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004198673A (en) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd Photosensitive resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7374862B2 (en) * 2003-03-06 2008-05-20 Nippon Kayaku Kabushiki Kaisha Photosensitive resin composition and curing product thereof
EP1507171A3 (en) * 2003-08-15 2008-03-05 FUJIFILM Corporation Light-Sensitive sheet comprising support, first and second light-sensitive layers and barrier layer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134354A (en) * 1987-11-19 1989-05-26 Fuji Photo Film Co Ltd Photosensitive composition
JPH0841167A (en) * 1994-07-27 1996-02-13 Hitachi Ltd Photosensitive resin composition
JPH09258446A (en) * 1996-03-22 1997-10-03 Toshiba Chem Corp Photosensitive resin composition
JPH10282666A (en) * 1997-04-01 1998-10-23 Mitsui Chem Inc Photosensitive resin composition
JPH11240930A (en) * 1997-11-28 1999-09-07 Hitachi Chem Co Ltd Photocurable resin composition and photosensitive element using the same
JP2001013679A (en) * 1999-04-30 2001-01-19 Toagosei Co Ltd Resist composition
JP2004001244A (en) * 2002-04-10 2004-01-08 Fuji Photo Film Co Ltd Exposure head and exposure device
JP2004198673A (en) * 2002-12-18 2004-07-15 Sumitomo Bakelite Co Ltd Photosensitive resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001484A1 (en) * 2009-07-02 2011-01-06 太陽インキ製造株式会社 Photocurable thermosetting resin composition
JP2011013486A (en) * 2009-07-02 2011-01-20 Taiyo Holdings Co Ltd Photocurable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using those
JP2012118295A (en) * 2010-11-30 2012-06-21 Fujifilm Corp Polymerizable composition, as well as photosensitive layer, permanent pattern, wafer level lens, solid state imaging element and patterning method using the same

Also Published As

Publication number Publication date
JP2006243563A (en) 2006-09-14
TWI385481B (en) 2013-02-11
TW200641524A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP2007016184A (en) Elastomer, photosensitive composition, photosensitive film, and method for forming permanent pattern
WO2006006671A1 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and method of pattern formation
JP2007002030A (en) Elastomer, photosensitive solder resist composition, photosensitive solder resist film, permanent pattern, and method for forming the same
JP2007199205A (en) Photosensitive composition, photosensitive film, permanent pattern forming method and pattern
WO2005124462A1 (en) Photosensitive composition, method for forming pattern, and permanent pattern
JP2006243543A (en) Method for forming permanent pattern
WO2006095494A1 (en) Photosensitive solder resist composition, photosensitive solder resist film, permanent pattern and method for forming same
JP2007025275A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming same
JP2006235101A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP2007133333A (en) Photosensitive composition, photosensitive film, permanent pattern and method for forming the same
JP4546368B2 (en) Photosensitive composition, pattern forming material, photosensitive laminate, pattern forming apparatus and pattern forming method
JP2005311305A (en) Permanent pattern forming method
JP4583916B2 (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method
JP2007106886A (en) Curing accelerator, thermosetting resin composition, photosensitive composition, photosensitive film, permanent pattern and method for forming it
JP4494243B2 (en) Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same
JP2007133108A (en) Photosensitive solder resist composition and film, and permanent pattern and method of forming same
JP2006243552A (en) Photosensitive composition, photosensitive film, and permanent pattern and method for forming the same
JP4546349B2 (en) Pattern forming material, pattern forming method and pattern
JP2007041240A (en) Pattern forming material, pattern forming method, and pattern
JP2006065000A (en) Photosensitive composition for sandblast resist, sandblast resist film using the same, and sandblast resist pattern forming method
JP2007093793A (en) Photosensitive film, permanent pattern forming method and pattern
JP2006293044A (en) Photosensitive film and method for producing same, and permanent pattern and method for forming same
JP2006160854A (en) Styrene derivative, polymer, its production method, pattern forming material, permanent pattern, and its production method
JP2006084873A (en) Photosensitive composition, photosensitive film, permanent pattern, and forming method thereof
JP2007033685A (en) Pattern forming material, pattern forming apparatus and permanent pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06711920

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP