WO2006095387A1 - スケジューリング方法及び基地局装置 - Google Patents

スケジューリング方法及び基地局装置 Download PDF

Info

Publication number
WO2006095387A1
WO2006095387A1 PCT/JP2005/003732 JP2005003732W WO2006095387A1 WO 2006095387 A1 WO2006095387 A1 WO 2006095387A1 JP 2005003732 W JP2005003732 W JP 2005003732W WO 2006095387 A1 WO2006095387 A1 WO 2006095387A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile terminal
index value
data
error rate
received signal
Prior art date
Application number
PCT/JP2005/003732
Other languages
English (en)
French (fr)
Inventor
Satoshi Yamagiwa
Seiji Hamada
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2007506921A priority Critical patent/JPWO2006095387A1/ja
Priority to PCT/JP2005/003732 priority patent/WO2006095387A1/ja
Publication of WO2006095387A1 publication Critical patent/WO2006095387A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to a scheduling method and a base station apparatus, and more particularly, to a scheduling method and a base in a wireless data transmission system for transmitting data from a network side to a predetermined mobile terminal via a wireless line shared by a plurality of mobile terminals. It relates to station equipment.
  • FIG. 17 shows a configuration example of a W-CDMA mobile communication system.
  • 1 is a core network
  • 2 and 3 are radio base station controllers (RNCs)
  • 4 and 5 are demultiplexers
  • 6-6 are radio base stations (RodeB)
  • 7 are mobile stations (UEs) : User equipment)
  • the core network 1 is a network for performing routing in the mobile communication system.
  • the core network can be configured by an ATM switching network, a packet switching network, a router network, or the like.
  • the core network 1 is also connected to other public networks (PSTN) or the like, and the mobile station 7 can communicate with a fixed telephone or the like.
  • PSTN public networks
  • the radio base station control devices 2 and 3 are positioned as upper devices of the radio base stations 6-6,
  • the demultiplexers 4 and 5 are provided between the RNC and the radio base station, demultiplex signals received from the RNC 2 and 3 to the radio base stations, output the signals to the radio base stations, and Control is performed by multiplexing the signals from the line base station and passing the bow to each RNC.
  • Radio base stations 6-6 manage radio resources by RNC2, and radio base stations 6, 6 manage radio resources by RNC3
  • wireless communication with the mobile station 7 is performed.
  • the mobile station 7 By being in the network, a wireless line is established with the wireless base station 6 and communication is performed with other communication devices via the core network 1.
  • the interface between the core network 1 and RNC2, 3 is the Iu interface
  • the interface between RNC2, 3 is the Iur interface
  • the interface between RNC2, 3 and each radio base station 6 is the Iub interface
  • the radio base station 6 The interface with the mobile station 7 is called the Uu interface
  • the network formed by 2-6 devices is called the radio access network (RAN).
  • the line between the core network 1 and RNC2 and 3 is shared for the Iu and Iur interfaces
  • the line between the RNC2 and 3 and the demultiplexer 4 and 5 is the Iub for multiple radio base stations. Shared by the interface.
  • HSDPA High Speed Downlink Packet Access
  • HSDPA High Speed Downlink Packet Access
  • HSDPA employs Adaptive Code Modulation and Coding (AMC).
  • AMC Adaptive Code Modulation and Coding
  • QPSK modulation scheme QPSK modulation scheme
  • 16-value QAM scheme 16 QAM scheme
  • HSDPA adopts the H-ARQ (Hybrid Automatic Repeat reQuest) method.
  • H-ARQ Hybrid Automatic Repeat reQuest
  • a mobile station detects an error in the received data of a radio base station, it makes a retransmission request (transmission of a NACK signal) to the radio base station.
  • the radio base station that has received this retransmission request retransmits the data, so that the mobile station performs error correction decoding using both the already received data and the retransmitted received data.
  • the ACK signal is received by the mobile station, the data transmission is successful, so no retransmission is necessary, and the next data transmission is performed.
  • the main radio channels used in HSDPA are (1) HS-SCCH (High Speed-Shared Control Channel (2), HS—PDSCH (High Speed-Physical Downlink Shared Channel), (3) HS—High Speed-Dedicated Physical Control Channel (DPCCH).
  • HS-SCCH High Speed-Shared Control Channel
  • PDSCH High Speed-Physical Downlink Shared Channel
  • DPCCH High Speed-Dedicated Physical Control Channel
  • HS-SCCH and HS-PDSCH are both shared channels in the downlink direction (that is, the downlink from the radio base station to the mobile station), and HS-SCCH is defined in HS-PDSCH.
  • This is a control channel that transmits various parameters related to the data to be transmitted. In other words, it is a channel that notifies that data is transmitted via HS-PDSCH.
  • Various parameters include, for example, modulation scheme information indicating which modulation scheme is used to transmit data by HS-PDSCH, the number of assigned spreading codes (number of codes), and the rate for transmission data There is a blueprint for matching patterns.
  • the HS-DPCCH is a dedicated control channel in the uplink direction (that is, the uplink from the mobile station to the radio base station), and an error occurs in data received via the HS-PDSCH.
  • This is used when the mobile station transmits a reception result (ACK signal, NACK signal) to the radio base station depending on whether or not there is. That is, it is a channel used to transmit the reception result of data received via H S-PDSCH. If the mobile station fails to receive data (such as when the received data is a CRC error), the NACK signal is transmitted from the mobile station, so the radio base station executes retransmission control.
  • HS-DPCCH is also used by mobile stations that measure the reception quality (for example, SIR) of received signals from radio base stations to transmit the reception quality to the radio base station as CQI (Channel Quality Indicator). It is done.
  • CQI is information for the mobile station to report the reception environment to the base station.
  • CQI takes a value of 1-30, and the block error rate BLER does not exceed 0.1 under the reception environment. Report the CQI value to the base station.
  • FIG. 19 is an explanatory diagram of the channel configuration in HSDPA.
  • W-CDMA since the code division multiplexing system is adopted, each channel is separated by a code.
  • CPICH Common Pilot Channel
  • SCH Synchronization Channel
  • CPICH is a channel used for channel estimation, cell search, etc. in a mobile station, and is a channel for transmitting a so-called pilot signal.
  • P-SCH Primary SCH
  • S-SCH Secondary SCH
  • the SCH is a channel transmitted in bursts by the first 256 chips of each slot. This SCH is received by a mobile station that performs a three-stage cell search, and slot synchronization and frame synchronization are established.
  • SCH Used to identify the base station code (scramble code).
  • SCH is the length of 1Z10 in 1 slot, but is shown wider in the figure. The remaining 9Z10 is P-CCPCH.
  • Each channel is composed of 15 slots to form one frame (10 ms), and each frame has a length equivalent to 2560 chips.
  • the frame head of SCH + P-CCPCH and HS-SCCH coincides with the head of the CPICH frame.
  • the head of the HS-PDSCH frame is delayed by 2 slots with respect to the HS-SCCH, etc. This is because the mobile station receives the modulation method information via the HS-SCCH and then receives the modulation received. This is because HS-PDSCH can be demodulated using a demodulation method corresponding to this method.
  • HS-SCCH and HS-PDSCH consist of 3 slots and 1 subframe.
  • HS—DPCCH is an uplink channel
  • the first slot of the HS—DPCCH sends an ACKZNACK signal indicating the HS—PDSCH reception result to the radio base station after about 7.5 slots have elapsed since the HS—PDSCH was received. Used to do.
  • CQI information for adaptive modulation control is periodically sent back to the base station. Used for Here, the CQI information to be transmitted is calculated based on the reception environment (for example, SIR measurement result of CPICH) measured during the period from 4 slots before 1 slot before CQI transmission.
  • the scheduler determines the transmission target (mobile station) and the transmission speed, modulation method, and the like based on the index value calculated based on the channel quality and the transmission data rate.
  • the scheduler is a power used in various communication systems
  • a scheduler that is applied to a mobile communication system adopting the HSDPA method will be described as an example.
  • the physical downlink data channel HS-PDSCH described above is shared by multiple mobile stations, so it is necessary to select a mobile station to be transmitted, and the scheduler is involved in mobile station selection control.
  • Fig. 20 shows a configuration example in the HSDPA system.
  • Two radio base station devices 6-6 are connected to one radio base station control device 2, and the radio base station device
  • radio base station device 6 is communicating with subordinate mobile stations 7-7, and radio base station device 6 is under control
  • the scheduler SJL of each base station selects the mobile station to transmit data (mobile station selection control) and receives the CQI information from the mobile station.
  • the transmission data volume, modulation method, power, etc. are determined based on the above, and the channel coding unit CCD is instructed.
  • the scheduler SJL requests the data addressed to each mobile station from the radio base station controller 2 based on the scheduling result (flow control).
  • the radio base station controller 2 is addressed to each mobile station 7-7 received via the core network.
  • Buffer section BUF of base station 6-6 is sent from radio base station controller 2
  • Channel coding unit CCD adds CRC code for each block to the data destined for the mobile station, encodes it for every predetermined number of blocks, and modulates each mobile by modulating with the modulation method specified by the scheduler Send to the station.
  • R is the instantaneous channel quality
  • Ave R is the average channel quality
  • l- ⁇ and 1-j8 are the respective weighting factors.
  • Rn and Ave Rn may be replaced with the amount of data that can be transmitted according to the line quality, not the line quality.
  • the scheduler selects a mobile station to be transmitted by multiple users based on the scheduling method, and performs adaptive modulation control according to the downlink line quality. carry out. For this reason, scheduling schemes have a significant impact on overall cell throughput.
  • the Proportional Fairness method described above in the background art is superior in terms of improving throughput while maintaining fairness. The following issues still remain.
  • the Proportional Fairness method makes it easy to select users whose line quality varies greatly.
  • the Proportional Fairness method is a method that takes into account both fairness and throughput by using the ratio of the instantaneous value to the average line quality as an index, but the line quality that seems to be in a poor environment is intense, Easy to choose! / ,.
  • the Proportional Fairness method is not a method that takes into account the data type. Even if the amount of data is the same, the transmission interval may be long for those that do not have real-time properties, such as e-mail, but the transmission interval needs to be shortened if real-time properties such as voice are required. . If the characteristics of such data types are not taken into account at all, it will be assigned frequently to those that do not require real-time characteristics so much, or conversely, they will not be assigned to those that have high real-time characteristics. Wireless resources cannot be used efficiently. (3) The Proportional Fairness method is not a method that takes into account the error rate for each CQI.
  • CQI line quality
  • block error rate 0.1
  • the Proportional Fairness method is not a method that takes into account the error rate for each retransmission.
  • HSDPA High Speed Downlink Packet Access
  • H-ARQ is implemented, and even if there is an error, the gain of error correction decoding is increased by effectively using the received data. If the number of retransmissions increases, the error rate Becomes smaller. Therefore, it is necessary to consider the error rate for each retransmission.
  • the relationship between the number of retransmissions and the error rate (the relationship between the number of retransmissions and the gain) varies depending on the propagation environment. Therefore, it is necessary to take into account the relationship between the number of retransmissions and the error rate according to the propagation environment.
  • the Proportional Fairness method is not a method that takes into account the uplink radio synchronization state.
  • the selection candidate user is assumed to have established uplink synchronization, but it is possible to select a mobile station for which uplink synchronization is stable. That is, it is possible to select a mobile station that is in the forward and rearward protection state rather than in the fully synchronized state.
  • the full synchronization state always indicates that the pilot synchronization has been established, and the forward protection state indicates that the pilot synchronization has been established at least once from the out-of-synchronization state, and then the state where the pilot synchronization has not increased by the number of forward protection stages.
  • the protection state refers to a state in which pilot synchronization has not increased by the number of backward protection stages after pilot synchronization has been removed one or more times from the complete synchronization state.
  • the synchronization state In the forward and backward protection state, the synchronization state is often unstable. In this case, the reception probability of HS-DPCCH data decreases and retransmission processing increases, so the cell throughput is low.
  • an object of the present invention is to provide a scheduling method and a base station apparatus that can solve the problems (1), (1) and (5) above and can achieve higher throughput based on the Proportional Fairness technique. is there.
  • Non-Patent Document 1 3G TS 25.212 (3rd Generation Partnership Project: Technical Non-Patent Document 2: 3G TS 25.214 (3rd Generation Partnership Project: Technical Specification roup Radio Access Network; Physical layer procedures (FDD))
  • the scheduler reflects the variance value of the channel quality or the fading frequency estimation result in the Proportional Fairness method. As a result, a mobile station with a severe change in channel quality or a high fading frequency is selected.
  • the scheduler reflects the required transmission interval according to the data type in the Proportional Fairness method, so that the mobile station transmitting data with a short required transmission interval (data such as voice with high real-time property) is transmitted. Select with priority.
  • the scheduler reflects the error rate for each CQI in the Proportional Fairness method and preferentially selects a mobile station that has received a CQI with a low error rate.
  • the scheduler reflects the error rate for each number of retransmissions in the Proportional Fairness method, and preferentially selects a mobile station with the number of retransmissions with a low error rate.
  • the scheduler reflects in the Proportional Fairness method whether or not the mobile station is in a completely synchronized state, and preferentially selects a completely synchronized mobile station.
  • the scheduler reflects in the Proportional Fairness method whether or not the mobile station is in a completely synchronized state, and preferentially selects a completely synchronized mobile station.
  • an optimal line allocation according to the data type is performed by preferentially selecting a mobile station that transmits and receives data with a short required transmission interval and not allocating a line to a mobile station with a long required transmission interval. Is possible.
  • the error rate of the entire cell is lowered and the throughput is improved.
  • the fourth invention by preferentially selecting a mobile station having a low number of retransmissions with a low error rate, the error rate of the entire cell is lowered and the throughput is improved.
  • the ACK / NACK reception probability is improved by preferentially selecting mobile stations that are reliably synchronized, and the number of retransmissions associated with DTX reception (no transmission) is reduced. Can improve throughput. Also, since the possibility of data transmission based on CQI with low reliability is reduced, the error rate increases when the amount of data is large compared to the line quality, and the transmission rate decreases and the throughput decreases when the amount of data is small The factor of decline can be eliminated.
  • ⁇ 1 It is a block diagram of the base station apparatus of the first embodiment.
  • ⁇ 3 It is a block diagram of the base station apparatus of the second embodiment.
  • FIG. 4 This is a scheduling process flow that reflects the fading frequency fd.
  • FIG. 6 This is a scheduling process flow that takes into account the required transmission interval according to the data type.
  • FIG. 8 This is the processing flow for calculating the error rate for each CQI by the error rate calculator.
  • FIG. 11 is a block diagram of a base station apparatus in a fifth embodiment.
  • FIG. 13 This is a scheduling process flow that takes into account the error rate for each CQI.
  • FIG. 15 is a flowchart of scheduling processing according to the sixth embodiment in consideration of the wireless synchronization state. [16] It is a transition diagram between each synchronization state.
  • FIG. 17 is a configuration example of a W—CDMA mobile communication system.
  • FIG. 18 is an explanatory diagram of radio channels used for HSDPA.
  • FIG. 19 is an explanatory diagram of channel timing in HSDPA.
  • FIG.20 This is a configuration example of the HSDPA system.
  • FIG. 1 is a block diagram of the base station apparatus of the first embodiment.
  • the scheduler 15 reflects the dispersion value of the line quality in the Proportional Fairness method.
  • the receiving unit 11 of the base station apparatus 10 performs amplification, band limitation, frequency conversion, orthogonal demodulation, AD conversion, and the like of the radio signal received by the antenna and inputs the result to the despreading unit 12.
  • the despreading unit 12 demodulates the DPCCH (dedicated physical control channel) and HS—DPCCH transmitted from the mobile station by despreading using the spreading code assigned to the mobile station (mobile terminal), and demodulates the DPCCH (dedicated
  • the pilot signal obtained by demodulating the (physical control channel) is input to the channel estimation unit 13, and the HS-DPCCH demodulation signal is input to the ACKZCQI decoding unit 14.
  • the channel estimation unit 13 estimates the channel using the pilot signal, and the ACKZCQI decoding unit 14 synchronously detects ACKZNACK and CQI based on the channel estimation value, performs error detection and correction processing, and sends ACKZNACK sent by HS-DPCCH , Decode and output CQI. Similarly, ACKZNACK and CQI sent from all mobile stations are decoded and input to scheduler 15.
  • the scheduler 15 calculates for each mobile station an index value based on the Proportional Fairness method and a variance value of the channel quality, corrects the index value based on the variance value of the channel quality, and stores data based on the corrected index value. Select the mobile station to send. Further, the scheduler 15 determines a transmission data amount, a spreading code, a modulation scheme, power, etc. based on the CQI information, and inputs it to the channel coding unit 16, spreading unit 18, and transmission unit 19. Further, the scheduler 15 requests the data destined for each mobile station from the radio base station controller RNC based on the data retention amount of the noffer unit (flow control).
  • the radio base station controller RNC holds data addressed to each mobile station received via the core network, and sends the data addressed to the requested mobile station to the base station 10 in response to a request from the scheduler 15.
  • the buffer unit 17 of the base station stores the data addressed to each mobile station, which is also transmitted by the radio base station controller RNC, and the data addressed to the mobile station instructed by the instruction from the scheduler 15 is channeled in the requested block size. Input to coding section 16.
  • the channel coding unit 16 adds a CRC code for each block to the input data addressed to the mobile station, and encodes it for each predetermined number of blocks, and the spreading unit 18 is instructed.
  • the data is spread with the spreading code, and the transmitter 19 modulates the scheduler power with the instructed modulation method, and converts the frequency to a radio frequency and transmits it to the antenna power mobile station.
  • FIG. 1 shows the scheduling process flow that takes into account the line quality fluctuation (VAR).
  • the channel estimation unit 13 estimates the phase rotation amount and amplitude variation amount in the radio space based on the DPCCH pilot signal (channel estimation) and inputs it to the ACKZCQI decoding unit 14 (step 101).
  • the ACKZCQI decoding unit 14 detects ACKZNACK and CQI synchronously based on the channel estimation value, performs error detection and correction processing, decodes the HARQ reception result (ACK or NAC :) and CQI sent by HS—DPCCH, and scheduler Enter in 15. Similarly, HARQ reception results (ACK or NACK) sent from all mobile stations are decoded and input to scheduler 15 (step 102).
  • the scheduler 15 determines the transmission target data (new or retransmission) based on the HARQ reception result (ACK or NACK), and uses the following formula to determine the average line quality MEAN and the line quality fluctuation.
  • VAR (1- ⁇ ) X (CQI-MEAN ⁇ + ⁇ X VAR (3)
  • the line quality fluctuation amount VAR is a forgetting factor for the previous line quality and the CQI received this time.
  • the mean value MEAN is calculated using ⁇ , and this CQI variance of this mean value MEAN force
  • scheduler 15 uses this CQI, calculated MEAN, and VAR to calculate
  • Cn (VASCQ) Cn (PF) / VARcQ ( 1.0 l (5) is used to calculate the scheduling index value C taking into account the line quality variation (VAR).
  • 1-1 indicates the weighting of the line quality fluctuation amount for C. Optimize with consideration of the Kuta propagation environment and sector throughput.
  • the scheduler 15 selects the mobile station with the highest correction index value C, and n (VARCQ)
  • Data is transmitted to the mobile station (step 105).
  • the error rate of the entire cell is lowered and the throughput is improved.
  • FIG. 3 is a block diagram of the base station apparatus of the second embodiment, and the same parts as in the first embodiment of FIG.
  • symbol is attached
  • the different points are that a fusing frequency estimation unit 21 is provided, and that the scheduler corrects the index value based on the fading frequency and schedules based on the corrected index value. That is, in the second embodiment, the scheduler 15 reflects the fading frequency in the Proportional Fairness method.
  • Figure 4 shows the scheduling process flow with the fading frequency fd taken into account.
  • channel estimation section 13 estimates the amount of phase rotation and amplitude fluctuation in the radio space (channel estimation) based on the DPCCH pilot signal, and inputs it to ACKZCQI decoding section 14 and fading frequency estimation section 21 (step 201). ).
  • the fading frequency estimation unit 21 estimates the fading frequency fd from the time correlation of the channel estimation result and notifies the scheduler 15 (step 202).
  • Various fading frequency estimation methods have been proposed. For example, there is a method (see Japanese Patent Application No. 2000-179609) that estimates the fading frequency using the time correlation of the pie signal.
  • the ACKZCQI decoding unit 14 detects ACKZNACK and CQI synchronously based on the channel estimation value, performs error detection and correction processing, decodes the HARQ reception result (ACK or NAC :) and CQI sent on the HS-DPCCH. To scheduler 15 (step 203). Similarly, the HARQ reception result (ACK or NACK) sent from all mobile stations is decoded and input to the scheduler 15.
  • the scheduler 15 determines the data to be transmitted (new or retransmission) based on the HARQ reception result (ACK or NACK).
  • scheduler 15 uses this CQI, calculated MEAN, and fading frequency.
  • the index value in Eq. (7) corresponds to the index value by the Proportional Fairness method in Eq. (1), and the scheduling index value C is the index n (fd) by the Proportional Fairness method.
  • 8 2 indicates the fading frequency weighting for the first n (PF), and is optimized in consideration of the propagation environment and sector throughput of the target sector.
  • the scheduler 15 selects the mobile station with the highest correction index value C, and n (VARCQ)
  • Data is transmitted to the mobile station (step 206).
  • the uplink Z downlink reception characteristics tend to deteriorate.
  • the error rate of the entire cell is lowered, and the throughput is reduced. Will improve.
  • FIG. 5 is a block diagram of the base station apparatus according to the third embodiment. Components identical with those of the first embodiment shown in FIG. The difference is
  • the transmission interval measurement unit 31 of each mobile station is provided,
  • the scheduler corrects the index value based on the required transmission interval according to the data type, and schedules based on the corrected index value
  • the scheduler 15 reflects the required transmission interval according to the data type in the Proportional Fairness method, and transmits data with a short required transmission interval (data such as voice with high real-time characteristics). Select a mobile station with priority.
  • Figure 6 shows the scheduling process flow that takes into account the required transmission interval according to the data type.
  • the channel estimation unit 13 estimates the phase rotation amount and amplitude fluctuation amount in the radio space based on the DPCCH pilot signal (channel estimation), and inputs it to the ACKZCQI decoding unit 14 (step 301).
  • the ACKZCQI decoding unit 14 detects the ACKZN ACK and CQI synchronously based on the channel estimation value, performs error detection and correction processing, and receives the HARQ reception result (ACK or NACK) and CQI sent on the HS-DPCCH. Decrypt and input to scheduler 15 (step 302). Similarly, the HARQ reception result (ACK or NACK) sent by all mobile stations is decoded and input to the scheduler 15. The scheduler 15 determines transmission target data (new or retransmission) based on the HARQ reception result (ACK or NACK) and instructs the transmission interval measurement unit 31 to calculate the time difference of the transmission interval.
  • the transmission interval measurement unit 31 stores the previous transmission time for each mobile station in the built-in memory MEM and the required transmission interval Txjnt corresponding to the type of transmission data for each mobile station including the host device.
  • the transmission interval measuring unit 31 calculates a time interval Txjnt from the previous transmission time of the mobile station to the current time (step 303), and then the necessary transmission interval. Difference between Txjnt and calculated time interval Txjnt
  • Tx_Int_diff is the following formula
  • Tx— Int— diff Txjnt -Txjnt (9)
  • scheduler 15 is
  • the index value C in the Proportional Fairness method is calculated (step 306).
  • time difference Tx_Int_diff is compared with the minimum time difference Txjnt (step n (PF) min
  • Tx_Int_diff If the minimum time difference is greater than Txjnt,
  • Equations (12) and (13) are values obtained by correcting the index value obtained by the Proportional Fairness method at the required transmission interval according to the data type.
  • 1- ⁇ 3 is the weight of Tx Int diff to C
  • Txjnt takes Tx_Int_diff ⁇
  • the scheduler 15 calculates the correction index value C for all mobile stations.
  • an optimum line allocation according to the data type is selected by preferentially selecting a mobile station that transmits and receives data with a short required transmission interval and not allocating a line to a mobile station with a long required transmission interval. Is possible.
  • FIG. 7 is a block diagram of the base station apparatus according to the fourth embodiment. Components identical with those of the first embodiment shown in FIG. 1 are designated by like reference characters. The difference is
  • the upper device also receives the minimum block error rate BLER_CQI,
  • the scheduler corrects the index value based on the error rate for each CQI, and schedules V based on the corrected index value
  • the scheduler 15 reflects the error rate for each CQI in the Proportional Fairness method and preferentially selects a mobile station with a low error rate.
  • FIG. 8 is a processing flow of error rate calculation for each CQI by the error rate calculation unit 41.
  • the mobile station UE # n exists in the cell area (step 406) . If it exists in the cell area, the first block among the multiple blocks transmitted in TTI (2mse at subframe interval) is transmitted. In response to this, it is determined whether or not ACK is received, NACK is received, or nothing is received (steps 407 to 408).
  • the base station determines a TF (Transport Format) for each TTI based on the CQ I value received from the mobile station, and based on the TF! / Determine the number of bits per block.
  • TF Transport Format
  • the number of blocks TBnum corresponding to the CQI that is the basis of the TF decision in the TTI is counted up (step 409), and if a NACK is received, the TTI is added.
  • Figure 10 shows the scheduling process flow that takes into account the error rate for each CQI.
  • the channel estimation unit 13 estimates the amount of phase rotation and amplitude fluctuation in the radio space based on the DPCCH noise signal (channel estimation), and inputs it to the ACKZCQI decoding unit 14 (step 451).
  • the ACKZCQI decoding unit 14 is based on the channel estimation value! /, Synchronously detects ACKZNACK and CQI, performs error detection and correction processing, and decodes the HARQ reception result (ACK or NACK) and CQI sent on the HS—DPCCH And input to the error rate calculation unit 41 (step 452).
  • the error rate calculation unit 41 stores the number of blocks TBnum and the number of errors ERRnum according to CQI. Read from MM1
  • ACK / NACK and CQI are input to scheduler 15 (step 453).
  • the scheduler 15 determines the data to be transmitted (new or retransmission) based on the HARQ reception result (ACK or NACK).
  • the index value C in the Proportional Fairness method is calculated (step 455).
  • Step 456 if BLER.CQI is greater than min error rate BLER_CQI by min n, k min
  • Eqs. (17) and 18) are the values obtained by correcting the index value by the Proportional Fairness method with the error rate for each CQI! / 1- ⁇ 4 is the weight of BLER CQI for C
  • BLER.CQI specifies the minimum value of the denominator considering the case of BLER_CQI force.
  • the scheduler 15 calculates the correction index value C for all mobile stations, and corrects it.
  • the error rate of the entire cell is reduced and the throughput is improved.
  • FIG. 11 is a block diagram of the base station apparatus in the fifth embodiment, and the same parts as those in the first embodiment of FIG. The difference is
  • the scheduler corrects the index value based on the error rate for each retransmission, and schedules based on the corrected index value
  • the scheduler 15 reflects the error rate for each number of retransmissions in the Proportional Fairness method and preferentially selects a mobile station with a low error rate. It is a processing flow of rate calculation.
  • the mobile station UE # n exists in the cell area (step 506) . If it exists in the cell area, the first block of the multiple blocks transmitted in TTI (2mse at subframe interval) is transmitted. It is determined whether the power of receiving ACK, the power of receiving NACK, or nothing is received (steps 507 to 508).
  • ACKnum is counted up according to the number of retransmissions (step 509 ). If NACK is received, NACKnum is counted up according to the number of retransmissions
  • Figure 13 shows the scheduling process flow that takes into account the error rate for each CQI.
  • the channel estimation unit 13 estimates the phase rotation amount and amplitude fluctuation amount in the radio space based on the DPCCH noise signal (channel estimation), and inputs it to the ACKZCQI decoding unit 14 (step 551).
  • the ACKZCQI decoding unit 14 is based on the channel estimation value! /, Synchronously detects ACKZNACK and CQI, performs error detection and correction processing, and decodes the HARQ reception result (ACK or NACK) and CQI sent on the HS—DPCCH And input to the error rate calculation unit 41 (step 552).
  • the error rate calculation unit 51 sends ACKnum and NACKnum according to the number of retransmissions from the memory MM2.
  • the block error rate BLER transmit corresponding to the current number of retransmissions is calculated by
  • the error rate, ACK / NACK, and CQI are input to the scheduler 15 (step 553).
  • the scheduler 15 determines the data to be transmitted (new or retransmission) based on the HARQ reception result (ACK or NACK).
  • the index value C in the Proportional Fairness method is calculated (step 555).
  • scheduler 15 determines block error rate BLER transmit and
  • Equation (22) [23] is the value obtained by correcting the index value by the Proportional Fairness method with the error rate for each retransmission.
  • 1- ⁇ 5 is the weight of BLER transmit for C
  • n (PF) Indicates n, k addition, and is assumed to be optimized in consideration of the propagation environment and sector throughput of the target sector. Also consider the case where BLER_transmit becomes BLER_transmit power.
  • the positive value is as small as possible.
  • the scheduler 15 calculates the correction index value C for all mobile stations and compensates for it.
  • the error rate of the entire cell is lowered and the throughput is improved.
  • FIG. 14 is a block diagram of the base station apparatus according to the sixth embodiment. Components identical with those of the first embodiment shown in FIG. The difference is
  • a synchronization state monitoring unit 61 that monitors the uplink radio synchronization state of the mobile station and inputs the monitoring result to the scheduler 15 is provided.
  • a synchronization state storage unit 62 for storing the synchronization state of each mobile station is provided,
  • the scheduler performs scheduling in consideration of the radio synchronization state of the mobile station.
  • the synchronization status monitoring unit 61 is a dedicated physical control channel DPC sent from the mobile station. Use the pilots included in the CH to monitor the power established and out of sync. That is, since the pilot is a known pattern, the received pilot and the known pilot are compared, and it is determined that the differential force is established, the synchronization is established, and if the difference is large, the synchronization is lost. Since this difference corresponds to the channel estimation value, the synchronization state monitoring unit 61 monitors the synchronization state based on the channel estimation value.
  • the scheduler 15 preferentially selects a mobile station in a completely synchronized state, and selects a UE in a forward and backward protected state only when there is no mobile station in a completely synchronized state.
  • FIG. 15 shows a scheduling process flow of the sixth embodiment that takes into account the wireless synchronization state.
  • MAX_UE_SEL is the number of selectable mobile stations. The number of mobile stations that can be selected is generally determined by the remaining power and code resources. Since the algorithm is not mainly described here, the number of mobile stations that can be selected is determined by some method. It is assumed that a mobile station is selected using this scheduling method.
  • UE_SYNC [kl] UE # n
  • UE.NOSYNC [k2] UE # n
  • FIG. 16 is a synchronization state transition diagram, and the synchronization state storage unit 62 stores whether the mobile station is in an out-of-synchronization state, a forward protection state, a complete synchronization state, or a backward protection state.
  • Out-of-synchronization state A state in which the mobile station belongs first, and communication with this mobile station is not possible. When synchronization is established even once, it shifts to the forward protection state.
  • N1 Forward protection state: Communication with the mobile station is possible before the transition to the fully synchronized state.
  • N1 is set to the optimum value according to the external environment such as the propagation environment and the characteristics of the equipment.
  • the channel estimation unit 13 calculates the phase rotation amount and amplitude fluctuation amount in the radio space based on the DPCCH pilot signal. Estimate (channel estimation), and notify the ACKZCQI decoding unit 14 of the estimation result
  • the ACKZCQI decoding unit 14 decodes ACKZNACK and CQI, and transmits them to the scheduler 15.
  • the scheduler 15 determines transmission target data (new or retransmission) based on the HARQ reception result (ACKZNACK).
  • scheduler 15 uses the decrypted CQI to calculate
  • the mobile station that is subject to the calculation of C is determined by comparing the total number of UEs K1 stored in UE_SYNC [kl] with the MAX_UE_SEL. That is,
  • Kl ⁇ MAX_UE_SEL
  • K1 MAX_UE_SEL
  • all mobile stations are targeted (mobile stations stored in UE_SYNC and UE_NOSYNC, respectively).
  • the scheduler 15 selects a mobile station according to the lower processing flow (steps 701 to 704) in FIG. In other words, until k reaches the mobile station selectable number (MAX_UE_SEL) or until the total number of mobile stations stored in UE_SYNC is reached, select from the mobile stations in the synchronized state UE_SYNC in descending order of C.
  • MAX_UE_SEL mobile station selectable number
  • step 704 the mobile station selection at that TTI is completed. Otherwise, go to step 801 and select the mobile station from the forward / backward protection state UE_NOSYNC.
  • the scheduler 15 follows the processing flow in the lower part of FIG. 15 (steps 801 to 804) until k reaches the mobile station selectable number (MAX_UE_SEL), or all the movements where k exists in the target cell. Forward and backward protection until the number of stations (kl + k2) is reached
  • the reception probability of ACK / NACK is improved, and the number of retransmissions associated with DTX reception (no transmission) can be reduced.
  • Throughput since the possibility of data transmission based on CQI with low reliability is reduced, the error rate increases when the amount of data is large for the line quality! ], The transmission rate drop when the data volume is small! / ⁇ and! /! Throughput reduction factor can be eliminated.
  • the power described above when applied to HDDPA is not limited to HDDPA that is powerful.
  • Wireless data that transmits data from a network side to a predetermined mobile station via a wireless line shared by a plurality of mobile stations. It can be applied to a transmission system.
  • the forces described for the individual embodiments can be combined as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを送信する無線データ伝送システムにおいて、スケジューラは、各移動端末における受信信号の品質に基づいてどの移動端末を選択するかの指標値を計算し、該指標値を受信信号の品質変動率により、あるいはフェージング周波数により、あるいはCQI毎の誤り率等により補正し、該補正指標値に基づいてデータを送出する移動端末を選択する。                                                                         

Description

明 細 書
スケジューリング方法及び基地局装置
技術分野
[0001] 本発明はスケジューリング方法及び基地局装置に係り、特に、複数の移動端末で 共有する無線回線を介して網側より所定の移動端末へデータを送信する無線データ 伝送システムにおけるスケジューリング方法及び基地局装置に関する。
背景技術
[0002] 回線を複数ユーザで共有するような無線通信システムはいくつか存在する力 ここ では、 W— CDMA (UMTS)移動通信システムを 1例としてとりあげて説明する。図 1 7は W— CDMA移動通信システムの構成例である。図において、 1はコアネットワーク 、 2、 3は無線基地局制御装置(RNC : Radio Network Controller)、 4、 5は多重分離 装置、 6— 6は無線基地局(RodeB)、 7は移動局(UE : User equipment)をそれぞ
1 5
れ示す。
コアネットワーク 1は、移動通信システム内においてルーティングを行うためのネット ワークであり、例えば、 ATM交換網、パケット交換網、ルーター網等によりコアネット ワークを構成することができる。尚、コアネットワーク 1は、他の公衆網(PSTN)等とも 接続され、移動局 7が固定電話等との間で通信を行うことも可能としている。
[0003] 無線基地局制御装置 2、 3は、無線基地局 6— 6の上位装置として位置付けられ、
1 5
これらの無線基地局 6— 6の制御 (使用する無線リソースの管理等)を行う機能を備
1 5
えている。また、ハンドオーバ時において、 1つの移動局 7からの信号を配下の複数 の無線基地局から受信し、品質が良い方のデータを選択してコアネットワーク 1側へ 送出するハンドオーバ制御機能も備えて 、る。
多重分離装置 4、 5は、 RNCと無線基地局との間に設けられ、 RNC2、 3から受信し た各無線基地局宛ての信号を分離し、各無線基地局宛てに出力するとともに、各無 線基地局からの信号を多重して各 RNC側に弓 Iき渡す制御を行う。
無線基地局 6— 6は RNC2、無線基地局 6、 6は RNC3により無線リソースを管理
1 3 4 5
されつつ、移動局 7との間の無線通信を行う。移動局 7は、無線基地局 6の無線エリ ァ内に在圏することで、無線基地局 6との間で無線回線を確立し、コアネットワーク 1 を介して他の通信装置との間で通信を行う。
コアネットワーク 1と RNC2、 3との間のインタフェースを Iuインタフェース、 RNC2、 3 間のインタフェースを Iurインタフェース、 RNC2、 3と各無線基地局 6との間のインタ フェースを Iubインタフェース、無線基地局 6と移動局 7との間のインタフェースを Uu インタフェースと称し、 2— 6の装置で形成されるネットワークを特に無線アクセスネット ワーク(RAN)と称する。コアネットワーク 1と RNC2、 3との間の回線は、 Iu、 Iurインタ フェースのために共用され、 RNC2、 3と多重分離装置 4、 5との間の回線は、複数の 無線基地局用の Iubインタフェースで共用されて 、る。
以上が一般的な移動通信システムに関する説明であるが、更に、高速な下り方向 のデータ伝送を可能とする技術として HSDPA (High Speed Downlink Packet Access )方式が採用されることがある (非特許文献 1, 2参照)。ここで、 HSDPAについて簡 単に説明する。
•HSDPA
HSDPAは、適応符号化変調方式(AMC : Adaptive Modulation and Coding)を採 用しており、例えば、 QPSK変調方式 (QPSK modulation scheme)と 16値 QAM方式 (16 QAM scheme)とを無線基地局、移動局間の無線環境に応じて適応的に切りかえ ることを特徴としている。
また、 HSDPAは、 H— ARQ (Hybrid Automatic Repeat reQuest)方式を採用して いる。 H— ARQでは、移動局は無線基地局力もの受信データについて誤りを検出し た場合に、当該無線基地局に対して再送要求 (NACK信号の送信)を行う。この再 送要求を受信した無線基地局は、データの再送を行うので、移動局は、既に受信済 みのデータと、再送された受信データとの双方を用いて誤り訂正復号ィヒを行う。この ように H— ARQでは、誤りがあっても既に受信したデータを有効に利用することで、誤 り訂正復号の利得が高まり、結果的に再送回数が少なく抑えられることとなる。なお、 ACK信号を移動局力 受信した場合は、データ送信は成功であるから再送は不要 であり、次のデータの送信を行うこととなる。
HSDPAに用いられる主な無線チャネルは、図 18に示すように (1) HS-SCCH ( High Speed-Shared Control Channel)、 (2) HS— PDSCH (High Speed-Physical Downlink Shared Channel)、 (3) HS— DPCCH (High Speed-Dedicated Physical Control Channel)かめ Ό。
HS— SCCH、 HS— PDSCHは、双方とも下り方向(即ち、無線基地局から移動局 への方向であるダウンリンク)の共通チャネル(shared channel)であり、 HS—SCCH は、 HS— PDSCHにて送信するデータに関する各種パラメータを送信する制御チヤ ネルである。言い換えれば、 HS— PDSCHを介してデータの送信が行われることを通 知するチャネルである。各種パラメータとしては、例えば、どの変調方式を用いて HS - PDSCHによりデータを送信するかを示す変調方式情報や、拡散符号 (spreading code)の割当て数 (コード数)、送信データに対して行うレートマッチングのパターン等 の†青報がある。
一方、 HS— DPCCHは、上り方向(即ち、移動局から無線基地局への方向であるァ ップリンク)の個別の制御チャネル (dedicated control channel)であり、 HS— PDSCH を介して受信したデータのエラーの有、無に応じてそれぞれ受信結果 (ACK信号、 NACK信号)を移動局が無線基地局に対して送信する場合に用いられる。即ち、 H S— PDSCHを介して受信したデータの受信結果を送信するために用いられるチヤネ ルである。尚、移動局がデータの受信に失敗した場合 (受信データが CRCエラーで ある場合等)は、 NACK信号が移動局から送信されるので、無線基地局は再送制御 を実行することとなる。
その他、 HS— DPCCHは、無線基地局からの受信信号の受信品質 (例えば SIR) を測定した移動局が、その受信品質を CQI (Channel Quality Indicator)として無線基 地局に送信するためにも用いられる。すなわち、 CQIは、移動局が基地局に対して 受信環境を報告するための情報であり、 CQI= 1— 30の値をとり、その受信環境下 でブロックエラーレート BLERが 0. 1を越えない CQI値を基地局に報告する。
無線基地局は、受信した CQI値により、下り方向の無線環境の良否を判断し、良好 であれば、より高速にデータを送信可能な変調方式に切りかえ、逆に良好でなけれ ば、より低速にデータを送信する変調方式に切りかえる (即ち、適応変調を行う)。実 際、基地局は CQI= 1— 30に応じて伝送速度の異なるフォーマットを定義する CQI テーブルを保持しており、 CQI値に応じた前記パラメータ (伝送速度、変調方式、多 重コード数等)を該テーブルより求め、 HS— SCCHで移動局に通知する。
·チャネル構造
図 19は、 HSDPAにおけるチャネル構成説明図であり、 W— CDMAでは、符号分 割多重方式を採用するため、各チャネルは符号により分離されている。 CPICH ( Common Pilot Channel)、 SCH (Synchronization Channel)は、それぞれ下り方向の 共通チャネルである。 CPICHは、移動局においてチャネル推定、セルサーチ等に利 用されるチャネルであり、いわゆるパイロット信号を送信するためのチャネルである。 S CHは、厳密には、 P-SCH (Primary SCH)、 S— SCH (Secondary SCH)があり、各ス ロットの先頭の 256チップでバースト状に送信されるチャネルである。この SCHは、 3 段階セルサーチを行う移動局によって受信され、スロット同期、フレーム同期を確立し た
り、基地局コード (スクランブルコード)を識別するために用いられる。 SCHは 1スロット の 1Z10の長さであるが、図では広めに示している。残りの 9Z10は P-CCPCHで ある。
次に、チャネルのタイミング関係について説明する。各チャネルは 15個のスロットに より、 1フレーム(10ms)を構成しており、いフレームは 2560チップ長相当の長さを有 している。先に説明したように、 CPICHは他のチャネルの基準として用いられるため 、 SCH + P— CCPCH及び HS— SCCHのフレーム先頭は CPICHのフレームの先頭 と一致している。一方、 HS— PDSCHのフレームの先頭は、 HS— SCCH等に対して 2スロット遅延して 、るが、これは移動局が HS— SCCHを介して変調方式情報を受信 してから、受信した変調方式に対応する復調方式で HS— PDSCHの復調を行うこと を可能にするためである。また、 HS— SCCH、 HS— PDSCHは、 3スロットで 1サブフ レームを構成している。
HS— DPCCHは上り方向のチャネルであり、その第 1スロットは、 HS— PDSCHの 受信から約 7. 5スロット経過後に、 HS— PDSCHの受信結果を示す ACKZNACK 信号を移動局力も無線基地局に送信するための用いられる。また、第 2、第 3スロット は、適応変調制御のための CQI情報を定期的に基地局にフィードバック送信するた めに用いられる。ここで、送信する CQI情報は、 CQI送信の 4スロット前から 1スロット 前までの期間に測定した受信環境 (例えば、 CPICHの SIR測定結果)に基づいて算 出される。
'スケジューラ
スケジューラは、回線品質、送信データレートに基づき算出される指標値により、送 信対象 (移動局)を決定するもと共に送信速度、変調方式等を決定する。スケジューラ は種々の通信システムにおいて用いられる力 ここでは、 HSDPA方式を採用した移 動通信システムに適用されるスケジューラを一例として取り上げて説明する。 HSDPA において、上述した物理ダウンリンクデータチャネル HS-PDSCHは複数移動局により 共有されるため、送信対象となる移動局の選択が必要となり、スケジューラは移動局 選択制御に携わる。図 20は HSDPAシステムにおける構成例を示したもので、 1台の 無線基地局制御装置 2に 2台の無線基地局装置 6— 6が接続し、無線基地局装置
1 2
6が配下の移動局 7— 7と通信を行なっており、無線基地局装置 6が配下の移動
1 1 m 2
局 7 一 7と通信を行なっている。
(m+l) n
各基地局のスケジューラ SJLは、移動局より受信する CQI、 HARQ情報 (ACKZN ACK情報)を基に、データを送信する移動局を選択すると共に (移動局選択制御)、 移動局より受信する CQI情報を基に送信データ量、変調方式、電力等を決定し、チ ャネルコーディング部 CCDに指示する。また、スケジューラ SJLはスケジューリング結 果に基づいて無線基地局制御装置 2に各移動局宛のデータを要求する (フロー制御 )。無線基地局制御装置 2はコアネットワークを介して受信した各移動局 7— 7宛の
1 n データを保持しており、スケジューラ SJLからの要求により、要求された移動局宛のデ ータを送出する。基地局 6— 6のバッファ部 BUFは無線基地局制御装置 2から送出
1 2
された各移動局宛データを保存し、スケジューラ SJLからの指示により指示された移 動局宛のデータを要求されたブロックサイズでチャネルコーディング部 CCDに入力 する。チャネルコーディング部 CCDは入力された移動局宛のデータにブロック毎に C RC符号を付加すると共に、所定ブロック数毎にまとめて符号ィ匕し、スケジューラから 指示された変調方式で変調して各移動局に送信する。
スケジューラにおけるユーザ選択アルゴリズムとして、 Maximum CIR手法と Proportional Fairness手法などが提案されている(非特許文献 3参照)。 Maximum CIR法は回線品質が良いユーザを選択する方式だ力 回線品質が悪いユーザには 割当てられず、公平性が無い。それに対して、 Proportional Fairness法は次式
[数 1]
Figure imgf000008_0001
Rn (ド) ZAve Rn(i- (1) により、指標値 C を演算し、指標値 C が高いものを選択するという点で、公平性
n(PF) n(PF)
を保ちながら、スループットを向上させる方式である。ただし、(1)式において、 Rは瞬 時回線品質、 Ave R は平均回線品質、 l- α、 1- j8はそれぞれの重み付け係数であ る。 Rn、 Ave Rnを回線品質ではなぐ回線品質に応じた送信可能なデータ量に置き 換えることもある。
·発明が解決しょうとする課題
回線を複数ユーザで共有するような無線通信システムにお 、て、スケジューラはス ケジユーリング方式に基づき、複数のユーザ力 送信対象である移動局を選択し、下 り回線品質に応じた適応変調制御を実施する。このため、スケジューリング方式が、 全体的なセルのスループットに大きな影響を及ぼす。先に背景技術で説明した Proportional Fairness手法は、公平性を保ちながらスループットを向上させるという点 では優れている力 依然として以下の課題が内在する。
(1) Proportional Fairness手法は、回線品質の変動が激しいユーザを選択しやすい 。 Proportional Fairness手法は、平均回線品質に対する瞬時値の割合を指標とするこ とにより、公平性 ·スループット両面を考慮に入れた方式である半面、劣悪な環境に あると思われる回線品質が激 、ユーザを選択しやす!/、。
(2) Proportional Fairness手法は、データ種別を考慮に入れた方式ではない。同じ ようなデータ量でも、 E-mailのようなリアルタイム性が無いものは、送信間隔は長くても 良いが、音声のようなリアルタイム性が要求されるものは、送信間隔を短くする必要が ある。もし、このようなデータ種別による特性を全く考慮に入れてないと、リアルタイム 性をさほど要求しないものに対し、頻繁に割当てたり、逆にリアルタイム性が高いもの に割当てられな力つたりして、無線リソースの効率利用ができない。 (3) Proportional Fairness手法は、 CQI毎のエラーレートを考慮に入れた方式では ない。 HSDPAでは回線品質 (CQI)に応じて目標エラーレート (ブロックエラーレート = 0. 1)となるように送信するデータ量を決めている。しかし、場所や時間により伝搬環 境が異なると端末の性能により移動局でのエラーレートが変わってくる。かかる場合、 全ユーザにおいて CQI毎のエラーレートを均一化、すなわち 0. 1にすることは困難 で、そのバラつきを考慮に入れる必要がある。
(4) Proportional Fairness手法は、再送回数毎のエラーレートを考慮に入れた方式 ではない。 HSDPAにおいては、 H— ARQを実装しており、誤りがあっても既に受信し たデータを有効に利用することで、誤り訂正復号の利得を高めており、再送回数が多 くなればエラーレートが小さくなる。従って、再送回数毎のエラーレートを考慮に入れ る必要がある。ところで、再送回数とエラーレートの関係(再送回数と利得の関係)は 伝搬環境に応じて異なる。そこで、伝播環境に応じた再送回数とエラーレートの関係 を考慮に入れる必要がある。
(5) Proportional Fairness手法は上り無線同期状態を考慮に入れた方式ではない。 選択候補ユーザは上り同期確立して 、ることが前提だが、上り同期が安定してな ヽ 移動局を選択することがあり得る。すなわち、完全同期状態ではなぐ前方'後方保 護状態の移動局を選択することが有り得る。完全同期状態とは常にパイロット同期が 確立している状態を、前方保護状態とは同期外れ状態からパイロット同期が一回以 上確立した後、前方保護段数分パイロット同期が上がってない状態を、後方保護状 態とは、完全同期状態からパイロット同期が一回以上外れた後、後方保護段数分パ ィロット同期は上がってない状態を指す。前方'後方保護状態においては、概して同 期状態が不安定なことが多ぐその際は、 HS-DPCCHデータの受信確率が低下し、 再送処理が増加するため、セルのスループットが低
下する。そのため、上り同期状態を考慮に入れる必要がある。
以上より、本発明の目的は、 Proportional Fairness手法をベースに、上記 (1)一 (5)の 課題を解決し、かつ、より高いスループットを実現できるスケジューリング方法及び基 地局装置を提供することである。
非特許文献 1 : 3G TS 25.212 (3rd Generation Partnership Project: Technical Specification Group Radio Access Network; Multiplexing and channel coding (FDD)) 非特許文献 2 : 3G TS 25.214 (3rd Generation Partnership Project: Technical Specification roup Radio Access Network; Physical layer procedures (FDD)) 非特許文献 3 :信学技法 RCS2001-291,pp.51-58,Mar.2002.〃下りリンク高速パケットに おける各ユーザのスループットに着目したスケジューリング法の特性比較" 発明の開示
第 1の本発明においてスケジューラは、回線品質の分散値、または、フェージング 周波数推定結果を Proportional Fairness手法に反映する。これにより、回線品質の変 動が激しい、または、フェージング周波数が高い移動局を選択しに《する。
また、第 2の発明においてスケジューラは、データ種別に応じた所要送信間隔を Proportional Fairness手法に反映し、所要送信間隔が短いデータ (リアルタイム性の 高い音声などのデータ)を送信している移動局を優先的に選択する。
また、第 3の発明においてスケジューラは、 CQI毎の誤り率を Proportional Fairness 手法に反映し、誤り率の低い CQIを受信した移動局を優先的に選択する。
また、第 4の発明においてスケジューラは、再送回数毎の誤り率を Proportional Fairness手法に反映し、誤り率の低い再送回数の移動局を優先的に選択する。
また、第 5の発明においてスケジューラは、移動局が完全同期状態に有る力否かを Proportional Fairness手法に反映し、完全同期状態の移動局を優先的に選択する。 第 1の発明によれば、回線品質の変動が激しい、または、フ ージング周波数が高 い場合、上り Z下り受信特性が劣化する傾向にあり、そういった移動局を選択しに《 することにより、セル全体の誤り率が低くなり、スループットが向上する。
第 2の発明によれば、所要送信間隔が短いデータを送受信する移動局を優先的に 選択し、所要送信間隔が長い移動局に回線を割当てないことにより、データ種別に 応じた最適な回線割当を可能とする。
第 3の発明によれば、誤り率の低い CQIを受信した移動局を優先的に選択すること により、セル全体の誤り率が低くなり、スループットが向上する。
第 4の発明によれば、誤り率の低い再送回数の移動局を優先的に選択することによ り、セル全体の誤り率が低くなり、スループットが向上する。 第 5の発明によれば、確実に同期が取れている移動局を優先的に選択することによ り、 ACK/NACKの受信確率が向上し、 DTX受信 (無送信)に伴う再送回数を低減でき 、スループットが向上する。また、信頼度が低い CQIに基づくデータ送信をする可能 性が小さくなるため、回線品質の割にデータ量が多い場合の誤り率増カロ、データ量 が少な ヽ場合の送信レート低下と ヽぅスループット低下要因を排除できる。
図面の簡単な説明
圆 1]第 1実施例の基地局装置の構成図である。
[図 2]回線品質変動量 (VAR )をカ卩味したスケジューリング処理フローである。
CQ
圆 3]第 2実施例の基地局装置の構成図である。
[図 4]フェージング周波数 fdをカ卩味したスケジューリング処理フローである。
圆 5]第 3実施例の基地局装置の構成図である。
[図 6]データ種別に応じた所要送信間隔を加味したスケジューリング処理フローであ る。
圆 7]第 4実施例の基地局装置の構成図である。
[図 8]誤り率計算部による CQI毎の誤り率算出の処理フローである。
圆 9]誤り率計算部のメモリ記憶データ説明図である。
[図 10]CQI毎の誤り率をカ卩味したスケジューリング処理フローである。
圆 11]第 5実施例に基地局装置の構成図である。
圆 12]誤り率計算部による再送回数毎の誤り率算出の処理フローである。
[図 13]CQI毎の誤り率をカ卩味したスケジューリング処理フローである。
圆 14]第 6実施例の基地局装置の構成図である。
[図 15]無線同期状態を加味した第 6実施例のスケジューリング処理フローである。 圆 16]各同期状態間の遷移図である。
[図 17]W— CDMA移動通信システムの構成例である。
[図 18]HSDPAに用いられる無線チャネル説明図である。
[図 19]HSDPAにおけるチャネルのタイミング説明図である。
[図 20]HSDPAシステムの構成例である。
発明を実施するための最良の形態 (A)第 1実施例
図 1は第 1実施例の基地局装置の構成図である。この第 1実施例において、スケジュ ーラ 15は、回線品質の分散値を Proportional Fairness手法に反映する。
基地局装置 10の受信部 11はアンテナにより受信した無線信号の増幅、帯域制限 、周波数変換、直交復調、 AD変換などを行なって逆拡散部 12に入力する。
逆拡散部 12は移動局 (移動端末)に割り当てた拡散コードを用いて逆拡散して該移 動局から送られてくる DPCCH (個別物理制御チャネル)および HS— DPCCHを復調 し、 DPCCH (個別物理制御チャネル)の復調により得られたノ ィロット信号をチャネル 推定部 13に入力し、 HS - DPCCH復調信号を ACKZCQI復号部 14に入力する。 チャネル推定部 13はパイロット信号を用いてチャネルを推定し、 ACKZCQI復号部 14はチャネル推定値に基づいて ACKZNACK, CQIを同期検波し、誤り検出訂正 処理を施し、 HS— DPCCHで送られてくる ACKZNACK, CQIを復号して出力する 。同様に、全移動局から送られてくる ACKZNACK, CQIを復号してスケジューラ 1 5に入力する。
スケジューラ 15は、移動局毎に Proportional Fairness手法による指標値と回線品質 の分散値を計算し、該回線品質の分散値に基づいて該指標値を補正し、該補正指 標値に基づいてデータを送出する移動局を選択する。また、スケジューラ 15は、 CQI 情報を基に送信データ量、拡散コード、変調方式、電力等を決定し、チャネルコーデ イング部 16、拡散部 18、送信部 19に入力する。また、スケジューラ 15はノッファ部の データ滞留量に基づいて無線基地局制御装置 RNCに各移動局宛のデータを要求 する (フロー制御)。
無線基地局制御装置 RNCはコアネットワークを介して受信した各移動局宛のデー タを保持しており、スケジューラ 15からの要求により、要求された移動局宛のデータを 基地局 10に送出する。基地局のバッファ部 17は無線基地局制御装置 RNC力も送 出された各移動局宛データを保存し、スケジューラ 15からの指示により指示された移 動局宛のデータを要求されたブロックサイズでチャネルコーディング部 16に入力する 。チャネルコーデイング部 16は入力された移動局宛のデータにブロック毎に CRC符 号を付加すると共に、所定ブロック数毎にまとめて符号ィ匕し、拡散部 18は指示された 拡散コードでデータを拡散し、送信部 19はスケジューラ力も指示された変調方式で 変調すると共に、無線周波数に周波数変換してアンテナ力 移動局に向けて送信す る。
図 2は回線品質変動量 (VAR )を加味したスケジューリング処理フローである。まず
CQ
、チャネル推定部 13は DPCCHのパイロット信号を基に、無線空間における位相回転 量、振幅変動量を推定 (チャネル推定)し、 ACKZCQI復号部 14に入力する (ステツ プ 101)。 ACKZCQI復号部 14はチャネル推定値に基づいて ACKZNACK, CQI を同期検波し、誤り検出訂正処理を施し、 HS— DPCCHで送られてくる HARQ受信 結果 (ACKまたは NAC:)、 CQIを復号してスケジューラ 15に入力する。同様に、全移 動局から送られてくる HARQ受信結果 (ACKまたは NACK)を復号してスケジューラ 15 に入力する (ステップ 102)。
スケジューラ 15は HARQ受信結果 (ACKまたは NACK)により、送信対象データ (新規 または再送)を決定すると共に、次式により平均回線品質 MEAN 、回線品質変動
CQ
量 VAR を計算する (ステップ 103)。
CQ
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (2)
CQ CQ
VAR =(1- τ ) X (CQI-MEAN †+ τ X VAR (3)
CQ CQ CQ
回線品質変動量 VAR は、過去の回線品質と今回受信した CQIに対し忘却係数
CQ
τを用いて平均値 MEAN を算出し、該平均値 MEAN 力 の今回の CQIの分散値
CQ CQ
を該忘却係数 τを用いて算出して求めている。
ついで、スケジューラ 15は今回の CQI、算出した MEAN 、 VAR を用いて、次式
CQ CQ
[数 2]
Figure imgf000013_0001
Cn(VASCQ) = Cn(PF) /VARcQ (1.0 l (5) により、回線品質変動量 (VAR )を加味したスケジューリング指標値: C を計算
CQ n(VARCQ) する (ステップ 104)。(4)式の指標値は (1)式の Proportional Fairness手法による指標値 に相当するものであり、スケジューリング指標値: C は Proportional Fairness手 n(VARCQ)
法による指標値を回線品質変動量 (VAR )で補正した値になっている。また、(5)式に
CQ
おいて、 1- 1は C に対する、回線品質変動量の重み付けを示すもので、対象セ クタの伝播環境、セクタスループットを考慮し、最適化する。
ついで、スケジューラ 15は、補正指標値 C が最も高い移動局を選択し、その n(VARCQ)
移動局向けにデータを送信する (ステップ 105)。
第 1実施例によれば回線品質の変動が激しい移動局を選択しに《することにより、 セル全体の誤り率が低くなり、スループットが向上する。
(B)第 2実施例
図 3は第 2実施例の基地局装置の構成図であり、図 1の第 1実施例と同一部分には 同一
符号を付している。異なる点はフ ージング周波数推定部 21が設けられている点、 及び、スケジューラがフェージング周波数に基づいて指標値を補正し、補正指標値 に基づいてスケジューリングする点である。すなわち、第 2実施例において、スケジュ ーラ 15は、フェージング周波数を Proportional Fairness手法に反映する。
図 4はフェージング周波数 fdを加味したスケジューリング処理フローである。まず、チ ャネル推定部 13は DPCCHのパイロット信号を基に、無線空間における位相回転量、 振幅変動量を推定 (チャネル推定)し、 ACKZCQI復号部 14とフェージング周波数 推定部 21に入力する (ステップ 201)。フェージング周波数推定部 21は、チャネル推 定結果の時間相関より、フェージング周波数 fdを推定し、スケジューラ 15に通知する ( ステップ 202)。フェージング周波数推定方法は種々提案されており、例えば、パイ口 ット信号の時間相関を用いてフェージング周波数を推定する方式 (特願 2000-179609 参照)がある。
また、 ACKZCQI復号部 14はチャネル推定値に基づいて ACKZNACK, CQI を同期検波し、誤り検出訂正処理を施し、 HS— DPCCHで送られてくる HARQ受信 結果 (ACKまたは NAC :)、 CQIを復号してスケジューラ 15に入力する (ステップ 203)。 同様に、全移動局カゝら送られてくる HARQ受信結果 (ACKまたは NACK)を復号してス ケジユーラ 15に入力する。
スケジューラ 15は HARQ受信結果 (ACKまたは NACK)により、送信対象データ (新規 または再送)を決定すると共に、次式
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (6) により平均回線品質 MEAN を計算する (ステップ 204)。
CQ
ついで、スケジューラ 15は今回の CQI、算出した MEAN 及びフェージング周波数
CQ
fdを用いて、次式
[数 3]
Figure imgf000015_0001
により、フェージング周波数 fdを加味したスケジューリング指標値 C を計算する (ステ n(fd)
ップ 205)。(7)式の指標値は、(1)式の Proportional Fairness手法による指標値に相当 するものであり、スケジューリング指標値 C は Proportional Fairness手法による指標 n(fd)
値をフェージング周波数 fdで補正した値になっている。また、(8)式において、 1- |8 2 はじ n(PF)に対する、フェージング周波数の重み付けを示すもので、対象セクタの伝播環 境、セクタスループットを考慮し、最適化する。
ついで、スケジューラ 15は、補正指標値 C が最も高い移動局を選択し、その n(VARCQ)
移動局向けにデータを送信する (ステップ 206)。
フ ージング周波数が高い場合、上り Z下り受信特性が劣化する傾向にあるが、第 2実施例によれば、そういった移動局を選択しに《することにより、セル全体の誤り率 が低くなり、スループットが向上する。
(C)第 3実施例
図 5は第 3実施例の基地局装置の構成図であり、図 1の第 1実施例と同一部分には 同一符号を付している。異なる点は、
(1)各移動局の送信間隔測定部 31が設けられている点、
(2)上位装置力 移動局毎に送信データの種別に応じた所要送信間隔 Txjnt と target 最小時間差 Txjnt を受信する点、
min
(3)スケジューラがデータ種別に応じた所要送信間隔に基づいて指標値を補正し、 補正指標値に基づ 、てスケジューリングする点、
である。すなわち、第 3実施例において、スケジューラ 15は、データ種別に応じた所 要送信間隔を Proportional Fairness手法に反映し、所要送信間隔が短いデータ (リア ルタイム性の高い音声などのデータ)を送信している移動局を優先的に選択する。 図 6はデータ種別に応じた所要送信間隔を加味したスケジューリング処理フローで ある。まず、チャネル推定部 13は DPCCHのパイロット信号を基に、無線空間におけ る位相回転量、振幅変動量を推定 (チャネル推定)し、 ACKZCQI復号部 14に入力 する (ステップ 301)。 ACKZCQI復号部 14はチャネル推定値に基づ!/、て ACKZN ACK, CQIを同期検波し、誤り検出訂正処理を施し、 HS— DPCCHで送られてくる HARQ受信結果 (ACKまたは NACK)、 CQIを復号してスケジューラ 15に入力する (ス テツプ 302)。同様に、全移動局力 送られてくる HARQ受信結果 (ACKまたは NACK) を復号してスケジューラ 15に入力する。スケジューラ 15は HARQ受信結果 (ACKまた は NACK)により、送信対象データ (新規または再送)を決定すると共に、送信間隔測 定部 31に送信間隔の時間差算出を指示する。
送信間隔測定部 31は内蔵のメモリ MEMに移動局毎に、前回の送信時刻と、上位 装置カゝら移動局毎に送信データの種別に応じた所要送信間隔 Txjnt とを保持し
target
ている。送信間隔測定部 31は、スケジューラから所定の移動局について時間差算出 が要求されると、該移動局の前回送信時刻から現時刻までの時間間隔 Txjntを計算 し (ステップ 303)、ついで、必要送信間隔 Txjnt と計算した時間間隔 Txjntとの差
target
Tx_Int_diffを次式
Tx— Int— diff = Txjnt -Txjnt (9)
target
により計算してスケジューラ 15に入力する (ステップ 304)。
ついで、スケジューラ 15は次式
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (10)
CQ CQ
により平均回線品質 MEAN を計算し (ステップ 305)、次式
CQ
C =CQI/MEAN (11)
n(PF) CQ
により、 Proportional Fairness手法における指標値 C を計算する (ステップ 306)。指
n(PF)
標値 C 求まれば、時間差 Tx_Int_diffと最小時間差 Txjnt との大小を比較し (ステツ n(PF) min
プ 307)、 Tx_Int_diff^最小時間差 Txjnt より大きければ、次式
min
[数 4]
Cn(TxInt)= Cn(PF) / (Tx lilt target Tx— Int) "—03) (12) により、指標値 C を補正し (ステップ 308)、 TXJnt_diff¾S最小時間差 Txjnt より小さ n(PF) min ければ、次式
[数 5] Cn(PF) ΖΤχ— Int min (丄. ) (13) により指標値 C を補正する (ステップ 309)。
n(PF)
(12)ズ13)式は、 Proportional Fairness手法による指標値をデータ種別に応じた所要 送信間隔で補正した値になって 、る。なお、 1- β 3は C に対する、 Tx Int diffの重
n(PF)
み付けを示すもので、対象セクタの伝播環境、セクタスループットを考慮し、最適化 することを想定して 、る。また、 Txjnt は Tx_Int_diff ^負値になる場合を考慮し、分
min
母の最小値を規定するためのものであり、極力小さい正値である。
以後、スケジューラ 15は、全移動局について補正指標値 C を計算し、補正指
n(TxInt)
標値 C が最も大きい移動局を選択し、その移動局向けにデータを送信する (ステ n(TxInt)
ップ 310)。
第 3実施例によれば、所要送信間隔が短いデータを送受信する移動局を優先的に 選択し、所要送信間隔が長い移動局に回線を割当てないことにより、データ種別に 応じた最適な回線割当が可能となる。
(D)第 4実施例
図 7は第 4実施例の基地局装置の構成図であり、図 1の第 1実施例と同一部分には 同一符号を付している。異なる点は、
(1) CQI= 1— 30のそれぞれの値の誤り率を計算する誤り率計算部 41が設けられ ている点、
(2)上位装置力も最小ブロックエラーレート BLER_CQI を受信する点、
min
(3)スケジューラが CQI毎の誤り率に基づ 、て指標値を補正し、補正指標値に基づ V、てスケジューリングする点、
である。すなわち、第 4実施例において、スケジューラ 15は CQI毎の誤り率を Proportional Fairness手法に反映しエラーレート小さ!/、移動局を優先的に選択する。 図 8は誤り率計算部 41による CQI毎の誤り率算出の処理フローである。 ACK/CQI復号部 14より、移動局 UE#nが対象セル圏内で検出されたとの通知を受 けると(ステップ 401)、誤り率計算部 41は内蔵のメモリ MM1 (図 9 (A)参照)に保存し てある移動局 UE#nの誤り率計算用のブロック数 TBnum (k= 1— 30)およびエラー
η,κ
数 ERRnum (k= 1— 30)を 0に初期化すると共に、ブロックエラーレート BLER_CQI
n,k
(k= 1一 30)を最小ブロックエラーレート BLER_CQI に初期化する (ステップ 402 n,k min
一 405)。
しかる後、移動局 UE#nがセル圏内に存在することを確認し (ステップ 406)、セル圏 内に存在すれば、 TTI (サブフレーム間隔で 2mse)において送信した複数ブロックのう ち最初のブロックに対して ACKを受信した力、 NACKを受信した力 あるいは何も受 信しないか判断する (ステップ 407— 408)。なお、基地局は、移動局から受信した CQ I値に基づ 、て TTI毎に TF (トランスポートフォーマット)を決定し、該 TFに基づ!/、て該 TTIにお!/、て、 1ブロック当りのビット数を決定する。
ACKを受信すれば、前記 TTIにおける TF決定の基になった CQIに応じたブロック 数 TBnum をカウントアップし (ステップ 409)、 NACKを受信すれば、前記 TTIにお
n,k
ける TF決定の基になった CQIに応じたブロック数 TBnum をカウントアップするとと
n,k
もに、エラー数 ERRnum をカウントアップする (ステップ 410)。なお、何も受信しない
n,k
場合には(DTX受信)、ブロック数 TBnum とエラー数 ERRnum を変更しない。
n,k n,k
ついで、 TTIが経過するまで待ち (ステップ 411)、 TTIが経過すれば、ステップ 406 以降の処理を実行して、移動局 UE#nの CQI= 1— 30のブロック数 TBnum とエラー
n,k 数 ERRnum を求めてメモリ MM1に保存する。
n,k
図 10は CQI毎の誤り率をカ卩味したスケジューリング処理フローである。
まず、チャネル推定部 13は DPCCHのノィロット信号を基に、無線空間における位 相回転量、振幅変動量を推定 (チャネル推定)し、 ACKZCQI復号部 14に入力する ( ステップ 451)。 ACKZCQI復号部 14はチャネル推定値に基づ!/、て ACKZNACK , CQIを同期検波し、誤り検出訂正処理を施し、 HS— DPCCHで送られてくる HARQ 受信結果 (ACKまたは NACK)、 CQIを復号して誤り率計算部 41に入力する (ステップ 452)。
誤り率計算部 41は CQIに応じたブロック数 TBnum とエラー数 ERRnum をメモリ MM1から読み出し、次式
BLER— CQI =ERRnum /TBnum (14)
n,k n,k n,k
により現 CQIに応じたブロックエラーレート BLER CQI を計算し、該ブロックエラーレ
n,k
ートおよび ACK/NACK, CQIをスケジューラ 15に入力する (ステップ 453)。
スケジューラ 15は HARQ受信結果 (ACKまたは NACK)により、送信対象データ (新規 または再送)を決定すると共に、次式
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (15)
CQ CQ
により、平均回線品質 MEAN を計算する (ステップ 454)。ついで、次式
CQ
C =CQI/MEAN (16)
n(PF) CQ
により、 Proportional Fairness手法における指標値 C を計算する (ステップ 455)。指
n(PF)
標値 C 求まれば、ブロックエラーレート BLER CQI と最小エラーレート BLER CQI n(PF) n,k
との大小を比較し (ステップ 456)、 BLER.CQI が最小エラーレート BLER_CQI より min n,k min 大きければ、次式
[数 6]
Figure imgf000019_0001
Cn(PF) XBLER_CQIn,k (1. 4) (17) により、指標値 C を補正し (ステップ 457)、 BLER CQI が最小エラーレート
n(PF) n,k
BLER.CQI より小さければ、次式
min
[数 7]
Figure imgf000019_0002
4) (18) により指標値 C を補正する (ステップ 458)。
n(PF)
(17)ズ18)式は、 Proportional Fairness手法による指標値を CQI毎にエラーレートで 補正した値になって!/、る。なお、 1- β 4は C に対する、 BLER CQI の重み付けを
n(PF) n,k
示すもので、対象セクタの伝播環境、セクタスループットを考慮し、最適化する。また 、 BLER.CQI は BLER_CQI 力 になる場合を考慮し、分母の最小値を規定するた
min n,k
めのものであり、極力小さい正値である。
以後、スケジューラ 15は、全移動局について補正指標値 C を計算し、補正
n(BLER CQl) 指標値 C が最も大きい移動局を選択し、その移動局向けにデータを送信する n(BLER_CQI)
(ステップ 459)。
第 4実施例によれば、誤り率の低い CQIを送信した移動局を優先的に選択すること により、セル全体の誤り率が低くなり、スループットが向上する。
(E)第 5実施例
図 11は第 5実施例に基地局装置の構成図であり、図 1の第 1実施例と同一部分に は同一符号を付している。異なる点は、
(1)再送回数 = 1一 15のそれぞれの値の誤り率を計算する誤り率計算部 51が設け られている点、
(2)上位装置から最小ブロックエラーレート BLER_transmit を受信する点、
min
(3)スケジューラが再送回数毎の誤り率に基づ 、て指標値を補正し、補正指標値に 基づ 、てスケジューリングする点、
である。すなわち、第 5実施例において、スケジューラ 15は再送回数毎の誤り率を Proportional Fairness手法に反映し、エラーレート小さい移動局を優先的に選択する 図 12は誤り率計算部 51による再送回数毎の誤り率算出の処理フローである。 ACK/CQI復号部 14より、移動局 UE#nが対象セル圏内で検出されたとの通知を受 けると(ステップ 501)、誤り率計算部 51は内蔵のメモリ MM2(図 9 (B)参照)に保存し てある移動局 UE#nの誤り率計算用の ACK数 ACKnum (k= 1— 15)および NACK
η,κ
数 NACKnum
(k= l一 15)を 0に初期化すると共に、ブロックエラーレート BLER_transmit (k= l n,k n,k 一 15)を最小ブロックエラーレート BLER_transmit に初期化する(ステップ 502— 50
min
5)。
しかる後、移動局 UE#nがセル圏内に存在することを確認し (ステップ 506)、セル圏 内に存在すれば、 TTI (サブフレーム間隔で 2mse)において送信した複数ブロックのう ち最初のブロックに対して ACKを受信した力、 NACKを受信した力 あるいは何も受 信しな 、か判断する (ステップ 507— 508)。
ACKを受信すれば、再送回数に応じた ACKnum をカウントアップし (ステップ 509 ), NACKを受信すれば、再送回数に応じた NACKnum をカウントアップする (ステツ
n,k
プ 510)。なお、何も受信しな ヽ場合には(DTX受信)、 ACKnum , NACKnum
n,k n,k を変更しない。
ついで、 TTIが経過するまで待ち (ステップ 511)、 TTIが経過すれば、ステップ 506 以降の処理を実行して、移動局 UE#nの再送回数 = 1一 15の ACKnum ,
n,k
NACKnum を求めてメモリ MM2に保存する。
n,k
図 13は CQI毎の誤り率をカ卩味したスケジューリング処理フローである。
まず、チャネル推定部 13は DPCCHのノィロット信号を基に、無線空間における位 相回転量、振幅変動量を推定 (チャネル推定)し、 ACKZCQI復号部 14に入力する ( ステップ 551)。 ACKZCQI復号部 14はチャネル推定値に基づ!/、て ACKZNACK , CQIを同期検波し、誤り検出訂正処理を施し、 HS— DPCCHで送られてくる HARQ 受信結果 (ACKまたは NACK)、 CQIを復号して誤り率計算部 41に入力する (ステップ 552)。
誤り率計算部 51は再送回数に応じた ACKnum , NACKnum をメモリ MM2から
n,k n,k
読み出し、次式
BLER— transmit = NACKnum / (ACKnum + NACKnum ) (19)
n,k n,k n,k n,k
により現再送回数に応じたブロックエラーレート BLER transmit を計算し、該ブロック
n,k
エラーレートおよび ACK/NACK, CQIをスケジューラ 15に入力する (ステップ 553 )。
スケジューラ 15は HARQ受信結果 (ACKまたは NACK)により、送信対象データ (新規 または再送)を決定すると共に、次式
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (20)
CQ CQ
により、平均回線品質 MEAN を計算する (ステップ 554)。ついで、スケジューラ 15は
CQ
次式
C =CQI/MEAN (21)
n(PF) CQ
により、 Proportional Fairness手法における指標値 C を計算する (ステップ 555)。
n(PF)
指標値 C 求まれば、スケジューラ 15は、ブロックエラーレート BLER transmit と
n(PF) n,k 最小エラーレート BLER_transmit との大小を比較し (ステップ 556)、 BLER.transmit が最小エラーレート BLER_transmitより大きければ、次式
[数 8]
Figure imgf000022_0001
5) (22) により、指標値 C を補正し (ステップ 557)、 BLER transmit が最小エラーレート
n(PF) n,k
BLER.transmitより小さければ、次式
[数 9]
Cn(BLER_ transmit)= Cn(PF) / BLER_transmitmin (l" & 5) (23) により指標値 C を補正する (ステップ 558)。
n(PF)
(22)ズ23)式は、 Proportional Fairness手法による指標値を再送回数毎にエラーレー トで補正した値になって 、る。なお、 1- β 5は C に対する、 BLER transmit の重み
n(PF) n,k 付けを示すもので、対象セクタの伝播環境、セクタスループットを考慮し、最適化する ことを想定している。また、 BLER_transmit は BLER_transmit 力 になる場合を考慮
min n,k
し、分母の最小値を規定するためのものであり、極力小さい正値である。
以後、スケジューラ 15は、全移動局について補正指標値 C を計算し、補
n(BLER_ transmit)
正指標値 C が最も大きい移動局を選択し、その移動局向けにデータを送
n(BLER_ transmit)
信する (ステップ 559)。
第 5実施例によれば、誤り率の低い再送回数の移動局を優先的に選択することによ り、セル全体の誤り率が低くなり、スループットが向上する。
(F)第 6実施例
図 14は第 6実施例の基地局装置の構成図であり、図 1の第 1実施例と同一部分に は同一符号を付している。異なる点は、
(1)移動局の上り無線同期状態を監視し、監視結果をスケジューラ 15に入力する同 期状態監視部 61が設けられている点、
(2)各移動局の同期状態を保存する同期状態記憶部 62が設けられている点、
(3)スケジューラが移動局の無線同期状態を考慮してスケジューリングする点、 である。同期状態監視部 61は、移動局から送られてくる個別物理制御チャネル DPC CHに含まれているパイロットを用いて同期が確立した力、同期外れになったか監視 する。すなわち、パイロットは既知パターンであるから受信パイロットと既知パイロットを 比較し、差力 、さければ同期確立、差が大きければ同期外れであると判断する。この 差はチャネル推定値に相当するため、同期状態監視部 61は、チャネル推定値に基 づいて同期状態を監視する。
第 6実施例において、スケジューラ 15は完全同期状態の移動局を優先して選択し 、完全同期状態の移動局が存在しない場合にのみ、前方'後方保護状態の UEを選 択する。図 15は無線同期状態をカ卩味した第 6実施例のスケジューリング処理フロー である。なお、 MAX_UE_SELは移動局選択可能数である。移動局選択可能数は、一 般的に残電力、コードリソースにより決定される力 ここでは、そのアルゴリズムの説明 が主ではないため、何らかの手法により移動局選択可能数が決定され、それに基づ き本スケジューリング方式を用いて、移動局を選択するものとする。
同期状態監視 61部は、対象セル内に存在する全ての移動局 UE#n (n= l— N)に 対し、完全同期状態か前方 ·後方保護状態かを監視し、完全同期状態であれば
UE_SYNC [kl]=UE#n
とし、前方'後方保護状態であれば
UE.NOSYNC [k2]=UE#n
とする (ステップ 601— 608)。図 16は同期状態遷移図であり、同期状態記憶部 62は 移動局が同期外れ状態、前方保護状態、完全同期状態、後方保護状態のどの状態 にあるかを記憶する。
•同期外れ状態:移動局が最初に属する状態で、この移動局とは通信ができない状 態である。 1回でも同期が確立すると前方保護状態へ移行する。
•前方保護状態:完全同期状態へ移行する前段階で、移動局と通信は可能である 。 N1回連続で同期が確立すると、完全同期状態に、 1回でも同期が外れると同期外 れ状態に移行。なお、 N1は伝播環境等の外部環境や装置の特性等により最適値に 設定する。
•完全同期状態:安定的に移動局と通信が可能な状態である。 1回でも同期が外れ ると、後方保護状態へ移行する。 •後方保護状態:同期外れへ移行する可能性がある段階で、移動局と通信は可能 である。 N2回 (システムにより決定)連続で同期が外れると、同期外れ状態になり、 1回 でも同期が確立すると完全同期状態に移行。なお、 N2は伝播環境等の外部環境や 装置の特性等により最適値を設定する。
[0020] 各移動局の同期状態が同期状態記憶部 62に保存されている状態において、チヤ ネル推定部 13は、 DPCCHのノ ィロット信号を基に、無線空間における位相回転量、 振幅変動量を推定し (チャネル推定)、推定結果を ACKZCQI復号部 14へ通知する
ACKZCQI復号部 14は ACKZNACK、 CQIを復号し、スケジューラ 15へ送信し 、スケジューラ 15は、該 HARQ受信結果 (ACKZNACK)により、送信対象データ (新 規または再送)を決定する。
ついで、スケジューラ 15は復号された CQIを用いて、次式
MEAN =(1- T ) X CQI+ τ Χ ΜΕΑΝ (24)
CQ CQ
により、平均回線品質 MEAN を計算すると共に、次式
CQ
C =CQI/MEAN (25)
n(PF) CQ
により Proportional Fairness手法における指標値 C を計算する。以後、同様にして
n(PF)
対象の全移動局の指標値 C を計算する。
n(PF)
この際、 UE_SYNC [kl]に格納されている全 UE数 K1と MAX_UE_SELの大小比較に より、上記の C の計算対象となる移動局を決定する。すなわち、
n(PF)
Kl≥ MAX_UE_SELであれば UE_SYNC [kl]に格納されている移動局、すなわち、 完全同期状態にある移動局のみを対象とする。一方、 K1 < MAX_UE_SELであれば、 全移動局が対象 (UE_SYNC,UE_NOSYNCそれぞれに格納されている移動局)が対象 となる。
[0021] 対象となる全移動局の指標値の計算が終了すれば、スケジューラ 15は、図 15の下 段の処理フロー (ステップ 701— 704)に従って移動局を選択する。すなわち、 kが移 動局選択可能数 (MAX_UE_SEL)に達するまで、あるいは、 UE_SYNCに格納されてい る全移動局数に達するまで、同期状態 UE_SYNCの移動局から C の高い順に選択
n(PF)
する。この時点で、移動局選択数が MAX_UE_SELに達した場合 (ステップ 704で YES) 、その TTIでの移動局選択を終了する。そうでない場合、ステップ 801に進んで前方 · 後方保護状態 UE_NOSYNCから移動局を選択する。
すなわち、スケジューラ 15は、図 15の下段の処理フロー (ステップ 801— 804)にし たがって、 kが移動局選択可能数 (MAX_UE_SEL)に達するまで、もしくは、 kが対象セ ル内に存在する全移動局数 (kl +k2)に達するまで、前方'後方保護状態
UE NOSYNCの移動局から C の高 、順に選択する。この時点で、 UE選択数が
n(PF)
MAX_UE_SELに達した場合、もしくは、対象セルに属する全移動局を選択した場合、 その TTIでの UE選択を終了する。
第 6実施例によれば、確実に同期が取れている移動局を優先的に選択することに より、 ACK/NACKの受信確率が向上し、 DTX受信 (無送信)に伴う再送回数を低減で き、スループットが向上する。また、信頼度が低い CQIに基づくデータ送信をする可 能性が小さくなるため、回線品質の割にデータ量が多い場合の誤り率増力!]、データ 量が少な!/ヽ場合の送信レート低下と!/ヽぅスループット低下要因を排除できる。
以上では HDDPAに適用した場合について説明した力 本発明は力かる HDDPA に限定されるものではなぐ複数の移動局で共有する無線回線を介して網側より所定 の移動局へデータを送信する無線データ伝送システムに適用できるものである。 また、以上では、個々の実施例について説明した力 適宜各実施例を組み合せる ことも可能である。

Claims

請求の範囲
[1] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信する無線データ伝送システムにおけるスケジューリング方法において、 各移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの 指標値を計算し、
前記品質の変動率を求め、該品質変動率により前記指標値を補正し、 該補正指標値に基づいてデータを送出する移動端末を選択する、
ことを特徴とするスケジューリング方法。
[2] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信する無線データ伝送システムにおけるスケジューリング方法において、 移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの指 標値を計算し、
移動端末におけるフェージング周波数を求め、
該フェージング周波数により前記指標値を補正し、
該補正指標値に基づいてデータを送出する移動端末を選択する、
ことを特徴とするスケジューリング方法。
[3] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信する無線データ伝送システムにおけるスケジューリング方法において、 移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの指 標値を計算し、
移動端末へ送信するデータの必要送信間隔を取得し、
該必要送信間隔により前記指標値を補正し、
該補正指標値に基づいてデータを送出する移動端末を選択する、
ことを特徴とするスケジューリング方法。
[4] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信すると共に、移動端末で受信したデータに誤りが検出されたとき再送制御を実 施する無線データ伝送システムにおけるスケジューリング方法において、
移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの指 標値を計算し、
前記受信信号品質での移動端末における誤り率を算出し、
該誤り率により前記指標値を補正し、
該補正指標値に基づいてデータを送出する移動端末を選択する、
ことを特徴とするスケジューリング方法。
[5] 前記誤り率を、移動端末より送信されてくる正常受信、異常受信を示す信号に基づ いて計算する、
ことを特徴とする請求項 4記載のスケジューリング方法。
[6] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信すると共に、移動端末で受信したデータに誤りが検出されたとき再送制御を実 施する無線データ伝送システムにおけるスケジューリング方法において、
移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの指 標値を計算し、
再送回数毎に移動端末における誤り率を算出し、
該誤り率により前記指標値を補正し、
該補正指標値に基づいてデータを送出する移動端末を選択する、
ことを特徴とするスケジューリング方法。
[7] 前記誤り率を、移動端末より送信されてくる正常受信、異常受信を示す信号に基づ いて計算する、
ことを特徴とする請求項 6記載のスケジューリング方法。
[8] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信する無線データ伝送システムにおけるスケジューリング方法において、 移動端末における受信信号の品質に基づいて、どの移動端末を選択するかの指 標値を計算し、
移動端末の上り無線同期状態を検出し、
データを送出する移動端末を、同期状態にある移動端末の中から優先的に前記指 標値に基づいて選択する、
ことを特徴とするスケジューリング方法。
[9] 複数の移動端末で共有する無線回線を介して所定の移動端末へデータを送信する 無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータを該移動端末より受信する受 信部、
該受信信号品質に基づいて、移動端末毎にどの移動端末を選択するかの指標値 を計算すると共に、該受信信号品質の変動率を求め、該受信信号品質の変動率に より前記指標値を補正し、該補正指標値に基づ!、てデータを送出する移動端末を選 択するスケジューラ、
を備えたことを特徴とする基地局装置。
[10] 複数の移動端末で共有する無線回線を介して所定の移動端末へデータを送信する 無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータを該移動端末より受信する受 信部、
移動端末におけるフ ージング周波数を算出するフ ージング周波数算出部、 前記受信信号品質に基づいて、移動端末毎にどの移動端末を選択するかの指標 値を計算すると共に、前記移動端末のフ ージング周波数により前記指標値を補正 し、該補正指標値に基づ 、てデータを送出する移動端末を選択するスケジューラ、 を備えたことを特徴とする基地局装置。
[11] 複数の移動端末で共有する無線回線を介して所定の移動端末へデータを送信する 無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータを該移動端末より受信する受 信部、
移動端末へ送信するデータの必要送信間隔を取得する送信間隔取得部、 該受信信号品質に基づいて移動端末毎にどの移動端末を選択するかの指標値を 計算すると共に、前記必要送信間隔により該指標値を補正し、該補正指標値に基づ
Vヽてデータを送出する移動端末を選択するスケジューラ、
を備えたことを特徴とする基地局装置。
[12] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信すると共に、移動端末で受信したデータに誤りが検出されたとき再送制御を実 施する無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータを該移動端末より受信する受 信部、
前記受信信号品質での移動端末における誤り率を算出する誤り率計算部、 前記受信信号品質に基づいて移動端末選択用の指標値を計算し、前記誤り率に より該指標値を補正し、該補正指標値に基づ 、てデータを送出する移動端末を選択 するスケジューラ、
を備えたことを特徴とする基地局装置。
[13] 前記誤り率計算部は、前記誤り率を、移動端末より送信されてくる正常受信、異常受 信を示す信号に基づいて計算する、
ことを特徴とする請求項 12記載の基地局装置。
[14] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へ
データを送信すると共に、移動端末で受信したデータに誤りが検出されたとき再送制 御を実施する無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータ並びに再送回数を該移動端末 より受信する受信部、
再送回数毎に移動端末における誤り率を算出する誤り率計算部、
移動端末の受信信号品質に基づいて移動端末選択用の指標値を計算し、前記誤 り率により該指標値を補正し、該補正指標値に基づ!、てデータを送出する移動端末 を選択するスケジューラ、
を備えたことを特徴とする基地局装置。
[15] 前記誤り率計算部は、前記誤り率を、移動端末より送信されてくる正常受信、異常受 信を示す信号に基づいて計算する、
ことを特徴とする請求項 14記載の基地局装置。
[16] 複数の移動端末で共有する無線回線を介して網側より所定の移動端末へデータを 送信する無線データ伝送システムにおける基地局装置において、
各移動端末における受信信号の品質を示すデータを該移動端末より受信する受 信部、
移動端末の上り無線同期状態を検出する同期検出部、
移動端末の受信信号品質に基づいて移動端末選択用の指標値を計算し、データ を送出する移動端末を、同期状態にある移動端末の中から優先的に前記指標値に 基づ 、て選択するスケジューラ、
を備えたことを特徴とする基地局装置。
PCT/JP2005/003732 2005-03-04 2005-03-04 スケジューリング方法及び基地局装置 WO2006095387A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007506921A JPWO2006095387A1 (ja) 2005-03-04 2005-03-04 スケジューリング方法及び基地局装置
PCT/JP2005/003732 WO2006095387A1 (ja) 2005-03-04 2005-03-04 スケジューリング方法及び基地局装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003732 WO2006095387A1 (ja) 2005-03-04 2005-03-04 スケジューリング方法及び基地局装置

Publications (1)

Publication Number Publication Date
WO2006095387A1 true WO2006095387A1 (ja) 2006-09-14

Family

ID=36952998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003732 WO2006095387A1 (ja) 2005-03-04 2005-03-04 スケジューリング方法及び基地局装置

Country Status (2)

Country Link
JP (1) JPWO2006095387A1 (ja)
WO (1) WO2006095387A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141886A (ja) * 2008-12-01 2010-06-24 Nec (China) Co Ltd プロポーショナルフェア型スケジューラ、不完全なcqiフィードバックを用いたスケジューリング方法
JP2012516609A (ja) * 2009-01-29 2012-07-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける集約測定を報告する方法
US8295237B2 (en) 2007-03-28 2012-10-23 Fujitsu Limited Base station and scheduling method thereof
JP2014039274A (ja) * 2008-03-25 2014-02-27 Qualcomm Incorporated 無線通信システムにおけるackおよびcqi情報の報告
JP2015122703A (ja) * 2013-12-25 2015-07-02 日本電信電話株式会社 スループット測定装置及びスループット測定方法
JP2018518104A (ja) * 2015-05-22 2018-07-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated マルチユーザ多入力/多出力局に関するスマートグループ化
CN111212464A (zh) * 2014-03-28 2020-05-29 富士通互联科技有限公司 无线通信***、基站、终端和处理方法
US20210337599A1 (en) * 2015-08-21 2021-10-28 Nippon Telegraph And Telephone Corporation Wireless Communication System And Wireless Communication Method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271111A (ja) * 1997-03-21 1998-10-09 Oki Electric Ind Co Ltd Atm伝送装置
JP2003152630A (ja) * 2001-11-15 2003-05-23 Ntt Docomo Inc 下りパケットスケジューリング方法及び無線基地局
JP2003244063A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 基地局装置及びパケット伝送方法
JP2003259454A (ja) * 2002-03-05 2003-09-12 Ntt Docomo Inc 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム
JP2004147275A (ja) * 2002-08-30 2004-05-20 Matsushita Electric Ind Co Ltd パケット送信スケジューリング方法および基地局装置
JP2004297232A (ja) * 2003-03-26 2004-10-21 Nec Corp 無線通信システム、基地局及びそれらに用いる無線リンク品質情報補正方法並びにそのプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271111A (ja) * 1997-03-21 1998-10-09 Oki Electric Ind Co Ltd Atm伝送装置
JP2003152630A (ja) * 2001-11-15 2003-05-23 Ntt Docomo Inc 下りパケットスケジューリング方法及び無線基地局
JP2003244063A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 基地局装置及びパケット伝送方法
JP2003259454A (ja) * 2002-03-05 2003-09-12 Ntt Docomo Inc 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム
JP2004147275A (ja) * 2002-08-30 2004-05-20 Matsushita Electric Ind Co Ltd パケット送信スケジューリング方法および基地局装置
JP2004297232A (ja) * 2003-03-26 2004-10-21 Nec Corp 無線通信システム、基地局及びそれらに用いる無線リンク品質情報補正方法並びにそのプログラム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295237B2 (en) 2007-03-28 2012-10-23 Fujitsu Limited Base station and scheduling method thereof
JP2014039274A (ja) * 2008-03-25 2014-02-27 Qualcomm Incorporated 無線通信システムにおけるackおよびcqi情報の報告
JP2010141886A (ja) * 2008-12-01 2010-06-24 Nec (China) Co Ltd プロポーショナルフェア型スケジューラ、不完全なcqiフィードバックを用いたスケジューリング方法
US9572061B2 (en) 2009-01-29 2017-02-14 Lg Electronics Inc. Method of reporting an aggregated measurement in wireless communication system
US8838091B2 (en) 2009-01-29 2014-09-16 Lg Electronics Inc. Method of reporting an aggregated measurement in wireless communication system
JP2012516609A (ja) * 2009-01-29 2012-07-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける集約測定を報告する方法
JP2015122703A (ja) * 2013-12-25 2015-07-02 日本電信電話株式会社 スループット測定装置及びスループット測定方法
CN111212464A (zh) * 2014-03-28 2020-05-29 富士通互联科技有限公司 无线通信***、基站、终端和处理方法
CN111212464B (zh) * 2014-03-28 2023-05-12 富士通互联科技有限公司 无线通信***、基站、终端和处理方法
JP2018518104A (ja) * 2015-05-22 2018-07-05 クゥアルコム・インコーポレイテッドQualcomm Incorporated マルチユーザ多入力/多出力局に関するスマートグループ化
US20210337599A1 (en) * 2015-08-21 2021-10-28 Nippon Telegraph And Telephone Corporation Wireless Communication System And Wireless Communication Method
US11523439B2 (en) * 2015-08-21 2022-12-06 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US11849487B2 (en) 2015-08-21 2023-12-19 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method

Also Published As

Publication number Publication date
JPWO2006095387A1 (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1703755B1 (en) Communication environment measurement method for handover decision in a mobile station
JP4927820B2 (ja) 高速下り回線パケット接続(hsdpa)システムのための可変送信電力制御方法
JP4649330B2 (ja) 移動端末装置及び同装置におけるチャネル補償方法
KR100947126B1 (ko) 내부 루프 전력 제어
JP4888245B2 (ja) 受信品質測定方法及び送信電力制御方法ならびにそれらの装置
US8073077B2 (en) Reception quality calculation method, reception quality calculation apparatus, and communication apparatus
US20080004062A1 (en) Radio communication system
AU2002312547A1 (en) Method and apparatus for controlling gain level of a supplemental channel in a CDMA communication system
JP4432645B2 (ja) 通信装置、無線通信システム
WO2006095387A1 (ja) スケジューリング方法及び基地局装置
JP2012526435A (ja) 補足的パイロットシンボルの生成によるチャネル推定を向上させる方法および装置
JP4684124B2 (ja) 移動局装置及び同装置における送信電力制御方法
JP2008011285A (ja) 送信電力制御装置及び送信電力制御方法
JP4205937B2 (ja) 制御局装置
JP4113417B2 (ja) 基地局装置および送信方法
JP2004040187A (ja) 送信電力制御方法、シグナリング方法、通信端末装置及び基地局装置
JP4403906B2 (ja) 通信装置、移動局
JP4874131B2 (ja) スケジューリング方法及びそれを用いた無線基地局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506921

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05720004

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5720004

Country of ref document: EP