WO2006093176A1 - 有機エレクトロルミネッセンス素子、画像表示装置および照明装置 - Google Patents

有機エレクトロルミネッセンス素子、画像表示装置および照明装置 Download PDF

Info

Publication number
WO2006093176A1
WO2006093176A1 PCT/JP2006/303837 JP2006303837W WO2006093176A1 WO 2006093176 A1 WO2006093176 A1 WO 2006093176A1 JP 2006303837 W JP2006303837 W JP 2006303837W WO 2006093176 A1 WO2006093176 A1 WO 2006093176A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
organic
layer
layers
Prior art date
Application number
PCT/JP2006/303837
Other languages
English (en)
French (fr)
Inventor
Aki Nakata
Tomoyuki Nakayama
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007505976A priority Critical patent/JP4946862B2/ja
Publication of WO2006093176A1 publication Critical patent/WO2006093176A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom

Definitions

  • the present invention relates to an organic electoluminescence device, an image display device including the organic electroluminescence device, and an illumination device.
  • organic EL elements are self-luminous, they have excellent visibility and can be driven at a low voltage of several volts to several tens of volts, so that light weight including a drive circuit is possible. Therefore, organic EL devices are expected to be used as thin film displays, lighting, and knock lights.
  • Organic EL elements are also characterized by abundant color nomination. Another characteristic is that various colors can be emitted by combining colors.
  • the need for white light emission is particularly high, and it can also be used as a backlight for displays. Furthermore, it can be divided into blue, green and red pixels using a color filter.
  • One light emitting layer is doped with a plurality of light emitting compounds.
  • a plurality of emission colors are combined from a plurality of emission layers.
  • Such an organic EL element that emits white light is formed by stacking two layers of a blue light-emitting layer that emits short wavelength light and a yellow light-emitting layer that emits long wavelength light. Proposals have been made to obtain color emission (for example, see Patent Document 1). O
  • a high-efficiency organic electoluminescence element can be obtained by using an ortho metal complex as a light-emitting material, and as a method for obtaining white light, there is a method of obtaining white color by stacking three colors of BGR. (For example, refer to Patent Document 2.) 0
  • a white light emitting element that achieves white color by combining a plurality of light emitting layers has a structure in which a number of light emitting layers are stacked, so that the thickness of the light emitting layer is increased, and the number of interfaces between layers is also increased.
  • carrier injection is hindered and the drive voltage is increased.
  • the driving voltage was higher than that of a fluorescent material.
  • the drive voltage can be lowered by making the light emitting layer thinner, but by reducing the overall film thickness, the device is more susceptible to the effects of minute dust on the substrate and the performance of the device is not stable. There was a problem that the sex became worse.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-347051
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-319780
  • Patent Document 3 JP 2004-63349 A
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic electoluminescence element having high luminous efficiency and low productivity at a low driving voltage, and the organic electoduct.
  • An object of the present invention is to provide an image display device and a lighting device having a luminescence element.
  • the light emitting unit includes two light emitting layers having different emission peaks.
  • Each of the light emitting layers contains a light emitting dopant and a light emitting host,
  • each film An organic electroreductive element characterized in that the relationship between the thicknesses d1, d2, and d3 satisfies both of the following formulas (1) and (2).
  • the light-emitting unit is composed of at least two light-emitting layers having different light emission peaks, and at least two adjacent light-emitting layers of the light-emitting unit contain the same light-emitting host compound.
  • the light-emitting unit is characterized in that the light-emitting unit is composed of at least two light-emitting layers having different emission peaks, and all the light-emitting layers of the light-emitting unit contain the same light-emitting host compound.
  • All the light-emitting layer forces of the light-emitting unit each include two or more light-emitting dopants, and the concentration of the light-emitting dopant varies continuously in the light-emitting unit. 5.
  • the organic electoluminescence device according to any one of 5 above.
  • the thickness of the light emitting layer having the light emission peak at the shortest wavelength is d4, and d2 and d4 satisfy the following formula (6):
  • the light emitting power of the organic electoluminescence device is white.
  • an organic electroluminescent device having high luminous efficiency at a low driving voltage and high productivity, and an image display device and an illuminating device having the organic electroluminescent device. I was able to.
  • FIG. 1 is a diagram showing an example of a basic layer configuration of the present invention.
  • FIG. 2 is a schematic view showing an example of a vapor deposition apparatus having a plurality of light emitting host compounds and a plurality of light emitting dopant deposition boats.
  • FIG. 3 is a diagram showing a light-emitting unit having a mixed region of two types of light-emitting dopants at a joint portion between two adjacent light-emitting layers in Example 3.
  • FIG. 4 is a view showing a light emitting unit in which all layers of the light emitting unit in Example 4 each contain two or more types of light emitting dopants, and the content ratio is continuously changed.
  • FIG. 5 is a schematic view showing an example of a display device constituted by an organic EL element cover.
  • FIG. 6 is a schematic diagram of a display unit.
  • FIG. 7 is a schematic diagram of a pixel.
  • FIG. 8 is a schematic view showing an example of a passive matrix type full-color display device. Explanation of symbols
  • the organic electoluminescence device of the present invention (hereinafter also referred to as an organic EL device) has at least an anode, a cathode, and an organic layer including a light emitting unit between the anode and the cathode on a supporting substrate,
  • the unit has two or more light-emitting layers having different light emission peaks, all of the light-emitting layers contain a light-emitting dopant and a light-emitting host, the total thickness of the organic layer between the anode and the light-emitting unit is dl, and the light-emitting unit Is d2 and the total thickness of the organic layer between the light emitting unit and the cathode is d3, the thickness (d2) of the light emitting unit is 5 nm or more and less than 30 nm, preferably 7 to 27 nm. The most preferable range is 10 to 25 nm.
  • the thickness (dl + d3) of the organic layer excluding the light emitting unit is five times or more the film thickness (d2) of the light emitting unit.
  • the device configuration shown in FIG. 1 has a light emitting unit between a cathode and an anode, and the light emitting unit is sandwiched between an electron blocking layer and a hole blocking layer.
  • the light emitting unit means from the light emitting layer located closest to the cathode side to the light emitting layer located closest to the anode side of the organic electoluminescence device (for example, in FIG. 1, the light emitting layer 2 and the light emitting layer 3 become a light emitting unit).
  • These electron blocking layers or hole blocking layers are not necessarily required. However, by adopting such a configuration, electron and hole carriers are confined in the light emitting unit, and further, by recombination of electrons and holes. Since these excitons can also be confined in the light emitting unit, it is preferable to provide these layers.
  • a known material can be used as a material for forming the electron blocking layer and the hole blocking layer.
  • the material forming the electron blocking layer is preferably smaller in electron affinity than the material forming the light emitting unit.
  • the hole blocking layer confines holes so that holes do not leak from the light emitting unit
  • the material forming the hole blocking layer has an ionization potential higher than the material forming the light emitting unit. Big! /, I like it! / ...
  • the material forming the hole blocking layer and the electron blocking layer is an excited triplet of the phosphorescent compound of the light emitting unit. It ’s bigger than energy!
  • hole transport layer and the electron transport layer known materials can be used, and it is preferable to use a material having high conductivity from the viewpoint of lowering driving voltage.
  • the light emitting unit emits light of at least two layers having different emission peaks. It is composed of layers, preferably 2 or 3 layers.
  • All the light emitting layers of the light emitting unit contain a light emitting host and a light emitting dopant.
  • two adjacent light emitting layers of the light emitting unit are composed of the same light emitting host compound, and that all the light emitting layers are composed of the same light emitting host compound.
  • the adhesion between the layers is improved, the carrier injection barrier between different layers is relaxed, and the driving voltage can be lowered.
  • the same effect can be obtained when a mixed region is provided between the two light emitting layers, or when the concentration of the light emitting dopant is continuously changed in the light emitting unit.
  • a light emitting layer having a different emission peak means that the emission maximum wavelength differs by at least lOnm or more when the emission peak is measured by PL.
  • a vapor deposition film is formed on a quartz substrate with a composition using a light-emitting dopant and a light-emitting host compound in a light-emitting layer, or a wet process such as a polymer is used for spin measurement.
  • the light emission maximum wavelength can be determined by preparing a thin film by coating or dipping and measuring the luminescence of the obtained deposited film or thin film with a fluorometer.
  • the light emitting unit includes two or more light emitting layers having different light emission peaks. Between the light emitting layer and the light emitting layer, a non-light emitting intermediate layer ( Emission dopants are not included! / Both intermediate layers! /, U) are provided! / I also like that! / By providing the intermediate layer, it becomes easier to control the injection of carriers into the light emitting layer, and color shift can be prevented.
  • a non-light emitting intermediate layer Emission dopants are not included! / Both intermediate layers! /, U
  • the intermediate layer contains the same luminescent host compound as the luminescent host compound contained in the adjacent luminescent layer. Is improved and the carrier injection barrier between different layers is relaxed. More preferably, since all the layers of the light emitting unit (light emitting layer and intermediate layer) contain the same host compound, the adhesion between the layers is further improved and the carrier injection barrier between different layers is increased. It is further relaxed.
  • the color when the organic EL of the present invention is lit is not particularly limited, but is preferably white.
  • the light emitting layer is composed of three light emitting layers.
  • the emission color is not limited to white.
  • the layer thickness dl of the organic layer between the anode and the light emitting layer and the layer thickness d3 of the organic layer between the light emitting layer and the cathode satisfy the following ranges.
  • d2 and d4 satisfy the following formula.
  • the mixing ratio of the light-emitting dopant to the light-emitting host compound as the main component in the light-emitting layer is preferably in the range of 0.1% by mass to less than 30% by mass.
  • a phosphorescent compound (phosphorescent dopant) as the light-emitting dopant of at least one layer of the light-emitting layer. It is best to use a phosphorescent compound as the light-emitting dopant for all light-emitting layers where it is more preferable to use a compound.
  • the light emitting dopant may be a metal complex or a phosphorescent dopant having another structure, which may be used by mixing a plurality of kinds of compounds.
  • the light-emitting dopant is roughly classified into two types: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, chromochrome dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. Examples thereof include dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the phosphorescent dopant preferably a complex compound containing a metal of Group 8, Group 9, or Group 10 in the periodic table of elements, more preferably an iridium compound or an osmium compound, Of these, iridium compounds are the most preferred.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the luminescent host compound used in the present invention is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.01 at room temperature (25 ° C.).
  • the luminescent host compound used in the present invention is not particularly limited in terms of structure, but representatively, a power rubazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing complex.
  • a ring compound, a thiophene derivative, a furan derivative, an oligoarylene compound or the like having a basic skeleton, or a carboline derivative or diaza force rubazole derivative (Here, diaza force rubazole derivative is a carboline ring of a carboline derivative. Configure
  • the hydrocarbon ring is one in which at least one carbon atom is substituted with a nitrogen atom. ) Etc. are mentioned.
  • carboline derivatives diaza force rubazole derivatives and the like are preferably used.
  • carboline derivatives diaza force rubazole derivatives, force rubazole derivatives and the like are given below, but the present invention is not limited thereto.
  • the light-emitting host compound used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerization light emission). May be a host compound).
  • the light-emitting host compound a compound having a hole transporting ability and an electron transporting ability, which prevents emission light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11204258 and 11204359, and “The Forefront of Organic EL Devices and Their Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking (hole blocking) layer described in page 237 of “Issuance”) is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer based on this invention as needed.
  • Electron blocking layer >>
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes and an extremely small capacity of transporting electrons, and transports holes while transporting holes. The probability of recombination of electrons and holes can be improved by blocking the children.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer and the electron blocking layer according to the present invention is preferably 3 ⁇ ! ⁇ lOOnm, more preferably 5 nm to 30 nm.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • a hole transport material there is no particular limitation. Conventionally, in a photoconductive material, it is commonly used as a hole charge injection / transport material and used for a hole injection layer or a hole transport layer of an EL element. Any one of known ones used can be selected and used.
  • the hole transport material has a hole injection or transport, electron barrier property! /, Or a deviation, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned forces that can be used are preferably porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds. ,.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N'—tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenol; N, N ' —Diphenyl N, N '—Di (4
  • No. 5,061,569 having two condensed aromatic rings in the molecule for example, 4, 4 ′ bis [N- (1-na (Futil) N-Feramino] Bi-Fowl (NPD), three triphenylamine units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', A "—Tris [? ⁇ — (3-methylphenol) N phenolamine] triphenylamine (MTD ATA) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as a hole injection material and a hole transport material. Further, the hole transport material preferably has a high Tg.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. be able to.
  • the thickness of the hole transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 50 OOnm or so.
  • This hole transport layer may have a single-layer structure in which one or more of the above materials are used.
  • An impurity-doped hole transport layer with high p property can also be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, R. Ap pi. Phys., 95, 5773 (2004), etc. It is done.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be a single layer or a plurality of layers.
  • the electron transport layer may be any material selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the cathode to the light emitting layer. It is possible to be.
  • electron transport materials examples include: -substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, Examples include heterocyclic tetracarboxylic anhydrides such as phthaleneperylene, carbodiimide, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, and oxadiazole derivatives.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, or a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-jib mouth)
  • Metal complexes replacing Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type-Si, n-type-SiC, etc. These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer may be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. it can. Although there is no restriction
  • This electron transport layer may have a single-layer structure having one or more of the above materials.
  • an n-type electron transport layer doped with impurities can be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, R. Ap pi. Phys., 95, 5773 (2004), etc. It is done.
  • Injection layer Electron injection layer, hole injection layer The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer. As described above, the injection layer exists between the anode and the light emitting layer or hole transport layer, and between the cathode and the light emitting layer or electron transport layer. May be present.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrial front line June 30, 1998) Chapter 2 “Electrode materials” (pages 123-166) of “Part 2” of “Tees Co., Ltd.”) describes the details of the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One layer).
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like.
  • a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, a polymer buffer layer using a conductive polymer such as polyarene (emeraldine) or polythiophene Etc.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • a metal buffer layer typified by aluminum or aluminum, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, or an acid aluminum salt A single acid buffer.
  • the buffer layer (injection layer) preferably has a very thin film thickness, but the film thickness is preferably in the range of 0.1 nm to 100 nm.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • This injection layer may have a single-layer structure in which one or more of the above materials are used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. It is done. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO. IDIXO (In O-
  • An amorphous material such as ZnO) that can produce a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern with a desired shape can be formed by a single photolithography method. m or more), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the film thickness depends on the material. Usually ⁇ ! ⁇ 1000 nm, preferably 10 nm to 200 nm.
  • the cathode according to the present invention a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • electrode materials include sodium, sodium-powered rhodium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al 2 O 3) mixture, indium, lithium
  • Lithium Z aluminum mixture, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less.
  • the film thickness is usually selected in the range of 10 nm to 1000 nm, preferably 50 nm to 200 nm. In order to transmit light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, it is convenient to improve the light emission luminance.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited in the type of glass, plastic and the like, and is not particularly limited as long as it is transparent.
  • the substrate preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • the substrate is a resin film that can give flexibility to organic EL elements
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylenesulfide
  • PC polycarbonate
  • TAC Cellulose triacetate
  • CAP cellulose acetate propionate
  • an inorganic film or an organic film, or a hybrid film of both of them may be formed, and the water vapor transmission rate is 0.01 gZm 2 'dayatm or less. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic electoluminescence device of the present invention is preferably 1% or more, more preferably 2% or more.
  • external extraction quantum efficiency (%) number of photons emitted outside the organic EL element Z number of electrons flowing through the organic EL element X 100.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • an anode / hole injection layer / hole transport layer As an example of a method for producing the organic EL device of the present invention, an anode / hole injection layer / hole transport layer
  • Z light emitting layer two or more layers
  • Z hole blocking layer Z electron transport layer
  • Z cathode buffer layer A method for producing an organic EL device comprising a Z cathode will be described.
  • a desired electrode material for example, a thin film having a material force for an anode
  • An anode is formed by a method such as vapor deposition or sputtering so as to have a film thickness of ⁇ 200 nm.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer (two or more layers), a hole blocking layer, and an electron transport layer, which are element materials, is formed thereon.
  • a method of forming a thin film containing this organic compound there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, and the like. A homogeneous film can be obtained immediately and a pinhole is generated. From the viewpoint of shiniku! /, Etc., vacuum deposition or spin coating is particularly preferred. Further, a different film forming method may be applied for each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50 ° C ⁇ 450 ° C, vacuum degree of 10- 6 Pa ⁇ 10- 2 Pa, deposition rate 0.01 nm to 50 nm Z seconds, substrate temperature -50. C ⁇ 300. C, film thickness of 0.1 ⁇ to 5; ⁇ ⁇ is preferably selected as appropriate.
  • FIG. 1 A vapor deposition apparatus that can be used in the method for forming an organic EL element of the present invention is shown in FIG.
  • FIG. 2 is a schematic diagram of a vapor deposition apparatus having a plurality of vapor deposition boats for a plurality of light emitting host compounds and a plurality of light emission dopants. By controlling the heating temperature of each boat and the opening / closing of the shutter associated with each boat, a light emitting unit having light emitting layers with different light emission peaks can be formed.
  • an intermediate layer boat is provided, and an intermediate layer that does not include a light emitting dopant is provided between two adjacent light emitting layers of the light emitting unit. It is preferable because of its prevention effect.
  • all of the light emitting layers having different emission peaks contain a light emitting dopant and a light emitting host compound, and two adjacent light emitting layers are made of the same light emitting host compound.
  • all of the light emitting layers having different emission peaks can be composed of the same light emitting host compound, and two kinds of each of the light emitting units at the junction of two adjacent light emitting layers can be formed. It is necessary to have a mixed region of light emitting dopants, and to have an inclined mixed region in which all the layers of the light emitting unit contain two or more kinds of light emitting dopants and the content ratio gradually changes. For example, it is possible to obtain a configuration for various purposes, and to obtain the effect of lowering the driving voltage.
  • a thin film having a cathode material force is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL device can be obtained.
  • the organic EL device is manufactured from the hole injection layer to the cathode in a single vacuum. Although it is preferable, even if it is taken out in the middle and subjected to a different film forming method, it does not matter. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the image display apparatus using the organic EL element of the present invention may be monochromatic or multicolored.
  • a shadow mask is provided for each color light-emitting unit, and three or more light-emitting layers are formed for each color by vapor deposition, casting, spin coating, ink-jet method, printing method, or the like.
  • the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable.
  • a vapor deposition method patterning using a shadow mask is preferred.
  • the vapor deposition method or the casting method is performed on one side without patterning.
  • Two or more light emitting layers are formed by a spin coating method, an ink jet method, a printing method, or the like.
  • a white display device it can be used as a display device, a display, or various light emission sources.
  • the use of white organic EL elements as backlights enables full color display.
  • Display devices and displays include televisions, personal computers, mono equipment, AV equipment, text broadcast displays, information displays in automobiles, and the like. It can be used especially as a display device for playing back still images and moving images.
  • Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, signboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, Examples include, but are not limited to, a light source of an optical sensor.
  • the lighting device of the present invention will be described.
  • the organic EL device having a resonator structure may be used as an organic EL device having a resonator structure in the organic EL device of the present invention.
  • Examples include, but are not limited to, photocopier light sources, optical communication processor light sources, and optical sensor light sources.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device of a type for projecting an image, a still image or a moving image. It may be used as a display device (display) of the type that is directly visually recognized. When used as a display device for video playback, either the simple matrix (passive matrix) method or the active matrix method may be used. Alternatively, a full color display device can be produced by using two or more organic EL elements of the present invention having different emission colors.
  • the organic EL device of the present invention is used as a white light emitting device, full color display can be performed in combination with a color filter of BGR.
  • the organic EL element of the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • FIG. 5 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and displays image information on display A. To display.
  • FIG. 6 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • FIG. 6 shows a case where the light intensity emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
  • the pixel 3 receives the image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • the organic EL device of the present invention is used as a white light emitting device, full color display can be performed by combination with a BGR color filter.
  • FIG. 7 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full-color display can be performed by using an organic EL element that emits white light as the organic EL element 10 divided into multiple pixels and combining it with a BGR color filter.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 With the transmission of the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain IN is connected to the power line 7 and the source is connected to the electrode of the organic EL element 10, and current is supplied from the power line 7 to the organic EL element 10 according to the potential of the image data signal applied to the gate. Is done.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL device 10 continues to emit light until it is seen.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 as active elements for each of the plurality of pixels. Element 10 is emitting light. Such a light emitting method is called an active matrix method.
  • light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. On, even a talent! /.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the present invention not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 8 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a grid pattern so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the noisy matrix method pixel 3 has no active elements, and manufacturing costs can be reduced.
  • a metal mask and an in- You may also use the jet printing method for patterning.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire element layer may be patterned.
  • the white light emitting organic EL element of the present invention is not only the display device and the display, but also various light sources and lighting devices such as home lighting, interior lighting, and exposure light source.
  • a lamp it is also useful for a display device such as a backlight of a liquid crystal display device.
  • the ITO transparent electrode was provided after patterning was performed on a substrate (NH45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 110 nm of ITO (indium oxide) on a glass substrate of 100 mm X 100 mm X I. 1 mm as the anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • CuPc copper phthalocyanine
  • the heating boat containing ex-NPD was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / s ec to provide a 1 OOnm hole transport layer.
  • the heating boat containing m—TDATA was energized and heated to a deposition rate of 0.1 nm.
  • a 15 nm electron blocking layer was deposited on the hole transport layer at / sec.
  • the heating boat containing H-14 and Ir-12 was energized and heated, and co-evaporated on the hole transport layer with the mass ratio and film thickness shown in Table 1 to emit yellow light.
  • the light emitting layer 1 was provided.
  • the heating boat containing H-15 and Ir-15 was energized and heated, and co-evaporated on the light emitting layer 1 with the mass ratio and film thickness shown in Table 1 to emit blue light.
  • the light emitting layer 2 was provided.
  • the heating boat containing H-16 was energized and heated, and deposited on the light emitting layer at a deposition rate of 0.1 nm / sec to provide a hole blocking layer having a thickness of lOnm.
  • the heating boat containing Alq was energized and heated, and the deposition rate was 0. InmZsec.
  • An electron transport layer having a thickness of 40 nm was provided by vapor deposition on the light emitting layer.
  • the substrate temperature during vapor deposition was room temperature.
  • the ITO transparent electrode was provided after patterning on a substrate (NH Techno Glass NA45) made of 1 lOnm of ITO (indium oxide) on a 100 mm X 100 mm XI. 1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • a poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PED OTZPSS, manufactured by Bayer, Baytron P Al 4083) dispersion was formed on this transparent support substrate by spin coating at 3000 rpm for 30 seconds.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • 200 mg of ⁇ NPD is put into a molybdenum resistance heating boat
  • 200 mg of m-TDATA is put into another molybdenum resistance heating boat
  • 200 mg of H-14 is put into another molybdenum resistance heating boat.
  • H-15 in a resistance heating boat made of molybdenum Ir-12 is put into a Ribden resistance heating boat, lOOmg Ir 15 is put into another molybdenum resistance heating boat, 200 mg H-16 is put into another molybdenum resistance heating boat, and another molybdenum resistance is added.
  • Ir-12 is put into a Ribden resistance heating boat
  • lOOmg Ir 15 is put into another molybdenum resistance heating boat
  • 200 mg H-16 is put into another molybdenum resistance heating boat
  • another molybdenum resistance is added.
  • the heating boat containing m—TDATA was energized and heated to a deposition rate of 0.1 nm.
  • a 15 nm electron blocking layer was deposited on the hole transport layer at / sec.
  • the heating boat containing H-14 and Ir-12 was energized and heated, and co-evaporated on the hole transport layer with the mass ratio and film thickness shown in Table 1 to emit yellow light.
  • the light emitting layer 1 was provided.
  • the heating boat containing H-15 and Ir-15 was energized and heated, and co-evaporated on the light-emitting layer 1 with the mass ratio and film thickness shown in Table 1 to emit blue light.
  • the light emitting layer 2 was provided.
  • the heating boat containing H-16 was energized and heated, and deposited on the light-emitting layer 2 at a deposition rate of 0. Inm / sec to provide a hole blocking layer having a thickness of lOnm.
  • the heating boat containing Alq was energized and heated, and the deposition rate was 0. InmZsec.
  • An electron transport layer having a thickness of 40 nm was formed by vapor deposition on the hole blocking layer.
  • the substrate temperature during vapor deposition was room temperature.
  • OLED devices 1-3, 1-4, and 1-6 to 1-8 were prepared in the same manner as the organic EL devices 1-2, except that the light emitting layer was changed to the configuration shown in Table 1. did.
  • Organic EL element 1-5 was prepared in the same manner as in the manufacture of organic EL element 1-1, except that the light emitting layer was changed to the structure shown in Table 1.
  • Organic EL elements 19 to 111 were fabricated in the same manner except that the configuration was changed as shown in Table 1.
  • the material of the light-emitting layer 1 is a force described as H-14: Ir 12 (3 mass%, 20 nm). Among them, H-14 represents 97 mass%, Ir-12 represents 3 mass%, and the light-emitting layer 1 has a thickness of 20 nm.
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiance meter CS-1000 manufactured by Co-Camino Norta Sensing
  • power efficiency (lm (lumen) ZW) was measured as an indicator of lower drive voltage and power consumption.
  • the dark spot generation rate (the force that dark spots are generated in 10 devices) was measured, and the results obtained are shown in Table 2.
  • the sample of the present invention does not generate dark spots with high luminous efficiency, has stable device performance, and high production efficiency.
  • the organic EL element 2 was similarly prepared except that H-16 was provided as an intermediate layer between the respective light emitting layers by a 2 nm deposition method. — :! ⁇ 2— Organic EL device manufactured in Example 1 and manufactured in Example 1 1— :! The following evaluation of chromaticity deviation was conducted together with ⁇ 1-8, and the results obtained are shown in Table 3.
  • the chromaticity shift is shown in the CIE chromaticity diagram! /, And the chromaticity coordinate at lOOcdZm 2 luminance and the chromaticity coordinate at 5000 cdZ m 2 luminance.
  • the measurement was performed using CS-100 (manufactured by Corminor Minolta Sensing) at 23 ° C in a dry nitrogen gas atmosphere.
  • organic EL elements 2-1 to 2-8 are organic EL elements 1
  • H-16 and Ir-13 were formed between the light emitting layer 1 and the light emitting layer 2 in the light emitting unit.
  • a mixed region 2 of H-16, Ir-1, and Ir-9 is provided 2 nm between the mixed region 1 of Ir-1 and the light emitting layer 2 and the light emitting layer 3, respectively.
  • — 8 was made.
  • the deposition rate of Ir-1 is increased by increasing the deposition starting force so that the deposition rate of Ir-13 also decreases the deposition starting force and becomes 0 when the film thickness reaches 2 nm.
  • the mass ratio with H-16 was adjusted to be the same as that of the light emitting layer 2.
  • the deposition rate of Ir-1 is decreased from the start of deposition and becomes 0 when the thickness reaches 2 nm, and the deposition rate of Ir 9 is increased from the start of deposition to 2 nm.
  • the mass ratio with H-16 was adjusted to be the same as that of the light emitting layer 3.
  • the power efficiency (lm (lumen) / W) was measured for the fabricated organic EL device when a constant current of 2.5 mAZcm 2 was applied at 23 ° C in a dry nitrogen gas atmosphere. Show. For the measurement, a spectral radiance meter CS-1000 (manufactured by Co-Camino Norta Sensing) was used in the same manner.
  • organic EL device 18 described in Example 1 was the same except that the concentration of the light emitting dopant was continuously changed in the light emitting unit in all layers of the light emitting unit as shown in FIG. Thus, organic EL elements 4-8 were produced.
  • the light emitting unit of Fig. 4 was manufactured as follows.
  • H-16, Ir13, Ir1, Ir9 were simultaneously energized and heated to adjust the deposition rate and start vacuum deposition.
  • the mass ratio reached 94.9: 2: 3: 0. 1 when the film thickness reached 18 nm, and the mass ratio reached 91.9: 0.1: 3: 5 when the film thickness reached 22 nm.
  • the deposition rate was adjusted to 11: -13, 11: 1, 11: -9 so that the mass ratio would be 90.8: 0.1: 0.1: 9
  • the power efficiency (lm (lumen) / W) was measured for the fabricated organic EL device when 2.5 mAZcm 2 constant current was applied at 23 ° C in a dry nitrogen gas atmosphere. The results are shown in Table 5. .
  • a spectral radiance meter CS-1000 manufactured by Ko-Force Minolta Sensing Co., Ltd. was used in the same manner.
  • Phen Cs (mass ratio 75: 25)
  • Organic EL devices 5-1 to 5-8 were fabricated in the same manner except that it was changed to a co-deposited film and LiF was not deposited.
  • the non-light emitting surface was covered with a glass case, and a color filter was attached to the light emitting surface to use it as an image display device. And was able to be used as an excellent image display device.
  • the non-light emitting surface was covered with a glass case. It was covered and used as a lighting device.
  • the lighting device could be used as a thin lighting device that emits white light with high luminous efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、低駆動電圧で高い発光効率が得られ、かつ生産性のよい有機エレクトロルミネッセンス素子と、該有機エレクトロルミネッセンス素子を有する画像表示装置及び照明装置を提供する。この有機エレクトロルミネッセンス素子は、支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に発光ユニットを含む有機層を有する有機エレクトロルミネッセンス素子において、前記発光ユニットは、発光ピークの異なる発光層を2層以上有し、該発光層は全て発光ドーパントと発光ホストを含有し、前記陽極と前記発光ユニットの間の有機層の総膜厚をd1、前記発光ユニットの膜厚をd2、前記発光ユニットと前記陰極の間の有機層の総膜厚をd3とするとき、5nm≦d2<30nmで、かつ5≦(d1+d3)/d2であることを特徴とする。

Description

有機エレクト口ルミネッセンス素子、画像表示装置および照明装置 技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、該有機エレクト口ルミネッセンス素子 を有する画像表示装置及び照明装置に関する。
背景技術
[0002] 有機 EL素子は自己発光のため、視認性に優れ、かつ数 V〜数十 Vの低電圧駆動 が可能なため駆動回路を含めた軽量ィ匕が可能である。そこで、有機 EL素子は、薄膜 型ディスプレイ、照明、ノ ックライトとしての活用が期待されている。
[0003] また、有機 EL素子は、色ノリエーシヨンが豊富であることも特徴である。また、複数 の発光色を組み合わせる混色によってさまざまな発光が可能となることも特徴である
[0004] 発光色の中で、特に、白色発光のニーズは高ぐまたディスプレイのバックライトとし ても活用できる。更に、カラーフィルタを用いて青、緑、赤の画素に分けることが可能 である。
[0005] この様な白色発光を行う方法としては次の 2種類の方法がある。
[0006] 1.一つの発光層に複数の発光化合物をドープする。
[0007] 2.複数の発光層から複数の発光色を組み合わせる。
[0008] 例えば、青 (B)、緑 (G)、赤 (R)の 3色により白色を達成する場合、 1の場合は、素 子作製方法として真空蒸着法を用いた場合は、 BGRと発光ホスト化合物の 4元蒸着 となり、コントロールが非常に困難となる。また、 BGRと発光ホストイ匕合物を溶液に溶 解或いは分散にして塗布する方法もあるが、いまのところ、塗布型有機 ELは蒸着型 に比べ耐久性が劣るという問題がある。
[0009] 一方、 2の複数の発光層を組み合わせる方法が提案されて 、る。蒸着型を用いる 場合には 1に比べ容易となる。
[0010] このような白色発光を行う有機 EL素子としては、短波長発光である青色発光層と長 波長発光である黄色発光層との 2層を積層することにより、両発光層の混色として白 色の発光を得るようにしたものが提案されている (例えば、特許文献 1参照。 ) o
[0011] し力しながら、このような発色の異なる(異なるピーク波長の) 2層の発光層を積層し たものにおいては、素子の駆動時間すなわち発光時間や印加電圧の変化に伴って 、 2つの発光層において膜質が変化したり、ホール (正孔)や電子の輸送性の度合が 変化する等により、発光中心が移動し、その結果、色度変化を生じやすいと言う問題 かあつた。
[0012] 特に、 2つの発光層の混色として白色を得る場合、白色は他の色に比べて色度変 化に敏感であるため、問題が顕在化する。
[0013] また、発光材としてオルトメタル錯体を用いることにより高効率の有機エレクト口ルミ ネッセンス素子が得られるとし、白色光を得る方法として、 BGRの三色を積層して白 色を得るものが開示されている(例えば、特許文献 2参照。 )0
[0014] また、異なるピーク波長を有する複数の発光層力もの混色発光を行うようにした有 機 EL素子において、駆動時間や電圧変化に伴う色度変化を極力抑制できるように する方法として、異なるピーク波長の発光を行う発光層が交互に 3層以上積層された ものが開示されている (例えば、特許文献 3参照。 )0
[0015] ところで、複数の発光層を組み合わせて白色を達成する白色発光素子は、いくつも の発光層を積層するという構成上、発光層の膜厚が厚くなり、また、層の界面の数も 増えてキャリアの注入が妨げられ、駆動電圧が高くなるという問題がある。特に、リン 光発光材料を用いた場合には、蛍光発光材料よりも駆動電圧が高くなるという問題 かあつた。
[0016] 発光層を薄くすることで駆動電圧を下げることが出来るが、素子全体の膜厚が薄く なることで、基板上の微少なごみなどの影響を受けやすくなり素子の性能が安定せ ず生産性が悪くなるという問題があった。
特許文献 1:特開 2003— 347051号公報
特許文献 2:特開 2001— 319780号公報
特許文献 3 :特開 2004— 63349号公報
発明の開示
発明が解決しょうとする課題 [0017] 本発明は、上記課題に鑑みなされたものであり、本発明の目的は、低駆動電圧で 高い発光効率が得られ、かつ生産性のよい有機エレクト口ルミネッセンス素子、該有 機エレクト口ルミネッセンス素子を有する画像表示装置及び照明装置を提供すること にある。
課題を解決するための手段
[0018] 本発明の上記目的は、下記構成により達成された。
[0019] 1.支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に発光ユニットを含 む有機層を有する有機エレクト口ルミネッセンス素子において、前記発光ユニットは、 発光ピークの異なる発光層を 2層以上有し、該発光層は全て発光ドーパントと発光ホ ストを含有し、
前記陽極と前記発光ユニットの間の有機層の総膜厚を dl、前記発光ユニットの膜厚 を d2、前記発光ユニットと前記陰極の間の有機層の総膜厚を d3とするとき、各膜厚 d 1、 d2、 d3の関係が下記式(1)、 (2)のいずれも満足することを特徴とする有機エレク トロノレミネッセンス素子。
[0020] 式(1)
5nm≤d2< 30nm
式 (2)
5≤(dl + d3) /d2
2.前記各膜厚 dl、 d2、 d3の関係が下記式 (3)を満足することを特徴とする前記 1 に記載の有機エレクト口ルミネッセンス素子。
[0021] 式(3)
dl + d2 + d3 > 150nm
3.前記発光ユニットが、発光ピークの異なる少なくとも 2層の発光層で構成され、前 記発光ユニットの少なくとも隣接する 2つの発光層が、同じ発光ホスト化合物を含有 することを特徴とする前記 1または 2に記載の有機エレクト口ルミネッセンス素子。
[0022] 4.前記発光ユニットが、発光ピークの異なる少なくとも 2層の発光層で構成され、前 記発光ユニットの全ての発光層が、同じ発光ホスト化合物を含有することを特徴とす る前記 1または 2に記載の有機エレクト口ルミネッセンス素子。 [0023] 5.前記発光ユニットの隣接する 2層の発光層の接合部分が、各々 2種の発光ドー パントの混合領域を有することを特徴とする前記 3または 4に記載の有機エレクトロル ミネッセンス素子。
[0024] 6.前記発光ユニットの全ての発光層力 各々 2種以上の発光ドーパントを含有し、 かつ該発光ドーパントの濃度が前記発光ユニット中で連続的に変化することを特徴と する前記 3乃至 5のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0025] 7.前記発光ユニットの発光ピークの異なる発光層の間に、発光ドーパントを含有し ない中間層が設けられていることを特徴とする前記 1または 2に記載の有機エレクト口 ルミネッセンス素子。
[0026] 8.前記中間層が発光ホストイ匕合物を含有し、前記発光ユニットの少なくとも隣接す る 2層が同じ発光ホストイ匕合物を含有することを特徴とする前記 7に記載の有機エレク トロノレミネッセンス素子。
[0027] 9.前記中間層が発光ホストイ匕合物を含有し、前記発光ユニットの全ての層が同じ 発光ホストイ匕合物を含有することを特徴とする前記 7に記載の有機エレクト口ルミネッ センス素子。
[0028] 10.前記 dlが下記式 (4)で規定する範囲であり、かつ前記 d3が下記式(5)で規定 する範囲であることを特徴とする前記 1乃至 9のいずれか 1項に記載の有機エレクト口 ルミネッセンス素子。
[0029] 式(4)
120nm≤dl≤180nm
式 (5)
30nm≤d3≤80nm
11.前記発光ピークの異なる発光層のうち、最も短波長に発光ピークを有する発光 層の膜厚を d4としたとき、前記 d2および該 d4が下記式 (6)を満足することを特徴とす る前記 1乃至 10のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0030] 式(6)
d2/d4< 2
12.前記有機エレクト口ルミネッセンス素子力 の発光力 白色であることを特徴と する前記 1乃至 11のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0031] 13.前記発光ピークの異なる発光層のうち、少なくとも 1つの発光層に含有される 発光ドーパントが燐光性ィ匕合物であることを特徴とする前記 1乃至 12のいずれ力 1項 に記載の有機エレクト口ルミネッセンス素子。
[0032] 14.前記発光ピークの異なる発光層のうち、少なくとも 2つの発光層に含有される 発光ドーパントが燐光性ィ匕合物であることを特徴とする前記 1乃至 12のいずれ力 1項 に記載の有機エレクト口ルミネッセンス素子。
[0033] 15.前記発光ピークの異なる全ての発光層に含有される発光ドーパントが、燐光性 化合物であることを特徴とする前記 1乃至 12のいずれか 1項に記載の有機エレクト口 ルミネッセンス素子。
[0034] 16.前記 1乃至 15のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を用
Vヽたことを特徴とする画像表示装置。
[0035] 17.前記 1乃至 15のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を用 いたことを特徴とする照明装置。
発明の効果
[0036] 本発明の構成により、低駆動電圧で高い発光効率が得られ、かつ生産性のよい有 機エレクト口ルミネッセンス素子と、該有機エレクト口ルミネッセンス素子を有する画像 表示装置及び照明装置を提供することができた。
図面の簡単な説明
[0037] [図 1]本発明の基本的な層構成の一例を示した図である。
[図 2]複数の発光ホストイ匕合物及び複数の発光ドーパント用の蒸着用ボートを有す蒸 着装置の一例を示した模式図である。
[図 3]実施例 3における、隣接する 2種の発光層の接合部分に、各々 2種の発光ドー パントの混合領域を有する発光ユニットを示す図である。
[図 4]実施例 4における、発光ユニットの全層において、各々 2種以上の発光ドーパン トを含有し、かつ含有比率が連続的に変化する発光ユニットを示す図である。
[図 5]有機 EL素子カゝら構成される表示装置の一例を示した模式図である。
[図 6]表示部の模式図である。 [図 7]画素の模式図である。
[図 8]パッシブマトリクス方式フルカラー表示装置の一例を示した模式図である。 符号の説明
[0038] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
21 シャッター
22 蒸着用ボート
23 支持基板
A 表示部
B 制御部
発明を実施するための最良の形態
[0039] 本発明の有機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)は、支持 基板上に少なくとも陽極、陰極及び該陽極と該陰極間に発光ユニットを含む有機層 を有し、前記発光ユニットは、発光ピークの異なる発光層を 2層以上有し、発光層は 全て発光ドーパントと発光ホストを含有し、前記陽極と前記発光ユニットの間の有機 層の総膜厚を dl、前記発光ユニットの膜厚を d2、前記発光ユニットと前記陰極の間 の有機層の総膜厚を d3とするとき、発光ユニットの膜厚 (d2)は 5nm以上、 30nm未 満であり、好ましくは 7〜27nmの範囲であり、最も好ましくは 10〜25nmの範囲であ る。
[0040] また、発光ユニットをのぞいた有機層の膜厚 (dl + d3)は、発光ユニットの膜厚 (d2 )の 5倍以上であることを特徴の一つとする。 [0041] この構成により、複数の発光層を組み合わせた白色発光素子でありながら、低駆動 電圧で、かつ生産性のよい有機エレクト口ルミネッセンス素子が実現できた。また、発 光ドーパントに燐光発光材料を用いることで、更に高効率とすることができた。
[0042] 本発明の有機エレクト口ルミネッセンス素子 (有機 EL素子)の層構成に関し、図を用 いて説明するが、本発明はこれらに限定されるものではない。
[0043] 図 1で示される素子構成は、陰極と陽極の間に発光ユニットを有し、発光ユニットを 電子阻止層と正孔阻止層で挟み込んで!/、る。
[0044] 本発明において、発光ユニットとは、有機エレクト口ルミネッセンス素子の最も陰極 側に位置する発光層から、最も陽極側に位置する発光層までのことをいう(例えば、 図 1では、発光層 1、発光層 2、発光層 3が発光ユニットとなる)。
[0045] これらの電子阻止層或いは正孔阻止層は必ずしも必要ではないが、この様な構成 とすることで、電子 ·正孔のキャリアを発光ユニットに閉じ込め、更に電子と正孔の再 結合により生成する励起子をも発光ユニットに閉じ込めることができるため、これらの 層を設けることが好ましい。
[0046] 電子阻止層、正孔阻止層を形成する材料は、既知の材料を使用することができる。
[0047] 電子阻止層は、電子が発光ユニットから漏れ出さぬよう電子を閉じ込めるため、電 子阻止層を形成する材料は、電子親和力が発光ユニットを形成する材料よりも小さい ことが好ましい。
[0048] また、正孔阻止層は、正孔が発光ユニットから漏れ出さぬように正孔を閉じ込めるた め、正孔阻止層を形成する材料は発光ユニットを形成する材料よりもイオン化ポテン シャルが大き!/、ことが好まし!/、。
[0049] 更に、電子と正孔が再結合して生成する 3重項励起子を閉じ込めるため、正孔阻止 層、電子阻止層を形成する材料は、発光ユニットの燐光性化合物の励起 3重項エネ ルギ一よりも大き!/、ことが好ま U、。
[0050] 更に、それらを挟み込むように正孔輸送層、電子輸送層を設けることが好ましい。
正孔輸送層、電子輸送層は、既知の材料を用いることができ、駆動電圧低下の面か ら伝導度の高 、材料を用いることが好まし 、。
[0051] 本発明においては、発光ユニットは発光ピークの異なる少なくとも 2層以上の発光 層から構成され、好ましくは 2層もしくは 3層である。
[0052] 発光ユニットの発光層は全て発光ホストと発光ドーパントを含有する。
[0053] 本発明において、発光ユニットの隣接する 2つの発光層が同じ発光ホストイ匕合物で 構成されていることが好ましぐすべての発光層が同じ発光ホスト化合物で構成され ていることがより好ましい。発光層の発光ホストイ匕合物を同じにすることにより、層間の 密着性が改良され、異なる層間でのキャリアの注入障壁が緩和され、駆動電圧を低 電圧化できる。 2つの発光層間に混合領域を設けた場合や、発光ユニット中で発光ド 一パントの濃度を連続的に変化させた場合にも同様の効果が得られる。
[0054] 本発明において、発光ピークの異なる発光層とは、発光ピークが PL測定したとき、 発光極大波長が少なくとも lOnm以上異なることを言う。
[0055] 尚、 PL測定とは、発光ドーパントと発光ホストイ匕合物を発光層で用いる組成で石英 基板に蒸着膜を作製するか、或いはポリマーなどのウエットプロセスにて作製するも のは、スピンコートもしくはディップにより薄膜を作製し、得られた蒸着膜或いは薄膜 を蛍光光度計で発光を測定することにより発光極大波長を決定できる。
[0056] また、本発明においては、発光ユニット中には、発光ピークの異なる発光層を 2層以 上有しているが、この発光層と発光層の間に、非発光性の中間層(発光ドーパントの 含まれな!/ヽ中間層とも!/、う)が設けられて!/、ることも好まし!/、。前記中間層を設けること により、キャリアの発光層への注入をより制御しやすくなり、色ずれを防ぐことができる
[0057] 中間層の材料としては、既知の材料を使用できるが、中間層が隣接する発光層に 含有される発光ホストイ匕合物と同じ発光ホストイ匕合物を含むことで、層間の密着性が 改良され、異なる層間でのキャリアの注入障壁が緩和される。より好ましくは発光ュ- ットの全ての層 (発光層、中間層)が同じホストイ匕合物を含有することで、層間の密着 性がより一層改良され、異なる層間でのキャリアの注入障壁がより一層緩和される。
[0058] 本発明の有機 ELを点灯させた時の色は、特に限定されないが、白色になることが 好ましい。
[0059] 例えば、発光ピークの異なる発光層が 2種の場合、青色と黄色、或いは青とオレン ジ、若しくは青緑と赤、に発光する発光層の組み合わせで、白色を得るのが好ましい [0060] 例えば、発光ピークの異なる発光層が 3種で、 3層の発光層で構成されている場合
、青、緑、赤に発光する組み合わせにすることにより白色を得るのが好ましい。
[0061] この様な構成とすることで、照明やバックライトなど様々な光源に用いることが出来る
[0062] また、発光色は白色だけに限定するものではない。
[0063] 発光ピークの異なる複数の発光層で単色 (例えば青、緑、赤)を発光させることによ り、より微妙な色の調整が可能となる。
[0064] 本発明においては、陽極と発光層の間の有機層の層膜厚 dlおよび発光層と陰極 の間の有機層の層膜厚 d3が下記範囲を満足することが好ましい。
[0065] 120nm≤dl≤180nm,力つ 30nm≤d3≤80nm、更に好ましく ίま、 130nm≤dl
≤170nm、かつ 40nm≤d3≤70nmである。
[0066] 上記で規定する条件とすることにより、他の色に比べて発光効率の低い青色の発 光を光学的に強めることが出来、白色素子の発光効率を高めることが出来る。
[0067] また、本発明においては、上記と同様の理由で、発光ピークの異なる発光層のうち
、最も短波長に発光ピークを有する発光層の膜厚を d4とすると、 d2および d4が下記 式を満足することが好まし 、。
[0068] d2/d4< 2,更に好ましくは、 d2/d4< l. 5である。
[0069] (発光ホスト化合物と発光ドーパント)
発光層中の主成分である発光ホストイ匕合物に対する発光ドーパントとの混合比は 好ましくは質量で 0. 1質量%〜30質量%未満の範囲である。
[0070] ただし、本発明において、発光層の少なくとも 1層の発光ドーパントに燐光性ィ匕合 物 (燐光性ドーパント)を用いることが好ましぐ 2層以上の発光層の発光ドーパントに 燐光性ィ匕合物を用いることが更に好ましぐ全ての発光層の発光ドーパントに燐光性 化合物を用いるのが最も良 、。発光ドーパントは複数種の化合物を混合して用いて も良ぐ金属錯体やその他の構造を有する燐光性ドーパントでもよ 、。
[0071] 発光ドーパントは、大きく分けて、蛍光を発光する蛍光性ドーパントと燐光を発光す る燐光性ドーパントの 2種類がある。 [0072] 蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シァニン系色 素、クロコ-ゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素、フル ォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン 系色素、ポリチオフ ン系色素、又は希土類錯体系蛍光体等が挙げられる。
[0073] 燐光性ドーパントの代表例としては、好ましくは元素の周期表で 8属、 9属、 10属の 金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム 化合物であり、中でも最も好ましいのはイリジウム化合物である。
[0074] 燐光性ドーパントの具体例としては以下の特許公報に記載されて!、る化合物であ る。
[0075] 国際公開第 OOZ70655号パンフレツ K特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02,15645号パンフ レッド、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0076] その具体例の一部を下記に示す。本発明はこれらに限定されるものではない。
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
L£8£0£/900ZdT/13d
剛 [6 00]
Figure imgf000013_0001
L£8£0£/900ZdT/13d 9.TC60/900Z OAV
Figure imgf000014_0001
[0080] (発光ホスト化合物)
本発明に用いられる発光ホストイ匕合物とは、室温(25°C)においてリン光発光のリン 光量子収率が 0. 01未満の化合物である。
[0081] 本発明に用いられる発光ホストイ匕合物としては、構造的には特に制限はないが、代 表的には、力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含 窒素複素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等の 基本骨格を有するもの、または、カルボリン誘導体やジァザ力ルバゾール誘導体 (こ こで、ジァザ力ルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する 炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。) 等が挙げられる。
[0082] 中でもカルボリン誘導体、ジァザ力ルバゾール誘導体等が好ましく用いられる。
[0083] 以下に、カルボリン誘導体、ジァザ力ルバゾール誘導体、力ルバゾール誘導体等の 具体例を挙げるが、本発明はこれらに限定されない。
[0084] [化 4]
Figure imgf000016_0001
[0085] [化 5] H-12 H - 13
Figure imgf000017_0001
[0086] また、本発明に用いられる発光ホスト化合物は低分子化合物でも、繰り返し単位を もつ高分子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子 化合物 (蒸着重合性発光ホスト化合物)でもよ ヽ。
[0087] 発光ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ、発光の長 波長化を防ぎ、高 Tg (ガラス転移温度)である化合物が好ま 、。
[0088] 発光ホストイ匕合物の具体例としては、以下の文献に記載されている化合物が好適 である。例えば、特開 2001— 257076号公報、同 2002— 308855号公報、同 200
1— 313179号公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2
002— 334786号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2 002— 15871号公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2 002— 334789号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141173号公報、 同 2002— 352957号公報、同 2002— 203683号公報、同 2002— 363227号公報 、同 2002— 231453号公報、同 2003— 3165号公報、同 2002— 234888号公報 、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公 報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号 公報、同 2002— 305083号公報、同 2002— 305084号公報、同 2002— 308837 号公報等。
[0089] 次に、本発明の有機 EL素子に用いることができる他の構成層につ 、て述べる。
[0090] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0091] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用 、ることが出来る。
[0092] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることが出来る。
[0093] 本発明に係る正孔阻止層、電子阻止層の膜厚としては好ましくは 3ηπ!〜 lOOnm であり、更に好ましくは 5nm〜30nmである。
[0094] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。 [0095] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されて 、るものや EL素子の正孔注入層、正孔輸送層に使 用される公知のものの中から任意のものを選択して用いることができる。
[0096] 正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するも のであり、有機物、無機物のいずれであってもよい。例えばトリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また、導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0097] 正孔輸送材料としては、上記のものを使用することができる力 ポルフィリン化合物 、芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族第三級ァミン化 合物を用いることが好まし 、。
[0098] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には、米国特許第 5, 061, 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0099] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0100] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用することができる。また、正孔輸送材料は、高 Tgであることが好ましい。
[0101] この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5ηπ!〜 50 OOnm程度である。この正孔輸送層は、上記材料の 1種または 2種以上力もなる 1層 構造であってもよい。
[0102] 又、不純物ドープした p性の高い正孔輸送層を用いることも出来る。その例としては 、特開平 4— 297076号、特開 2000— 196140号、特開 2001— 102175号、了. Ap pi. Phys. , 95, 5773 (2004)などに記載されたもの力 S挙げ、られる。
[0103] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設 けることができる。
[0104] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られて 、る。
[0105] 更に、電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有して いればよぐその材料としては従来公知の化合物の中から任意のものを選択して用 いることがでさる。
[0106] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリ デンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導 体などが挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジァゾ一 ル環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知 られて!ヽるキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いる ことができる。
[0107] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0108] また、 8 キノリノール誘導体の金属錯体、例えばトリス(8 キノリノール)アルミ-ゥ ム(Alq )、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口
3
モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )など、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Ga又は Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一若しくはメタルフタロシアニン、又はそれらの末端がアルキル基ゃスルホン酸基な どで置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiCなどの無機 半導体も電子輸送材料として用いることができる。
[0109] この電子輸送層は、上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は、上記材料の 1種または 2種以上力もなる 1層構 造であってもよい。
[0110] 又、不純物ドープした n性の高い電子輸送層を用いることも出来る。その例としては 、特開平 4— 297076号、特開 2000— 196140号、特開 2001— 102175号、了. Ap pi. Phys. , 95, 5773 (2004)などに記載されたもの力 S挙げ、られる。
[0111] 《注入層》:電子注入層、正孔注入層 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存 在させてもよい。
[0112] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0113] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0114] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的には、スト口 ンチウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表され るアルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。
[0115] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるが、そ の膜厚は 0. lnm〜100nmの範囲が好ましい。
[0116] この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は、上記材料の 1種または 2種以上力もなる 1層構造であってもよい。
[0117] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキ シド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O -
2 2 3
ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの 電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ 一法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要 としない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所 望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場 合には、透過率を 10%より大きくすることが望ましぐまた、陽極としてのシート抵抗は 数百 Ω Ζ口以下が好ましい。更に膜厚は材料にもよる力 通常 ΙΟηπ!〜 1000nm、 好ましくは 10nm〜200nmの範囲で選ばれる。
[0118] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合物、インジウム、リチウム
2 3 Zアルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えばマグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物 、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合物
2 3
、リチウム Zアルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより、作製す ることができる。また、陰極としてのシート抵抗は数百 Ω Ζ口以下が好ましぐ膜厚は 通常 10nm〜1000nm、好ましくは 50nm〜200nmの範囲で選ばれる。なお、発光 を透過させるため、有機 EL素子の陽極または陰極のいずれか一方が、透明または 半透明であれば発光輝度が向上し好都合である。
[0119] 《基体 (基板、基材、支持体等ともいう)》 本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた、透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えばガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好ま L 、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムである
[0120] 榭脂フィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフ タレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエ ーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート(P C)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP) 等力 なるフィルム等が挙げられる。
[0121] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01gZm2'dayatm以下の高 ノ リア性フィルムであることが好まし ヽ。
[0122] 本発明の有機エレクト口ルミネッセンス素子の発光の室温における外部取り出し効 率は 1%以上であることが好ましぐより好ましくは 2%以上である。ここに、外部取り出 し量子効率 (%) =有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子 数 X 100である。
[0123] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0124] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層
Z発光層(2層以上) Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極からな る有機 EL素子の作製法にっ ヽて説明する。
[0125] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは ΙΟηπ!〜 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正 孔輸送層、発光層(2層以上)、正孔阻止層、電子輸送層等の有機化合物を含有す る薄膜を形成させる。 [0126] この有機化合物を含有する薄膜の形成方法としては、スピンコート法、キャスト法、 インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピンホ ールが生成しにく!/、等の点から、真空蒸着法またはスピンコート法が特に好ま 、。 更に層ごとに異なる製膜法を適用してもよい。
[0127] 製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により 異なるが、一般にボート加熱温度 50°C〜450°C、真空度 10— 6Pa〜10— 2Pa、蒸着速 度 0. 01nm〜50nmZ秒、基板温度— 50。C〜300。C、膜厚 0. 1ηπι〜5 ;ζ πιの範 囲で適宜選ぶことが望ま 、。
[0128] 本発明の有機 EL素子の形成方法に用いることができる蒸着装置を図 2に示す。
[0129] 図 2は、複数の発光ホスト化合物用及び複数の発光ドーパント用の複数の蒸着用 ボートを有す蒸着装置の模式図である。各ボートの加熱温度と各ボートに付随するシ ャッターの開閉をコントロールすることにより、各発光ピークの異なる発光層を有する 発光ユニットを形成することができる。
[0130] 上記蒸着装置内に、中間層用のボートを設け、発光ユニットの、隣接する 2層の発 光層の間に発光ドーパントの含まれない中間層を設けることにより、電圧変動による 色ずれの防止効果等が得られ好まし 、。
[0131] また、上記蒸着装置を用いることにより、発光ピークの異なる発光層の全てが発光ド 一パントと発光ホストイ匕合物を含有し、隣接する 2つの発光層を同じ発光ホストイ匕合 物で構成することができ、更には発光ピークの異なる発光層の全てを同じ発光ホスト 化合物で構成することができ、また、発光ユニットの隣接する 2層の発光層の接合部 分において、各々 2種の発光ドーパントの混合領域を有するようにすること、発光ュ- ットの全層において、各々 2種以上の発光ドーパントを含有し、かつ含有比率が徐々 に変化する傾斜混合領域を有するようにすること等、種々の目的とする構成とするこ とができ、駆動電圧を低電圧化の効果等を得ることができる。
[0132] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法に より形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を 乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0133] 《表示装置》
本発明の表示装置について説明する。
[0134] 本発明の有機 EL素子を用いた画像表示装置としては単色でも多色でもよい。多色 表示装置の場合は、各色発光ユニット毎に、シャドーマスクを設け、各色毎に蒸着法 、キャスト法、スピンコート法、インクジェット法、印刷法等により 3層以上の発光層を形 成する。
[0135] 発光ユニットにパターユングを行う場合、その方法に限定はないが、好ましくは蒸着 法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスク を用いたパターユングが好まし 、。
[0136] 単色、例えば、白色の場合は、パターニングすることなく一面に蒸着法、キャスト法
、スピンコート法、インクジェット法、印刷法等により 2層以上の発光層を形成する。
[0137] また、作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層(2層以上)、 正孔輸送層、陽極の順に作製することも可能である。
[0138] このようにして得られた画像表示装置に、直流電圧を印加する場合には、陽極を +
、陰極を—の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また、 逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に、交流電圧 を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光する。なお、 印加する交流の波形は任意でょ 、。
[0139] 白色表示装置の場合は、表示デバイス、ディスプレー、各種発光光源として用いる ことができる。表示デバイス、ディスプレーにおいて、白色有機 EL素子をバックライト に用いることにより、フルカラーの表示が可能となる。
[0140] 表示デバイス、ディスプレーとしてはテレビ、パソコン、モノィル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもょ ヽ。
[0141] 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広 告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、 光センサーの光源等が挙げられるがこれに限定するものではない。
[0142] 《照明装置》
本発明の照明装置について説明する。
[0143] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。
[0144] また、本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使 用しても良いし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画 像を直接視認するタイプの表示装置 (ディスプレイ)として使用しても良い。動画再生 用の表示装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス) 方式でもアクティブマトリクス方式でもどちらでも良い。または、異なる発光色を有する 本発明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製す ることが可能である。
[0145] 本発明の有機 EL素子を白色発光の素子として用いる場合は、 BGRのカラーフィル ターとの組み合わせによりフルカラー表示を行うことが出来る。
[0146] 本発明の有機 EL素子は、また、照明装置として、実質白色の発光を生じる有機 EL 素子に適用できる。
[0147] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0148] 図 5は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0149] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの 画像走査を行う制御部 B等力もなる。
[0150] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。
[0151] 図 6は、表示部 Aの模式図である。
[0152] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0153] 図 6においては、画素 3の発光した光力 白矢印方向(下方向)へ取り出される場合 を示している。
[0154] 配線部の走査線 5及び複数のデータ線 6は、それぞれ導電材料からなり、走査線 5 とデータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図 示していない)。
[0155] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。
[0156] 本発明の有機 EL素子を白色発光の素子として用いる場合は、 BGRのカラーフィル ターとの組み合わせによりフルカラー表示を行うことが出来る。
[0157] 次に、画素の発光プロセスを説明する。
[0158] 図 7は、画素の模式図である。
[0159] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えて 、る。複数の画素に区分された有機 EL素子 10として白色発光の 有機 EL素子を用い、 BGRのカラーフィルターと組み合わせることでフルカラー表示 を行うことができる。
[0160] 図 7において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0161] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。
[0162] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0163] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。
[0164] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。
[0165] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0166] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0167] 図 8は、パッシブマトリクス方式による表示装置の模式図である。複数の走査線 5と 複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられている。
[0168] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して 、る画素 3が画像データ信号に応じて発光する。ノ ッシブマトリクス方式では画 素 3にアクティブ素子が無く、製造コストの低減が計れる。
[0169] 本発明の白色の有機 EL素子においては、必要に応じ製膜時にメタルマスクやイン クジェットプリンティング法等でパター-ングを施してもよ 、。パターユングする場合は 、電極のみをパターユングしてもいいし、電極と発光層をパターユングしてもいいし、 素子全層をパターユングしても 、 、。
[0170] このように、本発明の白色発光の有機 EL素子は、前記表示デバイス、ディスプレー に加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源 のような一種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用 いられる。
[0171] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0172] 実施例 1
《有機 EL素子の作製》
〈有機 EL素子 1—1の作製〉
陽極として 100mm X 100mm X I. 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を 110nm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行った。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定した。一方、モリブデン製抵抗加熱 ボートに銅フタロシアニン(CuPc)を 200mg入れ、別のモリブデン製抵抗加熱ボート に α— NPDを 200mg入れ、別のモリブデン製抵抗力卩熱ボートに m— TDATAを 20 Omg入れ、別のモリブデン製抵抗加熱ボートに H— 14を 200mg入れ、別のモリブデ ン製抵抗加熱ボートに H— 15を 200mg入れ、別のモリブデン製抵抗加熱ボートに Ir 12を lOOmg入れ、別のモリブデン製抵抗加熱ボートに Ir— 15を lOOmg入れ、別 のモリブデン製抵抗加熱ボートに H— 16を 200mg入れ、更に別のモリブデン製抵抗 加熱ボートに Alqを 200mg入れ、真空蒸着装置に取付けた。
3
[0173] 次 、で、真空槽を 4 X 10—4Paまで減圧した後、 CuPcの入った前記加熱ボートに通 電して加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し 20nmの正孔注入 層を設けた。
[0174] 更に、 ex—NPDの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/s ecで前記正孔注入層上に蒸着し 1 OOnmの正孔輸送層を設けた。
[0175] 更に、 m— TDATAの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm
/secで前記正孔輸送層上に蒸着し 15nmの電子阻止層を設けた。
[0176] 更に、 H— 14と Ir— 12の入った前記加熱ボートに通電して加熱し、表 1のような質 量比と膜厚で前記正孔輸送層上に共蒸着して黄色発光の発光層 1を設けた。
[0177] 更に、 H— 15と Ir— 15の入った前記加熱ボートに通電して加熱し、表 1のような質 量比と膜厚で前記発光層 1上に共蒸着して青色発光の発光層 2を設けた。
[0178] 更に、 H— 16の入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm/sec で前記発光層上に蒸着して膜厚 lOnmの正孔阻止層を設けた。
[0179] 更に、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZsecで
3
前記発光層上に蒸着して膜厚 40nmの電子輸送層を設けた。
[0180] なお、蒸着時の基板温度は室温であった。
[0181] 引き続き、陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更に、アルミ-ゥ ム 1 lOnmを蒸着して陰極を形成し、有機 EL素子 1— 1を作製した。
[0182] 〈有機 EL素子 1 2の作製〉
陽極として 100mm X 100mm X I . 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を 1 lOnm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持 基板上にポリ(3, 4—エチレンジォキシチォフェン) ポリスチレンスルホネート(PED OTZPSS、: Bayer社製、 Baytron P Al 4083)分散液を 3000rpm、 30秒でス ピンコート法により成膜した後、 200°Cにて 1時間乾燥し、 80nmの正孔注入層を設 けた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定した。一方、 モリブデン製抵抗加熱ボートに α NPDを 200mg入れ、別のモリブデン製抵抗力口 熱ボートに m—TDATAを 200mg入れ、別のモリブデン製抵抗力卩熱ボートに H— 14 を 200mg入れ、別のモリブデン製抵抗加熱ボートに H— 15を 200mg入れ、別のモ リブデン製抵抗加熱ボートに Ir— 12を lOOmg入れ、別のモリブデン製抵抗加熱ボー トに Ir 15を lOOmg入れ、別のモリブデン製抵抗加熱ボートに H— 16を 200mg入 れ、更に別のモリブデン製抵抗加熱ボートに Alqを 200mg入れ、真空蒸着装置に
3
取付けた。
[0183] 次 、で、真空槽を 4 X 10— 4Paまで減圧した後、 a—NPDの入った前記加熱ボート に通電して加熱し、蒸着速度 0. InmZsecで前記正孔注入層上に蒸着し 40nmの 正孔輸送層を設けた。
[0184] 更に、 m— TDATAの入った前記加熱ボートに通電して加熱し、蒸着速度 0. lnm
/secで前記正孔輸送層上に蒸着し 15nmの電子阻止層を設けた。
[0185] 更に、 H— 14と Ir— 12の入った前記加熱ボートに通電して加熱し、表 1のような質 量比と膜厚で前記正孔輸送層上に共蒸着して黄色発光の発光層 1を設けた。
[0186] 更に、 H— 15と Ir— 15の入った前記加熱ボートに通電して加熱し、表 1のような質 量比と膜厚で前記発光層 1上に共蒸着して青色発光の発光層 2を設けた。
[0187] 更に、 H— 16の入った前記加熱ボートに通電して加熱し、蒸着速度 0. Inm/sec で前記発光層 2上に蒸着して膜厚 lOnmの正孔阻止層を設けた。
[0188] 更に、 Alqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZsecで
3
前記正孔阻止層上に蒸着して膜厚 40nmの電子輸送層を設けた。
[0189] なお、蒸着時の基板温度は室温であった。
[0190] 引き続き陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更に、アルミ-ゥ ム 1 lOnmを蒸着して陰極を形成し、有機 EL素子 1— 2を作製した。
[0191] 〈有機 EL素子 1— 3、 1—4、 1 6〜1 8の作製〉
有機 EL素子 1—2の作製において、発光層を表 1に示すような構成に変更した以 外は同様にして、有機 EL素子 1— 3、 1—4、 1— 6〜1— 8を作製した。
[0192] 〈有機 EL素子 1 5〉
有機 EL素子 1—1の作製において、発光層を表 1に示すような構成に変更した以 外は同様にして、有機 EL素子 1—5を作製した。
[0193] 〈有機 EL素子 1— 9〜 1― 11の作製:比較例〉
上記有機 EL素子 1—1の作製において、正孔注入層、正孔輸送層及び発光層を 表 1に示すような構成に変更した以外は同様にして、有機 EL素子 1 9〜1 11を 作製した。
[0194] 尚、表 1の発光層 1、発光層 2における質量%表示について説明する。
[0195] 例えば、表 1の有機 EL素子 1 1において、発光層 1の材料は、 H— 14 :Ir 12 (3 質量%、 20nm)と記載されている力 これは、発光層 1の全質量の中で、 H—14が 9 7質量%、 Ir— 12が 3質量%を占めることを表し、且つ、発光層 1の膜厚が 20nmであ ることを示して ヽる。
[0196] この表示は、その他の白色発光有機エレクト口ルミネッセンス素子 1 1〜1 12に ついても同様である。
[0197] 《評価》
得られた各素子を次のような方法で評価した。
[0198] (外部取りだし量子効率、パワー効率、ダークスポット発生率の測定)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には分光 放射輝度計 CS— 1000 (コ-カミノルタセンシング社製)を用いた。更に、駆動電圧 の低電圧化、消費電力の指標として、パワー効率 (lm (ルーメン) ZW)を測定した。 また、生産性、素子性能の安定性の指標としてダークスポット発生率 (素子 10個中、 何個にダークスポットが発生する力。)も測定し、得られた結果を表 2に示す。
[0199] 表 2に記載の外部取りだし量子効率およびパワー効率の測定結果は、有機 EL素 子 1— 12の測定値を 100とした時の相対値で表した。
[0200] 尚、各層の形成に用いた化合物を以下に示す。
[0201] [化 6]
Figure imgf000034_0001
[0202] [表 1]
Figure imgf000035_0001
Figure imgf000035_0002
Figure imgf000035_0003
パワー効率 ダークスポット
有機 EL素子 外部取り出し量子効率木 備 考
( 1 m/W) 発生率
1 - 1 162 230 0 本発明
1一 2 167 240 0 本発明 t - 3 1 10 1 50 0 本発明 卜 4 152 220 0 本発明
1一 5 150 210 0 本発明
1 -6 155 223 0 本発明
1 - 7 161 232 0 本発明
1一 8 160 220 0 本発明
1 -9 100 200 5 比較例 卜 10 140 70 0 比較例 卜 1 1 22 53 2 比較例
1 - 1 2 TOO 100 1 比較例
[0204] 本発明の試料は発光効率が高ぐダークスポットの発生がな 素子性能も安定し、 生産効率も高いことが分かる。
[0205] 実施例 2
実施例 1に記載の有機 EL素子 1— 1〜1— 8の作製において、それぞれの発光層 の間に中間層として H— 16を 2nm蒸着法により設けた以外は同様にして、有機 EL 素子 2—:!〜 2— 8を作製し、実施例 1で作製した有機 EL素子 1—:!〜 1—8と共に、 下記の色度ずれの評価を行 、、得られた結果を表 3に示す。
[0206] 《色度のずれの評価》
色度のずれは CIE色度図にお!/、て、 lOOcdZm2輝度時の色度座標と 5000cdZ m2輝度時の色度座標のずれを表す。尚、 23°C、乾燥窒素ガス雰囲気下で CS— 10 00 (コ-力ミノルタセンシング社製)を用いて測定を行った。
[0207] [表 3]
有機 E L素子番号 有機 E L素子番号
(中間層無) 色度のずれ 色度のずれ
(中間層有)
1 一 1 0.030 2一 1 0.008
1 一 2 0.050 2 - 2 0 .010
1 一 3 0.042 2 - 3 0 .009
1 一 4 0.037 2 - 4 0 .008
1 一 5 0.020 2 - 5 0 .002
1 - 6 0.025 2 - 6 0.004
1 - 7 0.031 2 - 7 0.007
1 - 8 0.027 0 .005
[0208] 表 3に示した結果からもわ力るように、有機 EL素子 2— 1〜2— 8は、有機 EL素子 1
1〜1 8と比較して、高電圧時の色度ずれが抑制されて 、ることが分かる。
[0209] 実施例 3
実施例 1に記載の有機 EL素子 1— 8の作製にぉ 、て、図 3に示すように発光ュ-ッ ト中の発光層 1と発光層 2の間に H— 16と Ir— 13と Ir—1の混合領域 1、発光層 2と発 光層 3の間に H— 16と Ir— 1と Ir - 9の混合領域 2をそれぞれ 2nm設けた他は同様に して、有機 EL素子 3— 8を作製した。ただし、混合領域 1において、 Ir— 13の蒸着速 度は蒸着開始時点力も減少させ膜厚 2nmに達した時点で 0になるように、 Ir- 1の蒸 着速度は蒸着開始時点力 増加させ膜厚 2nmに達した時点で H— 16との質量比が 発光層 2と同じになるように調整した。混合領域 2も同様に、 Ir—1の蒸着速度は蒸着 開始時点から減少させ膜厚 2nmに達した時点で 0になるように、 Ir 9の蒸着速度は 蒸着開始時点から増加させ膜厚 2nmに達した時点で H— 16との質量比が発光層 3 と同じになるように調整した。
[0210] 《パワー効率の測定》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mAZcm2定 電流を印加した時のパワー効率 (lm (ルーメン) /W)を測定し、得られた結果を表 4 に示す。なお、測定には同様に分光放射輝度計 CS— 1000 (コ-カミノルタセンシン グ社製)を用いた。
[0211] なお、表 4に記載のパワー効率の測定結果は、有機 EL素子 1 8の測定値を 100 としたときの相対値で表した。 [0212] [表 4]
Figure imgf000038_0001
[0213] 表 4に記載の結果より明らかなように、有機 EL素子 3— 8は、有機 EL素子 1—8と比 較して駆動電圧が低電圧化されることが確認された。
[0214] 実施例 4
実施例 1に記載の有機 EL素子 1 8の作製にぉ 、て、図 4のように発光ユニットの 全層において、発光ドーパントの濃度が発光ユニット中で連続的に変化するようにし た他は同様にして有機 EL素子 4— 8を作製した。
[0215] ただし、図 4の発光ユニットは以下のように作製した。
[0216] H— 16、 Ir 13、 Ir 1、 Ir 9に同時に通電して加熱し蒸着速度を調節して真空 蒸着を開始した。発光ユニット膜厚 Onmの時点で質量比が H— 16 :Ir— 13 :Ir— 1:1 r— 9 = 96.8:3:0.1:0.1となるようにして蒸着を開始し、 H— 16の蒸着速度を一 定に保った状態で、膜厚 18nmに達した時点で質量比が 94.9:2:3:0. 1、膜厚が 22nmに達した時点で質量比が 91.9:0.1:3:5、膜厚が 25nmに達した時点で質 量比が 90.8:0. 1:0.1:9となるょぅに11:ー13、11:ー1、11:ー9の蒸着速度を調整した
[0217] 《パワー効率の測定》
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2.5mAZcm2定 電流を印加した時のパワー効率 (lm (ルーメン) /W)を測定し、得られた結果を表 5 に示す。なお測定には同様に分光放射輝度計 CS— 1000 (コ-力ミノルタセンシング 社製)を用いた。
[0218] 表 5に記載のパワー効率の測定結果は、有機 EL素子 1—8の測定値を 100としたと きの相対値で表した。
[0219] [表 5] 有機 E L素子
パワー効率
1 - 8 100
4 - 8 158
[0220] 表 5に記載の結果より明らかな様に、有機 EL素子 4— 8は有機 EL素子 1—8と比較 して駆動電圧が低電圧化することが確認された。
[0221] 実施例 5
実施例 1に記載の有機 EL素子 1— 1〜1— 8の作製において、正孔注入層と正孔 輸送層を m— MTDATA:F4— TCNQ (質量比 99 : 1)共蒸着膜に変更し、 Alqを B
3
Phen: Cs (質量比 75: 25)共蒸着膜に変更し LiFを蒸着しな力つた以外は同様にし て有機 EL素子 5 - 1〜5— 8を作製した。
[0222] [化 7]
BPhen F4-TCNQ
Figure imgf000039_0001
[0223] 有機 EL素子 5— 1〜5— 8は有機 EL素子 1 1〜1 8と比較して、どれも駆動電 圧が 3〜6V低電圧化することが確認された。
[0224] 実施例 6
<白色の有機 EL素子を用 ヽた画像表示装置〉
実施例 1に記載の有機 EL素子 1 7の作製にぉ 、て、非発光面をガラスケースで 覆い、発光面にカラーフィルターを付け画像表示装置として用いたところ、良好なフ ルカラーの色表示性能を示し、優れた画像表示装置として使用することができた。
[0225] 実施例 7
〈白色の有機 EL素子を用いた照明装置の作製〉
実施例 1に記載の有機 EL素子 1 2の作製にぉ 、て、非発光面をガラスケースで 覆い、照明装置とした。照明装置は、発光効率が高い白色光を発する薄型の照明装 置として使用することができた。

Claims

請求の範囲
[1] 支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に発光ユニットを含む 有機層を有する有機エレクト口ルミネッセンス素子において、前記発光ユニットは、発 光ピークの異なる発光層を 2層以上有し、該発光層は全て発光ドーパントと発光ホス トを含有し、
前記陽極と前記発光ユニットの間の有機層の総膜厚を dl、前記発光ユニットの膜厚 を d2、前記発光ユニットと前記陰極の間の有機層の総膜厚を d3とするとき、各膜厚 d 1、 d2、 d3の関係が下記式(1)、 (2)のいずれも満足することを特徴とする有機エレク トロノレミネッセンス素子。
式 (1)
5nm≤d2< 30nm
式 (2)
5≤(dl + d3) /d2
[2] 前記各膜厚 dl、 d2、 d3の関係が下記式 (3)を満足することを特徴とする請求の範 囲第 1項に記載の有機エレクト口ルミネッセンス素子。
式 (3)
dl + d2 + d3 > 150nm
[3] 前記発光ユニットが、発光ピークの異なる少なくとも 2層の発光層で構成され、前記 発光ユニットの少なくとも隣接する 2つの発光層が、同じ発光ホスト化合物を含有する ことを特徴とする請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセン ス素子。
[4] 前記発光ユニットが、発光ピークの異なる少なくとも 2層の発光層で構成され、前記 発光ユニットの全ての発光層が、同じ発光ホスト化合物を含有することを特徴とする 請求の範囲第 1項または第 2項に記載の有機エレクト口ルミネッセンス素子。
[5] 前記発光ユニットの隣接する 2層の発光層の接合部分が、各々 2種の発光ドーパン トの混合領域を有することを特徴とする請求の範囲第 3項または第 4項に記載の有機 エレクトロノレミネッセンス素子。
[6] 前記発光ユニットの全ての発光層力 各々 2種以上の発光ドーパントを含有し、か っ該発光ドーパントの濃度が前記発光ユニット中で連続的に変化することを特徴とす る請求の範囲第 3項乃至第 5項のいずれか 1項に記載の有機エレクト口ルミネッセン ス素子。
[7] 前記発光ユニットの発光ピークの異なる発光層の間に、発光ドーパントを含有しな い中間層が設けられていることを特徴とする請求の範囲第 1項または第 2項に記載の 有機エレクト口ルミネッセンス素子。
[8] 前記中間層が発光ホスト化合物を含有し、前記発光ユニットの少なくとも隣接する 2 層が同じ発光ホストイ匕合物を含有することを特徴とする請求の範囲第 7項に記載の有 機エレクト口ルミネッセンス素子。
[9] 前記中間層が発光ホストイ匕合物を含有し、前記発光ユニットの全ての層が同じ発光 ホスト化合物を含有することを特徴とする請求の範囲第 7項に記載の有機エレクト口 ルミネッセンス素子。
[10] 前記 dlが下記式 (4)で規定する範囲であり、かつ前記 d3が下記式(5)で規定する 範囲であることを特徴とする請求の範囲第 1項乃至第 9項のいずれ力 1項に記載の 有機エレクト口ルミネッセンス素子。
式 (4)
120nm≤dl≤180nm
式 (5)
30nm≤d3≤80nm
[11] 前記発光ピークの異なる発光層のうち、最も短波長に発光ピークを有する発光層の 膜厚を d4としたとき、前記 d2および該 d4が下記式 (6)を満足することを特徴とする請 求の範囲第 1項乃至第 10項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子。
式 (6)
d2/d4< 2
[12] 前記有機エレクト口ルミネッセンス素子からの発光力 白色であることを特徴とする 請求の範囲第 1項乃至第 11項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子。
[13] 前記発光ピークの異なる発光層のうち、少なくとも 1つの発光層に含有される発光ド 一パントが燐光性ィ匕合物であることを特徴とする請求の範囲第 1項乃至第 12項のい ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[14] 前記発光ピークの異なる発光層のうち、少なくとも 2つの発光層に含有される発光ド 一パントが燐光性ィ匕合物であることを特徴とする請求の範囲第 1項乃至第 12項のい ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[15] 前記発光ピークの異なる全ての発光層に含有される発光ドーパントが、燐光性ィ匕 合物であることを特徴とする請求の範囲第 1項乃至第 12項のいずれ力 1項に記載の 有機エレクト口ルミネッセンス素子。
[16] 請求の範囲第 1項乃至第 15項のいずれ力 1項に記載の有機エレクト口ルミネッセン ス素子を用いたことを特徴とする画像表示装置。
[17] 請求の範囲第 1項乃至第 15項のいずれ力 1項に記載の有機エレクト口ルミネッセン ス素子を用いたことを特徴とする照明装置。
PCT/JP2006/303837 2005-03-04 2006-03-01 有機エレクトロルミネッセンス素子、画像表示装置および照明装置 WO2006093176A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007505976A JP4946862B2 (ja) 2005-03-04 2006-03-01 有機エレクトロルミネッセンス素子、画像表示装置および照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-060345 2005-03-04
JP2005060345 2005-03-04

Publications (1)

Publication Number Publication Date
WO2006093176A1 true WO2006093176A1 (ja) 2006-09-08

Family

ID=36941205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303837 WO2006093176A1 (ja) 2005-03-04 2006-03-01 有機エレクトロルミネッセンス素子、画像表示装置および照明装置

Country Status (2)

Country Link
JP (1) JP4946862B2 (ja)
WO (1) WO2006093176A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080435A (ja) * 2008-09-01 2010-04-08 Semiconductor Energy Lab Co Ltd 発光素子、発光装置並びに電子機器
WO2012157575A1 (ja) * 2011-05-13 2012-11-22 Necライティング株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
JP2018525766A (ja) * 2015-08-12 2018-09-06 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 有機エレクトロルミネセント装置及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711244A (ja) * 1993-06-24 1995-01-13 Mitsui Petrochem Ind Ltd 薄膜電界発光素子並びにその製造方法
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2004047469A (ja) * 2002-07-08 2004-02-12 Eastman Kodak Co 有機発光ダイオードデバイス
JP2004311231A (ja) * 2003-04-08 2004-11-04 Denso Corp 有機el素子
JP2004322489A (ja) * 2003-04-25 2004-11-18 Pioneer Electronic Corp ガスバリア基材およびその製造方法
JP2005002346A (ja) * 2003-12-25 2005-01-06 Tetsuya Nishio ジアミノ化合物、ビニル化合物、高分子化合物、配向膜、該配向膜を用いた有機半導体装置、導電性高分子、該導電性高分子を使用したエレクトロルミネッセンス素子、液晶配向膜、及び該液晶配向膜を用いた光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711244A (ja) * 1993-06-24 1995-01-13 Mitsui Petrochem Ind Ltd 薄膜電界発光素子並びにその製造方法
JP2003272860A (ja) * 2002-03-26 2003-09-26 Junji Kido 有機エレクトロルミネッセント素子
JP2004047469A (ja) * 2002-07-08 2004-02-12 Eastman Kodak Co 有機発光ダイオードデバイス
JP2004311231A (ja) * 2003-04-08 2004-11-04 Denso Corp 有機el素子
JP2004322489A (ja) * 2003-04-25 2004-11-18 Pioneer Electronic Corp ガスバリア基材およびその製造方法
JP2005002346A (ja) * 2003-12-25 2005-01-06 Tetsuya Nishio ジアミノ化合物、ビニル化合物、高分子化合物、配向膜、該配向膜を用いた有機半導体装置、導電性高分子、該導電性高分子を使用したエレクトロルミネッセンス素子、液晶配向膜、及び該液晶配向膜を用いた光学素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080435A (ja) * 2008-09-01 2010-04-08 Semiconductor Energy Lab Co Ltd 発光素子、発光装置並びに電子機器
US8810125B2 (en) 2008-09-01 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
WO2012157575A1 (ja) * 2011-05-13 2012-11-22 Necライティング株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
JP5791129B2 (ja) * 2011-05-13 2015-10-07 Necライティング株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス照明装置
JP2018525766A (ja) * 2015-08-12 2018-09-06 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 有機エレクトロルミネセント装置及びその製造方法

Also Published As

Publication number Publication date
JP4946862B2 (ja) 2012-06-06
JPWO2006093176A1 (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5076501B2 (ja) 白色有機エレクトロルミネッセンス素子、画像表示素子および照明装置
JP4697142B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP4858169B2 (ja) 有機エレクトロルミネッセンス素子
JP4904821B2 (ja) 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
WO2006093007A1 (ja) 有機エレクトロルミネッセンス素子、画像表示装置および照明装置
JP5050333B2 (ja) 有機エレクトロルミネッセンス素子
JP4650265B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2007029533A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4899284B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006112265A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007023659A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5180429B2 (ja) 有機エレクトロルミネッセンス素子
WO2006129471A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
WO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置
JP4600287B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置
JP4941291B2 (ja) 有機エレクトロルミネッセンス素子
JP4946862B2 (ja) 有機エレクトロルミネッセンス素子、画像表示装置および照明装置
JP2007095441A (ja) 有機エレクトロルミネッセンスパネル
JP2006093279A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012028823A (ja) 有機エレクトロルミネッセンス素子
JP2007059245A (ja) 膜の製造方法、電子デバイス及び有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012190742A (ja) 有機エレクトロルミネッセンス素子とその製造方法
JP2013123056A (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007505976

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714956

Country of ref document: EP

Kind code of ref document: A1