WO2006090588A1 - Bearing with rotation detection device - Google Patents

Bearing with rotation detection device Download PDF

Info

Publication number
WO2006090588A1
WO2006090588A1 PCT/JP2006/302193 JP2006302193W WO2006090588A1 WO 2006090588 A1 WO2006090588 A1 WO 2006090588A1 JP 2006302193 W JP2006302193 W JP 2006302193W WO 2006090588 A1 WO2006090588 A1 WO 2006090588A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
bearing
magnetic
sensor
generating means
Prior art date
Application number
PCT/JP2006/302193
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Takahashi
Yoshitaka Nagano
Hiroshi Isobe
Takashi Koike
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to CN200680004888.XA priority Critical patent/CN101120177B/en
Priority to DE112006000444.1T priority patent/DE112006000444B4/en
Priority to US11/884,892 priority patent/US7988363B2/en
Publication of WO2006090588A1 publication Critical patent/WO2006090588A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/026Housings for speed measuring devices, e.g. pulse generator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/443Devices characterised by the use of electric or magnetic means for measuring angular speed mounted in bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets

Definitions

  • the present invention relates to rotation detection for various devices, for example, rotation detection for rotation control of a small motor, rotation detection for office device position detection, detection of a joint angle of a robot, and the like.
  • the present invention relates to a bearing with a device.
  • a bearing with a rotation detection device integrated with a bearing for supporting a shaft of a joint portion is installed.
  • Such a rotation detecting device-equipped bearing is desired to be small, and particularly when it is attached to a joint such as a finger of a robot, it is desired to be smaller.
  • the present applicant has previously proposed a bearing with a rotation detector as shown in FIG. 22 (Patent Document 1).
  • a magnetic generating means 32 having a directionality (magnetic change in the circumferential direction) around the rotation center is arranged on the inner ring 51 side which is a rotating ring, and an outer ring which is a fixed ring.
  • a magnetic line sensor 33 for detecting the magnetism of the magnetism generating means 32 is arranged so as to face the magnetism generating means 32.
  • the magnetic generating means 32 includes a permanent magnet 32A and a magnetic yoke 32B, and is attached to the inner ring 51 via a magnetic generating means attaching member 45 that is press-fitted to the outer diameter surface of the inner ring 51.
  • the magnetism generating means 32 also rotates together with the rotating shaft 40 together with the magnetism generating means mounting member 45.
  • the magnetic line sensor 33 is attached to the outer ring 52 via a sensor attachment member 57 that is press-fitted to the inner diameter surface of the outer ring 52.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-37133
  • An object of the present invention is to provide a bearing with a rotation detection device that can be miniaturized and that can shorten the axial dimension, in particular.
  • the fixing member is disposed on the inner ring side of the bearing, and has a magnetic generating means having directionality around the center of rotation, and is mounted on the outer ring side located at the bearing axis.
  • a rotation sensor that outputs information on rotation or angle by sensing magnetism of the magnetism generating means, and the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing.
  • the inner ring side mentioned here is a member that rotates together with the inner ring or the inner ring
  • the outer ring side is a member fixed to the outer ring or the outer ring.
  • the directionality around the rotation center of the magnetism generating means means that the generated magnetic field changes in the circumferential direction. Thereby, the rotation sensor can detect the relative rotation of the inner and outer rings.
  • the fixing member is different from the case of using the fixing member fixed to the outer diameter side. It is not necessary to project larger than the end face. As a result, the size can be reduced, and in particular, the axial length can be shortened.
  • the fixing member may be a shaft.
  • the fixed member that fixes the magnetism generating means is also used as the shaft, so the number of parts that do not need to be provided separately in the past can be reduced and the axial length can be shortened. Can be raised further
  • the fixing member may be a member different from the shaft, and may be fixed to the inner ring inner surface by press-fitting or bonding. Since the magnetism generating means is fixed to a fixing member that is separate from the shaft, the shaft can be separated from the bearing with the rotation detection device, while the length in the axial direction is shorter than in the conventional example. it can.
  • the fixing member may be positioned by contacting the end surface of the inner ring or a step surface facing the axial direction machined into the inner ring.
  • the fixing member may have a flange on the outer periphery of the inner ring fitting portion, and the flange may be in contact with the end surface of the inner ring.
  • the fixing member can be easily positioned on the inner diameter side of the inner ring with the end face of the inner ring or the stepped surface as a reference plane. This generates magnetism in the fixed member
  • the fixing member can be attached to the inner ring so that the fixing surface of the means is perpendicular to the axis of the bearing, that is, the magnetism generating means is parallel to the rotation sensor. Therefore, the parallelism and clearance between the magnetic generating means and the rotation sensor can be maintained at a predetermined accuracy. As a result, it is possible to suppress the intensity of the magnetic field pattern on the surface of the rotation sensor from fluctuating due to the rotation of the magnetism generating means.
  • the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor is increased, and the SZN ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detector can be improved.
  • the magnetism generating means may be constituted by two permanent magnets magnetized in the axial direction.
  • the magnetic generation means is composed of only permanent magnets, not the combination of the permanent magnet and the magnetic yoke as in the conventional example. Can be used as a thin magnetism generating means, and the axial length can be shortened from this point as well. If the fixing member is made of a magnetic material, the fixing member becomes a magnetic path of the magnetism generating means, so that the magnetic force generated by the magnetism generating means increases and the magnetic flux passing through the surface of the opposite rotation sensor increases, thereby increasing the rotation detection sensitivity. Can be improved.
  • the magnetism generating means may be one permanent magnet force having both an N pole and an S pole on one side.
  • the magnetism generating means can be easily configured with only one permanent magnet. Further, since the magnetic flux of the permanent magnet does not pass to the fixed member side, the magnetic characteristic of the fixed member hardly affects the magnetic flux passing through the rotation sensor. Therefore, any fixing member of a magnetic body and a non-magnetic body that does not affect the rotation detection accuracy can be used.
  • a recess may be provided in the fixing member, and a permanent magnet may be fixed in the recess. Since the permanent magnet has an attractive force or a repulsive force between other permanent magnets or magnetic material, when the fixed member has magnetic force, it is not easy to assemble the permanent magnet to the fixed member. However, by inserting the permanent magnet into the recess formed in the fixing member, the permanent magnet can be fixed to the fixing member easily and accurately with less axial deviation.
  • the permanent magnet may be surrounded by a flexible material, and the flexible material may be fixed together with the permanent magnet in the recess. If the permanent magnet is made of, for example, sintered material, the mechanical strength is fragile and is not suitable for press-fitting. However, by using the above assembly structure, the permanent magnet can be press-fitted into the recess.
  • the fixing member may be a non-magnetic material, and a magnetic yoke may be sandwiched between the magnetism generating means and the fixing member.
  • the magnetism generating means is a permanent magnet magnetized in the axial direction
  • the fixing member has a non-magnetic force
  • the magnetic efficiency of the magnetism generating means deteriorates.
  • the magnetic flux passing through the surface of the rotation sensor can be increased by several percent compared to the case without the magnetic yoke.
  • the SZN ratio of the magnetic signal sensed by the rotation sensor is improved, and the rotation detection accuracy can be further improved.
  • the fixing member is a shaft having a shaft main body and a shaft end member connected to one end of the shaft main body, and the magnetism generating means is fixed to the shaft end member. it can. According to this configuration, since the main body of the rotating shaft and the end portion of the rotating shaft can be separated, the bearing with the rotation detecting device can be separated from the main force of the rotating shaft, so that maintenance of the bearing is facilitated.
  • the rotation sensor is a combination of a plurality of magnetic sensor elements and a means for converting the output of the magnetic sensor elements into a rotation signal or an angle signal. It may be integrated on a chip. As described above, when the magnetic sensor element and the angle signal conversion means are integrated and integrated on the semiconductor chip, wiring between the magnetic sensor element and the angle signal conversion means becomes unnecessary, and a compact rotation sensor is possible. The reliability of the wire and the like is also improved, and the assembly operation of the rotation detection device is facilitated.
  • the rotation sensor includes a four-side magnetic line sensor in which magnetic sensor elements are arranged along four sides on a virtual rectangle, and the magnetic sensor has a rectangular arrangement.
  • Calculation means for converting the sensor output of the magnetic line sensor into rotation information or angle information may be arranged inside.
  • FIG. 5 is a waveform diagram showing an output of a magnetic sensor array in the rotation sensor.
  • FIG. 1 shows a cross-sectional view of a bearing with a rotation detection device of the first embodiment.
  • This bearing with a rotation detection device is obtained by incorporating the rotation detection device 1 into a rolling bearing 20.
  • the rolling bearing 20 has a plurality of rolling elements 24 held by a cage 23 interposed between rolling surfaces of an inner ring 21 and an outer ring 22.
  • the rolling elements 24 also have a ball force, and the rolling bearing 20 is a single row deep groove ball bearing.
  • the rotary shaft 10 is fitted in the inner ring 21 in a press-fit state, and the inner ring 21 and the rotary shaft 10 rotate.
  • the outer ring 2 2 is installed in a housing H of a bearing using device and is stationary.
  • the fixing member 15 can be easily positioned on the inner diameter side of the inner ring 21 with the width surface of the inner ring 21 as a reference plane.
  • the fixing member 15 is arranged such that the fixing surface of the magnetism generating means 2 in the fixing member 15 is perpendicular to the axis O of the rolling bearing 20, that is, the magnetism generating means 2 is parallel to the rotation sensor 3.
  • the magnetic field pattern on the surface of the semiconductor chip 4 constituting the rotation sensor 3 It is possible to suppress fluctuations in the strength of the screen due to the rotation of the magnetism generating means 2. Further, since the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor 3 is increased, and the SZN ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detection device 1 can be improved.
  • FIG. 20 shows an eighth embodiment of the present invention.
  • the bearing with the rotation detecting device of this embodiment is arranged on the inner diameter side of the rotation detecting device installation side in the inner ring 21 of the rolling bearing 20 instead of forming the flange portion 15b on the fixing member 15.
  • Step 21 The fixing member 15 is fixed to the inner ring 21 by forming a and press-fitting or bonding the fixing member 15 to the stepped portion 21a.
  • the fixing member 15 is positioned in the axial direction with the step surface 21 aa facing the axial direction of the step portion 21 a of the inner ring 21 as a reference surface.
  • FIG. 21 shows a ninth embodiment of the present invention.
  • the bearing with a rotation detection device of this embodiment employs the assembly structure of FIG. 10 for fixing the magnetic generating means 2 to the fixing member 15 in the embodiment of FIG. That is, a recess 15c is formed on one surface of the fixing member 15 facing the rotation sensor 3, and the magnetism generating means (permanent magnet) 2 is inserted and fixed in the recess 15c.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A bearing with a rotation detection device is downsized, and to achieve this, a magnetism generation means (2) having directionality about a rotation center (O) is provided on the inner ring (21) side of the bearing (20). On the outer ring (22) side, there is provided on the axis of the bearing a rotation sensor (3) for detecting magnetism from the magnetism generation means (2) and outputting information on rotation or angle. The magnetism generation means (2) is fixed to a fixed member, such as a rotating shaft (10), fixed to the bore side of the inner ring (21) of the bearing (20).

Description

明 細 書  Specification
回転検出装置付き軸受  Bearing with rotation detector
技術分野  Technical field
[0001] この発明は、各種の機器における回転検出、例えば小型モータの回転制御のため の回転検出や、事務機器の位置検出のための回転検出、ロボットの関節角度の検出 等に用いられる回転検出装置付き軸受に関する。  [0001] The present invention relates to rotation detection for various devices, for example, rotation detection for rotation control of a small motor, rotation detection for office device position detection, detection of a joint angle of a robot, and the like. The present invention relates to a bearing with a device.
背景技術  Background art
[0002] ロボットの関節等の回転あるいは角度を検出するために、関節部の軸を支持するた めの軸受と一体となった回転検出装置付き軸受が設置される。このような回転検出装 置付き軸受は、小型であることが望まれ、特に、ロボットの指などの関節に装着する場 合には、より小型であることが望まれる。このような要請に応えるために、本出願人は 、先に図 22に示すような回転検出装置付き軸受を提案した (特許文献 1)。  In order to detect the rotation or angle of a robot joint or the like, a bearing with a rotation detection device integrated with a bearing for supporting a shaft of a joint portion is installed. Such a rotation detecting device-equipped bearing is desired to be small, and particularly when it is attached to a joint such as a finger of a robot, it is desired to be smaller. In order to meet such a demand, the present applicant has previously proposed a bearing with a rotation detector as shown in FIG. 22 (Patent Document 1).
[0003] 同図の回転検出装置付き軸受は、回転輪である内輪 51側に回転中心回りの方向 性 (周方向の磁気変化)を有する磁気発生手段 32を配置すると共に、固定輪である 外輪 52側に、前記磁気発生手段 32の磁気を検出する磁気ラインセンサ 33を、磁気 発生手段 32に対向して配置したものである。磁気発生手段 32は永久磁石 32Aと磁 性体ヨーク 32Bとでなり、内輪 51の外径面に圧入嵌合される磁気発生手段取付部材 45を介して内輪 51に取付けられる。回転軸 40と内輪 51は一体となって回転するの で、磁気発生手段 32も磁気発生手段取付部材 45と共に回転軸 40と一体となって回 転する。磁気ラインセンサ 33は、外輪 52の内径面に圧入嵌合されるセンサ取付部材 57を介して外輪 52に取付けられる。  [0003] In the bearing with a rotation detection device of the same figure, a magnetic generating means 32 having a directionality (magnetic change in the circumferential direction) around the rotation center is arranged on the inner ring 51 side which is a rotating ring, and an outer ring which is a fixed ring. On the 52 side, a magnetic line sensor 33 for detecting the magnetism of the magnetism generating means 32 is arranged so as to face the magnetism generating means 32. The magnetic generating means 32 includes a permanent magnet 32A and a magnetic yoke 32B, and is attached to the inner ring 51 via a magnetic generating means attaching member 45 that is press-fitted to the outer diameter surface of the inner ring 51. Since the rotating shaft 40 and the inner ring 51 rotate integrally, the magnetism generating means 32 also rotates together with the rotating shaft 40 together with the magnetism generating means mounting member 45. The magnetic line sensor 33 is attached to the outer ring 52 via a sensor attachment member 57 that is press-fitted to the inner diameter surface of the outer ring 52.
特許文献 1 :特開 2004— 37133号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-37133
発明の開示  Disclosure of the invention
[0004] しかし、上記構成の回転検出装置付き軸受では、軸受への組付け構造については 最適化されておらず、軸方向寸法が長い。すなわち、内輪 51の外径面に圧入嵌合さ れる磁気発生手段取付部材 45を介在させることで、磁気発生手段 32を内輪 51に取 付けているので、全体の軸方向寸法が長くなり、小型化が十分でな力つた。 [0005] この発明の目的は、小型化が可能で、特に軸方向寸法を短くできる回転検出装置 付き軸受を提供することである。 [0004] However, in the bearing with the rotation detection device having the above configuration, the assembly structure to the bearing is not optimized, and the axial dimension is long. That is, the magnetism generating means 32 is attached to the inner ring 51 by interposing the magnetism generating means mounting member 45 that is press-fitted into the outer diameter surface of the inner ring 51, so that the overall axial dimension becomes longer and the size is reduced. The power was sufficient. [0005] An object of the present invention is to provide a bearing with a rotation detection device that can be miniaturized and that can shorten the axial dimension, in particular.
[0006] この発明の回転検出装置付き軸受は、前記固定部材は、軸受の内輪側に配置さ れ回転中心回りの方向性を有する磁気発生手段と、軸受軸心に位置して外輪側に 取付けられ前記磁気発生手段の磁気を感知して回転または角度の情報を出力する 回転センサとを備え、前記磁気発生手段を、軸受の内輪の内径側に固定された固定 部材に固定している。ここで言う内輪側とは、内輪または内輪と共に回転する部材の ことであり、外輪側とは外輪または外輪に固定された部材のことである。磁気発生手 段の回転中心回りの方向性とは、発生する磁界が周方向に変化していることをいう。 これにより、回転センサが内外輪の相対回転を検出できる。  [0006] In the bearing with a rotation detection device according to the present invention, the fixing member is disposed on the inner ring side of the bearing, and has a magnetic generating means having directionality around the center of rotation, and is mounted on the outer ring side located at the bearing axis. And a rotation sensor that outputs information on rotation or angle by sensing magnetism of the magnetism generating means, and the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing. The inner ring side mentioned here is a member that rotates together with the inner ring or the inner ring, and the outer ring side is a member fixed to the outer ring or the outer ring. The directionality around the rotation center of the magnetism generating means means that the generated magnetic field changes in the circumferential direction. Thereby, the rotation sensor can detect the relative rotation of the inner and outer rings.
この構成〖こよると、磁気発生手段を、軸受の内輪の内径側に固定された固定部材 に固定しているので、外径側に固定した固定部材を用いる場合と異なり、固定部材 が内輪の端面よりも大きく突出させる必要がない。これにより、小型化が可能となり、 特に軸方向の長さを短くすることができる。  According to this configuration, since the magnetism generating means is fixed to the fixing member fixed to the inner diameter side of the inner ring of the bearing, the fixing member is different from the case of using the fixing member fixed to the outer diameter side. It is not necessary to project larger than the end face. As a result, the size can be reduced, and in particular, the axial length can be shortened.
[0007] 前記固定部材は軸であっても良い。この構成の場合、磁気発生手段を固定する固 定部材を軸で兼用するので、従来では別途に必要であった固定部材を設ける必要 がなぐ部品点数を削減でき、また軸方向の長さ短縮効果をさらに上げることができる  [0007] The fixing member may be a shaft. In this configuration, the fixed member that fixes the magnetism generating means is also used as the shaft, so the number of parts that do not need to be provided separately in the past can be reduced and the axial length can be shortened. Can be raised further
[0008] 前記固定部材が軸とは別の部材であって、内輪内径面に圧入または接着等で固 定されたものであっても良い。軸と別体の固定部材に磁気発生手段を固定するので 、回転検出装置付き軸受から軸を分離できるという従来例の特徴を持ちつつ、軸方 向の長さを従来例の場合に比べて短くできる。 [0008] The fixing member may be a member different from the shaft, and may be fixed to the inner ring inner surface by press-fitting or bonding. Since the magnetism generating means is fixed to a fixing member that is separate from the shaft, the shaft can be separated from the bearing with the rotation detection device, while the length in the axial direction is shorter than in the conventional example. it can.
[0009] この発明において、前記固定部材が内輪の端面、または内輪に加工された軸方向 を向く段面に接触することで、前記固定部材が位置決めされていても良い。内輪の 端面に接触するものとする場合、固定部材が内輪嵌合部分の外周にフランジを有す るものであって、フランジで内輪の端面に接触するものとしても良い。  [0009] In this invention, the fixing member may be positioned by contacting the end surface of the inner ring or a step surface facing the axial direction machined into the inner ring. When the inner ring is in contact with the end surface of the inner ring, the fixing member may have a flange on the outer periphery of the inner ring fitting portion, and the flange may be in contact with the end surface of the inner ring.
この構成の場合、内輪の端面または前記段面を基準面として、固定部材を内輪の 内径側に容易に位置決めすることができる。これにより、固定部材における磁気発生 手段の固定面が軸受の軸心に対して垂直となるように、つまり磁気発生手段が回転 センサと平行になるように、固定部材を内輪に取付けることができる。したがって、磁 気発生手段と回転センサの平行度とクリアランスを所定の精度に保つことができる。 その結果、回転センサの表面での磁界パターンの強度が磁気発生手段の回転によ つて変動するのを抑えることができる。また、上記クリアランスを従来の場合よりも小さ くできることから、回転センサの感知する磁界が大きくなり、それだけ SZN比が向上 する。この 2つの効果によって、回転検出装置の回転検出精度を向上させることがで きる。 In the case of this configuration, the fixing member can be easily positioned on the inner diameter side of the inner ring with the end face of the inner ring or the stepped surface as a reference plane. This generates magnetism in the fixed member The fixing member can be attached to the inner ring so that the fixing surface of the means is perpendicular to the axis of the bearing, that is, the magnetism generating means is parallel to the rotation sensor. Therefore, the parallelism and clearance between the magnetic generating means and the rotation sensor can be maintained at a predetermined accuracy. As a result, it is possible to suppress the intensity of the magnetic field pattern on the surface of the rotation sensor from fluctuating due to the rotation of the magnetism generating means. In addition, since the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor is increased, and the SZN ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detector can be improved.
[0010] この発明において、前記磁気発生手段が、軸方向に着磁された 2つの永久磁石で 構成されたものであっても良い。  [0010] In this invention, the magnetism generating means may be constituted by two permanent magnets magnetized in the axial direction.
この構成の場合、従来例のように永久磁石と磁性体ヨークの組み合わせで磁気発 生手段を構成するのではなぐ永久磁石だけで磁気発生手段を構成していることか ら、従来例の場合よりも薄形の磁気発生手段とでき、この点からも軸方向の長さを短 くできる。また、固定部材を磁性体とすると、固定部材が磁気発生手段の磁路となる ので、磁気発生手段力 発生して対向する回転センサの表面を通過する磁束が増 カロして、回転検出感度を向上させることができる。  In the case of this configuration, the magnetic generation means is composed of only permanent magnets, not the combination of the permanent magnet and the magnetic yoke as in the conventional example. Can be used as a thin magnetism generating means, and the axial length can be shortened from this point as well. If the fixing member is made of a magnetic material, the fixing member becomes a magnetic path of the magnetism generating means, so that the magnetic force generated by the magnetism generating means increases and the magnetic flux passing through the surface of the opposite rotation sensor increases, thereby increasing the rotation detection sensitivity. Can be improved.
[0011] この発明において、前記磁気発生手段が、片面に N極と S極の両方を持つ一つの 永久磁石力 なるものであっても良い。この構成の場合、一つの永久磁石だけで磁 気発生手段を簡単に構成できる。また、固定部材側に永久磁石の磁束が通過しない ので、固定部材の磁気特性が回転センサを通過する磁束に殆ど影響を与えることが ない。したがって、回転検出精度に影響を与えることなぐ磁性体および非磁性体の いずれの固定部材であっても使用することができる。  [0011] In the present invention, the magnetism generating means may be one permanent magnet force having both an N pole and an S pole on one side. In the case of this configuration, the magnetism generating means can be easily configured with only one permanent magnet. Further, since the magnetic flux of the permanent magnet does not pass to the fixed member side, the magnetic characteristic of the fixed member hardly affects the magnetic flux passing through the rotation sensor. Therefore, any fixing member of a magnetic body and a non-magnetic body that does not affect the rotation detection accuracy can be used.
[0012] この発明において、前記固定部材に凹み部を設け、この凹み部の中に永久磁石を 固定しても良 ヽ。永久磁石には他の永久磁石や磁性体との間に吸引力や反発力が 働くので、固定部材が磁性体力 なる場合、固定部材への永久磁石の組付けが容 易でない。しかし、固定部材に形成した凹み部に永久磁石を挿入することで、固定部 材への永久磁石の固定を軸ずれを少なくして精度良く容易に行うことができる。  In the present invention, a recess may be provided in the fixing member, and a permanent magnet may be fixed in the recess. Since the permanent magnet has an attractive force or a repulsive force between other permanent magnets or magnetic material, when the fixed member has magnetic force, it is not easy to assemble the permanent magnet to the fixed member. However, by inserting the permanent magnet into the recess formed in the fixing member, the permanent magnet can be fixed to the fixing member easily and accurately with less axial deviation.
[0013] この発明において、前記磁気発生手段および前記固定部材よりも柔軟な榭脂等の 柔軟材料で前記永久磁石を取り囲み、前記柔軟材料を前記永久磁石と共に前記凹 み部の中に固定しても良 、。永久磁石が例えば焼結製の場合は機械的強度が脆く 圧入に適さないが、上記組付け構造とすることにより、凹み部への永久磁石の圧入が 可能となる。 [0013] In the present invention, it is possible to use a softer resin or the like that is more flexible than the magnetism generating means and the fixing member The permanent magnet may be surrounded by a flexible material, and the flexible material may be fixed together with the permanent magnet in the recess. If the permanent magnet is made of, for example, sintered material, the mechanical strength is fragile and is not suitable for press-fitting. However, by using the above assembly structure, the permanent magnet can be press-fitted into the recess.
[0014] この発明において、固定部材が非磁性体であって、前記磁気発生手段と前記固定 部材との間に磁性体ヨークを挟み込んでも良い。磁気発生手段が軸方向に着磁され た永久磁石であると、固定部材が非磁性体力 なる場合、永久磁石を固定部材に直 接固定すると磁気発生手段の磁気効率が悪くなる。しかし、磁性体ヨークを介在させ た上記組付け構造とすることにより、回転センサの表面を通過する磁束を磁性体ョー クの無い場合に比べて数割増加させることができる。その結果、回転センサが感知す る磁気信号の SZN比が向上して、回転検出精度のさらなる向上が可能となる。  In this invention, the fixing member may be a non-magnetic material, and a magnetic yoke may be sandwiched between the magnetism generating means and the fixing member. When the magnetism generating means is a permanent magnet magnetized in the axial direction, when the fixing member has a non-magnetic force, if the permanent magnet is fixed directly to the fixing member, the magnetic efficiency of the magnetism generating means deteriorates. However, by using the above assembly structure with the magnetic yoke interposed, the magnetic flux passing through the surface of the rotation sensor can be increased by several percent compared to the case without the magnetic yoke. As a result, the SZN ratio of the magnetic signal sensed by the rotation sensor is improved, and the rotation detection accuracy can be further improved.
[0015] 前記固定部材は、軸主体と、この軸主体の一端に連結された軸端部材とを有する 軸であり、前記軸端部材に前記磁気発生手段が固定されている構成とすることがで きる。この構成によれば、回転軸主体と回転軸端部体とが分離可能であるため、回転 検出装置付き軸受を回転軸主体力 分離することができるので、軸受のメンテナンス が容易になる。  [0015] The fixing member is a shaft having a shaft main body and a shaft end member connected to one end of the shaft main body, and the magnetism generating means is fixed to the shaft end member. it can. According to this configuration, since the main body of the rotating shaft and the end portion of the rotating shaft can be separated, the bearing with the rotation detecting device can be separated from the main force of the rotating shaft, so that maintenance of the bearing is facilitated.
[0016] この発明にお 、て、前記回転センサが、複数の磁気センサ素子と、その磁気センサ 素子の出力を回転信号または角度信号に変換する手段とを一体ィ匕したものであり、 例えば半導体チップに集積されたものであっても良い。このように、半導体チップに 磁気センサ素子と角度信号変換手段とを集積して一体化すると、磁気センサ素子と 角度信号変換手段間の配線が不要となり、回転センサのコンパクトィ匕が可能で、断 線等に対する信頼性も向上し、回転検出装置の組み立て作業も容易になる。  In the present invention, the rotation sensor is a combination of a plurality of magnetic sensor elements and a means for converting the output of the magnetic sensor elements into a rotation signal or an angle signal. It may be integrated on a chip. As described above, when the magnetic sensor element and the angle signal conversion means are integrated and integrated on the semiconductor chip, wiring between the magnetic sensor element and the angle signal conversion means becomes unnecessary, and a compact rotation sensor is possible. The reliability of the wire and the like is also improved, and the assembly operation of the rotation detection device is facilitated.
[0017] この発明において、前記回転センサは、磁気センサ素子を仮想の矩形上の 4辺に おける各辺に沿って配置した 4辺の磁気ラインセンサを有し、磁気ラインセンサの矩 形配置の内部に、磁気ラインセンサのセンサ出力を回転情報または角度情報に変換 する計算手段を配置しても良い。  [0017] In the present invention, the rotation sensor includes a four-side magnetic line sensor in which magnetic sensor elements are arranged along four sides on a virtual rectangle, and the magnetic sensor has a rectangular arrangement. Calculation means for converting the sensor output of the magnetic line sensor into rotation information or angle information may be arranged inside.
[0018] この構成の場合に、前記回転センサの内部にある複数の磁気センサが、磁気発生 手段が回転することにより回転する磁界の正弦信号と余弦信号を検出し、さらに、変 換回路が、磁気センサの検出した信号を回転信号または角度信号に変換する計算 手段を持って 、るものであっても良 、。 In this configuration, the plurality of magnetic sensors inside the rotation sensor detect a sine signal and a cosine signal of a magnetic field that rotates as the magnetism generating means rotates, and further change the magnetic sensor. The conversion circuit may have a calculation means for converting a signal detected by the magnetic sensor into a rotation signal or an angle signal.
図面の簡単な説明 Brief Description of Drawings
本発明は、添付の図面を参考にした以下の好適な実施形態の説明力もより明瞭に 理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明の ためのものであり、本発明の範囲を定めるために利用されるべきでない。本発明の範 囲は添付のクレームによって定まる。添付図面において、複数の図面における同一 の部品番号は、同一部分を示す。  The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in a plurality of drawings indicates the same part.
[図 1]この発明の第 1実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 1 is a cross-sectional view of a bearing with a rotation detection device that is applied to the first embodiment of the present invention.
[図 2]同軸受における磁気発生手段の固定部を示す拡大側面図である。  FIG. 2 is an enlarged side view showing a fixing portion of the magnetic generation means in the bearing.
[図 3]同軸受における回転センサの一例を構成する半導体チップの正面図である。  FIG. 3 is a front view of a semiconductor chip constituting an example of a rotation sensor in the bearing.
[図 4]同回転センサの変換回路による角度算出処理を示す模式図である。  FIG. 4 is a schematic diagram showing an angle calculation process by a conversion circuit of the rotation sensor.
[図 5]同回転センサにおける磁気センサアレイの出力を示す波形図である。  FIG. 5 is a waveform diagram showing an output of a magnetic sensor array in the rotation sensor.
[図 6]回転検出装置付き軸受における回転センサの他の一例を構成する半導体チッ プの平面図である。  FIG. 6 is a plan view of a semiconductor chip constituting another example of a rotation sensor in a bearing with a rotation detection device.
[図 7]同回転センサにおける磁気センサ素子の出力波形図である。  FIG. 7 is an output waveform diagram of a magnetic sensor element in the rotation sensor.
[図 8] (A)は回転検出装置付き軸受における磁気発生手段の固定部の一例を示す 拡大図、(B)は同磁気発生手段の正面図である。  FIG. 8 (A) is an enlarged view showing an example of a fixing portion of the magnetic generation means in the bearing with the rotation detection device, and (B) is a front view of the magnetic generation means.
[図 9] (A)は同軸受における磁気発生手段の固定部の他の一例を示す拡大側面図、 (B)は同磁気発生手段の正面図である。  FIG. 9A is an enlarged side view showing another example of the fixing portion of the magnetic generation means in the bearing, and FIG. 9B is a front view of the magnetic generation means.
[図 10] (A)は同軸受における磁気発生手段の固定部のさらに他の一例の分解側面 図、(B)は同磁気発生手段の固定状態の側面図である。  FIG. 10 (A) is an exploded side view of still another example of the fixing portion of the magnetic generation means in the bearing, and FIG. 10 (B) is a side view of the fixed state of the magnetic generation means.
[図 11] (A)は同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大 側面図、(B)は同磁気発生手段の正面図である。  FIG. 11 (A) is an enlarged side view showing still another example of the fixing portion of the magnetic generation means in the bearing, and (B) is a front view of the magnetic generation means.
[図 12]同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大側面図 である。  FIG. 12 is an enlarged side view showing still another example of the fixing portion of the magnetic generation means in the bearing.
[図 13]同軸受における磁気発生手段の固定部のさらに他の一例を示す拡大側面図 である。 [図 14]この発明の第 2実施形態に力かる回転検出装置付き軸受の断面図である。 FIG. 13 is an enlarged side view showing still another example of the fixing portion of the magnetic generation means in the bearing. FIG. 14 is a cross-sectional view of a bearing with a rotation detection device that is applied to the second embodiment of the present invention.
[図 15]この発明の第 3実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 15 is a cross-sectional view of a bearing with a rotation detection device that is applied to a third embodiment of the present invention.
[図 16]この発明の第 4実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 16 is a cross-sectional view of a bearing with a rotation detection device that is powerful in the fourth embodiment of the present invention.
[図 17]この発明の第 5実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 17 is a cross-sectional view of a bearing with a rotation detection device that is applied to a fifth embodiment of the present invention.
[図 18]この発明の第 6実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 18 is a cross-sectional view of a bearing with a rotation detection device that is powerful in the sixth embodiment of the present invention.
[図 19]この発明の第 7実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 19 is a cross-sectional view of a bearing with a rotation detection device that is applied to a seventh embodiment of the present invention.
[図 20]この発明の第 8実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 20 is a cross-sectional view of a bearing with a rotation detecting device that is effective in an eighth embodiment of the present invention.
[図 21]この発明の第 9実施形態に力かる回転検出装置付き軸受の断面図である。  FIG. 21 is a cross-sectional view of a bearing with a rotation detecting device that is effective in a ninth embodiment of the present invention.
[図 22]従来例の断面図である。  FIG. 22 is a cross-sectional view of a conventional example.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、この発明の実施形態を図面と共に説明する。図 1は、第 1実施形態の回転検 出装置付き軸受の断面図を示す。この回転検出装置付き軸受は、転がり軸受 20に 回転検出装置 1を組み込んだものである。転がり軸受 20は、内輪 21と外輪 22の転走 面間に、保持器 23に保持された複数の転動体 24を介在させたものである。転動体 2 4はボール力もなり、この転がり軸受 20は単列の深溝玉軸受とされている。内輪 21に は回転軸 10が圧入状態に嵌合されて、内輪 21と回転軸 10がー体回転する。外輪 2 2は軸受使用機器のハウジング Hに設置されて静止している。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a bearing with a rotation detection device of the first embodiment. This bearing with a rotation detection device is obtained by incorporating the rotation detection device 1 into a rolling bearing 20. The rolling bearing 20 has a plurality of rolling elements 24 held by a cage 23 interposed between rolling surfaces of an inner ring 21 and an outer ring 22. The rolling elements 24 also have a ball force, and the rolling bearing 20 is a single row deep groove ball bearing. The rotary shaft 10 is fitted in the inner ring 21 in a press-fit state, and the inner ring 21 and the rotary shaft 10 rotate. The outer ring 2 2 is installed in a housing H of a bearing using device and is stationary.
[0021] 回転検出装置 1は、転がり軸受 20の内輪 21側に配置された磁気発生手段 2と、外 輪 22側に配置された回転センサ 3とを備える。  [0021] The rotation detection device 1 includes magnetism generating means 2 arranged on the inner ring 21 side of the rolling bearing 20 and a rotation sensor 3 arranged on the outer ring 22 side.
磁気発生手段 2は永久磁石力 なり、図 2に示すように、発生する磁気が転がり軸 受 20の回転中心 Oの回りの方向性を有するものである。この永久磁石力 なる磁気 発生手段 2は、転がり軸受 20の回転中心 Oが永久磁石 2の中心と一致するように、回 転軸 10を固定部材としてその一端面の中央に固定される。磁気発生手段 2は、回転 軸 10の回転によって回転し、上記回転中心 Oの回りを N磁極および S磁極が旋回移 動する。  The magnetism generating means 2 is a permanent magnet force, and the generated magnetism has a directionality around the rotation center O of the rolling bearing 20, as shown in FIG. The magnetism generating means 2 having the permanent magnet force is fixed at the center of one end surface thereof using the rotating shaft 10 as a fixing member so that the rotation center O of the rolling bearing 20 coincides with the center of the permanent magnet 2. The magnetism generating means 2 is rotated by the rotation of the rotating shaft 10, and the N magnetic pole and the S magnetic pole rotate around the rotation center O.
[0022] 図 1の回転センサ 3は磁気発生手段 2の磁気を感知して回転または角度の情報を 出力するセンサである。回転センサ 3は、転がり軸受 20の回転中心 Oの軸方向に向 けて磁気発生手段 2と対向するように、センサ取付部材 27を介して外輪 22側に取付 けられる。具体的には、外輪 22に前記センサ取付部材 27が取付けられ、このセンサ 取付部材 27に回転センサ 3が固定されている。センサ取付部材 27は、金属製の板 材を曲げ加工したもので、外周部の先端円筒部 27aを外輪 22の内径面に嵌合させ 、この先端円筒部 27aの近傍に形成した鍔部 27bを外輪 22の幅面に係合させて軸 方向に位置決めがなされている。また、センサ取付部材 27には、回転センサ 3の出 力を取り出すための出力ケーブル 29も取付けられて 、る。 A rotation sensor 3 in FIG. 1 is a sensor that senses the magnetism of the magnetism generating means 2 and outputs rotation or angle information. The rotation sensor 3 is mounted on the outer ring 22 side through the sensor mounting member 27 so as to face the magnetism generating means 2 in the axial direction of the rotation center O of the rolling bearing 20. You can Specifically, the sensor attachment member 27 is attached to the outer ring 22, and the rotation sensor 3 is fixed to the sensor attachment member 27. The sensor mounting member 27 is formed by bending a metal plate. The outer end 22 of the cylindrical portion 27a is fitted to the inner surface of the outer ring 22, and the flange 27b formed in the vicinity of the distal end cylindrical portion 27a is provided. It is positioned in the axial direction by engaging with the width surface of the outer ring 22. An output cable 29 for taking out the output of the rotation sensor 3 is also attached to the sensor mounting member 27.
[0023] 回転センサ 3は、図 3の正面図で示すように、複数の磁気センサ素子 5aと、その磁 気センサ素子 5aの出力を回転信号または角度信号に変換する計算手段である変換 回路 6とを 1つの半導体チップ 4上に集積したものである。半導体チップ 4上において 、磁気センサ素子 5aは、仮想の矩形上の 4辺における各辺に沿って配置されて、 4 辺の磁気ラインセンサ 5A〜5Dとされる。この場合、前記矩形の中心 O'は、転がり軸 受 20の回転中心 Oに一致する。 4辺の磁気ラインセンサ 5A〜5Dは、同図の例では センサ素子 5aがー列に並んだものとしている力 センサ素子 5aが複列に並行に並ん だものであっても良い。  As shown in the front view of FIG. 3, the rotation sensor 3 includes a plurality of magnetic sensor elements 5a and a conversion circuit 6 that is calculation means for converting the output of the magnetic sensor elements 5a into a rotation signal or an angle signal. Are integrated on a single semiconductor chip 4. On the semiconductor chip 4, the magnetic sensor elements 5 a are arranged along the four sides on the virtual rectangle to form the four-side magnetic line sensors 5 </ b> A to 5 </ b> D. In this case, the center O ′ of the rectangle coincides with the rotation center O of the rolling bearing 20. The four side magnetic line sensors 5A to 5D may be ones in which the force sensor elements 5a are arranged in parallel in a double row in the example shown in the figure.
前記変換回路 6は、磁気ラインセンサ 5A〜5Dの矩形配置の内部に配置される。 半導体チップ 4は、その素子形成面が図 1の前記磁気発生手段 (永久磁石) 2と対向 するように前記センサ取付部材 27に固定される。  The conversion circuit 6 is arranged inside the rectangular arrangement of the magnetic line sensors 5A to 5D. The semiconductor chip 4 is fixed to the sensor mounting member 27 so that the element formation surface faces the magnetism generating means (permanent magnet) 2 shown in FIG.
[0024] このように、図 3の半導体チップ 4上に磁気センサ素子 5aと変換回路 6とを集積して 一体化すると、別体とした場合に必要とされる。磁気センサ素子 5aと変換回路 6間の 配線が不要となり、回転センサ 3のコンパクトィ匕が可能で、断線等に対する信頼性も 向上し、回転検出装置 1の組み立て作業も容易になる。特に、上記したように矩形に 配置された磁気ラインセンサ 5A〜5Dの内部に変換回路 6を配置すると、チップサイ ズをより/ J、さくすることができる。  [0024] As described above, when the magnetic sensor element 5a and the conversion circuit 6 are integrated and integrated on the semiconductor chip 4 of FIG. Wiring between the magnetic sensor element 5a and the conversion circuit 6 is not required, the rotation sensor 3 can be made compact, the reliability against disconnection and the like is improved, and the assembly operation of the rotation detection device 1 is facilitated. In particular, if the conversion circuit 6 is arranged inside the magnetic line sensors 5A to 5D arranged in a rectangular shape as described above, the chip size can be further reduced by / J.
[0025] 図 4は前記変換回路 6による角度算出処理を説明するための模式図である。図 5 ( A)〜(D)は、回転軸 10が回転している時のある瞬間における磁気ラインセンサ 5A 〜5Dによる出力波形図を示し、それらの横軸は各磁気ラインセンサ 5A〜5Dにおけ る磁気センサ素子 5aを、縦軸は検出磁界の強度をそれぞれ示す。  FIG. 4 is a schematic diagram for explaining an angle calculation process by the conversion circuit 6. 5 (A) to (D) show output waveform diagrams of the magnetic line sensors 5A to 5D at a certain moment when the rotating shaft 10 is rotating, and the horizontal axes thereof correspond to the magnetic line sensors 5A to 5D. In the magnetic sensor element 5a, the vertical axis indicates the strength of the detected magnetic field.
いま、図 4に示す位置 XIと X2に磁気ラインセンサ 5A〜5Dの検出磁界の N磁極と S磁極の境界であるゼロクロス位置があるとする。この状態で、各磁気ラインセンサ 5 A〜5Dの出力は、図 5 (A)〜(D)に示す信号波形となる。したがって、ゼロクロス位 置 XI, X2は、磁気ラインセンサ 5A, 5Cの出力力もゼロクロス付近の信号を抽出して 直線近似することで算出できる。 Now, at positions XI and X2 shown in Fig. 4, N magnetic poles of the magnetic field detected by magnetic line sensors 5A to 5D Assume that there is a zero-cross position that is the boundary of the S magnetic pole. In this state, the outputs of the magnetic line sensors 5A to 5D have signal waveforms shown in FIGS. Therefore, the zero cross positions XI and X2 can also be calculated by extracting signals near the zero cross and linearly approximating the output force of the magnetic line sensors 5A and 5C.
角度計算は、次式(1)で行うことができる。  The angle calculation can be performed by the following equation (1).
Θ =tan_1 (2L/b) …… (1) Θ = tan _1 (2L / b) …… (1)
ここで Θは、磁石 2の回転角度 Θを絶対角度 (アブソリュート値)で示した値である。 2Lは、矩形に並べられる各磁気ラインセンサ 5A〜5Dより構成される四角形の 1辺の 長さである。 bは、ゼロクロス位置 XI, X2間の横方向長さである。  Here, Θ is a value indicating the rotation angle Θ of the magnet 2 as an absolute angle (absolute value). 2L is the length of one side of a quadrangle composed of the magnetic line sensors 5A to 5D arranged in a rectangle. b is the lateral length between the zero crossing positions XI and X2.
ゼロクロス位置 XI, X2が磁気ラインセンサ 5B, 5D上にある場合には、それらの出 力力 得られるゼロクロス位置データにより、上記と同様にして回転角度 Θが算出さ れる。変換回路 6で算出された回転角度 Θは前記出力ケーブル 29より出力される。  When the zero cross positions XI and X2 are on the magnetic line sensors 5B and 5D, the rotation angle Θ is calculated in the same manner as described above based on the zero cross position data obtained from the output force thereof. The rotation angle Θ calculated by the conversion circuit 6 is output from the output cable 29.
[0026] 上記構成の回転検出装置付き軸受によると、図 1の回転検出装置 1の磁気発生手 段 (永久磁石) 2を、転がり軸受 20の内輪 21の内径側に固定された固定部材 (ここで は回転軸 10)に固定しているので、従来の図 22の例と異なり、内輪端面から軸方向 に突出する固定部材が不要で、軸方向の長さを短くすることができる。また、従来例 のように永久磁石と磁性体ヨークの組み合わせで磁気発生手段を構成するのではな ぐ永久磁石だけで磁気発生手段 2を構成していることから、従来例の場合よりも薄 形の磁気発生手段 2とでき、この点力もも軸方向の長さを短くできる。特に、この実施 形態では、磁気発生手段 2を固定する固定部材を回転軸 10で兼用しているので、別 途固定部材を設ける必要がなぐ部品点数を削減できて、軸方向の長さ短縮効果を さらに上げることができる。 [0026] According to the bearing with the rotation detection device having the above-described configuration, the fixed member (here, the permanent magnet) 2 of the rotation detection device 1 of Fig. 1 is fixed to the inner diameter side of the inner ring 21 of the rolling bearing 20 (here In this case, since it is fixed to the rotating shaft 10), unlike the conventional example of FIG. 22, a fixing member protruding in the axial direction from the end face of the inner ring is unnecessary, and the axial length can be shortened. In addition, since the magnetism generating means 2 is not composed of a combination of a permanent magnet and a magnetic yoke as in the conventional example, but the magnetism generating means 2 is composed of only permanent magnets, it is thinner than in the case of the conventional example. The magnetic force generating means 2 can also be used, and this point force can also shorten the axial length. In particular, in this embodiment, the rotating shaft 10 also serves as a fixing member that fixes the magnetism generating means 2, so the number of parts that do not need to be provided separately can be reduced, and the axial length reduction effect can be reduced. Can be further increased.
[0027] 上記実施形態では、回転センサ 3の構成として、図 3に示した半導体チップ 4上に 複数の磁気センサ素子 5aを矩形に並べた磁気ラインセンサ 5A〜5Dで磁気発生手 段 2の磁気を感知するようにした力 図 6のように半導体チップ 4上の中心 O' (転がり 軸受 20の回転中心 Oに一致する)の回りに 90° の周回角度を隔てて最低限 2つの 磁気センサ素子 5a, 5bを配置することで、回転センサ 3Aを構成しても良い。 In the above embodiment, as the configuration of the rotation sensor 3, the magnetic line sensors 5A to 5D in which a plurality of magnetic sensor elements 5a are arranged in a rectangle on the semiconductor chip 4 shown in FIG. As shown in Fig. 6, at least two magnetic sensor elements with a 90 ° rotation angle around the center O 'on the semiconductor chip 4 (corresponding to the rotation center O of the rolling bearing 20) The rotation sensor 3A may be configured by arranging 5a and 5b.
なお、同図の例において、磁気センサ素子 5a, 5bの出力を回転信号または角度信 号に変換する計算手段である変換回路 6を、磁気センサ素子 5a, 5bと共に半導体チ ップ 4上に集積することは、図 3の場合と同じである。 In the example shown in the figure, the output of the magnetic sensor elements 5a and 5b is the rotation signal or angle signal. The conversion circuit 6 which is a calculation means for converting the signal into the signal is integrated on the semiconductor chip 4 together with the magnetic sensor elements 5a and 5b as in the case of FIG.
[0028] 図 6の例のように回転センサ 3Aを構成した場合、 2つの磁気センサ素子 5a, 5bの 出力は、磁気発生手段 2の回転角 Θに合わせて変化し、図 7に示すように一方の磁 気センサ素子 5aの出力 aは正弦信号、他方の磁気センサ素子 5bの出力 bは余弦信 号となる。これにより、回転角 Θは、 aZbの逆正接関数 (アークタンジェント)、および a と bの正負によって計算することができる。この計算は変換回路 6で行う。図 7の出力 波形が理想的な正弦波,余弦波に対して歪む場合は、変換回路 6内に補正テープ ルを設けることにより歪みを補正して、検出される回転角 Θの精度劣化を防止するよ うにしても良い。 When the rotation sensor 3A is configured as in the example of FIG. 6, the outputs of the two magnetic sensor elements 5a and 5b change according to the rotation angle Θ of the magnetism generating means 2, and as shown in FIG. The output a of one magnetic sensor element 5a is a sine signal, and the output b of the other magnetic sensor element 5b is a cosine signal. Thus, the rotation angle Θ can be calculated by the arctangent function of aZb and the sign of a and b. This calculation is performed by the conversion circuit 6. If the output waveform in Fig. 7 is distorted with respect to ideal sine and cosine waves, a correction tape is provided in the conversion circuit 6 to correct the distortion and prevent deterioration in the accuracy of the detected rotation angle Θ. You may do it.
[0029] また、上記実施形態では、磁気発生手段 2の構成について詳述しな力つた力 その 具体的構成として、図 8 (A) , (B)に側面図および正面図で示すように、軸方向に着 磁された 2つの四角形の永久磁石 2A, 2Bを、回転軸 10の軸心 Oを中心として径方 向に並べて配置しても良い。なお、永久磁石 2A, 2Bの形状は、半円形など他の形 状であっても良い。  [0029] Further, in the above-described embodiment, the force generated without detailed description of the configuration of the magnetism generating means 2, as a specific configuration thereof, as shown in a side view and a front view in FIGS. 8 (A) and (B), The two rectangular permanent magnets 2A and 2B magnetized in the axial direction may be arranged side by side in the radial direction with the axis O of the rotating shaft 10 as the center. The shapes of the permanent magnets 2A and 2B may be other shapes such as a semicircular shape.
この構成の場合、回転軸 10を磁性体とすると、回転軸 10の一部が磁気発生手段 2 の磁路となるので、磁気発生手段 2から発生して対向する半導体チップ 4 (回転セン サ 3)の表面を通過する磁束が増加して、回転検出感度を向上させることができる。  In this configuration, if the rotating shaft 10 is a magnetic material, a part of the rotating shaft 10 becomes a magnetic path of the magnetism generating means 2, so that the semiconductor chip 4 (rotating sensor 3) that is generated from the magnetism generating means 2 and faces it is provided. ) Increases the magnetic flux passing through the surface, and the rotation detection sensitivity can be improved.
[0030] また、磁気発生手段 2の他の具体的構成として、図 9 (A) , (B)に側面図および正 面図で示すように、 1つの円形の永久磁石 2Cであって、片面に N磁極および S磁極 を着磁したものを、その中心が回転軸 10の軸心 Oと一致するように回転軸 10の端面 に配置しても良い。永久磁石 2Cの形状は、四角形など他の形状であっても良い。 この構成の場合、 1つの永久磁石 2Cだけで磁気発生手段 2を簡単に構成できる。 また回転軸 10側に永久磁石 2Cの磁束が通過しないので、回転軸 10の磁気特性が 半導体チップ 4 (回転センサ 3)を通過する磁束に殆ど影響を与えることがない。した がって、回転検出精度に影響を与えることなぐ磁性体および非磁性体のいずれの 回転軸 10でも使用することができる。  [0030] Further, as another specific configuration of the magnetism generating means 2, as shown in a side view and a front view in FIGS. 9 (A) and 9 (B), a single circular permanent magnet 2C having one side Further, the N magnetic pole and the S magnetic pole magnetized may be arranged on the end face of the rotating shaft 10 so that the center thereof coincides with the axis O of the rotating shaft 10. The shape of the permanent magnet 2C may be another shape such as a quadrangle. In the case of this configuration, the magnetism generating means 2 can be easily configured with only one permanent magnet 2C. Further, since the magnetic flux of the permanent magnet 2C does not pass through the rotating shaft 10, the magnetic characteristics of the rotating shaft 10 hardly affect the magnetic flux passing through the semiconductor chip 4 (rotation sensor 3). Therefore, any rotating shaft 10 of a magnetic material and a non-magnetic material that does not affect the rotation detection accuracy can be used.
[0031] また、上記実施形態では、磁気発生手段である永久磁石 2を回転軸 10の端面にそ のまま固定した場合を示している力 これに限らず図 10 (A)に示すように、回転軸 10 の端面に凹み部 10aを形成し、この凹み部 10aに永久磁石 2を挿入して接着等により 図 10 (B)のように固定しても良い。永久磁石 2には他の永久磁石や磁性体との間に 吸引力や反発力が働くので、回転軸 10が磁性体力もなる場合、回転軸 10への永久 磁石 2の組付けが容易でない。しかし、上記のように回転軸 10に形成した凹み部 10 aに永久磁石 2を挿入することで、回転軸 10への永久磁石 2の固定を軸ずれを少なく して精度良く容易に行うことができる。また、図 8のように 2つの永久磁石 2A, 2Bで磁 気発生手段 2を構成する場合も、上記組付け構造を採用することにより、永久磁石 2 A, 2B同士や、これらと磁性体の回転軸 10との間に吸引力や反発力が働いても、回 転軸 10への永久磁石 2A, 2Bの固定を、軸ずれを少なくして精度良く容易に行うこと ができる。 In the above embodiment, the permanent magnet 2 that is a magnetism generating means is placed on the end surface of the rotating shaft 10. Not only this but also the force shown in Fig. 10 (A), as shown in Fig. 10 (A), a concave portion 10a is formed on the end surface of the rotating shaft 10, and the permanent magnet 2 is inserted into the concave portion 10a for bonding. It may be fixed as shown in Fig. 10 (B). The permanent magnet 2 has an attractive force or a repulsive force between other permanent magnets or magnetic bodies. Therefore, when the rotating shaft 10 also has a magnetic force, the assembly of the permanent magnet 2 to the rotating shaft 10 is not easy. However, by inserting the permanent magnet 2 into the recessed portion 10a formed on the rotating shaft 10 as described above, the permanent magnet 2 can be fixed to the rotating shaft 10 easily and accurately with less axial deviation. it can. In addition, when the magnetic generating means 2 is configured by two permanent magnets 2A and 2B as shown in FIG. 8, by adopting the assembly structure described above, the permanent magnets 2A and 2B can be connected to each other, Even if an attractive force or a repulsive force is applied to the rotating shaft 10, the permanent magnets 2A and 2B can be fixed to the rotating shaft 10 easily and accurately with less axial displacement.
[0032] 図 11は、回転軸 10の端面に形成した凹み部 10aに磁気発生手段である永久磁石 2A, 2Bを挿入して組み付ける構成の他の例を示す。この場合、図 11 (B)のように、 永久磁石 2A, 2Bおよび回転軸 10よりも比較的柔軟性のある例えば榭脂部材 11で 2 つの永久磁石 2A, 2Bを取り囲むことにより、永久磁石 2A, 2Bと榭脂部材 11を一体 化する。この一体ィ匕部品 12を回転軸 10の端面に形成した凹み部 10aに圧入するこ とで、回転軸 10への永久磁石 2A, 2Bの組付けを図っている。  FIG. 11 shows another example of a configuration in which the permanent magnets 2A and 2B, which are magnetism generating means, are inserted and assembled into the recess 10a formed on the end surface of the rotating shaft 10. In this case, as shown in FIG. 11 (B), the permanent magnets 2A, 2B and the rotating shaft 10 are relatively flexible, for example, by surrounding the two permanent magnets 2A, 2B with the grease member 11, , 2B and resin member 11 are integrated. The permanent magnets 2A and 2B are assembled to the rotary shaft 10 by press-fitting the integral part 12 into a recess 10a formed on the end face of the rotary shaft 10.
永久磁石 2A, 2Bが例えば焼結製の場合は、機械的強度が脆く圧入に適さないが 、上記組付け構造とすることにより、凹み部 10aへの永久磁石 2A, 2Bの圧入が可能 となる。なお、この組付け構造は、図 9のように単体の永久磁石 2Cの組付けに採用し ても良ぐこの場合にも凹み部 10aへの永久磁石 2Cの圧入を容易に行うことができる  When the permanent magnets 2A and 2B are made of sintered material, for example, the mechanical strength is fragile and is not suitable for press-fitting. However, by using the above assembly structure, the permanent magnets 2A and 2B can be press-fitted into the recess 10a. . This assembly structure may be used for the assembly of a single permanent magnet 2C as shown in FIG. 9. Even in this case, the permanent magnet 2C can be easily press-fitted into the recess 10a.
[0033] 図 12は、非磁性体の回転軸 10の端面に、図 8に示す 2つの永久磁石 2A, 2Bから なる磁気発生手段 2を組み付ける構成例を示す。この組付け例では、磁性体ヨーク 1 3を介して、回転軸 10の端面に永久磁石 2A, 2Bを組み付けている。具体的には、 磁性体ヨーク 13の片面に凹み部 13aを形成し、この凹み部 13aに永久磁石 2A, 2B を挿入固定すると共に、回転軸 10の端面に形成した凹み部 10aに前記磁性体ヨーク 13を挿入固定している。なお、組付順序としては、先に回転軸 10の凹み部 10aに磁 性体ヨーク 13を挿入固定した後で、磁性体ヨーク 13の凹み部 13aに永久磁石 2A, 2 Bを挿入固定しても良い。 FIG. 12 shows a configuration example in which the magnetism generating means 2 including the two permanent magnets 2A and 2B shown in FIG. 8 is assembled to the end face of the rotating shaft 10 of the nonmagnetic material. In this assembly example, the permanent magnets 2A and 2B are assembled to the end surface of the rotating shaft 10 via the magnetic yoke 13. Specifically, a concave portion 13a is formed on one surface of the magnetic yoke 13, and permanent magnets 2A and 2B are inserted and fixed in the concave portion 13a, and the magnetic body is formed in the concave portion 10a formed on the end surface of the rotary shaft 10. The yoke 13 is inserted and fixed. As for the assembling order, the magnetic field is first applied to the recess 10a of the rotary shaft 10. The permanent magnets 2A and 2B may be inserted and fixed in the recesses 13a of the magnetic yoke 13 after the magnetic yoke 13 is inserted and fixed.
磁気発生手段 2を構成する 2つの永久磁石 2A, 2Bは軸方向に着磁されて ヽるの で、回転軸 10が非磁性体カゝらなる場合、永久磁石 2A, 2Bを回転軸 10に直接固定 すると磁気発生手段 2の磁気効率が悪くなる。しかし、磁性体ヨーク 13を介在させた 上記組付け構造とすることにより、半導体チップ 4 (回転センサ 3)の表面を通過する 磁束を磁性体ヨークの無い場合に比べて数割増加させることができる。その結果、回 転センサ 3が感知する磁気信号の SZN比が向上して、回転検出精度のさらなる向 上が可能となる。  Since the two permanent magnets 2A and 2B constituting the magnetism generating means 2 are magnetized in the axial direction, when the rotary shaft 10 is made of a non-magnetic material, the permanent magnets 2A and 2B are moved to the rotary shaft 10. If it is fixed directly, the magnetic efficiency of the magnetism generating means 2 will deteriorate. However, by adopting the above assembly structure with the magnetic yoke 13 interposed, the magnetic flux passing through the surface of the semiconductor chip 4 (rotation sensor 3) can be increased by several ten percent compared to the case without the magnetic yoke. . As a result, the SZN ratio of the magnetic signal sensed by the rotation sensor 3 is improved, and the rotation detection accuracy can be further improved.
[0034] 図 13は、非磁性体の回転軸 10の端面に、図 8に示す 2つの永久磁石 2A, 2Bから なる磁気発生手段 2を組み付ける他の構成例を示す。この組付け例では、磁性体ョ ーク 13の片面に 2つの永久磁石 2A, 2Bを重ねて固定すると共に、その周囲を榭脂 部材 11で取り囲んで一体ィ匕部品 14とし、回転軸 10の端面に形成した凹み部 10aに 前記一体ィ匕部品 14を挿入固定している。この場合も、非磁性体の回転軸 10と永久 磁石 2A, 2Bとで磁性体ヨーク 13が挟まれた構造となって、磁気発生手段 2の磁気 効率が改善される。  FIG. 13 shows another configuration example in which the magnetism generating means 2 composed of the two permanent magnets 2A and 2B shown in FIG. 8 is assembled to the end face of the rotating shaft 10 of the nonmagnetic material. In this assembling example, two permanent magnets 2A and 2B are overlapped and fixed on one side of the magnetic body yoke 13, and the periphery is surrounded by a grease member 11 to form an integral part 14, and the rotating shaft 10 The integral part 14 is inserted and fixed in a recess 10a formed on the end surface. Also in this case, the magnetic yoke 13 is sandwiched between the nonmagnetic rotating shaft 10 and the permanent magnets 2A and 2B, so that the magnetic efficiency of the magnetism generating means 2 is improved.
[0035] 図 14は、この発明の第 2実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 1の実施形態において、一端面に磁気発生手段 2が固定される回転軸 10の軸 受内輪 21への挿入長さを短くして、磁気発生手段 2の軸方向位置を、回転検出装置 1の配置側の内輪 21の幅面よりも内側に後退させ、またセンサ取付部材 27のセンサ 取付位置となる幅面部 27cの軸方向位置を鍔部 27bに揃え、さらにセンサ取付部材 27から引き出される出力ケーブル 29をフラットケーブル等の偏平なものとしている。 その他の構成は図 1の場合と同様である。  FIG. 14 shows a second embodiment of the present invention. The bearing with a rotation detection device of this embodiment is the same as the embodiment of FIG. 1 except that the insertion length of the rotary shaft 10 having the magnetism generating means 2 fixed to one end face thereof into the bearing inner ring 21 is shortened to generate the magnetism generating means. The axial position of 2 is retracted inward from the width surface of the inner ring 21 on the arrangement side of the rotation detection device 1, and the axial position of the width surface portion 27c that becomes the sensor mounting position of the sensor mounting member 27 is aligned with the flange portion 27b. Further, the output cable 29 drawn from the sensor mounting member 27 is made flat such as a flat cable. Other configurations are the same as in FIG.
[0036] この実施形態の場合、回転検出装置 1の軸方向位置が図 1の実施形態の場合より も転がり軸受 20側に近くなり、センサ取付部材 27から軸方向に張り出す出力ケープ ル 29の張出量も少なくなるので、回転検出装置付き軸受の全体的な軸方向寸法を より短縮ィ匕できる。  In this embodiment, the axial position of the rotation detection device 1 is closer to the rolling bearing 20 than in the embodiment of FIG. 1, and the output cable 29 protruding in the axial direction from the sensor mounting member 27 Since the overhang is reduced, the overall axial dimension of the bearing with the rotation detector can be further shortened.
[0037] 図 15は、この発明の第 3実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 1の実施形態において、図 14の場合と同様に一端面に磁気発生手段 23が固 定される回転軸 10の軸受内輪 21への挿入長さを短くしている。また、センサ取付部 材 27のセンサ取付位置となる幅面部 27cの軸方向位置を鍔部 27bに揃えると共に、 回転軸 10で兼用しな ヽ別体の固定部材 15を介して軸受内輪 21の内径側に磁気発 生手段 2を取付けている。固定部材 15は周縁を円筒部 15aとした円板状の部材であ り、その円筒部 15aを内輪 21の内径面に圧入または接着することにより、内輪 21の 内径側に固定される。磁気発生手段 2は、回転センサ 3と対向する固定部材 15の片 面における中心位置 (転がり軸受 20の回転中心 Oに一致する)に固定される。 FIG. 15 shows a third embodiment of the present invention. Bearing with rotation detection device of this embodiment In the embodiment of FIG. 1, the insertion length of the rotating shaft 10 with the magnetism generating means 23 fixed to one end face thereof into the bearing inner ring 21 is shortened as in the case of FIG. Also, the axial position of the width surface portion 27c, which is the sensor mounting position of the sensor mounting member 27, is aligned with the flange portion 27b, and the inner diameter of the bearing inner ring 21 is separated via a separate fixing member 15 that is not shared with the rotary shaft 10. The magnetic generation means 2 is attached to the side. The fixing member 15 is a disc-shaped member having a cylindrical portion 15 a at the periphery, and is fixed to the inner diameter side of the inner ring 21 by press-fitting or bonding the cylindrical portion 15 a to the inner diameter surface of the inner ring 21. The magnetism generating means 2 is fixed at the center position on one side of the fixing member 15 facing the rotation sensor 3 (corresponding to the rotation center O of the rolling bearing 20).
[0038] この実施形態の場合も、回転検出装置 1の軸方向位置が図 1の実施形態の場合よ りも転がり軸受 20側に近くなるので、回転検出装置付き軸受の全体的な軸方向寸法 をより短縮ィ匕できる。特に、この実施形態では、回転軸 10と別体の固定部材 15に磁 気発生手段 2が固定されているので、回転検出装置を軸受に残して、軸受から回転 軸 10を分離できるという従来例の特徴を持ちつつ、軸方向の長さを従来例の場合に 比べて短くできる。 [0038] In this embodiment as well, the axial position of the rotation detection device 1 is closer to the rolling bearing 20 than in the embodiment of Fig. 1, so the overall axial dimensions of the bearing with the rotation detection device are as follows. Can be shortened. In particular, in this embodiment, since the magnetism generating means 2 is fixed to the fixing member 15 which is separate from the rotating shaft 10, the rotating shaft 10 can be separated from the bearing while leaving the rotation detecting device in the bearing. The length in the axial direction can be shortened compared to the conventional example.
[0039] 図 16は、この発明の第 4実施形態を示す。この実施形態の回転検出装置付き軸受 も、図 1の実施形態において、図 15の場合と同様に一端面に磁気発生手段 2が固定 される回転軸 10の軸受内輪 21への挿入長さを短くすると共に、回転軸 10で兼用し な 、別体の固定部材 15を介して軸受内輪 21の内径側に磁気発生手段 2を取付け ている。固定部材 15は円板状で、その回転軸 10と対向する片面とは反対側の片面 の周縁にフランジ部 15bを有する。このフランジ部 15bが軸受内輪 21の回転検出装 置配置側の幅面に当接するように、固定部材 15の非フランジ部である小径部分を内 輪 21の内径面に圧入することで、内輪 21の内径側に固定される。  FIG. 16 shows a fourth embodiment of the present invention. In the bearing with the rotation detection device of this embodiment, in the embodiment of FIG. 1, as in the case of FIG. 15, the insertion length of the rotating shaft 10 to which the magnetism generating means 2 is fixed at one end face into the bearing inner ring 21 is shortened. At the same time, the magnetism generating means 2 is attached to the inner diameter side of the bearing inner ring 21 via a separate fixing member 15 that is not shared by the rotary shaft 10. The fixing member 15 has a disk shape, and has a flange portion 15b on the peripheral edge of one surface opposite to the one surface facing the rotating shaft 10 thereof. By press-fitting a small diameter portion, which is a non-flange portion of the fixing member 15, into the inner diameter surface of the inner ring 21 so that the flange portion 15b contacts the width surface of the bearing inner ring 21 on the rotation detecting device arrangement side, the inner ring 21 Fixed to the inner diameter side.
[0040] この実施形態の場合、内輪 21の幅面を基準面として、固定部材 15を内輪 21の内 径側に容易に位置決めすることができる。これにより、固定部材 15における磁気発生 手段 2の固定面が転がり軸受 20の軸心 Oに対して垂直となるように、つまり磁気発生 手段 2が回転センサ 3と平行になるように、固定部材 15を内輪 21に圧入できる。した がって、磁気発生手段 2と回転センサ 3の平行度とクリアランスを所定の精度に保つこ とができる。その結果、回転センサ 3を構成する半導体チップ 4の表面での磁界バタ ーンの強度が磁気発生手段 2の回転によって変動するのを抑えることができる。また 、上記クリアランスを従来の場合よりも小さくできることから、回転センサ 3の感知する 磁界が大きくなり、それだけ SZN比が向上する。この 2つの効果によって、回転検出 装置 1の回転検出精度を向上させることができる。 In the case of this embodiment, the fixing member 15 can be easily positioned on the inner diameter side of the inner ring 21 with the width surface of the inner ring 21 as a reference plane. As a result, the fixing member 15 is arranged such that the fixing surface of the magnetism generating means 2 in the fixing member 15 is perpendicular to the axis O of the rolling bearing 20, that is, the magnetism generating means 2 is parallel to the rotation sensor 3. Can be press-fitted into the inner ring 21. Therefore, the parallelism and clearance of the magnetism generating means 2 and the rotation sensor 3 can be maintained at a predetermined accuracy. As a result, the magnetic field pattern on the surface of the semiconductor chip 4 constituting the rotation sensor 3 It is possible to suppress fluctuations in the strength of the screen due to the rotation of the magnetism generating means 2. Further, since the clearance can be made smaller than in the conventional case, the magnetic field sensed by the rotation sensor 3 is increased, and the SZN ratio is improved accordingly. With these two effects, the rotation detection accuracy of the rotation detection device 1 can be improved.
[0041] 図 17は、この発明の第 5実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 1の実施形態において、転がり軸受 20を複列のアンギユラ玉軸受としたもので あり、一列の転動体 24は内輪 21と外輪 22の転走面間に介在し、他の一列の転動体 24は回転軸 10と外輪 22の転走面間に介在する。その他の構成は図 1の実施形態 の場合と同様である。 FIG. 17 shows a fifth embodiment of the present invention. In the embodiment shown in FIG. 1, the bearing with a rotation detection device of this embodiment is such that the rolling bearing 20 is a double-row angular ball bearing, and the one-row rolling elements 24 are between the rolling surfaces of the inner ring 21 and the outer ring 22. The other row of rolling elements 24 is interposed between the rolling surfaces of the rotating shaft 10 and the outer ring 22. Other configurations are the same as those in the embodiment of FIG.
[0042] 図 18は、この発明の第 6実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 1の実施形態において、単体の回転軸 10に代えて、 2段構造の回転軸 10Aを 用いたものである。すなわち、この場合の回転軸 10Aは、回転軸主体 16とその一端 に連結された回転軸端部体 17とでなり、回転軸端部体 17の一端の円筒部 17a内に 回転軸主体 16の一端を嵌合して、ねじ体力もなる止め具 18で回り止めすることにより 、回転軸主体 16と回転軸端部体 17が連結されている。転がり軸受 20の内輪 21に前 記回転軸端部体 17が嵌合し、回転軸端部体 17の端面に磁気発生手段 2が固定さ れる。その他の構成は図 1の実施形態の場合と同様である。  FIG. 18 shows a sixth embodiment of the present invention. The bearing with a rotation detecting device of this embodiment uses a two-stage rotating shaft 10A instead of the single rotating shaft 10 in the embodiment of FIG. In other words, the rotating shaft 10A in this case is composed of the rotating shaft main body 16 and the rotating shaft end body 17 connected to one end thereof, and the rotating shaft main body 16 is inserted into the cylindrical portion 17a at one end of the rotating shaft end body 17. The rotating shaft main body 16 and the rotating shaft end body 17 are connected by fitting one end and preventing the rotation with a stopper 18 having a screw body force. The rotary shaft end body 17 is fitted to the inner ring 21 of the rolling bearing 20, and the magnetism generating means 2 is fixed to the end surface of the rotary shaft end body 17. Other configurations are the same as those in the embodiment of FIG.
[0043] この実施形態の場合、回転軸主体 16と回転軸端部体 17とが分離可能であるため、 回転検出装置付き軸受を回転軸主体 16から分離することができる。  In the case of this embodiment, since the rotary shaft main body 16 and the rotary shaft end body 17 can be separated, the bearing with the rotation detection device can be separated from the rotary shaft main body 16.
[0044] 図 19は、この発明の第 7実施形態を示す。この実施形態の回転検出装置付き軸受 も、図 1の実施形態において、単体の回転軸 10に代えて、 2段構造の回転軸 10Aを 用いたものである。すなわち、この場合の回転軸 10Aも、回転軸主体 16と回転軸端 部体 17とでなり、回転軸主体 16の一端の円筒部 16a内に回転軸端部体 17の一端 を嵌合して止め具 19で回り止めすることにより、回転軸主体 16と回転軸端部体 17が 連結されている。その他の構成は図 18の場合と同様である。  FIG. 19 shows a seventh embodiment of the present invention. The bearing with a rotation detecting device of this embodiment also uses a two-stage rotating shaft 10A instead of the single rotating shaft 10 in the embodiment of FIG. That is, the rotating shaft 10A in this case is also composed of the rotating shaft main body 16 and the rotating shaft end body 17, and one end of the rotating shaft end body 17 is fitted in the cylindrical portion 16a of one end of the rotating shaft main body 16. The rotation shaft main body 16 and the rotation shaft end body 17 are connected to each other by stopping the rotation with the stopper 19. Other configurations are the same as those in FIG.
[0045] 図 20は、この発明の第 8実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 16の実施形態において、固定部材 15にフランジ部 15bを形成したのに代えて 、転がり軸受 20の内輪 21における回転検出装置設置側の幅面内径側に段差部 21 aを形成し、この段差部 21aに固定部材 15を圧入または接着することで、固定部材 1 5を内輪 21に固定している。この場合、内輪 21の段差部 21aの軸方向を向く段面 21 aaを基準面として固定部材 15が軸方向に位置決めされる。 FIG. 20 shows an eighth embodiment of the present invention. In the embodiment shown in FIG. 16, the bearing with the rotation detecting device of this embodiment is arranged on the inner diameter side of the rotation detecting device installation side in the inner ring 21 of the rolling bearing 20 instead of forming the flange portion 15b on the fixing member 15. Step 21 The fixing member 15 is fixed to the inner ring 21 by forming a and press-fitting or bonding the fixing member 15 to the stepped portion 21a. In this case, the fixing member 15 is positioned in the axial direction with the step surface 21 aa facing the axial direction of the step portion 21 a of the inner ring 21 as a reference surface.
[0046] この実施形態の場合、固定部材 15が内輪 21の段差部 21aに圧入または接着され ることで内輪 21に固定されるので、図 16の実施形態の場合に比べて、固定部材 15 の略厚み相当分だけ、固定部材 15の軸方向位置を回転軸 10側に近付けることがで き、回転検出装置付き軸受の全体的な軸方向長さを短縮できる。  In the case of this embodiment, the fixing member 15 is fixed to the inner ring 21 by being press-fitted or adhered to the stepped portion 21a of the inner ring 21, so that the fixing member 15 has a larger size than that of the embodiment of FIG. The axial position of the fixing member 15 can be brought closer to the rotating shaft 10 side by the thickness equivalent, and the overall axial length of the bearing with the rotation detecting device can be shortened.
[0047] 図 21は、この発明の第 9実施形態を示す。この実施形態の回転検出装置付き軸受 は、図 16の実施形態において、固定部材 15への磁気発生手段 2の固定に図 10の 組付け構造を採用したものである。すなわち、回転センサ 3と対向する固定部材 15の 片面に凹み部 15cを形成し、この凹み部 15cに磁気発生手段 (永久磁石) 2を挿入固 定している。  FIG. 21 shows a ninth embodiment of the present invention. The bearing with a rotation detection device of this embodiment employs the assembly structure of FIG. 10 for fixing the magnetic generating means 2 to the fixing member 15 in the embodiment of FIG. That is, a recess 15c is formed on one surface of the fixing member 15 facing the rotation sensor 3, and the magnetism generating means (permanent magnet) 2 is inserted and fixed in the recess 15c.

Claims

請求の範囲 The scope of the claims
[1] 軸受の内輪側に配置され回転中心回りの方向性を有する磁気発生手段と、軸受軸 心に位置して外輪側に取付けられ前記磁気発生手段の磁気を感知して回転または 角度の情報を出力する回転センサとを備え、  [1] Magnetic generating means arranged on the inner ring side of the bearing and having directionality around the center of rotation, and information on rotation or angle by sensing the magnetism of the magnetic generating means located on the bearing shaft and mounted on the outer ring side A rotation sensor that outputs
前記磁気発生手段を、軸受の内輪の内径側に固定された固定部材に固定した回 転検出装置付き軸受。  A bearing with a rotation detection device, wherein the magnetism generating means is fixed to a fixing member fixed to the inner diameter side of the inner ring of the bearing.
[2] 請求項 1において、前記固定部材が軸である回転検出装置付き軸受。  2. The bearing with a rotation detection device according to claim 1, wherein the fixing member is a shaft.
[3] 請求項 1において、前記固定部材が軸とは別の部材であって、内輪内径面に圧入 または接着等で固定されたものである回転検出装置付き軸受。  [3] The bearing with a rotation detector according to claim 1, wherein the fixing member is a member different from the shaft, and is fixed to the inner ring inner surface by press-fitting or bonding.
[4] 請求項 3において、前記固定部材が内輪の端面、または内輪に加工された軸方向 を向く段面に接触することで、前記固定部材が位置決めされている回転検出装置付 き軸受。 [4] The bearing with a rotation detection device according to claim 3, wherein the fixing member is positioned by contacting the end surface of the inner ring or a stepped surface facing the axial direction processed into the inner ring.
[5] 請求項 1において、前記磁気発生手段が、軸方向に着磁された 2つの永久磁石、 または片面に N極と S極の両方を持つ一つの永久磁石力 なる回転検出装置付き軸 受。  [5] The bearing according to claim 1, wherein the magnetism generating means has two permanent magnets magnetized in the axial direction, or one permanent magnet force having both N pole and S pole on one side. .
[6] 請求項 5において、前記固定部材に凹み部を設け、この凹み部の中に永久磁石を 固定した回転検出装置付き軸受。  6. The bearing with a rotation detecting device according to claim 5, wherein a recess is provided in the fixing member, and a permanent magnet is fixed in the recess.
[7] 請求項 6において、前記磁気発生手段および前記固定部材よりも柔軟な榭脂等の 柔軟材料で前記永久磁石を取り囲み、前記柔軟材料を前記永久磁石と共に前記凹 み部の中に固定した回転検出装置付き軸受。 [7] In Claim 6, the permanent magnet is surrounded by a flexible material such as grease more flexible than the magnetism generating means and the fixing member, and the flexible material is fixed together with the permanent magnet in the recess. Bearing with rotation detector.
[8] 請求項 1において、固定部材が非磁性体であって、前記磁気発生手段と前記固定 部材との間に磁性体ヨークを挟み込んだ回転検出装置付き軸受。 8. The bearing with a rotation detecting device according to claim 1, wherein the fixing member is a nonmagnetic material, and a magnetic yoke is sandwiched between the magnetism generating means and the fixing member.
[9] 請求項 1において、前記固定部材は、軸主体と、この軸主体の一端に連結された 軸端部材とを有する軸であり、前記軸端部材に前記磁気発生手段が固定されている 回転検出装置付き軸受。 [9] In Claim 1, the fixing member is a shaft having a shaft main body and a shaft end member connected to one end of the shaft main body, and the magnetism generating means is fixed to the shaft end member. Bearing with rotation detector.
[10] 請求項 1にお 、て、前記回転センサが、複数の磁気センサ素子と、その磁気センサ 素子の出力を回転信号または角度信号に変換する手段とを一体ィ匕したものである回 転検出装置付き軸受。 [10] The rotation sensor according to claim 1, wherein the rotation sensor is a combination of a plurality of magnetic sensor elements and means for converting the output of the magnetic sensor elements into a rotation signal or an angle signal. Bearing with detection device.
[11] 請求項 10において、前記回転センサが、半導体チップに集積されたものである回 転検出装置付き軸受。 11. The bearing with a rotation detection device according to claim 10, wherein the rotation sensor is integrated on a semiconductor chip.
[12] 請求項 11において、前記回転センサは、磁気センサ素子を仮想の矩形上の 4辺に おける各辺に沿って配置した 4辺の磁気ラインセンサを有し、磁気ラインセンサの矩 形配置の内部に、磁気ラインセンサのセンサ出力を回転情報または角度情報に変換 する計算手段を配置した回転検出装置付き軸受。  [12] In Claim 11, the rotation sensor has a four-sided magnetic line sensor in which magnetic sensor elements are arranged along four sides on a virtual rectangle, and the magnetic line sensor is arranged in a rectangular shape. A bearing with a rotation detector in which a calculation means for converting the sensor output of the magnetic line sensor into rotation information or angle information is arranged inside.
[13] 請求項 11において、前記回転センサの内部にある複数の磁気センサが、磁気発 生手段が回転することにより回転する磁界の正弦信号と余弦信号を検出し、さらに、 変換回路が、磁気センサの検出した信号を回転信号または角度信号に変換する計 算手段を持っている回転検出装置付き軸受。  [13] In Claim 11, the plurality of magnetic sensors inside the rotation sensor detect a sine signal and a cosine signal of a magnetic field that is rotated by rotation of the magnetic generation means, and the conversion circuit is a magnetic circuit. A bearing with rotation detector that has a calculation means that converts the signal detected by the sensor into a rotation signal or angle signal.
PCT/JP2006/302193 2005-02-22 2006-02-08 Bearing with rotation detection device WO2006090588A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200680004888.XA CN101120177B (en) 2005-02-22 2006-02-08 Bearing with rotation detection device
DE112006000444.1T DE112006000444B4 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device
US11/884,892 US7988363B2 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-045080 2005-02-22
JP2005045080A JP4704065B2 (en) 2005-02-22 2005-02-22 Bearing with rotation detector

Publications (1)

Publication Number Publication Date
WO2006090588A1 true WO2006090588A1 (en) 2006-08-31

Family

ID=36927230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302193 WO2006090588A1 (en) 2005-02-22 2006-02-08 Bearing with rotation detection device

Country Status (4)

Country Link
JP (1) JP4704065B2 (en)
CN (1) CN101120177B (en)
DE (1) DE112006000444B4 (en)
WO (1) WO2006090588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121943A4 (en) * 2014-03-19 2017-11-22 Mitsubishi Electric Corporation Electric motor and electric power steering device using same
CN110520660A (en) * 2017-03-31 2019-11-29 株式会社不二工机 Motor-driven valve

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836001B2 (en) * 2007-05-10 2011-12-14 株式会社Ihi Magnetizer for rotating body
US10677617B2 (en) 2007-05-30 2020-06-09 Infineon Technologies Ag Shaft-integrated angle sensing device
JP5086003B2 (en) 2007-08-28 2012-11-28 Ntn株式会社 Rotation sensor unit
JP5102083B2 (en) * 2008-03-25 2012-12-19 Ntn株式会社 Rotation sensor unit
JP5159438B2 (en) * 2008-05-30 2013-03-06 Ntn株式会社 Bearing with rotation detector
JP5401902B2 (en) * 2008-10-03 2014-01-29 日本電産株式会社 motor
JP2010160037A (en) * 2009-01-08 2010-07-22 Mitsubishi Electric Corp Rotation angle detector
JP5335473B2 (en) * 2009-02-20 2013-11-06 光洋電子工業株式会社 Magnetic encoder
DE102011079657A1 (en) * 2011-07-22 2013-01-24 Robert Bosch Gmbh Electric motor with a rotor position magnet
KR101940683B1 (en) * 2012-06-22 2019-04-12 엘지이노텍 주식회사 Motor
KR101922094B1 (en) * 2012-11-08 2018-11-26 엘지이노텍 주식회사 Moter
US10704926B2 (en) 2014-09-02 2020-07-07 Infineon Technologies Ag Shaft-integrated angle sensing device
DE102016009006B4 (en) * 2015-07-29 2024-01-25 Infineon Technologies Ag DRIVE TRAIN OF A MOTOR VEHICLE SYSTEM HAVING A SHAFT-INTEGRATED ANGLE SCANNING DEVICE
JP6559549B2 (en) * 2015-11-12 2019-08-14 愛三工業株式会社 Liquid level detector
JP2018031617A (en) * 2016-08-23 2018-03-01 三菱電機株式会社 Rotation angle detection device and rotary electric machine using the same
JP6741611B2 (en) 2017-02-20 2020-08-19 株式会社不二工機 Motorized valve
DE112017007743T5 (en) * 2017-07-14 2020-03-26 Mitsubishi Electric Corporation Rotating electrical machine
JP6373527B1 (en) * 2017-07-14 2018-08-15 三菱電機株式会社 Rotating electric machine and door device using the same
KR102040531B1 (en) * 2019-01-15 2019-11-05 엘지이노텍 주식회사 Motor
DE102019122525A1 (en) * 2019-08-21 2021-02-25 Samson Aktiengesellschaft Rotation angle measurement with a pole ring
JPWO2022157828A1 (en) * 2021-01-19 2022-07-28
TWI788764B (en) * 2021-01-22 2023-01-01 東佑達自動化科技股份有限公司 Electric cylinder motor and encoder for the motor
WO2022264204A1 (en) * 2021-06-14 2022-12-22 株式会社五十嵐電機製作所 Magnetic rotary encoder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513335A (en) * 2000-11-02 2004-04-30 アクティエボラゲット エスケーエフ Instrumented bearings for steering wheels

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137270B1 (en) * 1983-09-28 1987-07-22 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Sensor for anti-skid and anti-slip systems for vehicle shaft speed measurement
FR2626631B1 (en) * 1988-01-29 1994-03-25 Snr Roulements ASSEMBLY OF ROLLING BEARING WITH SENSOR DEVICE
JPH0221002U (en) * 1988-07-28 1990-02-13
JPH1169735A (en) * 1997-08-26 1999-03-09 Sankyo Seiki Mfg Co Ltd Manufacture of motor
JP2000198304A (en) * 1998-10-29 2000-07-18 Nsk Ltd Rolling bearing unit for wheel
FR2792381B1 (en) * 1999-04-14 2001-05-25 Roulements Soc Nouvelle BEARING WITH INCORPORATED ENCODER
JP2003097581A (en) * 2001-09-26 2003-04-03 Nsk Ltd Rotary encoder built in bearing unit
JP2003307229A (en) * 2002-04-12 2003-10-31 Nsk Ltd Bearing with built-in pulse forming ring and hub unit bearing
JP2003307435A (en) * 2002-04-16 2003-10-31 Nsk Ltd Bearing apparatus with sensor
JP3973983B2 (en) * 2002-07-01 2007-09-12 Ntn株式会社 Rotation detection device and bearing with rotation detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513335A (en) * 2000-11-02 2004-04-30 アクティエボラゲット エスケーエフ Instrumented bearings for steering wheels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3121943A4 (en) * 2014-03-19 2017-11-22 Mitsubishi Electric Corporation Electric motor and electric power steering device using same
CN110520660A (en) * 2017-03-31 2019-11-29 株式会社不二工机 Motor-driven valve
CN110520660B (en) * 2017-03-31 2021-07-09 株式会社不二工机 Electric valve

Also Published As

Publication number Publication date
CN101120177A (en) 2008-02-06
DE112006000444B4 (en) 2015-11-05
JP4704065B2 (en) 2011-06-15
JP2006233985A (en) 2006-09-07
CN101120177B (en) 2013-03-20
DE112006000444T5 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4704065B2 (en) Bearing with rotation detector
US7988363B2 (en) Bearing with rotation detection device
JP4376150B2 (en) Rotation angle detector
JP4470577B2 (en) Rotation angle detector
WO2007034690A1 (en) Bearing with rotation detecting device
JP4679358B2 (en) Rotation angle detector
JP3973983B2 (en) Rotation detection device and bearing with rotation detection device
JP4169536B2 (en) Actuator
US6414482B1 (en) Non-contact type rotational angle sensor and sensor core used in the sensor
JP4621987B2 (en) Magnetic encoder device and actuator
JP4603612B2 (en) Rotational position sensor
WO2007077700A1 (en) Rotation angle detector and bearing with rotation angle detector
JP2007263585A (en) Rotation angle detector
US9515533B2 (en) Rotary body driving apparatus
JP4925389B2 (en) Encoder
JPH08184603A (en) Magnetic sensor-containing bearing unit
JP4918406B2 (en) Electromagnetic clutch
JP4869760B2 (en) Bearing with rotation detector
JP2007248105A (en) Bearing with rotation angle detector
JP2007315765A (en) Rotation sensor and bearing with rotation sensor
JP6282010B2 (en) Position detection device
JP2000346673A (en) Rolling bearing
JP2006313166A (en) Rolling bearing
JP2006214985A (en) Potentiometer
JP2009261149A (en) Brushless motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680004888.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11884892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060004441

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006000444

Country of ref document: DE

Date of ref document: 20080221

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06713336

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6713336

Country of ref document: EP