WO2006090496A1 - Ferromagnetic conductor material and method for production thereof, and magnetic resistance element and field-effect transistor - Google Patents

Ferromagnetic conductor material and method for production thereof, and magnetic resistance element and field-effect transistor Download PDF

Info

Publication number
WO2006090496A1
WO2006090496A1 PCT/JP2005/016044 JP2005016044W WO2006090496A1 WO 2006090496 A1 WO2006090496 A1 WO 2006090496A1 JP 2005016044 W JP2005016044 W JP 2005016044W WO 2006090496 A1 WO2006090496 A1 WO 2006090496A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor material
ferromagnetic
ferromagnetic conductor
layer
chemical formula
Prior art date
Application number
PCT/JP2005/016044
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Tanaka
Mizue Ishikawa
Tomoji Kawai
Original Assignee
Osaka Industrial Promotion Organization
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization, Osaka University filed Critical Osaka Industrial Promotion Organization
Publication of WO2006090496A1 publication Critical patent/WO2006090496A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a ferromagnetic conductor material that can be used in, for example, a magnetic recording element capable of writing by an electric field, a new functional semiconductor magnetic integrated circuit, an electric field control magnetic actuator, and the like.
  • spintronics also called spin electronics, magnet electronics, and spinitas
  • spintronics that controls spin, which is the source of magnetism
  • semiconductor methods that control the flow of electrons
  • spintronics also called spin electronics, magnet electronics, and spinitas
  • spintronics that controls spin, which is the source of magnetism
  • semiconductor method has been developing in recent years .
  • the development of these spintronics enables the switching of ferromagnetism that utilizes the change in the carrier concentration in the magnetic semiconductor by applying a voltage, and a novel magnetic recording element capable of writing information by an electric field, It is expected that a new functional semiconductor-magnetic integrated circuit and the like can be realized.
  • the MRAM is a memory that stores data by magnetism, and is expected as a next-generation memory. MRAM is non-volatile and has relatively high data read / write speed, which is difficult and difficult to achieve with conventional semiconductor memories (DRAM, SRAM, EEPROM) (for example, patent documents). 1).
  • Patent Document 1 WO 2004 / 023563A1 (Opening date: March 18, 2004)
  • binary ferromagnetic oxides Fe 2 O, CrO, etc.
  • spin electronics devices such as MRAM
  • the selection of conditions such as the substrate temperature and the oxidizing atmosphere is very important.
  • the formation conditions for manufacturing the spin electronics device by thinning the diluted magnetic oxide are as follows. It becomes very narrow. For this reason, for example, it is very difficult to manufacture a heterostructure formed by combining the diluted magnetic oxide with another substance, such as a tunnel junction element or a ferromagnetic field effect transistor element.
  • a heterostructure formed by combining the diluted magnetic oxide with another substance such as a tunnel junction element or a ferromagnetic field effect transistor element.
  • conditions of high temperature and high oxygen pressure are required, and joining with other materials without changing the characteristics of the diluted magnetic oxide. Is very difficult.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to easily manufacture elements such as magnetoresistive elements and field effect transistors in combination with other substances. It is to provide a ferromagnetic conductor material that can be used.
  • the ferromagnetic conductor material according to the present invention has the chemical formula (1)
  • X is a numerical value in the range of 0 ⁇ x ⁇ 0.8 and x ⁇ A
  • a and y are constants that vary depending on the type of M, and in the case of M force SFe, M 'is When M is Cr, M is at least one of Mn and Zn, and when M is Ti, M 'is at least one of Mn and Zn, and when M force is n It ’s Mama)
  • the ferromagnetic conductor material according to the present invention has a chemical formula (2)
  • the ferromagnetic conductor material of the present invention includes, for example, binary ferromagnetic oxides (Fe 2 O, CrO, etc.)
  • This ferromagnetic conductor material does not lose its ferromagnetism and spin polarization characteristics even when it is thinned and combined with other substances under high substrate temperature and high oxygen pressure.
  • the material does not change even under high substrate temperature and high oxygen pressure. Therefore, the formation conditions for manufacturing the heterostructure in combination with other substances, in other words, the semiconductor junction The formation conditions for manufacturing the element and the like can be relaxed. Therefore, a semiconductor junction element or the like can be manufactured at a high substrate temperature and a high oxygen pressure.
  • the ferromagnetic conductor material according to the present invention includes a compound represented by the above chemical formula (1) wherein Fe MnO
  • Fe Mn O exhibits ferromagnetism at room temperature, the Fe Mn O becomes ferromagnetic.
  • the first ferromagnetic layer and the second ferromagnetic layer are joined via an intermediate layer, and the magnetization of the first ferromagnetic layer and the first ferromagnetic layer are combined.
  • a magnetoresistive element exhibiting a change in electrical resistance according to the magnetization of a ferromagnetic layer at least one of the first ferromagnetic layer and the second ferromagnetic layer is made of the ferromagnetic conductor material. Let's do it as a special feature.
  • the first ferromagnetic layer and the second ferromagnetic layer may be formed of the same material.
  • a field effect transistor according to the present invention is characterized in that a ferroelectric layer made of a ferromagnetic compound material is joined to a dielectric layer made of a ferroelectric compound or a dielectric compound. It is said.
  • a method for producing a ferromagnetic conductor material according to the present invention comprises a chemical formula (1) on a substrate.
  • the above X is a numerical value in the range of 0 ⁇ x ⁇ 0.8 and X and A, and the above A and y are constants that vary depending on the type of M. And at least one of Zn, and when M is Cr, at least one of Mn and Zn, and when M is Ti, at least one of Mn and Zn, and when at M force n Mn)
  • a method for producing a ferromagnetic conductor material comprising a vapor deposition step of vapor-depositing a gas of the ferromagnetic conductor material represented by the above, wherein the substrate is heated to a temperature of 700 ° C or lower in the vapor deposition step.
  • the substrate temperature is more preferably in the range of 450 to 700 ° C.
  • the deposition process it is more preferable to perform the oxygen gas pressure in the range of 10_ 3 10 Pa.
  • a method for producing a ferromagnetic conductor material according to the present invention comprises a chemical formula (1) on a substrate.
  • the above X is a numerical value in the range of 0 ⁇ x ⁇ 0.8 and x ⁇ A.
  • the above A and y are constants that vary depending on the type of M.
  • M is Cr
  • M is at least one of Mn and Zn
  • M ' is at least one of Mn and Zn, and when M force is n It ’s Mama
  • a method for producing a ferromagnetic conductor material comprising a vapor deposition process for vapor-depositing a gas of the ferromagnetic conductor material shown in FIG. Yes.
  • the oxygen gas pressure is 10 " 3 ⁇ : More preferably within the range of OPa.
  • the ferromagnetic conductor material represented by the chemical formula (1) is thermodynamically more stable than, for example, a conventional ferromagnetic conductor material represented by the chemical formula: MO.
  • the manufacturing conditions can be relaxed as compared with the conventional ferromagnetic conductor material.
  • the ferromagnetic conductor material according to the present invention is, for example, (strong).
  • a junction element heterojunction with a dielectric or the like can be manufactured.
  • FIG. 1 is a side view showing a schematic configuration of a top-gate type field effect transistor according to an embodiment of the present invention.
  • FIG. 2 showing an embodiment of the present invention, is a side view showing a schematic configuration of a bottom gate type field effect transistor.
  • FIG. 3, showing an embodiment of the present invention, is a side view of a main part of a tunnel magnetoresistive element.
  • FIG. 4 is a side view showing a schematic configuration of the tunnel magnetoresistive element.
  • FIG. 5 is a side view showing a schematic configuration of another example of the tunnel magnetoresistive element.
  • FIG. 6 is a drawing showing the results of X-ray diffraction analysis of the ferromagnetic conductor material according to Example 1.
  • FIG. 7 is a drawing showing the results of X-ray diffraction analysis of the Fe 2 O thin film according to Comparative Example 1.
  • FIG. 8 is a drawing showing the results of measuring the temperature dependence of electrical resistivity by the four probe method.
  • FIG. 9 is a drawing showing the measurement result of the magnetic field dependence of magnetization by SQUID.
  • FIG. 10 is a drawing showing the measurement results of the substitution concentration dependence of electrical resistivity.
  • Anomaly is a drawing showing the Hall effect measurement results.
  • the ferromagnetic conductor material that is useful in the present embodiment is a binary ferromagnetic oxide (Fe 2 O 3, CrO 2).
  • the film forming conditions of these materials are extremely severe. Therefore, by doping these materials with Mn, Zn or the like, a ferromagnetic conductor material capable of relaxing the film forming conditions can be obtained. Specifically, by doping Mn or Zn into Fe 0, for example The film forming conditions such as the substrate temperature and the oxygen pressure can be relaxed.
  • ZnO is the same as FeO.
  • the film forming conditions can be relaxed by doping 3 4 2 2.
  • the ferromagnetic conductor material in the present invention exhibits ferromagnetism and has a characteristic that electricity flows. That is, in the present invention, “conductor” refers to metals and semiconductors. That is, the “ferromagnetic conductor” in the present invention excludes a ferromagnetic insulator and includes a ferromagnetic metal body and a ferromagnetic semiconductor.
  • the ferromagnetic conductor material that is useful in the present embodiment has the chemical formula (1)
  • M in the chemical formula (1) represents any of Fe, Cr, Ti, and Zn.
  • the ferromagnetic conductor material of the above chemical formula (1) is thermodynamically more stable and exhibits ferromagnetism than the conventional binary ferromagnetic oxide or binary oxide. Those are preferred.
  • the above changes depending on the M.
  • M when the M is Fe, the above includes Mn, Zn and the like.
  • M ′ examples of Mn and Zn.
  • M ′ examples of M ′ include Mn and Zn.
  • M ' is an S force of Mn.
  • M ′ for the above M, it is possible to maintain ferromagnetism without significantly disturbing electron conduction.
  • M is Fe, Cr, or Ti
  • M ′ alone or Zr alone or both may be used as M ′.
  • Mn it is more preferable to use only Mn because it can be suitably used as a ferromagnetic conductor material at room temperature (25 ° C).
  • the above y is also a specific constant determined by the above M.
  • ZnO force S is mentioned.
  • Zn MnO is mentioned.
  • M ' is Mn
  • it is preferably in the range of 0 ⁇ x ⁇ 0.8, more preferably in the range of 0. Kx ⁇ 0.8, and 0.4.
  • ⁇ 0.8 S Further preferred
  • the range of 0 ⁇ x ⁇ 0.8 is preferred 0.
  • the range of Kx ⁇ 0.8 is more preferred 0.4 ⁇ 0. More preferably within the range of 8.
  • M ' is Mn and Zn
  • the force in the range of 0 ⁇ x ⁇ 0.8 ⁇
  • S in the range of 0.4 ⁇ 4 ⁇ x ⁇ 0.8.
  • Mn and Zn it is preferable that Mn is more.
  • Fe Mn 2 O is more preferably used from the viewpoint that it can be suitably used as a ferromagnetic conductor material particularly at room temperature (25 ° C).
  • Fe MnO is used as an example of the ferromagnetic conductor material.
  • the ferromagnetic conductor material is Fe 2 Mn 2 O
  • 0 ⁇ x ⁇ 0.8 is preferred.
  • 0. Kx ⁇ 0.8. 8 is more preferred.
  • 0. 4 ⁇ 0.8. 8 is more preferred. 5 ⁇ 0.8.
  • X is greater than 0.8, the spin is not polarized and does not exhibit conductivity. In other words, when X is larger than 0.8, it cannot be used as a ferromagnetic conductor material.
  • Fe Mn O which is the ferromagnetic conductor material, more specifically has the chemical formula (3
  • Fe Mn ⁇ [Mn 2+ Fe 3+ ] [Fe 2+ Fe 3+ ] (O 2 ⁇ )... (3)
  • a and B above show Asite and Bsite of the spinel structure, respectively. That is, the above Fe
  • the Mn O for example, when prepared by doping Mn into Fe_ ⁇ , Fe of Asite of Fe_ ⁇ 3 4 3 4 3 4
  • the ferromagnetic conductor material may be doped with other substances to the extent that it does not affect the magnetoresistance.
  • the ferromagnetic conductor material may be doped with another substance to the extent that it does not affect the magnetoresistance.
  • the ferromagnetic conductor material is M M 'O (M ⁇ :
  • What is adjusted to be 8 may be formed by, for example, a laser ablation method under a predetermined condition.
  • a ferromagnetic conductor material doped with Mn in Fe 2 O can be produced by depositing the composition represented by the chemical formula (1) on the substrate.
  • the MBE (Molecular Beam Epitaxy) method can be used as the manufacturing method for depositing the composition represented by the chemical formula (1) on the substrate. You may manufacture using a method, CVD method, etc.
  • the ferromagnetic conductor material is, for example, a material obtained by adding Fe to MnO, for example,
  • It can also be manufactured by forming a film using a laser ablation method.
  • the method of manufacturing a ferromagnetic conductor material according to the present embodiment is as follows: , Chemical formula MO (where M is one of Fe, Cr, Ti, and Zn, and A and y depend on the type of M
  • M ′ (wherein M ′ represents at least one of Mn and Zn, and is determined by M) (for example, using a laser ablation method).
  • M ′ represents at least one of Mn and Zn, and is determined by M
  • a ferromagnetic conductor material denoted by MM ′ O can be produced. Also,
  • M ′ O An oxide represented by the chemical formula M ′ O (where M ′ is at least one of Mn and Zn, and x and y are constants that vary depending on the type of M ′) is M (where M is Fe, Cr, Ti A ferromagnetic conductor material represented by MM'O can be manufactured by doping
  • the production conditions for depositing the composition represented by the chemical formula (1) on the substrate using the laser ablation method are as follows: laser: ArF excimer laser (wavelength: 193 nm), laser pulse What is necessary is just to manufacture on condition of frequency 2-3Hz.
  • the type, wavelength, and frequency of the laser are not particularly limited as long as they can supply thermal energy to the ferromagnetic conductor material and perform the laser ablation. is not.
  • the laser irradiation time varies depending on the film thickness of the ferromagnetic conductor material to be manufactured. For example, a ferromagnetic conductor material having a film thickness of about 50 to 100 nm. When obtaining the above, the laser irradiation time may be about 2 to 4 hours.
  • the plate temperature can be manufactured (deposited) at a temperature of 700 ° C or lower.
  • a temperature of 700 ° C or lower for example, when the ferromagnetic conductor material that is effective in the present embodiment is combined with another substance, depending on the type of the other substance, it is 600 ° C. or lower (eg, within a range of 500 to 600 ° C.). ) May be preferred. This is necessary when depositing conventional ferromagnetic materials such as Fe 2 O.
  • the thin film of the ferromagnetic conductor material according to the present embodiment is not possible with the conventional ferromagnetic conductor Fe 2 O. Further, it can be manufactured within a substrate temperature range of 420 to 700 ° C., for example, within a substrate temperature range of 450 to 700 ° C.
  • the oxygen gas pressure can be formed at lOPa or less. This significantly compared to 10_ 4 Pa following conditions is necessary when forming the ferromagnetic material, such as the Fe ⁇
  • the thin film forms the force mow ferromagnetic conductor of the present embodiment
  • in the conventional a ferromagnetic conductor Fe_ ⁇ film formation was impossible, 10_ 3 ⁇ : oxygen gas pressure OPa
  • Range can be 10 within the _2 10 Pa for oxygen gas pressure, to produce under the conditions of high oxygen gas pressure of such a range of the oxygen gas pressure of 10- 1 ⁇ lOPa.
  • the thin film of the ferromagnetic conductor material is made of Fe O, which is a conventional ferromagnetic conductor.
  • the ferromagnetic conductor material is manufactured at high temperature and high oxygen pressure as in the above conditions.
  • substrates such as MgO, MgAlO, and A10 are preferable.
  • MgO as a substrate
  • MgAlO as a substrate means that MgAlO and Fe MnO
  • a pinel structure is preferable because the crystal structure is almost the same.
  • A10 above is cheap
  • the ferromagnetic conductor material when the ferromagnetic conductor material is manufactured, it becomes easier to exhibit ferromagnetism as a thin film is formed at a low oxygen pressure, which is less likely to exhibit strong magnetic properties as the film is thinned at a higher oxygen pressure. This is because the carrier (electron) concentration decreases by increasing the amount of oxygen when manufacturing the ferromagnetic conductor material, and the Curie temperature decreases as the carrier concentration decreases. Therefore, in general, when manufacturing an n-type (electronic system) ferromagnetic conductor material, it is more preferable to reduce the film thickness at a low oxygen pressure. However, the ferromagnetic conductor material can be used for other substances (e.g. When combined with the edge), it may be necessary to perform film formation at high oxygen pressure and high substrate temperature. However, conventional ferromagnetic materials such as Fe 2 O have high oxygen pressure and high
  • the ferromagnetic conductor material according to the present embodiment can exhibit ferromagnetism even when film formation is performed at a high oxygen pressure and a high substrate temperature. Therefore, the ferromagnetic conductor material can be combined with other substances while exhibiting ferromagnetism even when film formation is performed at a high oxygen pressure and a high substrate temperature.
  • the ferromagnetic conductor material used in the present embodiment has the chemical formula (1)
  • X is a numerical value in the range of 0 ⁇ x ⁇ 0.8
  • a and y are constants that vary depending on the type of M, and when M is Fe, either Mn or Zn. Yes, if M is Cr, then it is at least one of Mm, Zn, and if M is Ti, it is at least one of Mn, Zn, and Mn if M is Zn)
  • the above-mentioned ferromagnetic conductor material is made of binary ferromagnetic oxide (Fe 2 O, CrO, etc.) or binary oxide (Ti 0, ZnO, etc.), for example, Mn, Zn
  • the ferromagnetic conductor material is thermodynamically more stable than the binary ferromagnetic oxide or the binary oxide, and thus the ferromagnetic conductor material is deposited.
  • the film forming conditions at the time can be relaxed as compared with the conventional case.
  • the structure cannot be altered even under high substrate temperature and high oxygen pressure (it can maintain ferromagnetism), so that a heterostructure is manufactured in combination with other substances.
  • the formation conditions (film formation conditions) at the time in other words, the formation conditions for manufacturing the semiconductor junction element and the like can be relaxed. Therefore, the ferromagnetism of the ferromagnetic conductor material can be maintained even when a semiconductor junction element is produced at a high substrate temperature and a high oxygen pressure.
  • Fe Mn O exhibits ferromagnetism at room temperature, it can be used as a ferromagnetic conductor material.
  • a semiconductor junction element can be produced.
  • the ferromagnetic conductor material according to the present invention is also applicable to an element using a giant magnetoresistive effect (GMR), a magnetic sensor, and the like. Can be applied.
  • GMR giant magnetoresistive effect
  • ferromagnetic conductor materials maintain their electrical properties compared to, for example, Fe 2 O.
  • Fe Mn O according to the present embodiment is used in an environment of high temperature and high oxygen concentration.
  • Fe Mn O which is the above ferromagnetic conductor material, is ferromagnetic and other
  • semiconductor junction elements such as field effect transistors and tunnel magnetoresistive elements can be manufactured.
  • semiconductor junction elements such as field effect transistors and tunnel magnetoresistive elements can be manufactured.
  • the structure of the field effect transistor and tunnel magnetoresistive element provided with the said ferromagnetic conductor material is demonstrated.
  • the field effect transistor according to the present embodiment is configured by bonding a dielectric layer made of a ferroelectric compound or a dielectric compound to a ferromagnetic layer made of the above ferromagnetic conductor material.
  • the field effect transistor may have a top-gate structure as shown in FIG. 1 or a bottom-gate structure as shown in FIG.
  • FIG. 1 is a side view showing a schematic configuration of a top gate type field effect transistor
  • FIG. It is a side view which shows schematic structure of a bottom gate type field effect transistor.
  • the top gate type field effect transistor includes a ferromagnetic layer 2, an dielectric layer 1, a source electrode 4, a gate electrode 3 and a drain electrode 5.
  • the ferromagnetic layer 2 is formed on the substrate 6.
  • the ferromagnetic layer 2 is formed on the substrate 6, and the dielectric layer 1 is laminated on the surface of the substrate 6 on which the ferromagnetic layer 2 is formed. That is, the ferromagnetic layer 2 and the dielectric layer 1 are joined (heterojunction).
  • the dielectric layer 1 is provided with a gate electrode 3, and the ferromagnetic layer 2 is provided with a source electrode 4 and a drain electrode 5 with the dielectric layer 1 interposed therebetween.
  • the area where the dielectric layer 1 and the ferromagnetic layer 2 are joined is the operating range of the field effect transistor.
  • the bottom gate type field effect transistor is such that the channel layer (ferromagnetic layer) Fe Mn O is not in contact with the substrate 6 and one surface is exposed. . That is, book
  • the channel layer is Fe Mn
  • the field effect transistor can be an optical modulator that controls the polarization plane of incident light with an electric field.
  • the field effect transistor since one surface of the Fe Mn O that is the channel layer is exposed, light is put in and out.
  • the bottom gate type field effect transistor has a gate electrode between a substrate 6 and a ferroelectric gate layer (dielectric layer) Pb (Zr, Ti) 0. (For example, (La, Ba)
  • a gate electrode 3 a dielectric layer (gate layer) 1 and a ferromagnet layer (channel layer) 2 are laminated in this order on a substrate 6 (substrate 6 and gate electrode 3). And come in contact)
  • the field effect transistor includes a surface of Fe Mn O, which is the ferromagnetic layer 2.
  • a drain electrode 5 and a source electrode 4 are provided on 3 4, and a gate electrode 3 is provided on the substrate 6.
  • the dead layer that is difficult to control at the substrate 6 interface.
  • the ferromagnetic layer 2 since the ferromagnetic layer 2 is not in contact with the substrate 6, a larger change in the magnetic transition temperature can be expected.
  • a ferromagnetic layer on the dielectric layer 2 is used.
  • the film 2 may be formed using a laser ablation method.
  • the ferromagnetic layer 2 shown in Figs. 1 and 2 is the ferromagnetic conductor material of the present embodiment.
  • the dielectric layer 1 is composed of a ferroelectric or a dielectric.
  • the ferroelectric or dielectric constituting the dielectric layer various kinds of materials can be used without particular limitation.
  • dielectric examples include SrTiO, AlO, MgO, and the like. the above
  • SrTiO force S is preferable in terms of permittivity and availability.
  • ferroelectric specifically, (Ba Sr) TiO (where y is 0 ⁇ y i -y y 3
  • dielectric as dielectric layer 1 eg, SrTiO 3
  • the field effect transistor having the above configuration is the above-mentioned accumulator. It uses a mute layer and can switch from paramagnetism (no magnetization) to ferromagnetism (magnetization).
  • the first ferromagnetic layer and the second ferromagnetic layer are joined via an intermediate layer, and the magnetization of the first ferromagnetic layer and the above It shows the tunneling magnetoresistance according to the magnetization of the second ferromagnetic layer.
  • the first ferromagnetic layer 11, the intermediate layer 12, and the second ferromagnetic layer 13 are joined and laminated in this order. More specifically, as shown in FIG. 4, a second ferromagnetic layer 13, an intermediate layer 12, and a first ferromagnetic layer 11 are laminated in this order on a substrate 16, The ferromagnetic layer 13 is provided with an electrode 14 force, and the first ferromagnetic layer 11 is provided with an electrode 15.
  • At least one of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 of the tunnel magnetoresistive element having the above configuration is the ferromagnetic conductor material.
  • the composition constituting the other ferromagnetic layer is, for example, Fe O, CrO, (La, Ba) Mn
  • one of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 is composed of a ferromagnetic n-type semiconductor, and the other is composed of a ferromagnetic p-type semiconductor. More preferably, the intermediate layer 12 is an insulator.
  • the ferromagnetic conductor material is made of a ferromagnetic material. It corresponds to an n-type semiconductor.
  • the ferromagnetic p-type semiconductor for example, (La, Ba) MnO, (La, Sr) MnO, (La, Ca) M
  • the intermediate layer 12 is made of an insulator, metal, or semiconductor.
  • examples of the insulator include MgO, Al 2 O, SrTiO, CeO, SiO, and an insulating organic thin film.
  • the insulator include MgO, Al 2 O, SrTiO, CeO, SiO, and an insulating organic thin film.
  • a tunnel junction element By using the layer 12 as an insulator, a tunnel junction element can be manufactured.
  • the intermediate layer 12 is made of metal
  • examples of the metal include Cu. , SrTiO doped with La and / or Nb (doping amount is 1% by weight or more, for example)
  • GMR Giant magnetoresistance effect
  • the intermediate layer 12 is made of a semiconductor
  • examples of the semiconductor include an organic semiconductor (Alq, a phthalocyanine compound), SrTiO, La, and
  • a PNP junction element can be manufactured by using the intermediate layer 12 as the semiconductor exemplified above.
  • the semiconductor junction element is not limited to the tunnel magnetoresistive element and the field effect transistor, for example, as shown in FIG. 5, a ferromagnetic n-type semiconductor that is the ferromagnetic conductor material.
  • a semiconductor junction element in which the layer 21 and the ferromagnetic p-type semiconductor layer 22 are heterojunctioned may be used.
  • the mixture was sintered at 700 ° C. to obtain a sintered product. At this point, the sintered product is just a mixture.
  • Substrate temperature 400 ° C (600.C)
  • oxygen gas pressure 1.0 X 10 " 2 Pa (l. 0 X 10 _5 mbar)
  • a thin film of Fe Mn 0 was fabricated on a single crystal substrate of A1O (0001) plane.
  • X-ray diffraction analysis was performed on thin films prepared at two temperatures (400 ° C and 600 ° C). The result is shown in Fig. 6.
  • the Fe 2 O thin film is ferromagnetic when it is formed at 400 ° C.
  • the ferromagnetic conductor material according to the present invention (Fe Mn) doped with Mn in FeO
  • indicates that the impurity precipitation phase is detected whether the film is formed at 400 ° C or 600 ° C.
  • the ferromagnetic conductor material that is effective in the present invention doped with Mn has no problem without causing an impurity precipitation phase even under high temperature conditions as compared with the case of Fe 2 O.
  • the film can be formed.
  • a thin film (ferromagnetic conductor material) of 0.5) was prepared. Other conditions are the same as in Example 1.
  • the temperature dependence of the electrical resistivity by the four probe method Fig. 8
  • the magnetic field dependence of the magnetization by SQUID Fig. 9
  • the substitution concentration dependence of the electrical resistivity Fig. 10
  • the anomalous Hall effect Fig. 11
  • the relationship between carrier concentration and mobility Fig. 12
  • the ferromagnetic conductor material according to the present invention can be used, for example, as a semiconductor junction element including MRAM such as a field effect transistor, a giant magnetoresistive effect (GMR), and a tunnel magnetoresistive element (TMR). .
  • MRAM such as a field effect transistor, a giant magnetoresistive effect (GMR), and a tunnel magnetoresistive element (TMR).

Abstract

A ferromagnetic conductor material which is represented by the chemical formula (1) M(A-x)M’xOy ··· (1) [wherein x represents a number in the range of 0 < x ≤ 0.8 and x < A, A and y are constants depending on the type of M, M’is at least one of Mn and Zn when the above M is Fe, M’is at least one of Mn and Zn when the above M is Cr, , M’is at least one of Mn and Zn when the above M is Ti, and M’is Mn when the above M is Zn].

Description

明 細 書  Specification
強磁性伝導体材料およびその製造方法、並びに磁気抵抗素子、電界効 果トランジスタ 技術分野  Technical Field of Ferromagnetic Conductor Material and Method for Manufacturing the Same, Magnetoresistive Element, and Field Effect Transistor
[0001] 本発明は、例えば、電界で書込みが可能である磁気記録素子、新機能半導体 磁気集積回路、電界制御磁気ァクチユエータ等に利用可能な強磁性伝導体材料に 関するものである。  The present invention relates to a ferromagnetic conductor material that can be used in, for example, a magnetic recording element capable of writing by an electric field, a new functional semiconductor magnetic integrated circuit, an electric field control magnetic actuator, and the like.
背景技術  Background art
[0002] 電子の流れを制御する半導体デバイスに加え、磁性の源であるスピンを半導体的 手法により、制御するスピントロ二タス(スピンエレクトロニクス、マグネットエレクトロニク ス、スピニタスともいう)が近年発展しつつある。そして、これらスピントロ二タスの発展 は、電圧を印加することで磁気半導体中のキャリア濃度の変化を利用させる強磁性 のスイッチングを可能とし、電界で情報の書込みが可能な新規な磁気記録素子や、 新機能半導体—磁気集積回路等を実現させることができると期待される。  [0002] In addition to semiconductor devices that control the flow of electrons, spintronics (also called spin electronics, magnet electronics, and spinitas) that controls spin, which is the source of magnetism, by means of a semiconductor method has been developing in recent years . And the development of these spintronics enables the switching of ferromagnetism that utilizes the change in the carrier concentration in the magnetic semiconductor by applying a voltage, and a novel magnetic recording element capable of writing information by an electric field, It is expected that a new functional semiconductor-magnetic integrated circuit and the like can be realized.
[0003] また、このスピントロ二タスの発展にともなレ、、例えば MRAM (Magnetic Random Ac cess Memory)や新しレ、発光素子等の実用化が期待される。  [0003] Further, with the development of this spintronics, it is expected that practical use of, for example, MRAM (Magnetic Random Access Memory), new light, light emitting element, and the like will be expected.
[0004] 上記 MRAMは、磁気によってデータを記憶するメモリであり、次世代のメモリとして 期待されている。 MRAMは、不揮発性であり、かつ、データの読み書き速度が比較 的速い点において、従来の半導体メモリ(DRAM、 SRAM, EEPROM)では得難 レ、利点を有してレ、る (例えば、特許文献 1参照)。 [0004] The MRAM is a memory that stores data by magnetism, and is expected as a next-generation memory. MRAM is non-volatile and has relatively high data read / write speed, which is difficult and difficult to achieve with conventional semiconductor memories (DRAM, SRAM, EEPROM) (for example, patent documents). 1).
[0005] 〔特許文献 1〕 WO 2004/023563A1 (公開曰: 2004年 3月 18曰) [0005] [Patent Document 1] WO 2004 / 023563A1 (Opening date: March 18, 2004)
ところが、 MRAMなどスピンエレクトロニクスデバイスに重要な、安価でかつスピン 偏極度が大きい、二元系強磁性酸化物(Fe O、 CrO等)および  However, binary ferromagnetic oxides (Fe 2 O, CrO, etc.) that are important for spin electronics devices such as MRAM, are inexpensive and have high spin polarization, and
3 4 2 二元系酸化物 (Ti 3 4 2 Binary oxide (Ti
〇、 Zn〇等)に希薄磁性元素を加えた希薄磁性酸化物においては、薄膜形成にお〇, Zn〇 etc.) dilute magnetic oxide added with dilute magnetic elements
2 2
ける基板温度、酸化雰囲気等の条件の選択が非常に重要である。し力 ながら、上 記希薄磁性酸化物は、例えば、高温、高酸素圧で変質してしまうため、上記希薄磁 性酸化物を薄膜化してスピンエレクトロニクスデバイスを製造するための形成条件は 非常に狭くなつてしまう。このため、例えば、トンネル接合素子、強磁性体電界効果ト ランジスタ素子等の、上記希薄磁性酸化物を他の物質と組み合わせて形成されるへ テロ構造を作製することは非常に困難である。つまり、他の物質と上記希薄磁性酸化 物とを接合する際には、高温、高酸素圧の条件が必要であり、上記希薄磁性酸化物 の特性を変化させることな 他の物質と接合することは非常に困難である。 The selection of conditions such as the substrate temperature and the oxidizing atmosphere is very important. However, since the above diluted magnetic oxide is altered by, for example, high temperature and high oxygen pressure, the formation conditions for manufacturing the spin electronics device by thinning the diluted magnetic oxide are as follows. It becomes very narrow. For this reason, for example, it is very difficult to manufacture a heterostructure formed by combining the diluted magnetic oxide with another substance, such as a tunnel junction element or a ferromagnetic field effect transistor element. In other words, when joining other materials and the diluted magnetic oxide, conditions of high temperature and high oxygen pressure are required, and joining with other materials without changing the characteristics of the diluted magnetic oxide. Is very difficult.
発明の開示  Disclosure of the invention
[0006] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、他の物質と組 み合わせて、例えば、磁気抵抗素子や電界効果トランジスタ等の素子を簡単に製造 することができる強磁性伝導体材料を提供することにある。  [0006] The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to easily manufacture elements such as magnetoresistive elements and field effect transistors in combination with other substances. It is to provide a ferromagnetic conductor material that can be used.
[0007] 本願発明者等は、上記の問題を鋭意検討した結果、特定の二元系(強磁性)酸化 物に特定の元素を添加することで、他の物質と組み合わせてヘテロ構造を作製する ことが容易な強磁性伝導体材料が得られることを見出し、本発明を完成するに至った  [0007] As a result of intensive investigation of the above problems, the inventors of the present application have added a specific element to a specific binary (ferromagnetic) oxide to produce a heterostructure in combination with another substance. Found that an easy-to-use ferromagnetic conductor material was obtained, and the present invention was completed.
[0008] すなわち、本発明に係る強磁性伝導体材料は、上記課題を解決するために、化学 式 (1) [0008] That is, the ferromagnetic conductor material according to the present invention has the chemical formula (1)
M M' O  M M 'O
(A  (A
(上記 Xは、 0<x≤0. 8の範囲かつ x<Aの数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 M'は Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 M'は Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (X is a numerical value in the range of 0 <x≤0.8 and x <A, A and y are constants that vary depending on the type of M, and in the case of M force SFe, M 'is When M is Cr, M is at least one of Mn and Zn, and when M is Ti, M 'is at least one of Mn and Zn, and when M force is n It ’s Mama)
で示されることを特徴としてレ、る。  It is characterized by being indicated by.
[0009] また、本発明にかかる強磁性伝導体材料は、化学式(2) In addition, the ferromagnetic conductor material according to the present invention has a chemical formula (2)
M O - - - (2)  M O---(2)
A  A
(上記 Mは、 Fe、 Cr、 Ti、 Znのいずれかを示し、上記 A、 yは Mの種類によって変化 する定数)で示される酸化物に (上記 Mが Feの場合 ΜΊま Mn、 Znの少なくとも一 方であり、上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが の 場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Znの場合 ΜΊま Mnを示す)を ドープした強磁性伝導体材料であって、化学式(1) M M' O ■· · (:!) (上記 xは、 0 < x≤0. 8かつ x<Aの範囲の数値)(Where M is Fe, Cr, Ti, or Zn, and A and y are constants that vary depending on the type of M) (if M is Fe, Mn, Zn When M is Cr, it is at least one of Mn and Zn. When M is M, it is at least one of Mn and Zn. When M is Zn, it indicates Mn. ) Doped ferromagnetic conductor material with the chemical formula (1) MM 'O ■ · · · (:!) (Where x is a number in the range 0 <x ≤ 0.8 and x <A)
(A— x) x y (A— x) x y
で示されることを特徴としてレ、る。  It is characterized by being indicated by.
[0010] 本発明の強磁性伝導体材料は、例えば、二元系強磁性酸化物(Fe O 、 CrO等)  [0010] The ferromagnetic conductor material of the present invention includes, for example, binary ferromagnetic oxides (Fe 2 O, CrO, etc.)
3 4 2 または二元系酸化物 (TiO、 ZnO等)に Mn、 Zn等をドープさせることによって得られ  3 4 2 or binary oxide (TiO, ZnO, etc.) obtained by doping Mn, Zn, etc.
2  2
たものである。そして、この強磁性伝導体材料は、薄膜化して、高基板温度かつ高酸 素圧下で他の物質と組み合わせた場合でも、強磁性およびスピン偏極特性を失わせ ることがない。  It is a thing. This ferromagnetic conductor material does not lose its ferromagnetism and spin polarization characteristics even when it is thinned and combined with other substances under high substrate temperature and high oxygen pressure.
[0011] つまり、上記の構成とすることで、高基板温度かつ高酸素圧下でも変質することが ないので、他の物質と組み合わせてヘテロ構造を作製する際の形成条件、換言する と、半導体接合素子等を作製する形成条件を緩和させることができる。従って、高基 板温度かつ高酸素圧下で半導体接合素子等を作製することができる。  [0011] That is, with the above-described structure, the material does not change even under high substrate temperature and high oxygen pressure. Therefore, the formation conditions for manufacturing the heterostructure in combination with other substances, in other words, the semiconductor junction The formation conditions for manufacturing the element and the like can be relaxed. Therefore, a semiconductor junction element or the like can be manufactured at a high substrate temperature and a high oxygen pressure.
[0012] また、本発明にかかる強磁性伝導体材料は、上記化学式(1)で示される化合物が Fe Mn〇  In addition, the ferromagnetic conductor material according to the present invention includes a compound represented by the above chemical formula (1) wherein Fe MnO
(3 4  (3 4
であることがより好ましい。  It is more preferable that
[0013] 上記 Fe Mn Oは、室温で強磁性を示すので、当該 Fe Mn Oを強磁性  [0013] Since Fe Mn O exhibits ferromagnetism at room temperature, the Fe Mn O becomes ferromagnetic.
(3 4 (3 4 伝導体材料として利用することで、室温で動作可能な半導体接合素子を得ることが できる。また、 Fe Mn Oは、強磁性体である Fe Oと比べて他の物質と組み合  (3 4 (3 4 By using it as a conductor material, it is possible to obtain a semiconductor junction device that can operate at room temperature. Combination
(3 4 3 4  (3 4 3 4
わせるための形成条件が緩和されているので、従来は不可能であった例えば、 Fe  For example, Fe that was impossible in the past has been relaxed.
(3 (3
Mn O /Pb (Zr, Ti) 0 ( (強)誘電体)等の誘電体へテロ構造を形成することが 4 3 It is possible to form a dielectric heterostructure such as Mn O / Pb (Zr, Ti) 0 ((strong) dielectric) 4 3
可能となるので、従来ではできなかった半導体接合素子を作製することができる。  Therefore, it is possible to manufacture a semiconductor junction element that was not possible conventionally.
[0014] 本発明にかかる磁気抵抗素子は、第 1強磁性体層と第 2強磁性体層とが、中間層 を介して接合されており、上記第 1強磁性体層の磁化および上記第 2強磁性体層の 磁化に応じた電気抵抗変化を示す磁気抵抗素子において、上記第 1強磁性体層お よび第 2強磁性体層の少なくとも一方が、上記の強磁性伝導体材料から構成されて レ、ることを特 ί敫としてレ、る。 In the magnetoresistive element according to the present invention, the first ferromagnetic layer and the second ferromagnetic layer are joined via an intermediate layer, and the magnetization of the first ferromagnetic layer and the first ferromagnetic layer are combined. (2) In a magnetoresistive element exhibiting a change in electrical resistance according to the magnetization of a ferromagnetic layer, at least one of the first ferromagnetic layer and the second ferromagnetic layer is made of the ferromagnetic conductor material. Let's do it as a special feature.
[0015] また、本発明にかかる磁気抵抗素子は、上記構成に加えて、上記第 1強磁性体層 と第 2強磁性体層とは同じ材料で構成されていてもよい。 [0016] 本発明にかかる電界効果トランジスタは、上記の強磁性伝導体材料からなる強磁 性体層に、強誘電体化合物または誘電体化合物からなる誘電体層が接合されてな ることを特徴としている。 In addition to the above configuration, in the magnetoresistive element according to the present invention, the first ferromagnetic layer and the second ferromagnetic layer may be formed of the same material. [0016] A field effect transistor according to the present invention is characterized in that a ferroelectric layer made of a ferromagnetic compound material is joined to a dielectric layer made of a ferroelectric compound or a dielectric compound. It is said.
[0017] 上記の構成によれば、本発明にかかる強磁性伝導体材料を用いているので、簡単 に磁気抵抗素子および電界効果トランジスタを作製することができる。  [0017] According to the above configuration, since the ferromagnetic conductor material according to the present invention is used, a magnetoresistive element and a field effect transistor can be easily manufactured.
[0018] 本発明にかかる強磁性伝導体材料の製造方法は、基板上に、化学式(1) [0018] A method for producing a ferromagnetic conductor material according to the present invention comprises a chemical formula (1) on a substrate.
M M' O  M M 'O
(A  (A
(上記 Xは、 0< x≤0. 8かつ Xく Aの範囲の数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 ΜΊま Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (The above X is a numerical value in the range of 0 <x ≤ 0.8 and X and A, and the above A and y are constants that vary depending on the type of M. And at least one of Zn, and when M is Cr, at least one of Mn and Zn, and when M is Ti, at least one of Mn and Zn, and when at M force n Mn)
で示される強磁性伝導体材料の気体を蒸着させる蒸着工程を含む、強磁性伝導 体材料の製造方法であって、上記蒸着工程では、上記基板を 700°C以下の温度に 加熱することを特徴としてレ、る。  A method for producing a ferromagnetic conductor material, comprising a vapor deposition step of vapor-depositing a gas of the ferromagnetic conductor material represented by the above, wherein the substrate is heated to a temperature of 700 ° C or lower in the vapor deposition step. As les.
[0019] また、本発明にかかる強磁性伝導体材料の製造方法は、上記基板温度が、 450〜 700°Cの範囲内であることがより好ましい。  [0019] In the method for producing a ferromagnetic conductor material according to the present invention, the substrate temperature is more preferably in the range of 450 to 700 ° C.
[0020] また、本発明にかかる強磁性伝導体材料の製造方法は、上記蒸着工程を、酸素ガ ス圧を 10_3〜10Paの範囲内で行うことがより好ましい。 [0020] In the method of manufacturing ferromagnetic conductor material according to the present invention, the deposition process, it is more preferable to perform the oxygen gas pressure in the range of 10_ 3 10 Pa.
[0021] 本発明にかかる強磁性伝導体材料の製造方法は、基板上に、化学式(1)  [0021] A method for producing a ferromagnetic conductor material according to the present invention comprises a chemical formula (1) on a substrate.
M M' O  M M 'O
(A  (A
(上記 Xは、 0< x≤0. 8かつ x<Aの範囲の数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 M'は Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 M'は Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (The above X is a numerical value in the range of 0 <x ≤ 0.8 and x <A. The above A and y are constants that vary depending on the type of M. When M is Cr, M is at least one of Mn and Zn, and when M is Ti, M 'is at least one of Mn and Zn, and when M force is n It ’s Mama)
で示される強磁性伝導体材料の気体を蒸着させる蒸着工程を含む、強磁性伝導 体材料の製造方法であって、上記蒸着工程を、酸素ガス圧が lOPa以下の条件で行 うことを特徴としている。  A method for producing a ferromagnetic conductor material, comprising a vapor deposition process for vapor-depositing a gas of the ferromagnetic conductor material shown in FIG. Yes.
[0022] また、本発明にかかる強磁性伝導体材料の製造方法は、上記酸素ガス圧が、 10"3 〜: !OPaの範囲内であることがより好ましい。 [0022] Further, in the method for producing a ferromagnetic conductor material according to the present invention, the oxygen gas pressure is 10 " 3 ~: More preferably within the range of OPa.
[0023] 上記の構成によれば、上記化学式(1)で示される強磁性伝導体材料は、例えば、 化学式: M Oで示される従来の強磁性伝導体材料と比べて、熱力学的に安定した [0023] According to the above configuration, the ferromagnetic conductor material represented by the chemical formula (1) is thermodynamically more stable than, for example, a conventional ferromagnetic conductor material represented by the chemical formula: MO.
A y  A y
構造であるので、上記化学式: M Oで示される従来の強磁性伝導体材料よりも製造  Because the structure is more than the conventional ferromagnetic conductor material represented by the above chemical formula: M 2 O
A y  A y
条件 (成膜条件)を緩和することができる。具体的には、従来の強磁性伝導体材料で は製造が不可能であった、基板温度が 450〜700°Cの範囲内、酸素ガス圧が 10_3 〜: 1 OPaの範囲内の製造条件であっても、本発明にかかる強磁性伝導体材料を製造 すること力 Sできる。 Conditions (film formation conditions) can be relaxed. Specifically, in a conventional ferromagnetic conductor material it was impossible to manufacture, within the substrate temperature is 450-700 ° C, the oxygen gas pressure 10_ 3 - Production conditions in the range of 1 OPa Even so, it is possible to manufacture the ferromagnetic conductor material according to the present invention.
[0024] 従って、上記のように、従来の強磁性伝導体材料と比べて、製造条件を緩和するこ とができるので、例えば、本発明にかかる強磁性伝導体材料を、例えば、(強)誘電 体等とヘテロ接合した接合素子を製造することができる。  [0024] Therefore, as described above, the manufacturing conditions can be relaxed as compared with the conventional ferromagnetic conductor material. For example, the ferromagnetic conductor material according to the present invention is, for example, (strong). A junction element heterojunction with a dielectric or the like can be manufactured.
[0025] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わかるであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。  [0025] Further objects, features, and advantages of the present invention will be fully understood from the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]本発明の実施形態を示すものであり、トップゲート型の電界効果トランジスタの 概略構成を示す側面図である。  FIG. 1 is a side view showing a schematic configuration of a top-gate type field effect transistor according to an embodiment of the present invention.
[図 2]本発明の実施形態を示すものであり、ボトムゲート型の電界効果トランジスタの 概略構成を示す側面図である。  FIG. 2, showing an embodiment of the present invention, is a side view showing a schematic configuration of a bottom gate type field effect transistor.
[図 3]本発明の実施形態を示すものであり、トンネル磁気抵抗素子の要部の側面図 である。  FIG. 3, showing an embodiment of the present invention, is a side view of a main part of a tunnel magnetoresistive element.
[図 4]上記トンネル磁気抵抗素子の概略構成を示す側面図である。  FIG. 4 is a side view showing a schematic configuration of the tunnel magnetoresistive element.
[図 5]上記トンネル磁気抵抗素子の他の例の概略構成を示す側面図である。  FIG. 5 is a side view showing a schematic configuration of another example of the tunnel magnetoresistive element.
[図 6]実施例 1にかかる強磁性伝導体材料の X線回折分析の結果を示す図面である  FIG. 6 is a drawing showing the results of X-ray diffraction analysis of the ferromagnetic conductor material according to Example 1.
[図 7]比較例 1にかかる Fe O薄膜の X線回折分析の結果を示す図面である。 FIG. 7 is a drawing showing the results of X-ray diffraction analysis of the Fe 2 O thin film according to Comparative Example 1.
3 4  3 4
[図 8]四端子法による電気抵抗率の温度依存性の測定結果を示す図面である。  FIG. 8 is a drawing showing the results of measuring the temperature dependence of electrical resistivity by the four probe method.
[図 9]SQUIDによる磁化の磁場依存性の測定結果を示す図面である。 [図 10]電気抵抗率の置換濃度依存性の測定結果を示す図面である。 FIG. 9 is a drawing showing the measurement result of the magnetic field dependence of magnetization by SQUID. FIG. 10 is a drawing showing the measurement results of the substitution concentration dependence of electrical resistivity.
園 11]異常 Hall効果の測定結果を示す図面である。  11] Anomaly is a drawing showing the Hall effect measurement results.
園 12]キャリア濃度と移動度の関係を示す図面である。  12] This is a drawing showing the relationship between carrier concentration and mobility.
符号の説明  Explanation of symbols
1 誘電体層  1 Dielectric layer
2 強磁性体層  2 Ferromagnetic layer
3 ゲート電極  3 Gate electrode
4 ソース電極  4 Source electrode
5 ドレイン電極  5 Drain electrode
6 基板  6 Board
11 第 1強磁性体層  11 First ferromagnetic layer
12 中間層  12 Middle layer
13 第 2強磁性体層  13 Second ferromagnetic layer
14 電極  14 electrodes
15 電極  15 electrodes
16 基板  16 substrate
21 強磁性 n型半導体層  21 Ferromagnetic n-type semiconductor layer
22 強磁性 p型半導体層  22 Ferromagnetic p-type semiconductor layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 本発明の実施の一形態について説明すれば、以下の通りである。  [0028] An embodiment of the present invention will be described as follows.
[0029] 本実施の形態に力かる強磁性伝導体材料は、二元系強磁性酸化物(Fe O 、 CrO  [0029] The ferromagnetic conductor material that is useful in the present embodiment is a binary ferromagnetic oxide (Fe 2 O 3, CrO 2).
3 4 等)または二元系酸化物 (TiO、 ZnO等)に、例えば、 Mn、 Zn等の物質を加えたも 3 4 etc.) or binary oxides (TiO, ZnO, etc.), for example, with addition of substances such as Mn, Zn, etc.
2 2 twenty two
のである。  It is.
[0030] 上記二元系強磁性酸化物である Fe O、 CrOおよび二元系酸化物である Ti〇、  [0030] Fe O, CrO as the binary ferromagnetic oxide and TiO as the binary oxide,
3 4 2 2 3 4 2 2
ZnOに Co、 Cr、 Vの少なくとも 1つの元素を微少に加えたものは、室温強磁性体であ る。し力しながら、これらの材料の成膜条件は極めて厳しい。そこで、これら上記材料 に Mn、 Zn等をドープすることにより、成膜条件を緩和することができる強磁性伝導体 材料が得られる。具体的には、 Fe 〇に Mnまたは Znをドープすることにより、例えば 、基板温度および酸素圧等の成膜条件を緩和することができる。また、 CrO、 TiO 、 A room-temperature ferromagnet with a slight addition of at least one element of Co, Cr, or V to ZnO. However, the film forming conditions of these materials are extremely severe. Therefore, by doping these materials with Mn, Zn or the like, a ferromagnetic conductor material capable of relaxing the film forming conditions can be obtained. Specifically, by doping Mn or Zn into Fe 0, for example The film forming conditions such as the substrate temperature and the oxygen pressure can be relaxed. In addition, CrO, TiO,
2 2 twenty two
Zn〇についても Fe〇と同様であり、例えば、 Mn、 Zn等を上記 CrO 、 TiO 、 ZnO ZnO is the same as FeO. For example, Mn, Zn, etc.
3 4 2 2 にドープすることで、成膜条件を緩和することができる。  The film forming conditions can be relaxed by doping 3 4 2 2.
[0031] 以下、上記強磁性伝導体材料について詳述する。 Hereinafter, the ferromagnetic conductor material will be described in detail.
[0032] (強磁性伝導体材料) [0032] (Ferromagnetic conductor material)
本発明における強磁性伝導体材料とは、強磁性を示すとともに、電気が流れる特 性を有するものである。つまり、本発明において、「伝導体」とは、金属および半導体 を示す。すなわち、本発明における「強磁性伝導体」は、強磁性絶縁体を除くもので あり、強磁性金属体および強磁性半導体を含むものである。  The ferromagnetic conductor material in the present invention exhibits ferromagnetism and has a characteristic that electricity flows. That is, in the present invention, “conductor” refers to metals and semiconductors. That is, the “ferromagnetic conductor” in the present invention excludes a ferromagnetic insulator and includes a ferromagnetic metal body and a ferromagnetic semiconductor.
[0033] 本実施の形態に力かる強磁性伝導体材料は、化学式(1) [0033] The ferromagnetic conductor material that is useful in the present embodiment has the chemical formula (1)
M M' O  M M 'O
(A-x)  (A-x)
で示される。  Indicated by
[0034] 上記化学式(1)の Mは Fe、 Cr、 Ti、 Znのいずれかを示している。また、上記化学 式(1)の強磁性伝導体材料は、上記従来の二元系強磁性酸化物または二元系酸化 物と比べて熱力学的により安定したものであり、かつ強磁性を示すものが好ましい。 そして、上記 ΜΊま、上記 Mによって変わるものであり、例えば、上記 Mが Feの場合 には上記 としては、 Mn、 Zn等が挙げられる。また、上記 Mが Crの場合には上記 M'としては、 Mn、 Zn等が挙げられる。また、上記 Mが Tiの場合には上記 M'として は、 Mn、 Zn等が挙げられる。また、上記 Mが Znの場合には上記 M'としては、 Mn等 力 S挙げられる。そして、上記 Mに対して好適な M'を選択することで、電子伝導を大き く乱さず強磁性を保たせることができる。また、上記 Mが Fe、 Cr、 Tiの場合、 M'とし ては、 Mnのみを用いてもよぐ Zrのみを用いてもよ 両方用いても良い。また、常温 (25°C)で強磁性伝導体材料として好適に使用できるという点で Mnのみを用いること 力 り好ましい。  [0034] M in the chemical formula (1) represents any of Fe, Cr, Ti, and Zn. In addition, the ferromagnetic conductor material of the above chemical formula (1) is thermodynamically more stable and exhibits ferromagnetism than the conventional binary ferromagnetic oxide or binary oxide. Those are preferred. In addition, the above changes depending on the M. For example, when the M is Fe, the above includes Mn, Zn and the like. When M is Cr, examples of M ′ include Mn and Zn. When M is Ti, examples of M ′ include Mn and Zn. In addition, when M is Zn, M 'is an S force of Mn. Then, by selecting a suitable M ′ for the above M, it is possible to maintain ferromagnetism without significantly disturbing electron conduction. In addition, when M is Fe, Cr, or Ti, M ′ alone or Zr alone or both may be used as M ′. In addition, it is more preferable to use only Mn because it can be suitably used as a ferromagnetic conductor material at room temperature (25 ° C).
[0035] また、上記化学式(1)の Aは、上記 Mによって決定される固有の定数である。例え ば、上記 Mが Feの場合 A= 3であり、上記 Mが Crの場合 A= lであり、上記 Mが Tiの 場合 A= lであり、上記 M力 nの場合 A= lである。  [0035] A in the chemical formula (1) is a specific constant determined by M. For example, when M is Fe, A = 3, when M is Cr, A = l, when M is Ti, A = l, and when M force is n, A = l. .
[0036] また、上記上記 yも上記 Mによって決定される固有の定数である。例えば、上記 M によって決定される固有の定数である。例えば、上記 Mが Feの場合 y = 3であり、上 記 Mが Crの場合 y= 2であり、上記 Mが Tiの場合 y= 2であり、上記 Mが Znの場合 y = 1である。 [0036] The above y is also a specific constant determined by the above M. For example, M above Is an intrinsic constant determined by For example, when M is Fe, y = 3, when M is Cr, y = 2, when M is Ti, y = 2, and when M is Zn, y = 1. .
[0037] つまり、上記化学式(1)の具体例としては、例えば、上記 Mが Feの場合には、 Fe  That is, as a specific example of the chemical formula (1), for example, when M is Fe, Fe
(3 (3
Mn O 、 Fe Zn O力 S挙げられる。また、上記 Mが Crの場合には、 Cr MnMn O, Fe Zn O force S. When M is Cr, Cr Mn
-x) x 4 (3— x) x 4 (1 x)-x) x 4 (3— x) x 4 (1 x)
O 、 Cr Zn Oが挙げられる。また、上記 Mがその場合には、 Ti Mn O、 Ti x 2 (1 x) x 2 (1 -x) x 2O 2, Cr Zn O may be mentioned. If M is the above, Ti Mn O, Ti x 2 (1 x) x 2 (1 -x) x 2
Zn〇力 S挙げられる。また、上記 M力 nの場合には、 Zn Mn〇が挙げられZnO force S is mentioned. In addition, in the case of the above M force n, Zn MnO is mentioned.
(1 2 (1 (1 2 (1
る。  The
[0038] 次に、化学式(1)で示される強磁性伝導体材料における M'の添加割合 (式中: X) について説明する。上記化学式(1)における、 Xは Mに対する M'の添加割合を示し ており、上記 Xは M'の種類によって変わる。  Next, the addition ratio of M ′ (in the formula: X) in the ferromagnetic conductor material represented by the chemical formula (1) will be described. In the above chemical formula (1), X represents the addition ratio of M ′ to M, and X varies depending on the type of M ′.
[0039] 具体的には、例えば、上記 M'が Mnの場合には、 0<x≤0. 8の範囲内が好ましく 、 0. Kx≤0. 8の範囲内力 Sより好ましく、 0. 4<χ≤0. 8の範囲内力 Sさらに好ましレヽ  [0039] Specifically, for example, when M 'is Mn, it is preferably in the range of 0 <x≤0.8, more preferably in the range of 0. Kx≤0.8, and 0.4. Within the range of <χ≤0.8 S Further preferred
[0040] また、上記 が Znの場合には、 0<x≤0. 8の範囲内が好ましぐ 0. Kx≤0. 8 の範囲内がより好ましぐ 0. 4<χ≤0. 8の範囲内がさらに好ましい。 [0040] Also, when the above is Zn, the range of 0 <x≤0.8 is preferred 0. The range of Kx≤0.8 is more preferred 0.4 <χ≤0. More preferably within the range of 8.
[0041] さらに、 M'が Mnと Znとである場合には、両者の混合比にもよる力 Mnと Znとの合 計を Xとした場合、 0< x≤0. 8の範囲内力《好ましく、 0. 1 < χ≤0. 8の範囲内力 Sより 好ましぐ 0. 4<x≤0. 8の範囲内がさらに好ましレ、。なお、 Mnと Znとを用いる場合 には、 Mnのほうが多いことが好ましい。  [0041] Furthermore, when M 'is Mn and Zn, if the sum of the force Mn and Zn due to the mixing ratio of both is X, the force in the range of 0 <x ≤ 0.8 < Preferably, 0.1 in the range of 0.1 <χ ≤ 0.8 More preferable than S in the range of 0.4 <4 ≤ x ≤ 0.8. When Mn and Zn are used, it is preferable that Mn is more.
[0042] 上記 Xが 0. 8よりも多い場合には、上記化学式(1)は、強磁性絶縁体になってしま レ、、伝導性を示すことができなくなる。一方、 Xが 0の場合には、伝導性は示すが、成 膜条件が厳しくなる。従って、本実施の形態に力かる強磁性伝導体材料は、上記 M' を上記の割合で添加することが好ましレ、。  [0042] When X is greater than 0.8, the chemical formula (1) becomes a ferromagnetic insulator and cannot exhibit conductivity. On the other hand, when X is 0, conductivity is exhibited, but the film forming conditions become severe. Therefore, it is preferable to add the above M ′ in the above-mentioned proportion to the ferromagnetic conductor material which is useful in the present embodiment.
[0043] 上記例示の化学式(1)のうち、特に常温(25°C)で強磁性伝導体材料として好適に 利用できるという観点から、 Fe Mn Oを用いることがより好ましい。 [0043] Of the chemical formula (1) exemplified above, Fe Mn 2 O is more preferably used from the viewpoint that it can be suitably used as a ferromagnetic conductor material particularly at room temperature (25 ° C).
(3 4  (3 4
[0044] なお、以下の説明では、強磁性伝導体材料として、 Fe Mn〇を例にして説明  [0044] In the following description, Fe MnO is used as an example of the ferromagnetic conductor material.
(3 4  (3 4
する。 [0045] 上記強磁性伝導体材料が Fe Mn Oである場合、組成を決める上記 Xについ To do. [0045] When the ferromagnetic conductor material is Fe 2 Mn 2 O,
(3 4  (3 4
ては、 0<x≤0. 8の範囲内が好ましぐ 0. Kx≤0. 8の範囲内がより好ましぐ 0. 4<χ≤0. 8の範囲内がさらに好まし 0. 5 <χ≤0. 8の範囲内が特に好ましレ、。上 記 Xが 0. 8よりも大きい場合には、スピンが偏極せず、伝導性を示さない。つまり、上 記 Xが 0. 8よりも大きい場合には、強磁性伝導体材料として使用することができない。  For example, 0 <x≤0.8 is preferred. 0. Kx≤0.8. 8 is more preferred. 0. 4 <χ≤0.8. 8 is more preferred. 5 <χ≤0.8. Especially preferred within the range of 8. When X is greater than 0.8, the spin is not polarized and does not exhibit conductivity. In other words, when X is larger than 0.8, it cannot be used as a ferromagnetic conductor material.
[0046] また、上記強磁性伝導体材料である Fe Mn Oは、より具体的には、化学式(3 [0046] Fe Mn O, which is the ferromagnetic conductor material, more specifically has the chemical formula (3
(3 4  (3 4
)で示すことができる。  ).
Fe Mn〇 =〔Mn2+ Fe3+ 〕 〔Fe2+Fe3+〕 (O2―) …(3) Fe Mn ○ = [Mn 2+ Fe 3+ ] [Fe 2+ Fe 3+ ] (O 2 ―)… (3)
(3 x) x 4 x 1 x A B 4  (3 x) x 4 x 1 x A B 4
上記 A、 Bは、それぞれスピネル構造の Asite、 Bsiteを示している。つまり、上記 Fe  A and B above show Asite and Bsite of the spinel structure, respectively. That is, the above Fe
(3 (3
Mn Oを、例えば、 Fe〇に Mnをドープして製造した場合、 Fe〇の Asiteの Fe3 4 3 4 3 4 The Mn O, for example, when prepared by doping Mn into Fe_〇, Fe of Asite of Fe_〇 3 4 3 4 3 4
+が Mnで選択的に置換されることになる。  + Will be selectively replaced with Mn.
[0047] また、上記強磁性伝導体材料は、磁気抵抗に影響を及ぼさない程度で、その他の 物質がドープされていてもよい。換言すると、上記強磁性伝導体材料に、磁気抵抗 に影響を及ぼさない程度で、その他の物質をドープしてもよい。また、その他の物質 をドープする際には、上記強磁性伝導体材料は、 M M' O (M~:その [0047] Further, the ferromagnetic conductor material may be doped with other substances to the extent that it does not affect the magnetoresistance. In other words, the ferromagnetic conductor material may be doped with another substance to the extent that it does not affect the magnetoresistance. In addition, when doping other substances, the ferromagnetic conductor material is M M 'O (M ~:
(,Α— z) x z y  (, Α— z) x z y
他の物質、このとき x + z<A、他の条件は上記と同じ)で表すことができる。  Other substances, where x + z <A, other conditions are the same as above.
[0048] (強磁性伝導体材料の製造方法) [0048] (Method for producing ferromagnetic conductor material)
次に、上記強磁性伝導体材料の製造方法について説明する。上記強磁性伝導体 材料を製造するには、 Fe Oに Mnを添加して、上記 Fe Mn Oの xが 0<x≤0.  Next, the manufacturing method of the said ferromagnetic conductor material is demonstrated. In order to manufacture the ferromagnetic conductor material, Mn is added to Fe O and x of Fe Mn O is 0 <x≤0.
3 4 (3-x) x 4  3 4 (3-x) x 4
8となるように調整したものを、例えば、所定の条件にて、レーザアブレーシヨン法によ り成膜すればよい。換言すると、上記化学式(1)で示される組成物を、基板に蒸着さ せることにより、 Fe Oに Mnをドープした強磁性伝導体材料を製造することができる  What is adjusted to be 8 may be formed by, for example, a laser ablation method under a predetermined condition. In other words, a ferromagnetic conductor material doped with Mn in Fe 2 O can be produced by depositing the composition represented by the chemical formula (1) on the substrate.
3 4  3 4
。また、上記化学式(1)で示される組成物を基板に蒸着させる製造方法としては、上 記レーザアブレーシヨン法以外にも、例えば、 MBE (Molecular Beam Epitaxy)法、レ 一ザ MBE法、スパッタ法、 CVD法等を用いて製造してもよい。  . In addition to the laser ablation method described above, for example, the MBE (Molecular Beam Epitaxy) method, laser MBE method, sputtering method can be used as the manufacturing method for depositing the composition represented by the chemical formula (1) on the substrate. You may manufacture using a method, CVD method, etc.
[0049] また、上記強磁性伝導体材料は、例えば、 MnOに Feを添加したものを、例えば、 [0049] The ferromagnetic conductor material is, for example, a material obtained by adding Fe to MnO, for example,
3  Three
レーザアブレーシヨン法を用いて成膜することによつても製造することができる。  It can also be manufactured by forming a film using a laser ablation method.
[0050] つまり、一般式で表すと、本実施の形態にかかる強磁性伝導体材料の製造方法は 、化学式 M O (上記 Mは、 Fe、 Cr、 Ti、 Znのいずれかを示し、 A、 yは Mの種類によ[0050] In other words, when expressed by a general formula, the method of manufacturing a ferromagnetic conductor material according to the present embodiment is as follows: , Chemical formula MO (where M is one of Fe, Cr, Ti, and Zn, and A and y depend on the type of M
A A
つて変化する定数)で示される酸化物に M' (上記 M'は Mn、 Znの少なくとも一方を 示し、上記 Mによって決まる)を(例えば、レーザアブレーシヨン法を用いて)ドープす ることにより M M' Oで示す強磁性伝導体材料を製造することができる。また、  By doping M ′ (wherein M ′ represents at least one of Mn and Zn, and is determined by M) (for example, using a laser ablation method). A ferromagnetic conductor material denoted by MM ′ O can be produced. Also,
(A  (A
化学式 M' O (上記 M'は、 Mn、 Znの少なくとも一方を示し、 x、 yは M'の種類によ つて変化する定数)で示される酸化物に M (上記 Mは Fe、 Cr、 Ti、 Znのいずれかを 示す)をドープすることで、 M M' Oで示す強磁性伝導体材料を製造することが  An oxide represented by the chemical formula M ′ O (where M ′ is at least one of Mn and Zn, and x and y are constants that vary depending on the type of M ′) is M (where M is Fe, Cr, Ti A ferromagnetic conductor material represented by MM'O can be manufactured by doping
(A  (A
できる。  it can.
[0051] そして、上記レーザアブレーシヨン法を用いて、化学式(1)で示される組成物を、基 板に蒸着させる場合の製造条件としては、レーザ: ArFエキシマレーザ (波長 193nm )、レーザパルス周波数 2〜3Hzの条件で製造すればよい。なお、レーザの種類、波 長および周波数にっレ、ては、上記強磁性伝導体材料に熱エネルギーを供給でき、 上記レーザアブレーシヨンを行うことができるものであれば、特に限定されるものでは ない。また、上記レーザアブレーシヨン法を用いて製造する場合、レーザの照射時間 については、製造する強磁性伝導体材料の膜厚によって変わるが、例えば、膜厚 50 〜100nm程度の強磁性伝導体材料を得る場合には、レーザ照射時間は 2〜4時間 程度であればよい。  [0051] The production conditions for depositing the composition represented by the chemical formula (1) on the substrate using the laser ablation method are as follows: laser: ArF excimer laser (wavelength: 193 nm), laser pulse What is necessary is just to manufacture on condition of frequency 2-3Hz. Note that the type, wavelength, and frequency of the laser are not particularly limited as long as they can supply thermal energy to the ferromagnetic conductor material and perform the laser ablation. is not. In the case of manufacturing using the laser ablation method, the laser irradiation time varies depending on the film thickness of the ferromagnetic conductor material to be manufactured. For example, a ferromagnetic conductor material having a film thickness of about 50 to 100 nm. When obtaining the above, the laser irradiation time may be about 2 to 4 hours.
[0052] そして、本実施の形態に力かる強磁性伝導体材料の薄膜を製造する場合には、例 えば、 Fe O等の強磁性材料の薄膜を製造する場合と比べて、基板に化学式(1)で  [0052] Then, in the case of manufacturing a thin film of a ferromagnetic conductor material according to the present embodiment, for example, compared to the case of manufacturing a thin film of a ferromagnetic material such as Fe 2 O, a chemical formula ( In 1)
3 4  3 4
示される組成物を蒸着させる際の、基板温度および酸素ガス圧等の製造条件を緩和 すること力 sできる。  It is possible to relax manufacturing conditions such as substrate temperature and oxygen gas pressure when depositing the composition shown.
[0053] 具体的には、例えば、 Fe O等の強磁性材料の薄膜を製造する場合と比べて、基  Specifically, for example, compared with the case of manufacturing a thin film of a ferromagnetic material such as Fe 2 O 3,
3 4  3 4
板温度については、 700°C以下の温度で製造 (成膜)することができる。なお、例え ば、本実施の形態に力かる強磁性伝導体材料を他の物質と組み合わせる場合には 、当該他の物質の種類によっては、 600°C以下(例えば 500〜600°Cの範囲内)が 好ましい場合もある。これは、従来の Fe O等の強磁性材料を成膜する際に必要で  The plate temperature can be manufactured (deposited) at a temperature of 700 ° C or lower. For example, when the ferromagnetic conductor material that is effective in the present embodiment is combined with another substance, depending on the type of the other substance, it is 600 ° C. or lower (eg, within a range of 500 to 600 ° C.). ) May be preferred. This is necessary when depositing conventional ferromagnetic materials such as Fe 2 O.
3 4  3 4
ある 400°C以下の条件と比べて著しく改善されている。つまり、本実施の形態にかか る強磁性伝導体材料の薄膜は、従来の強磁性伝導体である Fe Oでは不可能であ つた、 420〜700°Cの基板温度の範囲内、例えば、 450〜700°Cの基板温度の範囲 内で製造することができる。 This is a significant improvement over certain conditions below 400 ° C. In other words, the thin film of the ferromagnetic conductor material according to the present embodiment is not possible with the conventional ferromagnetic conductor Fe 2 O. Further, it can be manufactured within a substrate temperature range of 420 to 700 ° C., for example, within a substrate temperature range of 450 to 700 ° C.
[0054] 一方、酸素ガス圧については、 lOPa以下で成膜することができる。これは、上記 Fe 〇等の強磁性材料を成膜する際に必要である 10_4Pa以下の条件と比べて著しく[0054] On the other hand, the oxygen gas pressure can be formed at lOPa or less. This significantly compared to 10_ 4 Pa following conditions is necessary when forming the ferromagnetic material, such as the Fe 〇
3 4 3 4
改善されている。つまり、本実施の形態に力かる強磁性伝導体の薄膜は、従来の強 磁性伝導体である Fe〇では成膜が不可能であった、 10_3〜: !OPaの酸素ガス圧の It has been improved. In other words, the thin film forms the force mow ferromagnetic conductor of the present embodiment, in the conventional a ferromagnetic conductor Fe_〇 film formation was impossible, 10_ 3 ~: oxygen gas pressure OPa
3 4  3 4
範囲内、 10_2〜10Paの酸素ガス圧の範囲内、 10―1〜 lOPaの酸素ガス圧の範囲内 等の高い酸素ガス圧の条件下で製造することができる。 Range, can be 10 within the _2 10 Pa for oxygen gas pressure, to produce under the conditions of high oxygen gas pressure of such a range of the oxygen gas pressure of 10- 1 ~ lOPa.
[0055] そして、上記強磁性伝導体材料の薄膜は、従来の強磁性伝導体である Fe Oでは [0055] The thin film of the ferromagnetic conductor material is made of Fe O, which is a conventional ferromagnetic conductor.
3 4 成膜が不可能であった、 450〜700°Cの基板温度の範囲内、かつ、 10_3〜: !OPaの 酸素ガス圧の範囲内で製造することができる。 3 4 deposition was impossible, in the range of the substrate temperature of 450-700 ° C, and 10_ 3 ~: can be produced within the oxygen gas pressure OPa.
[0056] つまり、上記条件のように、高温かつ高酸素圧下で上記強磁性伝導体材料を製造 That is, the ferromagnetic conductor material is manufactured at high temperature and high oxygen pressure as in the above conditions.
(成膜)した場合でも、強磁性および伝導性を保持させることができるので、当該強磁 性伝導体材料を、例えば、(強)誘電体材料等の他の物質と組み合わせるために、高 温かつ高酸素圧下に曝した場合でも、当該当該強磁性伝導体材料の特性を維持す ること力 Sできる。  Even when (film formation) is performed, ferromagnetism and conductivity can be maintained, so that the ferromagnetic conductor material can be combined with another substance such as a (strong) dielectric material at a high temperature. Even when exposed to high oxygen pressure, it is possible to maintain the characteristics of the ferromagnetic conductor material.
[0057] また、上記強磁性伝導体材料を製造する際に用いる基板としては、例えば、 MgO 、 MgAl〇、および、 A1〇等の基板が好ましい。上記 MgOを基板として用いること [0057] Further, as the substrate used in manufacturing the ferromagnetic conductor material, for example, substrates such as MgO, MgAlO, and A10 are preferable. Use MgO as a substrate
2 4 2 3 2 4 2 3
は、当該 MgOと Fe Mn〇との格子定数が近い値であるため好ましい。また、上  Is preferable because the lattice constants of MgO and Fe MnO are close to each other. Also on
(3 4  (3 4
記 MgAl〇を基板として用いることは、当該 MgAl〇と Fe Mn〇とは互いにス  Note Using MgAlO as a substrate means that MgAlO and Fe MnO
2 4 2 4 (3 4  2 4 2 4 (3 4
ピネル構造であり結晶構造がほぼ同じであるため好ましい。また、上記 A1〇は安価  A pinel structure is preferable because the crystal structure is almost the same. A10 above is cheap
2 3 であるため基板として用いることが好ましい。  Since it is 2 3, it is preferably used as a substrate.
[0058] また、上記強磁性伝導体材料を製造する際に、高酸素圧で薄膜化を行うほど強磁 性を示し難ぐ低酸素圧で薄膜ィヒを行うほど強磁性を示し易くなる。これは、強磁性 伝導体材料を製造する際に酸素量を増やすことによって、キャリア (電子)濃度が低く なり、キャリア濃度が低くなるにつれてキュリー温度も低下するからである。従って、一 般に n型 (電子系の)強磁性伝導体材料を製造する際には、低酸素圧で薄膜化を行 うことがより好ましい。し力 ながら、上記強磁性伝導体材料を他の物質 (例えば、絶 縁体)と組み合わせる際には、高酸素圧および高基板温度で成膜を行う必要がある 場合がある。ところが、従来の例えば、 Fe O等の強磁性材料は、高酸素圧および高 [0058] Further, when the ferromagnetic conductor material is manufactured, it becomes easier to exhibit ferromagnetism as a thin film is formed at a low oxygen pressure, which is less likely to exhibit strong magnetic properties as the film is thinned at a higher oxygen pressure. This is because the carrier (electron) concentration decreases by increasing the amount of oxygen when manufacturing the ferromagnetic conductor material, and the Curie temperature decreases as the carrier concentration decreases. Therefore, in general, when manufacturing an n-type (electronic system) ferromagnetic conductor material, it is more preferable to reduce the film thickness at a low oxygen pressure. However, the ferromagnetic conductor material can be used for other substances (e.g. When combined with the edge), it may be necessary to perform film formation at high oxygen pressure and high substrate temperature. However, conventional ferromagnetic materials such as Fe 2 O have high oxygen pressure and high
3 4  3 4
基板温度で成膜した場合、強磁性を示すことができなレ、。一方、本実施の形態にか かる強磁性伝導体材料は、高酸素圧および高基板温度で成膜を行った場合でも、 強磁性を示すことができる。このため、上記強磁性伝導体材料は、高酸素圧および 高基板温度で成膜を行っても強磁性を示したまま、他の物質と組み合わせることがで きる。  When film is formed at the substrate temperature, it cannot show ferromagnetism. On the other hand, the ferromagnetic conductor material according to the present embodiment can exhibit ferromagnetism even when film formation is performed at a high oxygen pressure and a high substrate temperature. Therefore, the ferromagnetic conductor material can be combined with other substances while exhibiting ferromagnetism even when film formation is performed at a high oxygen pressure and a high substrate temperature.
[0059] 以上のように、本実施の形態に力かる強磁性伝導体材料は、化学式(1)  [0059] As described above, the ferromagnetic conductor material used in the present embodiment has the chemical formula (1)
M M' O  M M 'O
(A  (A
(上記 Xは、 0 < x≤0. 8の範囲の数値であり、上記 A、 yは Mの種類によって変化す る定数であり、上記 Mが Feの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが C rの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 ΜΊま Mn、 Znの 少なくとも一方であり、上記 Mが Znの場合 は Mnである)  (X is a numerical value in the range of 0 <x ≤ 0.8, A and y are constants that vary depending on the type of M, and when M is Fe, either Mn or Zn. Yes, if M is Cr, then it is at least one of Mm, Zn, and if M is Ti, it is at least one of Mn, Zn, and Mn if M is Zn)
で示される構成である。具体的には、上記強磁性伝導体材料は、二元系強磁性酸 化物(Fe O、 CrO等)または二元系酸化物(Ti〇、 ZnO等)に、例えば、 Mn、 Zn  It is the structure shown by. Specifically, the above-mentioned ferromagnetic conductor material is made of binary ferromagnetic oxide (Fe 2 O, CrO, etc.) or binary oxide (Ti 0, ZnO, etc.), for example, Mn, Zn
3 4 2 2  3 4 2 2
等の物質を添加している。これにより、上記強磁性伝導体材料は、上記二元系強磁 性酸化物または上記二元系酸化物と比べて、熱力学的に安定になるため、当該強 磁性伝導体材料を成膜する際の成膜条件を、従来よりも緩和させることができる。  Etc. are added. As a result, the ferromagnetic conductor material is thermodynamically more stable than the binary ferromagnetic oxide or the binary oxide, and thus the ferromagnetic conductor material is deposited. The film forming conditions at the time can be relaxed as compared with the conventional case.
[0060] そして、上記強磁性伝導体材料を高基板温度かつ高酸素圧下で薄膜化した場合 でも、強磁性およびスピン偏極特性が失われることがなレ、。  [0060] Even when the ferromagnetic conductor material is thinned at a high substrate temperature and high oxygen pressure, the ferromagnetic and spin polarization characteristics are not lost.
[0061] つまり、上記の構成とすることで、高基板温度かつ高酸素圧下でも変質することが なレ、(強磁性を保つことができる)ので、他の物質と組み合わせてヘテロ構造を作製 する際の形成条件 (成膜条件)、換言すると、半導体接合素子等を作製する形成条 件を緩和させることができる。従って、高基板温度かつ高酸素圧下で半導体接合素 子を作製した場合でも、上記強磁性伝導体材料の強磁性を保たせることができる。  [0061] That is, with the above-described structure, the structure cannot be altered even under high substrate temperature and high oxygen pressure (it can maintain ferromagnetism), so that a heterostructure is manufactured in combination with other substances. The formation conditions (film formation conditions) at the time, in other words, the formation conditions for manufacturing the semiconductor junction element and the like can be relaxed. Therefore, the ferromagnetism of the ferromagnetic conductor material can be maintained even when a semiconductor junction element is produced at a high substrate temperature and a high oxygen pressure.
[0062] そして、上記化学式(1)で示される化合物が、 Fe Mn Oである場合には、当  [0062] When the compound represented by the chemical formula (1) is Fe 2 Mn 2 O,
(3 4  (3 4
該 Fe Mn Oは、室温で強磁性を示すので、これを強磁性伝導体材料として利 Since Fe Mn O exhibits ferromagnetism at room temperature, it can be used as a ferromagnetic conductor material.
(3 4 (3 4
用することで、室温で動作可能な半導体接合素子を得ることができる。また、 Fe Mn Oは、強磁性体である Fe Oと比べて、他の物質と組み合わせるための形成条 4 3 4 Therefore, a semiconductor junction element that can operate at room temperature can be obtained. Fe Compared with Fe O, which is a ferromagnet, Mn O is a forming strip that can be combined with other materials.
件が緩和されているので、従来は不可能であった例えば、 Fe Mn〇 /Pb (ZrT  For example, Fe MnO / Pb (ZrT
(3 4 i) 0等の誘電体へテロ構造を形成することが可能となるので、従来ではできなかった (3 4 i) It is possible to form a dielectric heterostructure such as 0, which was not possible in the past
3 Three
半導体接合素子を作製することができる。  A semiconductor junction element can be produced.
[0063] また、本発明にかかる強磁性伝導体材料は、上記電界効果トランジスタおよびトン ネル磁気抵抗素子の他に、例えば、巨大磁気抵抗効果 (GMR)を利用した素子や、 磁気センサー等にも適用することができる。 In addition to the field effect transistor and the tunnel magnetoresistive element, the ferromagnetic conductor material according to the present invention is also applicable to an element using a giant magnetoresistive effect (GMR), a magnetic sensor, and the like. Can be applied.
[0064] 以下に、上記強磁性伝導体材料を他の物質と組み合わせた半導体接合素子の具 体例について説明する。 [0064] Specific examples of semiconductor junction elements in which the ferromagnetic conductor material is combined with other substances will be described below.
[0065] (強磁性伝導体材料を用いた半導体接合素子) [0065] (Semiconductor junction element using ferromagnetic conductor material)
上記のように強磁性伝導体材料は、例えば、 Fe Oと比べて、電気的特性を維持し  As mentioned above, ferromagnetic conductor materials maintain their electrical properties compared to, for example, Fe 2 O.
3 4  3 4
たままで薄膜化することができる。上記のように強磁性を示すためには、高温、高酸 素濃度の環境下で強磁性伝導体材料を製造する必要がある力 例えば、 Fe〇を  It can be thinned as it is. In order to show ferromagnetism as described above, it is necessary to produce a ferromagnetic conductor material in an environment of high temperature and high oxygen concentration.
3 4 高温、高酸素濃度の環境下で成膜した場合には、磁気抵抗を示さない ct—Fe O  3 4 Does not exhibit magnetoresistance when deposited in a high temperature, high oxygen concentration environment.
2 3 に変化してしまうので他の物質と組み合わせ難い。  Since it changes to 2 3, it is difficult to combine with other substances.
[0066] ところが、本実施の形態にかかる Fe Mn Oは、高温、高酸素濃度の環境下で [0066] However, Fe Mn O according to the present embodiment is used in an environment of high temperature and high oxygen concentration.
(3 4  (3 4
成膜 (製造)した場合でも、変質 (構造変化)することなく強磁性を示すことができる。 従って、上記強磁性伝導体材料である Fe Mn Oを、強磁性かつを示したまま他  Even when a film is formed (manufactured), ferromagnetism can be exhibited without alteration (structural change). Therefore, Fe Mn O, which is the above ferromagnetic conductor material, is ferromagnetic and other
(3 4  (3 4
の物質と組み合わせることができる。具体的には、上記 Fe Mn Oを用いて、例  Can be combined with other substances. Specifically, using Fe Mn O above,
(3 4  (3 4
えば、電界効果トランジスタおよびトンネル磁気抵抗素子等の半導体接合素子を製 造することができる。以下に、上記強磁性伝導体材料を備えた電界効果トランジスタ およびトンネル磁気抵抗素子の構成について説明する。  For example, semiconductor junction elements such as field effect transistors and tunnel magnetoresistive elements can be manufactured. Below, the structure of the field effect transistor and tunnel magnetoresistive element provided with the said ferromagnetic conductor material is demonstrated.
[0067] (電界効果トランジスタ) [0067] (Field Effect Transistor)
本実施の形態に力かる電界効果トランジスタは、上記強磁性伝導体材料からなる 強磁性体層に、強誘電体化合物または誘電体化合物からなる誘電体層が接合され て構成されている。上記電界効果トランジスタは、図 1に示すようにトップゲート型の 構造であってもよぐ図 2に示すようにボトムゲート型の構造であってもよレ、。なお、図 1は、トップゲート型の電界効果トランジスタの概略構成を示す側面図であり、図 2は、 ボトムゲート型の電界効果トランジスタの概略構成を示す側面図である。 The field effect transistor according to the present embodiment is configured by bonding a dielectric layer made of a ferroelectric compound or a dielectric compound to a ferromagnetic layer made of the above ferromagnetic conductor material. The field effect transistor may have a top-gate structure as shown in FIG. 1 or a bottom-gate structure as shown in FIG. FIG. 1 is a side view showing a schematic configuration of a top gate type field effect transistor, and FIG. It is a side view which shows schematic structure of a bottom gate type field effect transistor.
[0068] 上記トップゲート型の電界効果トランジスタは、図 1に示すように、強磁性体層 2、誘 電体層 1、ソース電極 4、ゲート電極 3およびドレイン電極 5から構成されている。そし て、上記強磁性体層 2は、基板 6上に形成されている。 As shown in FIG. 1, the top gate type field effect transistor includes a ferromagnetic layer 2, an dielectric layer 1, a source electrode 4, a gate electrode 3 and a drain electrode 5. The ferromagnetic layer 2 is formed on the substrate 6.
[0069] 具体的には、基板 6の上に強磁性体層 2が形成されており、基板 6の強磁性体層 2 が形成されている面に誘電体層 1が積層されている。すなわち、強磁性体層 2と誘電 体層 1とは接合 (ヘテロ接合)されている。そして、誘電体層 1には、ゲート電極 3が設 けられており、強磁性体層 2には、ソース電極 4とドレイン電極 5とが誘電体層 1を挟ん で設けられている。このとき、誘電体層 1と強磁性体層 2とが接合している面積が、電 界効果トランジスタとしての動作範囲となる。 Specifically, the ferromagnetic layer 2 is formed on the substrate 6, and the dielectric layer 1 is laminated on the surface of the substrate 6 on which the ferromagnetic layer 2 is formed. That is, the ferromagnetic layer 2 and the dielectric layer 1 are joined (heterojunction). The dielectric layer 1 is provided with a gate electrode 3, and the ferromagnetic layer 2 is provided with a source electrode 4 and a drain electrode 5 with the dielectric layer 1 interposed therebetween. At this time, the area where the dielectric layer 1 and the ferromagnetic layer 2 are joined is the operating range of the field effect transistor.
[0070] 次に、ボトムゲート型の電界効果トランジスタについて説明する。上記ボトムゲート 型の電界効果トランジスタとは、図 2に示すように、チャネル層(強磁性体層)である F e Mn Oが基板 6と接しておらず、一方の面が剥き出しになっている。つまり、本Next, a bottom gate type field effect transistor will be described. As shown in FIG. 2, the bottom gate type field effect transistor is such that the channel layer (ferromagnetic layer) Fe Mn O is not in contact with the substrate 6 and one surface is exposed. . That is, book
(3 4 (3 4
実施の形態に力かる電界効果トランジスタにおいて、チャネル層である Fe Mn〇  In the field-effect transistor that contributes to the embodiment, the channel layer is Fe Mn
(3 は、光を受光することができるようになっている。従って、本実施の形態にかかる電 (3 is designed to be able to receive light.
4 Four
界効果トランジスタは、電界で磁性を制御する結果、入射した光の偏光面を電界で 制御する光変調器とすることができる。そして、上記電界効果トランジスタは、チヤネ ル層である Fe Mn Oの一方の面が剥き出しになっているために、光の出し入れ  As a result of controlling the magnetism with an electric field, the field effect transistor can be an optical modulator that controls the polarization plane of incident light with an electric field. In the field effect transistor, since one surface of the Fe Mn O that is the channel layer is exposed, light is put in and out.
(3 4  (3 4
を有利に行うことができる。  Can be advantageously performed.
[0071] また、ボトムゲート型の電界効果トランジスタは、図 2に示すように、基板 6と強誘電 体ゲート層(誘電体層)である Pb (Zr,Ti) 0との間に、ゲート電極(例えば、(La,Ba)  In addition, as shown in FIG. 2, the bottom gate type field effect transistor has a gate electrode between a substrate 6 and a ferroelectric gate layer (dielectric layer) Pb (Zr, Ti) 0. (For example, (La, Ba)
3  Three
MnOまたは SrRuO等の酸化物)が形成されている。つまり、ボトムゲート型の電界 Oxides such as MnO or SrRuO). In other words, a bottom-gate electric field
3 3 3 3
効果トランジスタは、基板 6の上に、ゲート電極 3、誘電体層(ゲート層) 1および強磁 性体層(チャネル層) 2が、この順に積層されてレ、る(基板 6とゲート電極 3とが接して レ、る)。そして、電界効果トランジスタには、強磁性体層 2である Fe Mn Oの表面  In the effect transistor, a gate electrode 3, a dielectric layer (gate layer) 1 and a ferromagnet layer (channel layer) 2 are laminated in this order on a substrate 6 (substrate 6 and gate electrode 3). And come in contact) The field effect transistor includes a surface of Fe Mn O, which is the ferromagnetic layer 2.
(3 4 に、ドレイン電極 5とソース電極 4とが設けられ、基板 6上には、ゲート電極 3が設けら れている。  (A drain electrode 5 and a source electrode 4 are provided on 3 4, and a gate electrode 3 is provided on the substrate 6.
[0072] そして、ボトムゲート型の電界効果トランジスタとした場合には、トップゲート型の電 界効果トランジスタと比べて、 Fe Mn Oが基板 6とは接しておらず、誘電体層 1 [0072] When a bottom-gate field effect transistor is used, a top-gate type Compared to the field effect transistor, Fe Mn O is not in contact with the substrate 6 and the dielectric layer 1
(3 4  (3 4
のみと接している。一般に、基板 6界面では、 dead層と呼ばれる制御が困難な層が存 在している。本実施の形態に力かる電界効果トランジスタは、強磁性体層 2が上記基 板 6と接していないので、より大きな磁性転移温度変化が期待できる。なお、上記ボト ムゲート型の電界効果トランジスタを製造する場合には、誘電体層 2上に強磁性体層 Only touching. In general, there is a layer called the dead layer that is difficult to control at the substrate 6 interface. In the field effect transistor according to the present embodiment, since the ferromagnetic layer 2 is not in contact with the substrate 6, a larger change in the magnetic transition temperature can be expected. When manufacturing the above-mentioned bottom gate type field effect transistor, a ferromagnetic layer on the dielectric layer 2 is used.
2を、例えば、レーザアブレーシヨン法を用いて成膜すればよい。 For example, the film 2 may be formed using a laser ablation method.
[0073] そして、図 1および図 2に示す上記強磁性体層 2が、本実施の形態の強磁性伝導 体材料である。 [0073] The ferromagnetic layer 2 shown in Figs. 1 and 2 is the ferromagnetic conductor material of the present embodiment.
[0074] また、上記誘電体層 1は、強誘電体または誘電体から構成されている。上記誘電体 層 1を構成している強誘電体または誘電体としては、特に限定されるものではなぐ種 々のものが使用できる。  Further, the dielectric layer 1 is composed of a ferroelectric or a dielectric. As the ferroelectric or dielectric constituting the dielectric layer 1, various kinds of materials can be used without particular limitation.
[0075] 上記誘電体としては、具体的には、 SrTiO、 Al〇、 Mg〇等が挙げられる。上記  [0075] Specific examples of the dielectric include SrTiO, AlO, MgO, and the like. the above
3 2 3  3 2 3
例示の誘電体のうち、誘電率の大きさ、入手のし易さの点で SrTiO力 Sより好ましい。  Among the exemplified dielectrics, SrTiO force S is preferable in terms of permittivity and availability.
3  Three
[0076] また、上記強誘電体としては、具体的には、(Ba Sr ) TiO (ただし、 yは、 0 < y i -y y 3  [0076] Further, as the ferroelectric, specifically, (Ba Sr) TiO (where y is 0 <y i -y y 3
く 1の関係を満たす)、 PbTiO 、 Pb (Zr Ti ) O (ただし、 zは、 0 < ζ < 1の関係を  1)), PbTiO, Pb (ZrTi) O (where z is 0 <ζ <1
1— ζ ζ 3  1— ζ ζ 3
満たす)、 BaTiO等が挙げられる。上記例示の強誘電体のうち、誘電分極の大きさ  BaTiO and the like. Among the ferroelectrics illustrated above, the magnitude of dielectric polarization
3  Three
の点で Pb (Zr,Ti)〇力 り好ましい。  This is preferable to Pb (Zr, Ti).
3  Three
[0077] そして、本実施の形態において、強磁性体層 2として、 Fe Mn O (ただし、 xは  In the present embodiment, as the ferromagnetic layer 2, Fe Mn O (where x is
(3 4  (3 4
、 0 < χ≤0. 8の関係を満たす)を用レ、、誘電体層 1として誘電体 (例えば、 SrTiO )  , Satisfying the relation of 0 <χ ≤ 0.8. 8), dielectric as dielectric layer 1 (eg, SrTiO 3)
3 を用いる場合には、スイッチング素子として機能する電界効果トランジスタとすること ができる。  When 3 is used, it can be a field effect transistor that functions as a switching element.
[0078] 一方、本実施の形態において、強磁性体層 2として、 Fe Mn O (ただし、 xは、  On the other hand, in the present embodiment, as the ferromagnetic layer 2, Fe Mn O (where x is
(3 4  (3 4
0 < x≤0. 8の関係を満たす)を用レ、、誘電体層 1として強誘電体 (例えば、 Pb (Zr,T D O )を用いる場合には、電圧を印加していない状態でも変調が保持されるために、  0 <satisfying the relation x <x ≤ 0.8), and when using a ferroelectric (eg Pb (Zr, TDO)) as the dielectric layer 1, modulation is possible even when no voltage is applied. To be retained
3  Three
メモリ効果を有する。また、上記構成の電界効果トランジスタに電界を印加した場合、 誘電体層 1と強磁性体層 2との接合界面付近に、電界無印加時と比べて、キャリア( 電子)濃度の高レ、層もしくは低レ、層が形成される。このキャリア濃度の高レ、部分をァ キュムレート(accumulate)層と呼ぶ。上記構成の電界効果トランジスタは、上記アキュ ムレート層を利用しており、常磁性 (磁化がない状態)から強磁性 (磁化の大きい状態 )へとスィッチできる。 Has a memory effect. In addition, when an electric field is applied to the field effect transistor having the above configuration, a layer with a higher carrier (electron) concentration is formed near the junction interface between the dielectric layer 1 and the ferromagnetic layer 2 than when no electric field is applied. Alternatively, a low layer is formed. This portion with a high carrier concentration is called an accumulate layer. The field effect transistor having the above configuration is the above-mentioned accumulator. It uses a mute layer and can switch from paramagnetism (no magnetization) to ferromagnetism (magnetization).
[0079] (トンネル磁気抵抗素子)  [0079] (Tunnel magnetoresistive element)
本実施の形態に力かるトンネル磁気抵抗素子は、第 1強磁性体層と第 2強磁性体 層とが、中間層を介して接合されており、上記第 1強磁性体層の磁化および上記第 2 強磁性体層の磁化に応じたトンネル磁気抵抗を示すものである。  In the tunnel magnetoresistive element according to the present embodiment, the first ferromagnetic layer and the second ferromagnetic layer are joined via an intermediate layer, and the magnetization of the first ferromagnetic layer and the above It shows the tunneling magnetoresistance according to the magnetization of the second ferromagnetic layer.
[0080] 上記トンネル磁気抵抗素子は、図 3に示すように、第 1強磁性体層 11と中間層 12と 第 2強磁性体層 13とがこの順で接合されて積層されている。より具体的には、図 4に 示すように、基板 16の上に、第 2強磁性体層 13と中間層 12と第 1強磁性体層 11とが この順で積層されており、第 2強磁性体層 13には電極 14力 第 1強磁性体層 11に は電極 15がそれぞれ設けられてレ、る。  In the tunnel magnetoresistive element, as shown in FIG. 3, the first ferromagnetic layer 11, the intermediate layer 12, and the second ferromagnetic layer 13 are joined and laminated in this order. More specifically, as shown in FIG. 4, a second ferromagnetic layer 13, an intermediate layer 12, and a first ferromagnetic layer 11 are laminated in this order on a substrate 16, The ferromagnetic layer 13 is provided with an electrode 14 force, and the first ferromagnetic layer 11 is provided with an electrode 15.
[0081] この上記構成のトンネル磁気抵抗素子の、第 1強磁性体層 11および第 2強磁性体 層 13との少なくとも一方が、上記強磁性伝導体材料である。また、上記第 1強磁性体 層 11および第 2強磁性体層 13のうち、一方が上記強磁性伝導体材料の場合、他方 の強磁性体層を構成している組成物としては、例えば、 Fe O、 CrO、(La,Ba) Mn  [0081] At least one of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 of the tunnel magnetoresistive element having the above configuration is the ferromagnetic conductor material. When one of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 is the ferromagnetic conductor material, the composition constituting the other ferromagnetic layer is, for example, Fe O, CrO, (La, Ba) Mn
3 4 2  3 4 2
〇、 (La'Sr) MnO、(La,Ca) MnO等が挙げられる。  ◯, (La'Sr) MnO, (La, Ca) MnO and the like.
3 3 3  3 3 3
[0082] また、上記第 1強磁性体層 11および第 2強磁性体層 13のうち、一方は強磁性 n型 半導体で構成されており、他方は強磁性 p型半導体で構成されており、中間層 12が 絶縁体であることがより好ましい。そして、上記のように、一方は強磁性 n型半導体で 構成されており、他方は強磁性 p型半導体でトンネル磁気抵抗素子が構成されてレヽ る場合、上記強磁性伝導体材料は、強磁性 n型半導体に相当する。そして、このとき 、強磁性 p型半導体としては、例えば、(La,Ba) Mn〇、 (La,Sr) MnO、 (La,Ca) M  [0082] Further, one of the first ferromagnetic layer 11 and the second ferromagnetic layer 13 is composed of a ferromagnetic n-type semiconductor, and the other is composed of a ferromagnetic p-type semiconductor. More preferably, the intermediate layer 12 is an insulator. As described above, when one is made of a ferromagnetic n-type semiconductor and the other is made of a ferromagnetic p-type semiconductor to form a tunnel magnetoresistive element, the ferromagnetic conductor material is made of a ferromagnetic material. It corresponds to an n-type semiconductor. At this time, as the ferromagnetic p-type semiconductor, for example, (La, Ba) MnO, (La, Sr) MnO, (La, Ca) M
3 3  3 3
ηθ等が挙げられる。  ηθ and the like can be mentioned.
3  Three
[0083] そして、上記中間層 12は、絶縁体、金属または半導体によって構成されている。こ こで、上記中間層 12が絶縁体で構成されている場合、この絶縁体としては、例えば、 Mg〇、 Al O、 SrTiO、 CeO、 SiO、絶縁性有機薄膜等が挙げられる。上記中間  The intermediate layer 12 is made of an insulator, metal, or semiconductor. Here, when the intermediate layer 12 is made of an insulator, examples of the insulator include MgO, Al 2 O, SrTiO, CeO, SiO, and an insulating organic thin film. Above middle
2 3 3 2 2  2 3 3 2 2
層 12を絶縁体とすることにより、トンネル接合素子を製造することができる。  By using the layer 12 as an insulator, a tunnel junction element can be manufactured.
[0084] また、上記中間層 12が金属で構成されている場合、この金属としては、例えば、 Cu 、 SrTiOに Laおよび/または Nbをドープしたもの(ドープ量が例えば 1重量%以上[0084] When the intermediate layer 12 is made of metal, examples of the metal include Cu. , SrTiO doped with La and / or Nb (doping amount is 1% by weight or more, for example)
3 Three
)、 SrTiOに酸素欠損を導入したもの、 LaNi〇等が挙げられる。上記中間層 12を  ), SrTiO into which oxygen deficiency is introduced, LaNiO, and the like. Middle layer 12 above
3 3  3 3
金属とすることにより、巨大磁気抵抗効果 (GMR)を得ることができる。  Giant magnetoresistance effect (GMR) can be obtained by using metal.
[0085] また、上記中間層 12が半導体で構成されている場合、この半導体としては、例えば 有機半導体(Alq、フタロシアニン化合物)、 SrTiOに Laおよび [0085] When the intermediate layer 12 is made of a semiconductor, examples of the semiconductor include an organic semiconductor (Alq, a phthalocyanine compound), SrTiO, La, and
3 3 Zまたは Nbをドー プしたもの(ドープ量が例えば 1重量%よりも少なレ、)等が挙げられる。上記中間層 12 を、上記例示の半導体とすることにより、 PNP接合素子を製造することができる。  3 3 Z or Nb doped (the amount of doping is less than 1% by weight, for example). A PNP junction element can be manufactured by using the intermediate layer 12 as the semiconductor exemplified above.
[0086] なお、半導体接合素子としては、上記トンネル磁気抵抗素子および電界効果トラン ジスタに限定されるものではなぐ例えば、図 5に示すように、上記強磁性伝導体材料 である強磁性 n型半導体層 21と強磁性 p型半導体層 22とをへテロ接合した半導体接 合素子としてもよい。 Note that the semiconductor junction element is not limited to the tunnel magnetoresistive element and the field effect transistor, for example, as shown in FIG. 5, a ferromagnetic n-type semiconductor that is the ferromagnetic conductor material. A semiconductor junction element in which the layer 21 and the ferromagnetic p-type semiconductor layer 22 are heterojunctioned may be used.
実施例  Example
[0087] 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらにより何ら 限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0088] 〔実施例 1〕 [Example 1]
まず、 Mn Fe O (x = 0. 1)の組成となるように、 Fe〇と Mnとを混合し、 2t/c  First, FeO and Mn are mixed so that the composition of MnFeO (x = 0.1) is 2t / c
0. 1 2. 9 4 3 4  0. 1 2. 9 4 3 4
m2の力でプレスした後、この混合物を 700°Cで焼結することにより焼結物を得た。な お、この時点では、この焼結物は単なる混合物の状態である。 After pressing with a force of m 2, the mixture was sintered at 700 ° C. to obtain a sintered product. At this point, the sintered product is just a mixture.
[0089] 基板温度: 400°C (600。C)、酸素ガス圧: 1. 0 X 10"2Pa (l . 0 X 10_5mbar)の条 件で、レーザアブレーシヨン法を用いて、 ArFエキシマレーザ(λ = 193nm、レーザ パルス周波数 3Hz)を、上記焼結物である Mn Fe O (x = 0. 1)に 2時間照射し [0089] Substrate temperature: 400 ° C (600.C), oxygen gas pressure: 1.0 X 10 " 2 Pa (l. 0 X 10 _5 mbar), using laser ablation method, An ArF excimer laser (λ = 193 nm, laser pulse frequency 3 Hz) was irradiated to the above sintered Mn Fe 2 O (x = 0.1) for 2 hours.
0. 1 2. 9 4  0. 1 2. 9 4
、 A1〇 (0001)面の単結晶基板上に Fe Mn 〇の薄膜を作製した。そして、 2  A thin film of Fe Mn 0 was fabricated on a single crystal substrate of A1O (0001) plane. And 2
2 3 2. 9 0. 1 4  2 3 2. 9 0. 1 4
つの温度(400°C、 600°C)で作製された薄膜について、それぞれ X線回折分析を行 つた。その結果を図 6に示す。  X-ray diffraction analysis was performed on thin films prepared at two temperatures (400 ° C and 600 ° C). The result is shown in Fig. 6.
[0090] 〔比較例 1〕 [Comparative Example 1]
Fe Mn O (x = 0. 1)の代わりに Fe〇 (x = 0)を用いた以外は、実施例 1と同 Same as Example 1 except that FeO (x = 0) was used instead of Fe Mn O (x = 0. 1).
2. 9 0. 1 4 3 4 2. 9 0. 1 4 3 4
様にして、 Fe Oの薄膜を作製した。そして、 2つの温度(400°C、 600°C)で作製さ れた薄膜について、それぞれ X線回折分析を行った。その結果を図 7に示す。 In this way, a thin film of Fe 2 O was produced. And produced at two temperatures (400 ° C, 600 ° C) Each thin film was subjected to X-ray diffraction analysis. The results are shown in Fig. 7.
[0091] 上記図 6、図 7の結果より、 Fe Oの薄膜は、 400°Cで成膜した場合には強磁性伝 [0091] From the results shown in FIGS. 6 and 7, the Fe 2 O thin film is ferromagnetic when it is formed at 400 ° C.
3 4  3 4
導体材料として使用できることが分かり、 600°Cで成膜すると不純物析出相であるひ -Fe Oが生じており、強磁性伝導体材料として使用できないことが分かる。  It can be seen that it can be used as a conductor material, and when the film is formed at 600 ° C, the impurity-precipitated phase -Fe 2 O is generated, indicating that it cannot be used as a ferromagnetic conductor material.
2 3  twenty three
[0092] 一方、 Fe〇に Mnをドープした、本発明にかかる強磁性伝導体材料(Fe Mn  [0092] On the other hand, the ferromagnetic conductor material according to the present invention (Fe Mn) doped with Mn in FeO
3 4 2. 9 0. 1 3 4 2. 9 0. 1
〇)は、 400°Cで成膜した場合でも 600°Cで成膜した場合でも、不純物析出相は検○) indicates that the impurity precipitation phase is detected whether the film is formed at 400 ° C or 600 ° C.
4 Four
出されなかった。このことより、 Mnをドープした本発明に力かる強磁性伝導体材料は 、 Fe Oの場合と比べて、高温の条件下でも不純物析出相を生じることなく問題なく It was not issued. From this, the ferromagnetic conductor material that is effective in the present invention doped with Mn has no problem without causing an impurity precipitation phase even under high temperature conditions as compared with the case of Fe 2 O.
3 4 3 4
成膜できることが分かる。  It can be seen that the film can be formed.
[0093] 〔実施例 2〕 [Example 2]
Mg〇(100)基板、基板温度: 300K、酸素ガス圧: 1 · 0 X 10"3Pa (l . 0 X 10"6m bar)、 ArFエキシマレーザ(え = 193nm、レーザパルス周波数 4Hz)、レーザ照射 時間: 4時間の条件で、レーザアブレーシヨン法を用いて、 Fe Mn O (x = 0. 1 , Mg ○ (100) substrate, substrate temperature: 300K, oxygen gas pressure: 1 · 0 X 10 " 3 Pa (l. 0 X 10" 6 m bar), ArF excimer laser (E = 193nm, laser pulse frequency 4Hz), Laser irradiation time: Fe Mn O (x = 0.1, using laser ablation method under the condition of 4 hours
(3-x) x 4  (3-x) x 4
0. 5)の薄膜 (強磁性伝導体材料)を作製した。なお、他の条件については実施例 1 と同様である。そして、作製された薄膜について、四端子法による電気抵抗率の温度 依存性(図 8)、 SQUIDによる磁化の磁場依存性(図 9)、電気抵抗率の置換濃度依 存性(図 10)、異常 Hall効果(図 11)、キャリア濃度と移動度の関係(図 12)の計測を 行った。  A thin film (ferromagnetic conductor material) of 0.5) was prepared. Other conditions are the same as in Example 1. For the prepared thin film, the temperature dependence of the electrical resistivity by the four probe method (Fig. 8), the magnetic field dependence of the magnetization by SQUID (Fig. 9), the substitution concentration dependence of the electrical resistivity (Fig. 10), The anomalous Hall effect (Fig. 11) and the relationship between carrier concentration and mobility (Fig. 12) were measured.
[0094] 〔比較例 2〕 [Comparative Example 2]
Fe を用いた以外は、実施例 2と同様
Figure imgf000020_0001
Same as Example 2 except using Fe
Figure imgf000020_0001
にして Fe〇の薄膜を作製した。そして、作製された薄膜について、四端子法による  Thus, a FeO thin film was prepared. And about the produced thin film, by the four-terminal method
3 4  3 4
電気抵抗率の温度依存性(図 8)、 SQUIDによる磁化の磁場依存性(図 9)、電気抵 抗率の置換濃度依存性 (図 10)、異常 Hall効果(図 11)、キャリア濃度と移動度の関 係(図 12)の計測を行った。  Temperature dependence of electrical resistivity (Fig. 8), magnetic field dependence of magnetization by SQUID (Fig. 9), dependence of electrical resistivity on substitution concentration (Fig. 10), anomalous Hall effect (Fig. 11), carrier concentration and migration The degree relationship (Fig. 12) was measured.
[0095] 上記図 8〜図 10の結果により、 Fe Mn O (x = 0. 1 , 0. 5)は、強磁性材料で [0095] From the results shown in FIGS. 8 to 10, Fe Mn O (x = 0.1, 0.5) is a ferromagnetic material.
(3-x) X 4  (3-x) X 4
ある Fe〇と同様の性質を示すことがわかる。そして、 Fe Mn O (x = 0. 1, 0. 5  It can be seen that it exhibits the same properties as some FeO. And Fe Mn O (x = 0.1, 0.5
3 4 (3-x) x 4 3 4 (3-x) x 4
)は、十分に低い電気抵抗率であることがわかる。 ) Indicates a sufficiently low electrical resistivity.
[0096] 上記図 11の結果より、 Fe Mn O (x= 0. 1 , 0. 5)で示される本発明の強磁性  [0096] From the result of FIG. 11 above, the ferromagnetism of the present invention represented by Fe Mn O (x = 0.1, 0.5) is obtained.
(3-x) X 4 伝導体材料は、キャリアスピンが室温偏極していることが分かる。すなわち、上記図 8 〜図 11の結果より、上記 Fe Mn O (x = 0. 1 , 0. 5)は、強磁性伝導体材料とし (3-x) X 4 It can be seen that the conductor material has a carrier spin polarized at room temperature. That is, from the results shown in FIGS. 8 to 11, Fe Mn O (x = 0.1, 0.5) is a ferromagnetic conductor material.
(3 4  (3 4
て用いることができることを示してレ、る。  Show that it can be used.
[0097] また、図 12の結果より、上記 Fe Mn O (x= 0. 1 , 0. 5)は、強磁性 n型半導体 [0097] From the results shown in FIG. 12, the Fe Mn O (x = 0.1, 0.5) is a ferromagnetic n-type semiconductor.
(3 4  (3 4
であることがわかる。  It can be seen that it is.
[0098] 以上の結果より、 Fe Mn〇は、高温 ·高酸素圧の条件下でも変質することなく  [0098] From the above results, Fe MnO does not change even under conditions of high temperature and high oxygen pressure.
(3 4  (3 4
、室温で強磁性強磁性伝導体材料として使用できることがわかる。  It can be seen that it can be used as a ferromagnetic ferromagnetic conductor material at room temperature.
産業上の利用の可能性  Industrial applicability
[0099] 本発明にかかる強磁性伝導体材料は、例えば、電界効果トランジスタや、巨大磁気 抵抗効果 (GMR)、トンネル磁気抵抗素子 (TMR)等の MRAMを含む半導体接合 素子として利用することができる。 [0099] The ferromagnetic conductor material according to the present invention can be used, for example, as a semiconductor junction element including MRAM such as a field effect transistor, a giant magnetoresistive effect (GMR), and a tunnel magnetoresistive element (TMR). .

Claims

請求の範囲 The scope of the claims
[1] 化学式 (1)  [1] Chemical formula (1)
M M' O  M M 'O
(A  (A
(上記 Xは、 0< x≤0. 8かつ Xく Aの範囲の数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 ΜΊま Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (The above X is a numerical value in the range of 0 <x ≤ 0.8 and X and A, and the above A and y are constants that vary depending on the type of M. And at least one of Zn, and when M is Cr, at least one of Mn and Zn, and when M is Ti, at least one of Mn and Zn, and when at M force n Mn)
で示されることを特徴とする強磁性伝導体材料。  A ferromagnetic conductor material characterized by the following:
[2] 上記化学式(1)で示される化合物が、 [2] The compound represented by the chemical formula (1) is
Fe Fe
Figure imgf000022_0001
Figure imgf000022_0001
であることを特徴とする請求項 1記載の強磁性伝導体材料。  The ferromagnetic conductor material according to claim 1, wherein:
[3] 第 1強磁性体層と第 2強磁性体層とが、中間層を介して接合されており、上記第 1 強磁性体層の磁化および上記第 2強磁性体層の磁化に応じた電気抵抗変化を示す 磁気抵抗素子において、 [3] The first ferromagnet layer and the second ferromagnet layer are joined via an intermediate layer, and the first ferromagnet layer and the second ferromagnet layer are magnetized according to the magnetization of the first ferromagnet layer and the magnetization of the second ferromagnet layer. In a magnetoresistive element showing a change in electrical resistance,
上記第 1強磁性体層および第 2強磁性体層の少なくとも一方が、請求項 1または 2 記載の強磁性伝導体材料から構成されていることを特徴とする磁気抵抗素子。  3. A magnetoresistive element, wherein at least one of the first ferromagnetic layer and the second ferromagnetic layer is made of the ferromagnetic conductor material according to claim 1.
[4] 上記第 1強磁性体層と第 2強磁性体層とは同じ材料で構成されていることを特徴と する請求項 3記載の磁気抵抗素子。 4. The magnetoresistive element according to claim 3, wherein the first ferromagnetic layer and the second ferromagnetic layer are made of the same material.
[5] 請求項 1または 2記載の強磁性伝導体材料からなる強磁性体層に、強誘電体化合 物または誘電体化合物からなる誘電体層が接合されてなることを特徴とする電界効 果トランジスタ。 [5] A field effect characterized in that a dielectric layer made of a ferroelectric compound or a dielectric compound is joined to the ferromagnetic layer made of the ferromagnetic conductor material according to claim 1 or 2. Transistor.
[6] 化学式 (2) [6] Chemical formula (2)
Μ Ο - - - (2)  Μ Ο---(2)
A  A
(上記 Mは、 Fe、 Cr、 Ti、 Znのいずれかを示し、上記 A、 yは Mの種類によって変化 する定数)で示される酸化物に (上記 Mが Feの場合 ΜΊま Mn、 Znの少なくとも一 方であり、上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが の 場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Znの場合 ΜΊま Mnを示す)を ドープした強磁性伝導体材料であって、 化学式 (1) (Where M is Fe, Cr, Ti, or Zn, and A and y are constants that vary depending on the type of M) (if M is Fe, Mn, Zn When M is Cr, it is at least one of Mn and Zn. When M is M, it is at least one of Mn and Zn. When M is Zn, it indicates Mn. ) Doped ferromagnetic conductor material, Chemical formula (1)
M M' O  M M 'O
(A— x) x y  (A— x) x y
(上記 xは、 0<x≤0. 8かつ x<Aの範囲の数値)  (Where x is a number in the range 0 <x≤0.8 and x <A)
で示されることを特徴とする強磁性伝導体材料。  A ferromagnetic conductor material characterized by the following:
[7] 基板上に、化学式(1) [7] On the substrate, the chemical formula (1)
M M' O  M M 'O
(A  (A
(上記 Xは、 0< x≤0. 8かつ x<Aの範囲の数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 ΜΊま Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (The above X is a numerical value in the range of 0 <x ≤ 0.8 and x <A, and the above A and y are constants that vary depending on the type of M. And at least one of Zn, when M is Cr, or at least one of Mn and Zn, and when M is Ti, or at least one of Mn and Zn, and when at M force is n Mn)
で示される強磁性伝導体材料の気体を蒸着させる蒸着工程を含む、強磁性伝導 体材料の製造方法であって、  A method for producing a ferromagnetic conductor material, comprising a vapor deposition step of depositing a gas of the ferromagnetic conductor material represented by
上記蒸着工程では、上記基板を 700°C以下の温度に加熱することを特徴とする強 磁性伝導体材料の製造方法。  In the vapor deposition step, the substrate is heated to a temperature of 700 ° C. or less.
[8] 上記基板が、 450〜700°Cの温度範囲内であることを特徴とする請求項 7記載の強 磁性伝導体材料の製造方法。 8. The method for producing a ferromagnetic conductor material according to claim 7, wherein the substrate is within a temperature range of 450 to 700 ° C.
[9] 上記蒸着工程を、酸素ガス圧を 10_3〜10Paの範囲内で行うことを特徴とする請求 項 8記載の強磁性伝導体材料の製造方法。 [9] the deposition process, the manufacturing method of the ferromagnetic conductor material according to claim 8, characterized in that an oxygen gas pressure in the range of 10_ 3 10 Pa.
[10] 基板上に、化学式(1) [10] On the substrate, the chemical formula (1)
M M' O  M M 'O
(A  (A
(上記 Xは、 0< x≤0. 8かつ x<Aの範囲の数値であり、上記 A、 yは Mの種類によつ て変化する定数であり、上記 M力 SFeの場合 M'は Mn、 Znの少なくとも一方であり、 上記 Mが Crの場合 ΜΊま Mn、 Znの少なくとも一方であり、上記 Mが Tiの場合 M'は Mn、 Znの少なくとも一方であり、上記 M力 nの場合 ΜΊま Mnである)  (The above X is a numerical value in the range of 0 <x ≤ 0.8 and x <A. The above A and y are constants that vary depending on the type of M. When M is Cr, M is at least one of Mn and Zn, and when M is Ti, M 'is at least one of Mn and Zn, and when M force is n It ’s Mama)
で示される強磁性伝導体材料の気体を蒸着させる蒸着工程を含む、強磁性伝導 体材料の製造方法であって、  A method for producing a ferromagnetic conductor material, comprising a vapor deposition step of depositing a gas of the ferromagnetic conductor material represented by
上記蒸着工程を、酸素ガス圧が lOPa以下の条件で行うことを特徴とする強磁性伝 導体材料の製造方法。 [11] 上記酸素ガス圧が、 10_3〜: LOPaの範囲内であることを特徴とする請求項 10記載 の強磁性伝導体材料の製造方法。 A method for producing a ferromagnetic conductor material, characterized in that the vapor deposition step is performed under a condition where an oxygen gas pressure is lOPa or less. [11] the oxygen gas pressure, 10_ 3 - Production method for ferromagnetic conductor material according to claim 10, wherein in the range of LOPA.
PCT/JP2005/016044 2005-02-25 2005-09-01 Ferromagnetic conductor material and method for production thereof, and magnetic resistance element and field-effect transistor WO2006090496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-050216 2005-02-25
JP2005050216A JP2006237304A (en) 2005-02-25 2005-02-25 Ferromagnetic conductor material, its manufacturing method, magnetoresistive element and field effect transistor

Publications (1)

Publication Number Publication Date
WO2006090496A1 true WO2006090496A1 (en) 2006-08-31

Family

ID=36927146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016044 WO2006090496A1 (en) 2005-02-25 2005-09-01 Ferromagnetic conductor material and method for production thereof, and magnetic resistance element and field-effect transistor

Country Status (2)

Country Link
JP (1) JP2006237304A (en)
WO (1) WO2006090496A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140919A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Oxide semiconductor device, manufacturing method thereof, and active matrix substrate
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device
JP2017181800A (en) * 2016-03-30 2017-10-05 日本放送協会 Optical modulation element, spatial optical modulator, and display device
JP2017181799A (en) * 2016-03-30 2017-10-05 日本放送協会 Optical modulation element, spatial optical modulator, and display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647654B2 (en) * 2005-03-18 2011-03-09 独立行政法人科学技術振興機構 Magnetic semiconductor materials
JP2007073644A (en) * 2005-09-05 2007-03-22 Osaka Industrial Promotion Organization Magnetoresistive element and its manufacturing method
JP2008085202A (en) * 2006-09-28 2008-04-10 Toshiba Corp Magnetoresistance effect element, magnetic memory, magnetic head, and magnetic recording and reproducing device
KR101598542B1 (en) * 2009-01-13 2016-02-29 삼성전자주식회사 Logic circuit device using spin field effect transistor
JP5286502B2 (en) * 2009-03-27 2013-09-11 独立行政法人科学技術振興機構 Ferromagnetic semiconductor device
US9076953B2 (en) * 2012-05-09 2015-07-07 Qualcomm Incorporated Spin transistors employing a piezoelectric layer and related memory, memory systems, and methods
WO2021192128A1 (en) * 2020-03-26 2021-09-30 日本電信電話株式会社 Substance capable of exhibiting delivery phenomenon of weyl fermion, and magnetoresistive element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170333A (en) * 1989-11-28 1991-07-23 Matsushita Electric Works Ltd Thin filmy super conductor and its preparation
JP2003078147A (en) * 2001-08-31 2003-03-14 Canon Inc Charge injection spin transistor
JP2003229614A (en) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp Magnetic material, magnetoresistance effect device using such magnetic material and magnetic device using such magneto resistive effect device
JP2004039672A (en) * 2002-06-28 2004-02-05 Japan Science & Technology Corp Spin filter effect element and magnetic device using the same
JP2004111904A (en) * 2002-07-25 2004-04-08 Japan Science & Technology Corp Spin transistor, and non-volatile memory using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170333A (en) * 1989-11-28 1991-07-23 Matsushita Electric Works Ltd Thin filmy super conductor and its preparation
JP2003078147A (en) * 2001-08-31 2003-03-14 Canon Inc Charge injection spin transistor
JP2003229614A (en) * 2002-02-05 2003-08-15 Mitsubishi Electric Corp Magnetic material, magnetoresistance effect device using such magnetic material and magnetic device using such magneto resistive effect device
JP2004039672A (en) * 2002-06-28 2004-02-05 Japan Science & Technology Corp Spin filter effect element and magnetic device using the same
JP2004111904A (en) * 2002-07-25 2004-04-08 Japan Science & Technology Corp Spin transistor, and non-volatile memory using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140919A (en) * 2008-12-09 2010-06-24 Hitachi Ltd Oxide semiconductor device, manufacturing method thereof, and active matrix substrate
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device
JP2017181800A (en) * 2016-03-30 2017-10-05 日本放送協会 Optical modulation element, spatial optical modulator, and display device
JP2017181799A (en) * 2016-03-30 2017-10-05 日本放送協会 Optical modulation element, spatial optical modulator, and display device

Also Published As

Publication number Publication date
JP2006237304A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2006090496A1 (en) Ferromagnetic conductor material and method for production thereof, and magnetic resistance element and field-effect transistor
US7252852B1 (en) Mg-Zn oxide tunnel barriers and method of formation
US20070064351A1 (en) Spin filter junction and method of fabricating the same
Murari et al. Structural, electrical, and magnetic properties of chemical solution deposited BiFe1− xTixO3 and BiFe0. 9Ti0. 05Co0. 05O3 thin films
Li et al. Magnetization and resistance switchings induced by electric field in epitaxial Mn: ZnO/BiFeO3 multiferroic heterostructures at room temperature
WO2004059745A1 (en) Magnetic switching device and magnetic memory
Tang et al. Enhanced magnetoelectric effect in La0. 67Sr0. 33MnO3/PbZr0. 52Ti0. 48O3 multiferroic nanocomposite films with a SrRuO3 buffer layer
Wu et al. Design of a vertical composite thin film system with ultralow leakage to yield large converse magnetoelectric effect
EP1548843A1 (en) Field-effect transistor
Liang et al. Charge transfer, orbital reconstruction, and induced magnetic coupling in manganite/BiFeO3 heterostructures
Li et al. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier
JP3578721B2 (en) Magnetic control element, magnetic component and memory device using the same
Yu et al. Progress in oxygen behaviors in two-dimensional thin films
Ranieri et al. Magnetoelectricity at room temperature in the LaFeO 3/BiFeO 3 heterostructures
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
Fukumura et al. Magnetic Oxide Semiconductors: On the High‐Temperature Ferromagnetism in TiO2‐and ZnO‐Based Compounds
Tang et al. The enhanced magnetoelectric effect and piezoelectric properties in the lead-free Bi3. 15Nd0. 85Ti3O12/La0. 7Ca0. 3MnO3 nano-multilayers composite thin films
Kim et al. Ferroelectric and magnetic properties of CdMnS films prepared by coevaporation
Gopalarao et al. Effect of Post Annealing Process on Electrical and Magnetic Properties of Nd 0.7 Sr 0.3 MnO 3 Thin Films
Medwal et al. Low-voltage-driven Pt/BiFeO 3/DyScO 3/p-Si-based metal–ferroelectric–insulator–semiconductor device for non-volatile memory
Ren et al. Large electric-field-induced magnetization change in Fe3O4 thin film based on resistance switching effect
Thiele et al. Multi-ferroic La0. 7Sr0. 3MnO3/Pb (Zr, Ti) O3 bilayers for electrical field-induced resistance modulations
Martínez et al. General aspects of the physical behavior of polycrystalline BiFeO3/VO2 bilayers grown on sapphire substrates
Tang et al. Microstructure, magnetoelectric properties and leakage mechanisms of La0. 7Ca0. 3MnO3/Bi3. 15Nd0. 85TiO3 composite thin films
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05781362

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5781362

Country of ref document: EP