JP3578721B2 - Magnetic control element, magnetic component and memory device using the same - Google Patents

Magnetic control element, magnetic component and memory device using the same Download PDF

Info

Publication number
JP3578721B2
JP3578721B2 JP2001069861A JP2001069861A JP3578721B2 JP 3578721 B2 JP3578721 B2 JP 3578721B2 JP 2001069861 A JP2001069861 A JP 2001069861A JP 2001069861 A JP2001069861 A JP 2001069861A JP 3578721 B2 JP3578721 B2 JP 3578721B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
control element
magnetic layer
antiferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001069861A
Other languages
Japanese (ja)
Other versions
JP2001339110A (en
Inventor
秀明 足立
明弘 小田川
雅祥 平本
望 松川
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001069861A priority Critical patent/JP3578721B2/en
Publication of JP2001339110A publication Critical patent/JP2001339110A/en
Application granted granted Critical
Publication of JP3578721B2 publication Critical patent/JP3578721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は外部電圧で磁気の制御が可能な磁気制御素子と、それを用いて電気または磁気信号の検出及び記憶を行う磁気部品とメモリー装置に関するものである。
【0002】
【従来の技術】
近年の情報関連産業の発展とともに半導体メモリーの進歩も著しいが、次世代のメモリーとして、磁性体の磁化を制御して記憶を行うMRAM(Magneto−resisive Random Access Memory)が研究されている。(日本応用磁気学会誌、第23巻、第7号、第1826頁、1999年発行)この原理は、信号電流が発生する磁場で磁性体の磁化の方位を制御して記録を行い、その磁化反転を磁気抵抗効果を使って読み出すものであり、不揮発で応答速度も高く高集積化も可能な次世代メモリー装置として期待が大きい。
【0003】
【発明が解決しようとする課題】
しかし上記原理のMRAMにおいて、磁化の反転制御を行う磁界を発生させるためにはある程度の電流が必要であり、省消費電力という点で限界がある。また素子の集積度が上がってくると、特定の素子のみに有効に磁界を発生させる素子構造および配線の引き回しをとることが難しくなってくる。すなわち電流信号により情報の書き込みを行う磁気制御素子およびそれを用いたMRAMでは、低消費電力や高集積化の点で限界があった。
【0004】
本発明は上記課題を解決するため、電圧で磁化を制御できる磁気制御素子とそれを用いた磁気部品及びメモリー装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するため、本発明の磁気制御素子は、反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備した磁気制御素子であって、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御することを特徴とする。
【0006】
また本発明の磁気部品は、反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備し、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御する磁気制御素子を用いて電気または磁気信号を検知することを特徴とする。
【0007】
また本発明のメモリー装置は、反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備し、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御する磁気制御素子を用いて電気信号を保存することを特徴とする。
【0008】
本発明は、電圧信号で磁性層の磁化方位を制御できる素子が実現し、これを用いることにより低消費電力動作および高集積密度の磁気抵抗効果型メモリー装置や磁気部品を提供できる。
【0009】
【発明の実施の形態】
本発明は従来の電流による磁化の制御とは異なり、反強磁性層とその両側に隣接して対向した磁性層および電極とからなり、磁性層と電極間に電圧を加えて反強磁性層へ電界を印加することにより隣接する磁性層の磁化を制御することを特徴とする。
【0010】
特に反強磁性層に隣接した磁性層が、さらに非磁性層を介した別の磁性層との積層構造をとる場合、制御した磁性層の磁化の方位を磁気抵抗効果により電気抵抗の変化として検出できるので好ましい。
【0011】
またこれらの磁気制御素子は原理的に電界または磁界に反応するので、電気や磁気信号の検知を行う磁気部品を構成することができる。その際の磁性体の磁化方位は基本的に次の信号が入るまで保持されるので、メモリー装置を構成することもできる。
【0012】
本発明においては、反強磁性層に隣接した磁性層が、さらに非磁性層を介して別の磁性層と積層されていることが好ましい。非磁性層の両側の磁性層の磁化方位の結合状態により電気抵抗が変化するので(磁気抵抗効果)、電圧で制御された磁性層の磁化方位を簡単に検出することができるからである。
【0013】
前記反強磁性層に隣接した磁性層/非磁性層/磁性層の積層構造に、さらに磁化回転抑制層を積層して磁性層の磁化を固定したことが好ましい。磁化回転抑制層に隣接する磁性層の磁化の方位が固定されるので、制御された反強磁性層に隣接した磁性層の方位を安定に読み出すことができるからである。前記磁化回転抑制層は、P−Mn系(PはPt,Ni,Pd,Ir,Rh,Ru及びCrから選ばれる少なくとも1種の元素)合金で形成されていることが好ましい。また前記反強磁性層の比抵抗は、1オームcm以上であることが好ましい。1オームcm以上の材料であれば、磁化制御が可能である。さらに好ましい比抵抗は1kオームcm以上である。
【0014】
前記反強磁性層は、酸化物で形成されていることが好ましい。酸化物であれば磁化制御が可能である。酸化物としては例えば、Cr,Ti,NbMn,TaMn, NbCo,TaCo,GaFeO,Ni13I,FeSb,MnNb,MnGeO,LiMnPO,LiFePO,LiCoPO,LiNiPO,GdAlO,DyAlO,TbAlO,DyPO,FeTeO,BaCoF,BaMnF,CoF,MnF,αFe等を挙げることができる。なかでも鉄を含む酸化物で形成されていることが好ましい。また、前記反強磁性層は、希土類元素、ビスマス及びガリウムから選ばれる少なくとも一種の元素と鉄の酸化物で形成されていてもよい。また前記反強磁性層は、ペロブスカイトまたはペロブスカイト関連構造(related stracture)の酸化物で形成されていることが好ましい。ここでペロブスカイト関連構造の酸化物とは、ペロブスカイトと同様な結晶構造を示す化合物をいう。
【0015】
前記反強磁性層は、エピタキシャル成長したペロブスカイトまたはペロブスカイト関連構造の酸化物で形成されていることが好ましい。
【0016】
前記エピタキシャル成長したペロブスカイトまたはペロブスカイト関連構造の酸化物からなる反強磁性層は、ペロブスカイト単位格子の(110)面に対応した面からなる層であることが好ましい。
【0017】
前記反強磁性層が、フェリ磁性または寄生強磁性に起因する500ガウス以下の弱い磁性を保有することが好ましい。
【0018】
前記反強磁性層に隣接した磁性層の厚みが、100nm以下であることが好ましい。さらに好ましい厚みは1〜20nmの範囲である。
【0019】
前記磁性層は、鉄、コバルト及びニッケルから選ばれる少なくとも1種の元素で形成されていることが好ましい。
【0020】
以下本発明の磁気制御素子、それを用いた磁気部品、メモリー装置について図面に基づいて説明する。
【0021】
図1に本発明の磁気制御素子の構成を示す断面図の一例を示す。反強磁性層1が磁性層2と金属電極3で挟まれた構成となっている。本発明者等は、電極3及び磁性層2の間に電圧を加えて反強磁性体内に電界を発生させることにより、磁性層2の磁化の方位が制御されるという発見に基づき、本発明に至ったものである。印加電界に対してその物質の磁化または磁区が影響を受ける現象は、ME効果(電気磁気効果)として知られているが、制御できる磁化の量はさほど大きくなく、本発明のように隣接する磁性層の磁化方位を大きく制御できるということは、従来の原理からは全く予想できないものであった。反強磁性層への電界印加により隣接する磁性層の磁化が変化する機構については不明であるが、反強磁性層と磁性層との交換結合に対する格子歪みの関与が推察される。
【0022】
この場合、磁化の方位の検知には種々の方法が考えられるが、図2に示したように特に磁性層2にさらに積層を施して磁性層2/非磁性層4/磁性層5の積層構造を用いた場合、非磁性層の両側の磁性層の磁化方位の結合状態により電気抵抗が変化するので(磁気抵抗効果)、電圧で制御された磁性層の磁化方位を簡単に検出することができる。
【0023】
また図3に示すように磁性層2/非磁性層4/磁性層5にさらに磁化回転抑制層6を積層した場合、磁性層5の磁化の方位が固定されるので、制御された磁性層2の方位を安定に読み出すことができる。磁化回転抑制層6の材質としては、P−Mn系(PはPt,Ni,Pd,Ir,Rh,Ru,Crから選ばれる1種もしくは2種以上の元素)合金が適していることを確認した。P−Mnの好ましい組成割合は、P:Mn=70−30:30−70 atomic%の範囲である。
【0024】
磁化制御に必要な電界の大きさは反強磁性層の材質により異なっていたが、効果の小さい場合でも100kV/cm以上の高電界を印加すれば制御できることが判った。ただしこの場合には電界の印加方向に依存しない磁化の変化を示したのに対し、効果が大きい材質の反強磁性層を用いた場合には10kV/cm程度の電界でも磁化制御が可能で、しかも電圧の正負により磁性層の磁化の方位が逆になることも合わせて見い出した。上限値はとくに限定されないが、10kV/cm以下が実用的には好ましい。
【0025】
この際、反強磁性層の比抵抗が1オームcm以上の材質の時に磁化制御が認められたが、さらに100オームcm以上の時には大きな効果が得られることを確認した。上限値はとくに限定されないが、1kオームcm以下が実用的には好ましい。
【0026】
反強磁性層の材質としては、酸化物で構成されているときに磁化制御の大きい効果が得られる場合が多かった。特にマンガン、コバルトやニッケルを含む酸化物で磁化制御の大きい効果が認められた。より好ましい結果は、鉄を含む酸化物の場合に高い磁化制御が得られることが判った。さらに希土類元素、ビスマス、ガリウムの少なくとも一種を含む鉄の酸化物であった場合にはより顕著に観測された。この結晶構造は複雑なため正確に決定することは困難であったが、X線回折によるとペロブスカイトまたはペロブスカイト関連構造の結晶格子であると考えられる。このペロブスカイト構造がエピタキシャル成長して結晶方位が揃っている場合には、多結晶の場合に比べてより効果的であり、その方位に関して特にペロブスカイト単位格子の(110)面が反強磁性層の結晶面として出現している場合に好ましい結果であった。また理由はよく解らないが、反強磁性層において完全に磁性が反平行で打ち消されずに、フェリ磁性または寄生強磁性に起因して500ガウス以下の弱い磁性を保有している場合に効果が大きい結果であった。
【0027】
反強磁性層に隣接して磁化制御を受ける磁性層の厚みは100nm程度までは可能であったが、とくに1nm以上20nm以下の場合には磁性層の磁化をほぼ完全に制御することができ好ましい結果であった。磁性層の素材については、磁性を示すものなら同様に使用できるが、特に、鉄、コバルト、ニッケルから選ばれる1種もしくは2種以上の元素の金属膜で構成すると、平滑な層を実現することができ好ましい。
【0028】
以上述べたような本発明の磁気制御素子を用いて磁気部品を構成することができる。図4A〜Bに示した概略断面図は、磁場の変化を読みとって磁気信号の検知を行う磁気部品の構成例である。基板7(基板としては、ガラス、シリコン、サファイア、単結晶ペロブスカイト等の無機物を用いるのが好ましい。)上に、金属電極3、反強磁性層1、磁性層2、導電性の非磁性層4、磁性層5が積層された構造となっている。この場合、磁性層は固定されておらず、外部磁場により容易に磁化方位が変化する。図4Aのように磁気信号の外部磁場が磁気部品に印加された場合、磁性層2,5の磁化方位が外部磁場の方向を向いて記憶される。この信号を読み出すには、図4Bのように読み出す素子の反強磁性層に電圧をかけて磁性層2の磁化方位を制御し、磁気抵抗効果による電気抵抗の変化を磁性層5を介して検知する。制御した磁性層2と同じ向きの磁場信号の場合には両磁性層の磁化方位は同じになるので、磁性層と導電性非磁性層の界面での伝導電子のスピン散乱が抑制されて抵抗が低くなり、逆の場合にはスピン散乱に因り抵抗が高くなる磁気部品が構成できる。
【0029】
図5は本発明の磁気制御素子で構成した磁気メモリー装置の例である。金属電極3、反強磁性層1、磁性層2、非磁性層4、磁性層5、磁化回転抑制層6の積層構造からなる2個のメモリーセル8,9が示されている。金属電極と磁性層の間の電圧の有無により磁性層自体の磁化方位が制御され、電気信号の記憶がなされる。図5のようにメモリーセル8の磁性層2と電極3の間に電圧信号パルスを入力すると、その間の反強磁性層1の電界印加部分のスピンの向きが反転して交換結合等の影響で磁性層2の磁化方位が制御を受ける。例えば電圧信号がないときは、メモリーセル9のように磁性層2と磁性層5の向きを揃えておくと、両磁性層間では電子はスピン散乱なし通り抜けられるので、電位差が発生しない。これに対し、メモリーセル8ではスピン散乱により電圧が発生することになる。よって、電圧信号を記憶し、読み出すメモリー装置が構成できる。
【0030】
【実施例】
以下、本発明を実施例を用いて具体的に説明する。
【0031】
(実施例1)
スパッタリング蒸着を用いて約250℃に加熱した酸化膜付きシリコン基板上に、白金電極膜を50nm堆積した後、反強磁性層として(Ga0.95,Y0.05)FeO(Ga,Yの数値はatomic比。以下も同じ。)を300nm堆積し、最後にCo磁性膜を5nm堆積させて、図1の構成図のように白金電極3、(Ga0.95,Y0.05)FeO反強磁性層1およびCo磁性膜2の積層膜を作製した。Co磁性層と白金電極間の3Vの電圧印加で、外部磁場20エルステッドに対応する磁化曲線のシフトが認められ、磁性層の磁化方位の制御が示された。
【0032】
(実施例2)
図2に示した磁気制御素子を、Nb添加SrTiO導電性基板電極3,(Bi0.9,Y0.1)FeO反強磁性層1,Co磁性層2,Cu非磁性層4,CoFe磁性層5の構成で作製した。基板となるNb添加SrTiO導電性単結晶電極の面方位として、(100)(110)(111)の3種類を用いた。まず約650℃に加熱した基板上にスパッタリングにより反強磁性(Bi0.9,Y0.1)FeO 薄膜を70nm堆積した後、室温でCo/Cu/CoFeの積層を2nm/2nm/5nmの膜厚で実施した。この場合(Bi0.9,Y0.1)FeO 反強磁性層は、各面方位を保ってエピタキシャル成長したペロブスカイト構造であった。
【0033】
電極及び磁性層に電極配線を施して、図4の磁気部品を構成した。基板面に平行に100エルステッドの磁場をパルスで加えた後、導電基板電極3とCo磁性層2の間に2Vの電圧を加えてCoFe磁性層5の面内抵抗を検出すると、磁場パルスの有無で電気抵抗の変化が認められた。磁場信号が入った場合、抵抗変化はSrTiO基板の各面方位について3%以上増加したが、特にSrTiO(110)面を用いた場合に8%以上の大きな変化が認められた。この理由は、エピタキシャル成長した反強磁性層のスピン配列が関係していると考えられる。最大の抵抗変化は、SrTiO(110)単結晶基板を用いて素子を作製し、基板の<001>方位に磁場を印加した時に得られ、約15%抵抗増加の素子動作が確認された。
【0034】
この様に素子の磁界信号を検知できる磁気部品が実現できた。この素子を多数並べておき、磁気信号を読み出したい場所の素子に電圧を印加して検知することが可能である。また同様の構成で反強磁性層1に加わる電気信号を検知できる磁気部品も作製可能であること勿論である。
【0035】
(実施例3)
実施例2と同じ構成の素子を、ペロブスカイト型Pb(Fe0.5,Nb0.5)O反強磁性層を用いて作製した。この反強磁性層は寄生強磁性に起因する100ガウス程度の弱い磁化を保有しており、これを用いて作った素子は18%抵抗変化を示す優れた特性であった。反強磁性層として他の組成、例えばPb(Co0.5,W0.5)O, Pb(Mn0.5,Nb0.5)Oまたは作製条件を変えた磁性特性の異なる薄膜層で鋭意調べたところ、500ガウス程度またはそれ以下の弱磁性を持つ場合に大きな抵抗変化が得やすいことが判った。本素子の磁気制御の機構が反強磁性層の弱磁性に影響を受けていると考えられるが詳しい理由は不明である。
【0036】
(実施例4)
図3の構成を持つ磁気制御素子を、膜厚50nmの白金電極3,膜厚100nmの(Bi0.9,Ti0.1)FeO反強磁性層1,膜厚2nmのCoFe磁性層2,膜厚1nmのAl非磁性層4,5nmのNiFe磁性層5,膜厚2nmのPtMn磁化回転抑制層6で構成した。この場合Al非磁性層は電気絶縁体であり、その両側の磁性層の磁化方位に依存したスピントンネリングにより面に垂直方向の電流が影響を受ける。すなわちトンネル磁気抵抗効果により、両側の磁性層の磁化の方位が揃っている場合は抵抗が低く、反平行の場合は高い抵抗を示す。スパッタリングによりサファイアc面基板上に、白金層、(Bi0.9,Ti0.1)FeO 反強磁性層、CoFe層を積層した後、膜厚0.7nmのアルミを堆積させて酸素雰囲気中での自然酸化によりAl層を形成し、その後NiFe磁性層とPtMn磁化回転抑制層を積層した。この積層膜に対して微細加工を施してセル分離を行い、図5のような複数のメモリーセルを有するメモリー装置を作製した。電気信号の有無により各セルのCoFe磁性層2の磁化方位が制御を受けて記憶され、それがセルの垂直方向の電流に対する抵抗変化として読み出せる。本素子の場合、トンネル磁気抵抗効果を用いているので、電圧信号の有無により30%の大きな抵抗変化を示すメモリー装置を作製することができた。
【0037】
【発明の効果】
以上のように本発明によれば、電圧信号で磁性層の磁化方位を制御できる素子が実現し、これを用いることにより低消費電力動作および高集積密度の磁気抵抗効果型メモリー装置や磁気部品を可能にするものである。
【図面の簡単な説明】
【図1】本発明の一実施例の磁気制御素子の模式断面図
【図2】本発明の一実施例の磁気制御素子の模式断面図
【図3】本発明の一実施例の磁気制御素子の模式断面図
【図4】A及びBは本発明の一実施例の磁気部品の一例を示す模式断面図
【図5】本発明の一実施例のメモリー装置の一例を示す模式斜視図
【符号の説明】
1 反強磁性層
2 磁性層
3 電極
4 非磁性層
5 磁性層
6 磁化回転抑制層
7 基板
8 電圧信号入力のメモリーセル
9 電圧信号なしのメモリーセル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic control element capable of controlling magnetism by an external voltage, a magnetic component for detecting and storing an electric or magnetic signal using the same, and a memory device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, semiconductor memories have made remarkable progress along with the development of the information-related industry. As next-generation memories, MRAMs (Magneto-resistive Random Access Memory) that perform storage by controlling the magnetization of a magnetic material have been studied. (Journal of the Japan Society of Applied Magnetics, Vol. 23, No. 7, page 1826, published in 1999) This principle is based on the fact that recording is performed by controlling the direction of magnetization of a magnetic material with a magnetic field generated by a signal current. Inversion is read out using the magnetoresistance effect, and is expected to be a next-generation memory device which is nonvolatile, has a high response speed, and can be highly integrated.
[0003]
[Problems to be solved by the invention]
However, in the MRAM based on the above principle, a certain amount of current is required to generate a magnetic field for controlling the reversal of magnetization, and there is a limit in terms of power consumption. In addition, as the degree of integration of the elements increases, it becomes difficult to arrange the element structure and wiring that effectively generate a magnetic field only in a specific element. That is, the magnetic control element that writes information by a current signal and the MRAM using the same have limitations in terms of low power consumption and high integration.
[0004]
An object of the present invention is to provide a magnetic control element capable of controlling magnetization by a voltage, a magnetic component using the same, and a memory device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a magnetic control element according to the present invention is a magnetic control element comprising an antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, wherein the magnetic layer and the electrode The magnetization direction of the magnetic layer is controlled by a voltage applied therebetween.
[0006]
Further, the magnetic component of the present invention includes an antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, and the magnetization direction of the magnetic layer is controlled by a voltage applied between the magnetic layer and the electrode. An electric or magnetic signal is detected by using a magnetic control element.
[0007]
Further, the memory device of the present invention includes an antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, and the magnetization direction of the magnetic layer is controlled by a voltage applied between the magnetic layer and the electrode. wherein the storing the No. conductive relaxin using magnetic control element.
[0008]
The present invention realizes an element capable of controlling the magnetization direction of a magnetic layer with a voltage signal, and by using the element, can provide a magnetoresistive memory device and a magnetic component with low power consumption operation and high integration density.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is different from the conventional control of magnetization by current, and comprises an antiferromagnetic layer and a magnetic layer and an electrode adjacent to and opposed to both sides of the antiferromagnetic layer. It is characterized in that the magnetization of an adjacent magnetic layer is controlled by applying an electric field.
[0010]
Especially when the magnetic layer adjacent to the antiferromagnetic layer has a laminated structure with another magnetic layer via a nonmagnetic layer, the direction of magnetization of the controlled magnetic layer is detected as a change in electric resistance by the magnetoresistance effect. It is preferable because it is possible.
[0011]
Further, since these magnetic control elements respond to an electric field or a magnetic field in principle, it is possible to constitute a magnetic component for detecting an electric or magnetic signal. Since the magnetization direction of the magnetic material at that time is basically held until the next signal is input, a memory device can also be configured.
[0012]
In the present invention, it is preferable that the magnetic layer adjacent to the antiferromagnetic layer is further laminated with another magnetic layer via a nonmagnetic layer. This is because the electrical resistance changes depending on the coupling state of the magnetization directions of the magnetic layers on both sides of the nonmagnetic layer (magnetoresistive effect), so that the magnetization direction of the magnetic layer controlled by the voltage can be easily detected.
[0013]
It is preferable that the magnetization of the magnetic layer is fixed by further laminating a magnetization rotation suppressing layer on the laminated structure of the magnetic layer / nonmagnetic layer / magnetic layer adjacent to the antiferromagnetic layer. This is because the direction of magnetization of the magnetic layer adjacent to the magnetization rotation suppressing layer is fixed, so that the direction of the magnetic layer adjacent to the controlled antiferromagnetic layer can be stably read. The magnetization rotation suppressing layer is preferably formed of a P-Mn alloy (P is at least one element selected from Pt, Ni, Pd, Ir, Rh, Ru and Cr). Preferably, the specific resistance of the antiferromagnetic layer is 1 ohm cm or more. If the material is 1 ohm cm or more, the magnetization can be controlled. A more preferable specific resistance is 1 kohm cm or more.
[0014]
The antiferromagnetic layer is preferably formed of an oxide. If it is an oxide, the magnetization can be controlled. Examples of the oxide include Cr 2 O 3 , Ti 2 O 3 , Nb 2 Mn 4 O 9 , Ta 2 Mn 4 O 9 , Nb 2 Co 4 O 9 , Ta 2 Co 4 O 9 , GaFeO 3 , and Ni 3 B. 7 O 13 I, FeSb 2 O 4, MnNb 2 O 6, MnGeO 3, LiMnPO 4, LiFePO 4, LiCoPO 4, LiNiPO 4, GdAlO 3, DyAlO 3, TbAlO 3, DyPO 4, Fe 2 TeO 6, BaCoF 4, BaMnF 4 , CoF 2 , MnF 2 , αFe 2 O 3 and the like can be mentioned. Especially, it is preferable to be formed with an oxide containing iron. Further, the antiferromagnetic layer may be formed of an oxide of iron with at least one element selected from rare earth elements, bismuth and gallium. Preferably, the antiferromagnetic layer is formed of perovskite or an oxide having a perovskite-related structure. Here, an oxide having a perovskite-related structure refers to a compound having a crystal structure similar to that of perovskite.
[0015]
The antiferromagnetic layer is preferably formed of an epitaxially grown perovskite or an oxide having a perovskite-related structure.
[0016]
It is preferable that the antiferromagnetic layer made of an oxide having a perovskite or perovskite-related structure grown epitaxially is a layer having a surface corresponding to the (110) plane of the perovskite unit cell.
[0017]
It is preferable that the antiferromagnetic layer has a weak magnetism of 500 gauss or less due to ferrimagnetism or parasitic ferromagnetism.
[0018]
The thickness of the magnetic layer adjacent to the antiferromagnetic layer is preferably 100 nm or less. A more preferred thickness is in the range of 1 to 20 nm.
[0019]
It is preferable that the magnetic layer is formed of at least one element selected from iron, cobalt and nickel.
[0020]
Hereinafter, a magnetic control element of the present invention, a magnetic component using the same, and a memory device will be described with reference to the drawings.
[0021]
FIG. 1 shows an example of a sectional view showing the configuration of the magnetic control element of the present invention. An antiferromagnetic layer 1 is sandwiched between a magnetic layer 2 and a metal electrode 3. The present inventors based on the discovery that the orientation of the magnetization of the magnetic layer 2 is controlled by applying a voltage between the electrode 3 and the magnetic layer 2 to generate an electric field in the antiferromagnetic material. It has been reached. The phenomenon in which the magnetization or magnetic domain of a substance is affected by an applied electric field is known as the ME effect (electromagnetic effect). However, the amount of magnetization that can be controlled is not so large. The fact that the magnetization direction of the layer can be largely controlled could not be expected from the conventional principle. The mechanism by which the magnetization of the adjacent magnetic layer changes by application of an electric field to the antiferromagnetic layer is unknown, but it is speculated that lattice distortion is involved in the exchange coupling between the antiferromagnetic layer and the magnetic layer.
[0022]
In this case, various methods are conceivable for detecting the direction of magnetization. As shown in FIG. 2, the magnetic layer 2 is further laminated in particular to form a laminated structure of magnetic layer 2 / non-magnetic layer 4 / magnetic layer 5 as shown in FIG. Is used, the electrical resistance changes depending on the coupling state of the magnetization directions of the magnetic layers on both sides of the nonmagnetic layer (magnetoresistive effect), so that the magnetization direction of the magnetic layer controlled by voltage can be easily detected. .
[0023]
When a magnetization rotation suppressing layer 6 is further laminated on the magnetic layer 2 / non-magnetic layer 4 / magnetic layer 5 as shown in FIG. 3, the magnetization direction of the magnetic layer 5 is fixed. Can be stably read out. It has been confirmed that a P-Mn alloy (P is one or more elements selected from Pt, Ni, Pd, Ir, Rh, Ru, and Cr) is suitable for the material of the magnetization rotation suppressing layer 6. did. The preferred composition ratio of P-Mn is in the range of P: Mn = 70-30: 30-70 atomic%.
[0024]
The magnitude of the electric field required for the magnetization control was different depending on the material of the antiferromagnetic layer, but it was found that even when the effect was small, it could be controlled by applying a high electric field of 100 kV / cm or more. However, in this case, the change in magnetization did not depend on the direction of application of the electric field. On the other hand, when an antiferromagnetic layer made of a material having a large effect was used, the magnetization could be controlled even with an electric field of about 10 kV / cm. In addition, the inventors have also found out that the magnetization direction of the magnetic layer is reversed depending on whether the voltage is positive or negative. The upper limit is not particularly limited, but is preferably 10 4 kV / cm or less for practical use.
[0025]
At this time, magnetization control was recognized when the specific resistance of the antiferromagnetic layer was 1 ohm cm or more, but it was confirmed that a significant effect was obtained when the specific resistance was 100 ohm cm or more. The upper limit is not particularly limited, but is preferably 1 kOhm cm or less for practical use.
[0026]
As the material of the antiferromagnetic layer, a large effect of controlling the magnetization was often obtained when the material was composed of an oxide. In particular, oxides containing manganese, cobalt and nickel showed a great effect of controlling magnetization. It has been found that a more preferable result is that high magnetization control is obtained in the case of the oxide containing iron. Further, when iron oxide containing at least one of rare earth elements, bismuth, and gallium was used, it was more remarkably observed. Although this crystal structure was difficult to determine accurately due to its complexity, it is considered according to X-ray diffraction to be a crystal lattice of perovskite or a perovskite-related structure. In the case where the perovskite structure is epitaxially grown and the crystal orientation is uniform, it is more effective than in the case of polycrystal, and the (110) plane of the perovskite unit cell is particularly effective for the crystal orientation of the antiferromagnetic layer. Was a favorable result. Although the reason is not well understood, the effect is large when the antiferromagnetic layer has weak magnetism of 500 gauss or less due to ferrimagnetism or parasitic ferromagnetism without completely canceling the magnetism in antiparallel. It was a result.
[0027]
The thickness of the magnetic layer adjacent to the antiferromagnetic layer and subject to magnetization control could be up to about 100 nm, but especially in the range of 1 nm to 20 nm, the magnetization of the magnetic layer can be almost completely controlled, which is preferable. It was a result. The material of the magnetic layer can be used in the same manner as long as it exhibits magnetism. In particular, when the magnetic layer is formed of a metal film of one or more elements selected from iron, cobalt, and nickel, a smooth layer can be realized. Is preferred.
[0028]
A magnetic component can be configured using the magnetic control element of the present invention as described above. The schematic cross-sectional views shown in FIGS. 4A and 4B are configuration examples of a magnetic component that reads a change in a magnetic field and detects a magnetic signal. A metal electrode 3, an antiferromagnetic layer 1, a magnetic layer 2, and a conductive nonmagnetic layer 4 are provided on a substrate 7 (an inorganic material such as glass, silicon, sapphire, or single crystal perovskite is preferably used as the substrate). , The magnetic layer 5 is laminated. In this case, the magnetic layer is not fixed, and the magnetization direction is easily changed by an external magnetic field. When the external magnetic field of the magnetic signal is applied to the magnetic component as shown in FIG. 4A, the magnetization directions of the magnetic layers 2 and 5 are stored in the direction of the external magnetic field. To read this signal, a voltage is applied to the antiferromagnetic layer of the element to be read as shown in FIG. 4B to control the magnetization direction of the magnetic layer 2, and a change in electric resistance due to the magnetoresistance effect is detected via the magnetic layer 5. I do. In the case of a magnetic field signal in the same direction as that of the controlled magnetic layer 2, the magnetization directions of both magnetic layers are the same, so that spin scattering of conduction electrons at the interface between the magnetic layer and the conductive non-magnetic layer is suppressed, and the resistance is reduced. In this case, it is possible to configure a magnetic component that has a low resistance and, in the opposite case, has a high resistance due to spin scattering.
[0029]
FIG. 5 shows an example of a magnetic memory device constituted by the magnetic control element of the present invention. Two memory cells 8 and 9 each having a stacked structure of a metal electrode 3, an antiferromagnetic layer 1, a magnetic layer 2, a nonmagnetic layer 4, a magnetic layer 5, and a magnetization rotation suppressing layer 6 are shown. The magnetization direction of the magnetic layer itself is controlled by the presence or absence of a voltage between the metal electrode and the magnetic layer, and an electric signal is stored. When a voltage signal pulse is inputted between the magnetic layer 2 and the electrode 3 of the memory cell 8 as shown in FIG. 5, the spin direction of the electric field applied portion of the antiferromagnetic layer 1 during that is reversed, and the influence of exchange coupling or the like is caused. The magnetization direction of the magnetic layer 2 is controlled. For example, when there is no voltage signal, if the directions of the magnetic layer 2 and the magnetic layer 5 are aligned as in the memory cell 9, electrons can pass through the two magnetic layers without spin scattering, so that no potential difference occurs. On the other hand, in the memory cell 8, a voltage is generated by spin scattering. Therefore, a memory device that stores and reads out a voltage signal can be configured.
[0030]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
[0031]
(Example 1)
After depositing a 50 nm platinum electrode film on a silicon substrate with an oxide film heated to about 250 ° C. by sputtering vapor deposition, (Ga 0.95 , Y 0.05 ) FeO 3 (Ga, Y) is used as an antiferromagnetic layer. Is the atomic ratio. The same applies to the following.) Is deposited to a thickness of 300 nm, and finally a Co magnetic film is deposited to a thickness of 5 nm, and the platinum electrode 3 (Ga 0.95 , Y 0.05 ) as shown in FIG. A laminated film of the FeO 3 antiferromagnetic layer 1 and the Co magnetic film 2 was produced. When a voltage of 3 V was applied between the Co magnetic layer and the platinum electrode, a shift in the magnetization curve corresponding to an external magnetic field of 20 Oe was observed, indicating control of the magnetization orientation of the magnetic layer.
[0032]
(Example 2)
The magnetic control element shown in FIG. 2 is composed of an Nb-doped SrTiO 3 conductive substrate electrode 3, a (Bi 0.9 , Y 0.1 ) FeO 3 antiferromagnetic layer 1, a Co magnetic layer 2, a Cu nonmagnetic layer 4, It was manufactured with the configuration of the CoFe magnetic layer 5. Three types of (100), (110), and (111) were used as the plane orientation of the Nb-added SrTiO 3 conductive single crystal electrode serving as the substrate. First, an antiferromagnetic (Bi 0.9 , Y 0.1 ) FeO 3 thin film is deposited on a substrate heated to about 650 ° C. by sputtering to a thickness of 70 nm, and then a stack of Co / Cu / CoFe is formed at room temperature by 2 nm / 2 nm / 5 nm. It carried out with the film thickness of. In this case, the (Bi 0.9 , Y 0.1 ) FeO 3 antiferromagnetic layer had a perovskite structure that was epitaxially grown while maintaining each plane orientation.
[0033]
Electrode wiring was applied to the electrodes and the magnetic layer to form the magnetic component of FIG. After applying a magnetic field of 100 Oersted in parallel to the substrate surface with a pulse, a voltage of 2 V is applied between the conductive substrate electrode 3 and the Co magnetic layer 2 to detect the in-plane resistance of the CoFe magnetic layer 5, and the presence or absence of a magnetic field pulse A change in electrical resistance was observed. When a magnetic field signal was input, the resistance change increased by 3% or more for each plane orientation of the SrTiO 3 substrate, but a large change of 8% or more was observed particularly when the SrTiO 3 (110) plane was used. It is considered that the reason is related to the spin arrangement of the antiferromagnetic layer grown epitaxially. The maximum resistance change was obtained when an element was manufactured using a SrTiO 3 (110) single crystal substrate and a magnetic field was applied in the <001> direction of the substrate, and the element operation with about 15% increase in resistance was confirmed.
[0034]
Thus, a magnetic component capable of detecting the magnetic field signal of the element has been realized. By arranging a large number of these elements, it is possible to detect by applying a voltage to the element at the place where the magnetic signal is to be read. Further, it is needless to say that a magnetic component capable of detecting an electric signal applied to the antiferromagnetic layer 1 can be manufactured with the same configuration.
[0035]
(Example 3)
An element having the same configuration as in Example 2 was manufactured using a perovskite-type Pb (Fe 0.5 , Nb 0.5 ) O 3 antiferromagnetic layer. The antiferromagnetic layer has a weak magnetization of about 100 gauss caused by the parasitic ferromagnetism, and the device made by using the antiferromagnetic layer has excellent characteristics showing a 18% resistance change. As the antiferromagnetic layer, another composition such as Pb (Co 0.5 , W 0.5 ) O 3 , Pb (Mn 0.5 , Nb 0.5 ) O 3 or a thin film having different magnetic properties with different production conditions A close examination of the layer has revealed that a large change in resistance is likely to be obtained when the layer has a weak magnetism of about 500 Gauss or less. It is considered that the mechanism of magnetic control of this element is influenced by the weak magnetism of the antiferromagnetic layer, but the detailed reason is unknown.
[0036]
(Example 4)
A magnetic control element having the configuration shown in FIG. 3 is composed of a 50 nm-thick platinum electrode, a 100 nm-thick (Bi 0.9 , Ti 0.1 ) FeO 3 antiferromagnetic layer, a 2 nm-thick CoFe magnetic layer 2 A 1 nm thick Al 2 O 3 nonmagnetic layer, a 5 nm thick NiFe magnetic layer, and a 2 nm thick PtMn magnetization rotation suppressing layer 6. In this case, the Al 2 O 3 nonmagnetic layer is an electric insulator, and the current in the direction perpendicular to the surface is affected by spin tunneling depending on the magnetization direction of the magnetic layers on both sides thereof. That is, due to the tunnel magnetoresistance effect, the resistance is low when the magnetization directions of the magnetic layers on both sides are aligned, and high when the magnetization directions are antiparallel. After laminating a platinum layer, a (Bi 0.9 , Ti 0.1 ) FeO 3 antiferromagnetic layer and a CoFe layer on a sapphire c-plane substrate by sputtering, aluminum having a thickness of 0.7 nm is deposited and an oxygen atmosphere is deposited. An Al 2 O 3 layer was formed by natural oxidation in the inside, and then a NiFe magnetic layer and a PtMn magnetization rotation suppressing layer were laminated. The laminated film was subjected to fine processing to perform cell separation, thereby producing a memory device having a plurality of memory cells as shown in FIG. The magnetization direction of the CoFe magnetic layer 2 of each cell is controlled and stored according to the presence or absence of an electric signal, and can be read as a change in resistance to a current in a vertical direction of the cell. In the case of this element, since the tunnel magnetoresistance effect is used, a memory device showing a large resistance change of 30% depending on the presence or absence of a voltage signal could be manufactured.
[0037]
【The invention's effect】
As described above, according to the present invention, an element capable of controlling the magnetization direction of a magnetic layer with a voltage signal is realized, and by using this, a magnetoresistive memory device or a magnetic component having low power consumption operation and high integration density can be realized. Is what makes it possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a magnetic control element according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a magnetic control element according to an embodiment of the present invention. FIGS. 4A and 4B are schematic cross-sectional views illustrating an example of a magnetic component according to an embodiment of the present invention. FIG. 5 is a schematic perspective view illustrating an example of a memory device according to an embodiment of the present invention. Description]
DESCRIPTION OF SYMBOLS 1 Antiferromagnetic layer 2 Magnetic layer 3 Electrode 4 Non-magnetic layer 5 Magnetic layer 6 Magnetization rotation suppression layer 7 Substrate 8 Voltage signal input memory cell 9 Memory cell without voltage signal

Claims (21)

反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備した磁気制御素子であって、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御することを特徴とする磁気制御素子。A magnetic control element comprising an antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, wherein a magnetization direction of the magnetic layer is controlled by a voltage applied between the magnetic layer and the electrode. A magnetic control element characterized by the above-mentioned. 前記反強磁性層に隣接した磁性層が、さらに非磁性層を介して別の磁性層と積層されている請求項1に記載の磁気制御素子。2. The magnetic control element according to claim 1, wherein a magnetic layer adjacent to the antiferromagnetic layer is further laminated with another magnetic layer via a nonmagnetic layer. 前記反強磁性層に隣接した磁性層/非磁性層/磁性層の積層構造に、さらに磁化回転抑制層を積層して磁性層の磁化を固定した請求項2に記載の磁気制御素子。3. The magnetic control element according to claim 2, wherein a magnetization rotation suppressing layer is further laminated on the laminated structure of the magnetic layer / nonmagnetic layer / magnetic layer adjacent to the antiferromagnetic layer to fix the magnetization of the magnetic layer. 前記磁化回転抑制層が、P−Mn系(PはPt,Ni,Pd,Ir,Rh,Ru及びCrから選ばれる少なくとも1種の元素)合金で形成されている請求項3に記載の磁気制御素子。The magnetic control according to claim 3, wherein the magnetization rotation suppressing layer is formed of a P-Mn-based (P is at least one element selected from Pt, Ni, Pd, Ir, Rh, Ru, and Cr) alloy. element. 前記反強磁性層の比抵抗が、1オームcm以上である請求項1に記載の磁気制御素子。The magnetic control element according to claim 1, wherein the specific resistance of the antiferromagnetic layer is 1 ohm cm or more. 前記反強磁性層が、酸化物で形成されている請求項1に記載の磁気制御素子。The magnetic control element according to claim 1, wherein the antiferromagnetic layer is formed of an oxide. 前記反強磁性層が、少なくとも鉄を含む酸化物で形成されている請求項6に記載の磁気制御素子。The magnetic control element according to claim 6, wherein the antiferromagnetic layer is formed of an oxide containing at least iron. 前記反強磁性層が、希土類元素、ビスマス及びガリウムから選ばれる少なくとも一種の元素と鉄の酸化物で形成されている請求項7に記載の磁気制御素子。The magnetic control element according to claim 7, wherein the antiferromagnetic layer is formed of an oxide of at least one element selected from a rare earth element, bismuth, and gallium and iron. 前記反強磁性層が、ペロブスカイトまたはペロブスカイト関連構造の酸化物で形成されている請求項1に記載の磁気制御素子。2. The magnetic control element according to claim 1, wherein the antiferromagnetic layer is formed of perovskite or an oxide having a perovskite-related structure. 前記反強磁性層が、エピタキシャル成長したペロブスカイトまたはペロブスカイト関連構造の酸化物で形成されている請求項9に記載の磁気制御素子。10. The magnetic control element according to claim 9, wherein the antiferromagnetic layer is formed of an epitaxially grown perovskite or an oxide having a perovskite-related structure. 前記エピタキシャル成長したペロブスカイトまたはペロブスカイト関連構造の酸化物からなる反強磁性層が、ペロブスカイト単位格子の(110)面に対応した面からなる層である請求項10に記載の磁気制御素子。The magnetic control element according to claim 10, wherein the antiferromagnetic layer made of the epitaxially grown perovskite or oxide having a perovskite-related structure is a layer having a surface corresponding to the (110) plane of the perovskite unit cell. 前記反強磁性層が、フェリ磁性または寄生強磁性に起因する500ガウス以下の弱い磁性を保有する請求項1に記載の磁気制御素子。2. The magnetic control element according to claim 1, wherein the antiferromagnetic layer has a weak magnetism of 500 Gauss or less due to ferrimagnetic or parasitic ferromagnetism. 前記反強磁性層に隣接した磁性層の厚みが、100nm以下である請求項1に記載の磁気制御素子。2. The magnetic control element according to claim 1, wherein the thickness of the magnetic layer adjacent to the antiferromagnetic layer is 100 nm or less. 前記磁性層が、鉄、コバルト及びニッケルから選ばれる少なくとも1種の元素で形成されている請求項1に記載の磁気制御素子。The magnetic control element according to claim 1, wherein the magnetic layer is formed of at least one element selected from iron, cobalt, and nickel. 前記磁性層と前記電極間に加える電圧が、10kV/cm以上である請求項1に記載の磁気制御素子。The magnetic control element according to claim 1, wherein a voltage applied between the magnetic layer and the electrode is 10 kV / cm or more. 反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備し、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御する磁気制御素子を用いて電気または磁気信号を検知することを特徴とする磁気部品。An antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, and electrically controlled by using a magnetic control element that controls a magnetization direction of the magnetic layer by a voltage applied between the magnetic layer and the electrode. Or, a magnetic component characterized by detecting a magnetic signal. 前記反強磁性層に隣接した磁性層が、さらに非磁性層を介して別の磁性層と積層されている請求項16に記載の磁気部品。17. The magnetic component according to claim 16, wherein a magnetic layer adjacent to the antiferromagnetic layer is further laminated with another magnetic layer via a nonmagnetic layer. 前記反強磁性層に隣接した磁性層/非磁性層/磁性層の積層構造に、さらに磁化回転抑制層を積層して磁性層の磁化を固定した請求項17に記載の磁気部品。18. The magnetic component according to claim 17, wherein a magnetization rotation suppressing layer is further laminated on the laminated structure of the magnetic layer / nonmagnetic layer / magnetic layer adjacent to the antiferromagnetic layer to fix the magnetization of the magnetic layer. 反強磁性層と、その両側に隣接して対向した磁性層および電極とを具備し、前記磁性層と前記電極間に加える電圧により前記磁性層の磁化方位を制御する磁気制御素子を用いて電気信号を保存することを特徴とするメモリー装置。An antiferromagnetic layer, and a magnetic layer and an electrode adjacent to and opposed to both sides thereof, and a magnetic control element that controls a magnetization direction of the magnetic layer by a voltage applied between the magnetic layer and the electrode. memory device, characterized in that the store No. relaxin. 前記反強磁性層に隣接した磁性層が、さらに非磁性層を介して別の磁性層と積層されている請求項19に記載のメモリー装置。20. The memory device according to claim 19, wherein the magnetic layer adjacent to the antiferromagnetic layer is further stacked with another magnetic layer via a nonmagnetic layer. 前記反強磁性層に隣接した磁性層/非磁性層/磁性層の積層構造に、さらに磁化回転抑制層を積層して磁性層の磁化を固定した請求項20に記載のメモリー装置。21. The memory device according to claim 20, wherein a magnetization rotation suppressing layer is further laminated on a laminated structure of a magnetic layer / non-magnetic layer / magnetic layer adjacent to the antiferromagnetic layer to fix the magnetization of the magnetic layer.
JP2001069861A 2000-03-14 2001-03-13 Magnetic control element, magnetic component and memory device using the same Expired - Fee Related JP3578721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069861A JP3578721B2 (en) 2000-03-14 2001-03-13 Magnetic control element, magnetic component and memory device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-70393 2000-03-14
JP2000070393 2000-03-14
JP2001069861A JP3578721B2 (en) 2000-03-14 2001-03-13 Magnetic control element, magnetic component and memory device using the same

Publications (2)

Publication Number Publication Date
JP2001339110A JP2001339110A (en) 2001-12-07
JP3578721B2 true JP3578721B2 (en) 2004-10-20

Family

ID=26587443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069861A Expired - Fee Related JP3578721B2 (en) 2000-03-14 2001-03-13 Magnetic control element, magnetic component and memory device using the same

Country Status (1)

Country Link
JP (1) JP3578721B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044030B2 (en) * 2003-11-27 2008-02-06 独立行政法人産業技術総合研究所 Magnetic sensor device
US8263961B2 (en) 2004-04-16 2012-09-11 Panasonic Corporation Thin film memory device having a variable resistance
JP4693634B2 (en) * 2006-01-17 2011-06-01 株式会社東芝 Spin FET
JP5002996B2 (en) * 2006-03-30 2012-08-15 富士通株式会社 Semiconductor memory device, manufacturing method thereof, data writing method thereof, and data reading method thereof
JP4384196B2 (en) 2007-03-26 2009-12-16 株式会社東芝 Spin FET, magnetoresistive effect element, and spin memory
JP2011124462A (en) * 2009-12-14 2011-06-23 Fujitsu Ltd Magnetic switching element
EP2337064B1 (en) * 2009-12-18 2014-08-06 Imec Dielectric layer for flash memory device and method for manufacturing thereof
JP5621940B2 (en) * 2011-10-19 2014-11-12 富士電機株式会社 Strongly correlated non-volatile memory device
JP2014053546A (en) * 2012-09-10 2014-03-20 National Institute Of Advanced Industrial & Technology Voltage drive spintronics three-terminal element
JP6203312B2 (en) 2016-03-16 2017-09-27 株式会社東芝 Magnetic memory
KR20180057976A (en) * 2016-11-23 2018-05-31 포항공과대학교 산학협력단 Resistance change memory having transition metal composite selection device

Also Published As

Publication number Publication date
JP2001339110A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
KR100663857B1 (en) Spin injection device, magnetic device using the same, magnetic thin film used in the same
US7679155B2 (en) Multiple magneto-resistance devices based on doped magnesium oxide
WO2017090730A1 (en) Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory
JP4533837B2 (en) Voltage controlled magnetization reversal recording type MRAM element and information recording and reading method using the same
JP4231506B2 (en) Magnetic switch element and magnetic memory using the same
JP3603771B2 (en) Magnetic resistance element, magnetic sensor and memory device using the same
KR101360991B1 (en) Memory element and memory
JP2004200245A (en) Magnetoresistive element and manufacturing method therefor
WO2012151098A1 (en) Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications
JP6857421B2 (en) Ferromagnetic tunnel junction, spintronics device using it, and method for manufacturing ferromagnetic tunnel junction
JP2004179219A (en) Magnetic device and magnetic memory using the same
US7684147B2 (en) Magnetoelectronic devices based on colossal magnetoresistive thin films
WO2007119748A1 (en) Magnetic random access memory and method for manufacturing the same
CN111554807A (en) Heusler compounds with non-magnetic spacer layers for forming synthetic antiferromagnets
JP3578721B2 (en) Magnetic control element, magnetic component and memory device using the same
CN111384235B (en) Magnetic tunnel junction and NSOT-MRAM device based on magnetic tunnel junction
JP4304688B2 (en) Spin filter effect element and magnetic device using the same
US6590268B2 (en) Magnetic control device, and magnetic component and memory apparatus using the same
JP2004221526A (en) Thin magnetic film and magnetoresistive effect element using the same, and magnetic device
US10629801B2 (en) Laminated structure and spin modulation element
JP2000357828A (en) Ferromagnetic oxide and magnetoresistance element wherein the same is used
JP3206582B2 (en) Spin polarization element
JP2005072436A (en) Tunnel junction element
JP2019067900A (en) Stacked structure, spin modulation element, and magnetic recording system
JP2000174359A (en) Reluctance element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees