WO2006085353A1 - セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局 - Google Patents

セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局 Download PDF

Info

Publication number
WO2006085353A1
WO2006085353A1 PCT/JP2005/001825 JP2005001825W WO2006085353A1 WO 2006085353 A1 WO2006085353 A1 WO 2006085353A1 JP 2005001825 W JP2005001825 W JP 2005001825W WO 2006085353 A1 WO2006085353 A1 WO 2006085353A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
base station
radio communication
mobile station
communication system
Prior art date
Application number
PCT/JP2005/001825
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Seki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP05709877A priority Critical patent/EP1848233A4/en
Priority to CNA2005800479142A priority patent/CN101116361A/zh
Priority to JP2007502496A priority patent/JPWO2006085353A1/ja
Priority to PCT/JP2005/001825 priority patent/WO2006085353A1/ja
Publication of WO2006085353A1 publication Critical patent/WO2006085353A1/ja
Priority to US11/882,685 priority patent/US20070274263A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a slot allocation method in a cellular radio communication system and a base station used in the system, and in particular, divides a radio communication channel into slots having a certain time and frequency interval,
  • the present invention relates to a technique suitable for use in a packet transmission type cellular radio communication system that realizes multi-user multiplexing by adaptively assigning these slots.
  • a wireless communication channel is divided into time slots with a fixed time interval and frequency bands with a fixed bandwidth, and a base station device (hereinafter also simply referred to as a "base station”).
  • base station a base station device
  • highly efficient packet transmission is realized by adaptively allocating the traffic of multiple users [mobile station apparatus (hereinafter also simply referred to as “mobile station”)] to these divided slots by scheduling. .
  • Packet transmission based on base station scheduling can be used for both downlink (communication from a mobile station to a base station) and downlink (communication from a mobile station to a base station).
  • the base station performs scheduling according to uplink and downlink traffic and communication quality.
  • the scheduler assigns packets preferentially to traffic (users) with a high requested transmission rate (rate) or users with a short requested transmission delay. Also, in order to increase the overall system throughput, packets are preferentially assigned to users with good communication quality. The weighting of these priorities is determined by the balance between traffic fairness and total throughput for each user.
  • FIG. 10 shows a configuration example of uplink and downlink time slots.
  • the traffic of user # 1, user # 2, and user # 3 is allocated by the scheduler independent of the upper and lower links between slot # 1 and slot # 5.
  • one slot consists of a pilot symbol 501, a control symbol 502 and a data symbol. It is composed of 503 forces!
  • Pilot symbol 501 is a symbol of a known pattern, and is used to demodulate control symbol 502 and data symbol 503 by estimating channel fluctuation due to a propagation path in a receiving station.
  • Control symbol 502 includes user allocation information of the slot, modulation scheme of data symbol 503, packet number, communication quality feedback information, and the like.
  • FIG. 11 shows a configuration of a cellular mobile communication system including a base station 100 having an uplink / downlink scheduler and one or more mobile stations 200 that can be accessed by the base station 100.
  • the base station 100 includes, for example, a transmission unit (Tx) 101, a reception unit (Rx) 102, a propagation path measurement unit 103, a slot demodulation unit 104, an uplink scheduler 105, a downlink scheduler 106, and
  • the mobile station 200 includes, for example, a transmission unit (Tx) 201, a reception unit (Rx) 202, a slot demodulation unit 203, a propagation path measurement unit 204, and a slot generation unit 205. Configured.
  • the downlink traffic of the base station 100 includes traffic for a plurality of users (mobile stations 200).
  • the downlink scheduler 106 of the base station 100 obtains information such as traffic information (requested transmission speed, requested transmission delay) of each user and downlink communication quality for each user fed back from the mobile station 200. Based on this, the user assignment of the slot is determined. Slot generator 107 generates the slot shown in FIG. 10 and transmits it to mobile station 200.
  • control symbol 502 of the slot includes uplink user allocation information determined by the uplink scheduler 105 of the base station 100.
  • the mobile station 200 demodulates the downlink control symbol 502, and when a slot is allocated to the own station 200, the mobile station 200 demodulates the data symbol 503 of the slot.
  • the control symbol 502 includes uplink slot allocation information addressed to the own station 200
  • the slot generation unit 205 generates an uplink slot and transmits uplink data traffic.
  • propagation path measurement section 204 measures downlink communication quality (received SIR: Signal to Interference Ratio) using pilot symbol 501 in the downlink slot, and the result is Base station using uplink slot control symbol 502 Give feedback to station 100.
  • SIR Signal to Interference Ratio
  • the base station 100 receives the uplink signal, the slot demodulation unit 104 demodulates the control symbol 502, and notifies the downlink scheduler 106 of the downlink communication quality information included in the control channel. Also, uplink traffic information (requested transmission rate and requested delay) included in the control symbol 502 is notified to the uplink scheduler 105. Further, the propagation path measurement unit 103 of the base station 100 measures the uplink communication quality (reception SIR), and notifies the uplink scheduler 105 of the result. Then, the uplink scheduler 105 determines uplink slot allocation using the uplink traffic information of each user and the uplink communication quality.
  • Figure 12 shows a cell configuration with a cell repetition factor of 3 (3 cell repetition). It is assumed that the base station 100 exists in the center of the hexagonal cell, and the cell number means the slot number to be assigned. As shown in Fig. 12, when three adjacent cells use different slots, the base station 100 and the mobile station 200 of adjacent cells do not interfere with each other. Will improve. However, in this case, since one cell can use only one of the three slots, the slot use efficiency is reduced to S1 / 3 and the total throughput is reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-65738
  • each base station measures mutual interference with a base station existing in the vicinity, and uses the result of the measurement.
  • the time slot is set autonomously, the mutual interference is large, and the base stations are different from each other.
  • the technique of Patent Document 1 requires a mechanism for measuring mutual interference with surrounding base stations and scheduling for assigning different slots between base stations. There is a problem that the amount of attached calories is large.
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-102062
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-102062
  • a mobile station performs communication in an interference area such as a cell edge
  • all of the service areas that constitute this interference area It is proposed to allocate an unused radio communication channel in an adjacent base station.
  • Patent Document 2 when a mobile station identification number is received by a plurality of base stations, a method for determining that the mobile station exists in an interference area is also proposed.
  • the technique of Patent Document 2 requires a mechanism for discriminating unused slots between adjacent base stations, and has a problem that it has a large impact on devices and systems.
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2002-159048 proposes a simple method for reducing interference at the cell edge.
  • Patent Document 3 proposes a method of dividing a cell into a plurality of subareas centered on a base station and assigning specific time slots to each subarea.
  • this technology is based on the assumption of one-cell repetition, the effect of reducing interference from other cells is limited.
  • this technology is applied to the downlink, it is necessary to control the transmission power for users close to the base station to be reduced in combination with the transmission power control.
  • the present invention has been devised in view of such problems, and is also applicable to a user (mobile station) located in a cell edge region far from a base station that does not reduce the throughput of the entire system.
  • An object is to enable communication with a high transmission rate.
  • Patent Document 1 JP-A-8-65738
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-102062
  • Patent Document 3 JP 2002-159048
  • a slot allocation method in a cellular radio communication system of the present invention divides a radio communication channel between a mobile station and a base station forming a cell into predetermined slots.
  • a cellular radio communication system that realizes radio multiple access by appropriately assigning the divided slots to a plurality of mobile stations by the base station, different cell repetitions for the divided slots
  • the cell repetition factor which is information relating to the number, is set in a mixed manner, and the base station determines a slot to be allocated to a mobile station located in a cell formed by the base station based on the cell repetition factor. ing.
  • the slot may be a time slot obtained by dividing the wireless communication channel at a constant time interval, or may be a slot obtained by dividing the wireless communication channel at a constant frequency interval. It may be a slot that divides a wireless communication channel in two dimensions of time and frequency.
  • the base station may determine a slot to be allocated according to the communication quality with the mobile station. In this case, for example, for a mobile station with the low communication quality, the communication quality is high.
  • a slot with a cell repetition factor larger than the cell repetition factor of the slot allocated to the mobile station can be allocated.
  • the base station may determine a slot to be allocated according to the requested transmission rate of the mobile station.
  • the requested transmission is performed for a mobile station with a high requested transmission rate.
  • With a low transmission rate it is possible to assign a cell repetition factor slot larger than the cell repetition factor of the slot assigned to the mobile station.
  • the base station may determine the slot to be allocated according to the distance of the mobile station from the base station. In this case, for example, the distance is close to a mobile station with a long distance.
  • a slot with a cell repetition factor larger than the cell repetition factor of the slot allocated to the mobile station can be allocated.
  • the base station that is the handover source and the base station that is the handover destination each have a cell repetition factor other than 1. Slots can also be assigned.
  • a base station used in the cellular radio communication system of the present invention includes a mobile station and a cell.
  • a cellular radio that realizes radio multiple access by dividing a radio communication channel with a base station to be formed into predetermined slots, and the base station adaptively assigns the divided slots to a plurality of mobile stations. This is used in communication systems, and the cell repetition factor, which is information related to the number of different cell repetitions, is set for the divided slots.
  • the use-permitted slot information storage unit that stores the use-permitted slot information is determined. It is characterized by having a slot allocation part
  • the slot may be a time slot obtained by dividing the radio communication channel at a constant time interval, or may be a slot obtained by dividing the radio communication channel at a constant frequency interval. However, it may be a slot obtained by dividing the wireless communication channel in a two-dimensional direction of time and frequency.
  • the slot allocation unit may be configured to determine a slot to be allocated according to the communication quality with the mobile station.
  • the mobile station with a low communication quality may be configured.
  • a slot having a cell repetition factor larger than the cell repetition factor of the slot allocated to the mobile station having the high communication quality can be configured.
  • the slot allocation unit may be configured to determine a slot to be allocated in accordance with the requested transmission rate of the mobile station.
  • the mobile station having a high requested transmission rate is used.
  • a slot having a cell repetition factor larger than a cell repetition factor of a slot allocated to a mobile station having a low required transmission rate can be configured.
  • the slot allocation unit may be configured to determine a slot to be allocated according to the distance of the mobile station from the base station. In this case, for example, for a mobile station with a long distance A slot having a cell repetition factor larger than a cell repetition factor of a slot allocated to a mobile station having a short distance can be configured.
  • the problem that the transmission rate decreases according to the distance of the base station power which is a problem peculiar to the packet scheduling type communication method, can be solved, and fair wireless resource allocation can be performed. is there. Also, a base that reduces the overall system throughput. Communication with a high transmission rate is possible even for users located in the cell edge area away from the station.
  • FIG. 1 is a diagram showing a configuration (time slot) of a wireless communication channel to explain the principle of the present invention.
  • FIG. 2 is a diagram showing a configuration (frequency band slot) of a wireless communication channel in order to explain the principle of the present invention.
  • FIG. 3 is a diagram showing a configuration of a wireless communication channel (two-dimensional division slot) to explain the principle of the present invention.
  • FIG. 4 is a diagram showing an example of cell arrangement to explain the principle of the present invention.
  • FIG. 5 is a block diagram showing a configuration of a cellular mobile (wireless) communication system as one embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between transmission rate and SIR used in the present embodiment.
  • FIG. 7 is a block diagram showing a configuration example of uplink and downlink schedulers in the base station shown in FIG.
  • FIG. 8 is a flowchart for explaining a slot allocation procedure by the system (base station) shown in FIG.
  • FIG. 9 is a diagram for explaining a slot allocation method during handover of the mobile station shown in FIG. 5.
  • Fig. 10 is a diagram showing an example of a conventional frame structure of up / down links.
  • FIG. 11 is a block diagram showing a configuration example of a conventional packet mobile communication system.
  • FIG. 12 shows an example of cell arrangement in a conventional packet mobile communication system.
  • a wireless communication channel (wireless resource) between a base station and a mobile station is divided into a plurality of time slots, and a cell which is information on the number of cell repetitions for each time slot.
  • the repetition factor is determined in advance, and the base station determines each user (mobile Station).
  • the cell repetition factor up to slot # 1 to # 4 is 1, and slots # 5 to # 7.
  • the cell repetition factor is predetermined at 3.
  • slots # 1 through # 4 can be used in all cells, slot # 5 can use cell # 1, slot # 6 can use cell # 2, and slot # 7 can use cell # 3. It is predetermined. In other words, shared slots # 1-1 # 4 that are allowed to be shared by multiple cells (base stations) among each divided slot # 1-1 # 7 and individual that are allowed to be used independently by one cell Slots # 5, # 6, and # 7 are set together.
  • cells # 1 to # 3 have a cell arrangement as shown in FIG. 12, for example.
  • the base station assigns a slot suitable for the user from slot # 1 1 # 4 and slot 3 # 5, # 6 or # 7 of 1 cell repetition. Is possible. Needless to say, 3 cell repeat slots # 5, # 6, and # 7 are less distant from other cells because the interfering cells are located farther away than 1 cell repeat slots. Thus, high quality communication becomes possible.
  • the base station For a user who needs high transmission rate communication, the base station has a cell repetition factor slot larger than the cell repetition factor of the slot allocated to the user for low transmission rate communication. Should be assigned.
  • the base station For a user who needs a communication with a short transmission delay, such as real-time traffic, the base station has a slot with a cell repetition factor larger than the cell repetition factor of a slot allocated to a user whose transmission delay may be large. It is good to assign
  • slot allocation can be performed according to the difference between the user's requested transmission rate and the actual throughput. For example, a slot with a cell repetition factor may be allocated to a user having a large difference, which is smaller than the cell repetition factor of the slot allocated to the user. That is, the base station determines a slot to be allocated according to the required transmission rate.
  • the base station can determine the slot to be allocated according to the communication quality (propagation channel state) with the mobile station. For example, for a user whose communication quality (channel state) is poor (low), a slot with a cell repetition factor larger than the cell repetition factor of a slot allocated to a user with good channel state may be allocated.
  • the propagation path state Received power, received SIR, delay spread, Doppler frequency, etc. can be used.
  • the base station can also determine a slot to be allocated according to the distance of the mobile station from the base station. For example, a user who is far away from the base station, such as a cell edge, is easily affected by interference from other cells. Therefore, a user who is far away from the base station is close to the base station. It is better to assign a slot with a cell repetition factor that is larger than the cell repetition factor of the slot assigned to the user.
  • the user's position may be measured at the base station using received power, radio wave arrival angle, arrival time, etc., or the user's position information may be obtained from a terminal equipped with GPS (Global Positioning System). You may be notified.
  • GPS Global Positioning System
  • the time slot is divided into time slots.
  • a frequency band is defined as a slot, it is the same as shown in FIG. Slot assignments can be made.
  • FIG. 3 it is possible to use slots that are divided in two dimensions in the time and frequency directions.
  • a predetermined cell repetition factor is determined from among three types of cell repetition factors 1, 3, and 9 for each slot divided in two dimensions. Then, for example, with respect to the cell arrangement shown in FIG.
  • the remaining 3 X 3 9 slots indicate that each one of cells # 1 and # 9 can be used! /.
  • two-dimensional slot division can be used, and three or more types of cell repetition factors can coexist.
  • the transmission rate is adaptively determined according to the quality.
  • communication close to the base station is possible at a high transmission rate.
  • communication can be performed only at a low transmission rate! / ⁇
  • the cell edge user is assigned a slot having a cell repetition factor larger than 1 to reduce interference with other cells, and communication with a higher transmission rate than the conventional method. Can be realized.
  • FIG. 5 is a block diagram showing the configuration of a cellular mobile (wireless) communication system as an embodiment of the present invention.
  • the system shown in FIG. 5 is similar to the system described above with reference to FIG.
  • the base station 1 includes, for example, a transmission unit (Tx) 11, a reception unit (Rx) 12, a propagation path measurement unit 13 and the like.
  • the traffic of a plurality of users (mobile station 2) usually exists in the downlink traffic of base station 1.
  • transmitter 11 transmits downlink data to mobile station 2 (pilot symbols (hereinafter also simply referred to as “pilots”) 501, control symbols 50 2 described above with reference to FIG. And data symbols 503) are transmitted wirelessly, and necessary transmission processing including necessary encoding processing, modulation processing such as QAM and QPSK, digital-analog conversion processing, frequency conversion processing (up-conversion), etc. can be performed.
  • the receiving unit 12 receives uplink data (pilot symbol 501, control symbol 502 and data symbol 503) transmitted from the mobile station 2 by radio, and performs a required frequency conversion. Processing (down conversion), quadrature detection processing, analog-digital conversion processing, using pilot 501 In addition, necessary reception processing including channel estimation processing, demodulation processing, and decoding processing can be performed.
  • the propagation path measurement unit 13 measures the propagation path state with the mobile station 2 based on the received signal (uplink data) at the reception unit 12, and as described above, Measurements can be made using received SIR, delay spread, Doppler frequency, etc.
  • the estimation of the propagation path information is performed using the pilot 501 inserted in the slot, and the channel estimation value is calculated from the amount of change that the pie-port 501 receives through the propagation path.
  • the received power is calculated from the power of the channel estimation value, the dispersion power interference power of the channel estimation value is calculated, and the received SIR is also obtained for the specific power.
  • the Doppler frequency is estimated from the amount of phase change per unit time of the channel estimation value. Further, a delay profile can be obtained by calculating a time correlation between the received pilot 501 and a known pilot.
  • the slot demodulator 14 demodulates each slot of the uplink data received by the receiver 12, demodulates the control symbol 502, and downloads downlink communication quality information included in the control channel.
  • the link scheduler 16 it also has a function of notifying the uplink scheduler 15 of uplink traffic information (requested transmission rate and request delay) included in the control symbol 502.
  • Uplink scheduler (slot allocator) 15 can be used based on slot information that is stored in use-permitted slot information memory 18 and is determined as a slot that can be used for each available uplink and downlink. Slot allocation to a user (mobile station 2) connected to own station 1 according to a predetermined scheduling method, and a downlink scheduler (slot allocation unit) 1
  • the slot generator 17 generates uplink and downlink slots (pilot symbol 501, control symbol 502 and data symbol 503) according to the slot allocation by the schedulers 15 and 16 described above.
  • the permission slot information memory 18 is shown in FIG. 1 (or FIG. 2, Alternatively, as described above with reference to FIG. 3), slot information determined in advance as a slot that can be used by the own station 1 is stored.
  • transmitter (Tx) 21 transmits uplink data (piet symbol 501, control symbol 502 and data symbol 503) to base station 1 by radio.
  • Necessary transmission processing including encoding processing, modulation processing such as QAM and QPSK, digital-analog conversion processing, frequency conversion processing (up-conversion), etc. can be performed.
  • the required frequency conversion processing (down-conversion), quadrature detection processing, analog digital conversion processing, pilot This makes it possible to perform necessary reception processing including channel estimation processing, demodulation processing, decoding processing, and the like.
  • Slot demodulator 23 demodulates each slot of the downlink data received by receiver 22, demodulates control symbol 502, and uplink slot allocation information included in the control channel. Is also notified to the slot generator 25. Note that the slot demodulator 23 may demodulate (ie, monitor) all downlink slots, and at least a slot (for example, demodulated) to be received (demodulated) by the local station 2 in order to reduce power consumption. In FIG. 1, if the mobile station 2 exists in the cell 1, only the slot 1 to 5 out of all the slots 1 to 7 may be monitored.
  • the propagation path measurement unit 24 measures the state of the propagation path with the base station 1 based on the pi port 501 included in the received signal (downlink data) at the reception unit 22,
  • the station 2 side can also perform measurements using received power, received SIR, delay spread, and Doppler frequency.
  • the slot generation unit 25 performs uplink slots (pilot symbol 501, control symbol 502 and data symbol 503 according to the slot allocation information from the slot demodulation unit 23 (that is, slot information permitted to be used by the base station 1).
  • the downlink communication quality information is fed back to the base station 1 by storing the downlink communication quality information measured by the propagation path measurement unit 24 in the control symbol 502.
  • the packet mobile communication system of the present embodiment basically has the features described in the item [A] only by adding the use permission slot information memory 18 to the system described above with reference to FIG. Can be realized.
  • the relationship between SIR and transmission speed is determined according to the access method (CDMA, OF DM, etc.) used in the system and the demodulation algorithm of the received signal, for example, as shown in FIG. Yes.
  • Each of the uplink and downlink schedulers 15 and 16 stores the relationship shown in FIG. 6 in a memory or the like as a SIRZ transmission rate conversion table or the like, and calculates the required SIR of each user based on the required transmission rate of each user. To do.
  • the downlink scheduler 16 since the downlink scheduler 16 knows the required transmission rate for the downlink traffic information, the required SIR can be calculated based on this information.
  • the uplink scheduler 15 can calculate the required SIR by receiving traffic information (transmission rate request) from the mobile station 2. Further, the downlink scheduler 16 can obtain downlink received SIR information by feedback from the mobile station 2, and the uplink scheduler 15 obtains uplink SIR information measured by the base station 1. Can do.
  • Each of the schedulers 15 and 16 uses, for example, a circuit as shown in FIG. 7, for example, to obtain the difference information between the required SIRs of all users # 1 and #N (N is a natural number) and the actual received SIR.
  • each scheduler 15, 16 has the above SIRZ transmission rate conversion table for each user (mobile station 2), and a required SIR conversion unit 151 that converts the required transmission rate into a required SIR, and the required SIR conversion unit 151.
  • a subtractor 152 for taking the difference between the actual received SIR (measured value) and a slot for mobile station 2 based on the subtraction result of each subtractor 152 and the use permitted slot information in use permission slot information memory 18.
  • a slot allocation circuit 153 for performing allocation is provided.
  • the base station 1 has the largest difference between the required SIR and the received SIR, for example, according to the processing flow shown in FIG. To do. That is, the schedulers 15 and 16 update the difference information between the required SIR of all users and the received SIR (measurement value) by the required SIR conversion unit 151 and the subtractor 152 (step S1), and the slot allocation circuit 153. To select the user having the largest difference information (step S2).
  • the slot allocation circuit 153 assigns a slot having a large cell repetition factor (other than 1) (eg, slot 5 in FIG. 1 to slot 5) based on the use-permitted slot information and the current slot allocation status. It is checked whether or not there is a vacancy (step S3). If there is a vacancy (YES in step S3), the slot is assigned to the user (step S4). If the cell repetition factor is large and the slot is not empty (NO in step S3), the processing from step S1 onward is repeated.
  • a large cell repetition factor other than 1
  • the slot 5 in FIG. 1 to slot 5
  • the slot allocation circuit 153 assigns a slot having a large cell repetition factor (other than 1) (eg, slot 5 in FIG. 1 to slot 5) based on the use-permitted slot information and the current slot allocation status. It is checked whether or not there is a vacancy (step S3). If there is a vacancy (YES in step S3), the slot is assigned to the user (step S4). If the cell repetition
  • V and slots can be assigned from slots other than slots.
  • the difference information for each user is updated (see step S1 in FIG. 8), the difference information is temporarily stored and sorted. Large slots can also be allocated.
  • the priority (scheduling method) can be set freely, and the slot to be assigned can be determined according to the priority.
  • the mobile station 2 When the mobile station 2 is in a handover state (a state in which signals can be received from a plurality of base stations 1 with the same reception power in cell search or the like), the mobile station 2 A handover request is made to the stations 1A and 1B.
  • the base stations 1A and 1B that have received the handover request allocate a slot (individual slot) having a cell repetition factor larger than 1 to the mobile station 2.
  • the base stations 1A and 1B determine slots to be allocated to the mobile station 2 in response to a handover request from the mobile station 2.
  • slot # 5 and slot # 6 which have a cell repetition factor larger than 1, are allocated to mobile station 2 that is undergoing handover. Both the base station 1 A and the handover destination base station 1 B can use slots # 5 and # 6 assigned simultaneously. As a result, the mobile station 2 can not only improve the throughput in the handover area but also avoid the packet loss that occurs at the time of handover switching. In addition, since different slots # 5 and # 6 can be received (demodulated) sequentially, only one receiving system (slot demodulator 23) is required, which contributes to miniaturization of mobile station 2.
  • different cell repetition factors are mixedly set for each slot obtained by dividing a radio communication channel (radio resource) so that each base station 1 can
  • the slot to be assigned to the mobile station 2 is determined according to a predetermined scheduling method, so depending on the distance from the base station 1, which is a problem specific to the packet scheduling type communication method It solves the problem of lowering the transmission rate and enables fair radio resource allocation.
  • communication with a high transmission rate is possible even for users located in the cell edge area far from the base station 1 without reducing the throughput of the entire system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

 セルラー無線通信システムに用いられる基地局において、移動局との間の無線通信チャネルの分割されたスロットに対して異なるセル繰返し数に関する情報であるセル繰返しファクタが混在して設定されることにより、自局に使用が許可されたスロットに関する使用許可スロット情報を記憶する使用許可スロット情報記憶部(18)と、この使用許可スロット情報記憶部(18)における使用許可スロット情報に基づいて自局の形成するセルに位置する移動局(2)に割り当てるスロットを決定するスロット割り当て部(15,16)とをそなえる。これにより、基地局(1)からの距離に応じて伝送レートが低下することを回避し、公正な無線リソース割り当てを可能とする。また、システム全体のスループットを低下することなく、基地局(1)から離れたセル端の領域に位置するユーザに対しても、伝送レートの高い通信を可能にする。

Description

明 細 書
セルラー無線通信システムにおけるスロット割り当て方法及び同システム に用いられる基地局
技術分野
[0001] 本発明は、セルラー無線通信システムにおけるスロット割り当て方法及び同システ ムに用いられる基地局に関し、特に、無線通信チャネルを一定の時間および周波数 間隔のスロットに分割し、複数のユーザに対してそれらのスロットを適応的に割り当て ることで、マルチユーザ多重(Multiple Access)を実現するパケット伝送型のセルラー 無線通信システムに用いて好適な技術に関する。
背景技術
[0002] セルラー移動(無線)通信システムにおけるパケット伝送では、無線通信チャネルを 一定時間間隔のタイムスロットや一定帯域幅の周波数バンドに分割し、基地局装置( 以下、単に「基地局」ともいう)がスケジューリングによって、それらの分割スロットに対 して複数のユーザ〔移動局装置 (以下、単に「移動局」とも 、う)〕のトラフィックを適応 的に割り当てることで、高効率なパケット伝送を実現する。
[0003] 基地局のスケジューリングによるパケット伝送は、下りリンク(基地局力も移動局への 通信)と上りリンク (移動局から基地局への通信)の両方に用いることができる。基地局 は、上下リンクのトラフィックと通信品質に応じてスケジューリングを行なう。スケジユー ラは、要求する伝送速度(レート)の高いトラフィック(ユーザ)や、要求する伝送遅延 の短いユーザには優先的にパケットを割り当てる。また、システム全体のスループット を高めるためには、通信品質の良いユーザに対して優先的にパケットを割り当てる。 これらの優先度の重み付けは、各ユーザに対するトラフィックの公平性とトータルスル 一プットのバランスによって決定される。
[0004] 図 10に、上下リンクのタイムスロットの構成例を示す。この図 10では、スロット # 1力 らスロット # 5までの間にユーザ # 1,ユーザ # 2,ユーザ # 3のトラフィックが上下リン ク独立のスケジューラによって割り当てられて 、る様子を示して 、る。図 10に示すよう に、 1つのスロットは、パイロットシンボル 501,制御シンボル 502及びデータシンボル 503力ら構成されて!/、る。
[0005] パイロットシンボル 501は、既知のパターンのシンボルであり、受信局において伝搬 路によるチャネル変動を推定し、制御シンボル 502及びデータシンボル 503を復調 するために用いられる。制御シンボル 502には、そのスロットのユーザ割り当て情報 やデータシンボル 503の変調方式、パケット番号、通信品質のフィードバック情報な どが含まれる。
[0006] 図 11に、上下リンクのスケジューラを有する基地局 100と、この基地局 100にァクセ スし得る 1台以上の移動局 200とをそなえたセルラー移動通信システムの構成を示 す。この図 11に示すように、基地局 100は、例えば、送信部 (Tx) 101,受信部 (Rx) 102,伝搬路測定部 103,スロット復調部 104,上りリンクスケジューラ 105,下りリンク スケジューラ 106及びスロット生成部 107をそなえて構成され、移動局 200は、例え ば、送信部 (Tx) 201,受信部 (Rx) 202,スロット復調部 203,伝搬路測定部 204及 びスロット生成部 205をそなえて構成されている。なお、基地局 100の下りリンクトラフ イツクには、複数のユーザ (移動局 200)のトラフィックが存在する。
[0007] 基地局 100の下りリンクスケジューラ 106では、各ユーザのトラフィック情報(要求伝 送速度、要求伝送遅延)や、移動局 200からフィードバックされるユーザ毎の下りリン クの通信品質などの情報を基に、スロットのユーザ割り当てが決定される。スロット生 成部 107では、図 10に示すスロットが生成され、移動局 200に向けて送信される。
[0008] ここで、スロットの制御シンボル 502には、基地局 100の上りリンクスケジューラ 105 で決定した、上りリンクのユーザ割り当て情報が含まれる。
移動局 200では、下りリンクの制御シンボル 502を復調し、自局 200宛てにスロット が割り当てられている場合に、そのスロットのデータシンボル 503の復調を行なう。ま た、制御シンボル 502に、自局 200宛の上りリンクのスロット割り当て情報が含まれて いる場合は、スロット生成部 205において、上りリンクのスロットを生成し、上りデータト ラフィックの伝送を行なう。
[0009] また、移動局 200では、伝搬路測定部 204において、下りリンクスロットのパイロット シンボル 501を用いて、下りリンクの通信品質(受信 SIR: Signal to Interference Ratio )の測定を行ない、その結果を上りリンクスロットの制御シンボル 502を用いて、基地 局 100にフィードバックする。
基地局 100では、上りリンクの信号を受信し、スロット復調部 104において制御シン ボル 502を復調し、制御チャネルに含まれる下りリンクの通信品質情報を下りリンクス ケジユーラ 106に通知する。また、制御シンボル 502に含まれる上りリンクのトラフイツ ク情報(要求伝送速度、要求遅延)を上りリンクスケジューラ 105に通知する。さらに、 基地局 100の伝搬路測定部 103では、上りリンクの通信品質 (受信 SIR)の測定を行 ない、その結果を上りリンクスケジューラ 105に通知する。そして、上りリンクスケジュ ーラ 105では、各ユーザの上りリンクのトラフィック情報と上りリンクの通信品質を用い て、上りリンクのスロット割り当てを決定する。
[0010] し力しながら、セルラー移動通信では、移動局 200と基地局 100との間の距離が離 れるにしたがって、受信信号レベルが低下するとともに、隣接する他セルからの干渉 が増大し、その結果、受信 SIRが低下する課題がある。したがって、移動局 200がセ ル端の領域に位置する場合は、受信 SIRが低いために、伝送レートの高い通信を行 なうことができない。また、図 10および図 11で説明したパケット伝送では、スケジユー ラ 105, 106によって、受信 SIRの低いユーザには、スロット割り当ての優先度が低く 抑えられることにより、セル端の領域に位置するユーザのスループットが伸びないとい う課題がある。
[0011] このような課題を解決するための従来の方法として、セル繰返しを用いる方法があ る。図 12は、セル繰返しファクタが 3 (3セル繰返し)のセル構成を示している。六角形 のセルの中心に基地局 100が存在していると仮定しており、セルの番号は割り当てる スロット番号を意味している。この図 12に示すように、隣接する 3つのセルがそれぞれ 異なるスロットを使用することで、隣り合ったセルの基地局 100や移動局 200はお互 いに干渉しないため、他セル干渉が減り受信 SIRが向上する。し力しながら、この場 合、 1つのセルは、 3スロットの中の 1スロットしか使用できないため、スロット使用効率 力 S3分の 1になるためトータルのスループットは低下してしまう。
[0012] そこで、例えば、下記特許文献 1 (特開平 8— 65738号公報)では、各基地局が、周 囲に存在する基地局との相互の干渉を測定し、その結果を用いて使用するタイムス ロットの設定を自律的に行な 、、相互の干渉が大き 、基地局間では互!ヽに異なるタ
Figure imgf000006_0001
、基地局間ではタイムスロットをセル毎に 任意に設定する方法を提案している。し力しながら、この特許文献 1の技術では、周 囲に存在する基地局との相互の干渉を測定する仕組みや、基地局間で互いに異な るスロットを割り当てるスケジューリングが必要となり、装置やシステムに与える付カロが 大きいという課題がある。
[0013] また、下記特許文献 2 (特開 2000-102062号公報)では、移動局がセル端などの 干渉エリア内で通信を行なう場合にはこの干渉エリアを構成する全てのサービスエリ ァ内(隣接する基地局)で未使用の無線通信チャネルを割り当てることを提案してい る。また、この特許文献 2では、移動局の識別番号を複数の基地局で受信した場合 に、その移動局が干渉エリアに存在することを判定する方法にっ 、ても提案して 、る 。し力しながら、この特許文献 2の技術では、隣接する基地局の間で、未使用のスロッ トを判別する仕組みが必要であり、装置やシステムに与えるインパクトが大きいという 課題がある。
[0014] さらに、下記特許文献 3 (特開 2002— 159048号公報)では、セル端での干渉を減 らす簡易な方法が提案されている。この特許文献 3では、セル内を基地局を中心とす る複数のサブエリアに分割し、各サブエリアに特定のタイムスロットを割り当てる方法 を提案している。そして、隣接するセルでは、各サブエリアに異なるタイムスロットを割 り当てることにより、他セル力もの干渉を低減する方法を提案している。しかしながら、 この技術では、 1セル繰返しを前提としているため、他セル干渉の低減効果には限界 がある。また、この技術を下りリンクに適用する場合は、送信電力制御と組合せて、基 地局に近いユーザに対する送信電力を小さく抑えるように制御する必要がある。
[0015] 本発明は、このような課題に鑑み創案されたもので、システム全体のスループットを 低下することなぐ基地局から離れたセル端の領域に位置するユーザ (移動局)に対 しても、伝送レートの高い通信を可能にすることを目的とする。
特許文献 1:特開平 8— 65738号公報
特許文献 2:特開 2000-102062号公報
特許文献 3 :特開 2002-159048号公報
発明の開示 [0016] 上記の目的を達成するために、本発明のセルラー無線通信システムにおけるスロッ ト割り当て方法は、移動局とセルを形成する基地局との間の無線通信チャネルを所 定のスロットに分割し、該基地局が前記分割したスロットを複数の移動局に対して適 応的に割り当てることにより無線多重アクセスを実現するセルラー無線通信システム にお 、て、上記分割されたスロットに対して異なるセル繰返し数に関する情報である セル繰返しファクタを混在して設定し、該基地局が該セル繰返しファクタに基づ 、て 自局の形成するセルに位置する移動局に割り当てるスロットを決定することを特徴と している。
[0017] ここで、該スロットは、該無線通信チャネルを一定の時間間隔に分割したタイムス口 ットでもよ 、し、該無線通信チャネルを一定の周波数間隔に分割したスロットでもよ ヽ し、該無線通信チャネルを時間及び周波数の 2次元方向に分割したスロットでもよ ヽ
また、該基地局は、該移動局との間の通信品質に応じて割り当てるスロットを決定し てもよく、この場合、例えば、該通信品質の低い移動局に対しては該通信品質の高
V、移動局に割り当てるスロットのセル繰返しファクタよりも大き 、セル繰返しファクタの スロットを割り当てることができる。
[0018] さらに、該基地局は、該移動局の要求伝送速度に応じて割り当てるスロットを決定し てもよく、この場合は、例えば、該要求伝送速度の高い移動局に対しては該要求伝 送速度の低 、移動局に割り当てるスロットのセル繰返しファクタよりも大き 、セル繰返 しファクタのスロットを割り当てることができる。
また、該基地局は、該移動局の当該基地局からの距離に応じて割り当てるスロット を決定してもよぐこの場合は、例えば、該距離が遠い移動局に対しては該距離が近
V、移動局に割り当てるスロットのセル繰返しファクタよりも大き 、セル繰返しファクタの スロットを割り当てることができる。
[0019] さらに、複数の該基地局間のハンドオーバ領域に位置する移動局に対しては、ノ、 ンドオーバ元の基地局及びハンドオーバ先の基地局は、それぞれ、該セル繰返しフ ァクタが 1以外のスロットを割り当てることもできる。
また、本発明のセルラー無線通信システムに用いられる基地局は、移動局とセルを 形成する基地局との間の無線通信チャネルを所定のスロットに分割し、該基地局が 前記分割したスロットを複数の移動局に対して適応的に割り当てることにより無線多 重アクセスを実現するセルラー無線通信システムに用いられるものであって、上記分 割されたスロットに対して異なるセル繰返し数に関する情報であるセル繰返しファクタ が混在して設定されることにより、自局に使用が許可されたスロットに関する使用許可 スロット情報を記憶する使用許可スロット情報記憶部と、該使用許可スロット情報記憶 部における該使用許可スロット情報に基づ 、て自局の形成するセルに位置する移動 局に割り当てるスロットを決定するスロット割り当て部とをそなえたことを特徴としている
[0020] ここで、この場合も、該スロットは、該無線通信チャネルを一定の時間間隔に分割し たタイムスロットでもよ ヽし、該無線通信チャネルを一定の周波数間隔に分割したスロ ットでもよ 、し、該無線通信チャネルを時間及び周波数の 2次元方向に分割したスロ ットでもよい。
また、該スロット割り当て部は、該移動局との間の通信品質に応じて割り当てるスロ ットを決定すべく構成されていてもよぐこの場合は、例えば、該通信品質の低い移 動局に対しては該通信品質の高い移動局に割り当てるスロットのセル繰返しファクタ よりも大きいセル繰返しファクタのスロットを割り当てるべく構成することができる。
[0021] さらに、該スロット割り当て部は、該移動局の要求伝送速度に応じて割り当てるスロ ットを決定すべく構成されてもよぐこの場合は、例えば、該要求伝送速度の高い移 動局に対しては該要求伝送速度の低い移動局に割り当てるスロットのセル繰返しファ クタよりも大きいセル繰返しファクタのスロットを割り当てるべく構成することができる。 また、該スロット割り当て部は、該移動局の当該基地局からの距離に応じて割り当て るスロットを決定すべく構成されてもよぐこの場合は、例えば、該距離が遠い移動局 に対しては該距離が近い移動局に割り当てるスロットのセル繰返しファクタよりも大き いセル繰返しファクタのスロットを割り当てるべく構成することができる。
[0022] 上記本発明によれば、パケットスケジューリング型の通信方式に特有の課題である 、基地局力 の距離に応じて伝送レートが低下する課題を解決し、公正な無線リソー ス割り当てが可能である。また、システム全体のスループットを低下することなぐ基地 局から離れたセル端の領域に位置するユーザに対しても、伝送レートの高い通信が 可會 になる。
図面の簡単な説明
[0023] [図 1]本発明の原理を説明すべく無線通信チャネルの構成 (タイムスロット)を示す図 である。
[図 2]本発明の原理を説明すべく無線通信チャネルの構成 (周波数帯スロット)を示 す図である。
[図 3]本発明の原理を説明すべく無線通信チャネルの構成(2次元分割スロット)を示 す図である。
[図 4]本発明の原理を説明すべくセル配置例を示す図である。
[図 5]本発明の一実施形態としてのセルラー移動 (無線)通信システムの構成を示す ブロック図である。
[図 6]本実施形態で用いる伝送速度と SIRとの関係を示すグラフである。
[図 7]図 5に示す基地局における上下リンクのスケジューラの構成例を示すブロック図 である。
[図 8]図 5に示すシステム(基地局)によるスロット割り当て手順を説明するためのフロ 一チャートである。
[図 9]図 5に示す移動局のハンドオーバ中のスロット割り当て方法を説明するための 図である。
[図 10]従来の上下リンクのフレーム構成例を示す図である。
[図 11]従来のパケット移動通信システムの構成例を示すブロック図である。
[図 12]従来のパケット移動通信システムでのセル配置例を示す図である。
発明を実施するための最良の形態
[0024] 以下、図面を参照して本発明の実施の形態を説明する。
〔A〕本発明の概要 (原理)説明
本発明では、図 1に示すように、基地局と移動局との間の無線通信チャネル (無線リ ソース)を複数のタイムスロットに分割し、タイムスロット毎にセル繰返し数に関する情 報であるセル繰返しファクタを予め決めておき、その中から基地局が各ユーザ (移動 局)に割り当てるスロットを決定する。図 1の例では、スロット # 1一 # 7が繰返し使用さ れるフレーム構成にお!、て、スロット # 1一 # 4までのセル繰返しファクタが 1に、スロ ット # 5— # 7までのセル繰返しファクタが 3に予め決められている。
[0025] 即ち、スロット # 1一 # 4までは全てのセルで使用可能とし、スロット # 5はセル # 1 力 スロット # 6はセル # 2が、スロット # 7はセル # 3がそれぞれ使用可能であること が予め決められている。換言すれば、分割された各スロット # 1一 # 7のうち複数のセ ル (基地局)で共有使用が許可された共有スロット # 1一 # 4と 1つのセルで単独使用 が許可された個別スロット # 5, # 6, # 7とが混在して設定されている。
[0026] この時、セル # 1からセル # 3は、例えば図 12に示すようなセル配置になっている。
このような構成にすることで、基地局は、 1セル繰返しのスロット # 1一 # 4と 3セル繰 返しのスロット # 5, # 6又は # 7の中から、ユーザに適したスロットを割り当てることが 可能になる。いうまでもないが、 3セル繰返しのスロット # 5, # 6, # 7は、 1セル繰返 しのスロットと比較して、干渉となるセルが遠い距離に位置するため、他セル干渉が 低減され、高品質の通信が可能になる。
[0027] 例えば、基地局は、高い伝送速度の通信が必要なユーザに対しては、低い伝送速 度の通信でょ 、ユーザに割り当てるスロットのセル繰返しファクタよりも大き 、セル繰 返しファクタのスロットを割り当てるとよい。また、基地局は、リアルタイムトラフィックな ど、伝送遅延の短い通信が必要なユーザに対しては、伝送遅延が大きくてもよいュ 一ザに割り当てるスロットのセル繰返しファクタよりも大きいセル繰返しファクタのスロッ トを割り当てるとよい。さらに、ユーザの要求伝送速度と実際のスループットとの差分 に応じてスロット割り当てを行なうこともできる。例えば、差分が大きいユーザには差分 の小さ 、ユーザに割り当てるスロットのセル繰返しファクタよりも大き 、セル繰返しファ クタのスロットを割り当てるとよい。つまり、基地局は、所要の伝送速度に応じて割り当 てるスロットを決定する。
[0028] また、基地局は、移動局との通信品質 (伝搬路状態)に応じて割り当てるスロットを 決定することもできる。例えば、通信品質 (伝搬路状態)が悪い (低い)ユーザに対し ては、伝搬路状態の良いユーザに割り当てるスロットのセル繰返しファクタよりも大き いセル繰返しファクタのスロットを割り当てるとよい。ここで、伝搬路状態の判断には、 受信電力、受信 SIR、遅延スプレッド、ドッブラ周波数などを用いることができる。
[0029] また、基地局は、移動局の基地局からの距離に応じて割り当てるスロットを決定する こともできる。例えば、セル端などの基地局力 遠い位置に存在するユーザは、他セ ル干渉の影響を受け易いため、基地局力 遠い位置に存在するユーザに対しては、 基地局に近い位置に存在するユーザに割り当てるスロットのセル繰返しファクタよりも 大きいセル繰返しファクタのスロットを割り当てるとよい。ここで、ユーザの位置は、基 地局において、受信電力や電波の到来角度、到来時間などを用いて測定してもよい し、 GPS (Global Positioning System)を搭載した端末からユーザの位置情報を通知 してもらってもよい。
[0030] なお、上記の例ではスロットを時間方向に分割したタイムスロットとして 、るが、例え ば図 2に示すように、周波数バンドをスロットと定義しても、図 1に示したのと同様のス ロット割り当てを行なうことができる。また、例えば図 3に示すように、時間および周波 数方向の 2次元に分割されたスロットを用いることもできる。この図 3では、 2次元に分 割された各スロットに対して、セル繰返しファクタが 1, 3, 9の 3種類の中から所定のセ ル繰返しファクタが決められている。そして、例えば図 4に示すセル配置に対して、各 セルが使用できるスロット位置を予め決めておく。
[0031] 図 3の例では、左側の 3 X 3 (周波数方向 X時間方向) = 9スロットは全セルが使用 可能であり、次の 3 X I = 3スロットのうち、周波数の最も高いスロットはセル # 3, # 6 , # 9で、中間の周波数のスロットはセル # 2, # 5, # 8で、周波数の最も低いスロッ トはセル # 1, # 4, # 7でそれぞれ使用可能であり、残りの 3 X 3 = 9スロットはそれぞ れセル # 1一 # 9の 1つずつで使用可能であることを示して!/、る。
[0032] このように、本発明では、 2次元のスロット分割を用いることも可能であるし、また、 3 種類以上のセル繰返しファクタを共存させることも可能である。
このように、本発明では、各基地局が使用するスロットを予め決めておくため、先に 示した従来技術のように、隣接する基地局間でスロットの割り当てを調整する仕組み や、複数の基地局に対してスロットの割り当てを指示する基地局制御局のような特別 な装置を設ける必要がないため、装置やシステムへのインパクトが小さぐ低コストで 実現することが可能である。即ち、基地局は、自局に対して予め使用が決められたス ロットの中から、先に述べたような原理に従って、トータルのスループットが向上するよ うに、各ユーザに対してスロットの割り当てを行なえばよ!、。
[0033] また、従来技術では、トータルのスループットを向上するために、全てのセルが同時 に同じスロットを使用することができるように、セル繰返しファクタ = 1を用い、基地局 からの距離や通信品質に応じて適応的に伝送レートを決定していた。この方法では 、基地局に近いユーザに対しては伝送レートの速い通信が可能である力 基地局か ら離れたセル端のユーザに対しては伝送レートの低 、通信しか行なうことができな!/ヽ 課題があった。これに対して、本発明では、セル端のユーザに対しては、セル繰返し ファクタが 1よりも大きいスロットを割り当てることにより他セル干渉を低減し、従来の方 法よりも、伝送レートの高い通信を実現することができる。
[0034] 〔B〕一実施形態の説明
図 5は本発明の一実施形態としてのセルラー移動 (無線)通信システムの構成を示 すブロック図で、この図 5に示すシステムは、図 11により前述したシステムと同様に、 基地局 1と、この基地局 1にアクセスし得る 1台以上の移動局 2とをそなえて構成され 、さらに、基地局 1は、例えば、送信部 (Tx) 11,受信部 (Rx) 12,伝搬路測定部 13, スロット復調部 14,上りリンクスケジューラ 15,下りリンクスケジューラ 16,スロット生成 部 17及び使用許可スロット情報メモリ 18をそなえて構成され、移動局 2は、例えば、 送信部 (Tx) 21,受信部 (Rx) 22,スロット復調部 23,伝搬路測定部 24及びスロット 生成部 25をそなえて構成されている。なお、本例においても、基地局 1の下りリンクト ラフィックには、通常、複数のユーザ (移動局 2)のトラフィックが存在する。
[0035] ここで、基地局 1において、送信部 11は、移動局 2への下りリンクデータ(図 10によ り前述したパイロットシンボル(以下、単に「パイロット」ともいう) 501,制御シンボル 50 2及びデータシンボル 503)を無線により送信するもので、所要の符号化処理、 QA Mや QPSK等の変調処理、デジタル -アナログ変換処理、周波数変換処理 (アップ コンバート)等を含む必要な送信処理を行なえるようになっており、受信部 12は、移 動局 2から無線により送信されてくる上りリンクデータ (パイロットシンボル 501,制御シ ンボル 502及びデータシンボル 503)を受信するもので、所要の周波数変換処理 (ダ ゥンコンバート)、直交検波処理、アナログ デジタル変換処理、パイロット 501を用い たチャネル推定処理、復調処理、復号処理等を含む必要な受信処理を行なえるよう になっている。
[0036] 伝搬路測定部 13は、受信部 12での受信信号 (上りリンクデータ)に基づいて移動 局 2との間の伝搬路状態を測定するもので、前述したように、受信電力や、受信 SIR 、遅延スプレッド、ドッブラ周波数などを用いて測定することができる。これらの伝搬路 情報の推定は、スロット内に挿入されているパイロット 501を用いて行なわれ、パイ口 ット 501が伝搬路によって受ける変化量から、チャネル推定値が計算される。そして、 チャネル推定値の電力から受信電力が、チャネル推定値の分散力 干渉電力が計 算され、それらの比力も受信 SIRが求められる。また、チャネル推定値の単位時間あ たりの位相変化量から、ドッブラ周波数が推定される。また、受信したパイロット 501と 既知のパイロットとの時間相関を計算することにより、遅延プロファイルを求めることが できる。
[0037] スロット復調部 14は、受信部 12で受信された上りリンクデータの各スロットを復調す るもので、前記制御シンボル 502を復調し、制御チャネルに含まれる下りリンクの通信 品質情報を下りリンクスケジューラ 16に通知するとともに、制御シンボル 502に含まれ る上りリンクのトラフィック情報(要求伝送速度、要求遅延)を上りリンクスケジューラ 15 に通知する機能も有して 、る。
[0038] 上りリンクスケジューラ (スロット割り当て部) 15は、使用許可スロット情報メモリ 18に 記憶されている、使用可能な上下リンクについてそれぞれ使用可能なスロットとして 予め決められたスロット情報に基づいて、使用可能なスロットの中から、自局 1に接続 しているユーザ (移動局 2)に対して、所定のスケジューリング方法に従って、上りリン クのスロット割り当てを行なうものであり、下りリンクスケジューラ (スロット割り当て部) 1
6は、同様に、使用許可スロット情報メモリ 18のスロット情報に基づいて、使用可能な スロットの中から、自局 1に接続しているユーザ (移動局 2)に対して、所定のスケジュ 一リング方法に従って、下りリンクのスロット割り当てを行なうものである。
[0039] スロット生成部 17は、上記の各スケジューラ 15及び 16によるスロット割り当てに従つ て、上下リンクのスロット(パイロットシンボル 501,制御シンボル 502及びデータシン ボル 503)を生成するものであり、使用許可スロット情報メモリ 18は、図 1 (又は図 2、 又は図 3)により前述したごとく自局 1で使用可能なスロットとして予め決められたスロ ット情報を記憶するものである。
[0040] 一方、移動局 2において、送信部 (Tx) 21は、基地局 1への上りリンクデータ (パイ口 ットシンボル 501,制御シンボル 502及びデータシンボル 503)を無線により送信する もので、所要の符号化処理、 QAMや QPSK等の変調処理、デジタル -アナログ変 換処理、周波数変換処理 (アップコンバート)等を含む必要な送信処理を行なえるよ うになつており、受信部 22は、基地局 1から無線により送信されてくる下りリンクデータ (パイロットシンボル 501,制御シンボル 502及びデータシンボル 503)を受信するも ので、所要の周波数変換処理 (ダウンコンバート)、直交検波処理、アナログ デジタ ル変換処理、パイロットを用いたチャネル推定処理、復調処理、復号処理等を含む 必要な受信処理を行なえるようになって 、る。
[0041] スロット復調部 23は、受信部 22で受信された下りリンクデータの各スロットを復調す るもので、前記制御シンボル 502を復調し、制御チャネルに含まれる上りリンクのスロ ット割当情報をスロット生成部 25に通知する機能も有している。なお、スロット復調部 23は、下りリンクのすべてのスロットを復調(つまり、監視)してもよいし、消費電力低 減等のために、少なくとも自局 2で受信 (復調)すべきスロット (例えば図 1において、 セル 1に存在する移動局 2なら、全スロット 1一 7のうちスロット 1一 5のみ)を監視するよ うにしてもよい。
[0042] 伝搬路測定部 24は、受信部 22での受信信号(下りリンクデータ)に含まれるパイ口 ット 501に基づいて基地局 1との間の伝搬路状態を測定するもので、移動局 2側にお いても、受信電力や、受信 SIR、遅延スプレッド、ドッブラ周波数などを用いて測定す ることがでさる。
スロット生成部 25は、スロット復調部 23からの上記スロット割当情報(つまり、基地局 1により使用が許可されたスロット情報)に従って、上りリンクのスロット(パイロットシン ボル 501,制御シンボル 502及びデータシンボル 503)を生成するもので、この際、 制御シンボル 502に、伝搬路測定部 24で測定された下りリンクの通信品質情報を格 納することにより、下りリンクの通信品質を基地局 1へフィードバックする機能も有して いる。 [0043] つまり、本実施形態のパケット移動通信システムは、基本的に、図 11により前述した システムに対して、使用許可スロット情報メモリ 18を追加するだけで、項目〔A〕で述 ベた特徴を有するシステムを実現することができる。
以下、上述のごとく構成された本実施形態のパケット移動通信システムの動作、特 に、具体的なスロット割り当て方法 (スケジューリング)について詳述する。なお、ここ では、スロット割り当てに必要な情報として、ユーザ (移動局 2)毎の受信 SIRと要求伝 送速度とを用いる例にっ 、て説明する。
[0044] 一般に、無線通信システムでは、システムで使用するアクセス方式 (CDMAや OF DMなど)や受信信号の復調アルゴリズムに応じて、例えば図 6に示すごとく SIRと伝 送速度との関係が決まっている。上下リンクの各スケジューラ 15, 16は、それぞれ、 この図 6に示す関係を SIRZ伝送速度換算テーブル等としてメモリ等に保持しておき 、各ユーザの要求伝送速度を基に各ユーザの所要 SIRを計算する。
[0045] 即ち、下りリンクスケジューラ 16では、下りリンクのトラフィック情報力も要求伝送速度 が分かるので、この情報を基に所要 SIRを計算することができる。これに対して、上り リンクスケジューラ 15では、移動局 2からのトラフィック情報 (伝送速度要求)を受ける ことにより、所要 SIRを計算することができる。また、下りリンクスケジューラ 16は、移動 局 2からのフィードバックにより下りリンクの受信 SIRの情報を得ることができ、上りリン クスケジューラ 15は、基地局 1で測定した上りリンクの SIRの情報を得ることができる。
[0046] そして、各スケジューラ 15, 16は、それぞれ、例えば図 7に示すような回路を用いて 、全ユーザ # 1一 # N (Nは自然数)の所要 SIRと実際の受信 SIRとの差分情報を求 める。即ち、各スケジューラ 15, 16は、ユーザ (移動局 2)毎に、上記 SIRZ伝送速度 換算テーブルを有し、要求伝送速度を所要 SIRに変換する所要 SIR換算部 151と、 この所要 SIR換算部 151と実際の受信 SIR (測定値)との差分をとる減算器 152とを そなえるとともに、各減算器 152の減算結果と使用許可スロット情報メモリ 18の使用 許可スロット情報とに基づいて移動局 2に対するスロット割り当てを行なうスロット割り 当て回路 153とをそなえて構成される。
[0047] これにより、基地局 1は、例えば図 8に示す処理フローに従って、所要 SIRと受信 SI Rの差が最も大き 、ユーザに対して、セル繰返しファクタの大き 、スロットの割り当て を行なう。即ち、スケジューラ 15, 16は、所要 SIR換算部 151及び減算器 152によつ て全ユーザの所要 SIRと受信 SIR (測定値)との差分情報を更新し (ステップ S1)、ス ロット割り当て回路 153によって当該差分情報が最も大きいユーザを選出する (ステツ プ S2)。
[0048] そして、スロット割り当て回路 153は、使用許可スロット情報と現在のスロット割り当て 状況とに基づいて、セル繰返しファクタの大きい(1以外の)スロット(例えば図 1のセ ル 1ならスロット 5)に空きがある力否かを確認し (ステップ S3)、空きがあれば (ステツ プ S3で YESなら)、当該スロットを当該ユーザに対して割り当てる (ステップ S4)。な お、セル繰返しファクタの大き 、スロットに空きが無 、場合 (ステップ S3で NOの場合 )は、上記ステップ S1以降の処理が繰り返される。
[0049] なお、分割スロットとして例えば図 3により前述した 2次元分割スロットを用いる場合 のように、セル繰返しファクタが 1以外のスロットが複数種類存在する場合には、どの ような順序でスロット割り当てを行なうかが問題となるが、例えば、上記差分情報につ いて閾値を設けておき、当該閾値を超えている場合には最もセル繰返しファクタが大 きいスロットから割り当て対象とし、当該閾値以下なら最もセル繰返しファクタが大き
V、スロットを除くスロットから割り当て対象とすることができる。
[0050] また、上記各ユーザについての差分情報を更新する(図 8のステップ S1参照)毎に 一時的に記憶してソーティングし、差分情報の大き 、ユーザ力 優先的にセル繰返 しファクタの大きいスロットを割り当てるようにすることもできる。他にも優先度 (スケジュ 一リング方法)は自由に設定することができ、当該優先度に応じて割り当てるスロット を決定することができる。
[0051] さらに、上記ではスロット割り当て (スケジューリング)の例として、ユーザ (移動局 2) 毎の受信 SIRと要求伝送速度とに基づく手法について説明したが、勿論、これに限ら れるものではなぐ項目〔A〕にて前述した種々の手法を単独あるいは組み合わせて 適用できることは 、うまでもな 、。
〔C〕ハンドオーバ中のスロット割り当て
次に、ハンドオーバ中の移動局 2に対するスロット割り当てについて、図 9を参照し ながら説明する。 [0052] 移動局 2がハンドオーバ状態 (セルサーチ等において複数の基地局 1から同程度 の受信電力で信号を受信できている状態)の場合、当該移動局 2は、ハンドオーバ元 とハンドオーバ先の基地局 1A, 1Bに対して、ハンドオーバ要求を行なう。ハンドォー バ要求を受けた基地局 1A, 1Bは、移動局 2に対して、セル繰返しファクタが 1よりも 大きいスロット (個別スロット)を割り当てる。換言すれば、この場合、基地局 1A, 1Bは 、移動局 2からのハンドオーバ要求に応じて移動局 2に対して割り当てるスロットを決 定するのである。
[0053] 例えば図 1に示すように、ハンドオーバ中の移動局 2には、セル繰返しファクタが 1よ りも大きいスロット # 5およびスロット # 6が割り当てられるため、移動局 2は、ハンドォ ーバ元の基地局 1 Aとハンドオーバ先の基地局 1Bの両方力 割り当てられるスロット # 5, # 6を同時に使用することができる。これにより、移動局 2は、ハンドオーバ領域 においてスループットを向上することができるだけでなぐハンドオーバ切り替え時に 発生するパケット損失を回避することが可能となる。また、異なるスロット # 5, # 6をシ 一ケンシャルに受信 (復調)することができるので、受信系(スロット復調部 23)が 1つ で済み、移動局 2の小型化にも寄与する。
[0054] 以上のように、本実施形態によれば、無線通信チャネル (無線リソース)を分割した 各スロットに対して異なるセル繰返しファクタを混在して設定しておき、各基地局 1が 、 自局に使用が許可されているスロットの中力 所定のスケジューリング方法に従って 移動局 2に割り当てるスロットを決定するので、パケットスケジューリング型の通信方式 に特有の課題である、基地局 1からの距離に応じて伝送レートが低下する課題を解 決して、公正な無線リソース割り当てを可能とする。また、システム全体のスループット を低下することなぐ基地局 1から離れたセル端の領域に位置するユーザに対しても 、伝送レートの高い通信を可能にする。
[0055] なお、本発明は、上述した実施形態に限定されず、本発明の趣旨を逸脱しない範 囲で種々変形して実施することができることは 、うまでもな!/、。
産業上の利用可能性
[0056] 以上詳述したように、本発明によれば、公正な無線リソース割り当てが可能であり、 また、システム全体のスループットを低下することなぐ基地局から離れたセル端の領 域に位置するユーザに対しても、伝送レートの高い通信を可能にできるので、無線通 信技術分野において極めて有用と考えられる。

Claims

請求の範囲
[1] 移動局とセルを形成する基地局との間の無線通信チャネルを所定のスロットに分割 し、該基地局が前記分割したスロットを複数の移動局に対して適応的に割り当てるこ とにより無線多重アクセスを実現するセルラー無線通信システムにおいて、
上記分割されたスロットに対して異なるセル繰返し数に関する情報であるセル繰返 しファクタを混在して設定し、
該基地局が該セル繰返しファクタに基づ ヽて自局の形成するセルに位置する移動 局に割り当てるスロットを決定することを特徴とする、セルラー無線通信システムにお けるスロット割り当て方法。
[2] 該スロットが、該無線通信チャネルを一定の時間間隔に分割したタイムスロットであ ることを特徴とする、請求項 1記載のセルラー無線通信システムにおけるスロット割り 当て方法。
[3] 該スロットが、該無線通信チャネルを一定の周波数間隔に分割したスロットであるこ とを特徴とする、請求項 1記載のセルラー無線通信システムにおけるスロット割り当て 方法。
[4] 該スロットが、該無線通信チャネルを時間及び周波数の 2次元方向に分割したスロ ットであることを特徴とする、請求項 1記載のセルラー無線通信システムにおけるスロ ット割り当て方法。
[5] 該基地局が、該移動局との間の通信品質に応じて割り当てるスロットを決定すること を特徴とする、請求項 1一 4のいずれ力 1項に記載のセルラー無線通信システムにお けるスロット割り当て方法。
[6] 該基地局が、該通信品質の低い移動局に対しては該通信品質の高い移動局に割 り当てるスロットのセル繰返しファクタよりも大きいセル繰返しファクタのスロットを割り 当てることを特徴とする、請求項 5記載のセルラー無線通信システムにおけるスロット 割り当て方法。
[7] 該基地局が、該移動局の要求伝送速度に応じて割り当てるスロットを決定すること を特徴とする、請求項 1一 4のいずれ力 1項に記載のセルラー無線通信システムにお けるスロット割り当て方法。
[8] 該基地局が、該要求伝送速度の高い移動局に対しては該要求伝送速度の低い移 動局に割り当てるスロットのセル繰返しファクタよりも大きいセル繰返しファクタのスロ ットを割り当てることを特徴とする、請求項 7記載のセルラー無線通信システムにおけ るスロット割り当て方法。
[9] 該基地局が、該移動局の当該基地局力もの距離に応じて割り当てるスロットを決定 することを特徴とする、請求項 1一 4のいずれか 1項に記載のセルラー無線通信シス テムにおけるスロット割り当て方法。
[10] 該基地局が、該距離が遠い移動局に対しては該距離が近い移動局に割り当てるス ロットのセル繰返しファクタよりも大きいセル繰返しファクタのスロットを割り当てること を特徴とする、請求項 9記載のセルラー無線通信システムにおけるスロット割り当て方 法。
[11] 複数の該基地局間のハンドオーバ領域に位置する移動局に対しては、ハンドォー バ元の基地局及びハンドオーバ先の基地局は、それぞれ、該セル繰返しファクタが 1 以外のスロットを割り当てることを特徴とする、請求項 1一 4のいずれか 1項に記載の セルラー無線通信システムにおけるスロット割り当て方法。
[12] 移動局とセルを形成する基地局との間の無線通信チャネルを所定のスロットに分割 し、該基地局が前記分割したスロットを複数の移動局に対して適応的に割り当てるこ とにより無線多重アクセスを実現するセルラー無線通信システムに用いられる該基地 局であって、
上記分割されたスロットに対して異なるセル繰返し数に関する情報であるセル繰返 しファクタが混在して設定されることにより、自局に使用が許可されたスロットに関する 使用許可スロット情報を記憶する使用許可スロット情報記憶部と、
該使用許可スロット情報記憶部における該使用許可スロット情報に基づ 、て自局の 形成するセルに位置する移動局に割り当てるスロットを決定するスロット割り当て部と をそなえたことを特徴とする、セルラー無線通信システムに用いられる基地局。
[13] 該スロットが、該無線通信チャネルを一定の時間間隔に分割したタイムスロットであ ることを特徴とする、請求項 12記載のセルラー無線通信システムに用いられる基地 局。
[14] 該スロットが、該無線通信チャネルを一定の周波数間隔に分割したスロットであるこ とを特徴とする、請求項 12記載のセルラー無線通信システムに用いられる基地局。
[15] 該スロットが、該無線通信チャネルを時間及び周波数の 2次元方向に分割したスロ ットであることを特徴とする、請求項 12記載のセルラー無線通信システムに用いられ る基地局。
[16] 該スロット割り当て部が、
該移動局との間の通信品質に応じて割り当てるスロットを決定すべく構成されたこと を特徴とする、請求項 12— 15のいずれか 1項に記載のセルラー無線通信システムに 用いられる基地局。
[17] 該スロット割り当て部が、
該通信品質の低い移動局に対しては該通信品質の高い移動局に割り当てるスロッ トのセル繰返しファクタよりも大きいセル繰返しファクタのスロットを割り当てるべく構成 されたことを特徴とする、請求項 16記載のセルラー無線通信システムに用いられる基 地局。
[18] 該スロット割り当て部が、
該移動局の要求伝送速度に応じて割り当てるスロットを決定すべく構成されたことを 特徴とする、請求項 12— 15のいずれか 1項に記載のセルラー無線通信システムに 用いられる基地局。
[19] 該スロット割り当て部が、
該要求伝送速度の高 ヽ移動局に対しては該要求伝送速度の低 ヽ移動局に割り当 てるスロットのセル繰返しファクタよりも大きいセル繰返しファクタのスロットを割り当て るべく構成されたことを特徴とする、請求項 18記載のセルラー無線通信システムに用 いられる基地局。
[20] 該スロット割り当て部が、
該移動局の当該基地局からの距離に応じて割り当てるスロットを決定すべく構成さ れたことを特徴とする、請求項 12— 15のいずれか 1項に記載のセルラー無線通信シ ステムに用いられる基地局。
[21] 該スロット割り当て部が、 該距離が遠レ、移動局に対しては該距離が近レ、移動局に割り当てるスロットのセル 繰返しファクタよりも大きいセル繰返しファクタのスロットを割り当てるべく構成されたこ とを特徴とする、請求項 20記載のセルラー無線通信システムに用いられる基地局。
PCT/JP2005/001825 2005-02-08 2005-02-08 セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局 WO2006085353A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05709877A EP1848233A4 (en) 2005-02-08 2005-02-08 WAFER ASSIGNMENT METHOD FOR CELLULAR RADIO COMMUNICATION SYSTEM AND BASE STATION USED IN THE SYSTEM
CNA2005800479142A CN101116361A (zh) 2005-02-08 2005-02-08 蜂窝无线通信***中的隙缝分配方法及用于该***的基站
JP2007502496A JPWO2006085353A1 (ja) 2005-02-08 2005-02-08 セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局
PCT/JP2005/001825 WO2006085353A1 (ja) 2005-02-08 2005-02-08 セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局
US11/882,685 US20070274263A1 (en) 2005-02-08 2007-08-03 Slot allocation method for use in cellular radio communication system and base station for use in the same system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001825 WO2006085353A1 (ja) 2005-02-08 2005-02-08 セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/882,685 Continuation US20070274263A1 (en) 2005-02-08 2007-08-03 Slot allocation method for use in cellular radio communication system and base station for use in the same system

Publications (1)

Publication Number Publication Date
WO2006085353A1 true WO2006085353A1 (ja) 2006-08-17

Family

ID=36792928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001825 WO2006085353A1 (ja) 2005-02-08 2005-02-08 セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局

Country Status (5)

Country Link
US (1) US20070274263A1 (ja)
EP (1) EP1848233A4 (ja)
JP (1) JPWO2006085353A1 (ja)
CN (1) CN101116361A (ja)
WO (1) WO2006085353A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023647A1 (fr) * 2006-08-22 2008-02-28 Ntt Docomo, Inc. Station de base et station mobile
WO2009072206A1 (ja) * 2007-12-06 2009-06-11 Fujitsu Limited 無線通信システム,基地局装置および無線通信方法
JP2010004188A (ja) * 2008-06-18 2010-01-07 Kyocera Corp 無線通信システム、基地局、管理サーバおよび無線通信方法
JP2010541339A (ja) * 2007-09-21 2010-12-24 クゥアルコム・インコーポレイテッド 無線通信システムにおける干渉軽減
JP2011049987A (ja) * 2009-08-28 2011-03-10 Fujitsu Ltd 基地局装置及び通信方法
JP2012527195A (ja) * 2009-05-14 2012-11-01 クゥアルコム・インコーポレイテッド ワイヤレスネットワークにおいて異なる距離にわたる通信をサポートするための方法および装置
JP2013038801A (ja) * 2012-09-11 2013-02-21 Kyocera Corp 無線通信システム、基地局および無線通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126127A2 (en) * 2005-05-26 2006-11-30 Nxp B.V. Electronic device and method of communication resource allocation
WO2011071554A1 (en) * 2009-12-11 2011-06-16 Qualcomm Incorporated Systems and methods to allow fractional frequency reuse in td-scdma systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555989A (ja) * 1991-08-23 1993-03-05 Nippon Telegr & Teleph Corp <Ntt> 移動通信方式
JPH0563634A (ja) * 1991-09-03 1993-03-12 Nippon Telegr & Teleph Corp <Ntt> 移動通信無線ゾーン構成方法
JPH0865730A (ja) * 1994-05-20 1996-03-08 N T T Ido Tsushinmo Kk 無線チャネル割当方法
JPH10304436A (ja) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp 移動無線通信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038399A (en) * 1990-05-21 1991-08-06 Motorola, Inc. Method for assigning channel reuse levels in a multi-level cellular system
US6091954A (en) * 1994-09-01 2000-07-18 Telefonaktiebolaget Lm Ericsson Channel assignment in enhanced fixed-plan mobile communications systems
US5844894A (en) * 1996-02-29 1998-12-01 Ericsson Inc. Time-reuse partitioning system and methods for cellular radio telephone systems
FI109514B (fi) * 1997-04-25 2002-08-15 Nokia Corp Menetelmä kanavien allokoimiseksi
US6888805B2 (en) * 2001-03-23 2005-05-03 Qualcomm Incorporated Time multiplexed transmission scheme for a spread spectrum communication system
SE523634C2 (sv) * 2001-05-04 2004-05-04 Ericsson Telefon Ab L M Resursallokering i cellulära system
JP4247059B2 (ja) * 2003-07-04 2009-04-02 株式会社エヌ・ティ・ティ・ドコモ 制御局、無線通信システム、及び周波数割当て方法
US8526963B2 (en) * 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555989A (ja) * 1991-08-23 1993-03-05 Nippon Telegr & Teleph Corp <Ntt> 移動通信方式
JPH0563634A (ja) * 1991-09-03 1993-03-12 Nippon Telegr & Teleph Corp <Ntt> 移動通信無線ゾーン構成方法
JPH0865730A (ja) * 1994-05-20 1996-03-08 N T T Ido Tsushinmo Kk 無線チャネル割当方法
JPH10304436A (ja) * 1997-04-28 1998-11-13 Mitsubishi Electric Corp 移動無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1848233A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023647A1 (fr) * 2006-08-22 2008-02-28 Ntt Docomo, Inc. Station de base et station mobile
US8000296B2 (en) 2006-08-22 2011-08-16 Ntt Docomo, Inc. Base station and mobile station
US8018898B2 (en) 2006-08-22 2011-09-13 Ntt Docomo, Inc. Base station and mobile station
JP2010541339A (ja) * 2007-09-21 2010-12-24 クゥアルコム・インコーポレイテッド 無線通信システムにおける干渉軽減
US8493919B2 (en) 2007-09-21 2013-07-23 Qualcomm Incorporated Interference mitigation in a wireless communication system
WO2009072206A1 (ja) * 2007-12-06 2009-06-11 Fujitsu Limited 無線通信システム,基地局装置および無線通信方法
JP2010004188A (ja) * 2008-06-18 2010-01-07 Kyocera Corp 無線通信システム、基地局、管理サーバおよび無線通信方法
JP2012527195A (ja) * 2009-05-14 2012-11-01 クゥアルコム・インコーポレイテッド ワイヤレスネットワークにおいて異なる距離にわたる通信をサポートするための方法および装置
JP2011049987A (ja) * 2009-08-28 2011-03-10 Fujitsu Ltd 基地局装置及び通信方法
JP2013038801A (ja) * 2012-09-11 2013-02-21 Kyocera Corp 無線通信システム、基地局および無線通信方法

Also Published As

Publication number Publication date
JPWO2006085353A1 (ja) 2008-06-26
EP1848233A1 (en) 2007-10-24
EP1848233A4 (en) 2011-07-20
US20070274263A1 (en) 2007-11-29
CN101116361A (zh) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4632245B2 (ja) 送信局、移動通信システムおよび送信電力制御方法
US8798683B2 (en) Allocation of sub channels of MIMO channels of a wireless network
US7373162B2 (en) Methods of controlling transmission power levels in air interface channels
JP5054186B2 (ja) 通信ネットワークにおいてセル間干渉を管理するための方法及び装置
WO2006085353A1 (ja) セルラー無線通信システムにおけるスロット割り当て方法及び同システムに用いられる基地局
KR101044201B1 (ko) Sdma 시스템에서의 동일한 무선 시간-주파수 리소스에 의한 사용자 데이터 및 백홀 데이터의 통신
US8320402B2 (en) Base station for allocating sub-channels to mobile station
JP4280275B2 (ja) 送信機/受信機を制御するスケジューラとモバイル通信ネットワークのための送信機/受信機と、並びにそれらを動作させるための方法およびコンピュータプログラム
WO2008056426A1 (en) Mobile communication system, mobile station and base station
JP2008236222A (ja) 無線通信方法
JP2007274042A (ja) 通信装置
JP2010233202A (ja) マルチセル無線通信システムにおける動的リソース配分方法および装置
EP2549686B1 (en) Method and apparatus for resource utilization management in a multi-carrier communications system
KR101150651B1 (ko) 최소 리소스 파라미터로 스케쥴링 알고리즘을 수행하는방법 및 그 계산 방법
US20120188875A1 (en) Method and apparatus for carrier identity determination in multi-carrier communication systems
JP2004343524A (ja) 基地局、移動局、通信システムおよび通信方法
CN103190193B (zh) 无线电基站和其中的方法
JP2008193340A (ja) 無線基地局装置、無線端末装置、無線通信システム、及びチャネルクオリティインジケータ推定方法
KR20120041899A (ko) 무선통신 시스템에서 스케줄링 방법 및 장치
US8737287B2 (en) Scheduling method and apparatus in a relay communication system
JP4201498B2 (ja) 通信システムにおける周波数資源割当方法
JP2006319755A (ja) 無線通信装置、無線通信システム、基地局およびネットワーク資源の割当方法
KR100911957B1 (ko) 셀룰러 무선 통신 시스템에서의 슬롯 할당 방법
JP2004253832A (ja) 無線装置
CN110393031A (zh) 网络节点、客户端设备及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 6850/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007502496

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005709877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077017903

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11882685

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580047914.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005709877

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11882685

Country of ref document: US