WO2006080318A1 - 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法 - Google Patents

金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法 Download PDF

Info

Publication number
WO2006080318A1
WO2006080318A1 PCT/JP2006/301069 JP2006301069W WO2006080318A1 WO 2006080318 A1 WO2006080318 A1 WO 2006080318A1 JP 2006301069 W JP2006301069 W JP 2006301069W WO 2006080318 A1 WO2006080318 A1 WO 2006080318A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
compounds
carboxylate
resin composition
group
Prior art date
Application number
PCT/JP2006/301069
Other languages
English (en)
French (fr)
Inventor
Ryotaro Tsuji
Tomokazu Tozawa
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007500524A priority Critical patent/JPWO2006080318A1/ja
Publication of WO2006080318A1 publication Critical patent/WO2006080318A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers

Definitions

  • the present invention relates to a resin composition containing metal sulfide nanoparticles and a method for producing the composition.
  • Metal sulfate nanoparticles have been studied for practical use in a wide range of fields such as electronics, optics, optoelectronics, bioscience, and medical fields in order to utilize quantum properties according to their size.
  • solar cells light emitting elements, displays, phosphors, wavelength conversion elements, wavelength cut filters, nonlinear optical materials, semiconductor lasers, optical memories, ultraviolet shielding materials, electromagnetic wave shielding materials, magnetic recording materials, photocatalysts, quantum transistors, biotechnology A marker etc. can be mentioned.
  • the conventional method for synthesizing such metal sulfate nanoparticles is to use a sulfur metal compound such as sodium sulfate as a sulfur source.
  • a sulfur metal compound such as sodium sulfate
  • metal sulfate nanoparticles are highly unstable due to their high surface activity, and are easily agglomerated during or after synthesis, resulting in non-uniform particle size and reduced quantum properties.
  • problems such as reduced transparency.
  • conventional metal sulfate nanoparticles have been difficult to disperse in thermoplastic resins.
  • Patent Document 1 describes a method of producing a compound semiconductor colloid in a polymer solution.
  • this method has limited polymer compounds applicable to the use of protic hydrophilic solvents such as water, and as a result, only materials having poor weather resistance, water resistance, and durability are produced. I could't.
  • protic hydrophilic solvent it is necessary to use a sulfur metal compound as a sulfur source, and contamination of the resin composition by alkali metal ions cannot be prevented, and a material with high purity can be obtained. I could't do it.
  • Non-patent document 1 describes N, N-dimethyl as a method for obtaining metal sulfate nanoparticles with high purity!
  • a process is described in which thiourea is used as a sulfur source in formaldehyde.
  • thioglycerol as a nanoparticle modifier, the long-term stability effect is insufficient, and it is difficult to separate the raw material residue force. It was inferior in compatibility when trying to disperse the resin in the resin, and it was impossible to obtain a thermoplastic resin composition in which the nanoparticles were uniformly dispersed.
  • Non-Patent Document 2 describes the stability of a force modifier using sodium sulfate as a sulfur source and hexadecyl dithiophosphate as a modifier.
  • the wrinkles are incomplete and aggregation of particles is observed in the transmission electron microscope (TEM) photograph.
  • Patent Document 2 discloses a method for producing nanoparticles in the presence of amines
  • Patent Document 3 discloses a method for producing nanoparticles modified with a thiol compound and an amine compound. However, both of them were modified with a low molecular weight compound, so that the stability effect was insufficient, and it was impossible to prevent aggregation.
  • Patent Document 4 describes a method of extracting and purifying nanoparticle hydrosols into an organic phase using a lipophilic surface-modifying molecule.
  • the efficiency of the purification is increased due to mass transfer between the two phases.
  • Patent Document 5 describes a method of depositing a polymer containing nanoparticles by adding a poor solvent to the polymer after the polymer is added to the nanoparticle dispersion liquid. There was a problem that the binding was weak, so that the nanoparticles did not fully settle and the purification efficiency was poor.
  • Patent Document 6 and Patent Document 7 describe a method of modifying nanoparticles using a polymer having an SH group having strong adhesion to nanoparticles to prevent aggregation and improve purification efficiency!
  • a hydrophilic polymer is used as a polymer, it is necessary to use a protic hydrophilic solvent such as water or alcohol as a solvent, and it is synthesized in an aprotic organic solvent such as zinc sulfate. Nanoparticles had a force that could not be applied.
  • the resulting polymer-modified nanoparticles are hydrophilic, when they are used to produce films and molded articles, they only have inferior water resistance.
  • Patent Document 8 Non-Patent Document 3 and Non-Patent Document 4 describe a technique for modifying nanoparticles using a polymer obtained by reversible addition-elimination chain transfer (RA FT) polymerization !, Ru .
  • RA FT reversible addition-elimination chain transfer
  • Ru reversible addition-elimination chain transfer
  • Patent Document 1 Japanese Patent Laid-Open No. 5-93076
  • Patent Document 2 JP-A-5-113586
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-89522
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-73126
  • Patent Document 5 JP-A-10-36517
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2002-121548
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2002-121549
  • Patent Document 8 US Patent Application Publication No. 2003Z0199653
  • Non-Patent Document 1 J. Nanda et al., “Chem. Mater. J, 2000, pp. 1218”
  • Non-Patent Document 2 S. Chen et al., “Langmuir”, 1999, 15 pp. 8100
  • Non-Patent Document 3 A. B. Lowe et al., “J. Am. Chem. Soc.”, 2002, 124th, 1156
  • Non-Patent Document 4 J. Shan et al., “Macromolecules”, 2003, Vol. 36, p. 4526 Disclosure of the Invention
  • a resin composition containing metal sulfide nanoparticles obtained by reacting a metal compound with a thiourea compound in the presence of a thermoplastic resin soluble in the solvent and then removing the solvent (Claim 1). ).
  • a preferred embodiment of the present invention is a thermoplastic resin soluble in an abrotic polar organic solvent.
  • a resin composition containing metal sulfide nanoparticles according to claim 1 (claim 2).
  • a preferred embodiment of the present invention is a thermoplastic resin-containing polymer soluble in an abrotic polar organic solvent. It is a contained rosin composition (Claim 3).
  • the SH group-containing polymer is terminally SH-modified with a treating agent after reversible addition-elimination chain transfer polymerization using a thiothiol compound as a chain transfer agent.
  • the metal sulfide according to claim 4 wherein the treatment agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent power.
  • the treatment agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent power.
  • a nano-particle-containing rosin composition (Claim 5).
  • the metal compound comprises 90 to: LOO mol% of a zinc carboxylate compound, a zinc dithiocarboxylate compound, a zinc dithiocarbamate compound, a xanthogenic acid
  • a zinc compound an acetylylacetonato zinc compound and an alkylzinc compound, wherein 0 to 10 mol% is a manganese carboxylate compound, an acetylyl compound Cetnatomanganese compound, manganese nitrate, manganese halide compound, strength copper rubonic acid compound, silver carboxylate compound, lead carboxylate compound, halogenated aluminum compound, cobalt carboxylate compound, cobalt halide compound, europium carboxylate compound, Erbium carboxylate, yttrium carboxylate, neodymium carboxylate, terbium carboxylate
  • the thiourea compound is thiourea, monoalkylthiourea, monoarylthiourea, dialkylthiourea, diarylthiourea, cyclic thiourea and dithiothiourea. It is one or more compounds selected from the group A resin composition containing metal sulfate nanoparticles according to any one of claims 1 to 6 (claim 7).
  • a preferred embodiment of the present invention is one or more selected from the group consisting of abrotic polar organic solvent power N, N dimethylformamide, N, N dimethylacetamide, dimethyl sulfoxide and hexamethylphosphoric triamide.
  • the metal sulfide nanoparticle-containing resin composition according to any one of claims 1 to 7, wherein the resin composition is a compound of claim 1 (claim 8).
  • a metal compound and a thiourea compound are reacted in an abrotic polar organic solvent in the presence of a thermoplastic resin soluble in the solvent, and then the solvent is removed.
  • a method for producing a metal sulfide nanoparticle-containing resin composition (claim 9).
  • a preferred embodiment of the present invention is a thermoplastic resin that is soluble in an abrotic polar organic solvent.
  • a preferred embodiment of the present invention is a metal sulfate nanoparticle according to claim 9, which is a thermoplastic resin-containing polymer soluble in an abrotic polar organic solvent.
  • a method for producing a particle-containing resin composition (Claim 11).
  • the SH group-containing polymer is terminally SH-modified with a treating agent after reversible addition-elimination chain transfer polymerization using a thiothiol compound as a chain transfer agent.
  • a method for producing a metal sulfide nanoparticle-containing resin composition according to claim 11 (claim 12).
  • the treatment agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent power.
  • This is a method for producing a resin composition containing rosy nanoparticles (Claim 13).
  • the metal compound is 90 to: LOO mol% is a zinc carboxylate compound, a zinc dithiocarboxylate compound, a zinc dithiocarbamate compound, a xanthogenic acid From the group consisting of zinc compounds, acetylylacetonato zinc compounds, alkyl zinc compounds
  • One or more compounds selected, and 0 to 10 mol% is a manganese carboxylate compound, an acetylacetonate manganese compound, a manganese nitrate, a manganese halide compound, a copper carboxylate compound, a silver carboxylate compound, a carboxylic acid Lead compounds, halogenated aluminum compounds, cobalt carboxylate compounds, cobalt halide compounds, europium carboxylates, erbium carboxylates, yttrium carboxylates, carboxylic acid neodymium compounds, terbium carboxylates, cerium carboxylates 14.
  • the thiourea compound is also thiourea, monoalkylthiourea, monoarylthiourea, dialkylthiourea, diarylthiourea, cyclic thiourea, dithiothiourea. 15.
  • a preferred embodiment of the present invention is selected from the group consisting of abrotic polar organic solvent power N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric triamide 1
  • the method for producing a resin composition containing metal sulfide nanoparticles according to any one of claims 9 to 15, which is a compound of at least one species (claim 16).
  • a preferred embodiment of the present invention is that when a metal compound and a thiourea compound are reacted in an abrotic polar organic solvent in the presence of a thermoplastic resin soluble in the solvent, a temperature of 80 to 300 ° C is used.
  • the method for producing a metal nanoparticle-containing resin composition according to any one of claims 9 to 16, wherein the composition is heated by heating (claim 17).
  • the metal according to any one of claims 9 to 17, wherein the solvent is removed by distillation after reacting the metal compound with the thiourea compound.
  • a method for producing a resin composition containing sulfur nanoparticles (claim 18).
  • thermoplastic resin containing the metal sulfide nanoparticles.
  • a poor solvent for the thermoplastic resin is added to precipitate the thermoplastic resin containing the metal sulfide nanoparticles.
  • the metal sulfate nanoparticle-containing resin composition of the present invention is excellent in weather resistance, water resistance, and durability with high purity.
  • the metal sulfate nanoparticles are uniformly dispersed in the resin without agglomerating, the quantum properties are excellent.
  • it can be manufactured in one stage and one pot, it is highly productive and economical.
  • the particle diameter can be highly controlled by wrapping the nanoparticles in a polymer. Is possible.
  • the resin composition containing metal sulfate nanoparticles can easily precipitate polymer-modified metal sulfate nanoparticles by adding a poor solvent for the polymer after the reaction. Since it can be separated, purification is easy and nanoparticles with high purity can be easily obtained.
  • the metal sulfide nanoparticle-containing resin composition of the present invention reacts a metal compound and a thiourea compound in an abrotic polar organic solvent in the presence of a thermoplastic resin soluble in the solvent, It is then obtained by removing the solvent.
  • the abrotic polar organic solvent used in the present invention is not particularly limited, and N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide (DMSO) ), Hexamethylphosphoric triamide (HMPA), nitromethane, pyridine, acetonitrile and the like which are generally well known.
  • DMF N-dimethylformamide
  • DMAC N, N-dimethylacetamide
  • DMSO dimethyl sulfoxide
  • HMPA Hexamethylphosphoric triamide
  • nitromethane pyridine
  • acetonitrile acetonitrile and the like
  • DMF, DMAC, DMSO, and HMPA are preferred in terms of solubility, boiling point, and safety.
  • DMF and DMAC are more preferred. These may be used alone or in combination.
  • thermoplastic resin used in the present invention is not particularly limited as long as it is soluble in the above-mentioned abrotic polar organic solvent.
  • thermoplastic rosin As a specific example of such thermoplastic rosin,
  • thermoplastic resins (meth) acrylic ester-based resins, (meth) acrylamide-based resins, styrene-based resins, (metabolites) are excellent in dispersibility and scavenging properties of metal sulfide nanoparticles.
  • thermoplastic rosins are not particularly limited, but they have high heat resistance, and the glass transition temperature is preferably 80 ° C or higher in terms of 100 ° C or higher. Preferably Yes.
  • the molecular weight is preferably 5000 or more, more preferably 10,000 or more.
  • SH group-containing polymer is used as a thermoplastic resin, the reason why it has a high affinity with metal sulfate nanoparticles is not limited to this, and the molecular weight range described below is preferred.
  • the SH group-containing polymer which is one type of thermoplastic resin used in the present invention, can be used as long as it has a SH group in the molecule, and is not particularly limited.
  • a polymer refers to a compound with a structure in which 10 or more monomer units are connected.
  • the SH group may be present at the terminal of the polymer, or may be present as a substituent in the main chain, or may be present in a branched branch.
  • the polymer structure is not limited to a straight chain, a branch, a dendrimer, a no, an iper branch, and the like, but a straight chain polymer is preferable in terms of high efficiency of modifying nanoparticles.
  • the primary structure of the polymer is not particularly limited, and any of a homopolymer, a block polymer, a random polymer, and a gradient polymer can be used.
  • a syndiotactic polymer, an isotactic polymer, and a heterotactic polymer can be used.
  • Stereoregular polymers such as polymers can also be used.
  • addition-polymerizable polymers and condensation-polymerizable polymers can be used as the types of SH group-containing polymers.
  • Addition-polymerizable polymers are preferred in terms of weatherability, water resistance, and durability.
  • More preferable is a beryl polymer obtained by radical polymerization in view of the availability of the polymer.
  • Specific examples of such polymers include polymers obtained by polymerizing vinyl acetate in the presence of thioacetic acid and then hydrolyzing the end groups with Am. Chem. Sco., 2001, No. 123 10411 [Polystyrenes having SH groups such as those described above can be cited.
  • RAFT polymerization As the SH group-containing polymer, reversible addition / desorption using a thiothio compound as a chain transfer agent is possible because the SH group can be easily and reliably introduced and the molecular weight and molecular weight distribution can be controlled. Most preferred are those that have been terminally SH-treated by a treating agent after chain transfer (RAFT) polymerization.
  • RAFT polymerization as described in JP-T-2000-515181, is a method for controlled radical polymerization of a bull monomer using a thiothiol compound as a chain transfer agent.
  • the polymer obtained by RAFT polymerization has the ability to have a dithioester structure or a trithiocarbonate structure at the molecular end or in the main chain. Is used by converting it to an SH group by treating it with a treating agent.
  • the tiocarbonylthio compound used in the present invention is not particularly limited, and examples thereof include those described in JP 2000-515181 A.
  • the following compounds are preferred in terms of properties:
  • the reaction conditions for RAFT polymerization are not particularly limited, but the polymerization temperature is preferably 60 ° C or higher, more preferably 80 ° C or higher in terms of reactivity.
  • the polymerization mode is not limited to bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization and the like, but bulk polymerization and solution polymerization are preferable because they can be easily converted into SH groups.
  • the solvent to be used is not particularly limited, and an appropriate solvent may be selected according to the monomer or polymer.
  • Specific examples include toluene, xylene, ethyl acetate, butyl acetate, DMF, DMAC, DMSO, methyl ethyl ketone, methyl isobutyl ketone, acetone, and acetonitrile.
  • RAFT polymerization is a force that can be achieved by radical polymerization of a butyl monomer in the presence of the thiocarbothio compound
  • the radical polymerization initiation method is not particularly limited. Examples thereof include a method in which a radical initiator that is thermally decomposed coexists, a method that is initiated by light irradiation, and a method that is initiated by microwave irradiation. Among these, a method of coexisting a radical initiator that thermally decomposes in view of availability, versatility, and controllability is preferable.
  • radical initiators include methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, benzoyl peroxide, tamen hydroperoxide, di-t-butyl peroxide, t -Peroxygen-based initiators such as butyl bisoxyacetate, bis (2-ethylhexyl) peroxydicarbonate, succinic peroxide; dimethyl 2,2'-azobisisobutyrate, 2,2, -azobis (4-Methoxy-1,2,4 dimethylvale-tolyl), 2,2'-azobis (isobutyoxy-tolyl), 1,1,1azobis (cyclohexane-1-1-carbo-tolyl), 2, 2,1 Azobis (2,4 dimethylvale-tolyl), 2,2, -azobis (2-methylbutyoxy-tolyl), 4, 4, azobis (4-cyananovaleric acid) Which azo
  • an azo initiator is preferred in view of availability, safety and reactivity.
  • the amount of the polymerization initiator used is not particularly limited, but 0.5 mol or less is preferable with respect to 1 mol of thiocarbonylthio group in the thiocarbothioi compound in terms of narrowing the molecular weight distribution of the resulting polymer. More preferably, it is 0.25 mol or less.
  • the bull monomers used in the RAFT polymerization are not particularly limited, and those capable of radical polymerization can be used. Specific examples of such bulle monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, (meth) acrylic acid 2 —Hydroxyethyl, (meth) acrylic acid 2-methoxychetyl, (meth) acrylic acid 2-ethylhexyl, (meth) glycidyl acrylate, 2- (meth) acryloyloxypropyltrimethoxysilane, (meth) (Meth) acrylic acid esters such as 2,2,2-trifluoroethyl acrylate and (meth) acrylic acid; (meth) acrylic acid; styrene, ⁇ -methylolstyrene, ⁇ -hydroxystyrene, ⁇ -
  • Aliphatic olefin compounds such as butadiene and isoprene; Halogen-containing bur compounds such as butyl chloride, vinylidene chloride and chloroprene; (meth) acrylamide, ⁇ -methyl (meth) acrylamide, ⁇ , ⁇ -dimethyl (meta ) Acrylamide, (meth) acrylamides such as) -isopropyl (meth) acrylamide; -Tolyl compounds such as (meth) acrylonitrile; Maleimide compounds such as ⁇ -phenolmaleimide; Heterocycles such as 4-burpyridine and ⁇ -bullpyrrolidone Compounds: Examples include but are not limited to butyl ester compounds such as butyl acetate, butyl propionate, benzoate, and maleic anhydride.
  • (meth) acrylic acid ester and styrenic compound are preferred in terms of weather resistance, water resistance, durability, and heat resistance of the resulting polymer.
  • These vinyl monomers can be used alone or in combination.
  • the treating agent used when converting the polymer obtained by RAFT polymerization into an SH group-containing polymer is not particularly limited, but a hydrogen-nitrogen bond-containing compound or basic compound is high in terms of high conversion efficiency. And a compound selected from the group consisting of reducing agent power is preferred.
  • the hydrogen-nitrogen bond-containing compound is not particularly limited, and examples thereof include ammonia, hydrazine, primary amine, secondary amine, hindered amine light stabilizer (HALS) and the like. Can do.
  • Specific examples of the primary amine include methylamine, ethylamine, isopropylamine, n-butylamine, t-butylamine, 2-aminoethanol, ethylene diamine, cyclohexylamine, and arline.
  • Specific examples of the secondary amines include dimethylamine, jetylamine, diisobutylamine, iminodiacetic acid, bis (hydroxyjetyl) amine, di-n-butylamine, di-tert-butylamine, diphenylamine, imidazole, Examples include piperidine.
  • Specific examples of HALS include Adeka Stub LA-77 (Asahi Denki Kogyo Co., Ltd.), Tinuvin 144 (Ciba 'Specialty Chemicals Co., Ltd.), Adeka Stub LA- 67 (Asahi Denka Kogyo Co., Ltd.) ) And the like.
  • examples of basic compounds are not particularly limited, but include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium methoxide, sodium ethoxy.
  • Examples include sodium carbonate, sodium carbonate, and potassium carbonate.
  • the reducing agent is not particularly limited, and examples thereof include sodium hydride, lithium hydride, calcium hydride, LiAlH, NaBH, LiBEt H, and hydrogen.
  • the above treatment agents may be used alone or in combination. From the viewpoint of conversion efficiency, a primary nitrogen amine having a boiling point of 20 to 100 ° C. is more preferable because a compound containing a hydrogen nitrogen bond having a boiling point of 20 to 200 ° C. and a refinement that favors a reducing agent can be simplified. Such primary amines can be removed by distillation after the treatment reaction.
  • the amount of the treatment agent used is not particularly limited, but is 100 parts by weight of polymer in terms of the balance between conversion efficiency and economy. 0.01-: LOO parts by weight are preferred. 0.1-30 parts by weight are more preferred.
  • the reaction conditions are not particularly limited.
  • the molecular weight of the SH group-containing polymer synthesized by RAFT polymerization is not particularly limited, but the effect of nanoparticle modification is high, and the molecular weight is determined by gel permeation chromatography (GPC) analysis.
  • Number average molecular weight (Mn) force S is in the range of 1000 to 100000, force S is more preferably in the range of 1500 to 50000.
  • the molecular weight distribution is not particularly limited, but the ratio of the weight average molecular weight (Mw) to Mn (MwZMn) obtained by GPC analysis is 1.5 or less in that the particle size of the nanoparticles is uniform. Preferable 1. It is more preferable that it is 3 or less.
  • an SH group-containing polymer is used as the thermoplastic resin of the present invention
  • the SH group can efficiently modify the surface of the metal sulfide nanoparticles
  • nanoparticles protected with the polymer can be obtained.
  • aggregation of the nanoparticles can be prevented, so that the particle size of the metal sulfate nanoparticles in the resin composition becomes uniform, and the quantum characteristics depending on the size become uniform.
  • Such uniformity of quantum characteristics can be confirmed, for example, by analyzing an emission spectrum.
  • the emission spectrum is single and sharp.
  • a resin composition having excellent transparency and ultraviolet absorbing ability can be obtained.
  • the metal compound used in the present invention is not particularly limited, and a compound that reacts with a thiourea compound to form sulfur nanoparticles can be used.
  • metal compounds include zinc compounds, manganese compounds, copper compounds, magnesium compounds, titanium compounds, cobalt compounds, iron compounds, nickel compounds, cadmium compounds, aluminum compounds, gallium compounds, indium compounds, Vanadium compounds, tantalum compounds, chromium compounds, molybdenum compounds, tungsten compounds, germanium compounds, tin compounds, lead compounds, mercury compounds, antimony compounds, bismuth compounds, puffy compounds, erbium compounds, yttrium compounds, neodymium compounds, Examples thereof include terbium compounds and cerium compounds.
  • zinc-rich compound examples include zinc carboxylates such as zinc acetate, zinc benzoate, zinc citrate, zinc formate, zinc laurate, zinc salicylate, etc.
  • manganese compound examples include, but are not limited to, manganese carboxylic acid compounds such as manganese acetate and manganese benzoate; acetyl cetato manganese compounds such as acetyl acetyl sodium; Manganese nitrate; manganese halide compounds such as dichloromanganese and dibromomanganese.
  • the copper compound include, but are not limited to, copper carboxylate compounds such as copper acetate, copper benzoate, copper titanate, and copper phthalate; dithio compounds such as copper dimethyldithiocarbamate Examples thereof include copper rubamate compounds; copper halide compounds such as copper chloride and copper bromide; copper nitrate; copper sulfate.
  • magnesium compound examples include magnesium carboxylates such as magnesium acetate; alkylmagnesium compounds such as jetylmagnesium and di-n-butylmagnesium; chloromethylmagnesium, bromomethylmagnesium, chloroethyl And halogenated magnesium compounds such as nilmagnesium and magnesium iodide.
  • magnesium carboxylates such as magnesium acetate
  • alkylmagnesium compounds such as jetylmagnesium and di-n-butylmagnesium
  • chloromethylmagnesium, bromomethylmagnesium, chloroethyl And halogenated magnesium compounds such as nilmagnesium and magnesium iodide.
  • titanium carboxylic acid compounds such as titanium cresylate; titanium halides such as titanium trichloride, titanium tetrachloride, and titanium tetrabromide.
  • titanium halides such as titanium trichloride, titanium tetrachloride, and titanium tetrabromide.
  • Compounds; acetylacetonate titanate compounds such as titanium oxide (II) acetylcetate.
  • cobalt compound examples include cobalt acetate and benzoic acid.
  • cobalt carboxylate compounds such as cobalt acid cobalt, cobalt citrate, and cobalt oxalate; halogenated cobalt compounds such as cobalt chloride; and acetylacetonato cobalt compounds such as acetylacetonatocobalt.
  • iron compound examples include iron carboxylate compounds such as iron acetate; halogenated iron compounds such as iron dichloride and trisalt iron.
  • nickel compound examples include, but are not limited to, nickel carboxylate compounds such as nickel acetate, formic acid-nickel and nickel lactate; acetylylacetonate nickel such as acetylylacetonate nickel Compound: Nickel dithiocarnomate compound such as bis (dibutyldithiocarnomate) -keke; Halogenated-keke Louis compound such as nickel chloride.
  • cadmium compound examples include, but are not limited to, cadmium acetate, cadmium formate, cadmium stearate, and other carboxylic acid cadmium compounds; salt cadmium, bromide, methyl cadmium chloride, and the like.
  • the aluminum compound are not particularly limited, but alkyl aluminum compounds such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trioctylaluminum; aluminum trichloride, dimethylaluminum chloride, chloride Examples thereof include halogenated aluminum compounds such as jetyl aluminum, methyl aluminum dichloride, and ethyl aluminum dichloride.
  • gallium compound examples include, but are not limited to, alkyl gallium compounds such as tri-n-butyl gallium; halogen-gallium compounds such as gallium trichloride, di-n-butyl gallium chloride, and n-butyl gallium dichloride. And so on.
  • indium compound examples include, but are not limited to, indium halide compounds such as trimethylindium indium trichloride, di-n-butylindium chloride, and n-butylindium dichloride.
  • vanadium compound examples are not particularly limited, and examples thereof include halogen vanadium compounds such as vanadium dichloride and tetrasalt vanadium.
  • tantalum compound examples include, but are not particularly limited to, tantalum halide compounds such as pentachloride tantalum and tantalum pentahalide.
  • chromium compound examples include, but are not limited to, chromium carbonate compounds such as chromium acetate; chromium halide compounds such as chromium tribromide and chromium triiodide.
  • molybdenum compound examples include, but are not limited to, molybdenum carboxylate compounds such as molybdenum acetate dimer; halogen-molybdenum compounds such as molybdenum tetrachloride and molybdenum tetrabromide. .
  • tungsten compound examples include halogen tungsten compounds such as tandane tetrachloride and tungsten tetrabromide.
  • germanium compound examples are not particularly limited, and examples thereof include germanium halide compounds such as tetrasalt-germanium and germanium tetrabromide.
  • tin compound examples include, but are not limited to, tin carboxylate compounds such as tin acetate; tin halide compounds such as tin dichloride and tin tetrachloride, and the like.
  • lead compounds include, but are not limited to, lead carboxylate compounds such as lead acetate; and halogen lead compounds such as lead dichloride and lead dibromide. be able to.
  • mercury-containing compound examples include mercury carboxylate compounds such as mercury acetate; halogen-mercury compounds such as disalt mercury.
  • antimony compound examples include, but are not limited to, antimony carboxylic acid compounds such as antimony acetate; alkylantimony compounds such as trimethylantimony and tri-n-butylantimony; antimony trichloride and methylantimony dichloride.
  • antimony carboxylic acid compounds such as antimony acetate
  • alkylantimony compounds such as trimethylantimony and tri-n-butylantimony
  • antimony trichloride such as trimethylantimony and tri-n-butylantimony
  • methylantimony dichloride examples include, but are not limited to, antimony carboxylic acid compounds such as antimony acetate; alkylantimony compounds such as trimethylantimony and tri-n-butylantimony; antimony trichloride and methylantimony dichloride.
  • Halogenated antimony compounds such as
  • bismuth compounds are not particularly limited, but include power bismuth compounds such as bismuth acetate; alkyl bismuth compounds such as trimethyl bismuth and tri-n-butyl bismuth; bismuth trichloride and methyl dichloride.
  • power bismuth compounds such as bismuth acetate
  • alkyl bismuth compounds such as trimethyl bismuth and tri-n-butyl bismuth
  • bismuth trichloride and methyl dichloride bismuth halides such as bismuth And the like.
  • europium compound examples include, but are not limited to, europium acetate, carboxylic acid europium compounds such as europium oxalate; europium halide compounds such as europium chloride; europium nitrate; europium carbonate and the like.
  • erbium compound examples include, but are not limited to, erbium carboxylate compounds such as erbium acetate and erbium oxalate; acetylacetate erbium compounds such as acetylacetonatoerbium; Examples include erbium alkoxide compounds such as propoxide; halogenated rubium compounds such as erbium chloride and erbium fluoride; erbium nitrate; erbium carbonate.
  • erbium carboxylate compounds such as erbium acetate and erbium oxalate
  • acetylacetate erbium compounds such as acetylacetonatoerbium
  • Examples include erbium alkoxide compounds such as propoxide; halogenated rubium compounds such as erbium chloride and erbium fluoride; erbium nitrate; erbium carbonate.
  • yttrium compound examples are not particularly limited, but yttrium carboxylate compounds such as yttrium acetate and yttrium oxalate; yttrium halide compounds such as yttrium chloride and yttrium bromide; yttrium nitrate; yttrium carbonate; Examples include alkoxylated yttrium compounds such as yttrium soproboxide.
  • neodymium compound examples include, but are not limited to, neodymium carboxylic acid compounds such as neodymium acetate and neodymium 2-ethylhexanoate; acetylylacetonate neodymium compounds such as acetylylacetonate neodymium; Examples thereof include neodymium nitrate; neodymium carbonate; halogenated neodymium compounds such as neodymium salt and neodymium bromide; and alkoxy-neodymium compounds such as neodymium isopropoxide.
  • neodymium carboxylic acid compounds such as neodymium acetate and neodymium 2-ethylhexanoate
  • acetylylacetonate neodymium compounds such as acetylylacetonate neodymium
  • Examples thereof include neody
  • terbium carboxylate compounds such as terbium acetate and terbium oxalate
  • acetylylacetonate terbium compounds such as acetylacetonatoterbium; , Terbium bromide, and the like, and rogene terbium compounds
  • terbium carbonate terbium nitrate.
  • cerium carboxylate compounds such as cerium acetate, cerium 2-ethylhexanoate, and cerium oxalate; cerium carbonate; cerium nitrate; cerium sulfate; salt Halium cerium such as cerium and cerium bromide Things can be mentioned.
  • the metal compounds used in the present invention may be used alone or in combination. It may be a hydrate or an anhydride.
  • the number of acid atoms of the metal atom is not particularly limited.
  • LOO mol% of the metal compound is a zinc compound in terms of the quantum characteristics, safety, and environmental load of the obtained nanoparticles.
  • a metal compound other than the zinc compound can be used as 0 to: LO mol% of the metal compound.
  • zinc sulfate nanoparticles doped with metal atoms other than zinc can be produced.
  • Such doving makes it possible to control the emission characteristics, absorption wavelength, and the like of the resulting metal sulfide nanoparticles.
  • metal compounds other than zinc used for doping purposes include manganese carboxylate compounds and acetylenes in terms of availability, reactivity, and quantum properties.
  • the thiourea compound used in the present invention is not particularly limited.
  • thiourea monoalkylthiourea, monoarylthiourea, dialkylthiourea, diallylthiourea, trialkylthiourea, tetraalkylthiourea, carboxyl
  • group-containing thiourea cyclic thiourea, diacid thiothiourea, and the like.
  • thiourea compounds specific examples of monoalkylthiourea are not particularly limited. N-methyl thiourea, N isopropyl thiourea, N allyl thiourea, N—n propyl thiourea, N—n—butyl thiourea, N—n decyl thiourea, N—2 phenyl thiourea, N triphenyl methyl thiourea, etc. Can be mentioned.
  • thiourea compounds specific examples of monoarylthiourea are not particularly limited, but N-phenylthiourea, N—o tolylthiourea, N—p tolylthiourea, N—3 pyridylthiourea, N —P cyanophylthiourea, N—2 pyridylthiourea, N—1-naphthylthiourea, N—p-trifluorothiourea, N—o-methoxyphenolthiourea, N—m fluorothiourea, N—p phenoloxy-thiol And urea, 1, 4 -phenol-bis (thiourea).
  • dialkylthiourea examples are not particularly limited, but N, N, -dimethinoretiourea, N, N, -jetinoretiourea, N, N, oxy n-butylthiourea, N, N, -di-n-octylthiourea, N, N dicyclohexylthiourea, N, N′bis (dimethylaminopropyl) thiourea and the like can be mentioned.
  • diarylthiourea are not particularly limited, but N, N, diphenylthiourea, N, N, di-o-tolylthiourea, N, N, P Tolylthiourea can be mentioned.
  • trialkylthiourea examples include trimethylthiourea, triethylthiourea, and triarylthiourea.
  • thiourea compounds specific examples of tetraalkylthiourea are not particularly limited, and examples thereof include tetramethylthiourea and tetraethylthiourea.
  • carboxyl group-containing thiourea examples include N-acetylthiourea, N-benzoylthiourea, N (benzoylamidino) thiourea, N, N diisobutyl-N'-be And nzoylthiourea.
  • thiourea compounds specific examples of cyclic thiourea are not particularly limited, and examples thereof include ethylene thiourea and propylene thiourea.
  • the thiourea compounds used in the present invention may be used singly or in combination.
  • thiourea, monoalkylthiourea, monoarylthiourea, dialkylthiourea, diarylthiourea, cyclic thiourea, and thiothiourea diacid are preferred in terms of reactivity and availability.
  • N-methylthiourea, N, N′-dimethylthiourea, ethylenethiourea, and thiourea dioxide are more preferable.
  • the amount ratio of these compounds is not particularly limited, but the particle size of the resulting metal sulfide nanoparticle is not limited. In terms of particle size distribution, quantum characteristics, and yield, it is preferable to use 0.2 to 1.2 moles of thiourea compound per mole of metal compound. More preferably, the ratio is used.
  • thermoplastic resin at a ratio of 50 to 50 parts by weight with respect to 100 parts by weight of the metal compound. 100-5 0000 parts by weight is preferred.
  • the metal sulfate nanoparticles can be strongly modified, so in this case, 0.01 to: L 5 mol or 0.05 to 1 mol It is preferable to use in proportion.
  • the amount of the abrotic polar organic solvent to be used is not particularly limited, but 100 to 100000 parts by weight is preferable with respect to 100 parts by weight of the metal compound in terms of reaction efficiency. I like it!
  • the reaction conditions for reacting the metal compound with the thiourea compound in the presence of the thermoplastic resin are not particularly limited, but the reaction temperature is preferably 80 ° C or higher from the viewpoint of reaction efficiency 100 ° C or more is more preferable. If the reaction temperature is too high, decomposition of the thermoplastic oxalate-urine compound occurs. Therefore, 300 ° C or lower is preferable, and 250 ° C or lower is more preferable. Either batch type or fluid type reaction can be applied.
  • the metal sulfate nanoparticle-containing resin composition of the present invention can be obtained by reacting the metal compound with the thiourea compound and then removing the solvent.
  • the method for removing the solvent is not particularly limited. For example, (1) a method of distillation; (2) a method of precipitation by adding a poor solvent for thermoplastic resin to separate from the solvent; (3) lyophilization Do The method etc. can be mentioned. Of these, the methods (1) and (2) are preferable in terms of simple operation, and the method (2) is more preferable in that a resin composition is obtained.
  • the specific means is not particularly limited.
  • the pressure may be normal, it is preferable to reduce pressure in terms of efficiency.
  • the temperature may be room temperature! / Is preferably heated from the viewpoint of efficiency.
  • the distilled solvent is preferably recovered and reused from the viewpoints of safety and environmental burden.
  • the specific means is not particularly limited.
  • an appropriate one may be selected according to the thermoplastic resin to be used, but those which are compatible with the aprotic polar organic solvent used in the reaction are preferred. If an appropriate combination of antisolvents is not found, an appropriate antisolvent may be selected after replacing the aprotic polar organic solvent with another appropriate solvent.
  • thermoplastic rosin examples include aliphatic hydrocarbon solvents such as hexane, pentane, octane and cyclohexane; alcohol solvents such as methanol, ethanol, hexanol and octanol; Fluorinated solvents such as fluoroethanol and HCFC-225 (Asahi Glass Co., Ltd.) can be mentioned.
  • the resin composition containing metal sulfate nanoparticles separated by adding a poor solvent can be used after drying by a general method.
  • the resin composition according to the present invention may be mixed or added with other thermoplastic resins, thermosetting resins, additives and the like according to the purpose.
  • a thermoplastic resin a thermosetting resin can be used generally, and it is preferable to use a resin having compatibility with the resin composition according to the present invention.
  • the additives include pigments and dyes, heat stabilizers, acid / antioxidants, ultraviolet absorbers, light stabilizers, lubricants, plasticizers, flame retardants, and antistatic agents.
  • the metal sulfate nanoparticle-containing resin composition of the present invention can be used as various coating films, films, and molded articles by solution casting, melt molding and the like.
  • Mw and Mn of the polymer were determined by GPC analysis. Waters Sys The column was used by connecting Shodex K-806 and K-805 (manufactured by Showa Denko Co., Ltd.) and using a polystyrene standard sample as an eluent. The monomer reaction rate in polymerizing the polymer was determined by gas chromatography (GC) analysis. GC analysis was performed with gas chromatograph GC-14B (manufactured by Shimadzu Corp.) using the Kyaryari Islamic Ram DB-17 (manufactured by J & W SCIENTIFIC) by dissolving the sampling solution in ethyl acetate.
  • GC gas chromatography
  • the dispersion state and particle size of the metal sulfide nanoparticles were observed using a transmission electron microscope (TEM) JEM-1200EX (manufactured by JEOL Ltd.) at an acceleration voltage of 80 kV.
  • the emission spectrum was measured using a spectrofluorometer FP-6500DS (manufactured by JASCO Corporation) using 300 nm excitation light with respect to the solution or film sample, and the photoluminescence spectrum was measured in the range of 350 to 700 nm. .
  • the obtained PMMA resin composition can form a transparent film on a quartz substrate by a solution casting method (film thickness: 100 ⁇ m), and has a wavelength of 410 nm and 436 nm for 300 nm excitation light.
  • the emission spectrum was shown. Force that seems to be because some of the nanoparticles are agglomerated because the emission spectrum was bimodal.
  • the agglomeration of ZnS nanoparticles was less than 3% and almost uniformly dispersed It was confirmed.
  • the resulting film has a haze of 0.8%.
  • Example 1 PBA (4. Og) (manufactured by Aldrich) (Mw: about 60000, Mn: about 20000, product number: 18, 141-2) was used in place of PMMA. Of a viscous polymer was obtained (yield 3.0 g).
  • the obtained PBA showed emission spectra of 408 nm and 432 nm for excitation light of 300 nm in black mouth form. Since the emission spectrum was bimodal, some ZnS nanoparticles were aggregated, and the power that was considered to be achievable.
  • This PBA containing ZnS nanoparticles was left at room temperature for 1 month, but remained transparent. It was confirmed that further aggregation of ZnS nanoparticles was suppressed. However, when this ZnS nanoparticle-containing PBA was left as a black mouth form, toluene, and DMF solution at room temperature, turbidity occurred and the transparency decreased in one week. It is not considered.
  • Example 1 a similar experiment was performed using PC (Caliber 300-30; manufactured by Sumitomo Dow Co., Ltd.) (2.5 g) instead of PMMA to obtain PC containing ZnS nanoparticles (yield) 2. lg).
  • PC Caliber 300-30; manufactured by Sumitomo Dow Co., Ltd.
  • Yield 2. lg.
  • This The PC containing ZnS nanoparticles was molded as a 0.3 mm thick sheet by hot pressing.
  • This film showed an emission spectrum at 420 nm for an excitation wavelength of 300 nm.
  • the haze of this film was 1.9%.
  • the aggregation of ZnS nanoparticles was less than 4%, and it was confirmed that they were uniformly dispersed.
  • the obtained PMMA resin composition was formed into a film having a thickness of 95 m on a polyethylene terephthalate (PET) film by a solution casting method.
  • PET polyethylene terephthalate
  • the PMMA film obtained by peeling from the PET film showed an emission spectrum of 590 nm for 300 nm excitation light.
  • the aggregation of ZnS: Mn nanoparticles was less than 4%, and it was confirmed that they were uniformly dispersed.
  • the haze of the obtained film was 0.9%.
  • Example 1 the same experiment was performed except that PMMA was not present.
  • the reaction solution of DMF became a white suspension, did not show an emission spectrum, and ZnS nanoparticles could not be obtained. Also, it was impossible to obtain a resin composition and film because of the presence of PMMA.
  • PMMA was obtained at a monomer reaction rate of 42% by heating at 90 ° C for 1 hour. Next, n-butylamine (25 g) was added and the end of PMMA was converted to an SH group by stirring at 80 ° C. for 4 hours. The reaction solution was concentrated to 400 mL and poured into methanol (2 L) to isolate PMMA having an SH group at the end.
  • PMMA (5.9 g) with SH group obtained in Production Example 1 was placed in a 3-roflasco (300 mL) equipped with a reflux condenser with a nitrogen inlet, a magnetic stirrer, and a thermocouple for temperature measurement. (lOOmL) was added and dissolved. Zinc acetate dihydrate (0.966 g) and thiourea (0.237 g) were added and dissolved, and the reaction system was purged with nitrogen. The reaction solution is stirred at 150 ° C for 10 hours and then cooled to room temperature.
  • the PMMA-modified ZnS nanoparticles obtained in this way showed a 410 nm unimodal emission spectrum for excitation light of 300 nm in black mouth form.
  • the PMMA-modified nanoparticles were allowed to stand at room temperature for 6 months as a black mouth form, toluene, and DMF solution, but remained transparent, and there was no change in the UV absorption spectrum or photoluminescence spectrum. From this, it was confirmed that the effect of the modification stability by SH group-containing PMMA is large.
  • PMMA (6. Og) with SH group obtained in Production Example 1 is placed in a 3-roflasco (300 mL) equipped with a reflux condenser with a nitrogen inlet, a magnetic stirrer, and a thermocouple for temperature measurement. (lOOmL) was added and dissolved. Zinc acetate dihydrate (0.973 g), manganese acetate tetrahydrate (0.088 g), and thiourea (0.237 g) were added and dissolved, and the reaction system was purged with nitrogen. The reaction solution is stirred at 150 ° C for 10 hours and then cooled to room temperature.
  • the PMMA-modified ZnS: Mn nanoparticles obtained in this way exhibited a single-peak emission spectrum at 580 nm in a black mouth with excitation at 300 nm. This is attributed to light emission from manganese doped in ZnS crystals.
  • the PMMA-modified nanoparticles were allowed to stand at room temperature for 6 months as a solution of black mouth form, toluene, and DMF. However, they remained transparent, and there was no change in the ultraviolet absorption spectrum or photoluminescence spectrum. From this, it was confirmed that the effect of modification stability by SH group-containing PMMA is significant.
  • Example 6 the same experiment was carried out using PBA (4. Og) having SH groups obtained in Production Example 2 instead of PMMA having SH groups, and PBA-modified ZnS nanoparticles were obtained. (Yield 2.9 g) was obtained.
  • the obtained PBA-modified ZnS nanoparticles showed a single-peak emission spectrum of 408 ⁇ m for excitation light of 300 nm in black mouth form.
  • the PBA-modified nanoparticles were allowed to stand at room temperature for 6 months as a solution of black mouth form, toluene, and DMF, but remained transparent, and no change was observed in the ultraviolet absorption spectrum and photoluminescence spectrum. Based on this, it was confirmed that the effect of modification stability by SH group-containing PBA was significant.
  • the metal sulfide nanoparticle-containing resin composition of the present invention stably exhibits a quantum effect and has a high purity, so that a solar cell, a light emitting device, a display, a phosphor, a wavelength conversion device, It is useful as a material for wavelength cut filters, nonlinear optical materials, semiconductor lasers, optical memories, ultraviolet shielding materials, electromagnetic wave shielding materials, magnetic recording materials, photocatalysts, quantum transistors, biomarkers, and the like.

Abstract

 耐水性、耐候性、耐久性に優れ、純度が高く、凝集せずに均一に分散した金属硫化物ナノ粒子含有樹脂組成物およびその製造方法を提供することを課題とし、アプロティック極性有機溶媒中、該溶媒に可溶な熱可塑性樹脂の存在下に金属化合物とチオ尿素化合物とを反応させ、次いで溶媒を除去することにより、金属硫化物ナノ粒子含有樹脂組成物を得る。上記反応により金属硫化物ナノ粒子含有樹脂組成物を得る場合、80~300°Cで加熱することが好ましい。また溶媒を除去する方法としては、蒸留あるいは貧溶媒添加による分離が好ましい。本発明の樹脂組成物は耐候性、耐水性、耐久性、透明性に優れ、かつ生産性が高く経済的に製造可能である。

Description

明 細 書
金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法 技術分野
[0001] 本発明は金属硫化物ナノ粒子含有榭脂組成物及び該組成物の製造方法に関す る。
背景技術
[0002] 金属硫ィ匕物ナノ粒子は、そのサイズに応じた量子特性を利用すべくエレクトロニク ス、ォプテイクス、オプトエレクトロニクス、バイオサイエンス、医療分野など幅広い領 域において実用化検討が続けられている。例えば太陽電池、発光素子、ディスプレ ィ、蛍光体、波長変換素子、波長カットフィルター、非線形光学材料、半導体レーザ 一、光メモリ、紫外線遮蔽材、電磁波遮蔽材、磁気記録材料、光触媒、量子トランジ スタ、バイオマーカーなどを挙げることができる。
[0003] し力しこのような金属硫ィ匕物ナノ粒子の従来合成法は、硫黄源として硫ィ匕ナトリウム などの硫ィ匕金属化合物を使用するためにナノ粒子がナトリウムなどのイオンや原子に より汚染され、精製が困難であるという問題があった。また金属硫ィ匕物ナノ粒子は表 面活性が高 ヽため非常に不安定であり、合成中あるいは合成後に凝集しやす ヽた めに、粒子径が不均一になる、量子特性が低減される、透明度が低減されるなどの 問題があった。さらに従来の金属硫ィ匕物ナノ粒子は熱可塑性榭脂中に分散させるこ とが困難であった。
[0004] 榭脂中へ金属硫ィヒ物ナノ粒子を分散させる技術として、特許文献 1に高分子溶液 中で化合物半導体コロイドを生成させる方法が記載されて 、る。しかし該方法にぉ 、 ては水を初めとするプロティック親水性溶媒を使用するために適用可能な高分子化 合物が限定され、結果として耐候性、耐水性、耐久性に劣る材料しか製造することが できなかった。またプロティック親水性溶媒を使用するために硫黄源として硫ィ匕金属 化合物を用いる必要があり、アルカリ金属イオンによる榭脂組成物の汚染を防ぐこと ができず、純度の高 、材料を得ることができなカゝつた。
[0005] 純度の高!、金属硫ィ匕物ナノ粒子を得る方法として、非特許文献 1に N, N—ジメチ ルホルムアミド中でチォ尿素を硫黄源として使用する方法が記載されている。しかし 該方法ではナノ粒子の修飾剤としてチォグリセロールを共存させて 、るため、長期的 な安定ィ匕効果が不十分であり、また、原料残渣力 分離することが困難である上、ナ ノ粒子を榭脂中へ分散させようとした場合の相容性に劣り、ナノ粒子が均一分散した 熱可塑性榭脂組成物を得ることができなカゝつた。
[0006] ナノ粒子の凝集を防ぐ方法として非特許文献 2では、硫黄源として硫ィ匕ナトリウムを 使用し、修飾剤としてへキサデシルジチォホスフェートを使用している力 修飾剤によ る安定ィ匕が不完全であり透過型電子顕微鏡 (TEM)写真において粒子同士の凝集 が認められる。
[0007] また特許文献 2にはァミン類の存在下にナノ粒子を生成させる方法が、特許文献 3 にはチオールィ匕合物とアミンィ匕合物で複合修飾されたナノ粒子の製造方法がそれぞ れ記載されているが、どちらも低分子化合物による修飾であるために安定ィ匕効果が 不十分であり、凝集を防ぐことができな力つた。
[0008] また特許文献 4にはナノ粒子ヒドロゾルを脂溶性表面修飾分子を用いて有機相へ 抽出して精製する方法が記載されているが、 2相間の物質移動を伴うため精製の効 率が悪いという問題があった。特許文献 5には、ナノ粒子分散液にポリマーをカ卩えた 後、ポリマーに対する貧溶媒を加えることによりナノ粒子を含有するポリマーを析出さ せる方法が記載されて 、るが、ポリマーとナノ粒子の結合が弱 、ためにナノ粒子が充 分沈殿せず、精製の効率が悪いという問題があった。
[0009] 凝集防止や精製効率の向上のため、ナノ粒子への付着力の強い SH基を有するポ リマーを用いてナノ粒子を修飾する方法が特許文献 6および特許文献 7に記載され て!、る。し力しポリマーとして親水性ポリマーを用いて 、るため溶媒として水やアルコ ールなどのプロティックな親水性溶媒を使用する必要があり、硫ィ匕亜鉛などのァプロ ティック有機溶媒中で合成されたナノ粒子には適用することができな力つた。また得ら れるポリマー修飾ナノ粒子が親水性となるため、これを用いてフィルムや成形体を作 製した場合耐水性に劣るものしかできな力つた。
[0010] 特許文献 8、非特許文献 3および非特許文献 4には可逆的付加脱離連鎖移動 (RA FT)重合により得られたポリマーを用いてナノ粒子を修飾する技術が記載されて!、る 。し力しこれらの文献に記載の方法はプロティック親水性溶媒中で還元法により合成 されるナノ粒子に適用されるため、 RAFT重合で得られたポリマーで修飾された金属 硫ィ匕物ナノ粒子を製造することはできな力つた。
特許文献 1:特開平 5— 93076号公報
特許文献 2:特開平 5 - 113586号公報
特許文献 3:特開 2003— 89522号公報
特許文献 4:特開 2003— 73126号公報
特許文献 5 :特開平 10- 36517号公報
特許文献 6:特開 2002— 121548号公報
特許文献 7 :特開 2002— 121549号公報
特許文献 8 :米国特許出願公開第 2003Z0199653号明細書
非特許文献 1 :J. Nandaら、「Chem. Mater. J , 2000年,第 12卷, 1018頁 非特許文献 2 : S. Chenら、「Langmuir」, 1999年,第 15卷, 8100頁
非特許文献 3 : A. B. Loweら、「J. Am. Chem. Soc.」, 2002年,第 124卷, 1156
2頁
非特許文献 4 :J. Shanら、「Macromolecules」, 2003年,第 36卷, 4526頁 発明の開示
発明が解決しょうとする課題
[0011] 耐水性、耐候性、耐久性に優れ、純度が高ぐ凝集せずに均一に分散した金属硫 化物ナノ粒子含有榭脂組成物及び該組成物の製造方法を提供すること。
課題を解決するための手段
[0012] 上記課題を解決するための手段として、以下の金属硫化物ナノ粒子含有榭脂組成 物及び該組成物の製造方法を提案する。
[0013] 本発明の金属硫化物ナノ粒子含有榭脂組成物は、アブロティック極性有機溶媒中
、該溶媒に可溶な熱可塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応 させ、次いで溶媒を除去することにより得られる、金属硫化物ナノ粒子含有榭脂組成 物(請求項 1)である。
[0014] 本発明の好適な実施態様は、アブロティック極性有機溶媒に可溶な熱可塑性榭脂 力 (メタ)アクリル酸エステル系榭脂、(メタ)アクリルアミド系榭脂、スチレン系榭脂、 ( メタ)アクリロニトリル系榭脂、酢酸ビュル系榭脂、ポリカーボネート系榭脂およびポリ アミド系榭脂からなる群より選ばれる 1種以上の榭脂であることを特徴とする、請求項
1に記載の金属硫化物ナノ粒子含有榭脂組成物(請求項 2)である。
[0015] 本発明の好適な実施態様は、アブロティック極性有機溶媒に可溶な熱可塑性榭脂 力 Η基含有ポリマーであることを特徴とする請求項 1に記載の金属硫ィ匕物ナノ粒子 含有榭脂組成物 (請求項 3)である。
[0016] 本発明の好適な実施態様は、 SH基含有ポリマーがチォカルボ-ルチオィ匕合物を 連鎖移動剤とする可逆的付加脱離連鎖移動重合の後、処理剤により末端 SH化され たものである、請求項 3に記載の金属硫化物ナノ粒子含有榭脂組成物(請求項 4)で ある。
[0017] 本発明の好適な実施態様は、処理剤が水素 窒素結合含有化合物、塩基性化合 物および還元剤力もなる群より選ばれる 1種以上の化合物である、請求項 4に記載の 金属硫化物ナノ粒子含有榭脂組成物 (請求項 5)である。
[0018] 本発明の好適な実施態様は、金属化合物の 90〜: LOOモル%がカルボン酸亜鉛ィ匕 合物、ジチォカルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン 酸亜鉛化合物、ァセチルァセトナト亜鉛ィ匕合物およびアルキル亜鉛ィ匕合物カゝらなる 群より選ばれる 1種以上の化合物であり、 0〜10モル%がカルボン酸マンガン化合物 、ァセチルァセトナトマンガン化合物、硝酸マンガン、ハロゲン化マンガン化合物、力 ルボン酸銅化合物、カルボン酸銀化合物、カルボン酸鉛化合物、ハロゲンィ匕アルミ ニゥム化合物、カルボン酸コバルト化合物、ハロゲン化コバルト化合物、カルボン酸 ユーロピウム化合物、カルボン酸エルビウム化合物、カルボン酸イットリウム化合物、 カルボン酸ネオジム化合物、カルボン酸テルビウム化合物およびカルボン酸セリウム 化合物からなる群より選ばれる 1種以上の化合物であることを特徴とする、請求項 1か ら 5の ヽずれかに記載の金属硫化物ナノ粒子含有榭脂組成物(請求項 6)である。
[0019] 本発明の好適な実施態様は、チォ尿素化合物が、チォ尿素、モノアルキルチオ尿 素、モノアリールチオ尿素、ジアルキルチオ尿素、ジァリールチオ尿素、環状チォ尿 素およびニ酸ィ匕チォ尿素力 なる群より選ばれる 1種以上の化合物であることを特徴 とする、請求項 1から 6のいずれかに記載の金属硫ィ匕物ナノ粒子含有榭脂組成物( 請求項 7)である。
[0020] 本発明の好適な実施態様は、アブロティック極性有機溶媒力 N, N ジメチルホ ルムアミド、 N, N ジメチルァセトアミド、ジメチルスルホキシドおよびへキサメチルホ スホリックトリアミドからなる群より選ばれる 1種以上の化合物であることを特徴とする、 請求項 1から 7の ヽずれかに記載の金属硫化物ナノ粒子含有榭脂組成物(請求項 8 )である。
[0021] また、本発明の実施態様は、アブロティック極性有機溶媒中、該溶媒に可溶な熱可 塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応させ、次いで溶媒を除 去する、金属硫化物ナノ粒子含有榭脂組成物の製造方法 (請求項 9)である。
[0022] 本発明の好適な実施態様は、アブロティック極性有機溶媒に可溶な熱可塑性榭脂 力 (メタ)アクリル酸エステル系榭脂、(メタ)アクリルアミド系榭脂、スチレン系榭脂、 ( メタ)アクリロニトリル系榭脂、酢酸ビュル系榭脂、ポリカーボネート系榭脂、ポリアミド 系榭脂からなる群より選ばれる 1種以上の榭脂である、請求項 9に記載の金属硫ィ匕 物ナノ粒子含有榭脂組成物の製造方法 (請求項 10)である。
[0023] 本発明の好適な実施態様は、アブロティック極性有機溶媒に可溶な熱可塑性榭脂 力 Η基含有ポリマーであることを特徴とする、請求項 9に記載の金属硫ィ匕物ナノ粒 子含有榭脂組成物の製造方法 (請求項 11)である。
[0024] 本発明の好適な実施態様は、 SH基含有ポリマーがチォカルボ-ルチオィ匕合物を 連鎖移動剤とする可逆的付加脱離連鎖移動重合の後、処理剤により末端 SH化され たものである、請求項 11に記載の金属硫化物ナノ粒子含有榭脂組成物の製造方法 (請求項 12)。
[0025] 本発明の好適な実施態様は、処理剤が水素 窒素結合含有化合物、塩基性化合 物および還元剤力もなる群より選ばれる 1種以上の化合物である、請求項 12に記載 の金属硫ィ匕物ナノ粒子含有榭脂組成物の製造方法 (請求項 13)である。
[0026] 本発明の好適な実施態様は、金属化合物の 90〜: LOOモル%がカルボン酸亜鉛ィ匕 合物、ジチォカルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン 酸亜鉛化合物、ァセチルァセトナト亜鉛ィ匕合物、アルキル亜鉛ィ匕合物カゝらなる群より 選ばれる 1種以上の化合物であり、 0〜10モル%がカルボン酸マンガン化合物、ァセ チルァセトナトマンガン化合物、硝酸マンガン、ハロゲン化マンガン化合物、カルボン 酸銅化合物、カルボン酸銀化合物、カルボン酸鉛化合物、ハロゲンィ匕アルミニウム化 合物、カルボン酸コバルト化合物、ハロゲン化コバルト化合物、カルボン酸ユーロピウ ム化合物、カルボン酸エルビウム化合物、カルボン酸イットリウム化合物、カルボン酸 ネオジム化合物、カルボン酸テルビウム化合物、カルボン酸セリウム化合物力 なる 群より選ばれる 1種以上の化合物である、請求項 9から 13のいずれかに記載の金属 硫化物ナノ粒子含有榭脂組成物の製造方法 (請求項 14)である。
[0027] 本発明の好適な実施態様は、チォ尿素化合物が、チォ尿素、モノアルキルチオ尿 素、モノアリールチオ尿素、ジアルキルチオ尿素、ジァリールチオ尿素、環状チォ尿 素、ニ酸ィ匕チォ尿素力もなる群より選ばれる 1種以上の化合物である、請求項 9から 14の 、ずれかに記載の金属硫化物ナノ粒子含有榭脂組成物の製造方法 (請求項 1 5)である。
[0028] 本発明の好適な実施態様は、アブロティック極性有機溶媒力 N, N—ジメチルホ ルムアミド、 N, N—ジメチルァセトアミド、ジメチルスルホキシド、へキサメチルホスホリ ックトリアミドカもなる群より選ばれる 1種以上の化合物である、請求項 9から 15のいず れかに記載の金属硫化物ナノ粒子含有榭脂組成物の製造方法 (請求項 16)である
[0029] 本発明の好適な実施態様は、アブロティック極性有機溶媒中、該溶媒に可溶な熱 可塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応させる際、 80〜300 °Cで加熱することを特徴とする、請求項 9から 16のいずれかに記載の金属ナノ粒子 含有榭脂組成物の製造方法 (請求項 17)である。
[0030] 本発明の好適な実施態様は、金属化合物とチォ尿素化合物とを反応させた後、蒸 留により溶媒を除去することを特徴とする、請求項 9から 17のいずれかに記載の金属 硫ィ匕物ナノ粒子含有榭脂組成物の製造方法 (請求項 18)である。
[0031] 本発明の好適な実施態様は、金属化合物とチォ尿素化合物とを反応させた後、熱 可塑性榭脂に対する貧溶媒を加えることにより金属硫化物ナノ粒子を含む熱可塑性 榭脂を沈殿させて溶媒から分離することを特徴とする、請求項 9から 17のいずれかに 記載の金属硫ィ匕物ナノ粒子含有榭脂組成物の製造方法 (請求項 19)である。
発明の効果
[0032] 本発明の金属硫ィ匕物ナノ粒子含有榭脂組成物は、純度が高ぐ耐候性、耐水性、 耐久性に優れる。また金属硫ィ匕物ナノ粒子が凝集せずに榭脂中に均一分散して!/ヽ るため、量子特性に優れる。また 1段階、 1ポットで製造可能であるため生産性が高く 経済的である。
[0033] またナノ粒子合成と修飾が同時に行われるためにナノ粒子の凝集をほぼ完全に防 止することが可能であり、さらにナノ粒子をポリマーが包むことにより粒子径を高度に 制御することが可能である。また本発明の製造方法にぉ 、て金属硫ィ匕物ナノ粒子含 有榭脂組成物は、反応後にポリマーに対する貧溶媒を加えることによりポリマー修飾 金属硫ィ匕物ナノ粒子を容易に沈殿させて分離することが可能であるため、精製が容 易であり、純度の高いナノ粒子を簡便に得ることができる。
発明を実施するための最良の形態
[0034] 本発明の金属硫化物ナノ粒子含有榭脂組成物は、アブロティック極性有機溶媒中 、該溶媒に可溶な熱可塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応 させ、次いで溶媒を除去することにより得られる。
[0035] 本発明にお 、て使用するアブロティック極性有機溶媒としては特に限定されず、 N , N—ジメチルホルムアミド(DMF)、 N, N—ジメチルァセトアミド(DMAC)、ジメチ ルスルホキシド(DMSO)、 へキサメチルホスホリックトリアミド(HMPA)、ニトロメタン 、ピリジン、ァセトニトリルなど一般的によく知られているものを挙げることができる。こ れらのうち溶解性、沸点、安全性の点で DMF、 DMAC, DMSO、 HMPAが好まし ぐ DMF、 DMACがより好ましい。これらは単独で使用してもよぐ複数を組み合わ せて使用してもよい。
[0036] 本発明にお 、て使用する熱可塑性榭脂としては、上記アブロティック極性有機溶媒 に可溶なものであれば特に限定されな ヽ。このような熱可塑性榭脂の具体例としては
、ポリメタクリル酸メチル、メタクリル酸メチル Zアクリル酸メチル共重合体、アクリル酸 メチル Zスチレン Zアクリロニトリル共重合体 (ASA榭脂)、メタクリル酸メチル Zスチ レン共重合体 (MS榭脂)、アクリル変性ポリ塩ィ匕ビュルなどの (メタ)アクリル酸エステ ル系榭脂;ポリ(N, N—ジメチル (メタ)アクリルアミド)、ポリ(N—イソプロピル (メタ)ァ クリルアミドなどの (メタ)アクリルアミド系榭脂;ポリスチレン、ポリ( —メチルスチレン) 、スチレン Zアクリロニトリル共重合体 (SAN榭脂)、スチレン Z無水マレイン酸共重 合体、スチレン Zマレイミド共重合体、アクリロニトリル Zブタジエン Zスチレン共重合 体 (ABS榭脂)、塩素化ポリエチレン Zアクリロニトリル Zスチレン共重合体 (ACS榭 脂)などのスチレン系榭脂;ポリ(メタ)アクリロニトリル、(メタ)アクリロニトリル Z塩ィ匕ビ -ル共重合体などの (メタ)アクリロニトリル系榭脂;ポリ酢酸ビニル、エチレン Z酢酸 ビュル共重合体 (EVA榭脂)、エチレン Z酢酸ビュル Z塩化ビュル共重合体、ポリビ 二ルァセタール、ポリビュルアルコールなどの酢酸ビュル系榭脂;ポリカーボネート、 変性ポリカーボネートなどのポリカーボネート系榭脂;ポリアミド 66、ポリアミド 6、ポリア ミド 46などのポリアミド系榭脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフ タレート(PBT)、芳香族ポリエステル、ポリアリレートなどのポリエステル系榭脂;熱可 塑性ポリイミド、ポリアミドイミド、ポリエーテルイミドなどのポリイミド系榭脂;ポリアセタ ール、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルスルホン、ポリ チォエーテルスルホンなどのポリエーテル系榭脂;ポリエステル系熱可塑性エラスト マー(TPEE)、ポリ塩化ビュル系熱可塑性エラストマ一(TPVC)、ポリウレタン系熱 可塑性エラストマ一 (TPU)、ポリアミド系熱可塑性エラストマ一 (TP AE)、(メタ)ァク リル酸エステル系熱可塑性エラストマ一などの熱可塑性エラストマ一、 SH基含有ポリ マーなどを挙げることができる。
[0037] この他にも各種共重合体や変性ポリマーなどを使用することができる。これらは単 独で使用してもよぐ複数を組み合わせて使用してもよい。これら熱可塑性榭脂のう ち、金属硫化物ナノ粒子の分散性と捕捉性に優れる点で、(メタ)アクリル酸エステル 系榭脂、(メタ)アクリルアミド系榭脂、スチレン系榭脂、(メタ)アクリロニトリル系榭脂、 酢酸ビュル系榭脂、ポリカーボネート系榭脂、ポリアミド系榭脂、 SH基含有ポリマー が好ましぐ(メタ)アクリル酸エステル系榭脂、(メタ)アクリルアミド系榭脂、スチレン系 榭脂、 SH基含有ポリマーがより好ましぐ SH基含有ポリマーが最も好ましい。
[0038] これら熱可塑性榭脂の好適な特性としては特に限定されな ヽが、耐熱性が高!、点 でガラス転移温度が 80°C以上であることが好ましぐ 100°C以上であることが好まし い。機械的強度の点で分子量は 5000以上であることが好ましぐ 10000以上である ことがより好ましい。ただし熱可塑性榭脂として SH基含有ポリマーを使用する場合に は、金属硫ィ匕物ナノ粒子との親和性が高いという理由力もこの限りではなぐ後述す る分子量の範囲が好まし 、。
[0039] 本発明で使用する熱可塑性榭脂の 1種である SH基含有ポリマーとしては、分子中 に SH基を有するポリマーであれば使用可能であって、特に限定するものではない。 ここでポリマーとは、モノマーユニットが 10個以上つながった構造の化合物をさす。 S H基はポリマーの末端に存在してもよぐ主鎖中に置換基として存在してもよぐ主鎖 力 分岐した枝に存在してもよい。ポリマー構造としては直鎖状、枝状、デンドリマー 、ノ、ィパーブランチなど限定されないが、ナノ粒子を修飾する効率が高い点で直鎖 状ポリマーが好ましい。またポリマーの 1次構造も特に限定されず、単独重合体、プロ ック重合体、ランダム重合体、傾斜重合体などいずれも使用可能であり、シンジオタク チックポリマー、イソタクチックポリマー、ヘテロタクチックポリマーなど立体規則性ポリ マーも使用可能である。
[0040] SH基含有ポリマーの種類としては、付加重合型ポリマー、縮合重合型ポリマー ヽ ずれも使用可能である力 耐候性、耐水性、耐久性の点で付加重合型ポリマーが好 ましぐビニル系ポリマーがより好ましぐ入手性の点でラジカル重合により得られるビ -ル系ポリマーがさらに好ましい。このようなポリマーの具体例としては、チォ酢酸の 存在下に酢酸ビニルを重合し、次 、で末端基を加水分解させて得られるポリマーや 、 Am. Chem. Sco. , 2001年,第 123卷, 10411頁【こ記載されて!ヽるような SH 基を有するポリスチレンなどを挙げることができる。
[0041] SH基含有ポリマーとしては、 SH基を容易にかつ確実に導入でき、分子量や分子 量分布の制御が可能である点で、チォカルボ二ルチオ化合物を連鎖移動剤とする可 逆的付加脱離連鎖移動 (RAFT)重合の後、処理剤により末端 SH化されたものが最 も好ま Uヽ。 RAFT重合とは特表 2000 - 515181号公報に記載されて ヽるように、 チォカルボ二ルチオィ匕合物を連鎖移動剤としてビュル系モノマーを制御ラジカル重 合する方法である。 RAFT重合により得られるポリマーは分子末端あるいは主鎖中に ジチォエステル構造あるいはトリチォカーボネート構造を有する力 本発明にお 、て はこれを処理剤により処理することにより SH基に変換して使用する。
[0042] 本発明にお 、て使用するチォカルボ二ルチオィ匕合物としては特に限定されず、例 えば特表 2000— 515181号公報に記載されているものを挙げることができる力 入 手性、反応性の点で以下の化合物が好ましい;
[0043] [化 1]
c s=
s
Figure imgf000012_0001
Me Me
PhCH-S- CHPh
S
II
Me2C-S- -c-s- -CMe2
Figure imgf000012_0002
(式中、 Meはメチル基、 Etはェチル基、 Phはフエ二ル基を示す)。これらのうち反応 性の点ではトリチォカーボネート構造を有する化合物が好ましレ、。また多官能チォカ ルポ二ルチオィ匕合物を用いると、 1分子中の複数の末端に SH基を有するポリマーを 得ることができる。このようなポリマーを用いて本発明の方法によりポリマー修飾金属 硫ィ匕物ナノ粒子を製造すると、ナノ粒子同士をポリマーが架橋した構造の材料を得る ことができる。 RAFT重合では分子量が均一に保たれるため、ナノ粒子間の距離が 一定に保たれた強固な塗膜やフィルムを作製することが可能となる。
[0045] RAFT重合の反応条件としては特に限定されないが、反応性の点で重合温度は 6 0°C以上が好ましぐ 80°C以上がより好ましい。重合形式は塊状重合、溶液重合、乳 化重合、懸濁重合など限定されないが、 SH基への変換を容易に実施できる点で塊 状重合および溶液重合が好ましい。溶液重合の場合、使用する溶媒としては特に限 定されず、モノマーやポリマーに応じて適切なものを選択すればよい。
[0046] 具体例としてはトルエン、キシレン、酢酸ェチル、酢酸ブチル、 DMF、 DMAC、 D MSO、メチルェチルケトン、メチルイソブチルケトン、アセトン、ァセトニトリルなどを挙 げることができる。
[0047] RAFT重合は上記チォカルボ-ルチオ化合物の存在下にビュル系モノマーをラジ カル重合させることにより達成される力 その際ラジカル重合の開始方法としては特 に限定されない。例えば熱的に分解するラジカル開始剤を共存させる方法、光照射 により開始させる方法、マイクロ波照射により開始させる方法などを挙げることができ る。これらのうち入手性、汎用性、制御性の点で熱的に分解するラジカル開始剤を共 存させる方法が好ましい。
[0048] このようなラジカル開始剤としては例えば、メチルェチルケトンパーオキサイド、メチ ルイソブチルケトンパーオキサイド、シクロへキサノンパーオキサイド、ベンゾィルパー オキサイド、タメンヒドロパーオキサイド、ジー t ブチルパーオキサイド、 tーブチルバ 一ォキシアセテート、ビス(2—ェチルへキシル)パーォキシジカーボネート、コハク酸 パーオキサイドなどの過酸ィ匕物系開始剤; 2, 2'—ァゾビスイソ酪酸ジメチル、 2, 2, —ァゾビス(4—メトキシ一 2,4 ジメチルバレ口-トリル)、 2, 2'—ァゾビス(イソブチ 口-トリル)、 1, 1,一ァゾビス(シクロへキサン一 1—カルボ-トリル)、 2, 2,一ァゾビ ス(2,4 ジメチルバレ口-トリル)、 2,2,—ァゾビス(2—メチルブチ口-トリル)、 4, 4, ーァゾビス (4ーシァノ吉草酸)などのァゾ系開始剤;過硫酸カリウム、過硫酸ナトリウ ムなどの無機過酸ィ匕物;スチレンなどのように熱的にラジカル種を発生するビニル系 単量体;ベンゾイン誘導体、ベンゾフヱノンなどのように光によりラジカル種を発生す る化合物;還元剤と酸化剤を組み合わせるレドックス型開始剤などを挙げることができ るがこれらに限定されない。
[0049] 本発明にお ヽては入手性、安全性、反応性の点でァゾ系開始剤が好ま 、。重合 開始剤の使用量については特に限定されないが、得られるポリマーの分子量分布が 狭くなる点で、チォカルボ-ルチオィ匕合物中のチォカルボ二ルチオ基 1モルに対し て 0. 5モル以下が好ましぐ 0. 25モル以下がより好ましい。
[0050] 上記 RAFT重合に使用するビュル系モノマーとしては特に限定されず、ラジカル重 合可能なものを使用することができる。このようなビュル系モノマーの具体例としては 、 (メタ)アクリル酸メチル、 (メタ)アクリル酸ェチル、 (メタ)アクリル酸 n—ブチル、 (メタ )アクリル酸 t—ブチル、 (メタ)アクリル酸 2—ヒドロキシェチル、 (メタ)アクリル酸 2—メ トキシェチル、 (メタ)アクリル酸 2—ェチルへキシル、 (メタ)アクリル酸グリシジル、 2— (メタ)アタリロイルォキシプロピルトリメトキシシラン、 (メタ)アクリル酸 2, 2, 2—トリフル ォロェチル、 (メタ)アクリル酸ァリルなどの (メタ)アクリル酸エステル;(メタ)アクリル酸 ;スチレン、 α—メチノレスチレン、 ρ—ヒドロキシスチレン、 ρ—メトキシスチレン、 ρ—ビ -ルベンゼンスルホン酸、 ρ—ビュルベンゼンスルホン酸ナトリウム、ジビュルべンゼ ンなどのスチレン系化合物;ブタジエン、イソプレンなどの脂肪族ォレフイン化合物; 塩化ビュル、塩化ビ-リデン、クロ口プレンなどのハロゲン含有ビュル化合物;(メタ) アクリルアミド、 Ν—メチル (メタ)アクリルアミド、 Ν, Ν—ジメチル (メタ)アクリルアミド、 Ν—イソプロピル (メタ)アクリルアミドなどの (メタ)アクリルアミド;(メタ)アクリロニトリル などの-トリル化合物; Ν—フエ-ルマレイミドなどのマレイミド化合物; 4—ビュルピリ ジン、 Ν—ビュルピロリドンなどの複素環化合物;酢酸ビュル、プロピオン酸ビュル、 安息香酸ビュル、無水マレイン酸などのビュルエステル化合物などを挙げることがで きるが、これらに限定されない。
[0051] 本発明にお 、ては得られるポリマーの耐候性、耐水性、耐久性、耐熱性の点で (メ タ)アクリル酸エステルおよびスチレン系化合物が好ましぐ(メタ)アクリル酸メチル、 ( メタ)アクリル酸ェチル、 (メタ)アクリル酸 η—ブチル、 (メタ)アクリル酸 tーブチル、 (メ タ)アクリル酸 2—ヒドロキシェチル、 (メタ)アクリル酸 2—メトキシェチル、スチレン、 a —メチルスチレンがより好ましい。これらビニル系モノマーは単独で使用してもよぐ複 数を組み合わせて使用してもょ 、。
[0052] RAFT重合で得られたポリマーを SH基含有ポリマーに変換する際に使用する処 理剤としては特に限定されないが、変換効率が高い点で水素 窒素結合含有ィ匕合 物、塩基性化合物、および還元剤力 なる群より選ばれる化合物が好ましい。
[0053] 上記処理剤のうち水素 窒素結合含有ィ匕合物としては特に限定されないが、アン モ-ァ、ヒドラジン、 1級ァミン、 2級ァミン、ヒンダードアミン系光安定剤(HALS)など を挙げることができる。上記 1級ァミンの具体例としてはメチルァミン、ェチルァミン、ィ ソプロピルァミン、 n—ブチルァミン、 tーブチルァミン、 2—アミノエタノール、エチレン ジァミン、シクロへキシルァミン、ァ-リンなどを挙げることができる。
[0054] 上記 2級ァミンの具体例としてはジメチルァミン、ジェチルァミン、ジイソブチルアミ ン、イミノジ酢酸、ビス(ヒドロキシジェチル)ァミン、ジ—n—ブチルァミン、ジ—tーブ チルァミン、ジフエ-ルァミン、イミダゾール、ピぺリジンなどを挙げることができる。上 記 HALSの具体例としては、アデカスタブ LA— 77 (旭電ィ匕工業 (株)製)、チヌビン 1 44 (チバ 'スペシャルティ ·ケミカルズ社製)、アデカスタブ LA— 67 (旭電化工業 (株) 製)などを挙げることができる。
[0055] 上記処理剤のうち塩基性ィ匕合物の例としては特に限定されないが、水酸化ナトリウ ム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、 ナトリウムメトキシド、ナトリウムエトキシド、炭酸ナトリウム、炭酸カリウムなどを挙げるこ とがでさる。
[0056] 上記処理剤のうち還元剤としては特に限定されないが、水素化ナトリウム、水素化リ チウム、水素化カルシウム、 LiAlH、 NaBH、 LiBEt H、水素などを挙げることがで
4 4 3
きる。
[0057] 上記処理剤は単独で用いてもよぐ複数を組み合わせて用いてもよ!、。変換効率の 点で沸点 20〜200°Cの水素 窒素結合含有化合物、および還元剤が好ましぐ精 製が簡略ィ匕できる点で沸点 20〜100°Cの 1級ァミンがより好ましい。このような 1級ァ ミンは処理反応後に蒸留して除去することが可能である。上記処理剤の使用量は特 に限定されないが、変換効率と経済性のバランスの点でポリマー 100重量部に対し て 0. 01〜: LOO重量部が好ましぐ 0. 1〜30重量部がより好ましい。反応条件は特に 限定するものではない。
[0058] 本発明にお 、て RAFT重合により合成される SH基含有ポリマーの分子量は特に 限定されな 、が、ナノ粒子修飾の効果が高 、点でゲル浸透クロマトグラフィー(GPC )分析により求められる数平均分子量(Mn)力 S 1000〜 100000の範囲にあること力 S 好ましぐ 1500〜50000の範囲にあることがより好ましい。分子量分布についても特 に限定されないが、ナノ粒子の粒径が均一となる点で GPC分析により求められる重 量平均分子量(Mw)と Mnとの比(MwZMn)が 1. 5以下であることが好ましぐ 1. 3 以下であることがより好まし 、。
[0059] 本発明の熱可塑性榭脂として SH基含有ポリマーを用いた場合、 SH基が金属硫化 物ナノ粒子表面を効率よく修飾できるため、ポリマーで保護されたナノ粒子を得ること ができる。これによりナノ粒子同士の凝集を防ぐことができるため、榭脂組成物中の金 属硫ィ匕物ナノ粒子の粒径が均一となり、サイズに依存する量子特性が均一となる。こ のような量子特性の均一性については例えば発光スペクトルを分析することにより確 認することが可能である。量子特性が均一なナノ粒子の場合、発光スペクトルが単一 でシャープなものとなる。粒子径ゃ量子特性が均一な金属硫ィ匕物ナノ粒子含有榭脂 組成物にぉ ヽては、例えば透明性や紫外線吸収能に優れたものが得られる。
[0060] 本発明において使用する金属化合物としては特に限定されず、チォ尿素化合物と 反応して硫ィ匕物ナノ粒子を形成するような化合物を使用することができる。このような 金属化合物としては例えば、亜鉛化合物、マンガンィ匕合物、銅化合物、マグネシウム 化合物、チタンィ匕合物、コバルト化合物、鉄化合物、ニッケル化合物、カドミウム化合 物、アルミニウム化合物、ガリウム化合物、インジウム化合物、バナジウム化合物、タン タル化合物、クロム化合物、モリブデン化合物、タングステン化合物、ゲルマニウム化 合物、スズ化合物、鉛化合物、水銀化合物、アンチモン化合物、ビスマス化合物、ュ 一口ピウム化合物、エルビウム化合物、イットリウム化合物、ネオジム化合物、テルビゥ ム化合物、セリウム化合物などを挙げることができる。
[0061] 上記亜鉛ィヒ合物の具体例としては特に限定されな!、が、酢酸亜鉛、安息香酸亜鉛 、クェン酸亜鉛、ギ酸亜鉛、ラウリル酸亜鉛、サリチル酸亜鉛などのカルボン酸亜鉛 化合物;ジチォ酢酸亜鉛、ジチォ安息香酸亜鉛などのジチォカルボン酸亜鉛ィヒ合物 ;ジメチルジチォカルバミン酸亜鉛、ジェチルジチォカルノミン酸亜鉛、ジブチルジ チォカルバミン酸亜鉛、 N—ェチルー N—フエ-ルジチォカルバミン酸亜鉛、 N—ぺ ンタメチレンジチォ力ルバミン酸亜鉛、ジベンジルジチォカルバミン酸亜鉛などのジ チォカルバミン酸亜鉛ィ匕合物;ェチルキサントゲン酸亜鉛、ブチルキサントゲン酸亜 鉛、イソプロピルキサントゲン酸亜鉛などのキサントゲン酸亜鉛化合物;ァセチルァセ トナト亜鉛などのァセチルァセトナト亜鉛ィ匕合物;ジメチル亜鉛、ジェチル亜鉛、ジィ ソプロピル亜鉛などのアルキル亜鉛化合物;ジクロロ亜鉛、ジブロモ亜鉛、クロロメチ ル亜鉛、ブロモメチル亜鉛などのハロゲンィ匕亜鉛ィ匕合物;硝酸亜鉛などを挙げること ができる。
[0062] 上記マンガンィ匕合物の具体例としては特に限定されな 、が、酢酸マンガン、安息香 酸マンガンなどのカルボン酸マンガン化合物;ァセチルァセトナトマンガンなどのァセ チルァセトナトマンガン化合物;硝酸マンガン;ジクロロマンガン、ジブロモマンガンな どのハロゲン化マンガン化合物などを挙げることができる。
[0063] 上記銅化合物の具体例としては特に限定されな 、が、酢酸銅、安息香酸銅、タエ ン酸銅、フタル酸銅などのカルボン酸銅化合物;ジメチルジチォカルバミン酸銅など のジチォ力ルバミン酸銅化合物;塩化銅、臭化銅などのハロゲン化銅化合物;硝酸 銅;硫酸銅などを挙げることができる。
[0064] 上記マグネシウム化合物の具体例としては特に限定されないが、酢酸マグネシウム などのカルボン酸マグネシウム化合物;ジェチルマグネシウム、ジー n—ブチルマグ ネシゥムなどのアルキルマグネシウム化合物;クロロメチルマグネシウム、ブロモメチル マグネシウム、クロロェチニルマグネシウム、ヨウ化マグネシウムなどのハロゲン化マグ ネシゥム化合物などを挙げることができる。
[0065] 上記チタンィ匕合物の具体例としては特に限定されないが、クレシル酸チタンなどの カルボン酸チタンィ匕合物;三塩ィ匕チタン、四塩化チタン、四臭化チタンなどのハロゲ ン化チタン化合物;酸化チタン (II)ァセチルァセトナートなどのァセチルァセトナトチ タンィ匕合物などを挙げることができる。
[0066] 上記コバルト化合物の具体例としては特に限定されな 、が、酢酸コバルト、安息香 酸コバルト、クェン酸コバルト、シユウ酸コバルトなどのカルボン酸コバルト化合物;塩 化コバルトなどのハロゲン化コバルト化合物;ァセチルァセトナトコバルトなどのァセ チルァセトナトコバルト化合物などを挙げることができる。
[0067] 上記鉄化合物の具体例としては特に限定されないが、酢酸鉄などのカルボン酸鉄 化合物;二塩化鉄、三塩ィ匕鉄などのハロゲンィ匕鉄化合物などを挙げることができる。
[0068] 上記ニッケルィ匕合物の具体例としては特に限定されな 、が、酢酸ニッケル、ギ酸- ッケル、乳酸ニッケルなどのカルボン酸ニッケル化合物;ァセチルァセトナトニッケル などのァセチルァセトナトニッケル化合物;ビス(ジブチルジチォカルノ ミン酸) -ッケ ルなどのジチォカルノミン酸ニッケル化合物;塩化ニッケルなどのハロゲン化-ッケ ルイ匕合物などを挙げることができる。
[0069] 上記カドミウム化合物の具体例としては特に限定されな 、が、酢酸カドミウム、ギ酸 カドミウム、ステアリン酸カドミウムなどのカルボン酸カドミウム化合物;塩ィ匕カドミウム、 臭化カドミウム、塩化メチルカドミウムなどのハロゲンィ匕カドミウム化合物;ジメチルカド ミゥム、ジェチルカドミウムなどのアルキルカドミウム化合物などを挙げることができる。
[0070] 上記アルミニウム化合物の具体例としては特に限定されないが、トリメチルアルミ- ゥム、トリェチルアルミニウム、トリー n—ブチルアルミニウム、トリオクチルアルミニウム などのアルキルアルミニウム化合物;三塩化アルミニウム、塩化ジメチルアルミニウム、 塩化ジェチルアルミニウム、二塩化メチルアルミニウム、二塩化ェチルアルミニウムな どのハロゲンィ匕アルミニウム化合物などを挙げることができる。
[0071] 上記ガリウム化合物の具体例としては特に限定されないが、トリー n—プチルガリウ ムなどのアルキルガリウム化合物;三塩化ガリウム、塩化ジー n—ブチルガリウム、二 塩化 n—ブチルガリウムなどのハロゲンィ匕ガリウム化合物などを挙げることができる。
[0072] 上記インジウム化合物の具体例としては特に限定されないが、トリメチルインジウム 三塩化インジウム、塩化ジー n—ブチルインジウム、二塩化 n—ブチルインジウムなど のハロゲン化インジウム化合物などを挙げることができる。
[0073] 上記バナジウム化合物の具体例としては特に限定されないが、二塩化バナジウム、 四塩ィ匕バナジウムなどのハロゲンィ匕バナジウム化合物などを挙げることができる。 [0074] 上記タンタルイ匕合物の具体例としては特に限定されないが、五塩ィ匕タンタル、五臭 化タンタルなどのハロゲン化タンタル化合物などを挙げることができる。
[0075] 上記クロム化合物の具体例としては特に限定されないが、酢酸クロムなどのカルボ ン酸クロム化合物;三臭化クロム、三ヨウ化クロムなどのハロゲン化クロム化合物などを 挙げることができる。
[0076] 上記モリブデン化合物の具体例としては特に限定されないが、酢酸モリブデンダイ マーなどのカルボン酸モリブデン化合物;四塩化モリブデン、四臭化モリブデンなど のハロゲンィ匕モリブデンィ匕合物などを挙げることができる。
[0077] 上記タングステンィ匕合物の具体例としては特に限定されないが、四塩化タンダステ ン、四臭化タングステンなどのハロゲンィ匕タングステンィ匕合物などを挙げることができ る。
[0078] 上記ゲルマニウム化合物の具体例としては特に限定されないが、四塩ィ匕ゲルマ- ゥム、四臭化ゲルマニウムなどのハロゲン化ゲルマニウム化合物などを挙げることが できる。
[0079] 上記スズィ匕合物の具体例としては特に限定されないが、酢酸スズなどのカルボン酸 スズ化合物;二塩化スズ、四塩化スズなどのハロゲン化スズィ匕合物などを挙げること ができる。
[0080] 上記鉛ィ匕合物の具体例としては特に限定されな 、が、酢酸鉛などのカルボン酸鉛 化合物;二塩化鉛、二臭化鉛などのハロゲンィ匕鉛ィ匕合物などを挙げることができる。
[0081] 上記水銀ィ匕合物の具体例としては特に限定されないが、酢酸水銀などのカルボン 酸水銀化合物;二塩ィ匕水銀などのハロゲンィ匕水銀ィ匕合物などを挙げることができる。
[0082] 上記アンチモンィ匕合物の具体例としては特に限定されないが、酢酸アンチモンなど のカルボン酸アンチモン化合物;トリメチルアンチモン、トリー n—ブチルアンチモンな どのアルキルアンチモン化合物;三塩化アンチモン、二塩化メチルアンチモンなどの ハロゲンィ匕アンチモン化合物などを挙げることができる。
[0083] 上記ビスマス化合物の具体例としては特に限定されないが、酢酸ビスマスなどの力 ルボン酸ビスマス化合物;トリメチルビスマス、トリ— n—ブチルビスマスなどのアルキ ル化ビスマス化合物;三塩化ビスマス、二塩化メチルビスマスなどのハロゲン化ビスマ ス化合物などを挙げることができる。
[0084] 上記ユーロピウム化合物の具体例としては特に限定されないが、酢酸ユーロピウム 、シユウ酸ユーロピウムなどのカルボン酸ユーロピウム化合物;塩化ユーロピウムなど のハロゲン化ユーロピウム化合物;硝酸ユーロピウム;炭酸ユーロピウムなどを挙げる ことができる。
[0085] 上記エルビウム化合物の具体例としては特に限定されな 、が、酢酸エルビウム、シ ユウ酸エルビウムなどのカルボン酸エルビウム化合物;ァセチルァセトナトエルビウム などのァセチルァセトナトエルビウム化合物;エルビウムイソプロポキシドなどのアルコ キシ化エルビウム化合物;塩化エルビウム、フッ化エルビウムなどのハロゲン化工ルビ ゥム化合物;硝酸エルビウム;炭酸エルビウムなどを挙げることができる。
[0086] 上記イットリウム化合物の具体例としては特に限定されないが、酢酸イットリウム、シ ユウ酸イットリウムなどのカルボン酸イットリウム化合物;塩化イットリウム、臭化イットリウ ムなどのハロゲン化イットリウム化合物;硝酸イットリウム;炭酸イットリウム;イットリウムィ ソプロボキシドなどのアルコキシ化イットリウム化合物などを挙げることができる。
[0087] 上記ネオジム化合物の具体例としては特に限定されないが、酢酸ネオジム、 2—ェ チルへキサン酸ネオジムなどのカルボン酸ネオジム化合物;ァセチルァセトナトネオ ジムなどのァセチルァセトナトネオジム化合物;硝酸ネオジム;炭酸ネオジム;塩ィ匕ネ オジム、臭化ネオジムなどのハロゲン化ネオジム化合物;ネオジムイソプロポキシドな どのアルコキシィ匕ネオジム化合物などを挙げることができる。
[0088] 上記テルビウム化合物の具体例としては特に限定されないが、酢酸テルビウム、シ ユウ酸テルビウムなどのカルボン酸テルビウム化合物;ァセチルァセトナトテルビウム などのァセチルァセトナトテルビウム化合物;塩ィ匕テルビウム、臭化テルビウムなどの ノ、ロゲンィ匕テルビウム化合物;炭酸テルビウム;硝酸テルビウムなどを挙げることがで きる。
[0089] 上記セリウム化合物の具体例としては特に限定されないが、酢酸セリウム、 2—ェチ ルへキサン酸セリウム、シユウ酸セリウムなどのカルボン酸セリウム化合物;炭酸セリウ ム;硝酸セリウム;硫酸セリウム;塩ィ匕セリウム、臭化セリウムなどのハロゲンィ匕セリウム 物などを挙げることができる。
[0090] 本発明で使用する上記金属化合物は単独で使用してもよぐ複数を組み合わせて 使用してもよい。また水和物であってもよぐ無水物であってもよい。金属原子の酸ィ匕 数は特に限定されない。
[0091] 本発明で使用する上記金属化合物としては、得られるナノ粒子の量子特性、安全 性、環境負荷の点で、金属化合物の 90〜: LOOモル%が亜鉛ィ匕合物であることが好 ましぐ入手性、反応性の点で金属化合物の 90〜: LOOモル%がカルボン酸亜鉛化 合物、ジチォカルボン酸亜鉛ィ匕合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン 酸亜鉛化合物、ァセチルァセトナト亜鉛ィ匕合物、アルキル亜鉛ィ匕合物であることがよ り好ましい。
[0092] 本発明の好適な実施態様において、金属化合物の 0〜: LOモル%として上記亜鉛 化合物以外の金属化合物を使用することができる。これにより亜鉛以外の金属原子 によりドーピングされた硫ィ匕亜鉛ナノ粒子を製造することが可能となる。このようなドー ビングにより、得られる金属硫ィ匕物ナノ粒子の発光特性や吸収波長などを制御するこ とが可能となる。
[0093] 本発明の好適な実施態様にお!ヽてドーピング目的で使用する亜鉛以外の金属化 合物としては、入手性、反応性、量子特性の点でカルボン酸マンガンィ匕合物、ァセチ ルァセトナトマンガン化合物、硝酸マンガン、ハロゲン化マンガン化合物、カルボン酸 銅化合物、カルボン酸銀化合物、カルボン酸鉛化合物、ハロゲンィ匕アルミニウム化合 物、カルボン酸コバルト化合物、ハロゲン化コバルト化合物、カルボン酸ユーロピウム 化合物、カルボン酸エルビウム化合物、カルボン酸イットリウム化合物、カルボン酸ネ オジム化合物、カルボン酸テルビウム化合物、カルボン酸セリウム化合物が好ましい
[0094] 本発明において使用するチォ尿素化合物としては特に限定されないが、例えばチ ォ尿素、モノアルキルチオ尿素、モノアリールチオ尿素、ジアルキルチオ尿素、ジァリ 一ルチオ尿素、トリアルキルチオ尿素、テトラアルキルチオ尿素、カルボキシル基含 有チォ尿素、環状チォ尿素、ニ酸ィ匕チォ尿素などを挙げることができる。
[0095] 上記チォ尿素化合物のうちモノアルキルチオ尿素の具体例としては特に限定され ないが、 N—メチルチオ尿素、 N イソプロピルチオ尿素、 N ァリルチオ尿素、 N— n プロピルチオ尿素、 N— n—ブチルチオ尿素、 N— n デシルチオ尿素、 N— 2 フエ-ルェチルチオ尿素、 N トリフエ-ルメチルチオ尿素などを挙げることができ る。
[0096] 上記チォ尿素化合物のうちモノアリールチオ尿素の具体例としては特に限定されな いが、 N フエ-ルチオ尿素、 N— o トリルチオ尿素、 N— p トリルチオ尿素、 N— 3 ピリジルチオ尿素、 N—p シァノフエ-ルチオ尿素、 N— 2 ピリジルチオ尿素、 N— 1—ナフチルチオ尿素、 N—p -トロフエ-ルチオ尿素、 N— o—メトキシフエ- ルチオ尿素、 N— m フルォロチォ尿素、 N— p フエノキシフエ-ルチオ尿素、 1, 4 —フエ-レンビス (チォ尿素)などを挙げることができる。
[0097] 上記チォ尿素化合物のうちジアルキルチオ尿素の具体例としては特に限定されな いが、 N, N,ージメチノレチォ尿素、 N, N,ージェチノレチォ尿素、 N, N,ージー n— ブチルチオ尿素、 N, N,ージ—n—ォクチルチオ尿素、 N, N ジシクロへキシルチ ォ尿素、 N, N' ビス(ジメチルァミノプロピル)チォ尿素などを挙げることができる。
[0098] 上記チォ尿素化合物のうちジァリールチオ尿素の具体例としては特に限定されな いが、 N, N,ージフエ-ルチオ尿素、 N, N,ージ—o トリルチオ尿素、 N, N,ージ —P トリルチオ尿素などを挙げることができる。
[0099] 上記チォ尿素化合物のうちトリアルキルチオ尿素の具体例としては特に限定されな いが、トリメチルチオ尿素、トリェチルチオ尿素、トリァリルチオ尿素などを挙げること ができる。
[0100] 上記チォ尿素化合物のうちテトラアルキルチオ尿素の具体例としては特に限定され ないが、テトラメチルチオ尿素、テトラエチルチオ尿素などを挙げることができる。
[0101] 上記チォ尿素化合物のうちカルボキシル基含有チォ尿素の具体例としては特に限 定されないが、 N ァセチルチオ尿素、 N べンゾィルチオ尿素、 N (ベンゾィルァ ミジノ)チォ尿素、 N, N ジイソブチルー N'—べンゾィルチオ尿素などを挙げること ができる。
[0102] 上記チォ尿素化合物のうち環状チォ尿素の具体例としては特に限定されないが、 エチレンチォ尿素、プロピレンチォ尿素などを挙げることができる。 [0103] 本発明で使用するチォ尿素化合物は単独で使用してもよぐ複数を組み合わせて 使用してもよい。上記チォ尿素化合物のうち、反応性、入手性の点でチォ尿素、モノ アルキルチオ尿素、モノアリールチオ尿素、ジアルキルチオ尿素、ジァリールチオ尿 素、環状チォ尿素、ニ酸ィヒチォ尿素が好ましぐチォ尿素、 N—メチルチオ尿素、 N , N'—ジメチルチオ尿素、エチレンチォ尿素、二酸化チォ尿素がより好ましい。
[0104] 熱可塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応させる際、これら の化合物の使用量比については特に限定されないが、得られる金属硫ィ匕物ナノ粒 子の粒子径、粒子径分布、量子特性、収率の点で、金属化合物 1モルに対してチォ 尿素化合物を 0. 2〜1. 2モルの割合で使用するのが好ましぐ 0. 5〜1モルの割合 で使用するのがより好ましい。
[0105] また得られる榭脂組成物の透明性、光学特性の点で、金属化合物 100重量部に対 して熱可塑性榭脂を 50〜: LOOOOO重量部の割合で使用するのが好ましぐ 100-5 0000重量部の割合で使用するのがより好ま 、。ただし SH基含有ポリマーの場合 は金属硫ィ匕物ナノ粒子を強固に修飾できるためこの限りではなぐ金属化合物 1モル に対して 0. 01〜: L 5モルさらには 0. 05モル〜 1モルの割合で使用するのが好まし い。
[0106] 使用するアブロティック極性有機溶媒の使用量についても特に限定されないが、反 応効率の点で金属化合物 100重量部に対して 100〜 100000重量部が好ましく、 5 00〜50000重量咅力より好まし!/ヽ。
[0107] 熱可塑性榭脂の存在下に金属化合物とチォ尿素化合物とを反応させる際の反応 条件については特に限定されないが、反応効率の点で反応温度は 80°C以上が好ま しぐ 100°C以上がより好ましい。また反応温度が高すぎると熱可塑性榭脂ゃチォ尿 素化合物の分解が起こるため、 300°C以下が好ましぐ 250°C以下がより好ましい。 反応はバッチ式、流動式いずれも適用可能である。
[0108] 本発明の金属硫ィ匕物ナノ粒子含有榭脂組成物は、上記金属化合物とチォ尿素化 合物とを反応させた後、溶媒を除去することにより得ることができる。溶媒を除去する 方法としては特に限定されないが、例えば(1)蒸留する方法;(2)熱可塑性榭脂に対 する貧溶媒を加えることにより沈殿させて溶媒から分離する方法;(3)凍結乾燥する 方法などを挙げることができる。これらのうち操作が簡便である点で(1)および (2)の 方法が好ましぐ純度の高!、榭脂組成物が得られる点で(2)の方法がより好ま 、。
[0109] 上記(1)蒸留する方法において、その具体的手段は特に限定されない。圧力は常 圧であってもよ 、が効率の点で減圧することが好ま U、。温度は常温でもよ!/、が効率 の点で加熱することが好ましい。留去した溶媒については安全性、環境負荷の観点 から、回収して再利用することが好ましい。
[0110] 上記 (2)熱可塑性榭脂に対する貧溶媒を加えることにより沈殿させて溶媒から分離 する方法において、その具体的手段は特に限定されない。上記貧溶媒は使用する 熱可塑性榭脂に応じて適切なものを選択すればよいが、反応時に使用するァプロテ イツク極性有機溶媒と相溶するものが好ま 、。また適切な貧溶媒の組み合わせが 見つからない場合には、ー且ァプロティック極性有機溶媒を他の適当な溶媒に置換 した後、適切な貧溶媒を選択してもよい。
[0111] 熱可塑性榭脂に対する貧溶媒としては例えば、へキサン、ペンタン、オクタン、シク 口へキサンなどの脂肪族炭化水素系溶媒;メタノール、エタノール、へキサノール、ォ クタノールなどのアルコール系溶媒;トリフルォロエタノール、 HCFC - 225 (旭硝子( 株)製)などのフッ素系溶媒などを挙げることができる。貧溶媒を加えて分離させた金 属硫ィ匕物ナノ粒子含有榭脂組成物は、一般的な方法で乾燥させて使用できる。
[0112] 本発明にかかる榭脂組成物は、目的に応じて他の熱可塑性榭脂、熱硬化性榭脂、 添加剤などを混合あるいは添加してもよ ヽ。熱可塑性榭脂ゃ熱硬化性榭脂としては 、一般的なものを用いることができ、本発明にかかる榭脂組成物と相溶性を有してい るものを用いるのが好ましい。また、添加剤としては、顔料や染料、熱安定剤、酸ィ匕防 止剤、紫外線吸収剤、光安定剤、滑剤、可塑剤、難燃剤、及び帯電防止剤等が挙げ られる。
[0113] 本発明の金属硫ィ匕物ナノ粒子含有榭脂組成物は、溶液キャスト、溶融成形などに より各種塗膜、フィルム、成形体として使用することができる。
実施例
[0114] 以下に本発明の実施例を示すが、これらに限定されるものではない。
[0115] 本発明においてポリマーの Mwと Mnは GPC分析により求めた。 Waters社製シス テムを使用し、カラムは Shodex K— 806と K— 805 (昭和電工 (株)製)を連結して 用い、クロ口ホルムを溶出液とし、ポリスチレン標準試料を用いて解析した。ポリマー を重合する際のモノマー反応率はガスクロマトグラフィー(GC)分析により決定した。 GC分析は、サンプリング液を酢酸ェチルに溶解し、キヤビラリ一力ラム DB— 17 (J& W SCIENTIFIC社製)を使用し、ガスクロマトグラフ GC— 14B ( (株)島津製作所 製)で実施した。
[0116] 金属硫化物ナノ粒子の分散状態や粒径は、透過型電子顕微鏡 (TEM)JEM— 12 00EX (日本電子 (株)製)を使用し、加速電圧 80kVで観察した。発光スペクトルは、 分光蛍光光度計 FP -6500DS (日本分光 (株)製)を用いて溶液またはフィルム試 料に対して 300nmの励起光を使用し、 350〜700nmの範囲でフォトルミネッセンス スペクトルを測定した。
[0117] 連鎖移動剤として使用したチォカルボ-ルチオィ匕合物は、特表 2000— 515181 号公報、 J. Chem. Research (S) , 1995年, 478頁、 J. Chem. Research (S) , 1 998年, 454頁、および Macromolecules, 2002年,第 35卷, 5417頁に記載の方 法を応用して合成した。フィルムのヘイズ測定は、 COH300A (日本電色工業 (株) 製)を使用して実施した。
[0118] (実施例 1)
硫化亜鉛 (ZnS)ナノ粒子含有ポリメタクリル酸メチル (PMMA)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 3ロフラ スコ(300mL)に、 PMMA (スミペックス LG— 21、住友化学 (株)製) (6. Og)を入れ 、 DMF (lOOmL)をカ卩えて溶解させた。酢酸亜鉛二水和物(0. 966g)とチォ尿素( 0. 237g)を加えて溶解させ、反応系内を窒素置換した。反応液を 150°Cで 10時間 攪拌した後室温まで冷却し、 DMFを減圧留去して得られる固体をトルエン(20mL) に溶解させ、少量の不溶物を遠心分離 (6000rpmZl5分間)により除去した。上澄 み液を 10mLまで濃縮し、メタノール(lOOmL)に注いで ZnSナノ粒子含有 PMMA を沈殿させて分離し、減圧乾燥させた (収量 5. 12g)。
[0119] 得られた PMMA榭脂組成物は溶液キャスト法により石英基板上に透明膜を形成さ せることができ(膜厚 100 μ m)、 300nmの励起光に対して 410nmおよび 436nmの 発光スペクトルを示した。発光スペクトルが二峰性であったことから一部のナノ粒子が 凝集していると考えられる力 TEM観察の結果、 ZnSナノ粒子の凝集は 3%未満で あり、ほぼ均一に分散していることを確認した。得られたフィルムのヘイズは 0. 8%で めつに。
[0120] (実施例 2)
ZnSナノ粒子含有ポリアクリル酸 n—ブチル(PBA)の合成
実施例 1において PMMAの代わりに PBA (4. Og) (Aldrich社製)(Mw約 60000 、 Mn約 20000、製品番号 18, 141— 2)を用いて、全く同様の実験を実施し、無色 透明の粘稠ポリマーを得た (収量 3. 0g)。
[0121] 得られた PBAはクロ口ホルム中 300nmの励起光に対して 408nmおよび 432nmの 発光スペクトルを示した。発光スペクトルが二峰性であったことから、一部の ZnSナノ 粒子が凝集して 、るものと考えられる力 この ZnSナノ粒子含有 PBAを室温で 1ヶ月 間放置したが透明のままであり、さらなる ZnSナノ粒子の凝集がは抑制されていること を確認した。ただしこの ZnSナノ粒子含有 PBAをクロ口ホルム、トルエン、および DM F溶液として室温で放置したところ、 1週間で濁りが生じ透明度が低下したことから、 巿販 PBAによるナノ粒子安定ィ匕効果は完全ではないと考えられる。
[0122] (実施例 3)
ZnSナノ粒子含有メタクリル酸メチルースチレン共重合体 (MS榭脂)の合成 実施例 1にお 、て PMMAの代わりに MS榭脂(セビアン— MAS 10;ダイセルポリ マー (株)製)(5. 5g)を用いて同様の実験を実施し、 ZnSナノ粒子含有 MS榭脂を 得た(収量 5. 0g)。この ZnSナノ粒子含有 MS榭脂を溶液キャスト法により厚さ 100 μ mのフィルムとした。このフィルムは励起波長 300nmに対して 417nmに発光スぺ タトルを示した。このフィルムのヘイズは 1. 0%であった。 TEM観察の結果、 ZnSナ ノ粒子の凝集は 3%未満であり、均一に分散して 、ることを確認した。
[0123] (実施例 4)
ZnSナノ粒子含有ポリカーボネート(PC)の合成
実施例 1にお 、て PMMAの代わりに PC (カリバー 300 - 30;住友ダウ (株)製)(2 . 5g)を用いて同様の実験を実施し、 ZnSナノ粒子含有 PCを得た (収量 2. lg)。この ZnSナノ粒子含有 PCを熱プレスにより厚さ 0. 3mmのシートとして成形した。このフィ ルムは励起波長 300nmに対して 420nmに発光スペクトルを示した。このフィルムの ヘイズは 1. 9%であった。 TEM観察の結果、 ZnSナノ粒子の凝集は 4%未満であり 、均一に分散していることを確認した。
[0124] (実施例 5)
マンガンドープ硫化亜鉛(ZnS: Mn)ナノ粒子含有 PMMAの合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 3ロフラ スコ(300mL)〖こ、 PMMA (スミペックス LG— 21、住友化学 (株)製) (6. lg)を入れ 、 DMF (lOOmL)をカ卩えて溶解させた。酢酸亜鉛二水和物(0. 972g)と酢酸マンガ ン四水和物(0. 083g)、チォ尿素(0. 245g)をカ卩えて溶解させ、反応系内を窒素置 換した。反応液を 150°Cで 10時間攪拌した後室温まで冷却し、 DMFを減圧留去し て得られる固体をトルエン(20mL)に溶解させ、少量の不溶物を遠心分離(6000rp mZl5分間)により除去した。上澄み液を 10mLまで濃縮し、メタノール(lOOmL)に 注 、で ZnS: Mnナノ粒子含有 PMMAを沈殿させて分離し、減圧乾燥させた (収量 5 . 52g) 0
[0125] 得られた PMMA榭脂組成物を溶液キャスト法によりポリエチレンテレフタレート(PE T)フィルム上に成膜し、厚さ 95 mのフィルムとした。 PETフィルムからはがして得ら れた PMMAフィルムは 300nmの励起光に対して 590nmの発光スペクトルを示した 。 TEM観察の結果、 ZnS : Mnナノ粒子の凝集は 4%未満であり、均一に分散してい ることを確認した。得られたフィルムのヘイズは 0. 9%であった。
[0126] (比較例 1)
実施例 1において、 PMMAを共存させない以外は全く同様に実験を行った。 DM Fの反応溶液は白色懸濁液となり、発光スペクトルを示さず、 ZnSナノ粒子を得ること はできなかった。また PMMAを共存させて!/ヽな 、ために榭脂組成物およびフィルム を得ることはできな力 た。
[0127] (製造例 1)
末端に SH基を有するポリメタクリル酸メチル (PMMA)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(lOOOmL)に、 2— (2—フエ-ルプロピル)ジチォベンゾエート(8. Og)、メタタリ ル酸メチル(501g)、トルエン(260g)、 2, 2,一ァゾビス(イソブチ口-トリル)(1. lg) を入れ、反応器内を窒素置換した。
[0128] 90°Cで 1時間加熱することによりモノマー反応率 42%で PMMAを得た。次に n— ブチルァミン(25g)を添加し、 80°Cで 4時間攪拌することにより PMMAの末端を SH 基に変換した。反応溶液を 400mLまで濃縮し、メタノール(2L)に注ぐことによって末 端に SH基を有する PMMAを単離した。得られた PMMAの分子量および分子量分 布は Mw= 13500、 Mn= 11300、 Mw/Mn= l. 19であった。
[0129] (製造例 2)
末端に SH基を有するポリアクリル酸 n—ブチル (PBA)の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 4ロフラ スコ(lOOmL)にアクリル酸 n—ブチル(49. 8g)、ジベンジルトリチォカーボネート(0 . 504g) 2, 2 '―ァゾビス (イソプチ口-トリル)(0. 072g)を入れ、反応器内を窒素置 換した。この反応液を 90°Cで 1時間攪拌することにより、反応率 65%で PBAを得た。 未反応のアクリル酸 n—ブチルを減圧留去し、 PBAを単離した。この PBAを酢酸ェ チル(30mL)に溶解させ、窒素雰囲気で n—ブチルァミン (4g)を加えて 50°Cで 6時 間攪拌することにより、 PBAの末端を SH基に変性した。この溶液をメタノール(200 mL)に注ぐことにより、 SH基を有する PBAを単離した。得られた SH基を有する PBA の分子量および分子量分布は、 Mw=8100、 Mn= 7000、 Mw/Mn= l. 16であ つた o
[0130] (実施例 6)
PMMA修飾 ZnSナノ粒子の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 3ロフラ スコ(300mL)に、製造例 1で得られた SH基を有する PMMA(5. 9g)を入れ、 DM F (lOOmL)加えて溶解させた。酢酸亜鉛二水和物(0. 966g)とチォ尿素(0. 237g )を加えて溶解させ、反応系内を窒素置換した。反応液を 150°Cで 10時間攪拌した 後室温まで冷却し、 DMFを減圧留去して得られる固体をトルエン(20mL)に溶解さ せ、少量の不溶物を遠心分離(6000rpmZl5分間)により除去した。上澄み液を 10 mLまで濃縮し、メタノール(lOOmL)に注いで PMMA修飾 ZnSナノ粒子を沈殿させ て分離し、減圧乾燥させた (収量 4. 40g)。
[0131] こうして得られた PMMA修飾 ZnSナノ粒子はクロ口ホルム中 300nmの励起光に対 して 410nmの単峰性発光スペクトルを示した。この PMMA修飾 ZnSナノ粒子の TE M観察の結果、 ZnSナノ粒子が凝集せずに存在していることを確認した。またこの P MMA修飾ナノ粒子をクロ口ホルム、トルエン、および DMF溶液として 6ヶ月間室温 で放置したが透明のままであり、紫外吸収スペクトル、フォトルミネッセンススペクトル に変化は認められな力つた。このことから SH基含有 PMMAによる修飾安定ィ匕の効 果が大きいことを確認した。
[0132] (実施例 7)
PMMA修飾 ZnS: Mnナノ粒子の合成
窒素導入管付き還流冷却管、磁気攪拌子、温度測定用熱電対を装着した 3ロフラ スコ(300mL)に、製造例 1で得られた SH基を有する PMMA (6. Og)を入れ、 DM F ( lOOmL)加えて溶解させた。酢酸亜鉛二水和物(0. 973g)と酢酸マンガン四水 和物(0. 088g)、チォ尿素(0. 237g)を加えて溶解させ、反応系内を窒素置換した 。反応液を 150°Cで 10時間攪拌した後室温まで冷却し、 DMFを減圧留去して得ら れる固体をトルエン(20mL)に溶解させ、少量の不溶物を遠心分離(6000rpmZl 5分間)により除去した。上澄み液を 10mLまで濃縮し、メタノール(lOOmL)に注い で PMMA修飾 ZnS : Mnナノ粒子を沈殿させて分離し、減圧乾燥させた(収量 4. 70 g) o
[0133] こうして得られた PMMA修飾 ZnS : Mnナノ粒子はクロ口ホルム中、 300nmの励起 で 580nmの単峰性発光スペクトルを示した。これは ZnS結晶にドープされたマンガ ンからの発光と帰属される。 PMMA修飾 ZnS : Mnナノ粒子の TEM観察の結果、 Zn S: Mnナノ粒子が凝集せずに存在して!/、ることを確認した。またこの PMMA修飾ナ ノ粒子をクロ口ホルム、トルエン、および DMF溶液として 6ヶ月間室温で放置したが透 明のままであり、紫外吸収スペクトル、フォトルミネッセンススペクトルに変化は認めら れな力つた。このことから SH基含有 PMMAによる修飾安定ィ匕の効果が大き 、ことを 確認した。 [0134] (実施例 8)
PBA修飾 ZnSナノ粒子の合成
実施例 6にお 、て SH基を有する PMMAの代わりに製造例 2で得られた SH基を有 する PBA(4. Og)を用いて、全く同様の実験を実施し、 PBA修飾 ZnSナノ粒子を得 た (収量 2. 9g)。
[0135] 得られた PBA修飾 ZnSナノ粒子はクロ口ホルム中 300nmの励起光に対して 408η mの単峰性発光スペクトルを示した。この PBA修飾ナノ粒子をクロ口ホルム、トルエン 、および DMF溶液として 6ヶ月間室温で放置したが透明のままであり、紫外吸収スぺ タトル、フォトルミネッセンススペクトルに変化は認められなかった。このことから SH基 含有 PBAによる修飾安定ィ匕の効果が大きいことを確認した。
産業上の利用可能性
[0136] 本発明の金属硫化物ナノ粒子含有榭脂組成物は、安定的に量子効果を発現し、 また純度も高いことから、太陽電池、発光素子、ディスプレイ、蛍光体、波長変換素 子、波長カットフィルター、非線形光学材料、半導体レーザー、光メモリ、紫外線遮蔽 材、電磁波遮蔽材、磁気記録材料、光触媒、量子トランジスタ、バイオマーカーなど の材料として有用である。

Claims

請求の範囲
[1] アブロティック極性有機溶媒中、該溶媒に可溶な熱可塑性榭脂の存在下に金属化 合物とチォ尿素化合物とを反応させ、次いで溶媒を除去することにより得られる、金 属硫化物ナノ粒子含有榭脂組成物。
[2] アブロティック極性有機溶媒に可溶な熱可塑性榭脂が、(メタ)アクリル酸エステル 系榭脂、(メタ)アクリルアミド系榭脂、スチレン系榭脂、(メタ)アクリロニトリル系榭脂、 酢酸ビュル系榭脂、ポリカーボネート系榭脂、ポリアミド系榭脂からなる群より選ばれ る 1種以上の榭脂である、請求項 1に記載の金属硫ィ匕物ナノ粒子含有榭脂組成物。
[3] アブロティック極性有機溶媒に可溶な熱可塑性榭脂が SH基含有ポリマーであるこ とを特徴とする請求項 1に記載の金属硫化物ナノ粒子含有榭脂組成物。
[4] SH基含有ポリマーがチォカルボ二ルチオィ匕合物を連鎖移動剤とする可逆的付カロ 脱離連鎖移動重合の後、処理剤により末端 SH化されたものである、請求項 3に記載 の金属硫化物ナノ粒子含有榭脂組成物。
[5] 処理剤が水素 窒素結合含有化合物、塩基性化合物および還元剤からなる群より 選ばれる 1種以上の化合物である、請求項 4に記載の金属硫ィ匕物ナノ粒子含有榭脂 組成物。
[6] 金属化合物の 90〜: LOOモル%がカルボン酸亜鉛化合物、ジチォカルボン酸亜鉛 化合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン酸亜鉛ィ匕合物、ァセチルァセ トナト亜鉛ィ匕合物、アルキル亜鉛ィ匕合物力 なる群より選ばれる 1種以上の化合物で あり、 0〜10モル%がカルボン酸マンガン化合物、ァセチルァセトナトマンガン化合 物、硝酸マンガン、ハロゲン化マンガン化合物、カルボン酸銅化合物、カルボン酸銀 化合物、カルボン酸鉛化合物、ハロゲン化アルミニウム化合物、カルボン酸コバルト 化合物、ハロゲン化コバルト化合物、カルボン酸ユーロピウム化合物、カルボン酸ェ ルビゥム化合物、カルボン酸イットリウム化合物、カルボン酸ネオジム化合物、カルボ ン酸テルビウム化合物、カルボン酸セリウム化合物力 なる群より選ばれる 1種以上の 化合物である、請求項 1から 5の 、ずれかに記載の金属硫化物ナノ粒子含有榭脂組 成物。
[7] チォ尿素化合物が、チォ尿素、モノアルキルチオ尿素、モノアリールチオ尿素、ジ アルキルチオ尿素、ジァリールチオ尿素、環状チォ尿素、二酸化チォ尿素からなる 群より選ばれる 1種以上の化合物である、請求項 1から 6のいずれかに記載の金属硫 化物ナノ粒子含有榭脂組成物。
[8] ァプロティック極性有機溶媒力 N, N ジメチルホルムアミド、 N, N ジメチルァ セトアミド、ジメチルスルホキシド、へキサメチルホスホリックトリアミドカもなる群より選 ばれる 1種以上の化合物である、請求項 1から 7のいずれかに記載の金属硫ィ匕物ナ ノ粒子含有榭脂組成物。
[9] アブロティック極性有機溶媒中、該溶媒に可溶な熱可塑性榭脂の存在下に金属化 合物とチォ尿素化合物とを反応させ、次いで溶媒を除去する、金属硫化物ナノ粒子 含有樹脂組成物の製造方法。
[10] アブロティック極性有機溶媒に可溶な熱可塑性榭脂が、(メタ)アクリル酸エステル 系榭脂、(メタ)アクリルアミド系榭脂、スチレン系榭脂、(メタ)アクリロニトリル系榭脂、 酢酸ビュル系榭脂、ポリカーボネート系榭脂、ポリアミド系榭脂からなる群より選ばれ る 1種以上の榭脂である、請求項 9に記載の金属硫ィ匕物ナノ粒子含有榭脂組成物の 製造方法。
[11] アブロティック極性有機溶媒に可溶な熱可塑性榭脂が SH基含有ポリマーであるこ とを特徴とする、請求項 9に記載の金属硫化物ナノ粒子含有榭脂組成物の製造方法
[12] SH基含有ポリマーがチォカルボ二ルチオィ匕合物を連鎖移動剤とする可逆的付カロ 脱離連鎖移動重合の後、処理剤により末端 SH化されたものである、請求項 11に記 載の金属硫化物ナノ粒子含有榭脂組成物の製造方法。
[13] 処理剤が水素 窒素結合含有化合物、塩基性化合物および還元剤からなる群より 選ばれる 1種以上の化合物である、請求項 12に記載の金属硫化物ナノ粒子含有榭 脂組成物の製造方法。
[14] 金属化合物の 90〜100モル%がカルボン酸亜鉛化合物、ジチォカルボン酸亜鉛 化合物、ジチォ力ルバミン酸亜鉛ィ匕合物、キサントゲン酸亜鉛ィ匕合物、ァセチルァセ トナト亜鉛ィ匕合物、アルキル亜鉛ィ匕合物力 なる群より選ばれる 1種以上の化合物で あり、 0〜10モル%がカルボン酸マンガン化合物、ァセチルァセトナトマンガン化合 物、硝酸マンガン、ハロゲン化マンガン化合物、カルボン酸銅化合物、カルボン酸銀 化合物、カルボン酸鉛化合物、ハロゲン化アルミニウム化合物、カルボン酸コバルト 化合物、ハロゲン化コバルト化合物、カルボン酸ユーロピウム化合物、カルボン酸ェ ルビゥム化合物、カルボン酸イットリウム化合物、カルボン酸ネオジム化合物、カルボ ン酸テルビウム化合物、カルボン酸セリウム化合物力 なる群より選ばれる 1種以上の 化合物である、請求項 9から 13のいずれかに記載の金属硫ィ匕物ナノ粒子含有榭脂 組成物の製造方法。
[15] チォ尿素化合物が、チォ尿素、モノアルキルチオ尿素、モノアリールチオ尿素、ジ アルキルチオ尿素、ジァリールチオ尿素、環状チォ尿素、二酸化チォ尿素からなる 群より選ばれる 1種以上の化合物である、請求項 9から 14のいずれかに記載の金属 硫化物ナノ粒子含有榭脂組成物の製造方法。
[16] ァプロティック極性有機溶媒力 N, N—ジメチルホルムアミド、 N, N—ジメチルァ セトアミド、ジメチルスルホキシド、へキサメチルホスホリックトリアミドカもなる群より選 ばれる 1種以上の化合物である、請求項 9から 15のいずれかに記載の金属硫ィ匕物ナ ノ粒子含有榭脂組成物の製造方法。
[17] アブロティック極性有機溶媒中、該溶媒に可溶な熱可塑性榭脂の存在下に金属化 合物とチォ尿素化合物とを反応させる際、 80〜300°Cで加熱することを特徴とする、 請求項 9から 16のいずれかに記載の金属ナノ粒子含有榭脂組成物の製造方法。
[18] 金属化合物とチォ尿素化合物とを反応させた後、蒸留により溶媒を除去することを 特徴とする、請求項 9から 17の ヽずれかに記載の金属硫化物ナノ粒子含有榭脂組 成物の製造方法。
[19] 金属化合物とチォ尿素化合物とを反応させた後、熱可塑性榭脂に対する貧溶媒を 加えることにより金属硫化物ナノ粒子を含む熱可塑性榭脂を沈殿させて溶媒から分 離することを特徴とする、請求項 9から 17のいずれかに記載の金属硫ィ匕物ナノ粒子 含有樹脂組成物の製造方法。
PCT/JP2006/301069 2005-01-25 2006-01-24 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法 WO2006080318A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007500524A JPWO2006080318A1 (ja) 2005-01-25 2006-01-24 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-016309 2005-01-25
JP2005016309 2005-01-25
JP2005-016310 2005-01-25
JP2005016310 2005-01-25

Publications (1)

Publication Number Publication Date
WO2006080318A1 true WO2006080318A1 (ja) 2006-08-03

Family

ID=36740348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301069 WO2006080318A1 (ja) 2005-01-25 2006-01-24 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2006080318A1 (ja)
WO (1) WO2006080318A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584743C (zh) * 2006-12-15 2010-01-27 中国科学院长春应用化学研究所 一种铜配合物纳米纤维的制备方法
US7976733B2 (en) * 2007-11-30 2011-07-12 Xerox Corporation Air stable copper nanoparticle ink and applications therefor
JP2021024966A (ja) * 2019-08-06 2021-02-22 三菱ケミカル株式会社 ポリビニルエステル系重合体の製造方法
JP2023024383A (ja) * 2021-08-05 2023-02-16 臺灣塑膠工業股▲ふん▼有限公司 樹脂組成物の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191005A (ja) * 1984-10-08 1986-05-09 Ryuichi Yamamoto 金属硫化物溶液とその製造方法
JPS61215661A (ja) * 1985-03-22 1986-09-25 Ryuichi Yamamoto 導電性金属硫化物組成物の製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191005A (ja) * 1984-10-08 1986-05-09 Ryuichi Yamamoto 金属硫化物溶液とその製造方法
JPS61215661A (ja) * 1985-03-22 1986-09-25 Ryuichi Yamamoto 導電性金属硫化物組成物の製造法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100584743C (zh) * 2006-12-15 2010-01-27 中国科学院长春应用化学研究所 一种铜配合物纳米纤维的制备方法
US7976733B2 (en) * 2007-11-30 2011-07-12 Xerox Corporation Air stable copper nanoparticle ink and applications therefor
JP2021024966A (ja) * 2019-08-06 2021-02-22 三菱ケミカル株式会社 ポリビニルエステル系重合体の製造方法
JP7351133B2 (ja) 2019-08-06 2023-09-27 三菱ケミカル株式会社 ポリビニルエステル系重合体の製造方法
JP2023024383A (ja) * 2021-08-05 2023-02-16 臺灣塑膠工業股▲ふん▼有限公司 樹脂組成物の製造方法

Also Published As

Publication number Publication date
JPWO2006080318A1 (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
KR102351339B1 (ko) 금속산화물 입자를 포함하는 분산체
JPWO2006006349A1 (ja) ポリマー修飾ナノ粒子の製造方法
JP5873376B2 (ja) 重合性組成物
JP5419081B2 (ja) 熱可塑性複合材料
JP2016166233A (ja) ジエン系カルボン酸陰イオンとその塩、およびその重合または硬化性組成物
Jiang et al. Ambient temperature synthesis of narrow or monodisperse, highly cross-linked, and “living” polymer microspheres by atom transfer radical precipitation polymerization
WO2006080318A1 (ja) 金属硫化物ナノ粒子含有樹脂組成物及び該組成物の製造方法
WO2009139450A1 (ja) アルミナ複合材
CN102718894A (zh) 一种单分散聚合物微球的低温合成方法
JP6278624B2 (ja) 金属酸化物粒子含有組成物および光学部材
EP1650264A1 (en) Resin composition containing ultrafine particles
JP5014796B2 (ja) ポリマー修飾金属カルコゲン化物ナノ粒子の製造方法
JP2008056776A (ja) ナノ酸化物粒子及びその製造方法
JP2017511820A (ja) 電子回路部品タイプの適用のための導電材料の高速印刷用の組成物、および関連する方法
Jiao et al. Efficient one-pot synthesis of uniform, surface-functionalized, and “living” polymer microspheres by reverse atom transfer radical precipitation polymerization
US20150240103A1 (en) Compositions for high speed printing of conductive materials for electronic circuitry type applications and methods relating thereto
KR20140034135A (ko) 메타크릴산메틸 중합체의 제조 방법
JPWO2007023919A1 (ja) 合成樹脂用安定化剤組成物
WO2006019008A1 (ja) ポリマー修飾ナノ粒子
CN1401687A (zh) 结构可控的无机纳米微粒/聚合物复合超薄膜的制备方法
KR101328004B1 (ko) 고분자계 나노 콤포지트의 제조방법 및 상기 제조방법에 의해 형성된 난연성 고분자계 나노 콤포지트
JP2006076831A (ja) ポリマー修飾金属硫化物ナノ粒子
KR101276096B1 (ko) 공중합체로 코팅된 금속 나노 입자의 제조 방법 및 이에 의하여 제조된 공중합체로 코팅된 금속 나노 입자
JP2006249184A (ja) 無機微粒子含有重合性組成物及びその製造方法、並びに、無機微粒子含有重合体組成物
JP2015172120A (ja) 多孔性金属錯体を用いたポリマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500524

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06712285

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712285

Country of ref document: EP