WO2006080317A1 - 送信装置及び送信方法 - Google Patents

送信装置及び送信方法 Download PDF

Info

Publication number
WO2006080317A1
WO2006080317A1 PCT/JP2006/301068 JP2006301068W WO2006080317A1 WO 2006080317 A1 WO2006080317 A1 WO 2006080317A1 JP 2006301068 W JP2006301068 W JP 2006301068W WO 2006080317 A1 WO2006080317 A1 WO 2006080317A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission
antenna
antennas
transmitted
Prior art date
Application number
PCT/JP2006/301068
Other languages
English (en)
French (fr)
Inventor
Hiroaki Sudo
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007500523A priority Critical patent/JP4926038B2/ja
Priority to CN200680003154XA priority patent/CN101107803B/zh
Priority to EP06712284A priority patent/EP1843502A4/en
Priority to BRPI0607263-1A priority patent/BRPI0607263A2/pt
Priority to US11/814,658 priority patent/US7826871B2/en
Publication of WO2006080317A1 publication Critical patent/WO2006080317A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to a transmission apparatus and a transmission method in a MIMO (Multi-Input Multi-Output) communication scheme for transmitting different signals from a plurality of antennas.
  • MIMO Multi-Input Multi-Output
  • FIG. 1 is a schematic basic configuration diagram for explaining the basic operation of a conventional MIMO communication system for transmitting different code-divided signals from a plurality of antennas.
  • Fig. 1 (A) shows the principle of MIMO communication.
  • FIG. 1 (B) is a formula illustrating the relationship between the transmission signal and the reception signal. The transmitter and receiver in the MIMO communication system shown in FIG. 1 (A) are assumed to have two antennas each.
  • the signals transmitted from the antennas are denoted as TX1 and ⁇ 2, respectively. If the signals received by the antennas are RX1 and RX2, respectively, RX1 and RX2 can be expressed by the following equations (1) and (2), respectively, as shown in FIG.
  • RX1 ATX1 + BTX2... hi
  • RX2 CTX1 + DTX2 '' (2)
  • is the propagation path characteristic between transmitting antenna 1 and receiving antenna 1
  • B is the propagation path characteristic between transmitting antenna 2 and receiving antenna 1
  • C is the transmission antenna 1 and receiving antenna 2.
  • D is the propagation path characteristic between transmit antenna 2 and receive antenna 2
  • the four propagation path characteristics A, B, C, D are estimated, and the four estimated propagation path characteristics A, B , C, D using the propagation path characteristics, the signal TX1, T X2 can be received.
  • Non-Patent Document 1 considers performing retransmission.
  • Non-patent document 1 discusses the following two retransmission methods.
  • FIG. 2 is a diagram for explaining a retransmission method 1 in a certain communication method, and is a diagram showing a frame configuration of data including retransmission data transmitted by a transmission apparatus.
  • a retransmission method 1 since retransmission information in retransmission method 1 requires better quality than normal transmission information, null signals are transmitted from other antennas at the time when retransmission information is transmitted, and The quality has been improved.
  • a method is conceived in which each antenna force is encoded for each transmitted data and retransmitted for each antenna.
  • This retransmission method 2 is a transmission apparatus similar to the transmission apparatus of retransmission method 1 except that the transmission data is distributed to each antenna and the code processing is performed on the transmission data independently for each antenna.
  • Non-patent document 1 "A MIMO-OFDM system using error detection codes" IEICE, IEICE Technical Report CAS2003-124, March 2004
  • retransmission information itself can be reduced. Since the redundant bits of code ⁇ at the time of retransmission are multiplied by the number of antennas (twice in this embodiment), again, as shown in FIG. Similar to the retransmission method 1 shown in the frame configuration, there is a problem that the throughput is greatly reduced.
  • An object of the present invention is to provide a transmission apparatus and a transmission method capable of preventing an increase in retransmission information or redundant bits for encoding and improving throughput in a MIMO communication system.
  • the transmission device of the present invention is a MIMO communication system transmission device that simultaneously transmits different data for a plurality of antenna forces, and collectively transmits the data transmitted for each antenna force of the plurality of antennas.
  • An encoding unit that performs encoding processing, a modulation unit that modulates the encoded data corresponding to the plurality of antennas, and the modulated data transmitted from the corresponding antennas, respectively.
  • a transmission unit that performs processing, and a transmission control unit that performs transmission control of the data transmitted by each antenna power, and the transmission control unit has fewer than the plurality of antennas when retransmitting the data.
  • a configuration is adopted in which data transmitted from a large number of antennas is retransmitted.
  • the retransmission information or the code information is transmitted. Retransmission can be performed while preventing an increase in redundant bits, and throughput in retransmission can be improved.
  • FIG. 1A is a schematic basic configuration diagram for explaining the basic operation of a conventional MIMO communication system, and for explaining the principle of M1 MO communication.
  • FIG. 1B is a schematic basic configuration diagram for explaining the basic operation of a conventional MIMO communication system, and represents the relationship between a transmission signal and a reception signal [FIG. 2]
  • FIG. 3 is a block diagram showing a schematic configuration of the transmission apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a block configuration diagram showing a terminal device which is an example of a communication partner of the transmission device according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart for explaining retransmission processing performed in the transmission apparatus according to the present invention.
  • FIG. 6 is a diagram showing a frame configuration when the quality of the first transmitting antenna is worse in Embodiment 1.
  • FIG.7 A diagram showing the reception level when only the data transmitted from the first transmit antenna is retransmitted
  • FIG. 8 is a diagram showing a frame configuration when the quality of the second transmitting antenna is worse in Embodiment 1.
  • FIG. 10 is a diagram illustrating a frame configuration of transmission data transmitted from the transmission device according to the second embodiment.
  • FIG. 11 is a diagram illustrating a frame configuration of transmission data transmitted from the transmission device according to the third embodiment.
  • FIG. 13 is a flowchart showing the operating principle of the transmitting apparatus according to Embodiment 4 of the present invention.
  • FIG. 14 is a block diagram showing a schematic configuration of the transmitting apparatus according to the fifth embodiment.
  • FIG. 15 is a diagram showing a frame configuration of transmission data transmitted from the transmitting apparatus according to the fifth embodiment of the present invention.
  • the transmission apparatus is a MIMO communication system transmission apparatus that simultaneously transmits different data from a plurality of antenna cameras, and collectively transmits data transmitted from antennas of a plurality of antennas.
  • a transmission control unit that performs transmission control of data to be transmitted, and the transmission control unit retransmits data transmitted from a smaller number of antennas than a plurality of antennas when retransmitting data.
  • one transmission antenna is used, and only transmission data transmitted from this one transmission antenna is transmitted. This will be described in detail below.
  • FIG. 3 is a block diagram showing a schematic configuration of transmitting apparatus 100 according to Embodiment 1 of the present invention.
  • Transmitting apparatus 100 shown in FIG. 3 transmits a plurality of transmission antennas (here, first transmission antenna 110 and second transmission antenna 120) with different powers, respectively, and coding unit 130, Modulation units 113 and 123, transmission units 115 and 125, reception antenna 140, reception unit 143, demodulation unit 145, decoding unit 147, SZP conversion unit (indicated by “SZP” in the drawing) 149, and transmission control unit 160 .
  • coding unit 130 Modulation units 113 and 123, transmission units 115 and 125, reception antenna 140, reception unit 143, demodulation unit 145, decoding unit 147, SZP conversion unit (indicated by “SZP” in the drawing) 149, and transmission control unit 160 .
  • the encoding unit 130 performs encoding processing on data to be transmitted, that is, data transmitted from all antennas 110 and 120 (shown as "transmission signals" in FIG. 3) in a batch, Output to the transmission control unit 160.
  • Transmission control section 160 performs transmission control on the encoded transmission data (transmission signal). Specifically, the transmission control unit 160 stores the transmission data encoded by the encoding unit 130 and outputs it to the modulation units 113 and 123 at a predetermined transmission time.
  • the transmission control unit 160 uses the retransmission information that is also notified of the communication partner power and the information indicating which transmission antenna power is retransmitted, and from which transmission antenna is transmitted at the time of retransmission. Decide whether to retransmit the data. Based on the result, the transmission control unit 160 transmits predetermined transmission data to a plurality of transmission antennas (here, the first and second transmission antennas 110 and 120) that are smaller than the plurality of transmission antennas (here, the first and second transmission antennas 110 and 120). Then, control to retransmit from one transmission antenna) is performed.
  • a plurality of transmission antennas here, the first and second transmission antennas 110 and 120
  • Modulation sections 113 and 123 perform modulation processing on transmission data input from transmission control section 160 and output the transmission data to transmission sections 115 and 125, respectively. Note that the modulation units 113 and 123 select the same modulation method for all antennas 110 and 120 even if the modulation method is set independently for each antenna 110 and 120 (3GPP TR25 and 876). It may be a thing.
  • Transmitters 115 and 125 frequency-convert the modulated transmission data into a radio frequency band, and output the result to first and second transmission antennas 110 and 120, respectively.
  • Each of the first and second transmission antennas 110 and 120 transmits the transmission data frequency-converted by the transmission units 115 and 125.
  • Receiving antenna 140 receives data transmitted from the communication partner, and outputs the data to receiving section 143.
  • Receiving section 143 converts the received data that has been input into a baseband signal and demodulates it. Output to part 145.
  • Demodulation section 145 performs demodulation processing on the received data after frequency conversion, and outputs the result to decoding section 147.
  • Decoding section 147 performs decoding processing on the received data input from demodulation section 145 and outputs the result to SZP conversion section 149.
  • SZP conversion section 149 extracts retransmission information in which the communication partner power is also notified and information indicating which transmission antenna power is retransmitted (data information to be retransmitted), and inputs it to transmission control section 160 To do. That is, the SZP conversion unit 149 sorts the received data (received signal) from the retransmission request and quality information notified from the communication partner and information indicating the data to be retransmitted.
  • FIG. 4 is a block configuration diagram showing a terminal apparatus which is an example of a communication partner of the transmission apparatus according to Embodiment 1 of the present invention.
  • a terminal device 200 shown in FIG. 4 includes an encoding unit 210 that performs encoding processing on transmitted data, a transmission control unit 220 that performs transmission control on transmission data, and transmission data.
  • a modulation unit 230 that performs modulation processing, a transmission unit 232 that converts the frequency into a radio frequency band, and a transmission antenna 234.
  • terminal apparatus 200 includes receiving antennas 240 and 250, receiving units 242 and 252, interference compensation unit 260, quality estimation units 244 and 254, size comparison unit 263, and hybrid automatic repeat request (ARQ).
  • “HARQ” is hereinafter referred to as “synthesizer”. 246, 256, a PZS converter (indicated as “PZS” in FIG. 4) 264, and a decoder 266
  • the encoding unit 210 encodes the transmission signal and outputs the transmission signal to the transmission control unit 220 as encoded transmission data.
  • Transmission control section 220 controls transmission of a transmission signal transmitted by terminal apparatus 200, stores transmission data after encoding from encoding section 210, and modulates it at the transmission time. Output to section 230.
  • Transmission control section 220 receives the result of channel quality estimation for each transmission antenna 240, 250 of each communication partner input from quality estimation sections 244, 254 and the reception output from decoding section 266. Transmission control is performed based on information indicating whether an error exists in the signal.
  • Modulation section 230 modulates the transmission data and outputs it to transmission section 232, and transmission data frequency-converted to the radio frequency band in transmission section 232 is transmitted via transmission antenna 234. .
  • Receiving antennas 240 and 250 receive data transmitted from a communication partner (here, transmitting apparatus 100), and output the data to corresponding receiving sections 242 and 252, respectively.
  • Receiving sections 242 and 252 perform frequency conversion on received data, which is a radio frequency band signal received by receiving antennas 240 and 250, to obtain a baseband signal and output it to interference compensation section 260 To do.
  • Interference compensation section 260 performs interference compensation processing on the received signal converted into the baseband signal, and uses the data transmitted for each transmission antenna of the communication partner as quality estimation sections 244, 254 and HARQ. Output to the synthesis unit 246, 256.
  • Quality estimation sections 244 and 254 perform quality estimation for each of the first and second transmission antennas 110 and 120 of the communication partner, and output the quality estimation results to transmission control section 220 and size comparison section 263.
  • the channel quality estimation method performed by the quality estimation units 244 and 254 includes four propagations when the transmission device 100 has two transmission antennas and the terminal device 200 has two reception antennas as in the present embodiment. It can be calculated from the path estimation result.
  • the quality information of the first transmitting antenna 110 can be calculated by using the four channel estimation results A, B, C, and D in FIG.
  • the quality information of the first transmitting antenna 110 is IAI + ICI
  • the quality information of the second transmitting antenna 120 is IB. I + IDI.
  • the quality estimation method shown here is merely an example, and the present invention is not limited to the quality estimation result shown here, and it is not necessary to use any quality estimation method! ⁇ .
  • the size comparison unit 263 compares the quality estimation results input from the quality estimation units 244 and 254, and outputs the calculated size comparison result to the transmission control unit 220.
  • the result of the size comparison is information indicating which first and second transmission antennas 110 and 120 of the communication partner transmit data. Based on the comparison result, the communication control unit 220 determines which data retransmission request is sent to the communication partner (here, the transmitting device 100).
  • the HARQ combining units 246 and 256 receive the data input from the interference compensating unit 260, that is, the data transmitted for each of the first and second transmitting antennas 110 and 120 of the communication partner until the previous transmission. The data is combined and output to the PZS converter 264.
  • HARQ combining sections 246 and 256 combine only the retransmitted data, and output the input data as it is for the transmitting antenna of the communication partner (transmitting apparatus 100) that is not retransmitted.
  • PZS conversion section 264 performs PZS conversion on the data input from HARQ combining sections 246 and 256 and outputs the result to decoding section 266.
  • Decoding section 266 performs a decoding process on the data PZS converted from PZS conversion section 264, and outputs a retransmission request signal to transmission control section 220 if there is an error in the received signal. Upon receiving this retransmission request signal, transmission control section 220 transmits a retransmission request signal to transmitting apparatus 100.
  • the transmission signal is first encoded collectively as data transmitted from all antennas 110 and 120 by encoding unit 130, and transmission data after encoding is performed. It becomes.
  • the encoded transmission data is stored in the transmission control unit 160 and input to the modulation units 113 and 123 when the transmission time comes, and after being subjected to modulation processing, the transmission units 115 and 125 Is input.
  • the transmission data after modulation processing input to the transmission units 115 and 125 is frequency-converted to a radio frequency band and transmitted by the antennas 110 and 120.
  • data with which the communication partner power is also transmitted is received by receiving antennas 240 and 250, and is frequency-converted to baseband signals by receiving sections 242 and 252 to cause interference. Input to the compensation unit 260.
  • the frequency-converted signal is subjected to interference compensation by the interference compensator 260, and the terminal device 200 receives each transmitting antenna (here, shown in FIG. 3) of the communication partner (here, the transmitting device 100 shown in FIG. 3).
  • Data transmitted for each of the first and second transmitting antennas 110 and 120) is obtained.
  • the interference-compensated data transmitted for each transmission antenna of the communication partner is combined with the previously transmitted data by the HAR Q combining units 246 and 256.
  • These HA RQ combining sections 246 and 256 combine only the data retransmitted from transmitting apparatus 100, and output the input data as it is to the PZ S converting section 264 for the data from the transmission antenna of the communication partner that is not retransmitted.
  • the data input to the PZS conversion unit 264 is PZS converted, output to the decoding unit 266, and decoded by the decoding unit 266. If there is an error in the received signal, the decoded signal outputs a retransmission request signal to transmission control section 220, and transmission control section 220 modulates modulation section 230, transmission section 232, and transmission antenna 234 based on the retransmission request signal. Then, a retransmission request is sent to the transmitting device 100.
  • the transmission control unit 220 has a large amount of data based on the quality estimation result performed for each of the first and second transmission antennas 110 and 120 of the communication partner input from the quality estimation units 244 and 254.
  • the size comparison result calculated by the size comparison unit 263 is input.
  • the transmission control unit 220 transmits the magnitude comparison result to the transmission apparatus 100 as information indicating from which transmission antenna of the communication partner the data transmitted.
  • the retransmission information sent to the transmission device 100 and the information indicating which transmission antenna to retransmit the data transmitted from the transmission device 100 are subjected to retransmission control by the transmission control unit 160 on the transmission device 100 side. Determines from which transmission antenna the data transmitted is retransmitted, and the transmission control unit 160 transmits the determined data.
  • FIG. 5 is a flowchart for explaining retransmission processing performed in the transmission apparatus of the present invention. Yat. The retransmission process shown in FIG. 5 retransmits only data transmitted from the transmission antenna of the transmitter 100 having the worst reception quality when receiving a transmission signal in the terminal device 200 that is the communication partner. is there.
  • step S1 it is first determined whether there is an error in the received data. If there is an error in the received data, the process proceeds to step S2.
  • step 2 based on the quality information transmitted from the terminal device 200 together with information indicating the data to be retransmitted, it is determined whether the quality of the transmitted data transmitted by any transmission antenna power is poor. Specifically, among the plurality of transmission antennas in the transmission apparatus, the quality of transmission data from a predetermined transmission antenna force is sequentially used as a reference to compare and determine the quality of transmission data from other transmission antennas. Determine the transmitting antenna that has transmitted good transmission data.
  • the quality of transmission data transmitted from first transmission antenna 110 is compared with that of other transmission antennas by comparing first transmission antenna 110 with another transmission antenna (second transmission antenna 120). It is determined whether or not it is worse than the writing brush of the transmission data transmitted from. If it is determined in step S2 that the quality of the first transmission antenna 110 is worse, the process proceeds to step S3, and if the quality of transmission data from the first transmission antenna 110 is good, the process proceeds to step S4. That is, when the quality of the first transmission antenna 110 is worse, the second transmission antenna 120 is determined as the transmission antenna that has transmitted the transmission data with good quality.
  • the first transmitting antenna 110 is determined as an antenna that has transmitted high-quality transmission data.
  • step S3 when the reception quality of the transmission data from the first transmission antenna 110 is bad, the data transmitted from the first transmission antenna 110 is retransmitted.
  • FIG. 6 is a diagram showing a frame configuration when the quality of the first transmitting antenna 110 in the transmitting apparatus 100 according to Embodiment 1 is bad.
  • step S1 when the quality of the first transmission antenna 110 is worse, that is, the transmission quality from the first transmission antenna 110 is higher than the reception quality of the transmission data from the second transmission antenna 120. If the reception quality of the received data is bad, only the data transmitted from the transmitting antenna 1 (data shown by data 1 (1) in FIG. 6) is retransmitted and the process proceeds to step S1.
  • FIG. 7 is a diagram showing a reception level when transmitting apparatus 100 according to Embodiment 1 retransmits only data transmitted from first transmitting antenna 110.
  • the transmitting apparatus 100 (see FIG. 3) retransmits only the data transmitted from the first transmitting antenna 110, whereby all transmitting antennas (here, the first and second transmitting antennas) are transmitted.
  • the required reception level can be set for both antennas 110 and 120).
  • this embodiment does not retransmit data transmitted from all transmission antennas, so that the throughput that retransmission information does not increase by the number of antennas may be greatly reduced. Absent.
  • FIG. 8 is a diagram showing a frame configuration when the quality of the second transmission antenna 120 is worse.
  • the quality of the second transmission antenna 120 is worse, that is, the transmission quality from the second transmission antenna 120 is higher than the reception quality of the transmission data from the first transmission antenna 110. If the reception quality of the received data is poor, only the data transmitted from the second transmitting antenna 120 is retransmitted.
  • FIG. 9 is a diagram showing a reception level when only data transmitted from the second transmission antenna 120 is retransmitted.
  • the number of antennas of the transmission antennas included in transmission apparatus 100 is two, but the present invention is not limited to this, and transmission apparatus 100 may include a plurality of transmission antennas.
  • the number of antennas of the transmission antenna included in the transmission apparatus 100 is four, only the data transmitted from one antenna that has transmitted the transmission data with the lowest quality among these transmission antennas is used. Needless to say, it is possible to resend, but the worst quality is that two antennas are selected and the data transmitted from these two antennas is resent. Please do it.
  • transmission control section 160 when retransmitting transmitted data, in terminal apparatus 200 that is a communication partner in the data transmitted from transmission antennas 110 and 120, A configuration is adopted in which only the data transmitted from the antenna with the worst reception quality (for example, the first transmission antenna 110) is retransmitted!
  • transmitting apparatus 100 determines data to be retransmitted based on information on which antenna power transmitted from terminal apparatus 200 that is a communication partner is to be retransmitted. According to this configuration, it is possible to prevent the error rate from being deteriorated at the time of reception at the receiving side, here, the terminal device 200.
  • the transmitting apparatus according to Embodiment 2 of the present invention has substantially the same configuration as that of transmitting apparatus 100 of Embodiment 1, and differs only in the processing at the time of retransmission.
  • transmitting apparatus 100 of Embodiment 1 has substantially the same configuration as that of transmitting apparatus 100 of Embodiment 1, and differs only in the processing at the time of retransmission.
  • Only different points will be described, and descriptions of the operational effects will be omitted.
  • the transmission antenna used at the time of retransmission is an antenna different from the transmission antenna that performed the first transmission.
  • FIG. 10 is a diagram for explaining the operating principle of the transmission apparatus according to Embodiment 2 of the present invention, and shows a frame configuration of transmission data transmitted from the transmission apparatus of Embodiment 2. is there.
  • transmission control section 160 uses a different transmission antenna from the transmission antenna that has transmitted the data requested to be retransmitted. Send the data.
  • data 1 (1) is transmitted from antenna 120 at the time of retransmission.
  • transmission is performed from antenna 110 during retransmission.
  • the line variation is slow, such as when the quality of the first transmission antenna 110 is worse than that of the second transmission antenna 120, the quality of the antenna 110 may be poor even during retransmission.
  • the antenna used for retransmission is different from the transmission antenna that performed the first transmission, so that the same data is continuously transmitted and the quality is improved. It can prevent getting worse.
  • the transmission antenna used at the time of retransmission uses an antenna 120 different from the transmission antenna 110 that has performed the first transmission. That is, the transmission control unit retransmits the data to be retransmitted using an antenna different from the previously transmitted antenna. According to this configuration, it is possible to prevent the error rate from occurring continuously, particularly when the line fluctuation is slow.
  • the transmission apparatus according to Embodiment 3 of the present invention has substantially the same configuration as that of transmission apparatus 100 of Embodiment 1, and differs only in the processing at the time of retransmission.
  • Only different points will be described, and descriptions of the operational effects will be omitted.
  • the transmitting apparatus When performing the second and subsequent retransmissions, the transmitting apparatus according to Embodiment 3 preferentially retransmits data that has not been retransmitted, and uses the transmitting apparatuses of Embodiments 1 and 2 In addition, the error rate is further improved when hybrid ARQ is performed in the HARQ combining section of the terminal equipment.
  • FIG. 11 is a diagram for explaining the operating principle of the transmission apparatus according to Embodiment 3 of the present invention, and shows a frame configuration of transmission data transmitted from the transmission apparatus of Embodiment 3. is there.
  • transmission control section 160 of transmission apparatus 100 shown in FIG. 3 retransmits transmission data based on information indicating retransmission request data transmitted from the terminal apparatus.
  • the retransmitted data is further retransmitted, that is, when the second and subsequent retransmissions are performed, it is determined that the retransmitted data is preferentially retransmitted with a predetermined transmission antenna.
  • the second retransmission is performed. Shows the case where data 2 (1) transmitted from another second transmitting antenna 120 is retransmitted simultaneously with erroneous data 1 (1). If an error occurs even if the data transmitted from the second transmitting antenna 120 is retransmitted, the data transmitted from another transmitting antenna camera at the same time as the error occurred during the second retransmission ( Here, data transmitted from first transmitting antenna 110) is retransmitted.
  • the transmission control unit 160 when performing the second and subsequent retransmissions, the retransmission is performed, and the data is retransmitted with priority.
  • the transmission control unit preferentially retransmits data that has not been retransmitted when performing the second and subsequent retransmissions. According to this configuration, when MIMO communication is performed, the error rate when performing hybrid ARQ on the receiving side can be further improved as compared with the case where the transmission apparatus according to Embodiments 1 to 4 is used.
  • the transmission apparatus according to Embodiment 4 of the present invention has substantially the same configuration as that of transmission apparatus 100 of Embodiment 1, and differs only in the processing at the time of retransmission. Only the differences will be explained here.
  • the transmission apparatus according to Embodiment 4 adaptively changes the amount of data to be retransmitted according to the modified quality, and the throughput is further improved even when the line quality is worse than the transmission apparatuses of Embodiments 1 to 3. It is improved.
  • FIG. 12 is a flowchart showing an operation principle of the transmission apparatus according to Embodiment 4 of the present invention. It is.
  • step S21 it is first determined whether or not there is an error in the received data. If there is an error in the received data, the process proceeds to step S22.
  • step S22 the channel quality information in the quality information sent by the receiving side (in this case, terminal device 200) is compared with a threshold value set in advance to determine the amount of data to be retransmitted. To do.
  • step S22 if the line quality is below the threshold value, the process proceeds to step 23. If the line quality is threshold! /, Greater than the value! /, The process proceeds to step S24.
  • step S23 transmission control section 160 decides to retransmit data transmitted from all transmission antennas, and transmits all of the transmission antennas (here, first and second transmission antennas 110, 120). Resend the transmission data from step S21 and return to step S21.
  • FIG. 13 is a diagram showing a reception level when data is retransmitted from transmitting apparatus 100 (see FIG. 3) when the line quality is worse than the threshold value.
  • the amount of data to be retransmitted is adaptively changed according to the modified quality as shown in FIG.
  • the throughput can be improved when the line quality is worse than in the first to third embodiments.
  • step 24 based on the quality information transmitted from the transmitting apparatus 200 together with information indicating the data to be retransmitted, it is determined which transmission antenna power the quality of the transmitted data is poor. Specifically, among multiple transmission antennas in a transmitter, the quality of transmission data from other transmission antennas is compared and determined sequentially using the quality of transmission data from a given transmission antenna as a reference. Then, determine the transmission antenna other than the transmission antenna that transmitted the transmission data with the lowest quality.
  • the first transmission antenna 110 and the second transmission antenna 120 are compared to determine whether or not the first transmission antenna 110 has poorer transmission data quality.
  • step S24 the quality of the first transmitting antenna 110 is the quality of the second transmitting antenna 120. If it is determined that the quality is better, the process proceeds to step S25. On the other hand, when it is determined that the quality of the first transmission antenna 110 is worse than the quality of the second transmission antenna 120, the process proceeds to step S26. That is, if the quality of the first transmitting antenna 110 is better, the first transmitting antenna 110 determines that the quality of the transmitted data is better than the second transmitting antenna 120, and the first Transmit antenna 110 is determined as an antenna that has transmitted high-quality transmit data. On the other hand, when the quality of the first transmission antenna 110 is worse, the second transmission antenna 120 is determined as the transmission antenna that has transmitted the transmission data with good quality.
  • step S25 the data transmitted from the second transmission antenna 120 is retransmitted and the process returns to step S21 to repeat the process.
  • step S26 the data transmitted from the first transmission antenna 110 is retransmitted and the process returns to step S21. Return and repeat the process.
  • the transmitting apparatus differs from transmitting apparatus 100 only in the retransmission processing of transmission control section 160, and the other configurations and operations are substantially the same.
  • Transmission control section 160 in the transmission device of Embodiment 4 determines the quality of the channel transmitted from terminal device 20 0 (see Fig. 4), and the amount of data to be retransmitted is the modified quality. It is adaptively changed by.
  • the line quality information is the quality information notified from the communication partner.
  • the threshold used to determine the amount of data is adaptive depending on various communication conditions (number of users using the line, remaining battery level, etc.) rather than being fixed. It may be changed. For example, if the number of users using the line, that is, the number of terminal devices is large, one user will continue to use a lot of bandwidth, the allocation of other users will be greatly reduced, and other users' communications will be hindered. Cases arise. In such a case, it is also effective to reduce the threshold value and retransmit only the data transmitted with one transmit antenna force as much as possible.
  • the transmission control unit adaptively changes the amount of data to be retransmitted according to the channel quality at the time of transmission. According to this configuration, Ml Even when the line fluctuation is poor when MO communication is performed, the throughput can be improved as compared with the case where communication is performed using the transmission apparatus according to Embodiments 1 to 3.
  • the transmitting apparatus When the transmitting apparatus according to the fifth embodiment transmits data that requires a specific transmission antenna power and a better quality than other data, the transmitting apparatus transmits data that requires a better quality than the other data. Retransmit with priority.
  • FIG. 14 is a block diagram showing a schematic configuration of transmitting apparatus 500 according to Embodiment 5.
  • transmitting apparatus 500 is provided with CRC (Cyclic Redundancy Check) unit 510 in the configuration of transmitting apparatus 100, and in addition to encoding unit 130, turbo coding It has a buttock 520.
  • CRC Cyclic Redundancy Check
  • transmission apparatus 500 transmission data is subjected to CRC processing in the CRC section.
  • turbo code key processing is performed in the turbo code key unit 520 and input to the transmission control unit 530.
  • Transmission control section 530 transmits important information as data such as systematic bits from one transmission antenna 110, and transmits normal bits from another transmission antenna 120. Regardless of the quality of 120, transmission control is performed so that only systematic bits are retransmitted.
  • FIG. 15 is a diagram showing a frame structure of transmission data transmitted from the transmitting apparatus according to the fifth embodiment of the present invention.
  • the important information includes, for example, systematic bits when using a turbo code as an error correction code, retransmission information, and information (for example, a pilot signal) used for communication control.
  • systematic bits when turbo codes are used as error correction codes will be described as an example of important information.
  • the fifth embodiment of the present invention does not depend on the quality of the transmission antenna as shown in FIG. Retransmit only systematic bits.
  • a sys- tem in the case where a turbo code is used as an error correction code.
  • the present invention is not limited to this, and it is needless to say that the present invention can also be applied to cases where retransmission information and information (for example, pilot signals) used for communication control are also transmitted with a specific antenna power. ,.
  • the transmission control unit transmits data that requires a higher quality than a specific transmission antenna power or other data among the plurality of transmission antennas. Data that requires better quality than other data is retransmitted preferentially. In this case, data that requires better quality than other data is a systematic bit when the turbo code is used.
  • transmission device 100 in each embodiment has been described here as a base station device in a wireless communication system, the present invention is not limited thereto, and the mobile station device may include the present invention. Based on Japanese Patent Application No. 2005-17304 filed on January 25, 2005. All this content should be included here.
  • the transmission apparatus and transmission method according to the present invention have the effect of preventing an increase in redundant bits of retransmission information or code key when retransmitting transmission data, and improving the throughput. This is useful when sending data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 MIMO通信方式において、再送情報あるいは符号化の冗長ビットが増大することを防ぎ、スループットを改善することができる送信装置。この装置において、符号化部(130)は、複数のアンテナである第1送信アンテナ(110)、第2送信アンテナ(120)の各アンテナから送信されるデータに対して一括して符号化処理を行う。変調部(113)、(123)は、符号化部(130)によって符号化されたデータを第1及び第2送信アンテナ(110)、(120)に対応してそれぞれ変調処理する。送信部(115)、(125)は、変調されたデータを、それぞれ対応する第1及び第2アンテナ(110)、(120)から送信可能に処理する。送信制御部(160)は、各アンテナ(110)、(120)から送信されるデータの送信制御を行い、データを再送する場合、第1及び第2アンテナ(110)、(120)よりも少ない数の送信アンテナから送信されたデータを再送する。

Description

送信装置及び送信方法
技術分野
[0001] 本発明は、複数のアンテナから異なる信号を送信する MIMO (Multi-Input Multi- Output)通信方式における送信装置及び送信方法に関する。
背景技術
[0002] 従来、周波数利用効率を向上させるため、複数のアンテナ力 異なる信号を送信し 、受信時において干渉補償手段によって送信される信号を得る通信方式が検討され ている。この通信方式は、一般に MIMO(Multi-Input Multi-Output)通信方式と呼ば れている。
[0003] 図 1は、複数のアンテナから異なる符号分割した信号を送信する従来の MIMO通 信方式の基本動作を説明する概略基本構成図であり、図 1 (A)は、 MIMO通信の原 理を説明する図、図 1 (B)は、送信信号と受信信号の関係を表す式である。なお、図 1 (A)に示す MIMO通信方式における送信装置及び受信装置では、双方の有する アンテナ数をそれぞれ 2本ずつ備えるものとして 、る。
[0004] 図 1において、各アンテナから送信される信号を、それぞれ TX1、 ΤΧ2とする。また 、各アンテナで受信される信号をそれぞれ RX1、 RX2とすると、 RX1、 RX2は、図 1 ( B)に示すように、それぞれ次式(1)、(2)で示すことができる。
RX1 = ATX1 + BTX2 …ひ)
RX2 = CTX1 + DTX2 · '· (2)
ここで、 Αは、送信アンテナ 1と受信アンテナ 1との間の伝搬路特性、 Bは送信アンテ ナ 2と受信アンテナ 1との間の伝搬路特性、 Cは、送信アンテナ 1と受信アンテナ 2と の間の伝搬路特性、 Dは送信アンテナ 2と受信アンテナ 2との間の伝搬路特性とする
[0005] ここで、受信信号から、送信信号 TX1と TX2を受信するためには、 4つの伝搬路特 性 A, B, C, Dを推定し、推定された 4つの伝搬路特性 A, B, C, Dの伝搬路特性を 用いて、下記式(3)の処理を行うことにより、各アンテナカゝら送信された信号 TX1, T X2を受信することができる。
DRX1/ (AD-BC) - BRX2/ (AD-BC)
= D (ATX1 + BTX2) / (AD - BC) - B (CTX1 + DTX2) / (AD - BC) = (ADTX1 + BDTX2 - BCTX1 - BDTX2) / (AD - BC)
=TX1 - -- (3)
[0006] このような ΜΙΜΟ通信方式において、例えば、非特許文献 1では、再送を行うこと が検討されて 、る。この非特許文献 1で検討されて 、る再送方法として以下の 2通り がある。
[0007] まず、再送方法 1として、前記各アンテナ力 送信されるデータを一括して符号ィ匕し 、全アンテナから送信されたデータ全てを再送する方法がある。
[0008] 図 2は ΜΙΜΟ通信方式において、再送方法 1を説明するための図であり、送信装 置によって送信される再送データを含むデータのフレーム構成を示す図である。図 2 に示すように、再送方法 1における再送情報は通常の送信情報より良好な品質が要 求されるため、再送情報を送信する時刻では他のアンテナからはヌル信号を送信し、 再送情報の品質を改善している。
[0009] このように再送方法 1における送信装置では、送信信号を再送する際に、一括して 符号化して全アンテナから送信した送信信号を全アンテナから全て送信している。
[0010] また、再送方法 2として、各アンテナ力も送信されるデータ毎に符号ィ匕を行 、、各ァ ンテナ毎に再送を行う方法が考えられている。この再送方法 2は、送信データを各ァ ンテナ毎に振り分けるとともに、各アンテナ毎に独立に送信データに対して符号ィ匕処 理を行う構成以外は、再送方法 1の送信装置と同様の送信装置を用いて実現できる 非特許文献 1: "誤り検出符号を用いた MIMO-OFDMシステムの検討"電子情報通信 学会、信学技報 CAS2003-124、 2004年 3月
発明の開示
発明が解決しょうとする課題
[0011] し力しながら、上述した MIMO通信方式における再送方法 1では、図 2の送信信号 のフレーム構成に示すように、全アンテナから送信されたデータ全てを再送するため 、再送情報量がアンテナ数倍 (本実施例では 2倍)になってしまい、スループットが大 きく低下すると 、う問題がある。
[0012] また、 MIMO通信方式における再送方法 2では、再送情報そのものは削減できる 力 再送時における符号ィ匕の冗長ビットがアンテナ数倍 (本実施例では 2倍)になるた め、やはり図 2のフレーム構成で示す再送方法 1と同様にスループットが大きく低下 するという問題がある。
[0013] 本発明の目的は、 MIMO通信方式において、再送情報あるいは符号化の冗長ビ ットが増大することを防ぎ、スループットを改善できる送信装置及び送信方法を提供 することである。
課題を解決するための手段
[0014] 本発明の送信装置は、複数のアンテナ力 それぞれ異なるデータを同時に送信す る MIMO通信方式の送信装置にぉ 、て、前記複数のアンテナの各アンテナ力 送 信されるデータに対して一括して符号化処理を行う符合化部と、符号化された前記 データを前記複数のアンテナに対応してそれぞれ変調処理する変調部と、変調され た前記データを、それぞれ対応する前記各アンテナから送信可能に処理する送信部 と、前記各アンテナ力 送信される前記データの送信制御を行う送信制御部とを有し 、前記送信制御部は、前記データを再送する場合、前記複数のアンテナよりも少な い数のアンテナから送信されたデータを再送する構成を採る。
発明の効果
[0015] 以上説明したように、本発明によれば、 MIMO通信方式において、複数のアンテ ナを用いて同時に送信した一括符号化されたデータを再送する場合、再送情報ある いは符号ィ匕の冗長ビットの増大を防いで再送することができ、再送におけるスループ ットの改善を図ることができる。
図面の簡単な説明
[0016] [図 1A]従来の MIMO通信方式の基本動作を説明する概略基本構成図であり、 Ml MO通信の原理を説明する図
[図 1B]従来の MIMO通信方式の基本動作を説明する概略基本構成図であり、送信 信号と受信信号の関係を表す式 [図 2]従来の MIMO通信方式における送信装置によって送信される再送データを含 むデータのフレーム構成を示す図
[図 3]本発明の実施の形態 1に係る送信装置の概略構成を示すブロック図
[図 4]本発明の実施の形態 1に係る送信装置の通信相手の一例である端末装置を示 すブロック構成図
[図 5]本発明に係る送信装置において行われる再送処理を説明するためのフローチ ヤート
[図 6]実施の形態 1において第 1送信アンテナの方の品質が悪力つた場合のフレーム 構成を示す図
[図 7]第 1送信アンテナから送信されたデータのみを再送した場合の受信レベルを示 す図
[図 8]実施の形態 1において第 2送信アンテナの方の品質が悪力つた場合のフレーム 構成を示す図
[図 9]第 2送信アンテナカゝら送信されたデータのみを再送した場合の受信レベルを示 す図
[図 10]実施の形態 2の送信装置から送信される送信データのフレーム構成を示す図 [図 11]実施の形態 3の送信装置から送信される送信データのフレーム構成を示す図 [図 12]本発明の実施の形態 4に係る送信装置の動作原理を示すフローチャート [図 13]回線品質がしきい値より悪い場合に送信装置力 データを再送した際の受信 レベルを示す図
[図 14]本実施の形態 5に係る送信装置の概略構成を示すブロック図
[図 15]本発明に係る実施の形態 5の送信装置カゝら送信される送信データのフレーム 構成を示す図
発明を実施するための最良の形態
(実施の形態 1)
本発明の実施の形態 1の送信装置は、複数のアンテナカゝらそれぞれ異なるデータ を同時に送信する MIMO通信方式の送信装置において、複数のアンテナの各アン テナから送信されるデータに対して一括して符号化処理を行う符合化部と、符号ィ匕 部により符号化されたデータを複数のアンテナに対応してそれぞれ変調処理する変 調部と、変調されたデータを、それぞれ対応する各アンテナから送信可能に処理す る送信部と、各アンテナから送信されるデータの送信制御を行う送信制御部とを有し 、送信制御部は、データを再送する場合、複数のアンテナよりも少ない数のアンテナ から送信されたデータを再送する。本実施の形態 1では、再送の際には、 1本の送信 アンテナを用いて、この一本の送信アンテナから送信された送信データのみを送信 している。以下詳細に説明する。
[0018] 図 3は本発明の実施の形態 1に係る送信装置 100の概略構成を示すブロック図で ある。
[0019] 図 3に示す送信装置 100は、複数の送信アンテナ(ここでは、第 1送信アンテナ 11 0、第 2送信アンテナ 120)力もそれぞれ異なるデータを送信するものであり、符号ィ匕 部 130、変調部 113, 123、送信部 115、 125、受信アンテナ 140、受信部 143、復 調部 145、復号部 147、 SZP変換部(図面では「SZP」で示す) 149、送信制御部 1 60を有する。
[0020] 符号ィ匕部 130は、送信すべきデータ、つまり、全アンテナ 110、 120から送信される データ(図 3では「送信信号」として示す)に対して一括して符号化処理を行い、送信 制御部 160に出力する。
[0021] 送信制御部 160は、符号化された送信データ (送信信号)に対して送信制御を行う 。詳細には、送信制御部 160は、符号化部 130によって符号化された送信データを 格納し、所定の送信時刻に、変調部 113、 123に出力する。
[0022] また、送信制御部 160は、通信相手力も通知される再送情報やどの送信アンテナ 力 送信されたデータを再送するかを示す情報を用いて、再送時はどの送信アンテ ナから送信されたデータを再送するかを決定する。この結果に基づいて、送信制御 部 160は、所定の送信データを複数の送信アンテナ(ここでは、第 1及び第 2送信ァ ンテナ 110、 120)のうち、複数の送信アンテナより少ない送信アンテナ(ここでは、一 つの送信アンテナ)から再送信させる制御を行う。
[0023] ここで、例えば、従来例として説明した再送方法 2のように各アンテナ毎に独立に符 号ィ匕を行った場合、確かに再送情報そのものは削減できるが、符号ィ匕の冗長ビットは アンテナ数倍になるため、スループットが大きく低下することは言うまでもない。
[0024] 変調部 113、 123は、送信制御部 160から入力される送信データに対してそれぞ れ変調処理を行い、それぞれ送信部 115、 125に出力する。なお、変調部 113、 12 3は、各アンテナ 110、 120毎に独立に変調方式を設定するもの (3GPP TR25,876)で もよぐ全アンテナ 110、 120に対して同一の変調方式を選択するものとしてもよい。
[0025] 送信部 115、 125は、変調処理された送信データを無線周波数帯に周波数変換し て、各第 1及び第 2送信アンテナ 110、 120に出力する。各第 1及び第 2送信アンテ ナ 110、 120は、送信部 115, 125によって周波数変換された送信データを送信する
[0026] 受信アンテナ 140は、通信相手から送信されたデータを受信して、受信部 143に出 力し受信部 143は、入力される受信データをベースバンド帯の信号に周波数変換し て、復調部 145に出力する。
[0027] 復調部 145は、入力される周波数変換後の受信データに復調処理を施し、復号部 147に出力する。復号部 147は、復調部 145から入力される受信データに復号処理 を施し、 SZP変換部 149に出力する。
[0028] SZP変換部 149は、通信相手力も通知される再送情報やどの送信アンテナ力も送 信されたデータを再送するかを示す情報 (再送するデータ情報)を抽出し、送信制御 部 160に入力する。つまり、 SZP変換部 149は、受信したデータ (受信信号)と、通 信相手から通知された再送要求や品質情報、再送するデータを示す情報とを振り分 ける。
[0029] 図 4は、本発明の実施の形態 1に係る送信装置の通信相手の一例である端末装置 を示すブロック構成図である。
[0030] 図 4に示す端末装置 200は、送信されるデータに対して符号化処理を行う符号ィ匕 部 210と、送信データに対して送信制御を行う送信制御部 220と、送信データに対し て変調処理を行う変調部 230と、無線周波数帯に周波数変換する送信部 232と、送 信アンテナ 234とを有する。さらに、端末装置 200は、受信アンテナ 240、 250と、受 信部 242、 252と、干渉補償部 260と、品質推定部 244、 254と、大小比較部 263、 ノヽイブリツド ARQ (Hybrid Automatic Repeat reQuest:以下、「HARQ」と 、う)合成部 246、 256と、 PZS変換部(図 4では「PZS」で示す) 264と、復号部 266とを有する
[0031] 符号ィ匕部 210は、送信信号を符号化処理して、符号化後の送信データとして送信 制御部 220に出力する。
[0032] 送信制御部 220は、端末装置 200が送信する送信信号の送信制御を行うものであ り、符号ィ匕部 210からの符号ィ匕後の送信データを格納して、送信時刻に変調部 230 に出力する。
[0033] また、送信制御部 220は、品質推定部 244、 254から入力される各通信相手の送 信アンテナ 240、 250毎に回線品質推定を行った結果や、復号部 266により出力さ れる受信信号に誤りが存在するか否かを示す情報に基づいて送信制御を行う。
[0034] 変調部 230は、送信データを変調処理して、送信部 232に出力し、送信部 232〖こ おいて無線周波数帯に周波数変換された送信データは送信アンテナ 234を介して 送信される。
[0035] 受信アンテナ 240、 250は、通信相手 (ここでは、送信装置 100)から送信されたデ ータを受信して、対応する受信部 242、 252にそれぞれ出力する。
[0036] 受信部 242、 252は、受信アンテナ 240、 250が受信した無線周波数帯の信号で ある受信データに対して周波数変換を行 、、ベースバンド帯の信号を得て干渉補償 部 260に出力する。
[0037] 干渉補償部 260は、ベースバンド帯の信号に変換された受信信号に干渉補償処 理を施して、通信相手の各送信アンテナ毎に送信されたデータを品質推定部 244、 254及び HARQ合成部 246、 256に出力する。
[0038] 品質推定部 244、 254は、通信相手の各第 1及び第 2送信アンテナ 110、 120毎に 品質推定を行い、品質推定結果を送信制御部 220、大小比較部 263に出力する。
[0039] 品質推定部 244、 254で行われる回線品質推定方法は、本実施の形態のように、 送信装置 100の送信アンテナが 2つ、端末装置 200の受信アンテナが 2つの場合、 4 つの伝搬路推定結果より算出することができる。例えば、第 1送信アンテナ 110の品 質情報は図 1の 4系統の伝搬路推定結果 A,B,C,Dを用いて算出できる。第 1送信ァ ンテナ 110の品質情報は I A I + I C I、第 2送信アンテナ 120の品質情報は I B I + I D Iとすればよい。なお、ここで示した品質推定方法はあくまで一例であり、 本発明は、ここで示した品質推定結果に限定されず、任意の品質推定方法を用いて ちょいことは勿!^である。
[0040] 大小比較部 263は、品質推定部 244、 254から入力された品質推定結果の大小比 較を行い、算出される大小比較結果を送信制御部 220に出力する。この大小比較結 果は、通信相手のどの第 1及び第 2送信アンテナ 110、 120から送信されたデータを 送信するかを示す情報となる。通信制御部 220は、この大小比較結果に基づいて、 通信相手 (ここでは、送信装置 100)にどのデータ再送を要求する力 言い換えれば
、通信相手にどのデータを送信させる力、を決定する。
[0041] HARQ合成部 246、 256は、干渉補償部 260から入力されたデータ、つまり、通信 相手の各第 1及び第 2送信アンテナ 110、 120毎に送信されたデータを、前回までの 送信されたデータと合成して、 PZS変換部 264に出力する。
[0042] また、 HARQ合成部 246、 256は、再送されたデータのみを合成し、再送されな!ヽ 通信相手 (送信装置 100)の送信アンテナについては入力データをそのまま出力す る。
[0043] PZS変換部 264は、 HARQ合成部 246、 256から入力されるデータを PZS変換 して、復号部 266に出力する。
[0044] 復号部 266は、 PZS変換部 264から PZS変換されたデータに復号処理を施し、 受信信号に誤りが存在する場合は、送信制御部 220に再送要求信号を出力する。こ の再送要求信号を受けて、送信制御部 220は、送信装置 100に再送要求信号を送 信する。
[0045] 次に、送信装置 100の送信系の動作を説明する。
[0046] 図 3に示す送信装置 100において、送信信号は、まず、符号ィ匕部 130によって、全 アンテナ 110、 120から送信されるデータとして一括して符号化処理され、符号化後 の送信データとなる。次に、符号化後の送信データは、送信制御部 160に格納され て、送信時刻となった際に、変調部 113、 123に入力され、変調処理を施された後、 送信部 115、 125に入力される。送信部 115、 125に入力された変調処理後の送信 データは、無線周波数帯に周波数変換されて各アンテナ 110、 120により送信される [0047] 図 4に示す端末装置 200では、通信相手力も送信されたデータは、受信アンテナ 2 40、 250で受信され、受信部 242、 252によりベースバンド帯の信号に周波数変換さ れて、干渉補償部 260に入力される。周波数変換された信号は、干渉補償部 260に よって、干渉補償をされて、端末装置 200は、通信相手 (ここでは図 3に示す送信装 置 100)の各送信アンテナ(ここでは図 3に示す第 1及び第 2送信アンテナ 110、 120 )毎に送信されたデータを得る。
[0048] 次に、通信相手の各送信アンテナ毎に送信され、干渉補償されたデータは、 HAR Q合成部 246、 256〖こよって、前回までの送信されたデータと合成される。これら HA RQ合成部 246、 256は、送信装置 100から再送されたデータのみを合成し、再送さ れない通信相手の送信アンテナからのデータについては入力データをそのまま PZ S変換部 264に出力する。
[0049] PZS変換部 264に入力されたデータは、 PZS変換されて、復号部 266に出力さ れ、復号部 266において復号処理される。受信信号に誤りが存在する場合は、復号 信号は、送信制御部 220に再送要求信号を出力し、送信制御部 220は再送要求信 号に基づいて、変調部 230、送信部 232及び送信アンテナ 234を介して送信装置 1 00に再送要求を行う。
[0050] このとき、送信制御部 220には、品質推定部 244、 254から入力される通信相手の 各第 1及び第 2送信アンテナ 110、 120毎に行われた品質推定結果に基づいて、大 小比較部 263において算出された大小比較結果が入力される。この大小比較結果 を、送信制御部 220は、通信相手のどの送信アンテナから送信されたデータを送信 するかを示す情報として送信装置 100に送信する。
[0051] 送信装置 100に送られる再送情報やどの送信アンテナから送信されたデータを再 送するかを示す情報は、送信装置 100側において、送信制御部 160によって再送制 御が行われ、再送時はどの送信アンテナから送信されたデータを再送するかを決定 し、送信制御部 160により、決定されたデータが送信される。
[0052] この再送動作については、図 5を用いて説明する。
[0053] 図 5は、本発明の送信装置において行われる再送処理を説明するためのフローチ ヤートである。図 5に示す再送処理は、通信相手である端末装置 200において送信 信号を受信した際の受信時の品質が最も悪力つた送信装置 100の送信アンテナか ら送信されたデータのみを再送するものである。
[0054] 図 5に示すように、ステップ S1では、まず、受信データに誤りがあるかどうかを判定 し、受信データに誤りがある場合、ステップ S2に移行する。
[0055] ステップ 2では、再送するデータを示す情報とともに端末装置 200から送信される品 質情報に基づいて、どの送信アンテナ力も送信された送信データの品質が悪いかを 判定する。具体的には、送信装置における複数の送信アンテナのうち、所定の送信 アンテナ力ゝらの送信データの品質を順次、基準として、他の送信アンテナからの送信 データの品質を比較判定し、最も品質の良い送信データを送信した送信アンテナを 決定する。
[0056] ここでは、第 1送信アンテナ 110と他の送信アンテナ (第 2送信アンテナ 120)とを比 較して、第 1送信アンテナ 110から送信された送信データの品質が、他の送信アンテ ナから送信された送信データの品筆より悪!ヽか否かを判定する。ステップ S2にお ヽ て、第 1送信アンテナ 110の方の品質が悪いと判定した場合、ステップ S3に移行し、 第 1送信アンテナ 110からの送信データの品質が良い場合、ステップ S4に移行する 。つまり、第 1送信アンテナ 110の方の品質が悪い場合は、第 2送信アンテナ 120を 品質の良い送信データを送った送信アンテナとして決定する。
[0057] 一方、第 1送信アンテナ 110の方が他の送信アンテナ (第 2送信アンテナ 120)より 品質が良い場合は、第 2送信アンテナ 120よりも第 1送信アンテナ 110の方が、送信 したデータの品質が良力 たものと判断し、第 1送信アンテナ 110を品質の良い送信 データを送ったアンテナとして決定する。
[0058] ステップ S3では、第 1送信アンテナ 110からの送信データの受信品質が悪力つた 場合、第 1送信アンテナ 110から送信されたデータを再送する。
[0059] 図 6は、実施の形態 1に係る送信装置 100において第 1送信アンテナ 110の方の品 質が悪力つた場合のフレーム構成を示す図である。
[0060] 図 6に示すように、第 1送信アンテナ 110の方の品質が悪力つた場合、つまり第 2送 信アンテナ 120からの送信データの受信品質よりも、第 1送信アンテナ 110からの送 信データの受信品質が悪力つた場合は、送信アンテナ 1から送信されたデータ(図 6 では、データ 1 (1)で示すデータ)のみを再送してステップ S1に移行する。
[0061] 図 7は、実施の形態 1に係る送信装置 100が、第 1送信アンテナ 110から送信され たデータのみを再送した場合の受信レベルを示す図である。
[0062] 図 7に示すように、送信装置 100 (図 3参照)が第 1送信アンテナ 110から送信され たデータのみを再送することによって、全ての送信アンテナ(ここでは第 1及び第 2送 信アンテナ 110、 120の両方)において必要な受信レベルとすることができる。
[0063] このように本実施の形態では、従来と異なり、全送信アンテナから送信されたデータ を再送していないため、再送情報がアンテナ数倍になることがなぐスループットが大 きく低下することがない。
[0064] 図 8は、第 2送信アンテナ 120の方の品質が悪かった場合のフレーム構成を示す図 である。
[0065] 図 8に示すように、第 2送信アンテナ 120の方の品質が悪力つた場合、つまり第 1送 信アンテナ 110からの送信データの受信品質よりも、第 2送信アンテナ 120からの送 信データの受信品質が悪かった場合は、第 2送信アンテナ 120から送信されたデー タのみを再送する。
[0066] 図 9は、第 2送信アンテナ 120から送信されたデータのみを再送した場合の受信レ ベルを示す図である。
[0067] 図 9に示すように、第 2送信アンテナ 120から送信されたデータのみを再送すること によって、全ての送信アンテナ (ここでは第 1及び第 2送信アンテナ 110、 120の両方 )にお 、て必要な受信レベルとすることができる。
[0068] なお、本実施の形態では、送信装置 100が備える送信アンテナのアンテナ数を 2と したが、これに限らず、送信装置 100が複数の送信アンテナを備えるものとしてもよい
[0069] 例えば、送信装置 100の備える送信アンテナのアンテナ数を 4本とした場合、これら 送信アンテナのうち、先に最も品質の悪い送信データを送信した 1本のアンテナから 送信されたデータのみを再送することは可能であることは言うまでもないが、最も品質 の悪 、アンテナ 2本を選択し、これらの 2本のアンテナから送信されたデータを再送 するようにしてちょい。
[0070] 本実施の形態の送信装置 100では、送信制御部 160は、送信されたデータを再送 する場合、各送信アンテナ 110、 120から送信されるデータにおいて、通信相手であ る端末装置 200における受信時の品質が最も悪いアンテナ(例えば、第 1送信アンテ ナ 110)から送信されたデータのみの再送を行う構成を採って!/、る。
[0071] この構成によれば、再送する際に他のアンテナ(例えば、第 2送信アンテナ 120)か らデータを再送しないため、その分の送信データとしての再送情報あるいは符号ィ匕 の冗長ビットが増大することを防ぐことができ、スループットの改善が可能である。
[0072] また、本発明の形態の送信装置 100は、通信相手である端末装置 200から送信さ れるどのアンテナ力 送信されたデータを再送するかの情報により、再送するデータ を決定する。本構成によれば、更に受信側、ここでは、端末装置 200における受信の 際の誤り率の劣化を防ぐことができる。
[0073] (実施の形態 2)
本発明の実施の形態 2に係る送信装置は、実施の形態 1の送信装置 100と略同様 の構成を有し、再送時の処理のみ異なるものである。ここでは、異なる点についての み説明し、作用効果については説明を省略する。
[0074] 実施の形態 2に係る送信装置は、再送時に使用する送信アンテナは 1回目の送信 を行った送信アンテナとは別のアンテナを使用することであり、特に、回線変動が遅
Vヽ場合、連続して誤り率が生じることを防ぐことができるものである。
[0075] 図 10は、本発明の実施の形態 2に係る送信装置の動作原理を説明するための図 であり、実施の形態 2の送信装置から送信される送信データのフレーム構成を示す 図である。
[0076] 本実施の形態 2の送信装置では、送信制御部 160 (図 3参照)において、再送要求 のあったデータを送信した送信アンテナとは、別の送信アンテナを用いて、再送要求 のあったデータを送信する。
[0077] 図 10では、本発明の実施の形態 2に係る送信装置において、それぞれの第 1及び 第 2送信アンテナ 110、 120から送信されたデータ(図 10では、データ 1 (1)、データ 2 (1) )に誤りが発生し、端末装置 200から送信される再送要求のデータ情報がデー タ 1 (1)を示し、この要求に基づいて、第 1送信アンテナ 110から送信されたデータ( データ 1 (1) )を再送する場合を示す。
[0078] 図 10に示すように、再送時はアンテナ 120からデータ 1 (1)を送信している。なお、 第 2送信アンテナ 120から送信されたデータを再送する場合は、再送時はアンテナ 1 10から送信する。
[0079] 第 1送信アンテナ 110の方が、第 2送信アンテナ 120より品質が悪い場合等、回線 変動が遅い場合、再送時もアンテナ 110の方の品質が悪い場合がある。このような場 合、実施の形態 2の送信装置では、再送時に使用するアンテナは 1回目の送信を行 つた送信アンテナとは別のアンテナを使用することによって、同一のデータが連続し て品質が悪くなることを防ぐことができる。
[0080] この実施の形態 2の送信装置は、再送時に使用する送信アンテナは、 1回目の送 信を行った送信アンテナ 110とは別のアンテナ 120を使用している。つまり、送信制 御部は、再送するデータを、先に送信したアンテナとは別のアンテナを用いて再送す るものとなっている。この構成によれば、特に回線変動が遅い場合、連続して誤り率 が生じることを防ぐことができる。
[0081] (実施の形態 3)
本発明の実施の形態 3に係る送信装置は、実施の形態 1の送信装置 100と略同様 の構成を有し、再送時の処理のみ異なるものである。ここでは、異なる点についての み説明し、作用効果については説明を省略する。
[0082] 実施の形態 3に係る送信装置は、 2回目以降の再送時を行う場合、再送を行ってい ないデータを優先的に再送し、実施の形態 1及び 2の送信装置を用いた場合よりも、 端末装置の HARQ合成部におけるハイブリッド ARQを行った場合の誤り率をさらに 改善したものである。
[0083] 図 11は、本発明の実施の形態 3に係る送信装置の動作原理を説明するための図 であり、実施の形態 3の送信装置から送信される送信データのフレーム構成を示す 図である。
[0084] 本実施の形態 3の送信装置では、図 3に示す送信装置 100の送信制御部 160は、 端末装置から送信された再送要求のデータを示す情報に基づく送信データを再送し 、この再送したデータをさらに再送する場合、つまり、 2回目以降の再送を行う場合、 所定の送信アンテナで、再送を行って 、な 、別の送信データを優先的に再送する判 定を行う。
[0085] 図 11では、本発明の実施の形態 3に係る送信装置において、第 1送信アンテナ 11 0から送信されたデータ 1 (1)を再送しても誤りが生じた場合、 2回目の再送時は、誤 りが生じたデータ 1 (1)と同時に別の第 2送信アンテナ 120から送信されたデータ 2 (1 )を再送する場合を示している。なお、第 2送信アンテナ 120から送信されたデータを 再送しても誤りが生じた場合は、 2回目の再送時は、誤りが生じたデータと同時に別 の送信アンテナカゝら送信されたデータ (ここでは、第 1送信アンテナ 110から送信され たデータ)を再送する。
[0086] このように、送信制御部 160 (図 3参照)において、 2回目以降の再送時を行う場合 は、再送を行って 、な 、データを優先的に再送する。
[0087] これによつて、 HARQ合成部にお!、て、ハイブリッド ARQ処理を行った場合の誤り 率を改善することができ、再送を行ってもまだ誤りが生じる場合、再送したデータをま た再送しても、誤り率は受信品質の悪いデータが支配的になることによって再送され ないデータの品質、つまりは、全体の品質が改善されないことを防ぐことができる。
[0088] この実施の形態 3の送信装置では、送信制御部は、 2回目以降の再送を行う場合、 再送を行っていないデータを優先的に再送する。この構成によれば、 MIMO通信を 行った場合、実施の形態 1〜4に係る送信装置を用いた場合よりも、受信側でハイブ リツド ARQを行った際の誤り率をさらに改善できる。
[0089] (実施の形態 4)
本発明の実施の形態 4に係る送信装置は、実施の形態 1の送信装置 100と略同様 の構成を有し、再送時の処理のみ異なるものである。ここでは、異なる点についての み説明する。
[0090] 実施の形態 4に係る送信装置は、再送を行うデータ量を改変品質によって適応的 に変化させ、実施の形態 1〜3の送信装置よりもさらに、回線品質が悪い場合でもス ループットが改善されて 、る。
[0091] 図 12は、本発明の実施の形態 4に係る送信装置の動作原理を示すフローチャート である。
[0092] 図 12に示すように、ステップ S21では、まず、受信データに誤りがあるかどうかを判 定し、受信データに誤りがある場合、ステップ S22に移行する。
[0093] ステップ S22では、受信側(ここでは、端末装置 200)力 送られた品質情報におけ る回線品質情報と、再送を行うデータ量を決定するために予め設定されたしきい値と 比較する。ステップ S22において、回線品質がしきい値以下の場合はステップ 23に 移行し、回線品質がしき!/、値より大き!/、場合ステップ S24に移行する。
[0094] ステップ S23では、送信制御部 160は、全ての送信アンテナから送信されたデータ を再送する旨を決定して、送信アンテナの全て (ここでは、第 1及び第 2送信アンテナ 110、 120)から送信データを再送して、ステップ S21〖こ戻る。
[0095] 図 13は、回線品質がしきい値より悪い場合に送信装置 100 (図 3参照)からデータ を再送した際の受信レベルを示す図である。
[0096] 回線品質が悪ぐ全アンテナ (例えば図 3に示す第 1送信アンテナ 110及び第 2送 信アンテナ 120)から送信されたデータがすべて所用の受信レベルより下回って 、る 場合、最も品質の悪い送信アンテナから送信されたデータのみを再送しても、誤りが 生じる恐れが高ぐ再送回数が増大する。
[0097] このため、本実施の形態 4に係る送信装置では、図 13に示すように、再送を行うデ 一タ量を改変品質によって適応的に変化させる。これにより、実施の形態 1〜3よりも さらに回線品質が悪い場合のスループットを改善することができる。
[0098] ステップ 24では、再送するデータを示す情報とともに送信装置 200から送信される 品質情報に基づいて、どの送信アンテナ力 送信された送信データの品質が悪いか を判定する。具体的には、送信装置における複数の送信アンテナのうち、所定の送 信アンテナ力ゝらの送信データの品質を順次、基準として、他の送信アンテナ力ゝらの送 信データの品質を比較判定し、最も品質の悪い送信データを送信した送信アンテナ 以外の送信アンテナを決定する。
[0099] ここでは、第 1送信アンテナ 110と第 2送信アンテナ 120とを比較して、第 1送信アン テナ 110の方が送信データの品質が悪 、か否かを判定して 、る。
[0100] ステップ S24において、第 1送信アンテナ 110の品質が第 2送信アンテナ 120の品 質よりも良いと判断した場合、ステップ S25に移行する。一方、第 1送信アンテナ 110 の品質の方が、第 2送信アンテナ 120の品質よりも悪いと判定した場合、ステップ S2 6に移行する。つまり、第 1送信アンテナ 110の方の品質が良い場合は、第 2送信ァ ンテナ 120よりも第 1送信アンテナ 110の方が、送信したデータの品質が良力 たも のと判断し、第 1送信アンテナ 110を品質の良い送信データを送ったアンテナとして 決定する。一方、第 1送信アンテナ 110の方の品質が悪い場合は、第 2送信アンテナ 120を品質の良 、送信データを送った送信アンテナとして決定する。
[0101] ステップ S25では、第 2送信アンテナ 120から送信されたデータを再送してステップ S21に戻り処理を繰り返し、ステップ S26では、第 1送信アンテナ 110から送信された データを再送してステップ S21に戻り、処理を繰り返す。
[0102] このように、実施の形態 4における送信装置では、回線品質がしきい値より良い場 合は、再送時は最も品質の悪い送信アンテナ力 送信されたデータのみを再送し、 回線品質がしき!、値より悪!、場合は、全送信アンテナから送信されたデータを全て 再送する。この実施の形態 4に係る送信装置では、送信装置 100と比して、送信制御 部 160の再送処理のみ異なり、その他の構成及び作用は略同様である。
[0103] この実施の形態 4の送信装置における送信制御部 160 (図 3参照)は、端末装置 20 0 (図 4参照)から送信される回線品質力 判断して再送を行うデータ量は改変品質 によって適応的に変化させている。ここで回線品質情報は、通信相手から通知される 品質情報とする。
[0104] なお、データ量を決定するために使用するしきい値は、固定とするのではなぐ様 々な通信条件 (回線を使用しているユーザ数、電池の残量等)によって適応的に変化 させるものとしてもよい。例えば回線を使用しているユーザ数、つまり、端末装置数が 多い場合、 1ユーザに多くの帯域を使用させ続ける、他のユーザの割当てが大きく減 少し、他のユーザの通信に支障を来す場合が生じる。このような場合は、しきい値を 小さい値にして、できるだけ 1本の送信アンテナ力 送信されたデータのみを再送す るようにする方法も有効である。
[0105] このように実施の形態 4の送信装置では、送信制御部は、再送を行うデータ量を、 送信される際の回線品質によって適応的に変化させている。この構成によれば、 Ml MO通信を行った際に回線変動が悪い場合でも、実施の形態 1〜3に係る送信装置 を用いて通信を行う場合よりも、スループットの改善を図ることができる。
[0106] (実施の形態 5)
本実施の形態 5に係る送信装置は、特定の送信アンテナ力 他のデータより良好な 品質が要求されるデータを送信している場合は、前記他のデータより良好な品質が 要求されるデータを優先的に再送する。
[0107] 図 14は、本実施の形態 5に係る送信装置 500の概略構成を示すブロック図である
[0108] 図 14に示すように、送信装置 500は、送信装置 100の構成に、 CRC (巡回冗長検 查: Cyclic Redundancy Check)部 510を設け、さらに符号化部 130に代えて、ターボ 符号ィ匕部 520を備えたものである。
[0109] この送信装置 500では、送信データは、 CRC部において CRC処理が行われた後
、ターボ符号ィ匕部 520においてターボ符号ィ匕処理が行われて、送信制御部 530に 入力される。
[0110] 送信制御部 530は、 1本の送信アンテナ 110からシステマティックビット等のデータ として重要な情報を、もう 1本の送信アンテナ 120からはノ リティビットを送信し、再送 する場合、送信アンテナ 110、 120の品質によらずシステマティックビットのみを再送 するように送信制御を行う。
[0111] 図 15は、本発明に係る実施の形態 5の送信装置カゝら送信される送信データのフレ ーム構成を示す図である。
[0112] 重要情報として、例えば、誤り訂正符号としてターボ符合を使用した場合のシステ マティックビット、再送情報、通信制御に使用する情報 (例えばパイロット信号)がある。 ここでは、誤り訂正符号としてターボ符合を使用した場合のシステマティックビットを、 重要情報の 1例として説明する。
[0113] 1本のアンテナ力もシステマティックビットを、もう 1本のアンテナからはパリティビット を送信している場合、本発明の実施の形態 5では図 15に示すように、送信アンテナ の品質によらず、システマティックビットのみを再送する。
[0114] ここで、重要情報の 1例として誤り訂正符号としてターボ符合を使用した場合のシス テマティックビットの場合について説明したが、本発明はこれに限定されず、再送情 報、通信制御に使用する情報 (例えばパイロット信号)を特定のアンテナ力も送信した 場合につ 、ても適用できることは言うまでもな 、。
[0115] 本実施の形態の送信装置では、送信制御部は、前記複数の送信アンテナのうち、 特定の送信アンテナ力 他のデータより良好な品質が要求されるデータを送信する 場合、再送時には、他のデータより良好な品質が要求されるデータを優先的に再送 する。なお、ここでは、他のデータより良好な品質が要求されるデータは、ターボ符号 を使用した場合のシステマティックビットとなっている。
[0116] この構成によれば、実施の形態 1〜4に係る送信装置よりも、誤り訂正符号としてタ ーボ符号を用いた場合の受信側における誤り率特性をさらに改善することができ、他 のデータより良好な品質が要求されるデータの品質の向上を図ることができる。
[0117] なお、各実施の形態における送信装置 100は、ここでは、無線通信システムにおけ る基地局装置として説明したが、これに限らず、移動局装置が備えるものとしてもよい 本発明は、 2005年 1月 25日出願の特願 2005— 17304〖こ基づく。この内容はす ベてここに含めておく。
産業上の利用可能性
[0118] 本発明に係る送信装置及び送信方法は、送信データを再送する際に、再送情報 あるいは符号ィ匕の冗長ビットが増大することを防ぎ、スループットを改善できる効果を 有し、 MIMO通信方式にお ヽてデータを送信する場合に有用である。

Claims

請求の範囲
[1] 複数のアンテナ力 それぞれ異なるデータを同時に送信する MIMO通信方式の 送信装置において、
前記複数のアンテナの各アンテナ力 送信されるデータに対して一括して符号ィ匕 処理を行う符合化部と、
符号化された前記データを前記複数のアンテナに対応してそれぞれ変調処理する 変調部と、
変調された前記データを、それぞれ対応する前記各アンテナから送信可能に処理 する送信部と、
前記各アンテナカゝら送信される前記データの送信制御を行う送信制御部とを有し、 前記送信制御部は、前記データを再送する場合、前記複数のアンテナよりも少な V、数のアンテナから送信されたデータを再送する送信装置。
[2] 前記送信制御部は、前記各アンテナから送信されたデータを再送する場合、通信 相手における受信時の品質が最も悪いアンテナ力 送信されたデータのみの再送を 行う請求項 1記載の送信装置。
[3] 前記送信制御部は、通信相手から送信されるどのアンテナから送信されたデータを 再送するかの情報に基づ 、て、再送するデータを決定する請求項 2記載の送信装置
[4] 前記送信制御部は、再送するデータを、先に送信したアンテナとは別のアンテナを 用いて再送する請求項 1記載の送信装置。
[5] 前記送信制御部は、 2回目以降の再送を行う場合、再送を行って 、な 、データを 優先的に再送する請求項 1記載の送信装置。
[6] 前記送信制御部は、再送を行うデータ量を、送信される際の回線品質によって適 応的に変化させる請求項 1記載の送信装置。
[7] 前記送信制御部は、前記複数のアンテナのうち、特定のアンテナ力も他のデータよ り良好な品質が要求されるデータを送信する場合、再送時には、前記他のデータより 良好な品質が要求されるデータを優先的に再送する請求項 1記載の送信装置。
[8] 前記他のデータより良好な品質が要求されるデータは、ターボ符号を使用した場合 のシステマティックビットである請求項 7記載の送信装置。
[9] 請求項 1記載の送信装置を具備することを特徴とする基地局装置。
[10] 請求項 1記載の送信装置を具備することを特徴とする移動局装置。
[11] 複数のアンテナ力 それぞれ異なるデータを同時に送信する MIMO通信方式の 送信方法において、
前記複数のアンテナの各アンテナ力 送信されるデータに対して一括して符号ィ匕 処理を行う符合化ステップと、
符号化された前記データを前記複数のアンテナに応じてそれぞれ変調処理する変 調ステップと、
変調された前記データを、それぞれ対応する前記各アンテナから送信可能に処理 する送信ステップと、
前記各アンテナ力 送信される前記データの送信制御ステップとを有し、 前記送信制御ステップは、前記データを再送する場合、前記複数のアンテナよりも 少ない数のアンテナから送信されたデータを再送する送信方法。
PCT/JP2006/301068 2005-01-25 2006-01-24 送信装置及び送信方法 WO2006080317A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007500523A JP4926038B2 (ja) 2005-01-25 2006-01-24 送信装置及び送信方法
CN200680003154XA CN101107803B (zh) 2005-01-25 2006-01-24 发送装置和发送方法
EP06712284A EP1843502A4 (en) 2005-01-25 2006-01-24 TRANSMISSION DEVICE AND TRANSMISSION METHOD
BRPI0607263-1A BRPI0607263A2 (pt) 2005-01-25 2006-01-24 dispositivo de transmissão e método de transmissão
US11/814,658 US7826871B2 (en) 2005-01-25 2006-01-24 Transmission apparatus and transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-017304 2005-01-25
JP2005017304 2005-01-25

Publications (1)

Publication Number Publication Date
WO2006080317A1 true WO2006080317A1 (ja) 2006-08-03

Family

ID=36740347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301068 WO2006080317A1 (ja) 2005-01-25 2006-01-24 送信装置及び送信方法

Country Status (6)

Country Link
US (1) US7826871B2 (ja)
EP (1) EP1843502A4 (ja)
JP (1) JP4926038B2 (ja)
CN (1) CN101107803B (ja)
BR (1) BRPI0607263A2 (ja)
WO (1) WO2006080317A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041034A1 (ja) * 2007-09-27 2009-04-02 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
JP2009290823A (ja) * 2008-06-02 2009-12-10 Hitachi Communication Technologies Ltd 送信装置、基地局及びシンボル送信方法
JPWO2008041309A1 (ja) * 2006-09-29 2010-02-04 富士通株式会社 無線通信システム、送信装置および受信装置
EP2176960A1 (en) * 2007-05-11 2010-04-21 Pantech Co., Ltd. Method of selecting antennas and transmitting data in multi-input multi-output wireless local area network environments
JP2010531614A (ja) * 2007-06-27 2010-09-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mimoシステムにおける無線リソース割り当てを改善するための方法及び装置
WO2012070607A1 (ja) * 2010-11-25 2012-05-31 シャープ株式会社 無線送信装置及び無線送信方法
KR101241908B1 (ko) 2007-01-30 2013-03-12 엘지전자 주식회사 수신 채널 환경에 따른 재전송 방법 및 이를 위한 송신기,귀환 정보 생성 방법 및 장치
US9392616B2 (en) 2006-10-31 2016-07-12 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7668125B2 (en) * 2003-09-09 2010-02-23 Qualcomm Incorporated Incremental redundancy transmission for multiple parallel channels in a MIMO communication system
US7940663B2 (en) * 2004-07-20 2011-05-10 Qualcomm Incorporated Mitigating ACK/NACK errors in MIMO/SIC/HARQ
WO2007088579A1 (ja) * 2006-01-31 2007-08-09 Mitsubishi Denki Kabushiki Kaisha 無線送信装置、無線受信装置および無線通信システム
JP5132370B2 (ja) * 2007-03-30 2013-01-30 パナソニック株式会社 Mimo通信装置
WO2008142733A1 (ja) * 2007-05-21 2008-11-27 Fujitsu Limited データ再送方法及び,これを適用する無線通信システム
EP2632069B1 (en) * 2007-09-21 2017-01-11 Fujitsu Limited Transmission method and transmission apparatus
EP2237461A4 (en) * 2007-12-28 2014-02-26 Mitsubishi Electric Corp DATA TRANSMISSION DEVICE, DATA RECEIVING DEVICE, AND WIRELESS COMMUNICATION SYSTEM
WO2010016669A2 (en) 2008-08-04 2010-02-11 Samsung Electronics Co., Ltd. Signal transmission method and apparatus for user equipment in mobile communication system
KR20100082106A (ko) * 2009-01-08 2010-07-16 삼성전자주식회사 와이 파이 멀티미디어 기반의 데이터 전송 방법 및 장치
US8433967B2 (en) * 2011-02-10 2013-04-30 Freescale Semiconductor, Inc. Method and system for detecting retransmission threshold condition in selective repeat ARQ communication system
CN103580780B (zh) * 2012-07-23 2018-03-09 中兴通讯股份有限公司 数据传输方法及装置
AU2012387032B2 (en) * 2012-08-02 2016-05-19 Huawei Technologies Co., Ltd. Data retransmission method, apparatus, and system
PT2898618T (pt) * 2012-09-21 2016-11-21 ERICSSON TELEFON AB L M (publ) Método e aparelho num sistema de comunicação sem fios

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064424A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 通信端末装置、基地局装置および無線通信方法
JP2004040232A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線送信装置、および無線受信装置
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2004112597A (ja) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 基地局装置及びパケット品質推定方法
JP2004266739A (ja) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd 無線通信システムおよび無線通信方法
JP2004320166A (ja) * 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd メッセージ通信装置
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20000853A (fi) * 2000-04-10 2001-10-11 Nokia Networks Oy Tiedonsiirtomenetelmä
JP2002051003A (ja) * 2000-05-22 2002-02-15 Matsushita Electric Ind Co Ltd データ伝送システム及びデータ伝送方法
US7031419B2 (en) * 2001-06-29 2006-04-18 Nokia Corporation Data transmission method and system
KR100541284B1 (ko) * 2002-03-21 2006-01-10 엘지전자 주식회사 다중 입출력 이동 통신 시스템에서의 신호 처리 방법
US7463577B2 (en) * 2002-04-09 2008-12-09 Panasonic Corporation OFDM communication method and OFDM communication device
US7397864B2 (en) * 2002-09-20 2008-07-08 Nortel Networks Limited Incremental redundancy with space-time codes
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7532600B2 (en) * 2003-04-25 2009-05-12 Alcatel-Lucent Usa Inc. Method and system for using hybrid ARQ in communication systems that use multiple input multiple output antenna systems
KR100942645B1 (ko) * 2003-04-29 2010-02-17 엘지전자 주식회사 이동통신 시스템에서의 신호전송 방법 및 장치
KR101000388B1 (ko) * 2003-05-15 2010-12-13 엘지전자 주식회사 이동 통신 시스템 및 이 이동 통신 시스템에서 신호를처리하는 방법
US7450489B2 (en) * 2003-12-30 2008-11-11 Intel Corporation Multiple-antenna communication systems and methods for communicating in wireless local area networks that include single-antenna communication devices
GB2411556B (en) * 2004-02-27 2006-03-29 Toshiba Res Europ Ltd Communications system, method and device
US7940663B2 (en) * 2004-07-20 2011-05-10 Qualcomm Incorporated Mitigating ACK/NACK errors in MIMO/SIC/HARQ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064424A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Ind Co Ltd 通信端末装置、基地局装置および無線通信方法
JP2004040232A (ja) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd 無線通信システム、無線送信装置、および無線受信装置
JP2004072427A (ja) * 2002-08-06 2004-03-04 Matsushita Electric Ind Co Ltd 無線送信装置及び無線送信方法
JP2004112597A (ja) * 2002-09-20 2004-04-08 Matsushita Electric Ind Co Ltd 基地局装置及びパケット品質推定方法
JP2004266739A (ja) * 2003-03-04 2004-09-24 Matsushita Electric Ind Co Ltd 無線通信システムおよび無線通信方法
JP2004320166A (ja) * 2003-04-11 2004-11-11 Matsushita Electric Ind Co Ltd メッセージ通信装置
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INOUE M. ET AL.: "Ayamari Kenshutsu Fugo o Mochiita MIMO-OFDM System no Kento", IEICE TECHNICAL REPORT CS2003-176, 8 March 2004 (2004-03-08), pages 105 - 110, XP003004032 *
See also references of EP1843502A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008041309A1 (ja) * 2006-09-29 2010-02-04 富士通株式会社 無線通信システム、送信装置および受信装置
US9392616B2 (en) 2006-10-31 2016-07-12 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
US11777670B2 (en) 2006-10-31 2023-10-03 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
US11101942B2 (en) 2006-10-31 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
US10326563B2 (en) 2006-10-31 2019-06-18 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
US9866353B2 (en) 2006-10-31 2018-01-09 Telefonaktiebolaget Lm Ericsson (Publ) HARQ in spatial multiplexing MIMO system
KR101241908B1 (ko) 2007-01-30 2013-03-12 엘지전자 주식회사 수신 채널 환경에 따른 재전송 방법 및 이를 위한 송신기,귀환 정보 생성 방법 및 장치
EP2176960A4 (en) * 2007-05-11 2014-01-08 Pantech Co Ltd METHOD FOR SELECTING ANTENNAS AND TRANSFERRING DATA IN WIRELESS LOCAL NETWORK ENVIRONMENTS WITH SEVERAL INPUTS AND MULTIPLE OUTPUTS
EP2176960A1 (en) * 2007-05-11 2010-04-21 Pantech Co., Ltd. Method of selecting antennas and transmitting data in multi-input multi-output wireless local area network environments
JP2010531614A (ja) * 2007-06-27 2010-09-24 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Mimoシステムにおける無線リソース割り当てを改善するための方法及び装置
WO2009041034A1 (ja) * 2007-09-27 2009-04-02 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
US8291275B2 (en) 2008-06-02 2012-10-16 Hitachi, Ltd. Transmission apparatus, access point and symbol transmission method
JP2009290823A (ja) * 2008-06-02 2009-12-10 Hitachi Communication Technologies Ltd 送信装置、基地局及びシンボル送信方法
US9137798B2 (en) 2010-11-25 2015-09-15 Sharp Kabushiki Kaisha Wireless transmission device and wireless transmission method
JP2012114723A (ja) * 2010-11-25 2012-06-14 Sharp Corp 無線送信装置
WO2012070607A1 (ja) * 2010-11-25 2012-05-31 シャープ株式会社 無線送信装置及び無線送信方法

Also Published As

Publication number Publication date
EP1843502A4 (en) 2012-05-23
EP1843502A1 (en) 2007-10-10
BRPI0607263A2 (pt) 2009-08-25
US20090042519A1 (en) 2009-02-12
US7826871B2 (en) 2010-11-02
CN101107803A (zh) 2008-01-16
JP4926038B2 (ja) 2012-05-09
JPWO2006080317A1 (ja) 2008-06-19
CN101107803B (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4926038B2 (ja) 送信装置及び送信方法
US9622261B2 (en) Method for selecting PMI for non-adaptive HARQ operation in a MIMO wireless communication system
US9276706B2 (en) Communication apparatus and communication method
JPWO2006101213A1 (ja) Mimo通信装置及びデータ再送方法
JP5131998B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP5298648B2 (ja) 送信機及び受信機並びに送信方法及び受信方法
US20120057451A1 (en) Method of retransmission for supporting mimo in synchronous harq
WO2006064857A1 (ja) マルチアンテナ伝送における再送方法及び送信方法
JPWO2006095904A1 (ja) 再送方法、無線受信装置、およびマルチアンテナ無線通信システム
JP4575428B2 (ja) 通信装置、送信装置及び通信方法
WO2010005927A1 (en) Method and apparatus for use in cooperative relays using incremental redundancy and spatial diversity (distributed spatial multiplexing or distributed space time coding)
WO2006118081A1 (ja) 送信装置、受信装置及びリンクアダプテーション方法
CN101689975A (zh) 用于在mimo***中进行改进的无线电资源分配的方法和设备
JP4105917B2 (ja) 無線送信装置及び無線送信方法
CA2576130C (en) Packet transmission in a wireless communication system using multiple antennas
WO2024058761A1 (en) A retransmission method for multiple access networks
Song et al. A multi-CRC selective HARQ scheme for MIMO systems
KR20080075288A (ko) 다중 입출력 무선통신 시스템에서 재전송을 위한 모드스위칭 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500523

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11814658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006712284

Country of ref document: EP

Ref document number: 200680003154.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006712284

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0607263

Country of ref document: BR

Kind code of ref document: A2