WO2006080076A1 - Three-dimensional image detection device - Google Patents

Three-dimensional image detection device Download PDF

Info

Publication number
WO2006080076A1
WO2006080076A1 PCT/JP2005/001198 JP2005001198W WO2006080076A1 WO 2006080076 A1 WO2006080076 A1 WO 2006080076A1 JP 2005001198 W JP2005001198 W JP 2005001198W WO 2006080076 A1 WO2006080076 A1 WO 2006080076A1
Authority
WO
WIPO (PCT)
Prior art keywords
image detection
image
dimensional image
optical fiber
detection device
Prior art date
Application number
PCT/JP2005/001198
Other languages
French (fr)
Japanese (ja)
Inventor
Kohei Arai
Junji Kairada
Original Assignee
Saga University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University filed Critical Saga University
Priority to PCT/JP2005/001198 priority Critical patent/WO2006080076A1/en
Priority to JP2007500389A priority patent/JP4625964B2/en
Publication of WO2006080076A1 publication Critical patent/WO2006080076A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6886Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00085Baskets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera

Definitions

  • the present invention relates to a three-dimensional image detection device that detects a three-dimensional image of an object existing in a shielded or isolated region.
  • abdominal catheter, fiber, scope, retractor with fiber, and the like which are mainly used for laparoscopic surgery.
  • a laparoscope with a 5-10mm hole in the patient's abdomen and a lens attached to the tip which is a type of endoscope
  • a catheter, which is an elongated instrument are inserted into the abdominal cavity.
  • This operation is performed by injecting carbon dioxide into the abdominal cavity and expanding the abdominal cavity while observing the expanded abdominal cavity with a monitor.
  • laparoscopic surgery has fewer wounds than open surgery, and has a feature of less post-operative pain and faster post-operative recovery. There is a characteristic.
  • the conventional retractor with a fiber includes a loop wire 200 having a tip formed in a loop shape, and an optical fiber 201 for irradiating light from the proximal end side and irradiating light from the distal end side.
  • the loop wire 200 is housed in a pierced state inside, and the end portion of the optical fiber 201 is disposed at the tip, and the support tub 203 is housed in the optical fiber 201 as a piercing-like body. It is the structure provided with.
  • a doctor grasps and fixes the base 203a of the support rod 203, irradiates the affected area with light from the distal end side of the optical fiber 201, and the doctor visually observes the affected area through the optical fiber 201.
  • the loop wire 200 passed through the support rod 203 it can be used as a pulling forceps or a grasping forceps.
  • the conventional image detection means is configured as described above, a part of an object located at a separated position or in a shielded region is imaged via the optical fiber 201.
  • the surface of the object cannot be detected three-dimensionally.
  • the retractor with fiber used in the laparoscopic surgery is detected by the optical fiber 201 because the operation is performed through a 5-10 mm hole formed to make the wound of the patient extremely small. Therefore, there was a problem that surgery had to be performed with an extremely narrow image, and sufficient skill was required for the surgery. In addition, even if you have skilled experience, the surgical conditions will be limited, and it will cause a medical error by the surgeon.
  • the present invention has been made to solve the above-described problems, and can detect the surface or the inside of an object in a separated or shielded position in a three-dimensional manner. It is an object of the present invention to provide a three-dimensional image detection apparatus that can reconstruct an entire object in three dimensions.
  • the three-dimensional image detection apparatus receives an irradiation optical fiber for irradiating an object with light from the tip side and reflected light from the object at the tip side and is received.
  • An image detection means comprising an imaging optical fiber for transmitting the reflected light, a guide means for movably guiding and supporting the distal end side of the image detection means, and a cylindrical casing.
  • the guide means is supported on one end side, and supporting means for supporting the guide end of the image detection means through the inside of the cylindrical casing.
  • the distal end side of the image detection means composed of the respective optical fibers for irradiation and imaging is supported by the guide means so as to be movable, and the guide means is supported by the support means at one end side.
  • the supporting means is provided for the object at a separated or shielded position.
  • the surface of the object can be detected three-dimensionally, and the object can be three-dimensionally configured.
  • the guide means is positioned at a position where the image detection unit overlaps approximately 60% of the adjacent imaging regions received by the imaging optical fiber as necessary. It moves intermittently.
  • the movement of the image detection means by the guide means is executed intermittently with the imaging areas of the imaging optical fibers overlapping approximately 60%, so that each image force coverage before and after the intermittent is detected.
  • 3D image restoration on the object can be configured accurately and easily
  • the guide means includes two flexible long members that are curved in a substantially arcuate shape, and the two long members. Are connected to each other, and the base end is supported by the support means.
  • the guide means is provided with two flexible long members that are curved in a substantially arc shape, the distal ends of the two long members are connected, and the proximal end is Since it is supported by the support means, the surface of the object such as a built-in object in a state where the abdominal cavity is widened when imaging an object in a shielded state, for example, a built-in part in endoscopic surgery Can be scanned over the entire circumference, and the object can be imaged from all solid angles 4 ⁇ , and a three-dimensional three-dimensional image of the object can be accurately reconstructed.
  • the three-dimensional image detection apparatus is disposed alongside the image detection means as needed, and a projection transmission means for projecting an ultrasonic wave onto the object from the tip side, and the target It comprises an internal structure detecting means comprising a detecting receiving means for transmitting an ultrasonic wave detected by detecting a reflected echo from the object from the tip side.
  • the transmitting means for projecting the ultrasonic wave onto the target object from the front end side and the reflection echo from the target object are disposed on the front end side. Since the internal structure detecting means including the detecting receiving means for transmitting the ultrasonic wave detected and detected from the ultrasonic wave can be detected as a reflected wave from the inside of the target object, the target object The internal structure and tomographic image can be constructed.
  • FIG. 1 is a configuration diagram of a usage state of the 3D image detection apparatus according to the present embodiment
  • FIG. 2 is a configuration diagram of a storage state of the 3D image detection apparatus illustrated in FIG. 1
  • FIG. 3 is a 3D image detection illustrated in FIG. Fig. 4 is an image of the vertical scanning by the device
  • Fig. 4 is an image of the horizontal scanning by the 3D image detector shown in Fig. 1
  • Fig. 5 is a 3D image by the 3D image detector shown in Fig. 1.
  • a restoration configuration flowchart is shown.
  • the three-dimensional image detection apparatus includes an irradiation optical fiber 11 that irradiates the object 100 with light from the irradiation end 1la on the front end side, and the object 100.
  • the image detector 1 is composed of an imaging optical fiber 12 that receives the reflected light at the light receiving end 12a on the front end side and transmits the received reflected light, and guides the front end side of the image detector 1 to be movable. It comprises a supporting guide portion 2 and a cylindrical housing 31, and supports the guide portion 2 at one end side 32 of the cylindrical housing 31 and also has a base end side of the image detection unit 1 inside the cylindrical housing 31. It is the structure provided with the support part 3 which penetrates and supports.
  • the image detecting unit 1 is intermittently moved by the guide unit 2 to a position where the adjacent imaging regions SO ′ Sl, S1 to S2,... Received by the imaging optical fiber 12 are overlapped by approximately 60%. It is a configuration.
  • a light source unit 13 is connected to an incident end l ib of a base end portion of the irradiation optical fiber 11, and light from the light source unit 13 is received from the irradiation end 11a from the base end portion.
  • the imaging unit 14 is connected to the base end of the imaging optical fiber 12, and the reflected light of the object 100 is transmitted from the light receiving end 12a to the exit end 12b imaging unit 14. The image of the object 100 is detected by the two-dimensional CCD array of unit 14.
  • the guide portion 2 is provided with a movable guide body 21 and an expanding guide body 22 made of two flexible long members that are curved in a substantially arcuate shape. Each distal end of 22 is connected by a fixing portion 23, and a base end portion 24 is supported by a cylindrical housing 31 of the support portion, and is fixed to the base end portion 24 and is inserted into the cylindrical housing 31 of the support portion 3.
  • the operation rod 25 is configured to pass through.
  • the moving guide body 21 and the expansion guide body 22 are stored in the cylindrical casing 31 and are pushed into the abdominal cavity in this stored state.
  • the moving guide body 21 and the expansion guide body 22 are pushed from the cylindrical housing 31 by pushing the operating rod 25 into the cylindrical housing 31 and fixed to the tip. In this configuration, the arc is expanded.
  • the support 3 is inserted into the abdominal cavity of the patient, and the operation rod 25 is inserted into the cylindrical housing 31 within the abdominal cavity.
  • the moving guide body 21 and the expanding guide body 22 are slid from the inside of the cylindrical casing 31 and pushed out to push the moving guide body 21 and the expanding guide body 22 in the abdominal cavity (see FIG. 1).
  • the visceral affected part of the object 100 is positioned within the substantially arc of the expanded moving guide body 21 and the expanded guide body 22, and the irradiation end 11a and the light receiving end 12a of the image detection unit 1 are intermittently provided by the guide unit 2.
  • the surface of the affected internal organs is sequentially imaged while moving.
  • each imaging region SO 'Sl, S1-S2, S2-S3, ⁇ that is adjacent to each of the imaging regions SO, SI, ... that can be received by the imaging optical fiber 12 is approximately 60%.
  • the image data is detected and input to the imaging unit 14 in a state of being overlapped to some extent, and the imaging unit 14 reconstructs a stereoscopic image based on each image data.
  • the internal structure detection unit 4 calculates the ratio of the height h from the object reference plane and the parallax d to the focal length f and the intermittent movement distance D of the light receiving end 12a. , Executed sequentially for each imaging region SO ′ Sl, S1 ⁇ S2, S2 ⁇ S3,.
  • the terminal case 15 in which the irradiation end 11a and the light receiving end 12a of the image detection unit 1 are accommodated is moved intermittently along the moving guide body 21 of the guide portion 2 over the entire length in the guide groove portion 21a. Then, when the scanning operation in the vertical direction A of the object 100 by this movement is completed, the scanning operation in the horizontal direction is performed in the direction B orthogonal to the guide part 2. After the guide unit 2 is moved by this horizontal scanning operation, the scanning operation in the vertical direction A is executed, and the irradiation end 11 a of the image detection unit 1 and the light reception are performed along the moving guide body 21 of the guide unit 2. By moving the end 12a intermittently, imaging data can be obtained in the same manner as the above operation.
  • the object 100 is imaged so that the images overlap each other by 60% to detect a plurality of image data (step 1).
  • features such as end points, intersections, bending points, etc. in the image from the difference image between the pre-processed image data and the original image data Is extracted (step 2).
  • Parallax data is calculated by extracting three-dimensional coordinates from the imaging data from which the features have been extracted (step 3). From this parallax data, the configuration of the 3D shape for each image data is detected (step 4).
  • a mapping image is created by performing orthogonal projection geometric transformation on each imaging data having the three-dimensional shape (step 5). Before synthesizing this mapping image, in order to unify the inclination of the image, a two-dimensional rigid transformation of the image is obtained based on the shooting direction (inclination angle of the irradiation end 11a), and the images are sequentially joined together. A mapping image is obtained (step 6).
  • mapping image (wire frame shape image) is lettered with the captured image (step 7).
  • 3D object reconstruction is performed using this lettering image (step 8).
  • the scanning operation in the vertical direction A is sequentially performed in the horizontal direction B
  • the surface of the object 100 that is built in the patient can be scanned over the entire circumference, and Since multiple images are taken from each body angle 4 ⁇ , and the multiple image data are mutually overlapped by 3 ⁇ 40%, the built-in patient of the subject 100 is accurately represented as a 3D image. It will be possible to configure to restore.
  • FIG. 6 is an enlarged view of a main part of a 3D image detection apparatus according to another embodiment.
  • the three-dimensional image detection apparatus includes an image detection unit 1, a guide unit 2, and a support unit 3 in common as in the first embodiment.
  • the image detection unit 1 includes The projection optical fiber 41 that is disposed in parallel and projects an ultrasonic wave onto the object 100 from the front end side, and the reflected ultrasonic wave from the object 100 is detected from the front end side to transmit the detected ultrasonic wave.
  • the structure includes an internal structure detection unit 4 including a detection optical fiber 42 to be sent.
  • an ultrasonic transmitter 43 is connected to an incident end 41b of the base end portion of the projection optical fiber 41, and is incident from the ultrasonic transmitter 43 via the incident end 41b. Irradiates the object 100 from the irradiation end 41a and enters the light receiving end 42b of the detection optical fiber 42 as a detection signal using the reflected echo from the object 100 as a detection signal.
  • the optical signal is output to the ultrasonic receiver 44 connected to the emission end 42b via the optical fiber 42, and the ultrasonic receiver 44 detects an image of the object 100. In this way, by irradiating the object 100 with ultrasonic waves, the internal structure and tomographic image of the object 100 can be detected together with the three-dimensional surface shape of the object 100.
  • FIG. 1 is a configuration diagram of a use state of a 3D image detection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a storage state configuration diagram of the three-dimensional image detection apparatus shown in FIG. 1.
  • FIG. 2 is a storage state configuration diagram of the three-dimensional image detection apparatus shown in FIG. 1.
  • FIG. 3 is an image view of the vertical scanning by the three-dimensional image detection apparatus shown in FIG. 1.
  • FIG. 4 is an image view of lateral scanning by the three-dimensional image detection apparatus shown in FIG. 1.
  • FIG. 5 is a reconstruction flow chart of a stereoscopic 3D image by the 3D image detection apparatus shown in FIG. 1.
  • FIG. 6 is an enlarged view of a main part of a 3D image detection apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a structural sectional view of a conventional retractor with a fiber.
  • Loop wire 1 Optical fiber 3 Support rod

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

The fore-end side of an image detecting section (1) having a light applying optical fiber and an imaging optical fiber is movably supported at a guide section (2). The guide section (2) is supported at one end by a support section (3), and the base end section (24) of the image detection section (1) is inserted into a tubular rod body (31) of the support section (3) and supported in position. The support section (3) is extended to cause the fore-end sides of light applying fiber (11) and imaging fiver (12) of the image detecting section (1) to approach an object (100) located at a separated or shielded position. With the fore-end sections held in a close distance to the object, the image detecting section (1) is moved by using the guide section (2) to sequentially image the surface of the object (100). The imaged data can be three-dimensionally reconstructed.

Description

明 細 書  Specification
三次元画像検出装置  3D image detector
技術分野  Technical field
[0001] 本発明は、遮蔽又は隔離領域に存在する被対象物の三次元画像を検出する三次 元画像検出装置に関する。  The present invention relates to a three-dimensional image detection device that detects a three-dimensional image of an object existing in a shielded or isolated region.
背景技術  Background art
[0002] 従来、この種の画像検出装置として腹腔カテーテル、ファイバー、スコープ、フアイ バー付きリトラクタ等があり、腹腔鏡手術に主に用いられる。この腹腔鏡手術とは、患 者の腹部に 5— 10mmの孔を複数個空け、内視鏡の一種でレンズが先端に取付けら れた腹腔鏡と、細長い器具であるカテーテルを挿入し、腹腔内に二酸化炭素を注入 して腹腔内を拡開し、この拡開した腹腔内をモニターで目視しながら行う手術である 。このように腹腔鏡手術は、開腹手術に比べ傷が小さいことから、術後の痛みが少な ぐ術後回復が早いという特徴と、術後の傷が目立たないので美容的に優れていると レ、う特徴がある。  Conventionally, as this type of image detection apparatus, there are abdominal catheter, fiber, scope, retractor with fiber, and the like, which are mainly used for laparoscopic surgery. In this laparoscopic surgery, a laparoscope with a 5-10mm hole in the patient's abdomen and a lens attached to the tip, which is a type of endoscope, and a catheter, which is an elongated instrument, are inserted into the abdominal cavity. This operation is performed by injecting carbon dioxide into the abdominal cavity and expanding the abdominal cavity while observing the expanded abdominal cavity with a monitor. In this way, laparoscopic surgery has fewer wounds than open surgery, and has a feature of less post-operative pain and faster post-operative recovery. There is a characteristic.
[0003] 前記従来のファイバー付きリトラクタは、図 7に示すように、先端をループ状に形成 したループワイヤ 200と、基端側から光を入射して先端側から光を照射する光フアイ バ 201と、このループワイヤ 200を内部に揷通状態で収納すると共に、先端に光ファ ィバ 201の端部を配設されこの光ファイバ 201の内部に揷通状体で収納される支持 扞 203とを備える構成である。このファイバー付きリトラクタの使用に際しては、医師が 支持扞 203の基部 203aを握って固定し、光ファイバ 201の先端側から患部に光を照 射してこの光ファイバ 201を介して患部を医師が目視しつつこの支持扞 203に揷通 されたループワイヤ 200を利用することにより、牽引鉗子又は把持鉗子として用いるこ とができる。  [0003] As shown in FIG. 7, the conventional retractor with a fiber includes a loop wire 200 having a tip formed in a loop shape, and an optical fiber 201 for irradiating light from the proximal end side and irradiating light from the distal end side. The loop wire 200 is housed in a pierced state inside, and the end portion of the optical fiber 201 is disposed at the tip, and the support tub 203 is housed in the optical fiber 201 as a piercing-like body. It is the structure provided with. When using this retractor with a fiber, a doctor grasps and fixes the base 203a of the support rod 203, irradiates the affected area with light from the distal end side of the optical fiber 201, and the doctor visually observes the affected area through the optical fiber 201. However, by using the loop wire 200 passed through the support rod 203, it can be used as a pulling forceps or a grasping forceps.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 従来の画像検出手段は以上のように構成されていることから、離隔位置にあり、又 は遮蔽された領域に位置する被対象物の一部について光ファイバ 201を介して画像 を検出できるのみで、前記被対象物の表面を三次元的に検出できないといういう課 題を有していた。 [0004] Because the conventional image detection means is configured as described above, a part of an object located at a separated position or in a shielded region is imaged via the optical fiber 201. However, there is a problem that the surface of the object cannot be detected three-dimensionally.
特に、前記腹腔鏡手術において用レ、られるファイバー付きリトラクタは、患者の傷を 極めて小さくするために形成された 5— 10mmの孔を介して手術を行うことから腹腔 内を光ファイバ 201により検出される極めて狭い部分の画像で手術をしなければなら ず、手術に十分な熟練が必要となるという課題を有していた。また、熟練した経験を 有していたとしても、手術条件が制限されることとなり、執刀医による医療ミスを引き起 こす原因となるとレ、う課題を有してレ、た。  In particular, the retractor with fiber used in the laparoscopic surgery is detected by the optical fiber 201 because the operation is performed through a 5-10 mm hole formed to make the wound of the patient extremely small. Therefore, there was a problem that surgery had to be performed with an extremely narrow image, and sufficient skill was required for the surgery. In addition, even if you have skilled experience, the surgical conditions will be limited, and it will cause a medical error by the surgeon.
[0005] 本発明は、前記課題を解消するためになされたもので、離隔され又は遮蔽された位 置に有る被対象物の表面又は内部を三次元的に検出することができ、また被対象物 全体を三次元的に再構成することができる三次元画像検出装置を提供することを目 的とする。 [0005] The present invention has been made to solve the above-described problems, and can detect the surface or the inside of an object in a separated or shielded position in a three-dimensional manner. It is an object of the present invention to provide a three-dimensional image detection apparatus that can reconstruct an entire object in three dimensions.
課題を解決するための手段  Means for solving the problem
[0006] 本発明に係る三次元画像検出装置は、先端側から光を被対象物に照射する照射 する照射用光ファイバ及び当該被対象物からの反射光を先端側で受光して受光さ れた反射光を伝送する撮像用光ファイバからなる画像検出手段と、前記画像検出手 段の先端側を移動自在にガイドして支持するガイド手段と、筒状杆体からなり、当該 筒状扞体の一端側で前記ガイド手段を支持すると共に、当該筒状扞体の内部に画 像検出手段の基端側を揷通して支持する支持手段とを備えるものである。 [0006] The three-dimensional image detection apparatus according to the present invention receives an irradiation optical fiber for irradiating an object with light from the tip side and reflected light from the object at the tip side and is received. An image detection means comprising an imaging optical fiber for transmitting the reflected light, a guide means for movably guiding and supporting the distal end side of the image detection means, and a cylindrical casing. The guide means is supported on one end side, and supporting means for supporting the guide end of the image detection means through the inside of the cylindrical casing.
[0007] このように本発明においては、照射用及び撮像用の各光ファイバからなる画像検出 手段の先端側をガイド手段に移動自在に支持し、このガイド手段を一端側に支持手 段が支持し、この支持手段の筒状扞体の内部に前記画像検出手段の基端側を揷通 して支持するようにしているので、離隔又は遮蔽された位置にある被対象物に対して 支持手段を延出させて画像検出手段の照射光ファイバ及び撮像光ファイバの各先 端側を接近させ、所定距離に接近させた状態でガイド手段を介して画像検出手段を 移動させることにより順次被対象物の表面を撮像し、当該撮像されたデータを再構成 できることとなり、被対象物の表面を三次元的検出し、また対象物を三次元的に構成 できる。 [0008] また、本発明に係る三次元画像検出装置は必要に応じて、画像検出手段が、撮像 用光ファイバが受光する相隣る各撮像領域を略 60%重複させる位置に前記ガイド手 段により間歇的に移動するものである。 As described above, in the present invention, the distal end side of the image detection means composed of the respective optical fibers for irradiation and imaging is supported by the guide means so as to be movable, and the guide means is supported by the support means at one end side. In addition, since the base end side of the image detecting means is passed through and supported inside the cylindrical casing of the supporting means, the supporting means is provided for the object at a separated or shielded position. By moving the image detection means through the guide means in a state in which the front ends of the irradiation optical fiber and the imaging optical fiber of the image detection means are brought closer to each other and are brought closer to a predetermined distance. The surface of the object can be imaged, and the captured data can be reconstructed. The surface of the object can be detected three-dimensionally, and the object can be three-dimensionally configured. [0008] In addition, in the three-dimensional image detection apparatus according to the present invention, the guide means is positioned at a position where the image detection unit overlaps approximately 60% of the adjacent imaging regions received by the imaging optical fiber as necessary. It moves intermittently.
このように本発明においては、画像検出手段のガイド手段による移動を撮像用光フ アイバの撮像領域が略 60%重複させて間歇的に実行するようにしているので、間歇 前後の各画像力 被対象物における立体画像の復元を正確且つ容易に構成できる  As described above, in the present invention, the movement of the image detection means by the guide means is executed intermittently with the imaging areas of the imaging optical fibers overlapping approximately 60%, so that each image force coverage before and after the intermittent is detected. 3D image restoration on the object can be configured accurately and easily
[0009] また、本発明に係る三次元画像検出装置は必要に応じて、ガイド手段が略円弧状 に湾曲する可撓性の二つの長尺部材を対向配設し、当該二つの長尺部材の各先端 を連結し、基端を前記支持手段に支持するものである。 [0009] In addition, in the three-dimensional image detection apparatus according to the present invention, if necessary, the guide means includes two flexible long members that are curved in a substantially arcuate shape, and the two long members. Are connected to each other, and the base end is supported by the support means.
このように本発明においては、前記ガイド手段が略円弧状に湾曲する可撓性の二 つの長尺部材を対向配設し、当該二つの長尺部材の各先端を連結し、基端を前記 支持手段に支持するようにしているので、遮蔽された状態にある被対象物、例えば腹 腔内鏡手術における内蔵部分を撮像する際に、腹腔を拡開した状態で内蔵等の被 対象物表面を全周囲に亘つて走査できることとなり、全立体角 4 πから被対象物の撮 像が可能となり被対象物の立体三次元画像を正確に復元構成できる。  Thus, in the present invention, the guide means is provided with two flexible long members that are curved in a substantially arc shape, the distal ends of the two long members are connected, and the proximal end is Since it is supported by the support means, the surface of the object such as a built-in object in a state where the abdominal cavity is widened when imaging an object in a shielded state, for example, a built-in part in endoscopic surgery Can be scanned over the entire circumference, and the object can be imaged from all solid angles 4 π, and a three-dimensional three-dimensional image of the object can be accurately reconstructed.
[0010] また、本発明に係る三次元画像検出装置は必要に応じて、画像検出手段に併設し て配設され、先端側から超音波を被対象物に投射する投射用発信手段及び当該被 対象物からの反射エコーを先端側から検出して検出された超音波を伝送する検出用 受信手段とからなる内部構造検出手段を備えるものである。  [0010] Further, the three-dimensional image detection apparatus according to the present invention is disposed alongside the image detection means as needed, and a projection transmission means for projecting an ultrasonic wave onto the object from the tip side, and the target It comprises an internal structure detecting means comprising a detecting receiving means for transmitting an ultrasonic wave detected by detecting a reflected echo from the object from the tip side.
このように本発明においては、前記画像検出手段に併設して配設され、先端側から 超音波を被対象物に投射する投射用発信手段及び当該被対象物からの反射ェコ 一を先端側から検出して検出された超音波を伝送する検出用受信手段とからなる内 部構造検出手段を備えることから、超音波が被対象物の内部からの反射波として検 出できることなり、被対象物の内部構造及び断層像が構成できる。  As described above, in the present invention, the transmitting means for projecting the ultrasonic wave onto the target object from the front end side and the reflection echo from the target object are disposed on the front end side. Since the internal structure detecting means including the detecting receiving means for transmitting the ultrasonic wave detected and detected from the ultrasonic wave can be detected as a reflected wave from the inside of the target object, the target object The internal structure and tomographic image can be constructed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] (本発明の第 1の実施形態) [0011] (First embodiment of the present invention)
以下、本発明の第 1の実施形態に係る三次元画像検出装置を図 1ないし図 5に基 づいて説明する。この図 1は本実施形態に係る三次元画像検出装置の使用状態構 成図、図 2は図 1記載の三次元画像検出装置の収納状態構成図、図 3は図 1記載の 三次元画像検出装置による縦方向スキャニングの撮像態様図、図 4は図 1記載の三 次元画像検出装置による横方向スキャニングの撮像態様図、図 5は図 1に記載の三 次元画像検出装置による立体三次元画像の復元構成フローチャートを示す。 Hereinafter, the three-dimensional image detection apparatus according to the first embodiment of the present invention will be described with reference to FIGS. This will be explained. FIG. 1 is a configuration diagram of a usage state of the 3D image detection apparatus according to the present embodiment, FIG. 2 is a configuration diagram of a storage state of the 3D image detection apparatus illustrated in FIG. 1, and FIG. 3 is a 3D image detection illustrated in FIG. Fig. 4 is an image of the vertical scanning by the device, Fig. 4 is an image of the horizontal scanning by the 3D image detector shown in Fig. 1, and Fig. 5 is a 3D image by the 3D image detector shown in Fig. 1. A restoration configuration flowchart is shown.
[0012] 前記各図において本実施形態に係る三次元画像検出装置は、先端側の照射端 1 laから光を被対象物 100に照射する照射用光ファイバ 11及びこの被対象物 100か らの反射光を先端側の受光端 12aで受光して受光された反射光を伝送する撮像用 光ファイバ 12からなる画像検出部 1と、この画像検出部 1の先端側を移動自在にガイ ドして支持するガイド部 2と、筒状杆体 31からなり、この筒状杆体 31の一端側 32で前 記ガイド部 2を支持すると共に、この筒状杆体 31の内部に画像検出部 1の基端側を 揷通して支持する支持部 3とを備える構成である。 [0012] In each of the drawings, the three-dimensional image detection apparatus according to the present embodiment includes an irradiation optical fiber 11 that irradiates the object 100 with light from the irradiation end 1la on the front end side, and the object 100. The image detector 1 is composed of an imaging optical fiber 12 that receives the reflected light at the light receiving end 12a on the front end side and transmits the received reflected light, and guides the front end side of the image detector 1 to be movable. It comprises a supporting guide portion 2 and a cylindrical housing 31, and supports the guide portion 2 at one end side 32 of the cylindrical housing 31 and also has a base end side of the image detection unit 1 inside the cylindrical housing 31. It is the structure provided with the support part 3 which penetrates and supports.
前記画像検出部 1は、撮像用光ファイバ 12が受光する相隣る各撮像領域 SO' Sl, S1 - S2, · · ·を略 60%重複させる位置に前記ガイド部 2により間歇的に移動する構成 である。  The image detecting unit 1 is intermittently moved by the guide unit 2 to a position where the adjacent imaging regions SO ′ Sl, S1 to S2,... Received by the imaging optical fiber 12 are overlapped by approximately 60%. It is a configuration.
[0013] この画像検出部 1は、照射用光ファイバ 11における基端部の入射端 l ibに光源部 13が接続され、この基端部から光源部 13からの光を照射端 11 aから被対象物 100 へ照射すると共に、撮像用光ファイバ 12の基端部に撮像部 14が接続され、受光端 1 2aから被対象物 100の反射光を射出端 12b撮像部 14へ伝送し、この撮像部 14の二 次元 CCDアレイ等で被対象物 100の画像を検出する。  In the image detection unit 1, a light source unit 13 is connected to an incident end l ib of a base end portion of the irradiation optical fiber 11, and light from the light source unit 13 is received from the irradiation end 11a from the base end portion. In addition to irradiating the object 100, the imaging unit 14 is connected to the base end of the imaging optical fiber 12, and the reflected light of the object 100 is transmitted from the light receiving end 12a to the exit end 12b imaging unit 14. The image of the object 100 is detected by the two-dimensional CCD array of unit 14.
前記ガイド部 2は、略円弧状に湾曲する可撓性の二つの長尺部材からなる移動ガ イド体 21及び拡開ガイド体 22を対向配設し、この移動ガイド体 21及び拡開ガイド体 22の各先端を固定部 23で連結し、基端部 24を前記支持部の筒状杆体 31に支持さ れると共に、この基端部 24に固着され前記支持部 3の筒状杆体 31内に操作棒 25が 揷通される構成である。前記移動ガイド体 21及び拡開ガイド体 22は、収納時におい ては図 2に示すように筒状杆体 31内に収納状態にあり、この収納状態で腹腔内に押 込まれ、この揷入後に操作棒 25を筒状扞体 31内に押込んで先端に固着される移動 ガイド体 21及び拡開ガイド体 22を筒状杆体 31からスライド移動させて押出して略円 弧状に拡開状態となる構成である。 The guide portion 2 is provided with a movable guide body 21 and an expanding guide body 22 made of two flexible long members that are curved in a substantially arcuate shape. Each distal end of 22 is connected by a fixing portion 23, and a base end portion 24 is supported by a cylindrical housing 31 of the support portion, and is fixed to the base end portion 24 and is inserted into the cylindrical housing 31 of the support portion 3. The operation rod 25 is configured to pass through. As shown in FIG. 2, the moving guide body 21 and the expansion guide body 22 are stored in the cylindrical casing 31 and are pushed into the abdominal cavity in this stored state. The moving guide body 21 and the expansion guide body 22 are pushed from the cylindrical housing 31 by pushing the operating rod 25 into the cylindrical housing 31 and fixed to the tip. In this configuration, the arc is expanded.
[0014] 次に、前記構成に基づく本実施形態に係る三次元画像検出装置を腹腔鏡手術の 前段において画像検出及び再構成する動作について説明する。  Next, an operation for detecting and reconstructing the image of the three-dimensional image detection apparatus according to the present embodiment based on the above configuration in the previous stage of laparoscopic surgery will be described.
まず、ガイド部 2を支持部 3の中に収納した状態(図 2を参照)で患者の腹腔内に支 持部 3を揷入し、この腹腔内で操作棒 25を筒状杆体 31内に押込んで筒状杆体 31 内から移動ガイド体 21及び拡開ガイド体 22をスライド移動させて押出して移動ガイド 体 21及び拡開ガイド体 22を腹腔内で拡開状態にする(図 1参照)。  First, with the guide 2 stored in the support 3 (see FIG. 2), the support 3 is inserted into the abdominal cavity of the patient, and the operation rod 25 is inserted into the cylindrical housing 31 within the abdominal cavity. The moving guide body 21 and the expanding guide body 22 are slid from the inside of the cylindrical casing 31 and pushed out to push the moving guide body 21 and the expanding guide body 22 in the abdominal cavity (see FIG. 1).
この拡開した移動ガイド体 21及び拡開ガイド体 22の略円弧内に被対象物 100の 内臓患部を位置させ、画像検出部 1の照射端 11a及び受光端 12aをガイド部 2により 間歇的に移動させつつ順次内臓患部の表面を撮像する。  The visceral affected part of the object 100 is positioned within the substantially arc of the expanded moving guide body 21 and the expanded guide body 22, and the irradiation end 11a and the light receiving end 12a of the image detection unit 1 are intermittently provided by the guide unit 2. The surface of the affected internal organs is sequentially imaged while moving.
[0015] この撮像は、撮像用光ファイバ 12が受光できる撮像領域 SO, SI, …の各々相隣 る各撮像領域 SO' Sl, S1 - S2, S2 - S3, · · ·が各々略 60%程度重複させた状態で画 像データを検出して撮像部 14に入力され、この撮像部 14が各画像データに基づい て立体画像を復元構成する。  [0015] In this imaging, each imaging region SO 'Sl, S1-S2, S2-S3, ··· that is adjacent to each of the imaging regions SO, SI, ... that can be received by the imaging optical fiber 12 is approximately 60%. The image data is detected and input to the imaging unit 14 in a state of being overlapped to some extent, and the imaging unit 14 reconstructs a stereoscopic image based on each image data.
この立体画像の復元構成は、受光端 12aの焦点距離 fと間歇移動距離 Dとに対す る被対象物基準面からの高さ hと視差 dとの比率を内部構造検出部 4が演算して、前 記相隣る各撮像領域 SO' Sl, S1 - S2, S2 - S3, …毎に順次実行する。  In this three-dimensional image restoration configuration, the internal structure detection unit 4 calculates the ratio of the height h from the object reference plane and the parallax d to the focal length f and the intermittent movement distance D of the light receiving end 12a. , Executed sequentially for each imaging region SO ′ Sl, S1 − S2, S2 − S3,.
[0016] このガイド部 2の移動ガイド体 21に沿ってガイド溝部 21a内を全長に亘つて画像検 出部 1の照射端 11a及び受光端 12aが収納された端末ケース 15をの間歇的に移動 させ、この移動による被対象物 100の縦方向 Aのスキャニング動作が終了すると、ガ イド部 2を直交する方向 Bへ横方向のスキャニング動作を実行する。この横方向への スキャニング動作によりガイド部 2が移動した後、前記縦方向 Aのスキャニング動作が 実行されてガイド部 2の移動ガイド体 21に沿つて画像検出部 1の照射端 11 a及び受 光端 12aを間歇移動させることにより前記動作と同様に撮像データが得られる。  [0016] The terminal case 15 in which the irradiation end 11a and the light receiving end 12a of the image detection unit 1 are accommodated is moved intermittently along the moving guide body 21 of the guide portion 2 over the entire length in the guide groove portion 21a. Then, when the scanning operation in the vertical direction A of the object 100 by this movement is completed, the scanning operation in the horizontal direction is performed in the direction B orthogonal to the guide part 2. After the guide unit 2 is moved by this horizontal scanning operation, the scanning operation in the vertical direction A is executed, and the irradiation end 11 a of the image detection unit 1 and the light reception are performed along the moving guide body 21 of the guide unit 2. By moving the end 12a intermittently, imaging data can be obtained in the same manner as the above operation.
[0017] さらに、前記被対象物 100の撮像データに基づいて立体三次元画像を復元構成 する動作を図 5に基づいて説明する。  Furthermore, an operation for reconstructing a three-dimensional 3D image based on the imaging data of the object 100 will be described with reference to FIG.
まず、被対象物 100を各画像間が 60%重複するように撮像して複数撮像データを 検出する (ステップ 1)。 この各撮像データに対して特徴点を作成する前処理を行った後に、この前処理を 行った撮像データと元の撮像データとの差分画像から画像中の端点、交点、折曲点 等の特徴を抽出する(ステップ 2)。 First, the object 100 is imaged so that the images overlap each other by 60% to detect a plurality of image data (step 1). After performing pre-processing to create feature points for each image data, features such as end points, intersections, bending points, etc. in the image from the difference image between the pre-processed image data and the original image data Is extracted (step 2).
前記特徴が抽出された撮像データに対して 3次元座標の抽出により視差データを 演算する (ステップ 3)。この視差データから各撮像データ毎の 3次元形状の構成を検 出する (ステップ 4)。  Parallax data is calculated by extracting three-dimensional coordinates from the imaging data from which the features have been extracted (step 3). From this parallax data, the configuration of the 3D shape for each image data is detected (step 4).
[0018] この 3次元形状を構成された各撮像データを正射影幾何変換を行うことによりマツピ ング用画像を作成する(ステップ 5)。このマッピング用画像の合成を行う前に、画像 の傾きを統一するために、撮影方向(照射端 11aの傾き角度)に基づいて画像の 2次 元剛体変換を求めて画像を順次つなぎ合わせることによりマッピング用画像が得られ ることとなる(ステップ 6)。  [0018] A mapping image is created by performing orthogonal projection geometric transformation on each imaging data having the three-dimensional shape (step 5). Before synthesizing this mapping image, in order to unify the inclination of the image, a two-dimensional rigid transformation of the image is obtained based on the shooting direction (inclination angle of the irradiation end 11a), and the images are sequentially joined together. A mapping image is obtained (step 6).
さらにこのマッピング画像(ワイヤーフレーム形状画像)を、撮像画像によりレタリン グを行う(ステップ 7)。このレタリング画像により 3次元物体再構成を行う(ステップ 8)。  Furthermore, this mapping image (wire frame shape image) is lettered with the captured image (step 7). 3D object reconstruction is performed using this lettering image (step 8).
[0019] このように、縦方向 Aのスキャニング動作を順次横方向 Bへ移動して実行されると、 患者の内蔵である被対象物 100の表面を全周囲に亘つて走査できることとなり、全立 体角 4 πからの各撮像による複数の撮像データで、且つこの複数の撮像データ相互 力 ¾0%重複して撮像されていることから、被対象物 100の患者の内蔵を立体三次元 画像として正確に復元構成できることとなる。  [0019] As described above, when the scanning operation in the vertical direction A is sequentially performed in the horizontal direction B, the surface of the object 100 that is built in the patient can be scanned over the entire circumference, and Since multiple images are taken from each body angle 4 π, and the multiple image data are mutually overlapped by ¾0%, the built-in patient of the subject 100 is accurately represented as a 3D image. It will be possible to configure to restore.
[0020] (本発明の他の実施形態)  [0020] (Another embodiment of the present invention)
本発明の他の実施形態に係る三次元画像検出装置を図 6に基づいて説明する。 図 6は他の実施形態に係る三次元画像検出装置の要部拡大図を示す。  A three-dimensional image detection apparatus according to another embodiment of the present invention will be described with reference to FIG. FIG. 6 is an enlarged view of a main part of a 3D image detection apparatus according to another embodiment.
本実施形態に係る三次元画像検出装置は、前記第 1の実施形態と同様に画像検 出部 1ガイド部 2、支持部 3を共通して備え、この構成に加え、前記画像検出部 1に併 設して配設され、先端側から超音波を被対象物 100に投射する投射用光ファイバ 41 及びこの被対象物 100からの反射光を先端側から検出して検出された超音波を伝 送する検出用光ファイバ 42とからなる内部構造検出部 4を備える構成である。  The three-dimensional image detection apparatus according to the present embodiment includes an image detection unit 1, a guide unit 2, and a support unit 3 in common as in the first embodiment. In addition to this configuration, the image detection unit 1 includes The projection optical fiber 41 that is disposed in parallel and projects an ultrasonic wave onto the object 100 from the front end side, and the reflected ultrasonic wave from the object 100 is detected from the front end side to transmit the detected ultrasonic wave. The structure includes an internal structure detection unit 4 including a detection optical fiber 42 to be sent.
[0021] この内部構造検出部 4は、投射用光ファイバ 41における基端部の入射端 41bに超 音波発信器 43が接続され、この入射端 41bを介して超音波発信器 43から入射され る超音波を照射端 41aから被対象物 100へ照射すると共に、この被対象物 100から の反射エコーを検出信号として検出用光ファイバ 42の受光端 42b入射し、この入射 した反射エコーを検出用光ファイバ 42を介して射出端 42bに接続される超音波受信 器 44へ出力され、この超音波受信子器 44で被対象物 100の画像を検出する。 このように被対象物 100に対して、超音波を照射することにより、被対象物 100の三 次元表面形状と共に、被対象物 100の内部構造及び断層像を検出できることとなる 図面の簡単な説明 [0021] In this internal structure detection unit 4, an ultrasonic transmitter 43 is connected to an incident end 41b of the base end portion of the projection optical fiber 41, and is incident from the ultrasonic transmitter 43 via the incident end 41b. Irradiates the object 100 from the irradiation end 41a and enters the light receiving end 42b of the detection optical fiber 42 as a detection signal using the reflected echo from the object 100 as a detection signal. The optical signal is output to the ultrasonic receiver 44 connected to the emission end 42b via the optical fiber 42, and the ultrasonic receiver 44 detects an image of the object 100. In this way, by irradiating the object 100 with ultrasonic waves, the internal structure and tomographic image of the object 100 can be detected together with the three-dimensional surface shape of the object 100.
[0022] [図 1]本発明の第 1の実施形態に係る三次元画像検出装置の使用状態構成図であ る。  FIG. 1 is a configuration diagram of a use state of a 3D image detection apparatus according to a first embodiment of the present invention.
[図 2]図 1記載の三次元画像検出装置の収納状態構成図である。  2 is a storage state configuration diagram of the three-dimensional image detection apparatus shown in FIG. 1. FIG.
[図 3]図 1記載の三次元画像検出装置による縦方向スキャニングの撮像態様図であ る。  FIG. 3 is an image view of the vertical scanning by the three-dimensional image detection apparatus shown in FIG. 1.
[図 4]図 1記載の三次元画像検出装置による横方向スキャニングの撮像態様図であ る。  FIG. 4 is an image view of lateral scanning by the three-dimensional image detection apparatus shown in FIG. 1.
[図 5]図 1に記載の三次元画像検出装置による立体三次元画像の復元構成フローチ ヤートである。  FIG. 5 is a reconstruction flow chart of a stereoscopic 3D image by the 3D image detection apparatus shown in FIG. 1.
[図 6]本発明の第 2の実施形態に係る三次元画像検出装置の要部拡大図である。  FIG. 6 is an enlarged view of a main part of a 3D image detection apparatus according to a second embodiment of the present invention.
[図 7]従来のファイバー付きリトラクタの構成断面図である。  FIG. 7 is a structural sectional view of a conventional retractor with a fiber.
符号の説明  Explanation of symbols
[0023] 1 画像検出部 [0023] 1 Image detector
2 ガイド部  2 Guide section
3 支持部  3 Support section
4 内部構造検出部  4 Internal structure detector
11 照射用光ファイバ  11 Optical fiber for irradiation
11a, 41a 照射端  11a, 41a Irradiation end
l ib, 41b 入射端  l ib, 41b Incident end
12 撮像用光ファイバ a, 42a 受光端b, 42b 射出端 光源部 撮像部 端末ケース 移動ガイド体a ガイド溝部 拡開ガイド体 固定部 基端部 筒状杆体 一端側 投射用光ファイバ 検出用光ファイバ 超音波発信器 超音波受信器0 被対象物 12 Optical fiber for imaging a, 42a Light receiving end b, 42b Emission end Light source unit Imaging unit Terminal case Moving guide body a Guide groove part Expanding guide body Fixed part Base end part Cylindrical housing One end Projection optical fiber Detection optical fiber Ultrasonic transmitter Ultrasonic wave Receiver 0 Object
ループワイヤ1 光ファイバ3 支持杆 Loop wire 1 Optical fiber 3 Support rod
3a 基部 3a base

Claims

請求の範囲 The scope of the claims
[1] 先端側から光を被対象物に照射する照射する照射用光ファイバ及び当該被対象物 力 の反射光を先端側で受光して受光された反射光を伝送する撮像用光ファイバか らなる画像検出手段と、  [1] From an irradiating optical fiber for irradiating an object with light from the tip side and an imaging optical fiber for receiving the reflected light of the object force at the tip side and transmitting the received reflected light Image detection means comprising:
前記画像検出手段の先端側を移動自在にガイドして支持するガイド手段と、 筒状扞体からなり、当該筒状扞体の一端側で前記ガイド手段を支持すると共に、当 該筒状杆体の内部に画像検出手段の基端側を挿通して支持する支持手段とを備え ることを  Guide means for movably guiding and supporting the distal end side of the image detection means, and a cylindrical housing, supporting the guide means at one end side of the cylindrical housing, And supporting means for inserting and supporting the base end side of the image detecting means inside.
特徴とする三次元画像検出装置。  A three-dimensional image detection device characterized.
[2] 前記請求項 1に記載の三次元画像検出装置において、  [2] In the three-dimensional image detection device according to claim 1,
前記画像検出手段が、撮像用光ファイバが受光する相隣る各撮像領域を略 60% 重複させる位置に前記ガイド手段により間歇的に移動することを  The image detecting means is intermittently moved by the guide means to a position where the adjacent imaging areas received by the imaging optical fiber overlap each other by approximately 60%.
特徴とする三次元画像検出装置。  A three-dimensional image detection device characterized.
[3] 前記請求項 1又は 2に記載の三次元画像検出装置において、 [3] In the three-dimensional image detection device according to claim 1 or 2,
前記ガイド手段が略円弧状に湾曲する可撓性の二つの長尺部材を対向配設し、当 該二つの長尺部材の各先端を連結し、基端を前記支持手段に支持することを 特徴とする三次元画像検出装置。  The guide means includes two flexible long members that are curved in a substantially arcuate shape, the distal ends of the two long members are connected to each other, and the base end is supported by the support means. A three-dimensional image detection device characterized.
[4] 前記請求項 1ないし 3のいずれかに記載の三次元画像検出装置において、 [4] In the three-dimensional image detection device according to any one of claims 1 to 3,
前記画像検出手段に併設して配設され、先端側から超音波を被対象物に投射す る投射用発信手段及び当該被対象物からの反射エコーを先端側から検出して検出 された超音波を伝送する検出用受信手段とからなる内部構造検出手段を備えること を  The transmission means for projecting ultrasonic waves from the front end side to the target object and the ultrasonic waves detected by detecting the reflected echo from the target object from the front end side. An internal structure detection means comprising a detection receiving means for transmitting
特徴とする三次元画像検出装置。  A three-dimensional image detection device characterized.
PCT/JP2005/001198 2005-01-28 2005-01-28 Three-dimensional image detection device WO2006080076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/001198 WO2006080076A1 (en) 2005-01-28 2005-01-28 Three-dimensional image detection device
JP2007500389A JP4625964B2 (en) 2005-01-28 2005-01-28 3D image detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001198 WO2006080076A1 (en) 2005-01-28 2005-01-28 Three-dimensional image detection device

Publications (1)

Publication Number Publication Date
WO2006080076A1 true WO2006080076A1 (en) 2006-08-03

Family

ID=36740111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001198 WO2006080076A1 (en) 2005-01-28 2005-01-28 Three-dimensional image detection device

Country Status (2)

Country Link
JP (1) JP4625964B2 (en)
WO (1) WO2006080076A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132750A1 (en) * 2011-03-31 2012-10-04 オリンパスメディカルシステムズ株式会社 Scanning endoscope
JP2017517355A (en) * 2014-03-28 2017-06-29 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Quantitative 3D imaging and surgical implant printing
US10334227B2 (en) 2014-03-28 2019-06-25 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging of surgical scenes from multiport perspectives
US10368054B2 (en) 2014-03-28 2019-07-30 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging of surgical scenes
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
US11266465B2 (en) 2014-03-28 2022-03-08 Intuitive Surgical Operations, Inc. Quantitative three-dimensional visualization of instruments in a field of view
US20230292997A1 (en) * 2022-03-17 2023-09-21 Bard Access Systems, Inc. Fiber Optic Medical Systems and Devices with Atraumatic Tip
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US11931179B2 (en) 2020-03-30 2024-03-19 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241018A (en) * 1984-05-16 1985-11-29 Olympus Optical Co Ltd Stereoscopic endoscope
JPH05269132A (en) * 1992-03-25 1993-10-19 Toshiba Corp Intracelom ultrasonic diagnostic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6139489A (en) * 1999-10-05 2000-10-31 Ethicon Endo-Surgery, Inc. Surgical device with integrally mounted image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241018A (en) * 1984-05-16 1985-11-29 Olympus Optical Co Ltd Stereoscopic endoscope
JPH05269132A (en) * 1992-03-25 1993-10-19 Toshiba Corp Intracelom ultrasonic diagnostic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHNO K. ET AL.: "Subcu-retractor Oyobi vessel dissector o Heiyo shita Jukaku Kyoka Shokudo Nukisashijutsu", JOURNAL OF JAPAN SOCIETY FOR ENDOSCOPIC SURGERY, vol. 4, no. 6, 15 December 1999 (1999-12-15), pages 543 - 547, XP003000465 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132750A1 (en) * 2011-03-31 2012-10-04 オリンパスメディカルシステムズ株式会社 Scanning endoscope
JP5282173B2 (en) * 2011-03-31 2013-09-04 オリンパスメディカルシステムズ株式会社 Scanning endoscope device
JP2017517355A (en) * 2014-03-28 2017-06-29 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Quantitative 3D imaging and surgical implant printing
US10334227B2 (en) 2014-03-28 2019-06-25 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging of surgical scenes from multiport perspectives
US10350009B2 (en) 2014-03-28 2019-07-16 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging and printing of surgical implants
US10368054B2 (en) 2014-03-28 2019-07-30 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging of surgical scenes
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
US11266465B2 (en) 2014-03-28 2022-03-08 Intuitive Surgical Operations, Inc. Quantitative three-dimensional visualization of instruments in a field of view
US11304771B2 (en) 2014-03-28 2022-04-19 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
US11931179B2 (en) 2020-03-30 2024-03-19 Bard Access Systems, Inc. Optical and electrical diagnostic systems and methods thereof
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
US20230292997A1 (en) * 2022-03-17 2023-09-21 Bard Access Systems, Inc. Fiber Optic Medical Systems and Devices with Atraumatic Tip

Also Published As

Publication number Publication date
JP4625964B2 (en) 2011-02-02
JPWO2006080076A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4625964B2 (en) 3D image detector
US9237851B2 (en) Imaging system producing multiple registered images of a body lumen
US20100113919A1 (en) Catheter arangement for insertion into a blood vessel for minimally invasive intervention
JPH07500507A (en) Ultrasonic endoscope device
JP6270026B2 (en) Endoscopic observation support device
JP6759225B2 (en) Medical device for ultrasound imaging
JP2017086399A (en) Endoscope
WO2014125916A1 (en) Relative position detection system for tube-like device, and endoscope device
WO2013011733A1 (en) Endoscope guidance system and endoscope guidance method
JP5527841B2 (en) Medical image processing system
JP2006263068A (en) Ultrasonic diagnostic apparatus
JP5635868B2 (en) Optical tomographic imaging system
JP2010088699A (en) Medical image processing system
JP2859826B2 (en) Ultrasound probe with puncture needle guide
WO2019239647A1 (en) Ultrasound imaging apparatus
JP4119530B2 (en) Endoscope device and position detection catheter inserted into endoscope
US20080221447A1 (en) Medical apparatus obtaining information indicative of internal state of an object based on interaction between sound waves and light
WO2022009407A1 (en) Medical device and image generation method
JP2000116655A5 (en)
KR20180027056A (en) Dual transducer ultrasonography probe for vascular puncutre, and ultrasonography image acquisition system using the same
JPH11206778A (en) Endoceliac ultrasonic wave probe
JP3943923B2 (en) Ultrasound diagnostic imaging equipment
JPH0747027B2 (en) Ultrasound endoscope
JP2011177418A (en) Guide device, guide wire indwelling catheter, and guide wire catheter system
JP2019509858A (en) Tissue and vascular pathway mapping using synchronized photoacoustic and ultrasonic pullback techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500389

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05704248

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5704248

Country of ref document: EP