WO2006080054A1 - Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility - Google Patents

Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility Download PDF

Info

Publication number
WO2006080054A1
WO2006080054A1 PCT/JP2005/000977 JP2005000977W WO2006080054A1 WO 2006080054 A1 WO2006080054 A1 WO 2006080054A1 JP 2005000977 W JP2005000977 W JP 2005000977W WO 2006080054 A1 WO2006080054 A1 WO 2006080054A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
passage
inlet
outlet
fuel
Prior art date
Application number
PCT/JP2005/000977
Other languages
French (fr)
Japanese (ja)
Inventor
Masaaki Sako
Yujiro Fujisaki
Hideaki Ota
Eiichi Harada
Masatoshi Hirokawa
Yoshiharu Nonaka
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to PCT/JP2005/000977 priority Critical patent/WO2006080054A1/en
Priority to JP2007500367A priority patent/JP4481330B2/en
Priority to KR1020077014967A priority patent/KR100875498B1/en
Priority to BRPI0520608-1A priority patent/BRPI0520608A2/en
Priority to CNB2005800470631A priority patent/CN100549391C/en
Publication of WO2006080054A1 publication Critical patent/WO2006080054A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific

Definitions

  • Gas calorie fluctuation suppression device fuel gas supply equipment, gas turbine equipment and boiler equipment
  • the present invention relates to a gas calorie fluctuation suppressing device, a fuel gas supply facility, a gas turbine facility, and a boiler facility. More specifically, when the calorific value (also referred to as calorie) of the gas used as the fuel for the combustion facility fluctuates, such as low calorie gas, this gas calorie fluctuation suppressing device can suppress this calorific value fluctuation, and this gas calorie fluctuation suppressing device. And a gas turbine facility and a boiler facility as a combustion facility equipped with a fuel gas supply facility.
  • BFG Blast Furnace Gas
  • C0 carbon dioxide
  • CH3 methane
  • BFG contains 2-10 g / Nm 3 of dust. After removing this to about 0. Olg / Nm 3 with a dust remover, the fuel gas with a calorific value of about 800 kcal / Nm 3 It is used in hot air ovens, coke ovens, heating furnaces, boilers, etc.
  • gas turbines have also been able to burn low calorie gas due to improvements in technology, and there are an increasing number of cases where BFG is used as gas turbine fuel to generate electricity.
  • low calorie gas is defined as a gas whose calorific value is about 12 MJ / Nm 3 or less.
  • the low calorie gas is not limited to blast furnace gas (BFG) but includes various types of gas such as converter gas (LDG) and mixed gas thereof.
  • N 2 nitrogen gas
  • N 2 nitrogen gas
  • Patent Document 1 JP 2002-155762 A
  • Patent Document 2 Japanese Patent Laid-Open No. 9-317499
  • the present invention has been made to solve such a problem, and by suppressing the calorie fluctuation of the fuel gas such as low calorie gas supplied as fuel to the combustion facility, the fuel gas can be reduced by the diluted gas. It is easy and effective to increase heat not only by heat but also by heat-increased gas (medium calorie and high calorie gas mixed to increase the caloric value of fuel gas, hereinafter also called medium / high calorie gas).
  • a gas calorie fluctuation suppressing device that can eliminate the need for heat reduction using a dilution gas or heat increasing gas
  • a fuel gas supply facility equipped with the gas calorie fluctuation suppressing device and a fuel gas supply facility The purpose is to provide gas turbine equipment and boiler equipment.
  • the gas calorie fluctuation suppressing device of the present invention includes:
  • a gas mixing device for mixing fuel gas disposed in a fuel gas supply passage for supplying gas to the combustion facility as fuel;
  • the gas mixing device is formed separately from a gas passage component having a plurality of gas passages, an inlet member for allowing fuel gas to flow into the gas passage component from the fuel gas supply passage, and the inlet member. Further, the gas passage component member force is provided with an outlet member for allowing the fuel gas to flow out into the fuel gas supply passage, and the gas continuously flowing in from the inlet member further includes a plurality of gas passage component members. After passing through the gas passages with a time difference, the gas passages join together and can flow out from the outlet member.
  • Fuel gas which is supplied every moment through the fuel gas supply passage, flows into the gas passage constituent member, and is mixed with time difference when it comes out from each of the plurality of gas passages and merges. Therefore, even when the caloric value of the fuel gas is fluctuating, the time difference mixing reduces the width of the caloric fluctuation, and the caloric fluctuation speed is reduced. As a result, it becomes easy and effective to adjust the calorie fluctuation of the fuel gas within the allowable fluctuation range of the gas characteristics of the combustion facility by using the dilution gas or the heat increasing gas. Also, depending on the average caloric value of the fuel gas, it is possible to make it unnecessary to reduce or increase heat. Note that the time difference mixing means that the gas flowing into the gas passage constituting member continuously with a time delay is mixed with the gas that has already flowed and stayed.
  • connection to the inlet member is not limited to the upstream side of the fuel gas supply passage
  • connection to the outlet member is not limited to the downstream side of the fuel gas supply passage.
  • the gas passage constituting member comprises a first container in which a plurality of gas chambers constituting the gas passage are formed,
  • the inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber, the outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage, and the inlet member is branched.
  • a gas flow rate adjusting device capable of changing the gas flow rate can be provided in each of the portions.
  • the gas passes through each of the plurality of gas chambers with a time difference, so that the time difference may be mixed when the gases merge later. It becomes possible.
  • the gas passage constituting member comprises a first container in which a plurality of gas chambers constituting the gas passage are formed,
  • the inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber, the outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage, and the plurality of gases It is also possible to configure the chambers to have different volumes.
  • the gas passes through the plurality of gas chambers with a time difference, so that the time difference mixing is performed when the gas that has passed through the gas chambers later merges. It becomes possible.
  • the gas passage constituting member includes a plurality of second containers constituting the gas passage, and a gas inlet and a gas outlet are formed in each second container,
  • the inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container.
  • the outlet member is integrated from the gas outlet of each second container and connected to the fuel gas supply passage, and a gas flow rate adjusting device capable of changing the gas flow rate is provided at each branched portion of the inlet member. Can do.
  • the gas passage constituting member includes a plurality of second containers constituting the gas passage, and each of the second containers has a gas inlet and a gas outlet,
  • the inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container, and the outlet member is integrated from the gas outlet of each second container and connected to the fuel gas supply passage.
  • the two containers can be configured to have different volumes.
  • the plurality of second containers described above may be bound together or may be in an independently separated state.
  • the gas passage constituting member comprises a third container force including a perforated plate in which a plurality of through holes constituting the gas passage are formed,
  • the inlet member and the outlet member are disposed in a third container
  • the perforated plate can be arranged so as to cut the interior of the third container into a space on the inlet member side and a space on the outlet member side.
  • the structure of the third container is not limited.
  • it may be a fixed-shaped container whose volume does not change, or may be a variable-volume tank used as a device (gas holder) for monitoring the gas supply-demand balance in a conventional gas turbine facility or the like.
  • the internal volume variable tank is a tank with a lid member that is airtightly mounted that can move up and down according to the tank internal pressure, and the balance member can be maximized by positively moving the lid member up and down with a drive unit.
  • a plurality of the perforated plates may be arranged at intervals.
  • the through hole is formed in a range excluding a portion of the porous plate that intersects with a gas flow path central axis of the inlet member toward the inside of the third container and the vicinity thereof. ,. This is because the residence time of the gas flowing into the third container can be extended.
  • the gas outlet force is preferably formed at a position deviating from an extension line of the central axis of the gas inlet. . This is because the residence time of the gas flowing into the first container or the second container can be extended.
  • the gas inlet is configured to change the inflow angle of the fuel gas into the gas passage of the gas passage constituent member. It is preferable to install a gas inflow device. This is because the gas inflow direction can be adjusted so that the time difference mixing of the gas is effectively performed inside the first container or the second container.
  • the inflow angle of the fuel gas into the third container can be changed to one of the inlet member and the vicinity of the inlet member in the third container. It is preferable to install a gas inflow device configured as described above. This is because the gas inflow direction can be adjusted so that the time difference mixing of the gas is effectively performed inside the third container.
  • the gas calorie fluctuation suppressing device including the gas inflow device has at least one louver that is swingably mounted so that the tilt angle can be changed from the outside. It can consist of variable louvers.
  • a plurality of the inlet members are provided, and an inlet member for allowing the fuel gas to flow into the third container can be selected and switched among the inlet members.
  • a plurality of the outlet members are provided, and an outlet member that allows the fuel gas to flow out of the third container can be selected and switched in synchronization with the switching of the inlet member. Can be configured.
  • the gas calorie fluctuation suppressing device including the third container, a plurality of inlet members are formed.
  • a flow rate adjusting device at each inlet member, and to configure it so that the flow rate of the gas flowing through each inlet member can be changed.
  • the powerful configuration for example, it is possible to promote the time difference mixing of the gas in the third container S by periodically switching the gas inlet through which the gas flows.
  • an inert gas supply passage for allowing an inert gas to flow into the gas passage constituent member is connected to the gas passage constituent member or the inlet member. This is because the fuel gas and the inert gas are preliminarily mixed with each other in the gas passage constituent member.
  • waste nitrogen discharged from at least one of an oxygen production plant and a nitrogen production plant is preferable to use waste nitrogen discharged from at least one of an oxygen production plant and a nitrogen production plant as the inert gas. This is because it is easy and inexpensive to procure inert gas.
  • the oxygen production plant and nitrogen production plant those installed in processes such as the blast furnace method and the direct reduced iron method can be applied.
  • a stirring device for stirring gas may be installed in the gas mixing device.
  • a fan or the like can be adopted as the stirring device.
  • An inlet gas calorific value measuring device for measuring the gas calorie value of the fuel gas is installed in one of the fuel gas supply passage and the inlet member connected to the inlet member, and the outlet member is installed in the outlet member.
  • An outlet gas calorific value measuring device for measuring the gas calorie value of the fuel gas can be installed in one of the connected fuel gas supply passage and the outlet member.
  • the gas calorie fluctuation of the gas flowing into the gas passage constituent member is reduced.
  • a control device that controls the amount of gas flowing into the gas passage component based on the comparison result and the calorie fluctuation of the discharged gas. Can be set.
  • the calorie fluctuation of the inflow gas to the gas path constituent member and the calorie fluctuation of the exhaust gas from the gas path constituent member It is possible to arrange a control device that controls the change of the gas inflow direction into the gas passage constituting member based on the comparison result.
  • the fuel gas supply facility of the present invention comprises: A fuel gas supply passage for supplying gas as fuel to the combustion facility, and a gas calorie fluctuation suppressing device for suppressing fluctuations in the calorific value of the fuel gas supplied through the fuel gas supply passage,
  • This gas calorie fluctuation suppressing device is composed of any one of the gas calorie fluctuation suppressing devices described above.
  • An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between an inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage. And an upstream inlet passage.
  • this gas calorie fluctuation suppressing device instead of the upstream side inlet passage or together with the upstream side inlet passage, it is downstream from the connection point between the inlet member of the gas mixing device and the outlet passage in the fuel gas supply passage. And a downstream inlet passage connected to the gas inlet side, and a gas pumping device installed in the downstream inlet passage for pumping the fuel gas toward the gas mixing device.
  • An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between an inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage.
  • a return passage connected between the downstream side of the connection point of the outlet passage in the fuel gas supply passage and the upstream side of the connection point of the upstream inlet passage in the fuel gas supply passage; and installed in the return passage;
  • a gas pressure feeding device that pressure-feeds the fuel gas toward the upstream side fuel gas supply passage may be further provided.
  • the gas mixing device has two inlet members;
  • a downstream fuel gas supply passage is connected to the outlet member of the gas mixing device, an upstream fuel gas supply passage is connected to one inlet member of the gas mixing device, and the other inlet member of the gas mixing device
  • a return passage connected between the fuel gas supply passage and the downstream fuel gas supply passage;
  • a gas pressure feeding device that is installed in the return passage and pumps the fuel gas toward the gas mixing device can be further provided.
  • the fuel gas supply passage on the downstream side is connected to the outlet member of the gas mixing device, the fuel gas supply passage on the upstream side is connected to the inlet member of the gas mixing device, and the fuel gas supply on the upstream side of the gas mixing device is supplied
  • a return passage connected between the passage and the fuel gas supply passage downstream of the gas mixing device;
  • a gas pumping device installed in the return passage and pumping the fuel gas from the downstream side to the upstream side of the fuel gas supply passage may be further provided.
  • the gas turbine equipment of the present invention comprises:
  • the fuel gas supply facility is composed of one of the best fuel gas supply facilities mentioned above.
  • the boiler equipment of the present invention comprises:
  • the fuel gas supply facility is configured as any one of the above-mentioned fuel gas supply facilities.
  • the calorie of the low calorie gas supplied by time difference mixing. Variation can be suppressed (mitigated). That is, not only to reduce the amplitude of fluctuation, but also as if it were a low-pass filter, a short cycle or medium Since the fluctuations in the period can be eliminated and only the long-period fluctuations can remain, heat reduction by the dilution gas and heat increase by the heat-increasing gas can be effectively and easily performed. In addition, there is a case where heat reduction by dilution gas and heat increase by heating gas are not necessary.
  • FIG. 1 is a piping diagram showing an outline of a gas turbine power generation facility including a low calorie gas supply facility which is an embodiment of the fuel gas supply facility of the present invention.
  • FIG. 2 is a graph showing an example of a state in which the calorie change of the gas is suppressed by passing the low calorie gas through the gas mixing device.
  • FIG. 3 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 4 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of the gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 4 (b) is a sectional view taken along line IV-IV in Fig. 4 (a).
  • FIG. 5 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of the gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 5 (b) is a cross-sectional view taken along line V-V in Fig. 5 (a).
  • FIG. 6 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 7 is a longitudinal sectional view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 8 (a) is a front view showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1, and FIG. 8 (b) is a front view of FIG. 8 (a).
  • FIG. 8 is a sectional view taken along line VIII-VIII.
  • FIG. 9 is a partially cutaway perspective view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 10 is a longitudinal section taken along a plane along the central axis of the gas mixing apparatus of FIG.
  • FIG. 11 is a graph showing an example of a result of simulation of time-difference mixing of gases in the gas mixing apparatus.
  • FIG. 12 is a graph showing another example of the result of the simulation of the time difference mixing of the gas in the gas mixing apparatus.
  • FIG. 13 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of a gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 13 (b) is a cross-sectional view taken along the line ⁇ _ ⁇ of Fig. 13 (a).
  • FIG. 14 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 15 is a longitudinal sectional view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 16 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 17 is a partially cutaway perspective view showing an example of a gas inflow device used in the gas mixing device of FIG.
  • FIG. 18 is a cross-sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 19 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 20 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 21 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • FIG. 22 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
  • Fig. 23 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of Fig. 1.
  • FIG. 24 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
  • FIG. 25 shows a boiler including a low-calorie gas supply facility according to another embodiment of the present invention. It is a piping diagram which shows the outline of an installation.
  • Fig. 1 shows a low calorie gas supply facility 1 which is an embodiment of the fuel gas supply facility of the present invention for supplying low calorie gas as a fuel gas to a gas turbine as a combustion facility, and the low calorie gas supply facility 1 It is a piping diagram showing the outline of the included gas turbine equipment.
  • a gas turbine power generation facility is exemplified as a gas turbine facility.
  • the calorific value is Low calorie gas, defined as a gas of about 12 MJ / Nm 3 or less, often changes its calorie characteristics.
  • the low-calorie gas supply facility 1 as the fuel gas supply facility is a fuel gas supply that supplies by-product gas (hereinafter referred to as low-calorie gas) generated directly in the reduced iron facility S to the gas turbine 2 as fuel.
  • a low calorie gas supply pipe 3 as a passage and a dilution gas supply pipe 4 for supplying a dilution gas to the low calorie gas supply pipe 3 to reduce the heat of the low calorie gas are provided.
  • the reason why the diluted gas is supplied to the low calorie gas is to prevent the calorie value of the low calorie gas from fluctuating and exceeding the allowable calorie range inherent to the gas turbine.
  • the dilution gas supply pipe 4 is provided with a flow meter 18 and a flow rate adjustment valve (hereinafter referred to as a flow control valve) 19 for adjusting the flow rate of the dilution gas.
  • a flow control valve for adjusting the flow rate of the dilution gas.
  • the dilution gas inert gas, air, steam, exhaust gas discharged from combustion facilities, etc. can be employed.
  • Force S that nitrogen gas (N 2) can be preferably used as an inert gas S, of course, not limited to N, and may be CO, helium (He), etc.
  • the downstream part of the mixer 6 of the low-calorie gas supply pipe 3 may be sent to the gas turbine 2 in a state where the low-calorie gas is mixed with the dilution gas, so this range of pipe is called the mixed gas supply pipe 14 .
  • the low calorie gas supply facility 1 is provided with a control device 5 for controlling its operation.
  • a dust collector 7 for removing dust from the low calorie gas directly sent from the reduced iron facility S and a mixture of the low calorie gas are used.
  • a gas mixing device 10 is installed.
  • the gas mixing device 10 includes a gas passage component member 23 having a plurality of gas passages, an inlet member 11 for connecting the upstream low calorie gas supply pipe 3 to the gas passage member 23, and a gas separate from the inlet member 11.
  • An outlet member 12 for connecting the low-calorie gas supply pipe 3 on the downstream side to the passage constituting member 23 is provided.
  • the gas mixing device 10 has a relatively large capacity, and the low caloric gas flowing in while changing the calorie from time to time is mixed in the gas mixing device 10 with a time difference. That is, at the same time The low calorie gas that has flowed into the gas mixing device 10 is distributed from a portion that flows out of the outlet member 12 relatively early to a portion that stays in the gas mixing device 10 from late. On the other hand, since new gas continuously flows from the inlet member 11, the gas that has flowed in the past and the gas that has flowed in are continuously mixed. Here, this is called time difference mixing. As will be described later, the gas mixing device functions as a gas calorie fluctuation suppressing device by exhibiting this time difference mixing.
  • calorific value detection devices 8 and 9 for detecting the calorific value of the low calorie gas are installed, and the gas flow rate is set on the downstream side of the gas mixing device 10.
  • a flow meter 13 for measurement is installed.
  • the installation location of the calorific value detection devices 8 and 9 is not limited to the low calorie gas supply pipe 3, but can be installed on the inlet member 11 and outlet member 12 of the gas mixing device 10 if possible.
  • the flow meter 13 is installed in a portion between the gas mixing device 10 and the mixer 6 in the low calorie gas supply pipe 3, but the position is not limited to this. For example, it may be installed in the mixed gas supply pipe 14 downstream from the mixer 6 or may be installed in the fuel pipe 17 connected to the combustor 20 of the gas turbine 2 described later.
  • the calorific value detection devices 8 and 9 a so-called calorimeter that directly measures the calorific value of gas, a device that measures the content (concentration) of combustible components, and the like are used. If importance is attached to the detection speed, it is now preferable to use a combustible gas concentration detector. Furthermore, depending on the type of combustible component contained in the low calorie gas applied, and depending on the combustible component in which the main concentration fluctuation occurs (for example, carbon monoxide in the byproduct gas in the direct reduced iron method), You may use the density
  • a calorimeter 15 is installed in the mixed gas supply pipe 14. This is because the calorimeter 9 and the flow meter 13 on the outlet side of the gas mixing device 10 are monitored and the calorimeter 15 of the mixed gas supply pipe 14 is monitored to determine the appropriateness of the final caloric value of the mixed gas. It is. Furthermore, when using a gas containing a relatively large amount of oxygen, such as air or exhaust gas from combustion equipment, as the dilution gas, the mixed gas supply pipe 14 or 14 is used to control the oxygen concentration of the mixed gas. It is desirable to install an oxygen concentration meter (not shown) in the dilution gas supply pipe 4. A fuel gas compressor 16 of the gas turbine 2 is installed on the downstream side of the calorimeter 15.
  • a flow control valve 21 for adjusting the turbine output is installed in the fuel pipe 17 connected from the fuel gas compressor 16 to the combustor 20 of the gas turbine 2.
  • a generator 22 is connected to the gas turbine 2.
  • the gas turbine 2 may be provided with an exhaust heat recovery boiler power generation facility that generates power using the exhaust gas.
  • the gas mixing device 10 includes the inlet member 11 and the outlet member 12 to which the low calorie gas supply pipe 3 is connected. Therefore, the low caloric gas sent flows through the inlet member 11 and into the gas passage constituting member 23.
  • the gas passage component 23 has a large volume, for example, a low calorie gas supply pipe 3 having a diameter of about 23 m and a normal volume of about 20000 20000 Om 3 is installed. The low calorific gas that is sent while the calorie fluctuates from time to time is mixed in a time difference in the gas mixing device.
  • FIG. 2 when the volume of 2 00000M 3 below the gas passage forming member 23 having a gas mixing device 10 in Figure 1, supply of low-calorie gas force S flow rate 500,000 nm 3 / hr varying calorific value
  • the simulation results for the state of suppression (relaxation) of calorie fluctuation are shown.
  • the horizontal axis represents time (minutes), and the vertical axis represents the gas calorie value (kcal / Nm 3 ), which is the calorific value of low calorie gas.
  • the curve indicated by the broken line in the figure indicates the calorie fluctuation (original fluctuation) of the low calorie gas sent to the gas mixing device 10. This is a sample that was actually measured.
  • the curve shown by the solid line shows the calorie fluctuation (after-suppression fluctuation) of the low calorie gas exiting from the gas mixing device 10 after sufficient time difference mixing.
  • the calorific value of the low calorific gas before entering the gas mixing device 10 fluctuates to about 1530 kcal / Nm 3 force about 2360 kca 1 / Nm. In other words, it has a fluctuation range of about ⁇ 21% of the average value (1945 kcal / Nm 3 ).
  • the calorie fluctuation of the low calorie gas coming out of the gas mixing device 10 it is 1780 kcal / Nm 3 force, etc., up to 1960 kcal / Nm 3 and the fluctuation range is flat.
  • the average value (1870kcal / Nm 3 ) is suppressed to about ⁇ 5%.
  • fluctuations in the short period and medium period are removed, and fluctuations in a relatively long period remain. This effect tends to become more pronounced as the volume of the gas mixing device is increased with respect to the low calorie gas supply flow rate. If the period of the original fluctuation is short and the fluctuation width is small, the economic power will be effective even if the volume of the gas mixing device is reduced.
  • the gas mixing device that can realize the time difference mixing of the low calorie gas
  • the calorie fluctuation of the low calorie gas is greatly suppressed.
  • the control of mixing the dilution gas downstream is very easy.
  • the calorie fluctuation range of the fuel gas of gas turbine 2 is set to ⁇ 10% of the standard calorie value (average value)
  • the average value of the fluctuating calorie is calculated downstream of the gas mixing device.
  • the air supply operation it is no longer necessary to consider the power calorie fluctuation of low calorie gas.
  • the gas mixing device 10 has a predetermined volume, the low-calorie gas time difference mixing described above can be performed. However, the low-calorie gas time difference mixing is more sufficiently performed in the gas mixing device.
  • the gas mixing device is configured so that a part of the low calorific gas flowing into the tank stays in the tank for as long as possible and is mixed sufficiently in the tank, so that more effective time difference mixing is performed.
  • a gas mixing device is a gas mixing device in which the gas that has flowed into it passes through the gas passages formed there over different times, and the gas that has passed through each gas passage is mixed. The time difference mixing is configured to be achieved. This configuration will be described with reference to FIG. 4 and FIG.
  • the gas mixing device 10 shown in FIG. 4 employs a tank 25 in which a gas chamber 24 serving as a plurality of gas passages is formed as a gas passage constituent member 23.
  • a plurality of cylindrical partition walls 26 having upper ends opened on the floor surface in the cylindrical tank 23 are arranged concentrically at intervals, and the tank peripheral wall and the cylindrical partition wall 26 are connected to each other.
  • the space between each other and the space between the cylindrical partition walls 26 constitute a gas passage 24, respectively.
  • the height of the upper end of the cylindrical partition wall 26 is lower than the height of the ceiling of the tank 25, and each gas chamber (gas passage) 24 is formed by the space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26. It is communicated.
  • Gas inlet holes 27 are formed at positions corresponding to the gas chambers 24 at the bottom of the tank 25, and one gas connected to the low-calorie gas supply pipe 3 on the downstream side is formed on the ceiling of the tank 25.
  • An outlet hole 28 is formed.
  • the inlet member 11 adjusts the amount of inflow gas installed in the pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the inlet holes 27 and the pipe 29.
  • the flow control valve 30 is provided. It can be said that the outlet member 12 includes the outlet hole 28 and a portion of the tank 25 above the upper end of each cylindrical partition wall 26. That is, the outlet member 12 is a portion of the tank that defines the space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26 including the outlet hole 28.
  • the gas that passes through the gas passages 24 merges at the outlet member 12 and is mixed there.
  • the gas passage component 23 in FIG. 4 has four gas passages 24a, 24b, 24c, and 24d. However, the number is not limited, and two or more gas passages may be used. From the standpoint of realizing a long time gap, the better.
  • connection of the inlet member 11 to each gas passage 24 is not limited to the bottom of the tank 25 as in this embodiment, but the length of the gas passage 24 extending from the inlet member 11 to the outlet member 12 is longer. Therefore, when the upper end of the gas passage 24 is opened and communicated with the outlet member 12, the inlet member 11 should be connected to the bottom of the tank 25 as shown in the figure.
  • the volumes of all the gas chambers 24 are substantially the same.
  • the flow rate of the gas flowing into each gas chamber 24 is made different by adjusting the opening degree of the flow control valve 30.
  • the time until the gas that has flowed into each gas chamber 24 at the same time reaches the outlet member 12 is gas. It will vary depending on chambers 24a, 24b, 24c and 24d. As a result, the gas that has flowed out of each gas chamber and merged is mixed by time difference, and calorie fluctuation is suppressed. This will be explained below.
  • V the total gas flow rate through the inlet member 11, and the ratio of the gas flow rates flowing into the first to nth gas passages having the same volume W is 1: 2: 3: ⁇
  • ⁇ 2 ⁇ is the nth gas after 1 / n X t
  • the gas that has flowed into all the gas passages at the same time flows out from each gas passage after a different time, and merges and is mixed at the outlet member 12.
  • the gas flowing into the gas mixing device 10 is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
  • a mixer or a stirring device may be installed at the outlet member 12 (for example, a portion of the tank 25 above the gas passage 24).
  • a fan or the like can be used as the stirring device. It is preferable to install an electric motor or the like for driving a fan or the like outside the tank or gas passage.
  • the flow rate of gas flowing into each gas passage is an integer ratio, but the present invention is not limited to this configuration, and an arbitrary flow rate ratio can be selected. Moreover, you may make the gas of the same flow flow in some some gas passages as needed.
  • the plurality of gas passages have the same volume, and the flow rates of the gas flowing into the gas passages are different.
  • the volume of the plurality of gas passages is as follows.
  • the inflow gas flow rate may be the same.
  • the gas mixing device 31 shown in FIG. 5 has a gas passage constituting member 33 in which a plurality of gas chambers 32a, 32b, 32c, 32d having different volumes are formed.
  • This gas passage constituting member 33 is similar to the gas passage constituting member 10 of FIG. 4 in that a tank 25 in which a plurality of cylindrical partition walls 26 whose upper ends are opened on the floor surface are arranged concentrically at intervals. The circumference of the tank 25 The space between the wall and the cylindrical partition wall 26 and the space between the cylindrical partition walls 26 constitute a gas passage 32, respectively.
  • the inside of the innermost cylindrical partition wall 26a is a part of the path through which the merged gas flows out.
  • the upper end of the all-cylindrical partition wall 26 is located at a position spaced downward from the ceiling of the tank 25.
  • the inlet member 11 has a pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the inlet holes 27 of the tank 25.
  • the flow control valve 30 is not provided. Les. Then, almost the same flow rate of gas flows into all the gas passages (gas chambers) 32.
  • the outlet hole 28 of the tank 25 is formed at the center of the bottom of the tank 25 at a position corresponding to the inner side of the innermost cylindrical partition wall 26a.
  • the space inside the innermost cylindrical partition wall 26a constitutes a part of the outlet member 12.
  • the gas flowing into each gas chamber 32a, 32b, 32c, 32d passes through the space above all the gas chambers 32 in the tank 25 and the inside of the innermost cylindrical partition wall 26a, and the downstream side from the outlet hole 28. It flows into the calorie gas supply pipe 3. Therefore, it can be said that the outlet member 12 is composed of the portion of the tank 25 above each gas chamber 32, the inner side of the innermost cylindrical partition wall 26a, and the outlet hole 28.
  • the outlet member 12 includes a tank portion including the outlet hole 28 that divides a space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26, and the innermost cylindrical partition wall 26a.
  • the gas that passes through the gas passages 32 merges at the outlet member 12 and is mixed there.
  • a mixer or a stirring device is installed at the outlet member 12 (for example, the portion above the gas chamber 24 in the tank 25 or the inside of the innermost cylindrical partition wall 26a). Also good.
  • the gas flowing out of the gas mixing device is time-mixed to suppress fluctuations in force. This will be described below.
  • the gas that has flowed into all the gas passages at the same time that is, the gas having substantially the same caloric value, flows out from each gas passage after a different time, and merges and mixes at the outlet member 12.
  • the gas flowing into the gas mixing device 31 is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
  • the volume ratio of the gas passages is an integer ratio, but the present invention is not limited to this configuration, and an arbitrary volume ratio can be selected. If necessary, some gas passages have the same volume.
  • the gas passage constituent member, the inlet member, and the outlet member are not limited to the configurations shown in Figs. 4 and 5, and various suitable configurations can be adopted.
  • the gas passage constituting member 36 in the gas mixing device 35 shown in FIG. 6 is divided into a plurality of gas passages (gas chambers) by dividing the inside of the tank 25 by a plurality of horizontal partition walls 37 spaced vertically. 38) is formed. Horizontal partition walls 37 are arranged at equal intervals, and all gas chambers 38 have substantially the same volume.
  • Each gas chamber 38 has an inlet hole 27 at one end and an outlet hole 28 at the other end. The inlet hole 27 and the outlet hole 28 are not opposed to each other, and the outlet hole 28 is formed at a position away from the central axis of the inlet hole 27.
  • the formation of the outlet hole 28 at a position deviating from the central axis of the inlet hole 27 is not limited to the gas passage component member 36 of FIG. It can be applied to tanks.
  • the gas chamber 38 is not limited to a forceful structure defined by the horizontal partition walls 37.
  • the gas chamber 38 may be partitioned by a partition wall extending in the vertical direction, vertically, horizontally, and horizontally. It may be partitioned into a shape. Moreover, you may divide radially like the cross section of a citrus fruit.
  • the inlet member 11 is the same as that shown in Fig. 4, and is divided from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the plurality of inlet holes 27, and the pipe 29 Is equipped with a flow control valve 30 installed in The flow rate of the gas flowing into each gas chamber 38 is made different by adjusting the opening degree of the flow control valve 30.
  • the outlet member 12 is connected to the plurality of outlet holes 28, and is composed of a pipe 39 that is integrated and connected to the low-calorie gas supply pipe 3 on the downstream side. The gas flowing out of the gas chamber 38 with a time difference starts to mix in the integrated piping section 39.
  • a mixer or stirrer may be installed at the outlet member 12 (eg, an integrated piping section) to facilitate gas mixing. Also in this gas path constituting member 36, as described for the gas mixing device 10 in FIG. 4, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
  • the gas flow rate flowing into each gas chamber is made substantially the same, and the volume of the gas chamber is set to be the same. They may be different from each other. In this case, it is not particularly necessary to install a flow control valve on the inlet member. Even in the case of the gas mixing device 35, as in the case of the gas mixing device 31 shown in FIG. 5, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
  • the shape of the tank 25 described above is not limited, and various shapes such as a polygonal cylindrical shape and a spherical shape can be adopted in addition to the cylindrical shape.
  • the gas passage constituent members are not limited to the gas passage constituent members 23 and 33 in which a plurality of gas chambers are formed in one tank as shown in FIGS. It may be composed of a container.
  • FIG. 7 shows a gas mixing device 40 having a gas passage constituting member 42 composed of a plurality of independent containers 41 as described above.
  • Each container 41 constitutes a gas chamber (gas passage), and all have substantially the same volume.
  • An inlet hole 27 is formed at the lower end (which may be the upper end or the side surface) of each container 41, and a gas outlet hole 28 is formed at the upper end (which may be the lower end or the side surface).
  • the inlet member 11 is the same as that shown in Figs. 4 and 6, and a pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the plurality of inlet holes 27, and this arrangement A flow control valve 30 is installed in each branched part of the pipe 29.
  • the flow rate of the gas flowing into each gas chamber 41 is made different by adjusting the opening of the flow control valve.
  • the outlet member 12 is the same as that shown in FIG. 6, and is connected to and integrated with the plurality of outlet holes 28.
  • the pipe 39 is connected to the low-calorie gas supply pipe 3 on the downstream side. The gas flowing out of the gas chamber 41 with a time difference starts to mix in the integrated piping section 39.
  • a mixer or stirrer may be installed at the outlet member 12 (eg, an integrated piping section) to facilitate gas mixing. Also in this gas mixing device 40, as described for the gas mixing device 10 in FIG. 4, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed. In addition, since each gas passage is constituted by a single container force, the installation work of the partition wall for partitioning the gas chamber can be omitted, so that the manufacture becomes easy.
  • the gas flow rates flowing into the containers are made substantially the same, and the volumes of the containers are mutually interchanged. It may be different. In this case, it is not particularly necessary to install a flow control valve on the inlet member. Even with such a gas mixing device, as described with respect to the gas mixing device 31 of FIG. 5, the time difference mixing of the flowing gas is performed, and the calorie fluctuation of the gas is suppressed.
  • the shape of the container 41 is not limited, and various shapes such as a cylindrical shape, a polygonal cylindrical shape, and a spherical shape can be adopted. Since each gas passage is composed of one independent container, the volume of the container can be easily made different.
  • Each container can be formed of, for example, metal pipes having different diameters or metal pipes having different lengths.
  • the gas mixing device 43 shown in FIG. 8 is configured such that the gas passage constituting member 44 integrally binds the containers 41 shown in FIG. Except that the plurality of containers 41 are compactly bundled, the configuration is almost the same as that of the gas mixing device 40 shown in FIG. 7, so that the same members as those in FIG. Omitted. This gas mixing device 43 can save installation space.
  • a gas mixing device 45 shown in FIG. 9 and FIG. 10 has a tank 46 provided with a perforated plate 47 having a large number of through holes 47a.
  • FIG. 9 is a partially cutaway perspective view of the gas mixing device 45
  • FIG. 10 is a longitudinal sectional view.
  • An inlet hole 27 and an outlet hole 28 are formed in the peripheral wall of the tank 46, the upstream low calorie gas supply pipe 3 is connected to the inlet hole 27, and the downstream low calorie gas supply pipe 3 is connected to the outlet hole 28.
  • the perforated plate 47 has a vertical direction so that the space inside the tank 46 is divided into a space on the inlet hole 27 side and a space on the outlet hole 28 side. It is arranged in the direction.
  • the inlet hole 27, the outlet hole 28, and the force S tank 46 are formed so as to face each other, and the perforated plate 47 is orthogonal to a virtual straight line connecting the inlet hole 27 and the outlet hole 28.
  • Force arranged vertically It is not limited to such a configuration.
  • the inlet hole 27 and the portion of the tank 46 that connects the low calorie gas supply pipe 3 to the inlet hole 27 constitute an inlet member.
  • the portion of the tank 46 that connects the low calorie gas supply pipe 3 to the hole 28 constitutes the outlet member.
  • an imaginary straight line L (hereinafter referred to as the center of the inlet hole 27) connected to the inlet hole 27 of the low calorie gas supply pipe 3 from the center of the inlet hole 27 and extending in the direction of the central axis of the portion.
  • a non-porous region 48 (indicated by a two-dot chain line in the figure). This non-porous region 48 is formed in order to prevent a part of the gas flowing in from the inlet hole 27 from reaching the outlet hole 28 in a very short time and allow the gas to stay in the tank 46 as long as possible. ing.
  • the non-porous region 48 may be a range that is more than the force that is almost the same as the shape of the inlet hole 27 and the outlet hole 28 as an example.
  • the tank 46 and the perforated plate 47 constitute a gas passage constituting member. That is, a large number of through holes 47a of the multi-hole plate 47 each constitute a gas passage.
  • a large number of through holes 47a of the multi-hole plate 47 each constitute a gas passage.
  • the gas is mixed with time difference in the space on the inlet hole side from the porous plate 47, and further mixed with time difference in the space on the outlet hole side after passing through the through hole 47a of the porous plate. Is made. Therefore, suppression of gas calorie fluctuation is effectively achieved.
  • the perforated plate 47 may be installed inside the gas chambers 24, 32, 38 and the container 41 in the gas passage constituting members 23, 33, 36, 42, 44 shown in FIG. 4 and FIG. Les. By doing so, it is possible to mix the gases in each gas passage.
  • FIG. 11 and FIG. 12 show the simulation of the time difference mixing of the gas in the gas mixing apparatus. The results are shown as a curve representing the relationship between the gas residence time and the cumulative gas flow rate. Both figures are based on a model that uses a tank as a gas passage component. The horizontal axis indicates the gas residence time (minutes) in the tank, and the vertical axis indicates the percentage of the gas that remains. The curve in the graph of Fig. 11 shows the state where the gas is completely mixed. That is, the gas flows into the inlet force tank, and at the same time, it is mixed with the gas that has been in the tank until then. These figures show the simulation results under the condition that the volume of the tank is 40000 m 3 and the flow rate of the inflowing gas is 280000 Nm 3 / hr.
  • this graph indicates the ratio of the gas flowing out from the outlet at a predetermined time indicated on the horizontal axis, that is, the ratio to the gas volume of the entire tank.
  • the number 1.0 on the vertical axis represents the gas volume of the entire tank.
  • the value on the horizontal axis in Fig. 11 flows out from the outlet in 100 minutes (indicated by the symbol HI) of 500 minutes to 600 minutes (this indicates the elapsed time since entering the tank, ie, the residence time).
  • the time difference mixing is ideal when the gas is mixed in the same ratio regardless of the elapsed time from the inflow, that is, the line shown in the graph is a straight line. However, this does not exist in reality. It is reasonable to consider the state where complete mixing is performed as shown in Fig. 11 as the state where the best time difference mixing is performed.
  • Fig. 12 shows a simulation of time difference mixing of a gas modeled on the curve showing the state of complete mixing in Fig. 11 and the gas mixing device 45 incorporating the porous plate 47 shown in Figs. 9 and 10.
  • a curve showing the result of the race is shown. Contrast with the above-mentioned completely mixed state In this way, the time-difference mixing of gases with the same conditions such as gas flow rate and tank volume is simulated.
  • the complete mixing state described above is indicated by a solid line, and the case of using a gas mixing device 45 incorporating a porous plate is indicated by a broken line.
  • a close curve is drawn even if it does not match the complete mixing state. In other words, it can be said that good time difference mixing is performed.
  • the gas calorie fluctuation is also effectively suppressed in the gas mixing device 45.
  • the gas mixing device 49 shown in Fig. 13 is a tank 46 in which two (or three or more) perforated plates 47 are arranged substantially in parallel with a space therebetween. is there. Therefore, three spaces partitioned by the perforated plate 47 are formed inside the tank 46. Compared with the gas mixing device 45 in FIG. 9, in this gas mixing device 49, further time-difference mixing is performed by the space between the two perforated plates 47, so that the calorie fluctuation of the gas can be more effectively suppressed. it can .
  • the non-porous region 28 may be formed in the perforated plate on the outlet hole 28 side.
  • FIG. 14 shows another gas mixing device 50.
  • a tank 51 used as a gas holder in a conventional gas turbine facility is modified to be used as a gas calorie fluctuation suppressing device. That is, the inlet 27 and the outlet 28 are separately formed in the gas holder, and the upstream side low calorie gas supply pipe 3 and the downstream side low calorie gas supply pipe 3 are connected to the gas holder, respectively.
  • the perforated plate 47 is installed in the same manner as the gas mixing device 45 in FIG.
  • the gas holder is a device for monitoring the gas amount balance.
  • the gas balance monitor and balance are intended to balance the amount of low calorie gas sent from the upstream side with the amount of gas consumed by the gas turbine.
  • the gas balance monitor and balance are intended to balance the amount of low calorie gas sent from the upstream side with the amount of gas consumed by the gas turbine.
  • the gas amount balance monitoring apparatus includes the tank 51, and a lid member 52 that is airtightly closed at the upper end opening of the tank 51 by a seal member 52a and the like and is arranged to be movable up and down in the tank. And an adjustment weight 52b connected to the lid member 52.
  • the seal member 52 a is disposed in the gap between the lid member 52 and the inner peripheral surface of the tank 51. Weight of the lid member 52 and above The tank moves up and down by the balance between the total weight of the weight 52b and the push-down force due to the atmospheric pressure and the push-up force caused by the internal pressure of the tank 51. Therefore, the lid member 52 moves up and down in accordance with a change in the balance between the supply amount and consumption amount of low calorie gas. While monitoring the vertical movement of the lid member 52, measures such as outgassing of the system and reduction of the turbine load are taken.
  • This gas holder is also used as a gas mixing device 50 for time difference mixing of low calorie gas.
  • the height of the perforated plate 47 is made low so as not to interfere with the lid member 52 that moves up and down. Therefore, the force generated in the space 51a between the upper end of the multi-hole plate 47 and the lid member 52 when the lid member 52 is raised.
  • This space 51a can also be considered as one of the plurality of gas passages. Also in this gas mixing device 50, good time difference mixing is performed by the same operation as described for the gas mixing device 45 in FIG. 9, and the fluctuation of the gas calorie is suppressed.
  • FIG. 15 shows a tank 46 as a gas passage constituting member incorporating a porous plate 47, which is the same as the gas mixing device 45 of FIGS. 9 and 10.
  • a tank 46 as a gas passage constituting member incorporating a porous plate 47, which is the same as the gas mixing device 45 of FIGS. 9 and 10.
  • an inclined pipe 53 inclined continuously from the horizontal to the low calorie gas supply pipe 3 is interposed between the inlet hole 27 of the tank 46 and the low calorie gas supply pipe 3.
  • the inclination angle ⁇ from the horizon is not limited. In this way, the gas inflow direction into the tank 46 is deviated from the position of the outlet hole 28.
  • this inclined pipe 53 attachable to and detachable from the low calorie gas supply pipe 3 and the tank 46, it can be replaced with an inclined pipe having a different inclination angle.
  • the use of the inclined pipe 53 does not form a non-porous region 48.
  • a perforated plate through holes 47a are uniformly formed on the entire surface
  • the direction of gas flow into the tank 46 is used as an outlet.
  • the position force of the hole 28 is preferable because it can be kept away.
  • the inclined tube 53 is not installed only in the gas mixing device incorporating the perforated plate 47.
  • the outlet hole 28 may be removed from the extended line of the central axis of the inlet hole 27 of the gas passage by connecting to the pipe 29 constituting the inlet member shown in FIG. 4 and FIG.
  • the direction of the inclined pipe 53 and the inclination angle from the central axis of the inlet hole should be selected in accordance with the gas passage.
  • FIG. 16 shows a gas mixing device 50 using the same conventional gas holder as that shown in FIG. 14, but between the inlet hole 27 of the tank 51 and the low calorie gas supply pipe 3, gas A gas inflow device 54 for changing the inflow direction is provided.
  • the gas mixing device 50 originally has the function of mixing the gas that has flowed into the inside thereof with time difference, but the gas inflow device 54 can change the mode of gas flow according to the vertical movement of the lid member 52 of the tank 51. The uniform mixing effect can be further improved.
  • the gas inflow device 54 includes a housing 55 disposed between the tank inlet hole 27 and the low calorie gas supply pipe 3, and the housing 55. And a plurality of variable louvers 56 accommodated in the interior of the interior of the interior of the housing at intervals.
  • Each variable louver 56 is arranged substantially horizontally, and its rotating shaft 56 a protrudes outside the housing 55.
  • the protruding portion of the rotating shaft 56a can be rotated by known means such as an electric motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, and the louver 56 can be swung in the vertical direction.
  • the louver 56 is swung in the vertical direction, the gas inflow direction can be changed accordingly.
  • the number of louvers to be installed is not limited and may be one or more.
  • an inclination direction indicator 56b is installed on the rotation shaft 56a protruding to the outside of the housing 55, and the inclination direction of the louver 56 from the outside of the gas inflow device 54.
  • the gas inflow direction can be displayed.
  • the inclination direction of the louver 56 may be detected by a detector (not shown), and the detection signal may be transmitted to the control device 5 and displayed on a remote display device (not shown) based on the detected signal.
  • a see-through window may be formed in the housing 55 so that the inclination direction of the louver 56 can be confirmed from the outside.
  • a position signal of the lid member 52 is input to the control device 5, and the position signal is It is possible to select the optimal gas inflow direction. For example, in order to tilt the gas inflow direction further upward when the lid member 52 is raised, the louver 56 may be swung upward so that the elevation angle from the horizontal is increased. When the lid member 52 is lowered, the louver 56 may be swung so that the elevation angle from the horizontal direction becomes small in order to incline the gas inflow direction downward from the current direction.
  • the low calorie gas supply pipe 3 on the upstream side and the downstream side of the gas mixing device Each has an inlet calorimeter 8 and an outlet calorimeter 9 (see Figure 1). Since the calorimeters 8 and 9 continuously measure the gas calorie value, the calorie fluctuation in the low calorie gas supply pipe 3 on the upstream side and the downstream side can be detected. Since the control device 5 receives a signal indicating the gas calorie fluctuation on each of the upstream side and the downstream side, the controller 5 can detect the degree of the effect of suppressing the calorie fluctuation by the gas mixing device by comparing them.
  • control device 5 calculates the deviation between the set value of the calorie fluctuation suppression level and the detected value, and the gas inflow device 54 so as to support this deviation (so that the uniform time difference mixing effect is maximized).
  • the gas inflow angle (inclination angle of louver 56) is controlled.
  • This gas inflow device 54 is not limited to the internal volume fluctuation type gas mixing device 50, but also applies to fixed volume type gas mixing devices 10, 31, 36, 40, 43, 45, 49 where the ceiling does not move up and down. can do. Then, the force S can be measured by continuously measuring the calorie value by the force bolometers 8 and 9 while changing the inclination angle of the louver 56 by the control device 5 and monitoring the calorie fluctuation suppressing effect. Then, it is possible to know the optimum inclination angle of the louver 56 for time difference mixing.
  • the gas inflow device 54 in FIG. 16 is not limited to a power-powered configuration in which a variable louver 56 is accommodated inside a housing 55 installed outside the tank.
  • a variable louver 56 may be installed in a position close to the inlet in the tank so that it can be swung from outside the tank without providing a housing.
  • Two inlet holes 27 and two outlet holes 28 may be provided on the peripheral wall (may be the bottom of the tank) of the tank 51 shown in FIG. That's it.
  • a pipe 57 having a branch pipe 57a branched from the low calorie gas supply pipe 3 toward each inlet hole 27, and the above branch pipe 57a The flow control valve (or stop valve) 59 installed in is installed.
  • a pipe 58 having a branch pipe 58 a integrally connected to the low calorie gas supply pipe 3 from each outlet hole 27, and the above branch A flow control valve 59 installed in the pipe 58a is provided. Only one outlet hole 28 may be formed, and only a plurality of inlet holes 27 may be formed. [0115] With the control device 5, the inlet-side flow control valve 59 is appropriately selected to open and close, or the flow rate is adjusted to change the gas inflow position into the tank 51, or the gas flow at the gas inflow position. The amount can be varied. In this way, the control device 5 performs control so as to optimize the mode of gas flow in the tank 51.
  • This optimal mode is based on a data set created based on a lot of operating data, and applies the data set that is most suitable for similar operating conditions (gas calorie, gas flow rate, gas composition, residence time in tank, etc.) be able to.
  • the control device 5 calculates the deviation between the set value of the calorie fluctuation suppression level and the actually measured fluctuation suppression level based on the detection values of both calorimeters 8 and 9, so that this deviation can be applied (uniform Adjust the flow rate and change the gas flow position so that the time difference mixing effect is maximized.
  • a gas mixing device 60 shown in FIG. 19 includes a tank 46 in which a perforated plate 47 is built, similar to the gas mixing device 45 of FIG. However, as an inlet member for connecting the inlet hole 27 and the low calorie gas supply pipe 3, a pipe 62 to which an inert gas supply pipe 61 is connected is disposed.
  • the inert gas supply pipe 61 is for introducing an inert gas for reducing the temperature of the low calorie gas into the tank 46.
  • An inert gas supply pipe 61 is inserted and connected to the inside of the pipe 62, and its tip is opened so that the inert gas is mixed into the flow of low calorie gas. Therefore, this pipe 62 is configured as a double pipe.
  • the flow rate of the inert gas is preferably lower than that of the low calorie gas from the viewpoint of improving the mixing property.
  • a dilution gas supply pipe 4 for supplying a dilution gas such as an inert gas is disposed downstream of the gas mixing device 10.
  • a dilution gas such as an inert gas
  • the purpose is to reduce the caloric value by gas.
  • the dilution gas necessary for lowering the average calorie value is introduced into the gas mixing device 10 in advance, the calorie control performed using the dilution gas supply pipe 4 can be simplified. It is advantageous because it becomes unnecessary.
  • the supply of the inert gas into the tank 46 is not limited to the configuration shown in FIG.
  • the inert gas supply pipe 61 may be directly connected to the tank 46 independently of the low calorie gas supply pipe 3.
  • the installation target of the inert gas supply pipe 61 is not limited to the gas mixing device (see FIG. 9 and FIG. 13-19) with the porous plate 47 built-in.
  • the present invention can also be applied to the gas mixing device shown in Fig. 4 and Fig. 8.
  • the inert gas introduced into the gas mixing apparatus described above includes waste nitrogen emitted from oxygen production plants used in the blast furnace method and direct reduced iron methods such as the FIN EX method and the COREX method, and It is preferable to recover and use waste nitrogen containing a small amount of oxygen discharged from a nitrogen production plant attached to the oxygen production plant. This is because the operation cost is extremely low because a large amount of discarded nitrogen is recovered and used.
  • oxygen is used as the reducing agent, so it is essential to install an oxygen production plant that produces large amounts of oxygen.
  • Oxygen is also used in the blast furnace method, so an oxygen production plant will be used even if there is a difference in scale.
  • Oxygen production plants produce oxygen by separating nitrogen from air, but the exhaust gas after separating oxygen is usually released to the atmosphere as waste nitrogen.
  • there is also a lot of power to produce high-purity nitrogen by adding a nitrogen production plant to the oxygen production plant. Even in this case, nitrogen containing a small amount of oxygen is released to the atmosphere as waste nitrogen.
  • Such waste nitrogen is about 95-98% by volume of nitrogen gas and 2-5 of oxygen.
  • highly purified nitrogen may be used.
  • FIG. 20 to FIG. 24 exemplify various piping modes when the above-described gas mixing device is connected to the low calorie gas supply pipe 3 in the low calorie gas supply facility 1.
  • the piping is not limited to the range shown in these drawings.
  • FIG. 20 shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3, that is, a bypass pipe attached to the low calorie gas supply pipe 3.
  • a gas mixing device 50 is shown.
  • This gas mixing device 50 is also used as a gas calorie fluctuation suppressing device by slightly changing the structure of a gas holder installed in an existing low calorie gas supply facility. Therefore, the internal volume variation type gas mixing apparatus 50 shown in FIGS. 14 and 16 can be suitably arranged as shown in FIG. In this case, since the outlet hole 28 is formed substantially at the center of the bottom of the tank 51, the porous plate inside the tank 51 is disposed at a position slightly closer to the inlet hole 27 than the central axis of the tank 51.
  • the gas holder installed in the conventional low calorie gas supply facility has one communication pipe for the low calorie gas supply pipe 3 (corresponding to the outlet pipe indicated by reference numeral 63 in FIG. 20). Only connected by. This single communication pipe doubles as an entrance. Since the gas holder only needs to balance the supply and demand of gas in the low calorie gas supply pipe, it is sufficient to communicate with the low calorie gas supply pipe with a single communication pipe.
  • the above-mentioned communication pipe 63 as an outlet pipe is connected to the outlet member 12 of the tank 51, and in addition to this outlet pipe 63, the low-calorie gas supply pipe 3 is newly connected to the upstream side.
  • the inlet pipe 64 is connected to the inlet member 11 of the tank 51.
  • the upstream side inlet pipe 6 4 and the outlet pipe 63 constitute the bypass pipe.
  • the upstream side inlet pipe 64 is connected to the upstream side from the connection with the outlet pipe 63 of the low calorie gas supply pipe 3.
  • the upstream side inlet pipe 64 is provided with a fan 65 as a gas pressure feeding device for feeding low calorie gas into the tank 51. Therefore, a part of the low calorie gas supplied is upstream inlet piping.
  • the low calorie gas flows into the tank 51 through 64, and the low calorie gas is mixed with time in the tank 51, and the same amount of gas returns from the tank 51 to the low calorie gas supply pipe 3 through the outlet pipe 63. Since the upstream side inlet pipe 64 is connected to the upstream side of the low calorie gas supply pipe 3 from the outlet pipe 63, the fan 65 can be omitted by piping design taking pressure loss into consideration. The same applies to the upstream side inlet pipe 64 shown in FIGS.
  • FIG. 21 shows a gas mixing device 66 using another gas amount balance monitoring device that can be used as a calorie fluctuation suppressing means.
  • This gas mixing device 66 has a more economical configuration as a gas quantity balance monitoring device, and an inlet member 11 and an outlet member 12 are respectively connected by an upstream side inlet pipe 64 and an outlet pipe (communication pipe) 63. It has an airtight tank 67 connected to the low calorie gas supply pipe 3.
  • the tank 67 contains a porous plate (not shown), and a pressure detection device 68 is installed to constantly monitor the internal pressure of the tank 67. When the detected pressure reaches the upper limit, the control device 5 issues a command to increase the gas consumption in the facility, and balances the gas supply and demand.
  • This gas mixing device 66 also suppresses the calorie fluctuation of a part of the low calorie gas supplied to the gas turbine through the low calorie gas supply pipe 3.
  • FIG. 22 also shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3.
  • an inlet pipe 69 and an outlet pipe 63 are connected between the inlet member 11 and outlet member 12 of the tank 51 and the low calorie gas supply pipe 3, respectively.
  • the inlet pipe 69 is connected to the downstream side of the connection portion between the low calorie gas supply pipe 3 and the outlet pipe 63. Therefore, this inlet pipe 69 is referred to as a downstream inlet pipe 69.
  • the downstream inlet pipe 69 is provided with a fan 65 for sending low calorie gas to the tank 51.
  • the low calorie gas is It is sent into the tank 51 through the pipe 69, mixed with a time difference, and flows out from the outlet member 12 to the outlet pipe 63.
  • a part of the low calorie gas in which calorie fluctuation is suppressed circulates, so that effective time difference mixing is performed.
  • the downstream inlet pipe 69 The longer the length, the longer the time difference mixing in the tank 51 is realized.
  • FIG. 23 also shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3.
  • an outlet pipe 63 and an upstream inlet pipe 64 having a fan 65 are connected between the tank 51 and the low calorie gas supply pipe 3 as shown in the figure. That is, the upstream side inlet pipe 64 is connected to the inlet member 11 of the tank 51, and the outlet pipe 63 is connected to the outlet member 12.
  • a further inlet member 70 is formed in the tank 51, and a downstream inlet pipe 69 is connected to the inlet member 70.
  • the downstream inlet pipe 69 is connected to the downstream side from the connection with the outlet pipe 63 in the low calorie gas supply pipe 3.
  • the downstream inlet pipe 69 is provided with a fan 65 for sending low calorie gas to the tank 51.
  • the positions of the upstream inlet pipe 64 and the downstream inlet pipe 69 connected to the tank 51 are close to each other.
  • a part of the low calorie gas is pumped into the tank 51 from the upstream side of the low calorie gas supply pipe 3 through the upstream side inlet pipe 64, and at the same time downstream from the downstream side of the low calorie gas supply pipe 3 A part of the low calorie gas is pumped through the inlet pipe 69, mixed with time, and flows out from the outlet member 12 to the outlet pipe 63. That is, since a part of the low calorie gas in which the calorie fluctuation is suppressed circulates, the time difference mixing for a long time is realized in the tank 51.
  • the downstream inlet pipe 69 is connected to the inlet member 70 of the tank 51 from the downstream side of the low calorie gas supply pipe 3.
  • a return pipe connected to the upstream side of the connection with the upstream side inlet pipe 64 of the calorie gas supply pipe 3 may be connected.
  • the piping configuration for connecting the gas mixing device to the low calorie gas supply facility 1 shown in Fig. 20 to Fig. 23 is the force suitable for the gas mixing devices 50 and 66 using the conventional gas holders. It is also possible to apply to the gas mixing apparatus.
  • the tank 46 of the gas mixing device 45 shown in FIG. 24 has one outlet member 12 and two types of inlet members 11 and 70.
  • One inlet member 11 is connected to the upstream low calorie gas supply pipe 3
  • the outlet member 12 is connected to the downstream low calorie gas supply pipe 3
  • the other A return pipe 71 connected to the downstream-side low calorie gas supply pipe 3 is connected to the inlet member 70.
  • the two inlet members 12, 70 are formed close to each other.
  • the return pipe 71 is provided with a fan 65 for sending low calorie gas into the tank 46.
  • the return pipe 71 is connected to the inlet member 70 of the tank 46 from the downstream side of the low calorie gas supply pipe 3, but may be connected to the upstream side of the tank 46 in the low calorie gas supply pipe 3 from the downstream side.
  • the mode of the piping connecting the gas mixing device to the low calorie gas supply facility 1 shown in Fig. 24 is a force suitable for the gas mixing device 45 shown in Figs. 9 and 10 and the other gases described above. It is also possible to apply to a mixing device.
  • FIG. 25 shows the boiler equipment.
  • the boiler equipment is provided with a boiler 73 and a low calorie gas supply equipment 72 for supplying the boiler 73 with low calorie gas as fuel.
  • the boiler 73 is used for generating steam by burning gas with a burner and using it for power generation, or for supplying steam used for other purposes.
  • This low calorie gas supply facility 72 has removed the equipment installed in the low calorie gas supply piping 3 and the mixed gas supply piping 14 on the downstream side of the gas mixing device 10 from the low calorie gas supply facility 1 shown in FIG. Is. That is, the low calorie gas supply facility 72 shown in FIG. 25 includes a low calorie gas supply pipe 74 that supplies the low calorie gas generated in the direct reduced iron facility S to the boiler 73 as fuel.
  • the low-calorie gas supply pipe 74 includes a dust collector 7 for removing dust from the low-calorie gas sent directly from the reduced iron facility S, a gas mixer 10 for primary storage of the low-calorie gas, and a gas mixer 10 On the upstream side and downstream side, calorific value detection devices 8 and 9 for detecting the calorific value of low caloric gas, and a flow meter 75 for measuring the supply amount of low caloric gas are installed.
  • the gas mixing device installed in the low calorie gas supply facility 72 for the boiler not only the gas mixing device 10 shown in Fig. 4 but also all the gas mixing devices described above can be applied.
  • the This low calorie gas supply facility 72 has no dilution gas supply facility. This is because it is desirable for boilers to suppress calorie fluctuation itself by a gas mixing device in order to obtain a stable output.
  • the calorific value that is raised by the calorie fluctuation of low calorie gas mentioned above causes a big problem. It is not a thing.
  • Fig. 25 only the boiler 73 is installed as a combustion facility to which low calorie gas is supplied by the low calorie gas supply facility 72. However, it is not limited to a powerful configuration. Along with the boiler 73, another combustion facility may be installed along with the gas turbine 2 (Fig. 1). For example, when the gas turbine 2 and the boiler 73 shown in FIG. 1 are installed, the portion between the calorimeter 9 and the flow meter 13 in the low calorie gas supply pipe 3 in FIG. 1 is downstream of the calorimeter 9 in FIG. The low calorie gas supply pipe 74 from the side to the boiler 73 may be connected so as to be branched.
  • the gas turbine and the boiler are exemplified as the combustion equipment.
  • the combustion equipment in the present invention is not limited to the gas turbine and the boiler.
  • the gas calorie fluctuation suppressing device and the low calorie gas supply facility described here can also be applied to other combustion facilities such as a heating furnace and an incinerator.
  • the fuel gas supply facility of the present invention includes not only the dilution gas supply facility. Instead of this, a heating gas supply facility may be provided together with the dilution gas supply facility.
  • the fuel gas supply facility described here is characterized by including the gas calorie fluctuation suppressing device (gas mixing device) exemplified with the above-described embodiment.
  • the heat-increasing gas supply facility is a medium-high fuel gas that prevents the calorific value of the fuel gas from decreasing in order to adjust it within the allowable fluctuation range of the gas characteristics of the combustion equipment such as a gas turbine boiler. It is a facility that mixes caloric gas. Examples of medium-high calorie gas include natural gas and coke oven gas (COG).
  • the force exemplified as a by-product gas generated by the direct reduction iron-making method as the low calorie gas to be used is not limited to this.
  • Low calorie gas includes blast furnace gas (BFG), converter gas (LDG), coal bed gas (Coal mine gas, expressed as CMG), by-product gas generated by smelting reduction ironmaking, GTL (Gas-to-Liquid) Tail gas generated in the process, oil sand force, by-product gas generated during the oil refining process, gas generated by incineration of dust using plasma, and general waste containing garbage are stored
  • BFG blast furnace gas
  • LDG converter gas
  • CMG coal bed gas
  • GTL Gas-to-Liquid Tail gas generated in the process
  • oil sand force by-product gas generated during the oil refining process
  • gas generated by incineration of dust using plasma and general waste containing garbage are stored
  • methane gas Lithane gas
  • low-calorie gas such as by-product gas generated by chemical reaction of other similar raw materials
  • the calorie fluctuation of low calorie gas can be suppressed.
  • Heat reduction by heat reduction or heat-increasing gas is effective and easy. In some cases, heat reduction by dilution gas or heat increase by heat-increasing gas is not necessary. It is also acceptable to construct a device that suppresses fluctuations in gas calories by using existing gas holders.

Abstract

A gas calorie variation suppressing device capable of supplying fuel gas as a stable fuel with a variation in the calorie of the gas suppressed. The gas calorie variation suppressing device has a gas mixing device (10) for mixing low calorie gas, and the gas mixing device (10) is provided in low calorie gas supply piping (3) for supplying low calorie gas as a fuel gas to a burning facility such as a gas turbine (2). The gas calorie variation suppressing device (10) has a gas passage forming member (23) having gas passages, an inlet member (11) for allowing the gas to flow into the gas passage forming member (23) from the low calorie gas supply piping (3), and an outlet member (12) for allowing the gas to flow out to the low calorie gas supply piping (3) from the gas passage forming member (23). The gas mixing device (10) is constructed such that the gas that continuously flows in from the inlet member (11) passes the gas passages of the gas passage forming member (23) with time intervals and then joins to flow out from the outlet member (12).

Description

明 細 書  Specification
ガスカロリ変動抑制装置、燃料ガス供給設備、ガスタービン設備およびボ イラ一設備  Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
技術分野  Technical field
[0001] 本発明はガスカロリ変動抑制装置、燃料ガス供給設備、ガスタービン設備およびボ イラ一設備に関する。さらに詳しくは、燃焼設備の燃料としてのガスが低カロリガスの ようにその発熱量 (カロリともいう)が変動する場合、この発熱量変動を抑制することが できるガスカロリ変動抑制装置、このガスカロリ変動抑制装置を備えた燃料ガス供給 設備、並びに、燃料ガス供給設備を備えた燃焼設備としてのガスタービン設備およ びボイラー設備に関する。  [0001] The present invention relates to a gas calorie fluctuation suppressing device, a fuel gas supply facility, a gas turbine facility, and a boiler facility. More specifically, when the calorific value (also referred to as calorie) of the gas used as the fuel for the combustion facility fluctuates, such as low calorie gas, this gas calorie fluctuation suppressing device can suppress this calorific value fluctuation, and this gas calorie fluctuation suppressing device. And a gas turbine facility and a boiler facility as a combustion facility equipped with a fuel gas supply facility.
背景技術  Background art
[0002] 製鉄分野にぉレ、て、たとえば高炉法で銑鉄を生産する場合、高炉から炉頂ガス ( Blast Furnace Gasであり、以下 BFGと記す)が副生ガスとして発生する。 BFGの総 発熱量は使用したコータスの発熱量の約半分にも達するので、製銑原価低減のため に BFGは製鉄所内において多方面に利用されている。 BFGは投入コータス 1トン当 たり 3000Nm3発生し、その組成は二酸化炭素(C〇 )が 10— 18容積% (以下、単 に%と示す)、一酸化炭素(C〇)が 22— 30%、窒素(N )が 52— 60%、水素(H ) が 0· 5— 4%、メタン(CH )が 0· 5— 3%とされている。 [0002] When producing pig iron in the steelmaking field, for example, by using a blast furnace method, a top gas (Blast Furnace Gas, hereinafter referred to as BFG) is generated as a by-product gas from the blast furnace. Since the total calorific value of BFG reaches about half of the calorific value of the used Kotas, BFG is widely used in steelworks to reduce the cost of ironmaking. BFG is generated at 3000Nm 3 per ton of input cotas, and its composition is 10-18% by volume of carbon dioxide (C0) (hereinafter simply referred to as%), and 22-30% of carbon monoxide (C0). Nitrogen (N) is 52-60%, hydrogen (H) is 0-5-4%, and methane (CH3) is 0.5-5%.
[0003] BFGはこれ以外に煙塵を 2— 10g/Nm3含んでいるので、これを除塵器で 0. Olg /Nm3程度まで除去した後、発熱量 800kcal/Nm3程度の燃料ガスとして、熱風 炉、コークス炉、加熱炉、ボイラー等に利用されている。近年、ガスタービンにおいて も、その技術の向上により低カロリガスの燃焼が可能となり、 BFGをガスタービン燃料 として用いて発電する事例が増加している。ここでは、低カロリガスを、その発熱量が 約 12MJ/Nm3以下のガスと定義する。低カロリガスとしては、後述するように、高炉 ガス(BFG)には限らず、転炉ガス(LDG)などの多種類のガスおよびそれらの混合 ガスが含まれる。 [0003] In addition to this, BFG contains 2-10 g / Nm 3 of dust. After removing this to about 0. Olg / Nm 3 with a dust remover, the fuel gas with a calorific value of about 800 kcal / Nm 3 It is used in hot air ovens, coke ovens, heating furnaces, boilers, etc. In recent years, gas turbines have also been able to burn low calorie gas due to improvements in technology, and there are an increasing number of cases where BFG is used as gas turbine fuel to generate electricity. Here, low calorie gas is defined as a gas whose calorific value is about 12 MJ / Nm 3 or less. As will be described later, the low calorie gas is not limited to blast furnace gas (BFG) but includes various types of gas such as converter gas (LDG) and mixed gas thereof.
[0004] 一方で、近年、高炉法以外の新しい製鉄プロセス(たとえば FINEXや COREX等 の直接還元鉄法)が開発されつつあり、こうした新プロセスから発生する副生ガスの 有効利用に対しても適用できる燃焼方式の開発が待たれている。いずれの製鉄プロ セスであれ、発生する副生ガスの特性 (ガス組成やカロリ)は設備や操業内容によつ て異なっており、同一設備であっても各原料の特性や反応過程に応じて時々刻々変 化し、一定することがない。 [0004] On the other hand, in recent years, new iron manufacturing processes other than the blast furnace method (for example, FINEX, COREX, etc.) The direct reduction iron method) is being developed, and the development of a combustion method that can be applied to the effective use of by-product gas generated from these new processes is awaited. In any steelmaking process, the characteristics of the by-product gas (gas composition and calorie) generated vary depending on the equipment and operation contents. Even in the same equipment, it depends on the characteristics of each raw material and the reaction process. It changes from moment to moment and is not constant.
[0005] 副生ガスをガスタービンの燃料として使用する場合の最も重要な特性であるカロリ について見てみると、各ガスタービンが固有するカロリの許容変動幅の上限 (たとえ ば平均カロリ値の約 + 10%)を超えた場合、つまりカロリが急激に大きくなつた場合、 ガスタービンの燃焼器内での燃焼温度が急激に異常な高温となることがある。これに 起因してバーナー部分、タービンの静翼および動翼が損傷を受けて短命化したりす る弊害が発生する可能性があり、この場合はガスタービン設備の経済的な連続運転 が困難になる。  [0005] Looking at calorie, which is the most important characteristic when using by-product gas as fuel for gas turbines, the upper limit of the allowable fluctuation range of calories inherent in each gas turbine (for example, about the average calorie value). + 10%), that is, when the calorific value suddenly increases, the combustion temperature in the combustor of the gas turbine may suddenly become abnormally high. As a result, there is a possibility that the burner part, the stationary blades and the moving blades of the turbine may be damaged and shorten the life, and in this case, it becomes difficult to economically operate the gas turbine equipment continuously. .
[0006] 副生ガスのカロリ上昇を抑制するために窒素ガス(N )によって希釈する技術は公 知である(たとえば特許文献 1および特許文献 2を参照)。し力 ながら、副生ガスの カロリ値が変動する場合、 N によって副生ガスを希釈するだけでは、この変動をガス タービン固有の許容カロリ変動幅や許容カロリ変動速度内に抑制することに十分に 対応できない場合がある。これは、副生ガスのカロリ変動が急激な場合にカロリ検出 器の応答に遅れが生じて適時の希釈ができないことがあり、また、高価な不活性ガス を大量に消費せざるを得ない場合にこれを確保しておくことが困難である等の理由 からである。  [0006] A technique of diluting with nitrogen gas (N 2) in order to suppress calorie increase of by-product gas is known (see, for example, Patent Document 1 and Patent Document 2). However, if the calorific value of the by-product gas fluctuates, simply diluting the by-product gas with N is sufficient to suppress this fluctuation within the allowable calorie fluctuation range and allowable calorie fluctuation speed specific to the gas turbine. It may not be possible. This is because when the by-product gas has a rapid caloric fluctuation, the response of the calorie detector may be delayed and timely dilution may not be possible, and a large amount of expensive inert gas must be consumed. This is because it is difficult to ensure this.
[0007] したがって、副生ガスの特性変動があまり激しくない BFGに対しては N による希釈 だけで有効に対処することも可能である。しかし、直接還元鉄法等では小容量の反 応炉で起動、停止が繰り返されるのでガスの発生量およびカロリ値の変動が大きく顕 著になるため、 N による希釈だけでは対応は困難である。  [0007] Therefore, it is also possible to effectively cope with BFG in which by-product gas characteristic fluctuations are not so severe only by dilution with N. However, the direct reduction iron method, etc., is repeatedly started and stopped in a small-capacity reaction furnace, so the fluctuations in the amount of gas generated and caloric value become significant. Therefore, it is difficult to deal with only dilution with N.
特許文献 1 :特開 2002 - 155762号公報  Patent Document 1: JP 2002-155762 A
特許文献 2:特開平 9 - 317499号公報  Patent Document 2: Japanese Patent Laid-Open No. 9-317499
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 本発明はかかる課題を解決するためになされたものであり、燃焼設備へ燃料として 供給される低カロリガス等の燃料用ガスのカロリ変動を抑制することにより、燃料ガス の希釈ガスによる減熱のみならず増熱ガス (燃料ガスのカロリ値を上昇させるために 混合する中カロリおよび高カロリなガスであり、以下、中 ·高カロリガスとも呼ぶ)による 増熱をも容易且つ有効なものとし、さらには、希釈ガスによる減熱や増熱ガスによる 増熱を不要とすることも可能なガスカロリ変動抑制装置、このガスカロリ変動抑制装置 を備えた燃料ガス供給設備、並びに、この燃料ガス供給設備を備えたガスタービン 設備およびボイラー設備を提供することを目的としている。 Problems to be solved by the invention [0008] The present invention has been made to solve such a problem, and by suppressing the calorie fluctuation of the fuel gas such as low calorie gas supplied as fuel to the combustion facility, the fuel gas can be reduced by the diluted gas. It is easy and effective to increase heat not only by heat but also by heat-increased gas (medium calorie and high calorie gas mixed to increase the caloric value of fuel gas, hereinafter also called medium / high calorie gas). In addition, a gas calorie fluctuation suppressing device that can eliminate the need for heat reduction using a dilution gas or heat increasing gas, a fuel gas supply facility equipped with the gas calorie fluctuation suppressing device, and a fuel gas supply facility The purpose is to provide gas turbine equipment and boiler equipment.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的のために本発明のガスカロリ変動抑制装置は、  [0009] For the above purpose, the gas calorie fluctuation suppressing device of the present invention includes:
ガスを燃料として燃焼設備に供給するための燃料ガス供給通路に配設された、燃 料ガスを混合するためのガス混合装置を備えており、  A gas mixing device for mixing fuel gas disposed in a fuel gas supply passage for supplying gas to the combustion facility as fuel;
このガス混合装置が、複数のガス通路を有するガス通路構成部材と、上記燃料ガス 供給通路からガス通路構成部材内へ燃料ガスが流入するための入口部材と、この入 口部材とは別に形成された、ガス通路構成部材力 燃料ガス供給通路に燃料ガスが 流出するための出口部材とを備えており、さらに、上記入口部材から連続して流入し てくるガスが、ガス通路構成部材の複数のガス通路をそれぞれ時間差をもって通過し たあと合流して上記出口部材から流出することができるように構成されている。  The gas mixing device is formed separately from a gas passage component having a plurality of gas passages, an inlet member for allowing fuel gas to flow into the gas passage component from the fuel gas supply passage, and the inlet member. Further, the gas passage component member force is provided with an outlet member for allowing the fuel gas to flow out into the fuel gas supply passage, and the gas continuously flowing in from the inlet member further includes a plurality of gas passage component members. After passing through the gas passages with a time difference, the gas passages join together and can flow out from the outlet member.
[0010] 燃料ガス供給通路を通して時々刻々供給されてくる燃料用のガスがガス通路構成 部材内に流入し、複数のガス通路それぞれから出てきて合流したときに時間差混合 される。したがって、この燃料ガスのカロリ値が変動している場合であっても、時間差 混合されることにより、そのカロリ変動の幅が減少され、且つ、カロリ変動速度が緩和 される。その結果、燃料ガスのカロリ変動を、希釈ガスまたは増熱ガスによって燃焼設 備のガス特性の許容変動範囲内に調整することが容易且つ有効となる。また、その 燃料ガスの平均カロリ値によっては減熱や増熱を必要としない状態にすることも可能 となる。なお、上記時間差混合とは、連続的に時間遅れでガス通路構成部材内へ流 入してくるガスが既に流入して滞留しているガスと混合することである。  [0010] Fuel gas, which is supplied every moment through the fuel gas supply passage, flows into the gas passage constituent member, and is mixed with time difference when it comes out from each of the plurality of gas passages and merges. Therefore, even when the caloric value of the fuel gas is fluctuating, the time difference mixing reduces the width of the caloric fluctuation, and the caloric fluctuation speed is reduced. As a result, it becomes easy and effective to adjust the calorie fluctuation of the fuel gas within the allowable fluctuation range of the gas characteristics of the combustion facility by using the dilution gas or the heat increasing gas. Also, depending on the average caloric value of the fuel gas, it is possible to make it unnecessary to reduce or increase heat. Note that the time difference mixing means that the gas flowing into the gas passage constituting member continuously with a time delay is mixed with the gas that has already flowed and stayed.
[0011] なお、上記入口部材に接続されるのは燃料ガス供給通路の上流側に限定されず、 出口部材に接続されるのは燃料ガス供給通路の下流側に限定されない。たとえば図[0011] The connection to the inlet member is not limited to the upstream side of the fuel gas supply passage, The connection to the outlet member is not limited to the downstream side of the fuel gas supply passage. For example
22に示すごとぐ燃料ガス供給通路に戻し通路を設け、この戻し通路にガス通路構 成部材を設置する場合、燃料ガス供給通路の下流側をガス通路構成部材の入口部 材に接続し、上流側を出口部材に接続したうえで、戻し通路に、ガス通路構成部材 へ燃料ガスを圧送する手段を設けた構成をも採用することができる。 When a return passage is provided in the fuel gas supply passage as shown in FIG. 22 and a gas passage constituent member is installed in this return passage, the downstream side of the fuel gas supply passage is connected to the inlet member of the gas passage constituent member, and the upstream side It is also possible to employ a configuration in which a means for pumping fuel gas to the gas passage constituting member is provided in the return passage after the side is connected to the outlet member.
[0012] 上記ガス通路構成部材を、その内部に上記ガス通路を構成するガス室が複数個形 成された第一容器から構成し、 [0012] The gas passage constituting member comprises a first container in which a plurality of gas chambers constituting the gas passage are formed,
各ガス室にガス入口とガス出口とを形成し、  Form gas inlet and gas outlet in each gas chamber,
上記入口部材を、燃料ガス供給通路から各ガス室のガス入口に分岐して接続し、 上記出口部材を、各ガス室のガス出口から統合して燃料ガス供給通路に接続し、 入口部材の分岐した部分それぞれに、ガス流量を変更することができるガス流量調 整装置を配設することができる。  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber, the outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage, and the inlet member is branched. A gas flow rate adjusting device capable of changing the gas flow rate can be provided in each of the portions.
[0013] 各ガス室に供給するガスの流量を相違させることにより、ガスが複数のガス室をそれ ぞれ時間差をもって通過することになるので、このガスが後に合流するときに時間差 混合することが可能となる。 [0013] By making the flow rate of the gas supplied to each gas chamber different, the gas passes through each of the plurality of gas chambers with a time difference, so that the time difference may be mixed when the gases merge later. It becomes possible.
[0014] 上記ガス通路構成部材を、その内部に上記ガス通路を構成するガス室が複数個形 成された第一容器から構成し、 [0014] The gas passage constituting member comprises a first container in which a plurality of gas chambers constituting the gas passage are formed,
各ガス室にガス入口とガス出口とを形成し、  Form gas inlet and gas outlet in each gas chamber,
上記入口部材を、燃料ガス供給通路から各ガス室のガス入口に分岐して接続し、 上記出口部材を、各ガス室のガス出口から統合して燃料ガス供給通路に接続し、 上記複数のガス室の容積がそれぞれ異なるように構成することもできる。  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber, the outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage, and the plurality of gases It is also possible to configure the chambers to have different volumes.
[0015] 各ガス室の容積を相違させることにより、ガスが複数のガス室をそれぞれ時間差をも つて通過することになるので、このガス室を通過したガスが後に合流するときに時間 差混合することが可能となる。 [0015] By making the volume of each gas chamber different, the gas passes through the plurality of gas chambers with a time difference, so that the time difference mixing is performed when the gas that has passed through the gas chambers later merges. It becomes possible.
[0016] 上記ガス通路構成部材に、上記ガス通路を構成する第二容器を複数個備え、 各第二容器にそれぞれガス入口とガス出口とを形成し、 [0016] The gas passage constituting member includes a plurality of second containers constituting the gas passage, and a gas inlet and a gas outlet are formed in each second container,
上記入口部材を、燃料ガス供給通路から各第二容器のガス入口に分岐して接続し 上記出口部材を、各第二容器のガス出口から統合して燃料ガス供給通路に接続し 入口部材の分岐した部分それぞれに、ガス流量を変更することができるガス流量調 整装置を配設することができる。 The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container. The outlet member is integrated from the gas outlet of each second container and connected to the fuel gas supply passage, and a gas flow rate adjusting device capable of changing the gas flow rate is provided at each branched portion of the inlet member. Can do.
[0017] 上記ガス通路構成部材に、上記ガス通路を構成する第二容器を複数個備え、 各第二容器それぞれにガス入口とガス出口とを形成し、 [0017] The gas passage constituting member includes a plurality of second containers constituting the gas passage, and each of the second containers has a gas inlet and a gas outlet,
上記入口部材を、燃料ガス供給通路から各第二容器のガス入口に分岐して接続し 上記出口部材を、各第二容器のガス出口から統合して燃料ガス供給通路に接続し 上記複数の第二容器の容積がそれぞれ異なるように構成することができる。  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container, and the outlet member is integrated from the gas outlet of each second container and connected to the fuel gas supply passage. The two containers can be configured to have different volumes.
[0018] 以上の複数個の第二容器は、一体に結束してもよぐ独立分離した状態であっても よい。 [0018] The plurality of second containers described above may be bound together or may be in an independently separated state.
[0019] 上記ガス通路構成部材を、その内部に上記ガス通路を構成する貫通孔が多数形 成された多孔板を備えた第三容器力 構成し、  [0019] The gas passage constituting member comprises a third container force including a perforated plate in which a plurality of through holes constituting the gas passage are formed,
上記入口部材および出口部材を第三容器に配設し、  The inlet member and the outlet member are disposed in a third container;
上記多孔板を、第三容器の内部を入口部材側の空間と出口部材側の空間とに仕 切るように配置することができる。  The perforated plate can be arranged so as to cut the interior of the third container into a space on the inlet member side and a space on the outlet member side.
[0020] 入口部材から供給されるガスは、入口部材からの距離が異なる多数の貫通孔を通 過して出口部材側の空間へ流れるので、出口部材側の空間ではガスの時間差混合 がなされる。 [0020] Since the gas supplied from the inlet member passes through a large number of through holes having different distances from the inlet member and flows into the space on the outlet member side, the time difference mixing of the gases is performed in the space on the outlet member side. .
[0021] 上記第三容器の構造には限定されなレ、。たとえば容積が変化しない固定形状の容 器でもよぐまた、従来のガスタービン設備等においてガスの需給バランスを監視する 装置 (ガスホルダー)として用いられる内容積変動式のタンクであってもよい。内容積 変動式のタンクとは、タンク内圧に応じて上下動しうる気密に装着された蓋部材を有 するタンク、駆動装置によって蓋部材を積極的に上下動させることによりバランス効果 を最大にしうるタンク容積を選定できるタンク等である。これらのタンクを流用して燃料 ガスのカロリ変動を抑制する効果を発揮しうる装置とすることができる。 [0022] 上記多孔板は間隔をおいて複数枚配設してもよい。 [0021] The structure of the third container is not limited. For example, it may be a fixed-shaped container whose volume does not change, or may be a variable-volume tank used as a device (gas holder) for monitoring the gas supply-demand balance in a conventional gas turbine facility or the like. The internal volume variable tank is a tank with a lid member that is airtightly mounted that can move up and down according to the tank internal pressure, and the balance member can be maximized by positively moving the lid member up and down with a drive unit. A tank that can select a tank volume. By diverting these tanks, it is possible to provide an apparatus that can exhibit the effect of suppressing fuel gas calorie fluctuation. [0022] A plurality of the perforated plates may be arranged at intervals.
[0023] 上記多孔板において、第三容器の内部へ向かう上記入口部材のガス流路中心軸 と交差する多孔板の部分およびその近傍を除いた範囲に上記貫通孔を形成するの が好ましレ、。第三容器に流入したガスの滞留時間を延長させうるからである。  [0023] Preferably, in the porous plate, the through hole is formed in a range excluding a portion of the porous plate that intersects with a gas flow path central axis of the inlet member toward the inside of the third container and the vicinity thereof. ,. This is because the residence time of the gas flowing into the third container can be extended.
[0024] 上記第一容器または第二容器を備えたガスカロリ変動抑制装置において、上記ガ ス出口力 ガス入口の中心軸の延長線から外れた位置に形成されてレ、るのが好まし レ、。第一容器または第二容器に流入したガスの滞留時間を延長させうるからである。  [0024] In the gas calorie fluctuation suppressing device including the first container or the second container, the gas outlet force is preferably formed at a position deviating from an extension line of the central axis of the gas inlet. . This is because the residence time of the gas flowing into the first container or the second container can be extended.
[0025] 上記第一容器または第二容器を備えたガスカロリ変動抑制装置において、ガス入 口に、上記ガス通路構成部材のガス通路内への燃料ガスの流入角度を変更しうるよ うに構成されたガス流入装置を設置するのが好ましい。第一容器または第二容器の 内部でガスの時間差混合が効果的になされるようにガス流入方向の調節をすること ができるからである。  [0025] In the gas calorie fluctuation suppressing device provided with the first container or the second container, the gas inlet is configured to change the inflow angle of the fuel gas into the gas passage of the gas passage constituent member. It is preferable to install a gas inflow device. This is because the gas inflow direction can be adjusted so that the time difference mixing of the gas is effectively performed inside the first container or the second container.
[0026] 上記第三容器を備えたガスカロリ変動抑制装置において、入口部材および第三容 器内における入口部材近傍のうち一方に、上記第三容器内への燃料ガスの流入角 度が変更されうるように構成されたガス流入装置を設置するのが好ましい。第三容器 の内部でガスの時間差混合が効果的になされるようにガス流入方向の調節をするこ とができるからである。  [0026] In the gas calorie fluctuation suppressing device including the third container, the inflow angle of the fuel gas into the third container can be changed to one of the inlet member and the vicinity of the inlet member in the third container. It is preferable to install a gas inflow device configured as described above. This is because the gas inflow direction can be adjusted so that the time difference mixing of the gas is effectively performed inside the third container.
[0027] 上記ガス流入装置を備えたガスカロリ変動抑制装置にぉレ、て、ガス流入装置を、傾 斜角度を外部から変更しうるように揺動可能に装着された少なくとも一枚のルーバを 有する可変ルーバから構成することができる。  [0027] The gas calorie fluctuation suppressing device including the gas inflow device has at least one louver that is swingably mounted so that the tilt angle can be changed from the outside. It can consist of variable louvers.
[0028] 上記第三容器を備えたガスカロリ変動抑制装置において、上記入口部材を複数個 配設し、この入口部材のうち燃料ガスを第三容器内へ流入させる入口部材を選択し て切り換えうるように構成することができる。かかる構成により、効果的なガスの混合が なされる入口部材を選択することができる。 [0028] In the gas calorie fluctuation suppressing device provided with the third container, a plurality of the inlet members are provided, and an inlet member for allowing the fuel gas to flow into the third container can be selected and switched among the inlet members. Can be configured. With such a configuration, it is possible to select an inlet member in which effective gas mixing is performed.
[0029] かかるガスカロリ変動抑制装置において、上記出口部材を複数個配設し、上記入 口部材の切り換えに同期して燃料ガスを第三容器外へ流出させる出口部材を選択し て切り換えうるように構成することができる。 [0029] In such a gas calorie fluctuation suppressing device, a plurality of the outlet members are provided, and an outlet member that allows the fuel gas to flow out of the third container can be selected and switched in synchronization with the switching of the inlet member. Can be configured.
[0030] 上記第三容器を備えたガスカロリ変動抑制装置において、入口部材を複数個形成 し、各入口部材に流量調整装置を設置し、各入口部材を流通するガスの流量を変更 しうるように構成すること力 Sできる。力かる構成によれば、たとえば、ガスを流入させる ガス入口を周期的に切り換えることによって第三容器内でのガスの時間差混合を促 進すること力 Sできる。 [0030] In the gas calorie fluctuation suppressing device including the third container, a plurality of inlet members are formed. In addition, it is possible to install a flow rate adjusting device at each inlet member, and to configure it so that the flow rate of the gas flowing through each inlet member can be changed. According to the powerful configuration, for example, it is possible to promote the time difference mixing of the gas in the third container S by periodically switching the gas inlet through which the gas flows.
[0031] 上記ガス通路構成部材または入口部材に、ガス通路構成部材内へ不活性ガスを 流入させるための不活性ガス供給通路を接続するのが好ましレ、。ガス通路構成部材 内で予め燃料ガスと不活性ガスとの時間差混合がなされるからである。  [0031] It is preferable that an inert gas supply passage for allowing an inert gas to flow into the gas passage constituent member is connected to the gas passage constituent member or the inlet member. This is because the fuel gas and the inert gas are preliminarily mixed with each other in the gas passage constituent member.
[0032] 上記不活性ガスを、酸素製造プラントおよび窒素製造プラントのうち少なくとも一方 のプラントから排出される廃棄窒素を利用するのが好ましい。不活性ガスの調達が容 易且つ安価だからである。なお、酸素製造プラントや窒素製造プラントとしては、たと えば高炉法、直接還元鉄法等のプロセスにおいて設置されるものが適用されうる。  [0032] It is preferable to use waste nitrogen discharged from at least one of an oxygen production plant and a nitrogen production plant as the inert gas. This is because it is easy and inexpensive to procure inert gas. As the oxygen production plant and nitrogen production plant, those installed in processes such as the blast furnace method and the direct reduced iron method can be applied.
[0033] 上記ガス混合装置内にガスを撹拌するための撹拌装置を設置することができる。撹 拌装置としてはファン等が採用されうる。  [0033] A stirring device for stirring gas may be installed in the gas mixing device. A fan or the like can be adopted as the stirring device.
[0034] 上記入口部材に接続されてレ、る燃料ガス供給通路および入口部材のうちの一方に 、燃料ガスのガスカロリ値を計測するための入口ガス発熱量計測装置を設置し、上記 出口部材に接続されてレ、る燃料ガス供給通路および出口部材のうちの一方に、燃料 ガスのガスカロリ値を計測するための出口ガス発熱量計測装置を設置することができ る。  [0034] An inlet gas calorific value measuring device for measuring the gas calorie value of the fuel gas is installed in one of the fuel gas supply passage and the inlet member connected to the inlet member, and the outlet member is installed in the outlet member. An outlet gas calorific value measuring device for measuring the gas calorie value of the fuel gas can be installed in one of the connected fuel gas supply passage and the outlet member.
[0035] かかるガスカロリ変動抑制装置にぉレ、て、上記入口ガス発熱量計測装置および出 口ガス発熱量計測装置の計測値に基づレ、て、ガス通路構成部材へ流入するガスの カロリ変動とガス通路構成部材カ 排出されるガスのカロリ変動とを対比し、この対比 結果に基づレ、て、ガス通路構成部材内へのガス流入量を変化させるベく制御する制 御装置を配設することができる。  [0035] Based on the measured values of the inlet gas calorific value measuring device and the outlet gas calorific value measuring device, the gas calorie fluctuation of the gas flowing into the gas passage constituent member is reduced. And a control device that controls the amount of gas flowing into the gas passage component based on the comparison result and the calorie fluctuation of the discharged gas. Can be set.
[0036] また、上記入口ガス発熱量計測装置および出口ガス発熱量計測装置の計測値に 基づいて、ガス通路構成部材への流入ガスのカロリ変動とガス通路構成部材からの 排出ガスのカロリ変動とを対比し、この対比結果に基づいて、ガス通路構成部材内へ のガス流入方向を変化させるベく制御する制御装置を配設することができる。  [0036] Further, based on the measured values of the inlet gas calorific value measuring device and the outlet gas calorific value measuring device, the calorie fluctuation of the inflow gas to the gas path constituent member and the calorie fluctuation of the exhaust gas from the gas path constituent member It is possible to arrange a control device that controls the change of the gas inflow direction into the gas passage constituting member based on the comparison result.
[0037] 本発明の燃料ガス供給設備は、 ガスを燃料として燃焼設備に供給するための燃料ガス供給通路と、 この燃料ガス供給通路を通して供給される燃料ガスの発熱量の変動を抑制するた めのガスカロリ変動抑制装置とを備えており、 [0037] The fuel gas supply facility of the present invention comprises: A fuel gas supply passage for supplying gas as fuel to the combustion facility, and a gas calorie fluctuation suppressing device for suppressing fluctuations in the calorific value of the fuel gas supplied through the fuel gas supply passage,
このガスカロリ変動抑制装置が前述したうちのいずれか一のガスカロリ変動抑制装 置から構成されている。  This gas calorie fluctuation suppressing device is composed of any one of the gas calorie fluctuation suppressing devices described above.
[0038] 力、かる燃料ガス供給設備には、上記ガスカロリ変動抑制装置における、  [0038] In the fuel gas supply equipment for power, in the gas calorie fluctuation suppressing device,
ガス混合装置の出口部材と燃料ガス供給通路との間に接続された出口通路と、 ガス混合装置の入口部材と燃料ガス供給通路における上記出口通路の接続点より 上流側との間に接続された上流側入口通路とをさらに備えることができる。  An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between an inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage. And an upstream inlet passage.
[0039] または、このガスカロリ変動抑制装置に対して、上流側入口通路に代えて、または 上流側入口通路とともに、ガス混合装置の入口部材と燃料ガス供給通路における上 記出口通路の接続点より下流側との間に接続された下流側入口通路と、この下流側 入口通路に設置された、燃料ガスをガス混合装置に向けて圧送するガス圧送装置と をさらに備えることができる。 [0039] Alternatively, with respect to this gas calorie fluctuation suppressing device, instead of the upstream side inlet passage or together with the upstream side inlet passage, it is downstream from the connection point between the inlet member of the gas mixing device and the outlet passage in the fuel gas supply passage. And a downstream inlet passage connected to the gas inlet side, and a gas pumping device installed in the downstream inlet passage for pumping the fuel gas toward the gas mixing device.
[0040] または、上記ガスカロリ変動抑制装置における、 [0040] Alternatively, in the gas calorie fluctuation suppressing device,
ガス混合装置の出口部材と燃料ガス供給通路との間に接続された出口通路と、 ガス混合装置の入口部材と燃料ガス供給通路における上記出口通路の接続点より 上流側との間に接続された上流側入口通路と、  An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between an inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage. An upstream inlet passage,
燃料ガス供給通路における上記出口通路の接続点より下流側と燃料ガス供給通路 における上記上流側入口通路の接続点より上流側との間に接続された戻し通路と、 上記戻し通路に設置された、燃料ガスを上流側燃料ガス供給通路に向けて圧送す るガス圧送装置とをさらに備えることができる。  A return passage connected between the downstream side of the connection point of the outlet passage in the fuel gas supply passage and the upstream side of the connection point of the upstream inlet passage in the fuel gas supply passage; and installed in the return passage; A gas pressure feeding device that pressure-feeds the fuel gas toward the upstream side fuel gas supply passage may be further provided.
[0041] または、上記ガスカロリ変動抑制装置における、 [0041] Alternatively, in the gas calorie fluctuation suppressing device,
ガス混合装置が二種の入口部材を有しており、  The gas mixing device has two inlet members;
ガス混合装置の出口部材に下流側の燃料ガス供給通路が接続されており、 ガス混合装置の一方の入口部材に上流側の燃料ガス供給通路が接続されており、 ガス混合装置の他方の入口部材と下流側の燃料ガス供給通路との間に接続された 戻し通路と、 この戻し通路に設置された、燃料ガスをガス混合装置に向けて圧送するガス圧送 装置とをさらに備えることができる。 A downstream fuel gas supply passage is connected to the outlet member of the gas mixing device, an upstream fuel gas supply passage is connected to one inlet member of the gas mixing device, and the other inlet member of the gas mixing device A return passage connected between the fuel gas supply passage and the downstream fuel gas supply passage; A gas pressure feeding device that is installed in the return passage and pumps the fuel gas toward the gas mixing device can be further provided.
[0042] または、上記ガスカロリ変動抑制装置における、  [0042] Alternatively, in the gas calorie fluctuation suppressing device,
ガス混合装置の出口部材に下流側の燃料ガス供給通路が接続されており、 ガス混合装置の入口部材に上流側の燃料ガス供給通路が接続されており、 ガス混合装置より上流側の燃料ガス供給通路とガス混合装置より下流側の燃料ガ ス供給通路との間に接続された戻し通路と、  The fuel gas supply passage on the downstream side is connected to the outlet member of the gas mixing device, the fuel gas supply passage on the upstream side is connected to the inlet member of the gas mixing device, and the fuel gas supply on the upstream side of the gas mixing device is supplied A return passage connected between the passage and the fuel gas supply passage downstream of the gas mixing device;
この戻し通路に設置された、燃料ガスを燃料ガス供給通路の下流側から上流側に 向けて圧送するガス圧送装置とをさらに備えることができる。  A gas pumping device installed in the return passage and pumping the fuel gas from the downstream side to the upstream side of the fuel gas supply passage may be further provided.
[0043] 本発明のガスタービン設備は、 [0043] The gas turbine equipment of the present invention comprises:
上記燃焼設備と、  The above combustion equipment;
この燃焼設備にガスを燃料として供給するための燃料ガス供給設備とを備えており 上記燃焼設備がガスタービンであり、  A fuel gas supply facility for supplying gas as fuel to the combustion facility, and the combustion facility is a gas turbine,
上記燃料ガス供給設備が、前述したうちいずれ力一の燃料ガス供給設備から構成 されている。  The fuel gas supply facility is composed of one of the best fuel gas supply facilities mentioned above.
[0044] 本発明のボイラ設備は、 [0044] The boiler equipment of the present invention comprises:
上記燃焼設備と、  The above combustion equipment;
この燃焼設備にガスを燃料として供給するための燃料ガス供給設備とを備えており 上記燃焼設備がガスをバーナーで燃焼させるボイラであり、  A fuel gas supply facility for supplying gas as fuel to the combustion facility, and the combustion facility is a boiler that burns gas with a burner,
上記燃料ガス供給設備が、前述したうちいずれか一の燃料ガス供給設備力 構成 されている。  The fuel gas supply facility is configured as any one of the above-mentioned fuel gas supply facilities.
発明の効果  The invention's effect
[0045] 本発明によれば、プロセス副生ガスのようにカロリ変動しうる低カロリガスをガスター ビン等の燃焼設備に燃料ガスとして供給する場合、時間差混合することによってこの 供給される低カロリガスのカロリ変動を抑制(緩和)することができる。すなわち、変動 の振幅を小さくすることはもとより、あたかもローパスフィルタのように、短周期や中周 期の変動を消滅させて長周期の変動のみを残存させることができるので、希釈ガスに よる減熱や増熱ガスによる増熱が効果的且つ容易になされる。また、希釈ガスによる 減熱や増熱ガスによる増熱が不要になる場合がある。 [0045] According to the present invention, when low calorie gas that can vary in calorie, such as process by-product gas, is supplied as fuel gas to a combustion facility such as a gas turbine, the calorie of the low calorie gas supplied by time difference mixing. Variation can be suppressed (mitigated). That is, not only to reduce the amplitude of fluctuation, but also as if it were a low-pass filter, a short cycle or medium Since the fluctuations in the period can be eliminated and only the long-period fluctuations can remain, heat reduction by the dilution gas and heat increase by the heat-increasing gas can be effectively and easily performed. In addition, there is a case where heat reduction by dilution gas and heat increase by heating gas are not necessary.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の燃料ガス供給設備の一実施形態である低カロリガス供給設備 を含んだガスタービン発電設備の概略を示す配管図である。 FIG. 1 is a piping diagram showing an outline of a gas turbine power generation facility including a low calorie gas supply facility which is an embodiment of the fuel gas supply facility of the present invention.
[図 2]図 2は、低カロリガスがガス混合装置を通過することによって当該ガスのカロリ変 動が抑制される状態の一例を示したグラフである。  [FIG. 2] FIG. 2 is a graph showing an example of a state in which the calorie change of the gas is suppressed by passing the low calorie gas through the gas mixing device.
[図 3]図 3は、図 1のガスタービン発電設備において設置されうるガス混合装置の他の 例を示す配管図である。  FIG. 3 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 4]図 4 (a)は図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す、当該装置の中心軸に沿った面によって切った縦断面であり、図 4 (b)は図 4 (a)の IV— IV線断面図である。  [FIG. 4] FIG. 4 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of the gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 4 (b) is a sectional view taken along line IV-IV in Fig. 4 (a).
[図 5]図 5 (a)は図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す、当該装置の中心軸に沿った面によって切った縦断面であり、図 5 (b)は図 5 (a)の V— V線断面図である。  [FIG. 5] FIG. 5 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of the gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 5 (b) is a cross-sectional view taken along line V-V in Fig. 5 (a).
[図 6]図 6は、図 1のガスタービン発電設備において設置されうるガス混合装置のさら に他の例を示す縦断面図である。  6 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 7]図 7は、図 1のガスタービン発電設備において設置されうるガス混合装置のさら に他の例を示す縦断面図である。  FIG. 7 is a longitudinal sectional view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 8]図 8 (a)は図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す正面図であり、図 8 (b)は図 8 (a)の VIII— VIII線断面図である。  [FIG. 8] FIG. 8 (a) is a front view showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1, and FIG. 8 (b) is a front view of FIG. 8 (a). FIG. 8 is a sectional view taken along line VIII-VIII.
[図 9]図 9は、図 1のガスタービン発電設備において設置されうるガス混合装置のさら に他の例を示す一部切り欠き斜視図である。 FIG. 9 is a partially cutaway perspective view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 10]図 10は、図 9のガス混合装置の中心軸に沿った面によって切った縦断面であ る。  [FIG. 10] FIG. 10 is a longitudinal section taken along a plane along the central axis of the gas mixing apparatus of FIG.
[図 11]図 11は、ガス混合装置内のガスの時間差混合のシミュレーションの結果の一 例を示すグラフである。 [図 12]図 12は、ガス混合装置内のガスの時間差混合のシミュレーションの結果の他 の例を示すグラフである。 [FIG. 11] FIG. 11 is a graph showing an example of a result of simulation of time-difference mixing of gases in the gas mixing apparatus. [FIG. 12] FIG. 12 is a graph showing another example of the result of the simulation of the time difference mixing of the gas in the gas mixing apparatus.
[図 13]図 13 (a)は図 1のガスタービン発電設備におレ、て設置されうるガス混合装置の さらに他の例を示す、当該装置の中心軸に沿った面によって切った縦断面であり、 図 13 (b)は図 13 (a)の ΧΠΙ_ΧΠΙ線断面図である。  [FIG. 13] FIG. 13 (a) is a longitudinal section taken along a plane along the central axis of the apparatus, showing still another example of a gas mixing apparatus that can be installed in the gas turbine power generation facility of FIG. Fig. 13 (b) is a cross-sectional view taken along the line ΧΠΙ_ΧΠΙ of Fig. 13 (a).
[図 14]図 14は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す縦断面図である。  FIG. 14 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
園 15]図 15は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す縦断面図である。 15] FIG. 15 is a longitudinal sectional view showing still another example of the gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 16]図 16は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す縦断面図である。  FIG. 16 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
[図 17]図 17は、図 16のガス混合装置に使用されるガス流入装置の一例を示す一部 切り欠き斜視図である。  FIG. 17 is a partially cutaway perspective view showing an example of a gas inflow device used in the gas mixing device of FIG.
[図 18]図 18は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す横断面図である。  FIG. 18 is a cross-sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
[図 19]図 19は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す縦断面図である。  FIG. 19 is a longitudinal sectional view showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
[図 20]図 20は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す配管図である。  20 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
[図 21]図 21は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す配管図である。  FIG. 21 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
園 22]図 22は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す配管図である。 22] FIG. 22 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG.
園 23]図 23は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す配管図である。 Fig. 23 is a piping diagram showing another example of a gas mixing device that can be installed in the gas turbine power generation facility of Fig. 1.
[図 24]図 24は、図 1のガスタービン発電設備において設置されうるガス混合装置のさ らに他の例を示す配管図である。  FIG. 24 is a piping diagram showing still another example of a gas mixing device that can be installed in the gas turbine power generation facility of FIG. 1.
園 25]図 25は、本発明の他の実施形態である低カロリガス供給設備を含んだボイラ 設備の概略を示す配管図である。 25] FIG. 25 shows a boiler including a low-calorie gas supply facility according to another embodiment of the present invention. It is a piping diagram which shows the outline of an installation.
符号の説明 Explanation of symbols
1·· ··低カロリガス供給設備 1 ····· Low calorie gas supply equipment
2·· "ガスタービン 2 "Gas turbine
3·· ··低カロリガス供給配管 3 ···· Low calorie gas supply piping
4·· ··希釈ガス供給配管4 ···· Dilution gas supply piping
5·· ··制御装置5. Control device
6·· "混合器6 · “Mixer”
7·· ··集塵装置7 ... Dust collector
8·· ··入口カロリメータ8 ···· Inlet calorimeter
9·· ··出口カロリメータ9 ... Exit calorimeter
10·· ··ガス混合装置10 ... Gas mixing device
11·· ··入口部材11 ... Inlet member
12·· ··出口部材12 ... Exit member
13·· • ·流里計13
14·· ··混合ガス供給配管14 ... Mixed gas supply piping
15·· ··カロリメータ 15 ... calorimeter
16·· ··燃料ガス圧縮機 16 ... Fuel gas compressor
17·· ··燃料配管17 ... Fuel piping
18·· ··流量計18 ... Flow meter
19·· ··流調弁19 ... Flow control valve
20·· ··燃焼器 20 ... combustor
21·· ··流調弁  21 ... Flow control valve
22·· "発電機  22 ·· “Generator
23·· ··ガス通路構成部材 23 .. Gas passage component
24·· ··ガス室(ガス通路)24 ... Gas chamber (gas passage)
25·· ··タンク 25 ... Tank
26·· ··円筒状隔壁 27·· ··入口孔 26 ... Cylindrical bulkhead 27 ... Inlet hole
28·· ··出口孔  28 ... Exit hole
29·· "配管  29 ·· “Piping
30·· ··流調弁  30 ... Flow control valve
31·· ··ガス混合装置 31 ... Gas mixing device
32·· ··ガス室(ガス通路)32 ... Gas chamber (gas passage)
33·· ··ガス通路構成部材33 ···· Gas passage components
35·· ··ガス混合装置35 ... Gas mixing device
36·· ··ガス通路構成部材36 .. Gas passage component
37·· ··水平隔壁 37 ... Horizontal bulkhead
38·· ··ガス室(ガス通路) 38 ... Gas chamber (gas passage)
39·· "配管 39 ·· “Piping
40·· ··ガス混合装置 40 ... Gas mixing device
41·· ··容器 (ガス室)41 ··· Container (gas chamber)
42·· ··ガス通路構成部材42 ···· Gas passage components
43·· ··ガス混合装置43 ... Gas mixing device
44·· ··ガス通路構成部材44 ···· Gas passage components
45·· ··ガス混合装置45 ... Gas mixing device
46·· ··タンク 46 ... tank
47·· ··多孔板  47 ... Perforated plate
48·· ··無孔領域  48 ...
49·· ··ガス混合装置 49 ... Gas mixing equipment
50·· ··ガス混合装置50 ... Gas mixing device
51·· ··タンク 51 ... Tank
52·· ··蓋部材  52..Cover member
53·· ··傾斜管  53 ... Tilted pipe
54·· ··ガス流入装置 54 ... Gas inflow device
55·· "ハウジング 56·· ··可変/レーノく 55 ·· “Housing 56 ... Variable / Leno
57·· "配管  57 ·· “Piping
58·· "配管  58 ·· “Piping
59·· ··流調弁  59 ... Flow control valve
60·· ··ガス混合装置  60 ... Gas mixing device
61·· ··不活性ガス供給配管  61 ···· Inert gas supply piping
62·· "配管  62 ·· “Piping
63·· ··出口配管  63 ... Exit piping
64·· ··上流側入口配管  64 ... Upstream side inlet piping
65·· ··ファン  65 .. Fan
66·· ··ガス混合装置  66 ... Gas mixing equipment
67·· ··タンク  67 ... tank
68·· ··圧力検出装置  68 ... Pressure detection device
69·· ··戻し配管  69 ···· Return piping
70·· ··入口部材  70 ... Inlet member
71·· ··下流側入口配管  71 ······ Downstream inlet piping
72·· ··低カロリガス供給設備  72 ····· Low calorie gas supply equipment
73·· ''ボイラ  73 ... '' Boiler
74·· ··低カロリガス供給配管  74 ···· Low calorie gas supply piping
75·· * '流里 BT  75 ... * 'Rurisato BT
* *直接還元鉄設備  * * Direct reduced iron equipment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0048] 添付の図面を参照しながら本発明のガスカロリ変動抑制装置、燃料ガス供給設備、 ガスタービン設備およびボイラ設備の実施形態を説明する。  [0048] Embodiments of a gas calorie fluctuation suppressing device, a fuel gas supply facility, a gas turbine facility, and a boiler facility of the present invention will be described with reference to the accompanying drawings.
[0049] 図 1は燃焼設備としてのガスタービンに燃料ガスとして低カロリガスを供給する本発 明の燃料ガス供給設備の一実施形態である低カロリガス供給設備 1と、この低カロリ ガス供給設備 1を含んだガスタービン設備の概略とを示す配管図である。ガスタービ ン設備としてはガスタービン発電設備を例示している。前述したように、その発熱量が 約 12MJ/Nm3以下のガスと定義された低カロリガスは、そのカロリ等の特性が変動 するものが多い。 [0049] Fig. 1 shows a low calorie gas supply facility 1 which is an embodiment of the fuel gas supply facility of the present invention for supplying low calorie gas as a fuel gas to a gas turbine as a combustion facility, and the low calorie gas supply facility 1 It is a piping diagram showing the outline of the included gas turbine equipment. A gas turbine power generation facility is exemplified as a gas turbine facility. As mentioned above, the calorific value is Low calorie gas, defined as a gas of about 12 MJ / Nm 3 or less, often changes its calorie characteristics.
[0050] この燃料ガス供給設備としての低カロリガス供給設備 1は、直接還元鉄設備 Sで発 生した副生ガス(以下、低カロリガスと呼ぶ)をガスタービン 2に燃料として供給する燃 料ガス供給通路としての低カロリガス供給配管 3と、この低カロリガスを減熱するため に低カロリガス供給配管 3に希釈用のガスを供給するための希釈ガス供給配管 4とを 備えている。この希釈ガスを低カロリガスに供給するのは、低カロリガスのカロリ値が 変動してガスタービン固有の許容カロリ範囲を超えることを防止するためである。なお 、後述するように、この希釈ガス供給配管 4に代えて、または希釈ガス供給配管 4とと もに、低カロリガスのカロリ値が許容カロリ範囲を下回らないように増熱ガスを供給す る増熱ガス供給配管を設置してもよレ、。  [0050] The low-calorie gas supply facility 1 as the fuel gas supply facility is a fuel gas supply that supplies by-product gas (hereinafter referred to as low-calorie gas) generated directly in the reduced iron facility S to the gas turbine 2 as fuel. A low calorie gas supply pipe 3 as a passage and a dilution gas supply pipe 4 for supplying a dilution gas to the low calorie gas supply pipe 3 to reduce the heat of the low calorie gas are provided. The reason why the diluted gas is supplied to the low calorie gas is to prevent the calorie value of the low calorie gas from fluctuating and exceeding the allowable calorie range inherent to the gas turbine. As will be described later, instead of the dilution gas supply pipe 4 or together with the dilution gas supply pipe 4, an increase in which the high-temperature gas is supplied so that the calorific value of the low calorie gas does not fall below the allowable calorie range. You can install hot gas supply piping.
[0051] 希釈ガス供給配管 4には、流量計 18と希釈ガスの流量を調整する流量調整弁(以 下、流調弁という) 19とが設置されており、混合器 6によって低カロリガス供給設備 1 に接続されている。上記希釈用ガスとしては不活性ガス、空気、蒸気、燃焼設備等か ら排出される排気ガス等が採用されうる。不活性ガスとして窒素ガス(N )が好適に採 用されうる力 S、もちろん、 N には限定されず、 CO やヘリウム(He)等であってもよい [0051] The dilution gas supply pipe 4 is provided with a flow meter 18 and a flow rate adjustment valve (hereinafter referred to as a flow control valve) 19 for adjusting the flow rate of the dilution gas. Connected to 1. As the dilution gas, inert gas, air, steam, exhaust gas discharged from combustion facilities, etc. can be employed. Force S that nitrogen gas (N 2) can be preferably used as an inert gas S, of course, not limited to N, and may be CO, helium (He), etc.
。低カロリガス供給配管 3の混合器 6より下流部分は、そこを低カロリガスが希釈ガスと 混合された状態でガスタービン 2まで送られることがあるので、この範囲の配管を混合 ガス供給配管 14と呼ぶ。この低カロリガス供給設備 1には、その作動を制御するため の制御装置 5が配設されている。 . The downstream part of the mixer 6 of the low-calorie gas supply pipe 3 may be sent to the gas turbine 2 in a state where the low-calorie gas is mixed with the dilution gas, so this range of pipe is called the mixed gas supply pipe 14 . The low calorie gas supply facility 1 is provided with a control device 5 for controlling its operation.
[0052] 上記低カロリガス供給配管 3の混合器 6より上流部分には、直接還元鉄設備 Sから 送られてくる低カロリガスを除塵するための集塵装置 7と、低カロリガスを混合するた めのガス混合装置 10とが設置されている。ガス混合装置 10は、複数のガス通路を有 するガス通路構成部材 23と、このガス通路構成部材 23に上流側の低カロリガス供給 配管 3を接続する入口部材 11と、入口部材 11とは別にガス通路構成部材 23に下流 側の低カロリガス供給配管 3を接続する出口部材 12とを備えている。  [0052] In the upstream portion of the mixer 6 of the low calorie gas supply pipe 3, a dust collector 7 for removing dust from the low calorie gas directly sent from the reduced iron facility S and a mixture of the low calorie gas are used. A gas mixing device 10 is installed. The gas mixing device 10 includes a gas passage component member 23 having a plurality of gas passages, an inlet member 11 for connecting the upstream low calorie gas supply pipe 3 to the gas passage member 23, and a gas separate from the inlet member 11. An outlet member 12 for connecting the low-calorie gas supply pipe 3 on the downstream side to the passage constituting member 23 is provided.
[0053] ガス混合装置 10は比較的大容量であり、時々刻々とカロリ変動しつつ流入してくる 低カロリガスがこのガス混合装置 10の内部で時間差混合される。すなわち、同時に ガス混合装置 10に流入した低カロリガスは、比較的早く出口部材 12から流出する部 分から遅くまでガス混合装置 10内に滞留する部分まで分布している。一方、入口部 材 11からは連続して新たなガスが流入してくるので、過去に流入したガスと新たに流 入したガスとが絶えず混合されている。ここではこのことを時間差混合と呼ぶ。後述す るように、この時間差混合という作用を発揮することによってガス混合装置がガスカロ リ変動抑制装置として機能する。 [0053] The gas mixing device 10 has a relatively large capacity, and the low caloric gas flowing in while changing the calorie from time to time is mixed in the gas mixing device 10 with a time difference. That is, at the same time The low calorie gas that has flowed into the gas mixing device 10 is distributed from a portion that flows out of the outlet member 12 relatively early to a portion that stays in the gas mixing device 10 from late. On the other hand, since new gas continuously flows from the inlet member 11, the gas that has flowed in the past and the gas that has flowed in are continuously mixed. Here, this is called time difference mixing. As will be described later, the gas mixing device functions as a gas calorie fluctuation suppressing device by exhibiting this time difference mixing.
[0054] ガス混合装置 10の上流側および下流側には低カロリガスの発熱量を検出するため の発熱量検出装置 8、 9が設置されており、ガス混合装置 10の下流側にはガス流量 を計測するための流量計 13が設置されている。発熱量検出装置 8、 9の設置場所は 低カロリガス供給配管 3に限定されず、可能であればガス混合装置 10の入口部材 1 1および出口部材 12に設置してもよレ、。図 1ではこの流量計 13は低カロリガス供給配 管 3のガス混合装置 10と混合器 6との間の部分に設置されているが、この位置には 限定されない。たとえば、混合器 6より下流の混合ガス供給配管 14に設置してもよぐ 後述するガスタービン 2の燃焼器 20に接続された燃料配管 17に設置してもよい。  [0054] On the upstream side and downstream side of the gas mixing device 10, calorific value detection devices 8 and 9 for detecting the calorific value of the low calorie gas are installed, and the gas flow rate is set on the downstream side of the gas mixing device 10. A flow meter 13 for measurement is installed. The installation location of the calorific value detection devices 8 and 9 is not limited to the low calorie gas supply pipe 3, but can be installed on the inlet member 11 and outlet member 12 of the gas mixing device 10 if possible. In FIG. 1, the flow meter 13 is installed in a portion between the gas mixing device 10 and the mixer 6 in the low calorie gas supply pipe 3, but the position is not limited to this. For example, it may be installed in the mixed gas supply pipe 14 downstream from the mixer 6 or may be installed in the fuel pipe 17 connected to the combustor 20 of the gas turbine 2 described later.
[0055] ここで、発熱量検出装置 8、 9として、ガスの発熱量を直接計測する所謂カロリメータ 、可燃成分の含有率 (濃度)を計測する装置などが用いられる。検出速度を重視する 場合は現在では可燃性ガス濃度検出器を用いるのが好ましい。さらに、適用される 低カロリガスが主に含む可燃成分の種類に応じて、また、主たる濃度変動が生じる可 燃成分 (たとえば、直接還元鉄法における副生ガスでは一酸化炭素)に応じて、その 成分の濃度を検出する濃度検出器を用いても良い。本明細書ではこれらの発熱量 検出装置全体を代表して「カロリメータ」と呼ぶ。  [0055] Here, as the calorific value detection devices 8 and 9, a so-called calorimeter that directly measures the calorific value of gas, a device that measures the content (concentration) of combustible components, and the like are used. If importance is attached to the detection speed, it is now preferable to use a combustible gas concentration detector. Furthermore, depending on the type of combustible component contained in the low calorie gas applied, and depending on the combustible component in which the main concentration fluctuation occurs (for example, carbon monoxide in the byproduct gas in the direct reduced iron method), You may use the density | concentration detector which detects the density | concentration of a component. In this specification, these calorific value detection devices as a whole are referred to as “calorimeters”.
[0056] 混合ガス供給配管 14にはカロリメータ 15が設置されている。これは、ガス混合装置 10の出口側のカロリメータ 9および流量計 13を監視するとともに、混合ガス供給配管 14のカロリメータ 15を監視することによって上記混合ガスの最終的なカロリ値の適正 を判断するためである。さらに、希釈ガスとして、空気や燃焼設備からの排ガス等、酸 素を比較的多く含有するガスを用レ、る場合には、混合ガスの酸素濃度を制御するた めに混合ガス供給配管 14や希釈ガス供給配管 4に酸素濃度計(図示せず)を設置 することが望ましい。 [0057] カロリメータ 15の下流側にはガスタービン 2の燃料ガス圧縮機 16が設置されている 。燃料ガス圧縮機 16からガスタービン 2の燃焼器 20に接続された燃料配管 17にはタ 一ビン出力を調整するための流調弁 21が設置されている。ガスタービン 2には発電 機 22が連結されている。また、図示しないが、ガスタービン 2にはその排ガスを利用し て発電する排熱回収ボイラ発電設備等を設置してもよレ、。 A calorimeter 15 is installed in the mixed gas supply pipe 14. This is because the calorimeter 9 and the flow meter 13 on the outlet side of the gas mixing device 10 are monitored and the calorimeter 15 of the mixed gas supply pipe 14 is monitored to determine the appropriateness of the final caloric value of the mixed gas. It is. Furthermore, when using a gas containing a relatively large amount of oxygen, such as air or exhaust gas from combustion equipment, as the dilution gas, the mixed gas supply pipe 14 or 14 is used to control the oxygen concentration of the mixed gas. It is desirable to install an oxygen concentration meter (not shown) in the dilution gas supply pipe 4. A fuel gas compressor 16 of the gas turbine 2 is installed on the downstream side of the calorimeter 15. A flow control valve 21 for adjusting the turbine output is installed in the fuel pipe 17 connected from the fuel gas compressor 16 to the combustor 20 of the gas turbine 2. A generator 22 is connected to the gas turbine 2. Although not shown, the gas turbine 2 may be provided with an exhaust heat recovery boiler power generation facility that generates power using the exhaust gas.
[0058] つぎに、図 1中のガス混合装置 10の作用効果について説明する。前述のごとぐこ のガス混合装置 10は、低カロリガス供給配管 3が接続される入口部材 11と出口部材 12とを有してレヽる。したがって、送られてきた低カロリガスが入口部材 11を通ってガス 通路構成部材 23に流入する。このガス通路構成部材 23の容積は大きぐたとえば直 径が 2 3m程度の低カロリガス供給配管 3に対して通常容積が約 20000 20000 Om3程度のものが設置される。時々刻々カロリが変動しつつ送られてきた低カロリガ スはガス混合装置内で時間差混合される。その結果、ガス混合装置 10の出口部材 1 2から出ていく低カロリガスのカロリの変動幅は縮小され、変動速度は低下させられる 。すなわち、カロリ変動が大きく抑制(緩和)される。このようにカロリ変動が事前に緩 和されると、下流において不活性ガス等の希釈ガスによるカロリ上昇の抑制制御が非 常に容易となる。以上の現象を図 2を参照しつつ説明する。 Next, the function and effect of the gas mixing device 10 in FIG. 1 will be described. As described above, the gas mixing device 10 includes the inlet member 11 and the outlet member 12 to which the low calorie gas supply pipe 3 is connected. Therefore, the low caloric gas sent flows through the inlet member 11 and into the gas passage constituting member 23. The gas passage component 23 has a large volume, for example, a low calorie gas supply pipe 3 having a diameter of about 23 m and a normal volume of about 20000 20000 Om 3 is installed. The low calorific gas that is sent while the calorie fluctuates from time to time is mixed in a time difference in the gas mixing device. As a result, the fluctuation range of the calorie of the low calorie gas exiting from the outlet member 12 of the gas mixing apparatus 10 is reduced, and the fluctuation speed is reduced. That is, calorie fluctuation is greatly suppressed (relieved). If the calorie fluctuation is moderated in this way, it becomes very easy to control the rise in calorie by a diluent gas such as an inert gas downstream. The above phenomenon will be described with reference to FIG.
[0059] 図 2は、図 1中のガス混合装置 10が有する後述のガス通路構成部材 23の容積を 2 00000m3としたときに、カロリ変動する低カロリガス力 S流量 500000Nm3 /hrで供 給された場合のカロリ変動の抑制(緩和)状態のシミュレーション結果を示したもので ある。横軸は時間(分)を示し、縦軸は低カロリガスの発熱量であるガスカロリ値 (kcal /Nm3 )を示している。また、図中に破線で表す曲線はガス混合装置 10に送られて きた低カロリガスのカロリ変動(オリジナル変動)を示している。これは実測した一サン プノレである。実線で表す曲線は、十分に時間差混合された上でガス混合装置 10か ら出ていく低カロリガスのカロリ変動(抑制後変動)を示している。図示のごとぐガス 混合装置 10に入る前の低カロリガスのカロリは約 1530kcal/Nm3力 約 2360kca 1/Nm まで変動している。つまり平均値(1945kcal/Nm3 )の約 ± 21 %の変動幅 を持っている。ガス混合装置 10から出てレ、く低カロリガスのカロリ変動を理論計算し た結果によれば、 1780kcal/Nm3力、ら 1960kcal/Nm3までであり、変動幅は平 均値(1870kcal/Nm3 )の約 ± 5%まで抑制されている。図示のごとく変動周期に ついては短周期および中周期の変動は除去され、比較的長周期の変動が残存して いる。この効果は低カロリガスの供給流量に対してガス混合装置の容積を大きくする ほど顕著になる傾向がある。オリジナル変動の周期が短ぐ変動幅が小さい場合は経 済性の見地力 ガス混合装置の容積を小さくしても効果がある。 [0059] Figure 2 when the volume of 2 00000M 3 below the gas passage forming member 23 having a gas mixing device 10 in Figure 1, supply of low-calorie gas force S flow rate 500,000 nm 3 / hr varying calorific value The simulation results for the state of suppression (relaxation) of calorie fluctuation are shown. The horizontal axis represents time (minutes), and the vertical axis represents the gas calorie value (kcal / Nm 3 ), which is the calorific value of low calorie gas. In addition, the curve indicated by the broken line in the figure indicates the calorie fluctuation (original fluctuation) of the low calorie gas sent to the gas mixing device 10. This is a sample that was actually measured. The curve shown by the solid line shows the calorie fluctuation (after-suppression fluctuation) of the low calorie gas exiting from the gas mixing device 10 after sufficient time difference mixing. As shown in the figure, the calorific value of the low calorific gas before entering the gas mixing device 10 fluctuates to about 1530 kcal / Nm 3 force about 2360 kca 1 / Nm. In other words, it has a fluctuation range of about ± 21% of the average value (1945 kcal / Nm 3 ). According to the result of theoretical calculation of the calorie fluctuation of the low calorie gas coming out of the gas mixing device 10, it is 1780 kcal / Nm 3 force, etc., up to 1960 kcal / Nm 3 and the fluctuation range is flat. The average value (1870kcal / Nm 3 ) is suppressed to about ± 5%. As shown in the figure, for the fluctuation period, fluctuations in the short period and medium period are removed, and fluctuations in a relatively long period remain. This effect tends to become more pronounced as the volume of the gas mixing device is increased with respect to the low calorie gas supply flow rate. If the period of the original fluctuation is short and the fluctuation width is small, the economic power will be effective even if the volume of the gas mixing device is reduced.
[0060] 図 3に示すように、低カロリガスが流量 200000Nm3 /hrで供給される設備におい て、容積が 25000m3のガス混合装置 10を並列に二台設置しておき、通常運転時に は二台とも使用し、定期点検や作動不良時等の非定常事態にのみ片方のガス混合 装置のみを使用するという工夫もできる。 [0060] As shown in FIG. 3, in a facility where low calorie gas is supplied at a flow rate of 200,000 Nm 3 / hr, two gas mixing devices 10 with a volume of 25000 m 3 are installed in parallel, and two units are installed during normal operation. It can also be used with a stand, and only one gas mixing device can be used only for unsteady situations such as periodic inspections and malfunctions.
[0061] このように、低カロリガスの時間差混合を実現しうるガス混合装置を備えることにより 、低カロリガスのカロリ変動が大きく抑制される。その結果、下流において希釈ガスを 混合する制御が非常に容易になされる。たとえば、ガスタービン 2の燃料ガスのカロリ 変動幅が基準カロリ値(平均値)の ± 10%と設定されている場合であれば、ガス混合 装置の下流では変動するカロリの平均値をガスタービン 2に設定された基準カロリ値 と一致させるために、その仕様に適合させうる容積のガス混合装置を備え、一定比率 の希釈ガスを供給するだけで良くなる。空気の供給動作に関しては低カロリガスの力 ロリ変動を考慮する必要が無くなる。  As described above, by providing the gas mixing device that can realize the time difference mixing of the low calorie gas, the calorie fluctuation of the low calorie gas is greatly suppressed. As a result, the control of mixing the dilution gas downstream is very easy. For example, if the calorie fluctuation range of the fuel gas of gas turbine 2 is set to ± 10% of the standard calorie value (average value), the average value of the fluctuating calorie is calculated downstream of the gas mixing device. In order to match the standard calorie value set in, it is only necessary to provide a gas mixing device with a volume that can meet the specifications and supply a fixed ratio of dilution gas. With regard to the air supply operation, it is no longer necessary to consider the power calorie fluctuation of low calorie gas.
[0062] 極端な場合、ガス混合装置 10を通過した後の低カロリガスの変動するカロリの平均 値力 ガスタービン 2に設定された基準カロリ値とほぼ一致しているなら、希釈ガスの 混合が不要となるだけでなぐ希釈ガスを供給する設備が不要となる。  [0062] In extreme cases, if the average caloric value fluctuating low caloric gas after passing through the gas mixing device 10 is almost the same as the reference caloric value set in the gas turbine 2, no dilution gas mixing is required. This eliminates the need for a facility for supplying a dilution gas.
[0063] 上記ガス混合装置 10は所定の容積を有しておれば前述した低カロリガスの時間差 混合という作用を奏するが、ガス混合装置内でより一層十分に低カロリガスの時間差 混合がなされるように種々の工夫が施されている。すなわち、ガス混合装置は、そこ に流入した低カロリガスの一部がタンク内にできるだけ長時間滞留し、タンク内で十 分に混合されることにより、より効果的な時間差混合がなされるように構成されている 。概説すれば、ガス混合装置は、その内部に流入したガスが、そこに形成された複数 のガス通路をそれぞれ異なる時間をかけて通過し、各ガス通路を通過したガスが混 合されることにより、時間差混合が達成されるように構成されている。 [0064] この構成を図 4一図 19を参照しつつ説明する。 [0063] If the gas mixing device 10 has a predetermined volume, the low-calorie gas time difference mixing described above can be performed. However, the low-calorie gas time difference mixing is more sufficiently performed in the gas mixing device. Various ideas are given. In other words, the gas mixing device is configured so that a part of the low calorific gas flowing into the tank stays in the tank for as long as possible and is mixed sufficiently in the tank, so that more effective time difference mixing is performed. Have been. In summary, a gas mixing device is a gas mixing device in which the gas that has flowed into it passes through the gas passages formed there over different times, and the gas that has passed through each gas passage is mixed. The time difference mixing is configured to be achieved. This configuration will be described with reference to FIG. 4 and FIG.
[0065] 図 4に示すガス混合装置 10は、ガス通路構成部材 23として、内部に複数のガス通 路としてのガス室 24が構成されたタンク 25を採用している。この実施形態では、円筒 状のタンク 23内の床面上に上端が開放された複数個の円筒状隔壁 26が間隔をお いて同心状に配設されており、タンク周壁と円筒状隔壁 26との間の空間、および、円 筒状隔壁 26同士の間の空間がそれぞれガス通路 24を構成している。円筒状隔壁 2 6の上端の高さはタンク 25の天井の高さより低くされており、タンク 25の天井と各円筒 状隔壁 26の上端との間の空間によって各ガス室(ガス通路) 24が連通されている。タ ンク 25の底部における各ガス室 24に対応する位置にはそれぞれガスの入口孔 27が 形成されており、タンク 25の天井には、下流側の低カロリガス供給配管 3と接続される 一つのガス出口孔 28が形成されている。  The gas mixing device 10 shown in FIG. 4 employs a tank 25 in which a gas chamber 24 serving as a plurality of gas passages is formed as a gas passage constituent member 23. In this embodiment, a plurality of cylindrical partition walls 26 having upper ends opened on the floor surface in the cylindrical tank 23 are arranged concentrically at intervals, and the tank peripheral wall and the cylindrical partition wall 26 are connected to each other. The space between each other and the space between the cylindrical partition walls 26 constitute a gas passage 24, respectively. The height of the upper end of the cylindrical partition wall 26 is lower than the height of the ceiling of the tank 25, and each gas chamber (gas passage) 24 is formed by the space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26. It is communicated. Gas inlet holes 27 are formed at positions corresponding to the gas chambers 24 at the bottom of the tank 25, and one gas connected to the low-calorie gas supply pipe 3 on the downstream side is formed on the ceiling of the tank 25. An outlet hole 28 is formed.
[0066] 入口部材 11は、上流側の低カロリガス供給配管 3から分岐して上記入口孔 27それ ぞれに接続される配管 29、および、この配管 29に設置された、流入ガス量を調節す る流調弁 30を備えている。出口部材 12は、上記出口孔 28と、各円筒状隔壁 26の上 端より上方のタンク 25の部分とから構成されていると言える。すなわち、出口部材 12 は、出口孔 28を含む、タンク 25の天井と各円筒状隔壁 26の上端との間の空間を区 画するタンクの部分である。各ガス通路 24に分かれて通って来るガスは、この出口部 材 12において合流し、ここで混合される。  [0066] The inlet member 11 adjusts the amount of inflow gas installed in the pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the inlet holes 27 and the pipe 29. The flow control valve 30 is provided. It can be said that the outlet member 12 includes the outlet hole 28 and a portion of the tank 25 above the upper end of each cylindrical partition wall 26. That is, the outlet member 12 is a portion of the tank that defines the space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26 including the outlet hole 28. The gas that passes through the gas passages 24 merges at the outlet member 12 and is mixed there.
[0067] 図 4のガス通路構成部材 23は四つのガス通路 24a、 24b、 24c、 24dを有している 、この個数には限定されず、二個以上であればよいが、ガスの効果的な時間差混 合を実現するという観点からは多いほどよい。  [0067] The gas passage component 23 in FIG. 4 has four gas passages 24a, 24b, 24c, and 24d. However, the number is not limited, and two or more gas passages may be used. From the standpoint of realizing a long time gap, the better.
[0068] 各ガス通路 24への入口部材 11の接続は本実施形態のごとくタンク 25の底に限定 されなレ、が、入口部材 11から出口部材 12に至るガス通路 24の長さが長い方が好ま しいので、ガス通路 24の上端が開放されて出口部材 12に連通される場合は図示の ごとくタンク 25の底に入口部材 11を接続するのがよレ、。  [0068] The connection of the inlet member 11 to each gas passage 24 is not limited to the bottom of the tank 25 as in this embodiment, but the length of the gas passage 24 extending from the inlet member 11 to the outlet member 12 is longer. Therefore, when the upper end of the gas passage 24 is opened and communicated with the outlet member 12, the inlet member 11 should be connected to the bottom of the tank 25 as shown in the figure.
[0069] 本実施形態では、全てのガス室 24の容積をほぼ同一にしている。そのうえで、上記 流調弁 30の開度を調整して、各ガス室 24に流入するガス流量を相違させている。そ の結果、各ガス室 24に同時に流入したガスが出口部材 12に至るまでの時間がガス 室 24a、 24b、 24c、 24dによって異なることになる。その結果、各ガス室から流出して 合流したガスは時間差混合がなされてカロリ変動が抑制される。以下、このことにつ いて説明する。 In the present embodiment, the volumes of all the gas chambers 24 are substantially the same. In addition, the flow rate of the gas flowing into each gas chamber 24 is made different by adjusting the opening degree of the flow control valve 30. As a result, the time until the gas that has flowed into each gas chamber 24 at the same time reaches the outlet member 12 is gas. It will vary depending on chambers 24a, 24b, 24c and 24d. As a result, the gas that has flowed out of each gas chamber and merged is mixed by time difference, and calorie fluctuation is suppressed. This will be explained below.
[0070] たとえば、入口部材 11を通る総ガス流量を Vとし、同一容積 Wを有する第一から第 nまでの n個のガス通路へ流入するガス流量の比が 1: 2 : 3 : · · ·ηとなるように流量弁 を調節すると、ある時刻に第一のガス通路に流入したガス量 VZ{n* (η+ 1) /2}は 時間 =W'n' (n+ l)Z2Vが経過した後に第一ガス通路から流出する。第一ガス [0070] For example, let V be the total gas flow rate through the inlet member 11, and the ratio of the gas flow rates flowing into the first to nth gas passages having the same volume W is 1: 2: 3: · When the flow valve is adjusted to η, the amount of gas VZ {n * (η + 1) / 2} flowing into the first gas passage at a certain time is equal to time = W'n '(n + l) Z2V After the lapse, it flows out from the first gas passage. First gas
1 1
通路と同時刻に第二ガス通路に流入したガス量 2V/{n* (η+ 1)Ζ2}は時間 t =  The amount of gas flowing into the second gas passage at the same time as the passage 2V / {n * (η + 1) Ζ2} is the time t =
2 2
W-n- (n+ l) /4V= l/2 X t が経過した後に第二ガス通路から流出する。第 nガ After the lapse of W-n- (n + l) / 4V = l / 2Xt, it flows out from the second gas passage. Nth
1  1
ス通路に同時刻に流入したガス量 η·ν/ {η· (η+ 1)Ζ2}は 1/n X t後に第 nガス  Η · ν / {η · (η + 1) Ζ2} is the nth gas after 1 / n X t
1  1
通路から流出する。  Escape from the passage.
[0071] このように同時に全ガス通路に流入したガス、すなわちほぼ同一カロリ値を有する ガス、が異なる時間後に各ガス通路から流出し、出口部材 12において合流して混合 される。その結果、ガス混合装置 10に流入したガスは効果的に時間差混合がなされ 、当該ガスのカロリ変動が抑制される。各ガス通路から時間差をもって流出したガスを 、合流後に一層混合するために、出口部材 12 (たとえばタンク 25内におけるガス通 路 24より上方の部分)に混合器や撹拌装置を設置してもよい。撹拌装置としてはファ ン等が採用されうる。ファン等を駆動する電動モータ等はタンクやガス通路の外部に 設置しておくのが好ましい。上記実施形態では各ガス通路に流入するガス流量を整 数比としているが、かかる構成に限定されず、任意の流量比を選択することができる 。また、必要に応じて一部の複数ガス通路に同一流量のガスを流入させてもよい。  As described above, the gas that has flowed into all the gas passages at the same time, that is, the gas having substantially the same caloric value, flows out from each gas passage after a different time, and merges and is mixed at the outlet member 12. As a result, the gas flowing into the gas mixing device 10 is effectively time-diffused and the calorie fluctuation of the gas is suppressed. In order to further mix the gas flowing out from each gas passage with a time difference after joining, a mixer or a stirring device may be installed at the outlet member 12 (for example, a portion of the tank 25 above the gas passage 24). A fan or the like can be used as the stirring device. It is preferable to install an electric motor or the like for driving a fan or the like outside the tank or gas passage. In the above embodiment, the flow rate of gas flowing into each gas passage is an integer ratio, but the present invention is not limited to this configuration, and an arbitrary flow rate ratio can be selected. Moreover, you may make the gas of the same flow flow in some some gas passages as needed.
[0072] 図 4のガス混合装置 10では複数のガス通路が同一容積を有し、各ガス通路に流入 するガス流量を相違させているが、以下に説明するように、複数のガス通路の容積を 相違させ、流入ガス流量を同一としてもよい。  [0072] In the gas mixing device 10 of FIG. 4, the plurality of gas passages have the same volume, and the flow rates of the gas flowing into the gas passages are different. As described below, the volume of the plurality of gas passages is as follows. The inflow gas flow rate may be the same.
[0073] 図 5に示すガス混合装置 31は互いに異なる容積を有する複数のガス室 32a、 32b 、 32c, 32dが形成されたガス通路構成部材 33を有している。このガス通路構成部材 33は、図 4のガス通路構成部材 10と同様に、床面上に上端が開放された複数個の 円筒状隔壁 26が間隔をおいて同心状に配設されたタンク 25を有し、タンク 25の周 壁と円筒状隔壁 26との間の空間、および、円筒状隔壁 26同士の間の空間がそれぞ れガス通路 32を構成している。後述するように最内の円筒状隔壁 26aの内側は合流 したガスが流出する経路の一部となっている。全円筒状隔壁 26の上端はタンク 25の 天井から下方に間隔をおいた位置となっている。 The gas mixing device 31 shown in FIG. 5 has a gas passage constituting member 33 in which a plurality of gas chambers 32a, 32b, 32c, 32d having different volumes are formed. This gas passage constituting member 33 is similar to the gas passage constituting member 10 of FIG. 4 in that a tank 25 in which a plurality of cylindrical partition walls 26 whose upper ends are opened on the floor surface are arranged concentrically at intervals. The circumference of the tank 25 The space between the wall and the cylindrical partition wall 26 and the space between the cylindrical partition walls 26 constitute a gas passage 32, respectively. As will be described later, the inside of the innermost cylindrical partition wall 26a is a part of the path through which the merged gas flows out. The upper end of the all-cylindrical partition wall 26 is located at a position spaced downward from the ceiling of the tank 25.
[0074] しかしながら、円筒状隔壁 26同士の間隔が図 4のものとは異なり、ガス室 32a、 32b 、 32c, 32dの容積比が 1 : 2 : 3 : 4となるように構成されている。そして、入口部材 11 は、上流側の低カロリガス供給配管 3から分岐して上記タンク 25の入口孔 27それぞ れに接続される配管 29を有している力 上記流調弁 30は備えていなレ、。そして、全 ガス通路(ガス室) 32にほぼ同一流量のガスが流入するようにされている。  However, the interval between the cylindrical partition walls 26 is different from that shown in FIG. 4, and the volume ratio of the gas chambers 32a, 32b, 32c, 32d is 1: 2: 3: 4. The inlet member 11 has a pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the inlet holes 27 of the tank 25. The flow control valve 30 is not provided. Les. Then, almost the same flow rate of gas flows into all the gas passages (gas chambers) 32.
[0075] タンク 25の出口孔 28はタンク 25の底の中央であって最内の円筒状隔壁 26aの内 側に対応する位置に形成されている。この最内の円筒状隔壁 26aの内側の空間が 出口部材 12の一部を構成している。そして各ガス室 32a、 32b, 32c、 32dに流入し たガスはタンク 25内の全ガス室 32より上部の空間および最内の円筒状隔壁 26aの 内側を通って出口孔 28から下流側の低カロリガス供給配管 3に流出する。したがって 、出口部材 12は、各ガス室 32より上方のタンク 25の部分と、最内の円筒状隔壁 26a の内側と、出口孔 28とから構成されていると言える。すなわち、出口部材 12は、出口 孔 28を含む、タンク 25の天井と各円筒状隔壁 26の上端との間の空間を区画するタ ンクの部分と、最内の円筒状隔壁 26aとである。各ガス通路 32に分かれて通って来る ガスは、この出口部材 12において合流し、ここで混合される。本ガス混合装置 31に 対しても、その出口部材 12 (たとえばタンク 25内におけるガス室 24より上方の部分、 または、最内の円筒状隔壁 26aの内側)に混合器または撹拌装置を設置してもよい。  [0075] The outlet hole 28 of the tank 25 is formed at the center of the bottom of the tank 25 at a position corresponding to the inner side of the innermost cylindrical partition wall 26a. The space inside the innermost cylindrical partition wall 26a constitutes a part of the outlet member 12. The gas flowing into each gas chamber 32a, 32b, 32c, 32d passes through the space above all the gas chambers 32 in the tank 25 and the inside of the innermost cylindrical partition wall 26a, and the downstream side from the outlet hole 28. It flows into the calorie gas supply pipe 3. Therefore, it can be said that the outlet member 12 is composed of the portion of the tank 25 above each gas chamber 32, the inner side of the innermost cylindrical partition wall 26a, and the outlet hole 28. That is, the outlet member 12 includes a tank portion including the outlet hole 28 that divides a space between the ceiling of the tank 25 and the upper end of each cylindrical partition wall 26, and the innermost cylindrical partition wall 26a. The gas that passes through the gas passages 32 merges at the outlet member 12 and is mixed there. Also for the gas mixing device 31, a mixer or a stirring device is installed at the outlet member 12 (for example, the portion above the gas chamber 24 in the tank 25 or the inside of the innermost cylindrical partition wall 26a). Also good.
[0076] このガス混合装置 31においても、そこから流出するガスは時間差混合がなされて力 ロリ変動が抑制される。以下、このことを説明する。  [0076] In this gas mixing device 31 as well, the gas flowing out of the gas mixing device is time-mixed to suppress fluctuations in force. This will be described below.
[0077] たとえば、入口部材 11を通る総ガス流量を Vとし、第一から第 nまでの n個のガス通 路の容積比が 1 : 2 : 3 : · · ·ηであるとする。ある時刻に容積 Wを有する第一のガス通 路に流入したガス量 v=VZnは、時間 t = lW/vが経過した後に第一ガス通路か  [0077] For example, suppose that the total gas flow rate through the inlet member 11 is V, and the volume ratio of the n gas passages from the first to the nth is 1: 2: 3:. The amount of gas v = VZn flowing into the first gas passage with volume W at a certain time is the first gas passage after time t = lW / v has elapsed.
1  1
ら流出する。第一ガス通路と同時刻に容積 2Wを有する第二ガス通路に流入した同 一ガス量 v=VZnは時間 t = 2W/v= 2t が経過した後に第二ガス通路から流出 する。容積 nWを有する第 nガス通路に同時刻に流入したガス量 v=V/nは nt後に Outflow. At the same time as the first gas passage, the same amount of gas flowing into the second gas passage with a volume of 2W flows out from the second gas passage after time t = 2W / v = 2t. To do. The amount of gas flowing into the nth gas passage with volume nW at the same time v = V / n
1 第 nガス通路から流出する。  1 Outflow from the nth gas passage.
[0078] このように同時に全ガス通路に流入したガス、すなわちほぼ同一カロリ値を有する ガス、が異なる時間後に各ガス通路から流出し、出口部材 12において合流して混合 される。その結果、ガス混合装置 31に流入したガスは効果的に時間差混合がなされ 、当該ガスのカロリ変動が抑制される。  As described above, the gas that has flowed into all the gas passages at the same time, that is, the gas having substantially the same caloric value, flows out from each gas passage after a different time, and merges and mixes at the outlet member 12. As a result, the gas flowing into the gas mixing device 31 is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
[0079] 上記実施形態ではガス通路の容積比を整数比としているが、かかる構成に限定さ れず、任意の容積比を選択することができる。また、必要に応じて一部の複数のガス 通路を同一の容積としてもょレ、。  [0079] In the above embodiment, the volume ratio of the gas passages is an integer ratio, but the present invention is not limited to this configuration, and an arbitrary volume ratio can be selected. If necessary, some gas passages have the same volume.
[0080] ガス通路構成部材、入口部材および出口部材は図 4および図 5の構成に限定され ず、様々な好適な構成を採用することができる。  [0080] The gas passage constituent member, the inlet member, and the outlet member are not limited to the configurations shown in Figs. 4 and 5, and various suitable configurations can be adopted.
[0081] たとえば、図 6に示すガス混合装置 35におけるガス通路構成部材 36は、タンク 25 の内部を上下に間隔をおいた複数枚の水平隔壁 37で仕切ることによって複数のガ ス通路 (ガス室) 38が形成されたものである。水平隔壁 37同士は等間隔に配置され、 全てのガス室 38はほぼ同一容積となる。各ガス室 38の一端には入口孔 27が形成さ れ、他端には出口孔 28が形成されてレ、る。入口孔 27と出口孔 28とは対向しておら ず、入口孔 27の中心軸から外れた位置に出口孔 28が形成されている。これは、入 ロ孔 27からガス室 38に流入したガスの一部がきわめて短時間に出口孔から流出す ることを阻止して、ガス室 38内にガスをできるだけ長時間滞留させるためである。図 示してレヽなレ、が、出口孔 28を入口孔 27の中心軸から外れた位置に形成することは、 図 6のガス通路構成部材 36に限定されず、他の図面に示すガス室やタンクにも適用 すること力 Sできる。  For example, the gas passage constituting member 36 in the gas mixing device 35 shown in FIG. 6 is divided into a plurality of gas passages (gas chambers) by dividing the inside of the tank 25 by a plurality of horizontal partition walls 37 spaced vertically. 38) is formed. Horizontal partition walls 37 are arranged at equal intervals, and all gas chambers 38 have substantially the same volume. Each gas chamber 38 has an inlet hole 27 at one end and an outlet hole 28 at the other end. The inlet hole 27 and the outlet hole 28 are not opposed to each other, and the outlet hole 28 is formed at a position away from the central axis of the inlet hole 27. This is to prevent a part of the gas flowing into the gas chamber 38 from the inlet hole 27 from flowing out of the outlet hole in a very short time, so that the gas stays in the gas chamber 38 for as long as possible. . However, the formation of the outlet hole 28 at a position deviating from the central axis of the inlet hole 27 is not limited to the gas passage component member 36 of FIG. It can be applied to tanks.
[0082] ガス室 38は水平隔壁 37によって区画されている力 力かる構成に限定されず、た とえば鉛直方向に延びる隔壁によって区画してもよぐ上下左右に碁盤の目状や蜂 の巣状に区画されていてもよい。また、柑橘類の実の断面のごとく放射状に区画され ていてもよい。  [0082] The gas chamber 38 is not limited to a forceful structure defined by the horizontal partition walls 37. For example, the gas chamber 38 may be partitioned by a partition wall extending in the vertical direction, vertically, horizontally, and horizontally. It may be partitioned into a shape. Moreover, you may divide radially like the cross section of a citrus fruit.
[0083] 入口部材 11は図 4に示すものと同じであり、上流側の低カロリガス供給配管 3から 分岐して複数の上記入口孔 27それぞれに接続される配管 29、および、この配管 29 に設置された流調弁 30を備えている。この流調弁 30の開度を調節することによって 各ガス室 38に流入するガス流量を相違させている。出口部材 12は複数の上記出口 孔 28に接続され、統合して下流側の低カロリガス供給配管 3に接続される配管 39か ら構成されている。時間差をもってガス室 38から流出したガスは統合した配管部分 3 9において混合し始める。したがって、ガスの混合を促進するために、出口部材 12 ( たとえば統合した配管部分)に混合器または撹拌装置を設置してもよい。このガス通 路構成部材 36においても、図 4のガス混合装置 10について説明したと同様に、流入 したガスが効果的に時間差混合がなされ、当該ガスのカロリ変動が抑制される。 [0083] The inlet member 11 is the same as that shown in Fig. 4, and is divided from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the plurality of inlet holes 27, and the pipe 29 Is equipped with a flow control valve 30 installed in The flow rate of the gas flowing into each gas chamber 38 is made different by adjusting the opening degree of the flow control valve 30. The outlet member 12 is connected to the plurality of outlet holes 28, and is composed of a pipe 39 that is integrated and connected to the low-calorie gas supply pipe 3 on the downstream side. The gas flowing out of the gas chamber 38 with a time difference starts to mix in the integrated piping section 39. Accordingly, a mixer or stirrer may be installed at the outlet member 12 (eg, an integrated piping section) to facilitate gas mixing. Also in this gas path constituting member 36, as described for the gas mixing device 10 in FIG. 4, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
[0084] 図 6に示すような、上下に複数段のガス室を備えた形状のガス混合装置 35であつ ても、たとえば各ガス室に流入させるガス流量をほぼ同一とし、ガス室の容積を相互 に相違させてもよい。この場合は入口部材に流調弁を設置することは特に必要では なレ、。力、かるガス混合装置 35であっても、図 5のガス混合装置 31について説明したと 同様に、流入したガスが効果的に時間差混合がなされ、当該ガスのカロリ変動が抑 制される。 [0084] Even in a gas mixing device 35 having a plurality of upper and lower stages of gas chambers as shown in Fig. 6, for example, the gas flow rate flowing into each gas chamber is made substantially the same, and the volume of the gas chamber is set to be the same. They may be different from each other. In this case, it is not particularly necessary to install a flow control valve on the inlet member. Even in the case of the gas mixing device 35, as in the case of the gas mixing device 31 shown in FIG. 5, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed.
[0085] 前述したタンク 25の形状には限定されなレ、、円筒状の他に多角筒状や球状等、種 々の形状のものを採用することができる。また、ガス通路構成部材としては、図 4一図 6に示すような一つのタンクの内部に複数個のガス室が形成されたガス通路構成部 材 23、 33に限定されず、独立した複数個の容器から構成されたものでもよい。  [0085] The shape of the tank 25 described above is not limited, and various shapes such as a polygonal cylindrical shape and a spherical shape can be adopted in addition to the cylindrical shape. Further, the gas passage constituent members are not limited to the gas passage constituent members 23 and 33 in which a plurality of gas chambers are formed in one tank as shown in FIGS. It may be composed of a container.
[0086] 図 7に上記したような独立した複数個の容器 41から構成されたガス通路構成部材 4 2を有するガス混合装置 40が示されている。各容器 41がガス室 (ガス通路)を構成し ており、いずれもほぼ同一の容積を有している。各容器 41の下端(上端でも側面でも よい)には入口孔 27が形成されており、上端(下端でも側面でもよい)にはガスの出 ロ孔 28が形成されている。  FIG. 7 shows a gas mixing device 40 having a gas passage constituting member 42 composed of a plurality of independent containers 41 as described above. Each container 41 constitutes a gas chamber (gas passage), and all have substantially the same volume. An inlet hole 27 is formed at the lower end (which may be the upper end or the side surface) of each container 41, and a gas outlet hole 28 is formed at the upper end (which may be the lower end or the side surface).
[0087] 入口部材 11は図 4や図 6に示すものと同じであり、上流側の低カロリガス供給配管 3から分岐して複数の上記入口孔 27それぞれに接続される配管 29、および、この配 管 29の分岐した部分それぞれに設置された流調弁 30を備えてレ、る。この流調弁の 開度を調節することによって各ガス室 41に流入するガス流量を相違させている。出 ロ部材 12は図 6に示すものと同じであり、複数の上記出口孔 28に接続され、統合し て下流側の低カロリガス供給配管 3に接続される配管 39から構成されている。時間 差をもってガス室 41から流出したガスは統合した配管部分 39において混合し始める 。したがって、ガスの混合を促進するために、出口部材 12 (たとえば統合した配管部 分)に混合器または撹拌装置を設置してもよい。このガス混合装置 40においても、図 4のガス混合装置 10について説明したと同様に、流入したガスが効果的に時間差混 合がなされ、当該ガスのカロリ変動が抑制される。また、各ガス通路を独立した一つ の容器力 構成するため、ガス室を仕切る隔壁の設置作業等を省略することができる ので製造が容易となる。 [0087] The inlet member 11 is the same as that shown in Figs. 4 and 6, and a pipe 29 branched from the low-calorie gas supply pipe 3 on the upstream side and connected to each of the plurality of inlet holes 27, and this arrangement A flow control valve 30 is installed in each branched part of the pipe 29. The flow rate of the gas flowing into each gas chamber 41 is made different by adjusting the opening of the flow control valve. The outlet member 12 is the same as that shown in FIG. 6, and is connected to and integrated with the plurality of outlet holes 28. The pipe 39 is connected to the low-calorie gas supply pipe 3 on the downstream side. The gas flowing out of the gas chamber 41 with a time difference starts to mix in the integrated piping section 39. Therefore, a mixer or stirrer may be installed at the outlet member 12 (eg, an integrated piping section) to facilitate gas mixing. Also in this gas mixing device 40, as described for the gas mixing device 10 in FIG. 4, the inflowing gas is effectively time-diffused and the calorie fluctuation of the gas is suppressed. In addition, since each gas passage is constituted by a single container force, the installation work of the partition wall for partitioning the gas chamber can be omitted, so that the manufacture becomes easy.
[0088] 図 7に示すような、独立した複数の容器 41をガス通路として有するガス混合装置で あっても、たとえば各容器に流入させるガス流量をほぼ同一とし、各容器の容積を相 互に相違させてもよい。この場合は入口部材に流調弁を設置することは特に必要で はない。力、かるガス混合装置であっても、図 5のガス混合装置 31について説明したと 同様に、流入したガスの効果的な時間差混合がなされ、当該ガスのカロリ変動が抑 制される。前述した容器 41の形状には限定されない、円筒状、多角筒状、球状等、 種々の形状のものを採用することができる。各ガス通路を独立した一つの容器から構 成するため、容易に容器の容積を相違させることができる。各容器を、たとえば異なる 直径の金属製パイプや長さの異なる金属製パイプ等から形成することができる。  [0088] Even in the case of a gas mixing apparatus having a plurality of independent containers 41 as gas passages as shown in FIG. 7, for example, the gas flow rates flowing into the containers are made substantially the same, and the volumes of the containers are mutually interchanged. It may be different. In this case, it is not particularly necessary to install a flow control valve on the inlet member. Even with such a gas mixing device, as described with respect to the gas mixing device 31 of FIG. 5, the time difference mixing of the flowing gas is performed, and the calorie fluctuation of the gas is suppressed. The shape of the container 41 is not limited, and various shapes such as a cylindrical shape, a polygonal cylindrical shape, and a spherical shape can be adopted. Since each gas passage is composed of one independent container, the volume of the container can be easily made different. Each container can be formed of, for example, metal pipes having different diameters or metal pipes having different lengths.
[0089] 図 8に示すガス混合装置 43は、そのガス通路構成部材 44が図 7に示す容器 41を 一体に結束することにより構成されたものである。複数の容器 41がコンパクトに結束 されていることを除いては図 7に示すガス混合装置 40とほぼ同一の構成であるので、 図 7と同一部材には同一符号を付記して詳細な説明を省略する。このガス混合装置 43は、設置スペースを節約することができる。  [0089] The gas mixing device 43 shown in FIG. 8 is configured such that the gas passage constituting member 44 integrally binds the containers 41 shown in FIG. Except that the plurality of containers 41 are compactly bundled, the configuration is almost the same as that of the gas mixing device 40 shown in FIG. 7, so that the same members as those in FIG. Omitted. This gas mixing device 43 can save installation space.
[0090] 図 9および図 10に示すガス混合装置 45は、タンク 46の内部に多数の貫通孔 47a を有する多孔板 47が配設されたものである。図 9はガス混合装置 45の一部切り欠き 斜視図であり図 10は縦断面図である。タンク 46の周壁には入口孔 27および出口孔 28が形成され、入口孔 27には上流側の低カロリガス供給配管 3が接続され、出口孔 28には下流側の低カロリガス供給配管 3が接続されている。上記多孔板 47はタンク 46の内部の空間を入口孔 27側の空間と出口孔 28側の空間とに区切るように鉛直方 向に配置されている。本実施形態では、入口孔 27と出口孔 28と力 Sタンク 46の周壁に おける対向する位置に形成され、多孔板 47が入口孔 27と出口孔 28とを結ぶ仮想直 線に直交するように鉛直に配置されている力 かかる構成に限定されない。 A gas mixing device 45 shown in FIG. 9 and FIG. 10 has a tank 46 provided with a perforated plate 47 having a large number of through holes 47a. FIG. 9 is a partially cutaway perspective view of the gas mixing device 45, and FIG. 10 is a longitudinal sectional view. An inlet hole 27 and an outlet hole 28 are formed in the peripheral wall of the tank 46, the upstream low calorie gas supply pipe 3 is connected to the inlet hole 27, and the downstream low calorie gas supply pipe 3 is connected to the outlet hole 28. ing. The perforated plate 47 has a vertical direction so that the space inside the tank 46 is divided into a space on the inlet hole 27 side and a space on the outlet hole 28 side. It is arranged in the direction. In the present embodiment, the inlet hole 27, the outlet hole 28, and the force S tank 46 are formed so as to face each other, and the perforated plate 47 is orthogonal to a virtual straight line connecting the inlet hole 27 and the outlet hole 28. Force arranged vertically It is not limited to such a configuration.
[0091] このガス混合装置 45においては、入口孔 27およびこの入口孔 27に低カロリガス供 給配管 3を接続するタンク 46の部分が入口部材を構成することになり、出口孔 28お よびこの出口孔 28に低カロリガス供給配管 3を接続するタンク 46の部分が出口部材 を構成することになる。 [0091] In this gas mixing device 45, the inlet hole 27 and the portion of the tank 46 that connects the low calorie gas supply pipe 3 to the inlet hole 27 constitute an inlet member. The portion of the tank 46 that connects the low calorie gas supply pipe 3 to the hole 28 constitutes the outlet member.
[0092] 多孔板 47のうち、入口孔 27の中心から低カロリガス供給配管 3の入口孔 27に接続 されてレ、る部分の中心軸の方向に延びる仮想直線 L (以下、入口孔 27の中心軸と呼 ぶ)と交差する点の周辺には貫通孔は形成されていなレ、。これを無孔領域 48 (図中 に二点鎖線で囲んで示す)と呼ぶ。この無孔領域 48は、入口孔 27から流入したガス の一部がきわめて短時間に出口孔 28に至ることを阻止して、タンク 46内にガスをで きるだけ長時間滞留させるために形成している。入口孔 27からタンク 46内に流入し たガスの多くは無孔領域に衝突してから各貫通孔 47aを通過するので、ガスのタンク 内滞留時間が長くなる。無孔領域 48は、図 9の実施形態では一例として入口孔 27お よび出口孔 28の形状とほぼ同じ範囲としている力 それ以上の範囲であってもよい。  [0092] In the perforated plate 47, an imaginary straight line L (hereinafter referred to as the center of the inlet hole 27) connected to the inlet hole 27 of the low calorie gas supply pipe 3 from the center of the inlet hole 27 and extending in the direction of the central axis of the portion. There is no through hole around the point where it intersects the axis. This is called a non-porous region 48 (indicated by a two-dot chain line in the figure). This non-porous region 48 is formed in order to prevent a part of the gas flowing in from the inlet hole 27 from reaching the outlet hole 28 in a very short time and allow the gas to stay in the tank 46 as long as possible. ing. Most of the gas flowing into the tank 46 from the inlet hole 27 collides with the non-porous region and then passes through each through hole 47a, so that the gas residence time in the tank becomes longer. In the embodiment of FIG. 9, the non-porous region 48 may be a range that is more than the force that is almost the same as the shape of the inlet hole 27 and the outlet hole 28 as an example.
[0093] このタンク 46および多孔板 47がガス通路構成部材を構成している。すなわち、多 孔板 47の多数の貫通孔 47aがそれそれガス通路を構成してレ、る。入口孔 27からタン ク 46内に流入したガスが多孔板 47の貫通孔 47aを通過して出口孔 28に至る場合、 異なる貫通孔 47aを通ればその流線の方向や長さが異なってくる。ガスの時間差混 合の観点から、これは異なるガス通路であるといえる。  The tank 46 and the perforated plate 47 constitute a gas passage constituting member. That is, a large number of through holes 47a of the multi-hole plate 47 each constitute a gas passage. When the gas flowing into the tank 46 from the inlet hole 27 passes through the through hole 47a of the perforated plate 47 and reaches the outlet hole 28, the direction and length of the streamlines differ through the different through hole 47a. . From the point of view of gas time difference mixing, this is a different gas passage.
[0094] このガス混合装置 45においては、ガスは多孔板 47より入口孔側の空間で時間差 混合がなされ、多孔板の貫通孔 47aを通過して出口孔側の空間においてもさらに時 間差混合がなされる。したがって、ガスのカロリ変動の抑制が効果的になされる。  In this gas mixing device 45, the gas is mixed with time difference in the space on the inlet hole side from the porous plate 47, and further mixed with time difference in the space on the outlet hole side after passing through the through hole 47a of the porous plate. Is made. Therefore, suppression of gas calorie fluctuation is effectively achieved.
[0095] なお、この多孔板 47は図 4一図 8に示すガス通路構成部材 23、 33、 36、 42、 44に おけるガス室 24、 32、 38および容器 41の内部に設置してもよレ、。そうすれば、各ガ ス通路内においてもガスの時間差混合が可能となる。  The perforated plate 47 may be installed inside the gas chambers 24, 32, 38 and the container 41 in the gas passage constituting members 23, 33, 36, 42, 44 shown in FIG. 4 and FIG. Les. By doing so, it is possible to mix the gases in each gas passage.
[0096] 図 11および図 12には、ガス混合装置内のガスの時間差混合のシミュレーションの 結果が、ガスの滞留時間と累積ガス流量との関係を表す曲線として示されている。両 図ともにガス通路構成部材としてタンクを用いたモデルによるものであり、タンク内で のガスの滞留時間(分)を横軸に取り、滞留するガスの割合を縦軸に取っている。図 1 1のグラフ中の曲線はガスの完全混合がなされている状態を示している。すなわち、 ガスが入口力 タンク内に流入すると同時に、それまでタンク内に存在していたガスと 一気に混合してしまっている状態を示す。これらの図は、タンクの容積を 40000m3と し、流入するガスの流量を 280000Nm3 /hrとした条件下でのシミュレーション結果 を示している。 [0096] FIG. 11 and FIG. 12 show the simulation of the time difference mixing of the gas in the gas mixing apparatus. The results are shown as a curve representing the relationship between the gas residence time and the cumulative gas flow rate. Both figures are based on a model that uses a tank as a gas passage component. The horizontal axis indicates the gas residence time (minutes) in the tank, and the vertical axis indicates the percentage of the gas that remains. The curve in the graph of Fig. 11 shows the state where the gas is completely mixed. That is, the gas flows into the inlet force tank, and at the same time, it is mixed with the gas that has been in the tank until then. These figures show the simulation results under the condition that the volume of the tank is 40000 m 3 and the flow rate of the inflowing gas is 280000 Nm 3 / hr.
[0097] このグラフの意味するところは、横軸に示す所定時間に出口から流出するガスの割 合、つまりタンク全体のガス容積に対する割合を示している。縦軸の 1. 0という数値 はタンク全体のガス容積を表している。たとえば、図 11中の横軸上の数値 500分から 600分 (これはタンクに流入してから経過した時間を、すなわち滞留時間を示す)の 1 00分間(符号 HIで示す)に出口から流出するガスのタンク全体のガスに対する割合 VIは、約 0. 689—約 0. 621 =約 0. 068 (約 6. 8%)であることを示す。換言すれば 、タンク内に流入してから 500分後から 600分後までの間滞留しているガスはタンク 内全体のガスの約 6. 8%であるということである。タンクに流入してから 100分を経過 していない(0分後から 100分後までしか滞留していないことであり、 H2で示す)ガス ίま、約 0. 176_0 =約 0. 176であり、全体の約 17. 60/0存在してレヽる(V2で示す)力 S 、タンクに流入してから 900分後から 1000分後までの間滞留している(Η3で示す)ガ ス ίま約 0. 863—約 0. 834=約 0. 029で、全体の約 2. 90/0し力存在してレヽなレヽ(V3 で示す)ということがわかる。 The meaning of this graph indicates the ratio of the gas flowing out from the outlet at a predetermined time indicated on the horizontal axis, that is, the ratio to the gas volume of the entire tank. The number 1.0 on the vertical axis represents the gas volume of the entire tank. For example, the value on the horizontal axis in Fig. 11 flows out from the outlet in 100 minutes (indicated by the symbol HI) of 500 minutes to 600 minutes (this indicates the elapsed time since entering the tank, ie, the residence time). The ratio VI of gas to gas in the entire tank is about 0.689—about 0.621 = about 0.068 (about 6.8%). In other words, the gas staying between 500 minutes and 600 minutes after flowing into the tank is about 6.8% of the total gas in the tank. Less than 100 minutes have passed since entering the tank (it is only staying from 0 minutes to 100 minutes later, indicated by H2), and gas is approximately 0.176_0 = approximately 0.176. , present from about 17.6 0/0 of the total (indicated by .eta.3) Rereru (V2 indicated by) force S, staying between the 900 minutes after flow into the tank until after 1000 minutes gas in ί until about 0. 863- to about 0.834 = about 0. 029 it can be seen that overall about 2.9 0/0 tooth force exists to Rere a Rere (indicated by V3).
[0098] 時間差混合の理想は、流入時からの経過時間に拘わらずガスが同一割合で混合 している状態、すなわちグラフに表される線が直線であるのが理想的である。しかし、 これは現実には存在しない状態である。図 11に示すような完全混合がなされている 状態を、最良の時間差混合がなされている状態と考えるのが妥当である。  [0098] Ideally, the time difference mixing is ideal when the gas is mixed in the same ratio regardless of the elapsed time from the inflow, that is, the line shown in the graph is a straight line. However, this does not exist in reality. It is reasonable to consider the state where complete mixing is performed as shown in Fig. 11 as the state where the best time difference mixing is performed.
[0099] 図 12には、図 11の完全混合がなされている状態を示す曲線と、図 9および図 10に 示す多孔板 47を内蔵したガス混合装置 45をモデルとしたガスの時間差混合のシミュ レーシヨンの結果を示す曲線とが示されている。前述の完全混合状態と対比し得るよ うに、ガス流量やタンク容積等の条件を同一としたガスの時間差混合をシミュレートし ている。前述した完全混合状態については実線で示し、多孔板を内蔵したガス混合 装置 45を用いた場合を破線で示している。多孔板を内蔵したガス混合装置 45の場 合は完全混合状態とは一致しないまでも近い曲線を描いている。すなわち、良好な 時間差混合がなされていると言える。その結果、このガス混合装置 45においてもガス カロリの変動が効果的に抑制される。 [0099] Fig. 12 shows a simulation of time difference mixing of a gas modeled on the curve showing the state of complete mixing in Fig. 11 and the gas mixing device 45 incorporating the porous plate 47 shown in Figs. 9 and 10. A curve showing the result of the race is shown. Contrast with the above-mentioned completely mixed state In this way, the time-difference mixing of gases with the same conditions such as gas flow rate and tank volume is simulated. The complete mixing state described above is indicated by a solid line, and the case of using a gas mixing device 45 incorporating a porous plate is indicated by a broken line. In the case of the gas mixing device 45 with a built-in perforated plate, a close curve is drawn even if it does not match the complete mixing state. In other words, it can be said that good time difference mixing is performed. As a result, the gas calorie fluctuation is also effectively suppressed in the gas mixing device 45.
[0100] 図 13に示すガス混合装置 49は、タンク 46の内部に間隔をおいて二枚(三枚以上 でってもよレ、)の多孔板 47がほぼ平行に配設されたものである。したがって、タンク 4 6の内部は多孔板 47に区切られた三つの空間が形成される。図 9のガス混合装置 4 5に比べると、本ガス混合装置 49では二枚の多孔板 47の間の空間によってさらなる 時間差混合がなされるので、一層効果的にガスのカロリ変動を抑制することができる 。なお、出口孔 28側の多孔板に無孔領域 28を形成してもよい。  [0100] The gas mixing device 49 shown in Fig. 13 is a tank 46 in which two (or three or more) perforated plates 47 are arranged substantially in parallel with a space therebetween. is there. Therefore, three spaces partitioned by the perforated plate 47 are formed inside the tank 46. Compared with the gas mixing device 45 in FIG. 9, in this gas mixing device 49, further time-difference mixing is performed by the space between the two perforated plates 47, so that the calorie fluctuation of the gas can be more effectively suppressed. it can . The non-porous region 28 may be formed in the perforated plate on the outlet hole 28 side.
[0101] 図 14には他のガス混合装置 50が示されている。このガス混合装置 50は従来のガ スタービン設備にガスホルダーとして使用されるタンク 51をガスカロリ変動抑制装置と して兼用するために改造したものである。すなわち、ガスホルダに入口孔 27と出口孔 28とを別々に形成して、これらに上流側低カロリガス供給配管 3と下流側低カロリガス 供給配管 3とそれぞれを接続し、さらに、このガスホルダの内部に図 9のガス混合装 置 45と同じように多孔板 47を設置している。  FIG. 14 shows another gas mixing device 50. In this gas mixing device 50, a tank 51 used as a gas holder in a conventional gas turbine facility is modified to be used as a gas calorie fluctuation suppressing device. That is, the inlet 27 and the outlet 28 are separately formed in the gas holder, and the upstream side low calorie gas supply pipe 3 and the downstream side low calorie gas supply pipe 3 are connected to the gas holder, respectively. The perforated plate 47 is installed in the same manner as the gas mixing device 45 in FIG.
[0102] ガスホルダーは、ガス量バランスを監視する装置である。ガス量バランス監視装置と レ、うのは、上流側から送られてくる低カロリガスの量とガスタービンで必要とする消費 ガス量とのバランスを取るためのものである。供給ガス量の変動やガスタービンの負 荷変動がある場合、ガスの供給量と消費量との間でバランスを取る必要がある。供給 量が予想外に過剰となったときには系外に放出するなどし、供給不足となったときに はガスタービンの負荷を低下させたり、一部の運転を停止したりする。  [0102] The gas holder is a device for monitoring the gas amount balance. The gas balance monitor and balance are intended to balance the amount of low calorie gas sent from the upstream side with the amount of gas consumed by the gas turbine. When there are fluctuations in the amount of gas supplied or fluctuations in the load on the gas turbine, it is necessary to balance gas supply and consumption. When the supply is unexpectedly excessive, it is discharged outside the system. When the supply is insufficient, the load on the gas turbine is reduced or some operations are stopped.
[0103] このガス量バランス監視装置は、上記タンク 51と、タンク 51の上端開口をシール部 材 52a等によって気密に閉止し且つタンク内を上下動可能に配設された蓋部材 52と 、たとえば蓋部材 52に連結された調整用おもり 52bとを備えている。シール部材 52a は蓋部材 52とタンク 51の内周面との間隙に配設されている。蓋部材 52の自重と上 記おもり 52bの重量と大気圧による押し下げ力との総計と、タンク 51の内圧による押 し上げ力とのバランスによってタンク内を上下動する。したがって、低カロリガスの供 給量と消費量とのバランスの変化に応じて蓋部材 52が上下動する。この蓋部材 52の 上下動を監視しつつガスの系外放出やタービン負荷の低下等の措置をとる。このガ スホルダーを低カロリガスの時間差混合用のガス混合装置 50として兼用している。 [0103] The gas amount balance monitoring apparatus includes the tank 51, and a lid member 52 that is airtightly closed at the upper end opening of the tank 51 by a seal member 52a and the like and is arranged to be movable up and down in the tank. And an adjustment weight 52b connected to the lid member 52. The seal member 52 a is disposed in the gap between the lid member 52 and the inner peripheral surface of the tank 51. Weight of the lid member 52 and above The tank moves up and down by the balance between the total weight of the weight 52b and the push-down force due to the atmospheric pressure and the push-up force caused by the internal pressure of the tank 51. Therefore, the lid member 52 moves up and down in accordance with a change in the balance between the supply amount and consumption amount of low calorie gas. While monitoring the vertical movement of the lid member 52, measures such as outgassing of the system and reduction of the turbine load are taken. This gas holder is also used as a gas mixing device 50 for time difference mixing of low calorie gas.
[0104] 前述のとおり蓋部材 52が上下動するので、この上下動する蓋部材 52と干渉しない ように、多孔板 47の高さを低くしている。したがって、蓋部材 52が上昇したときには多 孔板 47の上端と蓋部材 52との間に空間 51aが生じる力 この空間 51aも複数のガス 通路のうちの一つと考えることができる。このガス混合装置 50においても、図 9のガス 混合装置 45について説明したと同様な作用によって良好な時間差混合がなされ、ガ スカロリの変動が抑制される。  [0104] Since the lid member 52 moves up and down as described above, the height of the perforated plate 47 is made low so as not to interfere with the lid member 52 that moves up and down. Therefore, the force generated in the space 51a between the upper end of the multi-hole plate 47 and the lid member 52 when the lid member 52 is raised. This space 51a can also be considered as one of the plurality of gas passages. Also in this gas mixing device 50, good time difference mixing is performed by the same operation as described for the gas mixing device 45 in FIG. 9, and the fluctuation of the gas calorie is suppressed.
[0105] 図 15には、図 9および図 10のガス混合装置 45と同じ、多孔板 47を内蔵したガス通 路構成部材としてのタンク 46が示されている。しかし、このタンク 46の入口孔 27と低 カロリガス供給配管 3との間には、低カロリガス供給配管 3に連続して水平から上方に 傾斜した傾斜管 53が介装されている。水平線からの傾斜角度 αは限定されなレ、。こ うすることにより、タンク 46内へのガスの流入方向が出口孔 28の位置から外れるよう にしている。この傾斜管 53を低カロリガス供給配管 3およびタンク 46に着脱可能とす ることにより、異なる傾斜角度を持つ傾斜管に取り替え可能にすることができる。この 傾斜管 53の使用は、無孔領域 48を形成しなレ、(全面に均一に貫通孔 47aが形成さ れた)多孔板を使用する場合、ガスのタンク 46内への流入方向を出口孔 28の位置 力 遠ざけることができるので好ましい。  [0105] FIG. 15 shows a tank 46 as a gas passage constituting member incorporating a porous plate 47, which is the same as the gas mixing device 45 of FIGS. 9 and 10. However, between the inlet hole 27 of the tank 46 and the low calorie gas supply pipe 3, an inclined pipe 53 inclined continuously from the horizontal to the low calorie gas supply pipe 3 is interposed. The inclination angle α from the horizon is not limited. In this way, the gas inflow direction into the tank 46 is deviated from the position of the outlet hole 28. By making this inclined pipe 53 attachable to and detachable from the low calorie gas supply pipe 3 and the tank 46, it can be replaced with an inclined pipe having a different inclination angle. The use of the inclined pipe 53 does not form a non-porous region 48. When using a perforated plate (through holes 47a are uniformly formed on the entire surface), the direction of gas flow into the tank 46 is used as an outlet. The position force of the hole 28 is preferable because it can be kept away.
[0106] この傾斜管 53は、多孔板 47を内蔵したガス混合装置にのみ設置されるものではな レ、。たとえば、図 4一図 8に示す入口部材を構成する配管 29に接続することによって 、ガス通路の入口孔 27の中心軸の延長線上から出口孔 28が外れるようにしてもよい 。この場合、傾斜管 53の方向および入口孔の中心軸からの傾斜角度はそのガス通 路に合わせて好適なものを選択すればょレ、。  [0106] The inclined tube 53 is not installed only in the gas mixing device incorporating the perforated plate 47. For example, the outlet hole 28 may be removed from the extended line of the central axis of the inlet hole 27 of the gas passage by connecting to the pipe 29 constituting the inlet member shown in FIG. 4 and FIG. In this case, the direction of the inclined pipe 53 and the inclination angle from the central axis of the inlet hole should be selected in accordance with the gas passage.
[0107] 図 16には図 14に示すものと同じぐ従来のガスホルダを利用したガス混合装置 50 が示されているが、タンク 51の入口孔 27と低カロリガス供給配管 3との間には、ガス の流入方向を変更するためのガス流入装置 54が配設されている。ガス混合装置 50 はもともとその内部に流入したガスを時間差混合する機能を発揮するが、タンク 51の 蓋部材 52の上下動に応じ、ガス流入装置 54によってガス流れの態様を変更すること を可能とし、均一混合効果をより一層向上させることができる。 FIG. 16 shows a gas mixing device 50 using the same conventional gas holder as that shown in FIG. 14, but between the inlet hole 27 of the tank 51 and the low calorie gas supply pipe 3, gas A gas inflow device 54 for changing the inflow direction is provided. The gas mixing device 50 originally has the function of mixing the gas that has flowed into the inside thereof with time difference, but the gas inflow device 54 can change the mode of gas flow according to the vertical movement of the lid member 52 of the tank 51. The uniform mixing effect can be further improved.
[0108] 図 17も合わせて参照すれば明らかなように、このガス流入装置 54は、タンクの入口 孔 27と低カロリガス供給配管 3との間に配設されたハウジング 55と、このハウジング 5 5の内部に上下に間隔をおいて収容された複数枚の可変ルーバ 56を有している。各 可変ルーバ 56はほぼ水平に配置され、その回動軸 56aがハウジング 55の外部に突 出されている。この回動軸 56aの突出した部分を、電動モータ、油圧モータ、空圧シ リンダ、油圧シリンダ等の公知の手段によって回動させてルーバ 56を上下方向に揺 動させることができる。ルーバ 56を上下方向に揺動させると、それに応じてガスの流 入方向を変更することができる。設置するルーバの枚数は限定せず、一枚でも複数 枚でもよい。 [0108] As is apparent from FIG. 17 as well, the gas inflow device 54 includes a housing 55 disposed between the tank inlet hole 27 and the low calorie gas supply pipe 3, and the housing 55. And a plurality of variable louvers 56 accommodated in the interior of the interior of the interior of the housing at intervals. Each variable louver 56 is arranged substantially horizontally, and its rotating shaft 56 a protrudes outside the housing 55. The protruding portion of the rotating shaft 56a can be rotated by known means such as an electric motor, a hydraulic motor, a pneumatic cylinder, a hydraulic cylinder, and the louver 56 can be swung in the vertical direction. When the louver 56 is swung in the vertical direction, the gas inflow direction can be changed accordingly. The number of louvers to be installed is not limited and may be one or more.
[0109] また、図 17に示すように、ハウジング 55の外部に突出した回動軸 56aには傾斜方 向指示器 56bが設置されており、ガス流入装置 54の外部からルーバ 56の傾斜方向 、ひいてはガスの流入方向を表示することができる。また、このルーバ 56の傾斜方向 については、図示しない検出器によって検出して制御装置 5にその検出信号を送信 し、これに基づいて図示しない遠隔表示装置に表示させるようにしてもよい。また、ハ ウジング 55に透視窓を形成して、外からルーバ 56の傾斜方向を確認し得るようにし てもよい。  In addition, as shown in FIG. 17, an inclination direction indicator 56b is installed on the rotation shaft 56a protruding to the outside of the housing 55, and the inclination direction of the louver 56 from the outside of the gas inflow device 54. As a result, the gas inflow direction can be displayed. Further, the inclination direction of the louver 56 may be detected by a detector (not shown), and the detection signal may be transmitted to the control device 5 and displayed on a remote display device (not shown) based on the detected signal. Further, a see-through window may be formed in the housing 55 so that the inclination direction of the louver 56 can be confirmed from the outside.
[0110] 前述のごとぐ蓋部材 52の上下動に応じてガスの流れの態様を変更する際、たとえ ば、制御装置 5にその蓋部材 52の位置信号を入力し、この位置信号に応じて最適な ガス流入方向を選定することが可能となる。たとえば、蓋部材 52が上昇すればガス流 入方向をさらに上方に傾斜させために、ルーバ 56をその水平からの仰角が大きくな るように上方へ揺動させればい。蓋部材 52が下降すればガス流入方向を現在の方 向よりも下方に傾斜させるために、ルーバ 56をその水平からの仰角が小さくなるよう に揺動させればい。  [0110] When the manner of gas flow is changed in accordance with the vertical movement of the lid member 52 as described above, for example, a position signal of the lid member 52 is input to the control device 5, and the position signal is It is possible to select the optimal gas inflow direction. For example, in order to tilt the gas inflow direction further upward when the lid member 52 is raised, the louver 56 may be swung upward so that the elevation angle from the horizontal is increased. When the lid member 52 is lowered, the louver 56 may be swung so that the elevation angle from the horizontal direction becomes small in order to incline the gas inflow direction downward from the current direction.
[0111] 前述したごとく、ガス混合装置の上流側および下流側の低カロリガス供給配管 3に それぞれ入口カロリメータ 8および出口カロリメータ 9が設置されている(図 1参照)。各 カロリメータ 8、 9は連続してガスカロリ値を計測しているので、上流側および下流側の 低カロリガス供給配管 3におけるカロリ変動を検出することができる。制御装置 5は、 そこに上流側および下流側それぞれのガスカロリ変動を示す信号が入力されるので 、これらを対比することによってガス混合装置によるカロリ変動の抑制効果の程度を 検出すること力 Sできる。したがって、この制御装置 5により、カロリ変動抑制レベルの設 定値と検出値との偏差を算出し、この偏差を坦めるように (均一な時間差混合効果が 最大となるように)ガス流入装置 54のガス流入角度 (ルーバ 56の傾斜角度)を制御す る。 [0111] As described above, the low calorie gas supply pipe 3 on the upstream side and the downstream side of the gas mixing device Each has an inlet calorimeter 8 and an outlet calorimeter 9 (see Figure 1). Since the calorimeters 8 and 9 continuously measure the gas calorie value, the calorie fluctuation in the low calorie gas supply pipe 3 on the upstream side and the downstream side can be detected. Since the control device 5 receives a signal indicating the gas calorie fluctuation on each of the upstream side and the downstream side, the controller 5 can detect the degree of the effect of suppressing the calorie fluctuation by the gas mixing device by comparing them. Therefore, the control device 5 calculates the deviation between the set value of the calorie fluctuation suppression level and the detected value, and the gas inflow device 54 so as to support this deviation (so that the uniform time difference mixing effect is maximized). The gas inflow angle (inclination angle of louver 56) is controlled.
[0112] このガス流入装置 54は内容積変動式のガス混合装置 50に限らず、天井が上下動 しない容積固定型のガス混合装置 10、 31、 36、 40、 43、 45、 49にも適用することが できる。そして、上記制御装置 5によってルーバ 56の傾斜角度を変化させつつこの力 ロリメータ 8、 9によって連続的にカロリ値を計測し、カロリ変動の抑制効果を監視する こと力 Sできる。そうすれば、時間差混合にとって最適のルーバ 56の傾斜角度を知るこ とができる。  [0112] This gas inflow device 54 is not limited to the internal volume fluctuation type gas mixing device 50, but also applies to fixed volume type gas mixing devices 10, 31, 36, 40, 43, 45, 49 where the ceiling does not move up and down. can do. Then, the force S can be measured by continuously measuring the calorie value by the force bolometers 8 and 9 while changing the inclination angle of the louver 56 by the control device 5 and monitoring the calorie fluctuation suppressing effect. Then, it is possible to know the optimum inclination angle of the louver 56 for time difference mixing.
[0113] 図 16のガス流入装置 54は、タンク外に設置したハウジング 55の内部に可変ルー バ 56を収容している力 力かる構成に限定されなレ、。たとえば、ハウジングは設けず に、タンク内における入口に近接した位置に、タンク外部から揺動駆動しうるように可 変ルーバ 56を設置してもよレ、。  [0113] The gas inflow device 54 in FIG. 16 is not limited to a power-powered configuration in which a variable louver 56 is accommodated inside a housing 55 installed outside the tank. For example, a variable louver 56 may be installed in a position close to the inlet in the tank so that it can be swung from outside the tank without providing a housing.
[0114] 図 18に示すタンク 51の周壁(タンクの底部でもよレ、)には二個(三個以上であって もよレ、)の入口孔 27および二個の出口孔 28 (三個以上であってもよレ、)が形成されて いる。各入口孔 27と低カロリガス供給配管 3とを接続する入口部材として、低カロリガ ス供給配管 3から各入口孔 27に向けて分岐する分岐管 57aを有する配管 57、およ び、上記分岐管 57aに設置された流調弁 (または止め弁) 59が配設されている。また 、各出口孔 28と低カロリガス供給配管 3とを接続する出口部材として、各出口孔 27か ら低カロリガス供給配管 3と統合して接続された分岐管 58aを有する配管 58、および 、上記分岐管 58aに設置された流調弁 59が配設されている。なお、出口孔 28は一 個のみに形成し、入口孔 27のみ複数個形成してもよレ、。 [0115] 上記制御装置 5により、入口側の流調弁 59を適宜選択して開閉したり流量調節を して、タンク 51内へのガスの流入位置を変化させたり、ガス流入位置におけるガス流 量を変化させることができる。このようにして制御装置 5はタンク 51内のガス流の態様 を最適化するように制御する。この最適の態様は多くの操業データに基づいて作成 されたデータセットを基準にして、類似の操業状況 (ガスカロリ、ガス流量、ガス成分、 タンク内滞留時間等)に最も適したデータセットを適用することができる。たとえば、制 御装置 5により、カロリ変動抑制レベルの設定値と両カロリメータ 8、 9の検出値に基づ く実測変動抑制レベルとの偏差を算出し、この偏差を坦めるように (均一な時間差混 合効果が最大となるように)流量調節およびガスの流入位置変更を行う。 [0114] Two inlet holes 27 and two outlet holes 28 (three pieces) may be provided on the peripheral wall (may be the bottom of the tank) of the tank 51 shown in FIG. That's it. As an inlet member for connecting each inlet hole 27 and the low calorie gas supply pipe 3, a pipe 57 having a branch pipe 57a branched from the low calorie gas supply pipe 3 toward each inlet hole 27, and the above branch pipe 57a The flow control valve (or stop valve) 59 installed in is installed. In addition, as an outlet member for connecting each outlet hole 28 and the low calorie gas supply pipe 3, a pipe 58 having a branch pipe 58 a integrally connected to the low calorie gas supply pipe 3 from each outlet hole 27, and the above branch A flow control valve 59 installed in the pipe 58a is provided. Only one outlet hole 28 may be formed, and only a plurality of inlet holes 27 may be formed. [0115] With the control device 5, the inlet-side flow control valve 59 is appropriately selected to open and close, or the flow rate is adjusted to change the gas inflow position into the tank 51, or the gas flow at the gas inflow position. The amount can be varied. In this way, the control device 5 performs control so as to optimize the mode of gas flow in the tank 51. This optimal mode is based on a data set created based on a lot of operating data, and applies the data set that is most suitable for similar operating conditions (gas calorie, gas flow rate, gas composition, residence time in tank, etc.) be able to. For example, the control device 5 calculates the deviation between the set value of the calorie fluctuation suppression level and the actually measured fluctuation suppression level based on the detection values of both calorimeters 8 and 9, so that this deviation can be applied (uniform Adjust the flow rate and change the gas flow position so that the time difference mixing effect is maximized.
[0116] また、上記制御装置 5により、出口側の流量弁 59を入口側の流調弁 59の操作と同 期して操作すれば、入口側の流調弁 59のみの制御に比べて、ガスの時間差混合に とって一層好ましいガス流の態様を実現することが可能となる。なお、分岐した入口 側の配管 57と前述した傾斜管 53やガス流入装置 54とを組み合わせることもできる。  [0116] Further, if the flow rate valve 59 on the outlet side is operated in synchronism with the operation of the flow control valve 59 on the inlet side by the control device 5, gas control is performed compared to the control of only the flow control valve 59 on the inlet side. Therefore, it is possible to realize a more preferable gas flow mode for the time difference mixing. It is also possible to combine the branched inlet pipe 57 with the inclined pipe 53 and the gas inflow device 54 described above.
[0117] 図 19に示すガス混合装置 60は、図 9のガス混合装置 45と同様に多孔板 47を内蔵 するタンク 46を備えている。しかし、入口孔 27と低カロリガス供給配管 3とを接続する 入口部材として、不活性ガス供給配管 61が接続された配管 62が配設されている。不 活性ガス供給配管 61は、低カロリガスを減熱するための不活性ガスをタンク 46内に 投入するためのものである。上記配管 62の内部には不活性ガス供給配管 61が挿入 されて接続されており、その先端が開放されて不活性ガスを低カロリガスの流れに混 入させるように構成されている。したがって、この配管 62は二重管として構成されてい る。不活性ガスの流速は低カロリガスの流速より低速とするのが混合性向上の観点か ら好ましい。以上説明した構成により、不活性ガスは低カロリガスと同一の流入方向 でタンク内に投入され、低カロリガス中に不活性ガスが不均一に分布することが防止 される。  A gas mixing device 60 shown in FIG. 19 includes a tank 46 in which a perforated plate 47 is built, similar to the gas mixing device 45 of FIG. However, as an inlet member for connecting the inlet hole 27 and the low calorie gas supply pipe 3, a pipe 62 to which an inert gas supply pipe 61 is connected is disposed. The inert gas supply pipe 61 is for introducing an inert gas for reducing the temperature of the low calorie gas into the tank 46. An inert gas supply pipe 61 is inserted and connected to the inside of the pipe 62, and its tip is opened so that the inert gas is mixed into the flow of low calorie gas. Therefore, this pipe 62 is configured as a double pipe. The flow rate of the inert gas is preferably lower than that of the low calorie gas from the viewpoint of improving the mixing property. With the configuration described above, the inert gas is introduced into the tank in the same inflow direction as the low calorie gas, and the inert gas is prevented from being unevenly distributed in the low calorie gas.
[0118] 図 1に示す低カロリガス供給配管 3には、そのガス混合装置 10の下流側に不活性 ガス等の希釈ガスを供給するための希釈ガス供給配管 4が配設されてレ、る。これは、 前述したように、ガス混合装置によってそのカロリ変動が抑制された後の低カロリガス の平均カロリ値がガスタービン固有の許容カロリ値の範囲を超えようとする場合に、希 釈ガスによってカロリ値を低下させるのが目的である。しかし、上記平均カロリ値を低 下させるのに必要な希釈ガスを事前にガス混合装置 10に投入するようにすれば、上 記希釈ガス供給配管 4を用いて行うカロリ制御は簡素化される力 \または不要になる ので有利である。 In the low calorie gas supply pipe 3 shown in FIG. 1, a dilution gas supply pipe 4 for supplying a dilution gas such as an inert gas is disposed downstream of the gas mixing device 10. As described above, this is rare when the average calorie value of the low calorie gas after the calorie fluctuation is suppressed by the gas mixing device is about to exceed the allowable calorie value range specific to the gas turbine. The purpose is to reduce the caloric value by gas. However, if the dilution gas necessary for lowering the average calorie value is introduced into the gas mixing device 10 in advance, the calorie control performed using the dilution gas supply pipe 4 can be simplified. It is advantageous because it becomes unnecessary.
[0119] たとえば、入口カロリメータ 8 (図 1参照)の検出結果から入口側の低カロリガスの平 均カロリ値を算出し、この平均カロリ値がガスタービン固有の許容カロリ値の範囲を超 える場合に、カロリ値を許容範囲内に低下させるに必要な量の希釈ガスをタンク 46内 に投入する。または、入口側の低カロリガスの平均カロリ値が急激に上昇したときに、 そのときの出口側の平均カロリ値とほぼ等しくなるように必要な量の希釈ガスをタンク 46内に投入する。  [0119] For example, when the average calorie value of the low calorie gas on the inlet side is calculated from the detection result of the inlet calorimeter 8 (see Fig. 1), and this average calorie value exceeds the allowable calorie value range specific to the gas turbine, Then, supply the tank 46 with the amount of dilution gas necessary to reduce the caloric value to within the allowable range. Alternatively, when the average caloric value of the low caloric gas on the inlet side suddenly rises, a necessary amount of dilution gas is introduced into the tank 46 so as to be approximately equal to the average caloric value on the outlet side at that time.
[0120] 不活性ガスをタンク 46内に供給するためには、図 19に示す構成に限定されない。  [0120] The supply of the inert gas into the tank 46 is not limited to the configuration shown in FIG.
たとえば、不活性ガス供給配管 61を低カロリガス供給配管 3とは別に単独でタンク 46 に直接接続してもよい。また、不活性ガス供給配管 61の設置対象は多孔板 47を内 蔵したガス混合装置(図 9、図 13— 19参照)に限定されなレ、。たとえば図 4一図 8に 示すガス混合装置にも適用可能である。  For example, the inert gas supply pipe 61 may be directly connected to the tank 46 independently of the low calorie gas supply pipe 3. In addition, the installation target of the inert gas supply pipe 61 is not limited to the gas mixing device (see FIG. 9 and FIG. 13-19) with the porous plate 47 built-in. For example, the present invention can also be applied to the gas mixing device shown in Fig. 4 and Fig. 8.
[0121] 以上説明したガス混合装置へ投入する不活性ガスとしては、高炉法、および、 FIN EX法や COREX法等の直接還元鉄法で使用される酸素製造プラントから放散され る廃棄窒素、並びに、酸素製造プラントに併設される窒素製造プラントから排出され る酸素を微量に含んだ廃棄窒素を回収して使用するのが好ましい。大量に廃棄され る窒素を回収して使用するので操業コストがきわめて低廉となるからである。  [0121] The inert gas introduced into the gas mixing apparatus described above includes waste nitrogen emitted from oxygen production plants used in the blast furnace method and direct reduced iron methods such as the FIN EX method and the COREX method, and It is preferable to recover and use waste nitrogen containing a small amount of oxygen discharged from a nitrogen production plant attached to the oxygen production plant. This is because the operation cost is extremely low because a large amount of discarded nitrogen is recovered and used.
[0122] FINEX法や COREX法等の直接還元鉄法の場合、還元剤として酸素を用いるの で、酸素を大量に製造する酸素製造プラントの設置が必須である。高炉法において も酸素を使用するので規模の差はあっても酸素製造プラントを使用する。酸素製造 プラントは空気から窒素を分離して酸素を製造するのであるが、酸素を分離した後の 排ガスは廃棄窒素として通常は大気に放散される。一方、酸素製造プラントに窒素 製造プラント併設して高純度の窒素を製造することも多々ある力 この場合でも酸素 を微量に含んでしまった窒素は廃棄窒素として大気に放散される。このような廃棄窒 素は窒素ガスが 95— 98容積%程度、且つ、酸素が 2— 5。/0程度のガス組成を有して おり、低カロリガスの可燃限界の観点からもきわめて安全な希釈ガスである。もちろん 、高純度に精製された窒素を用いてもよい。 [0122] In the case of direct reduction iron methods such as the FINEX method and COREX method, oxygen is used as the reducing agent, so it is essential to install an oxygen production plant that produces large amounts of oxygen. Oxygen is also used in the blast furnace method, so an oxygen production plant will be used even if there is a difference in scale. Oxygen production plants produce oxygen by separating nitrogen from air, but the exhaust gas after separating oxygen is usually released to the atmosphere as waste nitrogen. On the other hand, there is also a lot of power to produce high-purity nitrogen by adding a nitrogen production plant to the oxygen production plant. Even in this case, nitrogen containing a small amount of oxygen is released to the atmosphere as waste nitrogen. Such waste nitrogen is about 95-98% by volume of nitrogen gas and 2-5 of oxygen. / Has a gas composition of about 0 Therefore, it is a very safe dilution gas from the viewpoint of low calorific gas flammability limit. Of course, highly purified nitrogen may be used.
[0123] 以上説明した傾斜管 53、ガス流入装置 54および不活性ガス供給配管 61をそれぞ れガス混合装置に組み合わせたものもここで言うガスカロリ変動抑制装置に含まれる ものである。 [0123] The above-described inclined pipe 53, gas inflow device 54, and inert gas supply pipe 61 combined with a gas mixing device are also included in the gas calorie fluctuation suppressing device referred to herein.
[0124] 図 20—図 24には、低カロリガス供給設備 1において、前述したガス混合装置を低 カロリガス供給配管 3に接続する際の各種の配管の態様が例示されている。しかし、 配管はこれら図面に示した範囲には限定されない。  FIG. 20 to FIG. 24 exemplify various piping modes when the above-described gas mixing device is connected to the low calorie gas supply pipe 3 in the low calorie gas supply facility 1. However, the piping is not limited to the range shown in these drawings.
[0125] 図 20には、低カロリガス供給配管 3に対してレ、わば並列に設置されたガス混合装 置 50、換言すれば、低カロリガス供給配管 3に付設されたバイパス配管に設置された ガス混合装置 50が示されている。このガス混合装置 50は、既存の低カロリガス供給 設備に設置されているガスホルダーをわずかな構造変更によってガスカロリ変動抑 制装置に兼用するものである。したがって、図 14および図 16に示す内容積変動式の ガス混合装置 50が好適に図 20に示すように配置されうる。この場合、出口孔 28はタ ンク 51の底部のほぼ中央に形成されているので、タンク 51内部の多孔板はタンク 51 の中心軸より若干入口孔 27に近い位置に配設される。  [0125] FIG. 20 shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3, that is, a bypass pipe attached to the low calorie gas supply pipe 3. A gas mixing device 50 is shown. This gas mixing device 50 is also used as a gas calorie fluctuation suppressing device by slightly changing the structure of a gas holder installed in an existing low calorie gas supply facility. Therefore, the internal volume variation type gas mixing apparatus 50 shown in FIGS. 14 and 16 can be suitably arranged as shown in FIG. In this case, since the outlet hole 28 is formed substantially at the center of the bottom of the tank 51, the porous plate inside the tank 51 is disposed at a position slightly closer to the inlet hole 27 than the central axis of the tank 51.
[0126] 従来の低カロリガス供給設備に設置されてレ、るガスホルダーは低カロリガス供給配 管 3に対して一本の連通管(図 20におレ、て符号 63で示す出口配管に相当)によって のみ接続されている。この一本の連通管が出入口を兼ねている。ガスホルダーは低 カロリガス供給配管内のガスの需給のバランスを図るだけでよいのであるから、低カロ リガス供給配管とは一本の連通管で連通しておけばよい。  [0126] The gas holder installed in the conventional low calorie gas supply facility has one communication pipe for the low calorie gas supply pipe 3 (corresponding to the outlet pipe indicated by reference numeral 63 in FIG. 20). Only connected by. This single communication pipe doubles as an entrance. Since the gas holder only needs to balance the supply and demand of gas in the low calorie gas supply pipe, it is sufficient to communicate with the low calorie gas supply pipe with a single communication pipe.
[0127] 図 20に示すごとぐタンク 51の出口部材 12には出口配管としての上記連通管 63 が接続されており、この出口配管 63の他に新たに低カロリガス供給配管 3と連通する 上流側入口配管 64がタンク 51の入口部材 11に接続されてレ、る。上流側入口配管 6 4と出口配管 63とが上記バイパス配管を構成している。この上流側入口配管 64は低 カロリガス供給配管 3の出口配管 63との接続部より上流側に接続されている。この上 流側入口配管 64には低カロリガスをタンク 51に送り込むガス圧送装置としてのファン 65が設置されている。したがって、供給される低カロリガスの一部は上流側入口配管 64を通ってタンク 51に流入し、タンク 51内で低カロリガスが時間差混合し、同量のガ スが上記出口配管 63を通ってタンク 51から低カロリガス供給配管 3に戻る。上流側 入口配管 64は出口配管 63より低カロリガス供給配管 3の上流側に接続されているの で、圧力損失を考慮した配管設計によって上記ファン 65を省略することもできる。こ れは図 21および図 23に示す上流側入口配管 64についても同様である。 [0127] As shown in Fig. 20, the above-mentioned communication pipe 63 as an outlet pipe is connected to the outlet member 12 of the tank 51, and in addition to this outlet pipe 63, the low-calorie gas supply pipe 3 is newly connected to the upstream side. The inlet pipe 64 is connected to the inlet member 11 of the tank 51. The upstream side inlet pipe 6 4 and the outlet pipe 63 constitute the bypass pipe. The upstream side inlet pipe 64 is connected to the upstream side from the connection with the outlet pipe 63 of the low calorie gas supply pipe 3. The upstream side inlet pipe 64 is provided with a fan 65 as a gas pressure feeding device for feeding low calorie gas into the tank 51. Therefore, a part of the low calorie gas supplied is upstream inlet piping. The low calorie gas flows into the tank 51 through 64, and the low calorie gas is mixed with time in the tank 51, and the same amount of gas returns from the tank 51 to the low calorie gas supply pipe 3 through the outlet pipe 63. Since the upstream side inlet pipe 64 is connected to the upstream side of the low calorie gas supply pipe 3 from the outlet pipe 63, the fan 65 can be omitted by piping design taking pressure loss into consideration. The same applies to the upstream side inlet pipe 64 shown in FIGS.
[0128] 図 21には、カロリ変動抑制手段として利用しうる他のガス量バランス監視装置を流 用したガス混合装置 66が示されている。このガス混合装置 66は、ガス量バランス監 視装置としてさらに経済的な構成をとつており、入口部材 11と出口部材 12とがそれ ぞれ上流側入口配管 64および出口配管(連通管) 63によって低カロリガス供給配管 3と接続された気密構造のタンク 67を有している。このタンク 67には図示しない多孔 板が内蔵されており、さらに、圧力検出装置 68が設置されており、タンク 67の内圧が 常時監視される。制御装置 5は、検出圧力が上限域に達すると設備内のガス消費量 を増加する指令を出し、ガスの需給バランスをとる。他の配管の構成は図 20に示すも のと同じであるため、説明を省略する。このガス混合装置 66によっても、低カロリガス 供給配管 3によってガスタービンへ供給される低カロリガスの一部についてそのカロリ 変動が抑制される。 [0128] FIG. 21 shows a gas mixing device 66 using another gas amount balance monitoring device that can be used as a calorie fluctuation suppressing means. This gas mixing device 66 has a more economical configuration as a gas quantity balance monitoring device, and an inlet member 11 and an outlet member 12 are respectively connected by an upstream side inlet pipe 64 and an outlet pipe (communication pipe) 63. It has an airtight tank 67 connected to the low calorie gas supply pipe 3. The tank 67 contains a porous plate (not shown), and a pressure detection device 68 is installed to constantly monitor the internal pressure of the tank 67. When the detected pressure reaches the upper limit, the control device 5 issues a command to increase the gas consumption in the facility, and balances the gas supply and demand. The configuration of the other pipes is the same as that shown in Fig. 20, and a description thereof will be omitted. This gas mixing device 66 also suppresses the calorie fluctuation of a part of the low calorie gas supplied to the gas turbine through the low calorie gas supply pipe 3.
[0129] 図 22にも低カロリガス供給配管 3に対して並列に設置されたガス混合装置 50が示 されている。図示のごとぐタンク 51の入口部材 11および出口部材 12と低カロリガス 供給配管 3との間にはそれぞれ、入口配管 69および出口配管 63が接続されている 。しかし、この入口配管 69は、低カロリガス供給配管 3と出口配管 63との接続部より 下流側に接続されている。したがって、この入口配管 69を下流側入口配管 69と呼ぶ 。この下流側入口配管 69には低カロリガスをタンク 51に送り込むファン 65が設置さ れている。  FIG. 22 also shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3. As shown, an inlet pipe 69 and an outlet pipe 63 are connected between the inlet member 11 and outlet member 12 of the tank 51 and the low calorie gas supply pipe 3, respectively. However, the inlet pipe 69 is connected to the downstream side of the connection portion between the low calorie gas supply pipe 3 and the outlet pipe 63. Therefore, this inlet pipe 69 is referred to as a downstream inlet pipe 69. The downstream inlet pipe 69 is provided with a fan 65 for sending low calorie gas to the tank 51.
[0130] 力、かる構成によれば、下流側入口配管 69が低カロリガス供給配管 3における出口 配管 63との接続部より下流側に接続されていても、低カロリガスはファン 65により下 流側入口配管 69を通してタンク 51内へ送り込まれ、時間差混合して出口部材 12か ら出口配管 63へと流出する。つまり、カロリ変動が抑制された低カロリガスの一部が 循環するので効果的な時間差混合がなされる。そして、上記下流側入口配管 69の 長さを長くするほど、タンク 51内でより長時間に渡る時間差混合が実現される。 [0130] According to the configuration, even if the downstream inlet pipe 69 is connected to the downstream side from the connection with the outlet pipe 63 in the low calorie gas supply pipe 3, the low calorie gas is It is sent into the tank 51 through the pipe 69, mixed with a time difference, and flows out from the outlet member 12 to the outlet pipe 63. In other words, a part of the low calorie gas in which calorie fluctuation is suppressed circulates, so that effective time difference mixing is performed. And the downstream inlet pipe 69 The longer the length, the longer the time difference mixing in the tank 51 is realized.
[0131] 図 23にも低カロリガス供給配管 3に対して並列に設置されたガス混合装置 50が示 されている。図示のごとぐタンク 51と低カロリガス供給配管 3との間には、出口配管 6 3とファン 65を備えた上流側入口配管 64とが接続されている。すなわち、タンク 51の 入口部材 11には上流側入口配管 64が接続され、出口部材 12には出口配管 63が 接続されている。し力、し、このタンク 51にはさらなる入口部材 70が形成され、この入 口部材 70に下流側入口配管 69が接続されてレ、る。下流側入口配管 69は低カロリガ ス供給配管 3における出口配管 63との接続部より下流側に接続されている。この下 流側入口配管 69には低カロリガスをタンク 51に送り込むファン 65が設置されている。 図示のごとぐ上流側入口配管 64および下流側入口配管 69のタンク 51への接続位 置(入口部材 11、 70)は互レ、に近接してレ、る。 FIG. 23 also shows a gas mixing device 50 installed in parallel to the low calorie gas supply pipe 3. Between the tank 51 and the low calorie gas supply pipe 3 as shown in the figure, an outlet pipe 63 and an upstream inlet pipe 64 having a fan 65 are connected. That is, the upstream side inlet pipe 64 is connected to the inlet member 11 of the tank 51, and the outlet pipe 63 is connected to the outlet member 12. A further inlet member 70 is formed in the tank 51, and a downstream inlet pipe 69 is connected to the inlet member 70. The downstream inlet pipe 69 is connected to the downstream side from the connection with the outlet pipe 63 in the low calorie gas supply pipe 3. The downstream inlet pipe 69 is provided with a fan 65 for sending low calorie gas to the tank 51. As shown in the figure, the positions of the upstream inlet pipe 64 and the downstream inlet pipe 69 connected to the tank 51 (inlet members 11, 70) are close to each other.
[0132] この構成によれば、タンク 51には低カロリガス供給配管 3の上流側から上流側入口 配管 64を通して低カロリガスの一部が圧送され、同時に低カロリガス供給配管 3の下 流側から下流側入口配管 69を通して低カロリガスの一部が圧送され、時間差混合し て出口部材 12から出口配管 63へと流出する。つまり、カロリ変動が抑制された低カロ リガスの一部が循環するので、タンク 51内で長時間に渡る時間差混合が実現される 。下流側入口配管 69の長さを長くするほど、時間差混合されるガスの滞留時間が長 くなり、一層好ましい時間差混合が実現される。上記下流側入口配管 69は低カロリガ ス供給配管 3の下流側からタンク 51の入口部材 70に接続されている力 この下流側 入口配管 69に代えて、低カロリガス供給配管 3の下流側から、低カロリガス供給配管 3の上流側入口配管 64との接続部より上流側に接続する戻し配管を接続してもよい [0132] According to this configuration, a part of the low calorie gas is pumped into the tank 51 from the upstream side of the low calorie gas supply pipe 3 through the upstream side inlet pipe 64, and at the same time downstream from the downstream side of the low calorie gas supply pipe 3 A part of the low calorie gas is pumped through the inlet pipe 69, mixed with time, and flows out from the outlet member 12 to the outlet pipe 63. That is, since a part of the low calorie gas in which the calorie fluctuation is suppressed circulates, the time difference mixing for a long time is realized in the tank 51. As the length of the downstream side inlet pipe 69 is increased, the residence time of the gas subjected to the time difference mixing becomes longer, and a more preferable time difference mixing is realized. The downstream inlet pipe 69 is connected to the inlet member 70 of the tank 51 from the downstream side of the low calorie gas supply pipe 3. A return pipe connected to the upstream side of the connection with the upstream side inlet pipe 64 of the calorie gas supply pipe 3 may be connected.
[0133] 図 20—図 23に示した、ガス混合装置を低カロリガス供給設備 1に接続する配管の 態様は、従来のガスホルダを利用したガス混合装置 50、 66に好適ではある力 それ 以外の前述したガス混合装置に適用することも可能である。 [0133] The piping configuration for connecting the gas mixing device to the low calorie gas supply facility 1 shown in Fig. 20 to Fig. 23 is the force suitable for the gas mixing devices 50 and 66 using the conventional gas holders. It is also possible to apply to the gas mixing apparatus.
[0134] 図 24に示すガス混合装置 45のタンク 46は一つの出口部材 12と二種類の入口部 材 11、 70とを有している。一方の入口部材 11には上流側低カロリガス供給配管 3が 接続され、出口部材 12には下流側低カロリガス供給配管 3が接続され、さらに、他方 の入口部材 70には下流側低カロリガス供給配管 3に接続された戻し配管 71が接続 されている。二つの入口部材 12、 70は近接して形成されている。戻し配管 71には低 カロリガスをタンク 46に送り込むためのファン 65が設置されている。 The tank 46 of the gas mixing device 45 shown in FIG. 24 has one outlet member 12 and two types of inlet members 11 and 70. One inlet member 11 is connected to the upstream low calorie gas supply pipe 3, the outlet member 12 is connected to the downstream low calorie gas supply pipe 3, and the other A return pipe 71 connected to the downstream-side low calorie gas supply pipe 3 is connected to the inlet member 70. The two inlet members 12, 70 are formed close to each other. The return pipe 71 is provided with a fan 65 for sending low calorie gas into the tank 46.
[0135] 力、かる構成によれば、タンク 46でカロリ変動が抑制された低カロリガスの一部は再 度タンク 46へ戻されて再度時間差混合するので、一層好ましい時間差混合が実現さ れる。戻し配管 71の長さを長くするほど時間差混合されるガスの滞留時間が長くなる 。上記戻し配管 71は低カロリガス供給配管 3の下流側からタンク 46の入口部材 70に 接続されているが、下流側から、低カロリガス供給配管 3におけるタンク 46より上流側 に接続してもよい。 [0135] According to the above-described configuration, a part of the low calorie gas in which the calorie fluctuation is suppressed in the tank 46 is returned to the tank 46 again, and the time difference mixing is performed again, so that a more preferable time difference mixing is realized. The longer the length of the return pipe 71, the longer the residence time of the gas mixed by time difference. The return pipe 71 is connected to the inlet member 70 of the tank 46 from the downstream side of the low calorie gas supply pipe 3, but may be connected to the upstream side of the tank 46 in the low calorie gas supply pipe 3 from the downstream side.
[0136] 図 24に示した、ガス混合装置を低カロリガス供給設備 1に接続する配管の態様は、 図 9および図 10に示すガス混合装置 45に対して好適ではある力 それ以外の前述 したガス混合装置に適用することも可能である。  [0136] The mode of the piping connecting the gas mixing device to the low calorie gas supply facility 1 shown in Fig. 24 is a force suitable for the gas mixing device 45 shown in Figs. 9 and 10 and the other gases described above. It is also possible to apply to a mixing device.
[0137] 図 25にはボイラ設備が示されている。このボイラ設備には、ボイラ 73と、このボイラ 7 3に燃料としての低カロリガスを供給するための低カロリガス供給設備 72が配設され ている。上記ボイラ 73はガスをバーナーで燃焼させて蒸気を発生し、これを発電に 用いたり、発生した蒸気を他の用途に使用する蒸気供給用として用いるものである。  [0137] Figure 25 shows the boiler equipment. The boiler equipment is provided with a boiler 73 and a low calorie gas supply equipment 72 for supplying the boiler 73 with low calorie gas as fuel. The boiler 73 is used for generating steam by burning gas with a burner and using it for power generation, or for supplying steam used for other purposes.
[0138] この低カロリガス供給設備 72は、図 1に示す低カロリガス供給設備 1から、ガス混合 装置 10の下流側の低カロリガス供給配管 3および混合ガス供給配管 14に設置され た機器類を除去したものである。すなわち、図 25に示す低カロリガス供給設備 72は、 直接還元鉄設備 Sで発生した低カロリガスをボイラ 73に燃料として供給する低カロリ ガス供給配管 74を備えている。この低カロリガス供給配管 74には、直接還元鉄設備 Sから送られてくる低カロリガスを除塵するための集塵装置 7、低カロリガスを一次貯 留するためのガス混合装置 10、ガス混合装置 10の上流側および下流側において低 カロリガスの発熱量を検出するための発熱量検出装置 8、 9、並びに、低カロリガスの 供給量を計測する流量計 75が設置されている。図 1に示す低カロリガス供給設備 1 の機器、配管類と同じものには同一の符号を付して詳細な説明を省略する。  [0138] This low calorie gas supply facility 72 has removed the equipment installed in the low calorie gas supply piping 3 and the mixed gas supply piping 14 on the downstream side of the gas mixing device 10 from the low calorie gas supply facility 1 shown in FIG. Is. That is, the low calorie gas supply facility 72 shown in FIG. 25 includes a low calorie gas supply pipe 74 that supplies the low calorie gas generated in the direct reduced iron facility S to the boiler 73 as fuel. The low-calorie gas supply pipe 74 includes a dust collector 7 for removing dust from the low-calorie gas sent directly from the reduced iron facility S, a gas mixer 10 for primary storage of the low-calorie gas, and a gas mixer 10 On the upstream side and downstream side, calorific value detection devices 8 and 9 for detecting the calorific value of low caloric gas, and a flow meter 75 for measuring the supply amount of low caloric gas are installed. The same components as those of the low calorie gas supply facility 1 shown in FIG.
[0139] このボイラ用の低カロリガス供給設備 72に設置するガス混合装置としては、図 4に 示すガス混合装置 10に限らず既に述べた全てのガス混合装置を適用することができ る。この低カロリガス供給設備 72には希釈ガス供給設備が設置されていない。これは 、ボイラにとってガス混合装置によるカロリ変動自体の抑制は安定した出力を得るた めに望ましいことである力 前述した低カロリガスのカロリ変動によって上昇した程度 の高さのカロリ値は大きな問題を生じるものではないからである。 [0139] As the gas mixing device installed in the low calorie gas supply facility 72 for the boiler, not only the gas mixing device 10 shown in Fig. 4 but also all the gas mixing devices described above can be applied. The This low calorie gas supply facility 72 has no dilution gas supply facility. This is because it is desirable for boilers to suppress calorie fluctuation itself by a gas mixing device in order to obtain a stable output. The calorific value that is raised by the calorie fluctuation of low calorie gas mentioned above causes a big problem. It is not a thing.
[0140] 図 25では低カロリガス供給設備 72による低カロリガスの供給対象である燃焼設備と してボイラ 73のみが設置されている。しかし、力かる構成には限定されなレ、。ボイラ 7 3とともに、ガスタービン 2 (図 1)を設置してもよぐ他の燃焼設備を併設してもよい。た とえば図 1に示すガスタービン 2とボイラ 73とを併設する場合、図 1の低カロリガス供 給配管 3におけるカロリメータ 9と流量計 13との間の部分に、図 25中のカロリメータ 9 の下流側からボイラ 73に至る低カロリガス供給配管 74を分岐するように接続すれば よい。 [0140] In Fig. 25, only the boiler 73 is installed as a combustion facility to which low calorie gas is supplied by the low calorie gas supply facility 72. However, it is not limited to a powerful configuration. Along with the boiler 73, another combustion facility may be installed along with the gas turbine 2 (Fig. 1). For example, when the gas turbine 2 and the boiler 73 shown in FIG. 1 are installed, the portion between the calorimeter 9 and the flow meter 13 in the low calorie gas supply pipe 3 in FIG. 1 is downstream of the calorimeter 9 in FIG. The low calorie gas supply pipe 74 from the side to the boiler 73 may be connected so as to be branched.
[0141] 以上説明した実施形態では、燃焼設備としてガスタービンおよびボイラを例示して いる力 本発明における燃焼設備はガスタービンゃボイラに限定されない。ここで説 明したガスカロリ変動抑制装置および低カロリガス供給設備は、他の燃焼設備、たと えば、加熱炉、焼却炉等に適用することも可能である。  [0141] In the embodiment described above, the gas turbine and the boiler are exemplified as the combustion equipment. The combustion equipment in the present invention is not limited to the gas turbine and the boiler. The gas calorie fluctuation suppressing device and the low calorie gas supply facility described here can also be applied to other combustion facilities such as a heating furnace and an incinerator.
[0142] 以上の説明では、低カロリガスのカロリ変動を抑制した後、希釈ガスによってカロリ 値を下げる構成を例示しているが、本発明の燃料ガス供給設備には希釈ガス供給設 備のみならず、これに代えて、または希釈ガス供給設備とともに増熱ガス供給設備を 備えてもよい。要するに、ここで述べた燃料ガス供給設備は、前述の実施形態をもつ て例示したガスカロリ変動抑制装置 (ガス混合装置)を備えていることを特徴としてい る。なお、増熱ガス供給設備とは、ガスタービンゃボイラ等の燃焼設備のガス特性の 許容変動範囲内に調整するために、燃料ガスのカロリ値の低下を防止すベぐ燃料 ガスに中 ·高カロリなガスを混合する設備である。中'高カロリガスとしては、天然ガス ゃコークス炉ガス (COG)等が挙げられる。  [0142] In the above description, the configuration in which the calorie value is lowered by the dilution gas after suppressing the calorie fluctuation of the low calorie gas is exemplified, but the fuel gas supply facility of the present invention includes not only the dilution gas supply facility. Instead of this, a heating gas supply facility may be provided together with the dilution gas supply facility. In short, the fuel gas supply facility described here is characterized by including the gas calorie fluctuation suppressing device (gas mixing device) exemplified with the above-described embodiment. Note that the heat-increasing gas supply facility is a medium-high fuel gas that prevents the calorific value of the fuel gas from decreasing in order to adjust it within the allowable fluctuation range of the gas characteristics of the combustion equipment such as a gas turbine boiler. It is a facility that mixes caloric gas. Examples of medium-high calorie gas include natural gas and coke oven gas (COG).
[0143] 以上説明した実施形態では、使用する低カロリガスとして直接還元製鉄法によって 発生する副生ガスを例示した力 これに限定されない。低カロリガスとしては、高炉ガ ス(BFG)、転炉ガス(LDG)、石炭層に含まれる石炭層ガス(Coal mine gasであり、 CMGと表す)、溶融還元製鉄法によって発生する副生ガス、 GTL (Gas-to-Liquid) プロセスにおいて発生するティルガス(Tail gas)、オイルサンド力 オイル精製プロセ スに伴って発生する副生ガス、プラズマを用いたゴミ焼却によって発生するガス、生 ゴミを含む一般廃棄物がその坦め立て地において発酵、分解する過程で生じるメタ ンガス(Landfill gas)、および、その他の類似の原料を化学反応させることに伴って発 生する副生ガス等の低カロリガス等が含まれる。もちろん、低カロリガスとしては、上記 ガスを単独はもとより、二種類以上のガスを適宜混合させて使用する場合、および、 上記低カロリガスに中.高カロリガスを混合させた結果その発熱量が約 12MJ/Nm3 以下となったガスをも含む。 In the embodiment described above, the force exemplified as a by-product gas generated by the direct reduction iron-making method as the low calorie gas to be used is not limited to this. Low calorie gas includes blast furnace gas (BFG), converter gas (LDG), coal bed gas (Coal mine gas, expressed as CMG), by-product gas generated by smelting reduction ironmaking, GTL (Gas-to-Liquid) Tail gas generated in the process, oil sand force, by-product gas generated during the oil refining process, gas generated by incineration of dust using plasma, and general waste containing garbage are stored This includes methane gas (Landfill gas) produced during fermentation and decomposition in Japan, and low-calorie gas such as by-product gas generated by chemical reaction of other similar raw materials. Of course, as low calorie gas, not only the above gas alone but also two or more kinds of gases are used in an appropriate mixture, and the above low calorie gas is mixed with medium. Includes gases with Nm 3 or less.
産業上の利用可能性 Industrial applicability
本発明によれば、プロセス副生ガスのようにカロリ変動しうる低カロリガスをガスター ビン等の燃焼設備に燃料ガスとして供給する場合、低カロリガスのカロリ変動を抑制 することができるので、希釈ガスによる減熱や増熱ガスによる増熱が効果的且つ容易 になされる。また、希釈ガスによる減熱や増熱ガスによる増熱が不要になる場合があ る。また、既存のガスホルダーを流用してガスカロリの変動を抑制する装置を構築す ることも可肯である。  According to the present invention, when low calorie gas that can change calorie, such as process by-product gas, is supplied as a fuel gas to combustion equipment such as a gas turbine, the calorie fluctuation of low calorie gas can be suppressed. Heat reduction by heat reduction or heat-increasing gas is effective and easy. In some cases, heat reduction by dilution gas or heat increase by heat-increasing gas is not necessary. It is also acceptable to construct a device that suppresses fluctuations in gas calories by using existing gas holders.

Claims

請求の範囲 The scope of the claims
[1] ガスを燃料として燃焼設備に供給するための燃料ガス供給通路に配設された、燃 料ガスを混合するためのガス混合装置を備えており、  [1] A gas mixing device for mixing fuel gas is provided in the fuel gas supply passage for supplying gas to the combustion facility as fuel.
該ガス混合装置が、  The gas mixing device comprises:
複数のガス通路を有するガス通路構成部材と、  A gas passage component having a plurality of gas passages;
上記燃料ガス供給通路からガス通路構成部材内へ燃料ガスが流入するための入 ロ部材と、  An inlet member for the fuel gas to flow from the fuel gas supply passage into the gas passage constituent member;
該入口部材とは別に形成された、ガス通路構成部材から燃料ガス供給通路に燃料 ガスが流出するための出口部材とを備えており、さらに、上記入口部材から連続して 流入してくるガスが、ガス通路構成部材の複数のガス通路をそれぞれ時間差をもって 通過したあと合流して上記出口部材から流出することができるように構成されてなる ガスカロリ変動抑制装置。  And an outlet member formed separately from the inlet member for allowing the fuel gas to flow out from the gas passage component member to the fuel gas supply passage. Further, the gas continuously flowing in from the inlet member A gas calorie fluctuation suppressing device configured to be able to merge and flow out of the outlet member after passing through a plurality of gas passages of the gas passage constituent member with a time difference.
[2] 上記ガス通路構成部材が、その内部に上記ガス通路を構成するガス室が複数個形 成された第一容器力 構成されており、 [2] The gas passage constituting member has a first container force in which a plurality of gas chambers constituting the gas passage are formed.
各ガス室がガス入口とガス出口とを有しており、  Each gas chamber has a gas inlet and a gas outlet,
上記入口部材が、燃料ガス供給通路から各ガス室のガス入口に分岐して接続され ており、  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber,
上記出口部材が、各ガス室のガス出口から統合して燃料ガス供給通路に接続され ており、  The outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage,
入口部材の分岐した部分それぞれに、ガス流量を変更することができるガス流量調 整装置が配設されてなる請求項 1記載のガスカロリ変動抑制装置。  2. The gas calorie fluctuation suppressing device according to claim 1, wherein a gas flow rate adjusting device capable of changing a gas flow rate is provided in each branched portion of the inlet member.
[3] 上記ガス通路構成部材が、その内部に上記ガス通路を構成するガス室が複数個形 成された第一容器力 構成されており、 [3] The gas passage component has a first container force in which a plurality of gas chambers forming the gas passage are formed.
各ガス室がガス入口とガス出口とを有しており、  Each gas chamber has a gas inlet and a gas outlet,
上記入口部材が、燃料ガス供給通路から各ガス室のガス入口に分岐して接続され ており、  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each gas chamber,
上記出口部材が、各ガス室のガス出口から統合して燃料ガス供給通路に接続され ており、 上記複数のガス室の容積がそれぞれ異なるように構成されてなる請求項 1記載の ガスカロリ変動抑制装置。 The outlet member is integrated from the gas outlet of each gas chamber and connected to the fuel gas supply passage, The gas calorie fluctuation suppressing device according to claim 1, wherein the plurality of gas chambers have different volumes.
[4] 上記ガス通路構成部材が、上記ガス通路を構成する第二容器を複数個備えており 各第二容器がガス入口とガス出口とを有しており、 [4] The gas passage constituting member includes a plurality of second containers constituting the gas passage, and each second container has a gas inlet and a gas outlet,
上記入口部材が、燃料ガス供給通路から各第二容器のガス入口に分岐して接続さ れており、  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container,
上記出口部材が、各第二容器のガス出口力 統合して燃料ガス供給通路に接続さ れており、  The outlet member is integrated with the gas outlet force of each second container and connected to the fuel gas supply passage,
入口部材の分岐した部分それぞれに、ガス流量を変更することができるガス流量調 整装置が配設されてなる請求項 1記載のガスカロリ変動抑制装置。  2. The gas calorie fluctuation suppressing device according to claim 1, wherein a gas flow rate adjusting device capable of changing a gas flow rate is provided in each branched portion of the inlet member.
[5] 上記ガス通路構成部材が、上記ガス通路を構成する第二容器を複数個備えており 各第二容器がガス入口とガス出口とを有しており、 [5] The gas passage constituting member includes a plurality of second containers constituting the gas passage, and each second container has a gas inlet and a gas outlet,
上記入口部材が、燃料ガス供給通路から各第二容器のガス入口に分岐して接続さ れており、  The inlet member is branched and connected from the fuel gas supply passage to the gas inlet of each second container,
上記出口部材が、各第二容器のガス出口から統合して燃料ガス供給通路に接続さ れており、  The outlet member is integrated from the gas outlet of each second container and connected to the fuel gas supply passage,
上記複数の第二容器の容積がそれぞれ異なるように構成されてなる請求項 1記載 のガスカロリ変動抑制装置。  The gas calorie fluctuation suppressing device according to claim 1, wherein the plurality of second containers have different volumes.
[6] 上記ガス通路構成部材が、その内部に上記ガス通路を構成する貫通孔が多数形 成された多孔板を備えた第三容器力 構成されており、 [6] The gas passage constituting member is configured as a third container force including a perforated plate in which a plurality of through holes constituting the gas passage are formed.
上記入口部材および出口部材が第三容器に配設されており、  The inlet member and the outlet member are disposed in the third container;
上記多孔板が、第三容器の内部を、入口部材側の空間と出口部材側の空間とに 仕切るように配置されてなる請求項 1記載のガスカロリ変動抑制装置。  2. The gas calorie fluctuation suppressing device according to claim 1, wherein the perforated plate is arranged so as to partition the interior of the third container into a space on the inlet member side and a space on the outlet member side.
[7] 上記多孔板が間隔をおレ、て複数枚配設されてなる請求項 6記載のガスカロリ変動 抑制装置。 7. The gas calorie fluctuation suppressing device according to claim 6, wherein a plurality of the perforated plates are arranged at intervals.
[8] 上記多孔板において、第三容器の内部へ向かう上記入口部材のガス流路中心軸 と交差する多孔板の部分およびその近傍を除いた範囲に上記貫通孔が形成されて レ、る請求項 6記載のガスカロリ変動抑制装置。 [8] In the porous plate, the central axis of the gas flow path of the inlet member toward the inside of the third container 7. The gas calorie fluctuation suppressing device according to claim 6, wherein the through-hole is formed in a range excluding a portion of the perforated plate intersecting with the vicinity thereof and the vicinity thereof.
[9] 上記ガス出口力 ガス入口の中心軸の延長線から外れた位置に形成されてなる請 求項 2— 5のうちいずれか一の項に記載のガスカロリ変動抑制装置。 [9] The gas calorie fluctuation suppressing device according to any one of claims 2 to 5, wherein the gas outlet force is formed at a position deviating from an extension of the central axis of the gas inlet.
[10] 上記ガス入口に設置されたガス流入装置を含んでおり、 [10] including a gas inflow device installed at the gas inlet,
該ガス流入装置が、上記ガス通路構成部材のガス通路内への燃料ガスの流入角 度を変更するように構成されてなる請求項 2 5のうちいずれか一の項に記載のガス カロリ変動抑制装置。  6. The gas calorie fluctuation suppression according to claim 25, wherein the gas inflow device is configured to change an inflow angle of the fuel gas into the gas passage of the gas passage constituent member. apparatus.
[11] 上記入口部材および第三容器内における入口部材近傍のうち一方に設置された ガス流入装置を含んでおり、  [11] includes a gas inflow device installed in one of the inlet member and the vicinity of the inlet member in the third container,
該ガス流入装置が、上記第三容器内への燃料ガスの流入角度を変更するように構 成されてなる請求項 6記載のガスカロリ変動抑制装置。  The gas calorie fluctuation suppressing device according to claim 6, wherein the gas inflow device is configured to change an inflow angle of the fuel gas into the third container.
[12] 上記ガス流入装置が可変ルーバを有しており、該可変ルーバが、その傾斜角度を 外部から変更しうるように揺動可能に装着された少なくとも一枚のルーバである請求 項 10または 11記載のガスカロリ変動抑制装置。 12. The gas inflow device has a variable louver, and the variable louver is at least one louver mounted so as to be swingable so that the inclination angle can be changed from the outside. 11. The gas calorie fluctuation suppressing device according to 11.
[13] 上記入口部材が複数個配設されており、該入口部材のうち、燃料ガスを第三容器 内へ流入させる入口部材を選択して切り換えうるように構成されてなる請求項 6記載 のガスカロリ変動抑制装置。 [13] The structure according to claim 6, wherein a plurality of the inlet members are provided, and the inlet member through which the fuel gas flows into the third container can be selected and switched among the inlet members. Gas calorie fluctuation suppression device.
[14] 上記出口部材が複数個形成されており、上記入口部材の切り換えに同期して燃料 ガスをタンク外へ流出させる出口部材を選択して切り換えうるように構成されてなる請 求項 13記載のガスカロリ変動抑制装置。 [14] The claim 13, wherein a plurality of the outlet members are formed, and the outlet member for allowing the fuel gas to flow out of the tank can be selected and switched in synchronization with the switching of the inlet member. Gas calorie fluctuation suppression device.
[15] 上記入口部材が複数個形成されており、各入口部材に流量調整装置が設置され ており、各入口部材を流通するガスの流量を変更しうるように構成されてなる請求項 6 記載のガスカロリ変動抑制装置。 15. The apparatus according to claim 6, wherein a plurality of the inlet members are formed, a flow rate adjusting device is installed in each inlet member, and the flow rate of the gas flowing through each inlet member can be changed. Gas calorie fluctuation suppression device.
[16] 上記ガス通路構成部材に接続された、ガス通路構成部材内へ不活性ガスを流入さ せるための不活性ガス供給通路を含んでなる請求項 1記載のガスカロリ変動抑制装 置。 16. The gas calorie fluctuation suppressing device according to claim 1, further comprising an inert gas supply passage that is connected to the gas passage constituent member and allows an inert gas to flow into the gas passage constituent member.
[17] 上記入口部材に接続された、ガス通路構成部材内へ不活性ガスを流入させるため の不活性ガス供給通路を含んでなる請求項 1記載のガスカロリ変動抑制装置。 [17] In order to allow an inert gas to flow into a gas passage component connected to the inlet member The gas calorie fluctuation suppressing device according to claim 1, further comprising an inert gas supply passage.
[18] 上記不活性ガスが、酸素製造プラントおよび窒素製造プラントのうち少なくとも一方 のプラントから排出される廃棄窒素を回収したものである請求項 16または 17記載の ガスカロリ変動抑制装置。 18. The gas calorie fluctuation suppressing device according to claim 16 or 17, wherein the inert gas is a recovery of waste nitrogen discharged from at least one of an oxygen production plant and a nitrogen production plant.
[19] 上記ガス混合装置内にガスを撹拌するための撹拌装置が設置されてなる請求項 1 記載のガスカロリ変動抑制装置。 19. The gas calorie fluctuation suppressing device according to claim 1, wherein a stirring device for stirring gas is installed in the gas mixing device.
[20] 上記入口部材に接続されてレ、る燃料ガス供給通路および入口部材のうちの一方に 設置された、燃料ガスのガスカロリ値を計測するための入口ガス発熱量計測装置と、 上記出口部材に接続されてレ、る燃料ガス供給通路および出口部材のうちの一方に 設置された、燃料ガスのガスカロリ値を計測するための出口ガス発熱量計測装置とを 含んでなる請求項 1記載のガスカロリ変動抑制装置。 [20] An inlet gas calorific value measuring device for measuring a gas calorific value of the fuel gas, which is connected to the inlet member and installed in one of the fuel gas supply passage and the inlet member, and the outlet member A gas calorie according to claim 1, further comprising: an outlet gas calorific value measuring device for measuring a gas calorie value of the fuel gas, installed in one of the fuel gas supply passage and the outlet member connected to the fuel gas supply passage. Fluctuation suppression device.
[21] 上記入口ガス発熱量計測装置および出口ガス発熱量計測装置の計測値に基づレ、 て、ガス通路構成部材への流入ガスのカロリ変動とガス通路構成部材からの排出ガ スのカロリ変動とを対比し、この対比結果に基づいて、ガス通路構成部材内へのガス 流入量を変化させるベく制御する制御装置を含んでなる請求項 20記載のガスカロリ 変動抑制装置。 [21] Based on the measured values of the inlet gas calorific value measuring device and the outlet gas calorific value measuring device, the calorie fluctuation of the inflow gas to the gas path component and the calorie of the exhaust gas from the gas channel component 21. The gas calorie fluctuation suppressing device according to claim 20, further comprising a control device that compares the fluctuation and controls the amount of gas flowing into the gas passage constituting member based on the comparison result.
[22] 上記入口ガス発熱量計測装置および出口ガス発熱量計測装置の計測値に基づレ、 て、ガス通路構成部材への流入ガスのカロリ変動とガス通路構成部材からの排出ガ スのカロリ変動とを対比し、この対比結果に基づいて、ガス通路構成部材内へのガス 流入方向を変化させるベく制御する制御装置を含んでなる請求項 20記載のガスカロ リ変動抑制装置。  [22] Based on the measured values of the inlet gas calorific value measuring device and the outlet gas calorific value measuring device, the calorie fluctuation of the inflow gas to the gas path component and the calorie of the exhaust gas from the gas channel component 21. The gas calorie fluctuation suppressing device according to claim 20, further comprising a control device that compares the fluctuation and controls to change the gas inflow direction into the gas passage constituting member based on the comparison result.
[23] ガスを燃料として燃焼設備に供給するための燃料ガス供給通路と、  [23] a fuel gas supply passage for supplying gas to the combustion facility as fuel;
該燃料ガス供給通路を通して供給される燃料ガスの発熱量の変動を抑制するため のガスカロリ変動抑制装置とを備えており、  A gas calorie fluctuation suppressing device for suppressing fluctuations in the calorific value of the fuel gas supplied through the fuel gas supply passage,
該ガスカロリ変動抑制装置が請求項 1一 22のうちいずれか一の項に記載のガス力 ロリ変動抑制装置である燃料ガス供給設備。  23. A fuel gas supply facility, wherein the gas calorie fluctuation suppressing apparatus is the gas power roll fluctuation suppressing apparatus according to any one of claims 112.
[24] 上記ガス力口リ変動抑制装置における、 [24] In the gas-power outlet fluctuation suppressing device,
ガス混合装置の出口部材と燃料ガス供給通路との間に接続された出口通路と、 ガス混合装置の入口部材と燃料ガス供給通路における上記出口通路の接続点より 上流側との間に接続された上流側入口通路とをさらに含んでなる請求項 23記載の 燃料ガス供給設備。 An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage; 24. The fuel gas supply facility according to claim 23, further comprising an upstream inlet passage connected between the inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage.
[25] 上記ガスカロリ変動抑制装置における、 [25] In the gas calorie fluctuation suppressing device,
ガス混合装置の出口部材と燃料ガス供給通路との間に接続された出口通路と、 ガス混合装置の入口部材と燃料ガス供給通路における上記出口通路の接続点より 下流側との間に接続された下流側入口通路と、  An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between the inlet member of the gas mixing device and the downstream side of the connection point of the outlet passage in the fuel gas supply passage. A downstream inlet passage,
該下流側入口通路に設置された、燃料ガスをガス混合装置に向けて圧送するガス 圧送装置とをさらに含んでなる請求項 23または 24記載の燃料ガス供給設備。  25. The fuel gas supply facility according to claim 23 or 24, further comprising a gas pressure feeding device installed in the downstream side inlet passage to pump fuel gas toward the gas mixing device.
[26] 上記ガス力口リ変動抑制装置における、 [26] In the gas-power outlet fluctuation suppressing device,
ガス混合装置の出口部材と燃料ガス供給通路との間に接続された出口通路と、 ガス混合装置の入口部材と燃料ガス供給通路における上記出口通路の接続点より 上流側との間に接続された上流側入口通路と、  An outlet passage connected between the outlet member of the gas mixing device and the fuel gas supply passage, and connected between an inlet member of the gas mixing device and the upstream side of the connection point of the outlet passage in the fuel gas supply passage. An upstream inlet passage,
燃料ガス供給通路における上記出口通路の接続点より下流側と燃料ガス供給通路 における上記上流側入口通路の接続点より上流側との間に接続された戻し通路と、 上記戻し通路に設置された、燃料ガスを上流側燃料ガス供給通路に向けて圧送す るガス圧送装置とをさらに含んでなる請求項 23記載の燃料ガス供給設備。  A return passage connected between the downstream side of the connection point of the outlet passage in the fuel gas supply passage and the upstream side of the connection point of the upstream inlet passage in the fuel gas supply passage; and installed in the return passage; 24. The fuel gas supply facility according to claim 23, further comprising a gas pumping device that pumps the fuel gas toward the upstream fuel gas supply passage.
[27] 上記ガスカロリ変動抑制装置における、 [27] In the gas calorie fluctuation suppressing device,
ガス混合装置が二種の入口部材を有しており、  The gas mixing device has two inlet members;
ガス混合装置の出口部材に下流側の燃料ガス供給通路が接続されており、 ガス混合装置の一方の入口部材に上流側の燃料ガス供給通路が接続されており、 ガス混合装置の他方の入口部材と下流側の燃料ガス供給通路との間に接続された 戻し通路と、  A downstream fuel gas supply passage is connected to the outlet member of the gas mixing device, an upstream fuel gas supply passage is connected to one inlet member of the gas mixing device, and the other inlet member of the gas mixing device A return passage connected between the fuel gas supply passage and the downstream fuel gas supply passage;
該戻し通路に設置された、燃料ガスをガス混合装置に向けて圧送するガス圧送装 置とをさらに含んでなる請求項 23記載の燃料ガス供給設備。  24. The fuel gas supply facility according to claim 23, further comprising a gas pressure feeding device that is installed in the return passage and pumps the fuel gas toward the gas mixing device.
[28] 上記ガス力口リ変動抑制装置における、 [28] In the above-mentioned gas-power outlet fluctuation suppressing device,
ガス混合装置の出口部材に下流側の燃料ガス供給通路が接続されており、 ガス混合装置の入口部材に上流側の燃料ガス供給通路が接続されており、 ガス混合装置より上流側の燃料ガス供給通路とガス混合装置より下流側の燃料ガ ス供給通路との間に接続された戻し通路と、 A downstream fuel gas supply passage is connected to the outlet member of the gas mixing device; an upstream fuel gas supply passage is connected to the inlet member of the gas mixing device; A return passage connected between a fuel gas supply passage upstream of the gas mixing device and a fuel gas supply passage downstream of the gas mixing device;
該戻し通路に設置された、燃料ガスを燃料ガス供給通路の下流側から上流側に向 けて圧送するガス圧送装置とをさらに含んでなる請求項 23記載の燃料ガス供給設備  24. The fuel gas supply facility according to claim 23, further comprising: a gas pumping device installed in the return passage and pumping the fuel gas from the downstream side to the upstream side of the fuel gas supply passage.
[29] 上記燃焼設備と、 [29] the above combustion equipment;
該燃焼設備にガスを燃料として供給するための燃料ガス供給設備とを備えており、 上記燃焼設備がガスタービンであり、  A fuel gas supply facility for supplying gas as fuel to the combustion facility, and the combustion facility is a gas turbine,
上記燃料ガス供給設備が、請求項 23— 28のうちいずれか一の項に記載の燃料ガ ス供給設備であるガスタービン設備。  29. A gas turbine facility, wherein the fuel gas supply facility is the fuel gas supply facility according to any one of claims 23-28.
[30] 上記燃焼設備と、 [30] the above combustion equipment;
該燃焼設備にガスを燃料として供給するための燃料ガス供給設備とを備えており、 上記燃焼設備がガスをバーナーで燃焼させるボイラであり、  A fuel gas supply facility for supplying gas as fuel to the combustion facility, wherein the combustion facility is a boiler that burns gas with a burner,
上記燃料ガス供給設備が、請求項 23— 28のうちいずれか一の項に記載の燃料ガ ス供給設備であるボイラ設備。  A boiler facility, wherein the fuel gas supply facility is the fuel gas supply facility according to any one of claims 23-28.
PCT/JP2005/000977 2005-01-26 2005-01-26 Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility WO2006080054A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2005/000977 WO2006080054A1 (en) 2005-01-26 2005-01-26 Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility
JP2007500367A JP4481330B2 (en) 2005-01-26 2005-01-26 Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
KR1020077014967A KR100875498B1 (en) 2005-01-26 2005-01-26 Gas calorie fluctuation suppressor, fuel gas supply equipment, gas turbine equipment and boiler equipment
BRPI0520608-1A BRPI0520608A2 (en) 2005-01-26 2005-01-26 gas calorie fluctuation suppression device, fuel gas supply system, gas turbine system and boiler system
CNB2005800470631A CN100549391C (en) 2005-01-26 2005-01-26 Heat release in gas region variation suppressing, fuel gas supply equipment, gas-turbine plant and boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000977 WO2006080054A1 (en) 2005-01-26 2005-01-26 Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility

Publications (1)

Publication Number Publication Date
WO2006080054A1 true WO2006080054A1 (en) 2006-08-03

Family

ID=36740089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000977 WO2006080054A1 (en) 2005-01-26 2005-01-26 Gas calorie variation suppressing device, fuel gas supply facility, gas turbine facility, and boiler facility

Country Status (5)

Country Link
JP (1) JP4481330B2 (en)
KR (1) KR100875498B1 (en)
CN (1) CN100549391C (en)
BR (1) BRPI0520608A2 (en)
WO (1) WO2006080054A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108913A (en) * 2007-10-30 2009-05-21 Tokyo Gas Co Ltd Liquefied fuel gas supply apparatus
JP2010281319A (en) * 2009-06-02 2010-12-16 General Electric Co <Ge> System and method for controlling calorie content of fuel
JP2013053525A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Fuel mixing tank and gas turbine power generation system including the same
JP2013119818A (en) * 2011-12-08 2013-06-17 Mitsubishi Heavy Ind Ltd Gas turbine facility
EP3571443B1 (en) 2018-10-05 2020-12-02 Sensirion AG Device for regulating a mixing ratio of a gas mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240234B (en) * 2020-10-21 2021-08-31 安徽天沃重工机械有限公司 Diesel engine with exhaust purification effect for agricultural machinery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317499A (en) * 1996-05-28 1997-12-09 Kawasaki Steel Corp Control method for blast furnace gas monofuel combustion gas turbine
JP2003293860A (en) * 2002-04-05 2003-10-15 Takuma Co Ltd Methane fermentation treatment system and methane fermentation treatment method
JP2004225117A (en) * 2003-01-23 2004-08-12 Jfe Steel Kk Method for utilizing by-produced gas in iron works

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266899A (en) * 1997-03-26 1998-10-06 Tokyo Gas Co Ltd Pressure fluctuation absorber and fluid consumption device
BRPI0419147B1 (en) * 2004-12-27 2015-12-01 Kawasaki Heavy Ind Ltd gas calorie fluctuation suppression device, fuel gas supply system, gas turbine system and boiler system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317499A (en) * 1996-05-28 1997-12-09 Kawasaki Steel Corp Control method for blast furnace gas monofuel combustion gas turbine
JP2003293860A (en) * 2002-04-05 2003-10-15 Takuma Co Ltd Methane fermentation treatment system and methane fermentation treatment method
JP2004225117A (en) * 2003-01-23 2004-08-12 Jfe Steel Kk Method for utilizing by-produced gas in iron works

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108913A (en) * 2007-10-30 2009-05-21 Tokyo Gas Co Ltd Liquefied fuel gas supply apparatus
JP2010281319A (en) * 2009-06-02 2010-12-16 General Electric Co <Ge> System and method for controlling calorie content of fuel
JP2013053525A (en) * 2011-08-31 2013-03-21 Mitsubishi Heavy Ind Ltd Fuel mixing tank and gas turbine power generation system including the same
JP2013119818A (en) * 2011-12-08 2013-06-17 Mitsubishi Heavy Ind Ltd Gas turbine facility
EP3571443B1 (en) 2018-10-05 2020-12-02 Sensirion AG Device for regulating a mixing ratio of a gas mixture
EP3760926A1 (en) * 2018-10-05 2021-01-06 Sensirion AG Device for regulating a mixing ratio of a gas mixture

Also Published As

Publication number Publication date
JP4481330B2 (en) 2010-06-16
JPWO2006080054A1 (en) 2008-06-19
CN100549391C (en) 2009-10-14
KR20070086819A (en) 2007-08-27
BRPI0520608A2 (en) 2009-09-29
CN101107434A (en) 2008-01-16
KR100875498B1 (en) 2008-12-22

Similar Documents

Publication Publication Date Title
JP4481330B2 (en) Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
CN100575789C (en) Heat release in gas region control method and gas heat output controller
JP4611373B2 (en) Gas turbine equipment, fuel gas supply equipment, and fuel gas calorie increase suppressing method
JP4503612B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
JP4546482B2 (en) Gas turbine equipment, low calorie gas supply equipment, and method for suppressing calorie rise of the gas
CN101014686B (en) Gas reforming equipment
JP4326566B2 (en) Gas calorie fluctuation suppression device, fuel gas supply equipment, gas turbine equipment and boiler equipment
AU2011319286B2 (en) Boiler and operating method of same
JP2007170245A (en) Gas turbine facility, low calory gas feeding facility, and method of suppressing rise of calory of gas
KR100912148B1 (en) Gas turbine apparatus, apparatus for supplying fuel gas and method for suppressing calorie elevation of fuel gas
KR20070099633A (en) Gas turbine apparatus, apparatus for supplying fuel gas and method for suppressing calorie elevation of fuel gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500367

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2144/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077014967

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580047063.1

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 05704114

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5704114

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0520608

Country of ref document: BR

Kind code of ref document: A2