WO2006072995A1 - Motor protector with ptc - Google Patents

Motor protector with ptc Download PDF

Info

Publication number
WO2006072995A1
WO2006072995A1 PCT/JP2005/000137 JP2005000137W WO2006072995A1 WO 2006072995 A1 WO2006072995 A1 WO 2006072995A1 JP 2005000137 W JP2005000137 W JP 2005000137W WO 2006072995 A1 WO2006072995 A1 WO 2006072995A1
Authority
WO
WIPO (PCT)
Prior art keywords
bimetal
temperature
motor
state
fixed contact
Prior art date
Application number
PCT/JP2005/000137
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Sato
Original Assignee
Takano Precision Industry Co., Ltd.
Tanaka, Kenji
Three Sss
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takano Precision Industry Co., Ltd., Tanaka, Kenji, Three Sss filed Critical Takano Precision Industry Co., Ltd.
Priority to PCT/JP2005/000137 priority Critical patent/WO2006072995A1/en
Publication of WO2006072995A1 publication Critical patent/WO2006072995A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5418Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting using cantilevered bimetallic snap elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting
    • H01H37/5427Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing
    • H01H37/5436Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting encapsulated in sealed miniaturised housing mounted on controlled apparatus

Definitions

  • the present invention relates to a motor protector that prevents a motor from being damaged by restraint or overload of a motor rotor.
  • Such a conventional motor protector is provided on a current path for supplying a current to a motor rotor so as to be able to perform a reverse operation, a movable contact provided on the bimetal, and a current path. Fixed contact. Under normal conditions, the movable contact provided on the bimetal contacts the fixed contact and the current path is conducted. For this reason, current is supplied to the motor rotor. On the other hand, when the motor rotor is constrained or when the motor rotor is overloaded and the amount of current increases, the amount of current flowing through the bimetal increases or the surroundings of the bimetal due to heat generated by the motor rotor are increased. As the ambient temperature increases, the temperature of the nanometal increases.
  • the bimetal when the temperature of the nometal becomes equal to or higher than a predetermined temperature (operating temperature), the bimetal is reversed, the movable contact is separated from the fixed contact force, and the current path is cut. For this reason, no current is supplied to the motor rotor, and the motor is prevented from being damaged by a further temperature rise. After that, when the temperature of the bimetal drops and falls below the predetermined temperature (recovery temperature), the bimetal becomes non-inverted again, and the movable contact contacts the fixed contact and the current path becomes conductive.
  • a predetermined temperature operating temperature
  • Patent Document 1 Japanese Patent Laid-Open No. 10-308150
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-166181
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-328939
  • the operating temperature and recovery temperature of bimetal are generally set so that the operating temperature is high and the recovery temperature is low.
  • the operating temperature is about 120 to 180 degrees, while the return temperature is about 70 to 90 degrees. If the difference between the operating temperature and the return temperature is large! /, It is necessary to increase the degree of forming the metal in the non-inverted state according to the difference. For this reason, the mechanical stress added to a bimetal increases. Therefore, from the viewpoint of reducing the mechanical stress applied to the bimetal, it is desirable that the difference between the operating temperature and the return temperature is small.
  • the present invention is capable of matching the bimetal temperature state with the motor temperature state and maintaining the bimetal lifetime even in the case of the differential force between the operating temperature and the return temperature.
  • An object of the present invention is to provide a simple motor protector.
  • the motor protector of the present invention is provided on a current path for supplying a current to the motor rotor and performs a reversing operation according to its own temperature, a fixed contact provided on the current path, A movable contact provided on the bimetal, contacting the fixed contact when the bimetal is in a non-inverted state, and separating the fixed contact force when the bimetal is in an inverted state; and the fixed contact on the current path And a PTC thermistor that contacts the bimetal when the bimetal is in an inverted state and separates the bimetal force when the bimetal is in a non-inverted state.
  • the temperature drop of the bimetal can be moderated, and even when the difference between the operating temperature and the return temperature of the bimetal is small, the bimetallic temperature state and the motor temperature state should be matched, in other words Thus, the motor can be sufficiently cooled during the period until the bimetal in the reverse state returns to the non-invert state again. Even when the difference between the operating temperature and the return temperature of the nanometal is small, the period until the inverted bimetal returns to the non-inverted state is maintained, thereby maintaining the repeated life of the bimetal. be able to.
  • the motor protector of the present invention causes an operating current to flow while in contact with the PTC thermistor and the bimetal.
  • the motor protector according to the present invention is in a reverse state when the bimetal force increases the temperature of the bimetal above the first temperature, and further falls below the second temperature lower than the first temperature. When it falls, it returns to the non-inverted state, and the PTC thermistor enters an operating state when the temperature of the bimetal is equal to or higher than a third temperature lower than the second temperature.
  • the bimetal when the temperature of the bimetal is between the first temperature that is the operating temperature and the second temperature that is the return temperature, in other words, the bimetal is in an inverted state and contacts the PTC thermistor. During this time, the PTC thermistor is always in a state of increased resistance (operating state), preventing excessive current from flowing.
  • the motor protector of the present invention has a pressing mechanism that presses the surface of the bimetal opposite to the surface in contact with the PTC thermistor.
  • the motor protector according to the present invention includes the PTC thermistor, so that the difference between the operating temperature of the bimetal and the return temperature is small. Planning and maintaining the lifetime of the nanometal.
  • FIG. 1 is an exploded perspective view of a breaker.
  • FIG. 2 is an assembled perspective view of the breaker.
  • FIG. 3 is an exploded perspective view of the motor protector.
  • FIG. 4 is a cross-sectional view of a motor protector.
  • FIG. 5 is a diagram showing a configuration of a motor drive circuit.
  • FIG. 6 is a diagram showing the time course of the temperature of the metal disk.
  • the motor protector has a PTC thermistor that comes into contact with the bimetal when the bimetal is reversed, even if the difference between the operating temperature and the return temperature of the bimetal is small, the temperature state of the nometal and the temperature state of the motor And maintaining the bimetal lifetime.
  • FIG. 1 is an exploded perspective view of a breaker of a motor protector according to an embodiment of the present invention
  • FIG. Figure 2 shows.
  • the breaker 200 shown in FIGS. 1 and 2 includes an upper plate 210, a bimetal disk 220, a movable contact 230, a PTC (Positive Temperature Coefficient) thermistor 240, and a base 250.
  • PTC Positive Temperature Coefficient
  • the upper plate 210 has an insulating property. One end of the upper plate 210 is divided into two forks. A through hole 212-1 is formed on one side, and a through hole 212-2 is formed on the other side. A through hole 212-3 and a through hole 212-4 are formed at the other end of the upper plate 210. Further, a hinge 214 protruding downward is formed at the center of the upper plate 210. The hinge 214 can press the upper surface of the bimetal disc 220.
  • the bimetal disc 220 is disposed below the upper plate 210.
  • This bimetallic disc 220 is formed by laminating two kinds of metal pieces having different thermal expansion coefficients, and has conductivity.
  • the bimetal disc 220 is normally The central part is curved upward (non-inverted state).
  • a predetermined temperature operating temperature
  • the bimetal disc 220 has two kinds of metal pieces. Due to the difference in coefficient of thermal expansion, the center part is bent downward (inverted state). After that, when the temperature of the bimetal disk 220 decreases and becomes lower than a predetermined temperature (recovery temperature) lower than the operating temperature, the bimetal disk 220 is again curved in the center (non-inverted state).
  • the hinge 214 of the upper plate 210 described above presses the upper surface of the bimetal disc 220. Therefore, by adjusting the position of the hinge 214, the degree of forming of the bimetal disc 220 is adjusted, and further, the difference between the operating temperature and the return temperature is adjusted.
  • a movable contact 230 that operates in accordance with the reversal operation of the bimetal disk 220 is formed on the lower surface of one end of the bimetal disk 220. Further, the other end of the bimetal disc 220 is formed with a through hole 222-1 and a through hole 222-2.
  • the PTC thermistor 240 has a disk shape and is disposed below the central portion of the bimetal disc 220. This PTC thermistor 240 has a positive characteristic that when the temperature of the bimetal disk 220 is lower than the return temperature, it is in an operating state and the resistance value rapidly increases. The upper surface of the PTC thermistor 240 comes into contact with the lower surface of the bimetal disk 220 when the bimetal disk 220 is inverted, and electrical connection with the bimetal disk 220 is achieved.
  • the base 250 accommodates the upper plate 210, the bimetal disc 220, and the PTC thermistor 240 described above.
  • Projections 252-1 and 252-2 are formed on one end of the upper surface of the case body 251 of the base 250.
  • the protrusion 252-1 is fitted into the through hole 212-1 of the upper plate 210, and the protrusion 252-2 is fitted to the through hole 212-2 of the upper plate 210.
  • projections 252-3 and 252-4 are formed on the other end of the upper surface of the case body 251.
  • the protrusion 252-3 is fitted in the through hole 212-3 of the upper plate 210 and the through hole 222-1 of the bimetal disk 220, and the protrusion 252-4 is the through hole 212-3 of the upper plate 210 and the bimetal disk 220. It fits into the through hole 222-2.
  • a fixed contact 254 is formed at a position near the protrusions 252-1 and 252-2 slightly in the central force on the upper surface of the case body 251.
  • the fixed contact 254 is electrically connected to the bimetal disk 220 by contacting the movable contact 230 formed on the bimetal disk 220 when the nonmetal disk 220 is in a non-inverted state.
  • a metal plate 256 is formed inside the case body 251. A part of the metal plate 256 is exposed around the protrusions 252-3 and 252-4.
  • the metal plate 256 has a protrusion 252-3 fitted in the through-hole 222-1 of the bimetal disc 220 and a protrusion 252-4 fitted in the through-hole 222-2 of the bimetal disc 220.
  • the electrical connection is planned.
  • a hole 258 is formed in the central portion of the upper surface of the case body 251.
  • the PTC thermistor 240 fits into this hole 258.
  • a metal plate 257 is formed inside the case body 251. The metal plate 257 is in contact with the PTC thermistor 240 fitted in the fixed contact 254 and the hole 258, and is electrically connected thereto.
  • FIG. 3 is an exploded perspective view of the motor protector
  • FIG. 4 is a cross-sectional view of the motor protector.
  • the motor protector 100 shown in FIGS. 3 and 4 includes a can 110, a breaker 200, a header 120, and pins 130-1 and 130-2, which are lids.
  • Breaker 200 is housed in a space formed by can 110 and header 120. In the vicinity of both ends of the header 120, through holes 122-1 and 122-2 are formed. Further, a cylindrical glass seal 122-1 is formed on the inner peripheral surface of the through hole 122-1, and a cylindrical glass seal 122-2 is formed on the inner peripheral surface of the through hole 122-2.
  • Pins 130-1 and 130-2 are conductive. The pin 130-1 is inserted into the inner hole of the glass seal 122-1. The pin 130-1 is in contact with the metal plate 257 of the breaker 200 at the upper end, and is electrically connected to the metal plate 257. The lower end of the pin 130-1 is connected to a power source (not shown).
  • the pin 130-2 is inserted into the inner hole of the glass seal 122-2.
  • the pin 130-2 has an upper end in contact with the metal plate 256 of the breaker 200, and is electrically connected to the metal plate 256.
  • the lower end of the pin 130-2 is connected to a motor (not shown).
  • FIG. 5 is a diagram showing a motor drive circuit.
  • the motor drive circuit shown in FIG. It consists of protector 100, motor 300, capacitor 400 and power supply 500.
  • FIG. 5 only the bimetal disc 220, the movable contact 230, the PTC thermistor 240, the fixed contact 254, and the resistor 260 related to the switching operation are shown in the motor protector 100.
  • the PTC thermistor 240 and the fixed contact 254 are provided in parallel on the current path.
  • the motor 300 has a main coil 302 and a subcoil 304 in the motor rotor. A current is supplied to the main coil 302 from the power source 500 via the motor protector 100.
  • the subcoil 304 is for obtaining the rotational force of the motor rotor when the motor 300 starts to be driven.
  • the sub-coil 304 is supplied with the electric charge stored in the operating capacitor 400 when the motor 300 starts to be driven.
  • the bimetal disc 220 in the motor protector 100 when the bimetal disc 220 in the motor protector 100 is in the non-inverted state, the bimetal disc 220 is in a state where the central portion is curved upward.
  • the movable contact 230 formed on the lower surface of one end of the metal disk 220 is in contact with the fixed contact 254.
  • the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the fixed contact 254, the movable contact 230, the bimetal disk 220, and the metal plate 256. Therefore, the current from the power source 500 in FIG. 5 is supplied to the main coil 302 of the motor 300 via the motor protector 100.
  • the movable contact 230 formed on the lower surface of one end of the bimetal disc 220 is separated from the fixed contact 254 and contacts the upper surface of the lower force PTC thermistor 240 at the center of the bimetal disc 220. For this reason, the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the PTC thermistor 240, the metal metal disk 220, and the metal plate 256. Therefore, In FIG. 5, the current from the power source 500 is supplied to the main coil 302 of the motor 300.
  • the bimetal disk 220 After the temperature of the bimetal disk 220 reaches the return temperature, the bimetal disk 220 is brought into the non-inverted state again, and the movable contact 230 is in contact with the fixed contact 254, as shown in FIG. For this reason, the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the fixed contact 254, the movable contact 230, the bimetal disk 220, and the metal plate 256. Accordingly, the current from the power source 500 in FIG. 5 is supplied to the main coil 302 of the motor 300 via the motor protector 100.
  • the inversion period of the bimetal disk 220 is prolonged due to the presence of the PTC thermistor 240. This means that even if the difference between the operating temperature and the return temperature of the bimetal disk 220 is reduced, the same inversion period as when the PTC thermistor 240 does not exist can be maintained. Characteristics and UT characteristics need not be affected. Therefore, it is possible to match the temperature state of the bimetal disc 220 and the temperature state of the motor 300, in other words, to sufficiently cool the motor 300 during the inversion period. Also, the difference between the operating temperature and return temperature of the bimetal disc 220 is reduced. Even if this is done, the repeated life of the bimetal disc 220 can be maintained by maintaining the inversion period.
  • the motor protector according to the present invention can match the bimetal temperature state to the motor temperature state and maintain the bimetal life even when the difference between the bimetal operating temperature and the return temperature is small. It is useful as a motor protector.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

The temperature state of a bimetal matches with that of a motor even when the difference between the operating temperature and the reset temperature is small to maintain the lifetime of the bimetal. A motor protector (100) comprises a bimetal disc (220) provided on the current path for supplying a current to the rotor of a motor and performing an inverting action depending on its own temperature, a fixed contact (254) provided on the current path, a movable contact (230) provided on the bimetal disc (220), coming in contact with the fixed contact (254) when the bimetal disc (220) is in a noninverted state, and separating from the fixed contact (254) when the bimetal disc (220) is in an inverted state, and a PTC thermister (240) provided on the current path in parallel with the fixed contact (254), coming in contact with the bimetal disc (220) when the bimetal disc (220) is in a noninverted state, and separating therefrom when the bimetal disc (220) is in an inverted state.

Description

明 細 書  Specification
PTC付きモータプロテクタ  Motor protector with PTC
技術分野  Technical field
[0001] 本発明は、モータ回転子の拘束や過負荷によるモータの破損を防止するモータプ ロテクタに関する。  TECHNICAL FIELD [0001] The present invention relates to a motor protector that prevents a motor from being damaged by restraint or overload of a motor rotor.
背景技術  Background art
[0002] 従来、コンプレッサ等に用いられるモータにぉ 、ては、内部のモータ回転子が何ら かの理由によって拘束された場合や、モータ回転子に過負荷が加えられた場合に、 温度が上昇してモータが破損することを防止すベぐモータプロテクタが用いられて いる(例えば、特許文献 1乃至 3参照)。  [0002] Conventionally, the temperature of a motor used in a compressor or the like rises when the internal motor rotor is constrained for any reason or when an overload is applied to the motor rotor. Therefore, a motor protector that prevents the motor from being damaged is used (see, for example, Patent Documents 1 to 3).
[0003] このような従来のモータプロテクタは、モータ回転子へ電流を供給する電流経路上 に反転動作が可能なように設けられるバイメタルと、当該バイメタルに設けられる可動 接点と、電流経路上に設けられる固定接点とを有する。通常時は、バイメタルに設け られた可動接点が固定接点に接触して電流経路が導通している。このため、モータ 回転子へ電流が供給される。一方、モータ回転子が拘束された場合や、モータ回転 子に過負荷が加えられて電流量が増加した場合には、バイメタルを流れる電流量の 増加や、モータ回転子の発熱によるバイメタルの周辺の雰囲気温度の上昇によって 、 ノ ィメタルの温度が上昇する。そして、このノ ィメタルの温度が所定温度 (動作温度 )以上になった場合には、当該バイメタルが反転し、可動接点が固定接点力も離隔し て電流経路が切断される。このため、モータ回転子に電流が供給されなくなり、更な る温度上昇によってモータが破損することが防止される。その後、バイメタルの温度 が降下し、所定温度 (復帰温度)以下になった場合には、バイメタルは、再び非反転 状態になり、可動接点が固定接点に接触して電流経路が導通する。  [0003] Such a conventional motor protector is provided on a current path for supplying a current to a motor rotor so as to be able to perform a reverse operation, a movable contact provided on the bimetal, and a current path. Fixed contact. Under normal conditions, the movable contact provided on the bimetal contacts the fixed contact and the current path is conducted. For this reason, current is supplied to the motor rotor. On the other hand, when the motor rotor is constrained or when the motor rotor is overloaded and the amount of current increases, the amount of current flowing through the bimetal increases or the surroundings of the bimetal due to heat generated by the motor rotor are increased. As the ambient temperature increases, the temperature of the nanometal increases. Then, when the temperature of the nometal becomes equal to or higher than a predetermined temperature (operating temperature), the bimetal is reversed, the movable contact is separated from the fixed contact force, and the current path is cut. For this reason, no current is supplied to the motor rotor, and the motor is prevented from being damaged by a further temperature rise. After that, when the temperature of the bimetal drops and falls below the predetermined temperature (recovery temperature), the bimetal becomes non-inverted again, and the movable contact contacts the fixed contact and the current path becomes conductive.
特許文献 1:特開平 10- 308150号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-308150
特許文献 2:特開 2000— 166181号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-166181
特許文献 3:特開 2003— 328939号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-328939
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0004] バイメタルの動作温度と復帰温度とは、一般に動作温度が高く設定され、復帰温度 が低く設定されている。例えば、動作温度が 120乃至 180度程度であるのに対して、 復帰温度は 70乃至 90度程度である。これら動作温度と復帰温度の差が大き!/、場合 、その差に応じて、非反転状態におけるノ ィメタルのフォーミングの度合いを大きくす る必要がある。このため、バイメタルに加わる機械的ストレスが増大する。従って、バイ メタルに加わる機械的ストレスを少なくすると 、う観点からは、動作温度と復帰温度の 差が小さいことが望ましい。  [0004] The operating temperature and recovery temperature of bimetal are generally set so that the operating temperature is high and the recovery temperature is low. For example, the operating temperature is about 120 to 180 degrees, while the return temperature is about 70 to 90 degrees. If the difference between the operating temperature and the return temperature is large! /, It is necessary to increase the degree of forming the metal in the non-inverted state according to the difference. For this reason, the mechanical stress added to a bimetal increases. Therefore, from the viewpoint of reducing the mechanical stress applied to the bimetal, it is desirable that the difference between the operating temperature and the return temperature is small.
[0005] しかし、動作温度と復帰温度の差が小さ!/、と、ノ ィメタルは反転状態になつてから 短期間で非反転状態に復帰することになる。このように、反転状態となったバイメタル が再び非反転状態になるまでの期間が短くなると、バイメタルの温度状態とモータの 温度状態との整合がとれなくなり、モータが十分に冷却されないうちに、再度電流が 供給されるという動作が繰り返され、次第に温度が上昇してモータの破損を招いてし まう場合がある。また、動作温度と復帰温度の差が小さいと、バイメタルの非反転状態 と反転状態の繰り返し周期が短くなり、当該バイメタルの寿命 (繰り返し寿命)が短くな つてしまう。  [0005] However, when the difference between the operating temperature and the return temperature is small! /, The metalloid returns to the non-inverted state in a short period of time after entering the inverted state. In this way, if the period until the inverted bimetal becomes non-inverted again becomes shorter, the bimetal temperature state and the motor temperature state cannot be matched, and again before the motor is sufficiently cooled. The operation of supplying current may be repeated, and the temperature may gradually rise, causing damage to the motor. In addition, if the difference between the operating temperature and the return temperature is small, the cycle between the non-inverted state and the inverted state of the bimetal is shortened, and the life (repeated life) of the bimetal is shortened.
[0006] そこで、本発明は、動作温度と復帰温度の差力 、さい場合においても、バイメタル の温度状態とモータの温度状態との整合を図ること、及び、バイメタルの寿命を維持 することが可能なモータプロテクタを提供することを目的とする。  [0006] Therefore, the present invention is capable of matching the bimetal temperature state with the motor temperature state and maintaining the bimetal lifetime even in the case of the differential force between the operating temperature and the return temperature. An object of the present invention is to provide a simple motor protector.
課題を解決するための手段  Means for solving the problem
[0007] 本発明のモータプロテクタは、モータ回転子に電流を供給する電流経路上に設け られ、自身の温度に応じて反転動作を行うバイメタルと、前記電流経路上に設けられ る固定接点と、前記バイメタルに設けられ、前記バイメタルが非反転状態のときに前 記固定接点に接触し、前記バイメタルが反転状態のときに前記固定接点力 離隔す る可動接点と、前記電流経路上に前記固定接点と並列に設けられ、前記バイメタル が反転状態のときに該バイメタルに接触し、前記バイメタルが非反転状態のときに該 バイメタル力 離隔する PTCサーミスタとを有する。  [0007] The motor protector of the present invention is provided on a current path for supplying a current to the motor rotor and performs a reversing operation according to its own temperature, a fixed contact provided on the current path, A movable contact provided on the bimetal, contacting the fixed contact when the bimetal is in a non-inverted state, and separating the fixed contact force when the bimetal is in an inverted state; and the fixed contact on the current path And a PTC thermistor that contacts the bimetal when the bimetal is in an inverted state and separates the bimetal force when the bimetal is in a non-inverted state.
[0008] この構成により、バイメタルが温度上昇によって反転し、可動接点が固定接点から 離隔した場合においても、電流経路上に固定接点と並列に設けられている PTCサー ミスタがノ ィメタルと接触することになる。このため、可動接点が固定接点から離隔し ても電流経路が切断されることなぐ PTCサーミスタの動作により、バイメタルに微小 な電流 (動作電流)が流れるとともに PTCサーミスタが発熱することになる。従って、 バイメタルの温度降下を緩やかにさせることができ、バイメタルの動作温度と復帰温 度の差が小さい場合においても、バイメタルの温度状態とモータの温度状態との整 合を図ること、換言すれば、反転状態となったバイメタルが再び非反転状態に復帰す るまでの期間に、モータを十分に冷却させることが可能となる。また、ノ ィメタルの動 作温度と復帰温度の差が小さい場合においても、反転状態となったバイメタルが再 び非反転状態に復帰するまでの期間を維持し、これによりバイメタルの繰り返し寿命 を維持することができる。 [0008] With this configuration, the bimetal is reversed by a temperature rise, and the movable contact is moved away from the fixed contact. Even when separated, the PTC thermistor provided in parallel with the fixed contact on the current path will come into contact with the metal. For this reason, even if the movable contact is separated from the fixed contact, the PTC thermistor does not break the current path, so that a small current (operating current) flows through the bimetal and the PTC thermistor generates heat. Therefore, the temperature drop of the bimetal can be moderated, and even when the difference between the operating temperature and the return temperature of the bimetal is small, the bimetallic temperature state and the motor temperature state should be matched, in other words Thus, the motor can be sufficiently cooled during the period until the bimetal in the reverse state returns to the non-invert state again. Even when the difference between the operating temperature and the return temperature of the nanometal is small, the period until the inverted bimetal returns to the non-inverted state is maintained, thereby maintaining the repeated life of the bimetal. be able to.
[0009] また、本発明のモータプロテクタは、前記 PTCサーミスタカ 前記バイメタルに接触 して 、る間、動作電流を流す。  [0009] In addition, the motor protector of the present invention causes an operating current to flow while in contact with the PTC thermistor and the bimetal.
[0010] この構成により、 PTCサーミスタは、バイメタルに接触している間、抵抗値が増大し て動作電流を流すとともに、当該動作電流により発熱し、バイメタルの温度降下を緩 やかにさせることができる。  [0010] With this configuration, while the PTC thermistor is in contact with the bimetal, the resistance value increases and an operating current flows, and the operating current generates heat to moderate the temperature drop of the bimetal. it can.
[0011] また、本発明のモータプロテクタは、前記バイメタル力 前記バイメタルの温度が第 1の温度以上に上昇したときに反転状態となり、更に、前記第 1の温度よりも低い第 2 の温度以下に下降したときに非反転状態に復帰し、前記 PTCサーミスタが、前記バ ィメタルの温度が前記第 2の温度よりも低い第 3の温度以上のときに動作状態となる。  [0011] Further, the motor protector according to the present invention is in a reverse state when the bimetal force increases the temperature of the bimetal above the first temperature, and further falls below the second temperature lower than the first temperature. When it falls, it returns to the non-inverted state, and the PTC thermistor enters an operating state when the temperature of the bimetal is equal to or higher than a third temperature lower than the second temperature.
[0012] この構成により、バイメタルの温度が動作温度である第 1の温度と復帰温度である 第 2の温度の間である場合、換言すれば、バイメタルが反転状態となって PTCサーミ スタに接触している間は、 PTCサーミスタは、常に抵抗値が増大した状態 (動作状態 )となり、過大な電流が流れることが防止される。  [0012] With this configuration, when the temperature of the bimetal is between the first temperature that is the operating temperature and the second temperature that is the return temperature, in other words, the bimetal is in an inverted state and contacts the PTC thermistor. During this time, the PTC thermistor is always in a state of increased resistance (operating state), preventing excessive current from flowing.
[0013] また、本発明のモータプロテクタは、前記バイメタルにおける前記 PTCサーミスタと 接触する面と反対側の面を押圧する押圧機構を有する。  [0013] Further, the motor protector of the present invention has a pressing mechanism that presses the surface of the bimetal opposite to the surface in contact with the PTC thermistor.
[0014] この構成により、押圧機構が押圧する力を調整することによってバイメタルのフォー ミングの度合いを調整し、更には、バイメタルの動作温度と復帰温度との差を調整す Ο [0014] With this configuration, the degree of bimetal forming is adjusted by adjusting the pressing force of the pressing mechanism, and further, the difference between the operating temperature and the return temperature of the bimetal is adjusted. Ο
ることが可能となる。  It becomes possible.
発1—明〇の効果  Departure 1—Effect of Myo
 Yes
[0015] 本発明のモータプロテクタは、 PTCサーミスタを有することによって、バイメタルの動 作温度と復帰温度の差が小さ 、場合にぉ 、ても、バイメタルの温度状態とモータの 温度状態との整合を図ることや、ノ ィメタルの寿命を維持することができる。  [0015] The motor protector according to the present invention includes the PTC thermistor, so that the difference between the operating temperature of the bimetal and the return temperature is small. Planning and maintaining the lifetime of the nanometal.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]ブレーカの分解斜視図である。 FIG. 1 is an exploded perspective view of a breaker.
[図 2]ブレーカの組み立て斜視図である。  FIG. 2 is an assembled perspective view of the breaker.
[図 3]モータプロテクタの分解斜視図である。  FIG. 3 is an exploded perspective view of the motor protector.
[図 4]モータプロテクタの断面図である。  FIG. 4 is a cross-sectional view of a motor protector.
[図 5]モータ駆動回路の構成を示す図である。  FIG. 5 is a diagram showing a configuration of a motor drive circuit.
[図 6]ノ ィメタルディスクの温度の時間経過を示す図である。  FIG. 6 is a diagram showing the time course of the temperature of the metal disk.
符号の説明  Explanation of symbols
モータプロテクタ  Motor protector
110 キャン  110 Can
120 ヘッダ  120 header
122- - 1、 122—2、 212—1、 212- -2、 212-:  122--1, 122—2, 212—1, 212- -2, 212-:
124- - 1、 124-2 ガラスシーノレ  124--1, 124-2 Glass paper
130- - 1、 130-2 ピン  130--1, 130-2 pin
200 ブレーカ  200 breakers
210 アッパープレート  210 Upper plate
214 ヒンジ  214 Hinge
220 バイメタルディスク  220 bimetal disc
230 可動接点  230 Movable contact
240 PTCサーミスタ  240 PTC thermistor
250 ベース  250 base
252- - 1、 252—2、 252—3、 252- -4 突起  252--1, 252-2, 252-2, 252--4 Projection
254 固定接点 256、 257 金属プレー卜 254 Fixed contact 256, 257 metal plate
258 穴  258 holes
260 抵抗  260 resistance
300 モータ  300 motor
302 メインコイル  302 Main coil
304 サブコィノレ  304 Subcoinole
400 運転コンデンサ  400 operating capacitor
500 電源  500 power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] モータプロテクタは、バイメタルの反転時に当該バイメタルと接触する PTCサーミス タを有することによって、バイメタルの動作温度と復帰温度の差が小さい場合におい ても、ノ ィメタルの温度状態とモータの温度状態との整合を図ることや、バイメタルの 寿命を維持することを実現した。 [0018] Since the motor protector has a PTC thermistor that comes into contact with the bimetal when the bimetal is reversed, even if the difference between the operating temperature and the return temperature of the bimetal is small, the temperature state of the nometal and the temperature state of the motor And maintaining the bimetal lifetime.
実施例 1  Example 1
[0019] 以下、本発明を実施するための最良の形態について、図面に基づいて説明する、 本発明の実施の形態に係るモータプロテクタのブレーカの分解斜視図を図 1に、組 み立て斜視図を図 2に示す。これら図 1及び図 2に示すブレーカ 200は、アッパープ レート 210、バイメタルディスク 220、可動接点 230、 PTC (Positive Temperature Coefficient)サーミスタ 240及びベース 250により構成される。  Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view of a breaker of a motor protector according to an embodiment of the present invention, and FIG. Figure 2 shows. The breaker 200 shown in FIGS. 1 and 2 includes an upper plate 210, a bimetal disk 220, a movable contact 230, a PTC (Positive Temperature Coefficient) thermistor 240, and a base 250.
[0020] アッパープレート 210は、絶縁性を有している。このアッパープレート 210の一端は 、二股に分かれており、一方には貫通孔 212— 1が形成され、他方には貫通孔 212— 2が形成されている。また、アッパープレート 210の他端には貫通孔 212-3及び貫通 孔 212-4が形成されている。更に、アッパープレート 210の中央部には、下方に突 出するヒンジ 214が形成されている。このヒンジ 214は、バイメタルディスク 220の上面 を押圧することが可能となって 、る。  [0020] The upper plate 210 has an insulating property. One end of the upper plate 210 is divided into two forks. A through hole 212-1 is formed on one side, and a through hole 212-2 is formed on the other side. A through hole 212-3 and a through hole 212-4 are formed at the other end of the upper plate 210. Further, a hinge 214 protruding downward is formed at the center of the upper plate 210. The hinge 214 can press the upper surface of the bimetal disc 220.
[0021] バイメタルディスク 220は、アッパープレート 210の下方に配置される。このバイメタ ルディスク 220は、熱膨張率の異なる 2種類の金属片を上下に貼り合わせたものであ り、導電性を有する。バイメタルディスク 220は、通常時では、フォーミングによって中 央部が上方に湾曲した状態 (非反転状態)となっている。一方、電流が流れたり、周 囲の雰囲気温度が上昇することによって、バイメタルディスク 220の温度が予め定め られた所定温度 (動作温度)以上になると、当該バイメタルディスク 220は、 2種類の 金属片の熱膨張率の違いによって、中央部が下方に湾曲した状態 (反転状態)とな る。その後、バイメタルディスク 220の温度が下降して、動作温度よりも低い予め定め られた温度 (復帰温度)以下になると、当該バイメタルディスク 220は、再び、中央部 が上方に湾曲した状態 (非反転状態)となる。 The bimetal disc 220 is disposed below the upper plate 210. This bimetallic disc 220 is formed by laminating two kinds of metal pieces having different thermal expansion coefficients, and has conductivity. The bimetal disc 220 is normally The central part is curved upward (non-inverted state). On the other hand, when the temperature of the bimetal disc 220 exceeds a predetermined temperature (operating temperature) due to current flow or an increase in ambient ambient temperature, the bimetal disc 220 has two kinds of metal pieces. Due to the difference in coefficient of thermal expansion, the center part is bent downward (inverted state). After that, when the temperature of the bimetal disk 220 decreases and becomes lower than a predetermined temperature (recovery temperature) lower than the operating temperature, the bimetal disk 220 is again curved in the center (non-inverted state). ).
[0022] なお、バイメタルディスク 220が非反転状態のとき、上述したアッパープレート 210 のヒンジ 214が、バイメタルディスク 220の上面を押圧する。従って、ヒンジ 214の位 置が調整されることによって、バイメタルディスク 220のフォーミングの度合 、が調整さ れ、更には、動作温度と復帰温度との差が調整されることになる。  Note that when the bimetal disc 220 is in a non-inverted state, the hinge 214 of the upper plate 210 described above presses the upper surface of the bimetal disc 220. Therefore, by adjusting the position of the hinge 214, the degree of forming of the bimetal disc 220 is adjusted, and further, the difference between the operating temperature and the return temperature is adjusted.
[0023] また、バイメタルディスク 220の一端の下面には、バイメタルディスク 220の反転動 作に応じて動作する可動接点 230が構成されている。更に、バイメタルディスク 220 の他端には、貫通孔 222— 1及び貫通孔 222— 2が形成されて 、る。  In addition, a movable contact 230 that operates in accordance with the reversal operation of the bimetal disk 220 is formed on the lower surface of one end of the bimetal disk 220. Further, the other end of the bimetal disc 220 is formed with a through hole 222-1 and a through hole 222-2.
[0024] PTCサーミスタ 240は、円盤形状を有し、バイメタルディスク 220の中央部の下方に 配置される。この PTCサーミスタ 240は、バイメタルディスク 220の温度が復帰温度よ りも低!ヽ所定の温度以上の場合に、動作状態となって抵抗値が急増する正特性を有 する。 PTCサーミスタ 240の上面は、バイメタルディスク 220が反転状態になったとき に、当該バイメタルディスク 220の下面と接触し、当該バイメタルディスク 220との電気 的接続が図られる。  [0024] The PTC thermistor 240 has a disk shape and is disposed below the central portion of the bimetal disc 220. This PTC thermistor 240 has a positive characteristic that when the temperature of the bimetal disk 220 is lower than the return temperature, it is in an operating state and the resistance value rapidly increases. The upper surface of the PTC thermistor 240 comes into contact with the lower surface of the bimetal disk 220 when the bimetal disk 220 is inverted, and electrical connection with the bimetal disk 220 is achieved.
[0025] ベース 250は、上述したアッパープレート 210、バイメタルディスク 220及び PTCサ 一ミスタ 240を収めるものである。このベース 250のケース体 251の上面の一端には 、突起 252— 1及び 252— 2が形成されている。突起 252— 1は、アッパープレート 210 の貫通孔 212— 1に嵌合し、突起 252— 2は、アッパープレート 210の貫通孔 212— 2 に嵌合する。一方、ケース体 251の上面の他端には、突起 252— 3及び 252— 4が形 成されている。突起 252— 3は、アッパープレート 210の貫通孔 212— 3及びバイメタル ディスク 220の貫通孔 222— 1に嵌合し、突起 252— 4は、アッパープレート 210の貫 通孔 212— 3及びバイメタルディスク 220の貫通孔 222— 2に嵌合する。 [0026] また、ケース体 251の上面の中央部力も若干、突起 252— 1及び 252— 2寄りの位置 には、固定接点 254が構成されている。この固定接点 254は、ノ ィメタルディスク 220 が非反転状態のときに、当該バイメタルディスク 220に構成された可動接点 230と接 触することによって、バイメタルディスク 220との電気的接続が図られる。 [0025] The base 250 accommodates the upper plate 210, the bimetal disc 220, and the PTC thermistor 240 described above. Projections 252-1 and 252-2 are formed on one end of the upper surface of the case body 251 of the base 250. The protrusion 252-1 is fitted into the through hole 212-1 of the upper plate 210, and the protrusion 252-2 is fitted to the through hole 212-2 of the upper plate 210. On the other hand, projections 252-3 and 252-4 are formed on the other end of the upper surface of the case body 251. The protrusion 252-3 is fitted in the through hole 212-3 of the upper plate 210 and the through hole 222-1 of the bimetal disk 220, and the protrusion 252-4 is the through hole 212-3 of the upper plate 210 and the bimetal disk 220. It fits into the through hole 222-2. [0026] Further, a fixed contact 254 is formed at a position near the protrusions 252-1 and 252-2 slightly in the central force on the upper surface of the case body 251. The fixed contact 254 is electrically connected to the bimetal disk 220 by contacting the movable contact 230 formed on the bimetal disk 220 when the nonmetal disk 220 is in a non-inverted state.
[0027] また、ケース体 251内部には、金属プレート 256が構成されている。この金属プレー ト 256の一部は、突起 252— 3及び 252— 4の周囲に露出している。金属プレート 256 は、突起 252— 3がバイメタルディスク 220の貫通孔 222— 1に嵌合し、突起 252— 4が バイメタルディスク 220の貫通孔 222— 2に嵌合することによって、バイメタルディスク 2 20との電気的な接続が図られている。また、ケース体 251の上面の中央部には、穴 2 58が形成されている。 PTCサーミスタ 240は、この穴 258に嵌合する。また、ケース 体 251の内部には、金属プレート 257が構成されている。この金属プレート 257は、 固定接点 254及び穴 258に嵌合した PTCサーミスタ 240と接触し、これらと電気的接 続が図られている。  In addition, a metal plate 256 is formed inside the case body 251. A part of the metal plate 256 is exposed around the protrusions 252-3 and 252-4. The metal plate 256 has a protrusion 252-3 fitted in the through-hole 222-1 of the bimetal disc 220 and a protrusion 252-4 fitted in the through-hole 222-2 of the bimetal disc 220. The electrical connection is planned. Further, a hole 258 is formed in the central portion of the upper surface of the case body 251. The PTC thermistor 240 fits into this hole 258. In addition, a metal plate 257 is formed inside the case body 251. The metal plate 257 is in contact with the PTC thermistor 240 fitted in the fixed contact 254 and the hole 258, and is electrically connected thereto.
[0028] モータプロテクタの分解斜視図を図 3に、断面図を図 4に示す。これら図 3及び図 4 に示すモータプロテクタ 100は、蓋体であるキャン 110、ブレーカ 200、ヘッダ 120、 ピン 130— 1及び 130— 2により構成される。  FIG. 3 is an exploded perspective view of the motor protector, and FIG. 4 is a cross-sectional view of the motor protector. The motor protector 100 shown in FIGS. 3 and 4 includes a can 110, a breaker 200, a header 120, and pins 130-1 and 130-2, which are lids.
[0029] ブレーカ 200は、キャン 110とヘッダ 120とによって構成される空間内に収容される 。ヘッダ 120の両端近傍には、貫通孔 122— 1及び 122— 2が形成される。更に、貫通 孔 122— 1の内周面には筒状のガラスシール 122— 1が構成され、貫通孔 122— 2の内 周面には筒状のガラスシール 122— 2が構成される。ピン 130— 1及び 130— 2は、導 電性を有している。ピン 130-1は、ガラスシール 122— 1の内孔に揷入される。そして 、ピン 130— 1は、上端がブレーカ 200の金属プレート 257と接触し、当該金属プレー ト 257と電気的接続が図られている。また、ピン 130— 1の下端は、図示しない電源と 接続されている。一方、ピン 130— 2は、ガラスシール 122— 2の内孔に揷入される。そ して、ピン 130— 2は、上端がブレーカ 200の金属プレート 256と接触し、当該金属プ レート 256と電気的接続が図られている。また、ピン 130— 2の下端は、図示しないモ ータと接続されている。  [0029] Breaker 200 is housed in a space formed by can 110 and header 120. In the vicinity of both ends of the header 120, through holes 122-1 and 122-2 are formed. Further, a cylindrical glass seal 122-1 is formed on the inner peripheral surface of the through hole 122-1, and a cylindrical glass seal 122-2 is formed on the inner peripheral surface of the through hole 122-2. Pins 130-1 and 130-2 are conductive. The pin 130-1 is inserted into the inner hole of the glass seal 122-1. The pin 130-1 is in contact with the metal plate 257 of the breaker 200 at the upper end, and is electrically connected to the metal plate 257. The lower end of the pin 130-1 is connected to a power source (not shown). On the other hand, the pin 130-2 is inserted into the inner hole of the glass seal 122-2. The pin 130-2 has an upper end in contact with the metal plate 256 of the breaker 200, and is electrically connected to the metal plate 256. The lower end of the pin 130-2 is connected to a motor (not shown).
[0030] 図 5は、モータ駆動回路を示す図である。図 5に示すモータ駆動回路は、モータプ ロテクタ 100、モータ 300、コンデンサ 400及び電源 500により構成される。図 5では、 モータプロテクタ 100のうち、スイッチング動作に関わるバイメタルディスク 220、可動 接点 230、 PTCサーミスタ 240及び固定接点 254と、抵抗 260のみが示されている。 PTCサーミスタ 240と固定接点 254とは、電流経路上で並列に設けられている。 モータ 300は、モータ回転子内にメインコイル 302及びサブコイル 304を有する。メ インコイル 302には、モータプロテクタ 100を介して電源 500から電流が供給される。 サブコイル 304は、モータ 300の駆動開始時にモータ回転子の回転力を得るための ものである。このサブコイル 304には、モータ 300の駆動開始時に、運転コンデンサ 4 00に蓄えられた電荷が供給される。 FIG. 5 is a diagram showing a motor drive circuit. The motor drive circuit shown in FIG. It consists of protector 100, motor 300, capacitor 400 and power supply 500. In FIG. 5, only the bimetal disc 220, the movable contact 230, the PTC thermistor 240, the fixed contact 254, and the resistor 260 related to the switching operation are shown in the motor protector 100. The PTC thermistor 240 and the fixed contact 254 are provided in parallel on the current path. The motor 300 has a main coil 302 and a subcoil 304 in the motor rotor. A current is supplied to the main coil 302 from the power source 500 via the motor protector 100. The subcoil 304 is for obtaining the rotational force of the motor rotor when the motor 300 starts to be driven. The sub-coil 304 is supplied with the electric charge stored in the operating capacitor 400 when the motor 300 starts to be driven.
[0031] 次に、図 4のモータプロテクタ 100の断面図と図 5に示すモータ駆動回路とを参照し つつ、モータプロテクタ 100の動作を説明する。  Next, the operation of the motor protector 100 will be described with reference to the cross-sectional view of the motor protector 100 in FIG. 4 and the motor drive circuit shown in FIG.
[0032] 図 4 (a)に示すように、モータプロテクタ 100内のバイメタルディスク 220が非反転状 態のときは、当該バイメタルディスク 220は、中央部が上方に湾曲した状態となってい る。そして、ノ ィメタルディスク 220の一端の下面に構成されている可動接点 230は、 固定接点 254に接触している。このため、ピン 130— 1と 130— 2とは、金属プレート 25 7、固定接点 254、可動接点 230、バイメタルディスク 220及び金属プレート 256を介 して電気的接続が図られる。従って、図 5における電源 500からの電流は、モータプ ロテクタ 100を介してモータ 300のメインコイル 302に供給される。  As shown in FIG. 4 (a), when the bimetal disc 220 in the motor protector 100 is in the non-inverted state, the bimetal disc 220 is in a state where the central portion is curved upward. The movable contact 230 formed on the lower surface of one end of the metal disk 220 is in contact with the fixed contact 254. For this reason, the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the fixed contact 254, the movable contact 230, the bimetal disk 220, and the metal plate 256. Therefore, the current from the power source 500 in FIG. 5 is supplied to the main coil 302 of the motor 300 via the motor protector 100.
[0033] 一方、モータ 300内のモータ回転子が拘束された場合や、モータ回転子に過負荷 が加えられて電流量が増加した場合には、バイメタルディスク 220を流れる電流量の 増加や、モータ回転子の発熱によるバイメタルディスク 220の周辺の雰囲気温度の 上昇によって、バイメタルディスク 220の温度が上昇する。そして、バイメタルディスク 220の温度が動作温度以上になった場合には、図 4 (b)に示すように、バイメタルデ イスク 220は、中央部が下方に湾曲した反転状態となる。そして、バイメタルディスク 2 20の一端の下面に構成されている可動接点 230は、固定接点 254から離隔するとと もに、バイメタルディスク 220の中央部の下面力 PTCサーミスタ 240の上面に接触す る。このため、ピン 130— 1と 130— 2とは、金属プレート 257、 PTCサーミスタ 240、 ノ ィメタルディスク 220及び金属プレート 256を介して電気的接続が図られる。従って、 図 5において、電源 500からの電流は、モータ 300のメインコイル 302に供給される。 [0033] On the other hand, when the motor rotor in the motor 300 is restrained or when the motor rotor is overloaded and the amount of current increases, the amount of current flowing through the bimetal disk 220 increases, The temperature of the bimetal disk 220 rises due to the increase in the ambient temperature around the bimetal disk 220 due to the heat generated by the rotor. When the temperature of the bimetal disk 220 becomes equal to or higher than the operating temperature, the bimetal disk 220 is in an inverted state with the central portion curved downward as shown in FIG. 4 (b). The movable contact 230 formed on the lower surface of one end of the bimetal disc 220 is separated from the fixed contact 254 and contacts the upper surface of the lower force PTC thermistor 240 at the center of the bimetal disc 220. For this reason, the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the PTC thermistor 240, the metal metal disk 220, and the metal plate 256. Therefore, In FIG. 5, the current from the power source 500 is supplied to the main coil 302 of the motor 300.
[0034] 但し、上述したように、 PTCサーミスタ 240は、バイメタルディスク 220の温度が復帰 温度よりも低い所定の温度以上の場合に、動作状態となって抵抗値が急増する。従 つて、ノ ィメタルディスク 220の温度が動作温度以上になり反転状態になったときに は、既に PTCサーミスタ 240の抵抗値は大きな値となっている。このため、バイメタル ディスク 220及び PTCサーミスタ 240を流れる電流は、微小な電流(動作電流)となる [0034] However, as described above, when the temperature of the bimetallic disk 220 is equal to or higher than a predetermined temperature lower than the return temperature, the PTC thermistor 240 enters an operating state and the resistance value increases rapidly. Therefore, when the temperature of the metal disk 220 exceeds the operating temperature and is reversed, the resistance value of the PTC thermistor 240 is already large. For this reason, the current flowing through the bimetal disk 220 and the PTC thermistor 240 is a very small current (operating current).
[0035] バイメタルディスク 220が反転状態になった後も、当該バイメタルディスク 220に微 小な電流が流れること、及び、 PTCサーミスタ 240にも微小な電流が流れて発熱する ことによって、バイメタルディスク 220の温度降下の度合いは、図 6に示すように、 PT Cサーミスタ 240が存在せず、バイメタルディスク 220が反転状態となると電流経路が 遮断される従来の場合よりも緩やかになる。従って、 PTCサーミスタ 240が存在する ことによって、バイメタルディスク 220の温度が動作温度に達して反転状態になって から、復帰温度に降下して再び非反転状態になるまでの期間 (反転期間)が長期化 すること〖こなる。 [0035] Even after the bimetal disk 220 is reversed, a small current flows through the bimetal disk 220 and a small current flows through the PTC thermistor 240 to generate heat. As shown in FIG. 6, the degree of temperature drop is slower than in the conventional case where the PTC thermistor 240 does not exist and the current path is interrupted when the bimetal disk 220 is in an inverted state. Therefore, due to the presence of the PTC thermistor 240, the period from when the temperature of the bimetal disk 220 reaches the operating temperature and inverts to the return temperature to become non-inverted again (inversion period) is long. It will be a bit different.
[0036] バイメタルディスク 220の温度が復帰温度に達した後は、再び、図 4 (a)に示すよう に、バイメタルディスク 220が非反転状態となり、可動接点 230が固定接点 254と接 虫する。このため、ピン 130— 1と 130— 2とは、金属プレート 257、固定接点、 254、可 動接点 230、バイメタルディスク 220及び金属プレート 256を介して電気的接続が図 られる。従って、図 5における電源 500からの電流は、モータプロテクタ 100を介して モータ 300のメインコイル 302に供給される。  [0036] After the temperature of the bimetal disk 220 reaches the return temperature, the bimetal disk 220 is brought into the non-inverted state again, and the movable contact 230 is in contact with the fixed contact 254, as shown in FIG. For this reason, the pins 130-1 and 130-2 are electrically connected via the metal plate 257, the fixed contact 254, the movable contact 230, the bimetal disk 220, and the metal plate 256. Accordingly, the current from the power source 500 in FIG. 5 is supplied to the main coil 302 of the motor 300 via the motor protector 100.
[0037] このように、モータプロテクタ 100は、 PTCサーミスタ 240の存在によってバイメタル ディスク 220の反転期間が長期化する。このことは、バイメタルディスク 220の動作温 度と復帰温度の差を小さくしても、 PTCサーミスタ 240が存在しない場合と同様の反 転期間を維持することが可能であることを意味し、いわゆる ST特性や UT特性は影 響されなくて済む。従って、バイメタルディスク 220の温度状態とモータ 300の温度状 態との整合を図ること、換言すれば、反転期間においてモータ 300を十分に冷却さ せることが可能となる。また、バイメタルディスク 220の動作温度と復帰温度の差を小 さくしても、反転期間が維持されることによって、バイメタルディスク 220の繰り返し寿 命を維持することが可能となる。 [0037] Thus, in the motor protector 100, the inversion period of the bimetal disk 220 is prolonged due to the presence of the PTC thermistor 240. This means that even if the difference between the operating temperature and the return temperature of the bimetal disk 220 is reduced, the same inversion period as when the PTC thermistor 240 does not exist can be maintained. Characteristics and UT characteristics need not be affected. Therefore, it is possible to match the temperature state of the bimetal disc 220 and the temperature state of the motor 300, in other words, to sufficiently cool the motor 300 during the inversion period. Also, the difference between the operating temperature and return temperature of the bimetal disc 220 is reduced. Even if this is done, the repeated life of the bimetal disc 220 can be maintained by maintaining the inversion period.
産業上の利用可能性 Industrial applicability
以上のように、本発明に係るモータプロテクタは、バイメタルの動作温度と復帰温度 の差が小さい場合においても、バイメタルの温度状態とモータの温度状態との整合を 図ることや、バイメタルの寿命を維持することができ、モータプロテクタとして有用であ る。  As described above, the motor protector according to the present invention can match the bimetal temperature state to the motor temperature state and maintain the bimetal life even when the difference between the bimetal operating temperature and the return temperature is small. It is useful as a motor protector.

Claims

請求の範囲 The scope of the claims
[1] モータ回転子に電流を供給する電流経路上に設けられ、自身の温度に応じて反転 動作を行うバイメタルと、  [1] A bimetal provided on a current path for supplying a current to the motor rotor and performing a reverse operation according to its own temperature;
前記電流経路上に設けられる固定接点と、  A fixed contact provided on the current path;
前記バイメタルに設けられ、前記バイメタルが非反転状態のときに前記固定接点に 接触し、前記バイメタルが反転状態のときに前記固定接点から離隔する可動接点と、 前記電流経路上に前記固定接点と並列に設けられ、前記バイメタルが反転状態の ときに該バイメタルに接触し、前記バイメタルが非反転状態のときに該バイメタルから 離隔する PTCサーミスタとを有することを特徴とするモータプロテクタ。  A movable contact provided on the bimetal, contacting the fixed contact when the bimetal is in a non-inverted state, and being separated from the fixed contact when the bimetal is in an inverted state; and parallel to the fixed contact on the current path And a PTC thermistor that contacts the bimetal when the bimetal is in an inverted state and separates from the bimetal when the bimetal is in a non-inverted state.
[2] 前記 PTCサーミスタは、前記バイメタルに接触して 、る間、動作電流を流すことを特 徴とする請求項 1に記載のモータプロテクタ。 2. The motor protector according to claim 1, wherein the PTC thermistor allows an operating current to flow while in contact with the bimetal.
[3] 前記バイメタルは、前記バイメタルの温度が第 1の温度以上に上昇したときに反転状 態となり、更に、前記第 1の温度よりも低い第 2の温度以下に下降したときに非反転状 態に復帰し、 [3] The bimetal is in an inversion state when the temperature of the bimetal rises above the first temperature, and further in a non-inversion state when the bimetal temperature falls below a second temperature lower than the first temperature. Returned to the state,
前記 PTCサーミスタは、前記バイメタルの温度が前記第 2の温度よりも低 、第 3の 温度以上のときに動作状態となることを特徴とする請求項 2に記載のモータプロテク タ。  3. The motor protector according to claim 2, wherein the PTC thermistor is in an operating state when a temperature of the bimetal is lower than the second temperature and equal to or higher than a third temperature.
[4] 前記バイメタルにおける前記 PTCサーミスタと接触する面と反対側の面を押圧する 押圧機構を有することを特徴とする請求項 1乃至 3のいずれかに記載のモータプロテ クタ。  4. The motor protector according to any one of claims 1 to 3, further comprising a pressing mechanism that presses a surface of the bimetal opposite to a surface that contacts the PTC thermistor.
PCT/JP2005/000137 2005-01-07 2005-01-07 Motor protector with ptc WO2006072995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000137 WO2006072995A1 (en) 2005-01-07 2005-01-07 Motor protector with ptc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/000137 WO2006072995A1 (en) 2005-01-07 2005-01-07 Motor protector with ptc

Publications (1)

Publication Number Publication Date
WO2006072995A1 true WO2006072995A1 (en) 2006-07-13

Family

ID=36647483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000137 WO2006072995A1 (en) 2005-01-07 2005-01-07 Motor protector with ptc

Country Status (1)

Country Link
WO (1) WO2006072995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158157A (en) * 2014-06-13 2014-11-19 江苏中科国腾科技有限公司 Mixed protective switch and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159846U (en) * 1983-04-11 1984-10-26 株式会社村田製作所 Self-holding thermal protector
JPS6261226A (en) * 1985-09-09 1987-03-17 松下冷機株式会社 Overload protector for compressor
JPH01105430A (en) * 1987-08-13 1989-04-21 Murata Mfg Co Ltd Self-holding type protective switch
JP6077425B2 (en) * 2013-09-25 2017-02-08 Kddi株式会社 Video management apparatus and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159846U (en) * 1983-04-11 1984-10-26 株式会社村田製作所 Self-holding thermal protector
JPS6261226A (en) * 1985-09-09 1987-03-17 松下冷機株式会社 Overload protector for compressor
JPH01105430A (en) * 1987-08-13 1989-04-21 Murata Mfg Co Ltd Self-holding type protective switch
JP6077425B2 (en) * 2013-09-25 2017-02-08 Kddi株式会社 Video management apparatus and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158157A (en) * 2014-06-13 2014-11-19 江苏中科国腾科技有限公司 Mixed protective switch and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3828476B2 (en) Non-energized sealed motor protector
JP5555024B2 (en) breaker
JP5281689B2 (en) Thermal protector
WO2003096367A1 (en) Thermal protector
JP5941301B2 (en) Breaker, safety circuit including the same, and secondary battery
JP2006331693A (en) Thermal protector
JP6626004B2 (en) Method of manufacturing breaker and method of manufacturing battery pack provided with this breaker
WO2006072995A1 (en) Motor protector with ptc
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP6654459B2 (en) Breaker, method of manufacturing this breaker, and method of manufacturing battery pack including breaker
JP2013093143A (en) Circuit breaker
JP2013020864A (en) Thermal protector
JP2002289077A (en) Thermal protector
JP2017037757A (en) Breaker and safety circuit and secondary battery circuit including the same
JP3849387B2 (en) Thermal protector
JP3632754B2 (en) Battery breaker
WO2015177925A1 (en) Heat-reactive switch
JP2001052580A (en) Thermally-actuated switch
JP7406279B2 (en) motor protector
JP2019008920A (en) Current cutoff device and secondary battery pack including the same
JP6644237B2 (en) Thermo-responsive switch
JP6979127B2 (en) Breaker, safety circuit and rechargeable battery pack
JP2006196443A (en) Thermal protector and protector
JP6831186B2 (en) A breaker, a safety circuit equipped with the breaker, and a secondary battery circuit.
JP2006269180A (en) Protector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05709227

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5709227

Country of ref document: EP