WO2006069275A1 - Modulateurs des recepteurs opioides delta tricycliques - Google Patents

Modulateurs des recepteurs opioides delta tricycliques Download PDF

Info

Publication number
WO2006069275A1
WO2006069275A1 PCT/US2005/046690 US2005046690W WO2006069275A1 WO 2006069275 A1 WO2006069275 A1 WO 2006069275A1 US 2005046690 W US2005046690 W US 2005046690W WO 2006069275 A1 WO2006069275 A1 WO 2006069275A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkanyl
hydroxy
group
piperidin
phenyl
Prior art date
Application number
PCT/US2005/046690
Other languages
English (en)
Inventor
John R Carson
Scott L. Dax
Bart Decorte
Li Liu
Mark Mcdonnell
James J. Mcnally
Original Assignee
Janssen Pharmaceutica N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Pharmaceutica N.V. filed Critical Janssen Pharmaceutica N.V.
Priority to CA002592462A priority Critical patent/CA2592462A1/fr
Priority to MX2007007625A priority patent/MX2007007625A/es
Priority to JP2007548492A priority patent/JP2008525481A/ja
Priority to EP05855275A priority patent/EP1836196A1/fr
Priority to BRPI0519198-0A priority patent/BRPI0519198A2/pt
Priority to AU2005319059A priority patent/AU2005319059A1/en
Publication of WO2006069275A1 publication Critical patent/WO2006069275A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • opioid has been used to designate pharmacologically active alkaloids derived from opium, e.g., morphine, codeine, and many semi-synthetic congeners of morphine.
  • opioid was introduced to refer generically to all drugs with morphine-like actions. Included among opioids are various peptides that exhibit morphine-like activity, such as endorphins, enkephalins and dynorphins.
  • opioid has been used to refer to antagonists of morphine-like drugs as well as to characterize receptors or binding sites that combine with such agents.
  • Opioids are generally employed as analgesics, but they may have many other pharmacological effects as well. Morphine and related opioids produce certain of their major effects on the central nervous and digestive systems. The effects are diverse, including analgesia, drowsiness, mood changes, respiratory depression, dizziness, mental clouding, dysphoria, pruritus, increased pressure in the biliary tract, decreased gastrointestinal motility, nausea, vomiting, and alterations of the endocrine and autonomic nervous systems.
  • morphine When therapeutic doses of morphine are given to patients with pain, they report that the pain is less intense, less discomforting, or entirely gone. In addition to experiencing relief of distress, some patients experience euphoria. However, when morphine in a selected pain-relieving dose is given to a pain-free individual, the experience is not always pleasant; nausea is common, and vomiting may also occur. Drowsiness, inability to concentrate, difficulty in mentation, apathy, lessened physical activity, reduced visual acuity, and lethargy may ensue.
  • opioid receptors Two distinct classes of opioid molecules can bind opioid receptors: the opioid peptides (e.g., the enkephalins, dynorphins, and endorphins) and the alkaloid opiates (e.g., morphine, etorphine, diprenorphine and naloxone). Subsequent to the initial demonstration of opiate binding sites (Pert, C. B. and Snyder, S. H., Science (1973) 179:1011-1014), the differential pharmacological and physiological effects of both opioid peptide analogues and alkaloid opiates served to delineate multiple opioid receptors.
  • the opioid peptides e.g., the enkephalins, dynorphins, and endorphins
  • alkaloid opiates e.g., morphine, etorphine, diprenorphine and naloxone.
  • opioid receptors cause inhibition of adenylate cyclase, and inhibition of neurotransmitter release via both potassium channel activation and inhibition of Ca 2+ channels (Evans, C. J., In: Biological Basis of Substance Abuse, S. G. Korenman & J. D. Barchas, eds., Oxford University Press (in press); North, A. R., et al., Proc Natl Acad Sci USA (1990) 87:7025-29; Gross, R. A., et al., Proc Natl Acad Sci USA (1990) 87:7025-29; Sharma, S.
  • Delta receptors have a more discrete distribution within the mammalian CNS than either mu or kappa receptors, with high concentrations in the amygdaloid complex, striatum, substantia nigra, olfactory bulb, olfactory tubercles, hippocampal formation, and the cerebral cortex (Mansour, A., et al., Trends in Neurosci (1988) 11 :308-14).
  • the rat cerebellum is remarkably devoid of opioid receptors including delta opioid receptors.
  • British Patent GB 1128734 (1966) discloses derivatives of 6,11-dihydrodibenzo[b,e]oxepine that are anticholinergic, anti-convulsive, muscle-relaxing, sedating, diuretic, and/or vasoactive agents. These, agents, however, differ significantly from the compounds of the present invention both structurally and pharmacologically.
  • delta opioid receptor modulators as analgesics.
  • delta opioid receptor selective agonists as analgesics having reduced side effects.
  • delta opioid receptor antagonists as immunosuppressants, antiinflammatory agents, agents for the treatment of neurological and psychiatric conditions, agents for the treatment of urological and reproductive conditions, medicaments for drug and alcohol abuse, agents for treating gastritis and diarrhea, cardiovascular agents and agents for the treatment of respiratory diseases, having reduced side effects.
  • the present invention is directed to compounds of Formula (I) and to compositions comprising one or more compounds of Formula (I):
  • G is -C(Z)N(Ri )F ⁇ 2 > C 6- ioaryl, or a heterocycle selected from the group consisting of imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, imidazolinyl, tetrahydropyrimidinyl, thienyl, pyrazolyl, pyrimidinyl, triazinyl, furyl, indazolyl, indolyl, indolinyl, isothiazolyl, isoxazolyl, oxazolyl, isoxadiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, and pyridinyl; wherein aryl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of Ci -8 alkanyl, C 2 - 8 alkeny
  • Ri is a substituent selected from the group consisting of hydrogen, Ci -8 alkanyl, C2 -8 alkenyl, and C 2 - 8 alkynyl;
  • R 2 is a substituent selected from the group consisting of hydrogen; Ci -8 alkanyl; C 2-8 alkenyl; C 2-8 alkynyl; C 6- ioaryl; and Ci -8 cycloalkanyl; wherein Ci -8 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, amino, Ci- ⁇ alkanylamino, di(Ci -6 alkanyl)amino, Ci -6 alkanyloxy, thioCi -6 alkanyloxy, hydroxy, fluoro, chloro, cyano, aminocarbonyl, Ci -8 alkanylaminocarbonyl, di(C 1-8 alkanyl)aminocarbonyl, Ci -6 alkanyloxycarbonyl, and aryloxy; and wherein any aryl-containing substituents and d-scycloalkanyl substituents of R2 are optionally substituted with one to three substituents independently selected
  • R 3 is a substituent selected from the group consisting of hydrogen, Ci -8 alkanyl, halo 1-3 (Ci-a)alkanyl, C ⁇ -salkenyl, C- 2 -salkynyl, C 3-8 cycloalkanyl, cycloalkanyl(Ci- 8 )alkanyl, Ci -8 alkanyloxy(Ci -8 )alkanyl, Ci- 8 alkanylthio(Ci -8 )alkanyl, hydroxyCi_ 8 alkanyl, C 1-8 alkanyloxycarbonyl, halo 1-3 (Ci_ 8 )alkanylcarbonyl, formyl, thioformyl, carbamimidoyl, phenylimino(C-i-a)alkanyl, phenyl(Ci -8 )alkanyl, phenyl(Ci_ 8 )alkenyl, phenyl(Ci.
  • heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, thienyl, indazolyl, indolyl, indolinyl, isoindolinyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, quinolinyl, isoquinolinyl, tetrazolyl, thiazolyl; wherein phenyl, naphthyl and heteroaryl are optionally substituted with one to three substituents independently selected from the group consisting of Ci -6 alkanyl,
  • R 4 is one to three substituents independently selected from the group consisting of hydrogen; Ci- 6 alkanyl; C 2 - 6 alkenyl; C 2-6 alkynyl; aryl(C 2 - 6 )alkynyl; d- ⁇ alkanyloxy; amino; Ci- ⁇ alkanylamino; di(Ci -6 alkanyl)amino; C ⁇ -ioarylamino wherein C ⁇ -ioaryl is optionally substituted with one to three substitutents independently selected from the group consisting of d- ⁇ alkanyl, C ⁇ alkoxy, halogen, and hydroxyl; formylamino; pyridinylamino; Ci_ 6 alkanylcarbonyl; Ci -6 alkanylcarbonyloxy;Ci -6 alkanyloxycarbonyl; aminocarbonyl; Ci_ 6 alkanylaminocarbonyl; di(Ci- 6 alkanyl)aminocarbonyl; Ci- 6 al
  • Re is one to four substituents independently selected from the group consisting of hydrogen, C-i- ⁇ alkanyl, C 2-6 alkenyl, C- ⁇ -6 alkanyloxy, amino, C-i- ⁇ alkanylamino, di(Ci- 6 alkanyl)amino, Ci- ⁇ alkanylcarbonyl, C 1-6 alkanylcarbonyloxy, C 1-6 alkanyloxycarbonyl, Ci-ealkanylaminocarbonyl, C 1-6 alkanylcarbonylamino, d- ⁇ alkanylthio, Ci- 6 alkanylsulfonyl, halogen, hydroxy, cyano, fluoro(Ci -6 )alkanyl and fluoro(C-
  • Y is O or S
  • Z is O, S, NH, N(C 1-6 alkanyl), N(OH), N(OCi -6 alkanyl), or N(phenyl); and enantiomers, diastereomers, tautomers, solvates, or pharmaceutically acceptable salts thereof.
  • the present invention is directed to veterinary and pharmaceutical compositions containing compounds of Formula (I) wherein the compositions are used to treat mild to severe pain in warm-blooded animals.
  • Ci-/ refers to a radical containing from a to b carbon atoms inclusive.
  • Ci -3 denotes a radical containing 1 , 2 or 3 carbon atoms
  • Alkyl refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne.
  • Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-1-yl, propan-2-yl , cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-2-yl, buta-1 ,3
  • alkanyl alkenyl
  • alkynyl alkynyl
  • Alkanyl refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
  • Typical alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, etc.; butyanyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, etc.; and the like.
  • the alkanyl groups are (Ci -8 ) alkanyl, with (C 1 - 3 ) being particularly preferred.
  • Alkenyl refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
  • the radical may be in either the cis or trans conformation about the double bond(s).
  • Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl, prop-2-en-2-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl ⁇ prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1 ,3-dien-1-yl, buta-1 ,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1 ,3-dien-1-yl, etc.; and the like.
  • Alkynyl refers to an unsaturated branched, straight-chain or cyclic monovalent hydrocarbon radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
  • Typical alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc.; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc.; and the like.
  • Heteroalkyl and Heteroalkanyl refer to alkyl or alkanyl radicals, respectively, in which one or more carbon atoms (and any necessary associated hydrogen atoms) are independently replaced with the same or different heteroatoms (including any necessary hydrogen or other atoms).
  • Typical heteroatoms to replace the carbon atom(s) include, but are not limited to, N, P, O, S, Si, etc.
  • Preferred heteroatoms are O, N and S.
  • Parent aromatic ring system refers to an unsaturated cyclic or polycyclic ring system having a conjugated ⁇ electron system. Specifically included within the definition of "parent aromatic ring system” are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, indane, indene, phenalene, etc.
  • Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4- diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, mbicene, triphenylene, trinaphthalene, and the like
  • Aryl refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • Typical aryl groups include, but are not limited to, radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene
  • Arylalkyl refers to an acyclic alkyl group in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal carbon atom, is replaced with an aryl radical.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-i-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.
  • arylalkanyl arylakenyl and/or arylalkynyl
  • the arylalkyl group is (C ⁇ -a ⁇ ) arylalkyl, e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (Ci.
  • the arylalkyl group is (C 6 -i 3 ), e.g., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1 - 3 ) and the aryl moiety is (C5-1 0 ).
  • Even more preferred arylalkyl groups are phenylalkanyls.
  • alkanyloxy refers to a saturated branched, straight-chain or cyclic monovalent hydrocarbon alcohol radical derived by the removal of the hydrogen atom from the hydroxide oxygen of the alcohol.
  • Typical alkanyloxy groups include, but are not limited to, methanyloxy; ethanyloxy; propanyloxy groups such as propan-1-yloxy (CH 3 CH 2 CH 2 O-), propan-2-yloxy ((CH 3 ) 2 CHO-), cyclopropan-1-yloxy, etc.; butanyloxy groups such as butan-1-yloxy, butan-2-yloxy, 2-methyl-propan-1 -yloxy, 2 ⁇ methyl-propan-2 ⁇ yloxy, cyclobutan-1-yloxy, etc.; and the like.
  • the alkanyloxy groups are (Ci_s) alkanyloxy groups, with (C 1 - 3 ) being particularly preferred.
  • Parent Heteroaromatic Ring System refers to a parent aromatic ring system in which one carbon atom is replaced with a heteroatom. Heteratoms to replace the carbon atoms include N, O, and S. Specifically included within the definition of "parent heteroaromatic ring systems" are fused ring systems in which one or more rings are aromatic and one or more rings are saturated or unsaturated, such as, for example, arsindole, chromane, chromene, indole, indoline, xanthene, etc.
  • Typical parent heteroaromatic ring systems include, but are not limited to, carbazole, imidazole, indazole, indole, indoline, indolizine, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like.
  • Heteroaryl refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system.
  • Typical heteroaryl groups include, but are not limited to, radicals derived from carbazole, imidazole, indazole, indole, indoline, indolizine, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like.
  • Cycloheteroalkyl refers to a saturated or unsaturated monocyclic or bicyclic alkyl radical in which one carbon atom is replaced with N, O or S.
  • the cycloheteroalkyl may contain up to four heteroatoms independently selected from N, O or S.
  • Typical cycloheteroalkyl moieties include, but are not limited to, radicals derived from imidazolidine, morpholine, piperazine, piperidine, pyrazolidine, pyrrolidine, quinuclidine, and the like.
  • the cycloheteroalkyl is a 3-6 membered cycloheteroalkyl.
  • Cycloheteroalkanyl refers to a saturated monocyclic or bicyclic alkanyl radical in which one carbon atom is replaced with N, O or S.
  • the cycloheteroalkanyl may contain up to four heteroatoms independently selected from N, O or S.
  • Typical cycloheteroalkanyl moieties include, but are not limited to, radicals derived from imidazolidine, morpholine, piperazine, piperidine, pyrazolidine, pyrrolidine, quinuclidine, and the like.
  • the cycloheteroalkanyl is a 3-6 membered cycloheteroalkanyl.
  • Cycloheteroalkenyl refers to a saturated monocyclic or bicyclic alkenyl radical in which one carbon atom is replaced with N, O or S.
  • the cycloheteroalkenyl may contain up to four heteroatoms independently selected from N, O or S.
  • Typical cycloheteroalkenyl moieties include, but are not limited to, radicals derived from imidazoline, pyrazoline, pyrroline, indoline, pyran, and the like.
  • the cycloheteroalkanyl is a 3-6 membered cycloheteroalkanyl.
  • Substituted: refers to a radical in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s).
  • Preferred substituents include hydroxy, halogen i Ci -8 alkyl, C 1-8 alkanyloxy, fluorinated alkanyloxy, fluorinated alkyl, Ci -8 alkylthio, C 3-8 cycloalkyl, C 3-8 cycloalkanyloxy, nitro, amino, Ci- ⁇ alkylamino, C 1-8 dialkylamino, Ca- ⁇ cycloalkylamino, cyano, carboxy, C-t.
  • alkanyloxycarbonyl Ci- 7 alkylcarbonyloxy, formyl, carbamoyl, phenyl, aroyl, carbamoyl, amidino, (arylamino)carbonyl and aryl(Ci- 8 alkyl)carbonyl.
  • a "phenylCi-ealkanylaminocarbonylC-i-ealkyl" substituent refers to a group of the formula 'Ci . 6 alkanyl
  • An embodiment of the present invention is directed to compounds of Formula (I) wherein the structure of Formula (I) is as defined below.
  • compositions comprising a compound of Formula (I):
  • G is -C(Z)N(Ri)R 2 , C 6 -ioaryl, or a heterocycle selected from the group consisting of: imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, imidazolinyl, tetrahydropyrimidinyl, thienyl, pyrazolyl, pyrimidinyl, triazinyl, furyl, indazolyl, indolyl, indolinyl, isothiazolyl, isoxazolyl, oxazolyl, isoxadiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, and pyridinyl; wherein aryl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of Ci -8 alkanyl, C 2 - 8 alken
  • R 1 is a substituent selected from the group consisting of hydrogen, C 1-8 alkanyl, C 2 - 8 alkenyl, and C 2-8 alkynyl;
  • R 2 is a substituent selected from the group consisting of hydrogen; Ci -8 alkanyl; C 2-8 alkenyl; C 2- salkynyl; C 6 -ioaryl; and C-i-acycloalkanyl; wherein Ci -8 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, amino, Ci -6 alkanylamino, di(Ci-6alkanyl)amino, Ci- 6 alkanyloxy, thioCi- 6 alkanyloxy, hydroxy, fluoro, chloro, cyano, aminocarbonyl, C ⁇ salkanylaminocarbonyl, di(Ci -8 alkanyl)aminocarbonyl, C 1-6 alkanyloxycarbonyl, and aryloxy; and wherein any aryl-containing substituents and Ci -8 cycloalkanyl substituents of R 2 are optionally substituted with one to three substituents independently
  • R3 is a substituent selected from the group consisting of hydrogen, C 1-8 alkanyl, hal ⁇ i -3 (Ci -8 )alkanyl, C 2 - 8 alkenyl, Ca-salkynyl, C 3-8 cycloalkanyl, cycloalkanyl(C 1-8 )alkanyl, C 1-8 alkanyloxy(Ci -8 )alkanyl, Ci.8alkanylthio(Ci -8 )alkanyl, hydroxyCi -8 alkanyl, Ci-salkanyloxycarbonyl, haloi- 3 (Ci- 8 )alkanylcarbonyl, formyl, thioformyl, carbamimidoyl, phenylimino(Ci -8 )alkanyl, phenyl(Ci -8 )alkanyl, phenyl(C- ⁇ -8 )alkenyl, phenyl(Ci -8
  • R 4 is one to three substituents independently selected from the group consisting of hydrogen; Ci -6 alkanyl; C 2-6 alkenyl; C 2 - 6 alkynyl; aryl(C 2-6 )alkynyl; Ci-6alkanyloxy; amino; C 1-6 alkanylamino; di(Ci-6alkanyl)amino; C ⁇ -ioarylamino wherein C ⁇ -ioaryl is optionally substituted with one to three substitutents independently selected from the group consisting of Ci -6 alkanyl, Ci -6 alkoxy, halogen, and hydroxy; formylamino; pyridinylamino; Ci -6 alkanylcarbonyl; C 1-6 alkanylcarbonyloxy; C 1-6 alkanyloxycarbonyl; aminocarbonyl; Ci-ealkanylaminocarbonyl; di(Ci- 6 alkanyl)aminocarbonyi; Ci- ⁇ aikanylcarbonyla
  • R 5 is one to two substituents independently selected from the group consisting of hydrogen, Ci -6 alkanyl, C ⁇ alkenyl, C-i- ⁇ alkanyloxy, amino, C- t-6 alkanylamino, di(Ci- 6 alkanyl)amino, Ci- ⁇ alkanylcarbonyl, Ci- ⁇ alkanylcarbonyloxy, C-i- ⁇ alkanyloxycarbonyl, Ci -6 alkanylaminocarbonyl, Ci-ealkanylcarbonylamino, Ci -6 alkanylthio, Ci -6 alkanylsulfonyl, halogen, hydroxy, cyano, fluoro(Ci- 6 )alkanyl and fluoro(Ci- 6 )alkanyloxy;
  • Re is one to four substituents independently selected from the group consisting of hydrogen, Ci. 6 alkanyl, C- 2 -ealkenyl, Ci -6 alkanyloxy, amino, C 1-6 alkanylamino, di(Ci -6 alkanyl)amino, Ci- ⁇ alkanylcarbonyl, Ci- ⁇ alkanylcarbonyloxy, Ci- ⁇ alkanyloxycarbonyl, C-i-ealkanylaminocarbonyl, d- ⁇ alkanylcarbonylamino, Ci- ⁇ alkanylthio, Ci- 6 alkanylsulfonyl, halogen, hydroxy, cyano, fluoro(Ci -6 )alkanyl and fluoro(Ci_ 6 )alkanyloxy; Y is O or S;
  • Z is O, S, NH, N(C 1-6 alkanyl), N(OH), N(OC 1-6 alkanyl), or N(phenyl); and enantiomers, diastereomers, tautomers, solvates, or pharmaceutically acceptable salts thereof.
  • Embodiments of the present invention include compounds of Formula (I) wherein, preferably: a) G is-C(Z)N(R- ⁇ )R2, phenyl, or a heterocycle selected from the group consisting of imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, imidazolinyl, tetrahydropyrimidinyl, thienyl, pyrazolyl, pyrimidinyl, triazinyl, isothiazolyl, isoxazolyl, oxazolyl, isoxadiazolyl, and pyridinyl; wherein phenyl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of C 1-8 alkanyl, C-i- ⁇ alkanyloxy, hydroxy(Ci- 8 )alkanyl, carboxy(C 1-8
  • R 2 is selected from the group consisting of hydrogen, Ci -4 alkanyl and phenyl, wherein Ci -4 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, Ci -4 alkanyloxy, hydroxy, fluoro, and phenoxy; and wherein any phenyl- containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of Ci- 6 alkanyl, Ci- ⁇ alkanyloxy, fluoro, and hydroxy; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl or piperidinyl ring wherein said pyrrolidinyl or piperidinyl is optionally substituted with a substituent selected from the group consisting of C 1 .
  • R 2 is selected from the group consisting of hydrogen and Ci -4 alkanyl, or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidiny! ring optionally substituted with hydroxy; n) R 2 is hydrogen or ethyl, or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl ring optionally substituted with hydroxy; o) R 3 is selected from the group consisting of hydrogen, Ci -8 alkanyl, C- 2 - 8 alkenyl, C 2 - ⁇ alkynyl, Ci- 8 alkanyloxy(Ci- 8 )alkanyl, Ci- 8 alkanylthio(Ci- 8 )alkanyl, hydroxyd-salkanyl, thioformyl, phenylimino(Ci- 8 )a!kanyl, phenyl(Ci_ 8 )alkanyl, and
  • R 3 is hydrogen, C-i-salkanyl, C- 2 - 8 a!kenyl, C 3 . 8 cycloalkanyl, phenyl(C-
  • R 3 is hydrogen, methyl, allyl, or heteroarylmethyl wherein heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, and thienyl; s) R 3 is hydrogen, methyl, ethyl, propenyl, cyclopropylmethyl, benzyl, phenethyi, or heteroaryl wherein the heteroarylmethyl is furanyl, imidazolyl, pyridinyl, or thienyl; t) R4 is one to three substituents independently selected from the group consisting of hydrogen; C-i-ealkanyl; Ci -6 alkanyloxy; C 6- ioarylamino
  • R 4 is one to two substituents independently selected from the group consisting of hydrogen, Ci -4 alkanyl, Ci -4 alkanyloxy, halogen, phenyl, furanyl,
  • One embodiment of the present invention is a compound of Formula (I) wherein:
  • G is-C(Z)N(Ri)R 2 , phenyl, or a heterocycle selected from the group consisting of imidazolyl, triazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, imidazolinyl, tetrahydropyrimidinyl, thienyl, pyrazolyl, pyrimidinyl, triazinyl, isothiazolyl, isoxazolyl, oxazolyl, isoxadiazolyl, and pyridinyl; wherein phenyl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of C-i- ⁇ alkanyl, Ci -8 alkanyloxy, hydroxy(Ci- 8 )alkanyl, carboxy(C-i_ 8 )alkanyl, C-i-salkanylcarbonylamino
  • Ri is hydrogen or Ci -4 alkanyl
  • R2 is selected from the group consisting of hydrogen; Ci. 4 alkanyl; phenyl; and Ci- ⁇ cycloalkanyl; wherein Ci -4 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, amino, Ci -6 alkanylamino, di(Ci -6 alkanyl)amino, Ci -4 alkanyloxy, hydroxy, fluoro, chloro, cyano, aminocarbonyl, C-i-salkanylaminocarbonyl, di(C- ⁇ -8 alkanyl)aminocarbonyl, and phenoxy; and wherein the phenyl and Ci -6 cycloalkanyl substituents of R 2 are optionally substituted with one to three substituents independently selected from the group consisting of C 1-8 alkanyl, C- ⁇ -8 alkanyloxy, trifluoromethyl, phenyl, fluoro, hydroxy, Ci -8 alkanylthi
  • R 3 is selected from the group consisting of hydrogen, Ci_ 8 alkanyl, C 2-8 alkenyl, C 2 - 8 alkynyl, Ci -8 alkanyloxy(Ci -8 )alkanyl, Ci -8 alkanylthio(Ci -8 )alkanyl, hydroxyC 1-8 alkanyl, thioformyl, phenylimino(Ci -8 )alkanyl, phenyl(Ci -8 )alkanyl, and heteroaryl(Ci -8 )alkanyl wherein heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, thienyl, indolyl, indolinyl, isoquinolinyl, pyrazinyl, pyrazolyl, pyridazinyl, pyrimidinyl, pyrrolyl, qui
  • R 5 is one to two substituents independently selected from the group consisting of hydrogen and halogen;
  • Re is one to four substituents independently selected from the group consisting of hydrogen, Ci- 6 alkanyl, C 2 - 6 alkenyl, Ci -6 alkanyloxy, halogen, hydroxy, fluoro(Ci -6 )alkanyl and fluoro(C 1-6 )alkanyloxy;
  • Y is O or S
  • Z is O, NH, N(Ci- ⁇ alkanyl), N(OH), N(OC 1-6 alkanyl), or N(phenyl); and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • G is-C(Z)N(Ri)R 2 , phenyl, or a heterocycle selected from the group consisting of imidazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, imidazolinyl, thienyl, pyrazolyl, pyrimidinyl, triazinyl, isothiazolyl, isoxazolyl, oxazolyl, isoxadiazolyl, and pyridinyl; wherein phenyl and the heterocycles of G (described herein) are optionally substituted with one to three substituents independently selected from the group consisting of hydroxy(Ci -4 )alkanyl, carboxy(Ci -4 )alkanyl, Ci- 4 alkanylcarbonylamino, hydroxy, cyano, oxo, thioxo, amino, Ci- ⁇ alkanylamino, di(
  • Ri is selected from the group consisting of hydrogen, methyl, ethyl, and propyl;
  • R 2 is selected from the group consisting of hydrogen, Ci- 4 alkanyl, phenyl, and C"i- 6 cycloalkanyl; wherein Ci ⁇ alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, hydroxy, fluoro, aminocarbonyl, Ci- ⁇ alkanylaminocarbonyl, di(Ci- 8 alkanyl)aminocarbonyl, and phenoxy; and wherein any phenyl-containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of Ci -6 alkanyl, d- ⁇ alkanyloxy, fluoro, hydroxy, and Ci- 6 alkanylthio; or R 1 and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl or piperidinyl ring wherein said pyrrolidinyl or piperidinyl is optionally substituted with a substituent selected from the
  • R 3 is selected from the group consisting of hydrogen, methyl, allyl, 2-methyl-allyl, propynyl, hydroxyethyl, methylthioethyl, methoxyethyl, thioformyl, phenyliminomethyl, phenethyl, and heteroaryl(Ci- 8 )alkanyl wherein the heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, thienyl, pyrimidinyl, pyrrolyl, quinolinyl, isoquinolinyl, tetrazolyl wherein the phenyl in any phenyl-containing substituent is optionally substituted with one hydroxyl group;
  • R 4 is one to two substituents independently selected from the group consisting of hydrogen, Ci ⁇ alkanyl, Ci- 4 alkanyloxy, halogen, phenyl, furanyl, imidazolyl, indazolyl, indolyl, indolinyl, isoindolinyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, quinolinyl, tetrazolyl, thiazolyl, thienyl, and hydroxy;
  • R 5 is hydrogen;
  • R 6 is one to two substituents independently selected from the group consisting of hydrogen and Ci- 4 alkanyl;
  • Y is O or S;
  • Z is O 1 NH, or N(OH); and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • compositions comprising a compound of Formula (I) wherein:
  • G is selected from-C(Z)N(R-i)R 2 , phenyl, or a heterocycle selected from the group consisting of imidazolyl, tetrazolyl, oxadiazolyl, thiadiazolyl, oxathiadiazolyl, thienyl, isothiazolyl, isoxazolyl, isoxadiazolyl, and pyridinyl; wherein phenyl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of Ci -4 alkanyl, C-i_ 4 alkanyloxy, hydroxy(Ci -4 )alkanyl, C 1-4 alkanylcarbonylamino, hydroxy, cyano, oxo, thioxo, and aminocarbonyl; Ri is hydrogen, methyl, or ethyl;
  • R 2 is independently selected from the group consisting of hydrogen
  • Ci -4 alkanyl and phenyl wherein C-i -4 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, Ci -4 alkanyloxy, hydroxy, fluoro, and phenoxy; and wherein any phenyl-containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of C-i- ⁇ alkanyl, Ci -6 alkanyloxy, fluoro, and hydroxy; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl or piperidinyl ring wherein said pyrrolidinyl or piperidinyl are optionally substituted with a substituent selected from the group consisting of Ci- 3 alkanyl and hydroxy;
  • R 3 is hydrogen, methyl, allyl, or heteroarylmethyl wherein heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, and thienyl;
  • R 4 is one to two substituents independently selected from the group consisting of hydrogen, C- ⁇ - 4 alkanyl, C-i -4 alkanyloxy, halogen, phenyl, furanyl, imidazolyl, indazolyl, indolyl, indolinyl, isoindolinyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, quinolinyl, tetrazolyl, thiazolyl, thienyl, and hydroxy;
  • Re is one to two substituents independently selected from the group consisting of hydrogen and methyl;
  • Y is O or S
  • Z is O or NH; and enantiomers, diasteromers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • G is selected from-C(Z)N(Ri)R 2 , 2-methylcarbonylaminophenyl, 2-aminocarbonyl-phenyl, 1 H-tetrazol-4-yl, 2-methyl-tetrazol-5-yl, 4f/-[1 ,2,4]-oxadiazol-5-oxo-3-yl, 4H-[1 ,2,4]-oxadiazol-5-thioxo-3-yl, 4H-[1 ,2,4]thiadiazol-5-oxo-3-yl, [1 ,2,3,5]oxathiadiazol-2-oxo-4-yl, or pyridin-3-yl;
  • Ri is hydrogen, methyl, or ethyl
  • R 2 is selected from the group consisting of hydrogen, C- M alkanyl and phenyl; wherein is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, Ci -4 alkanyloxy, hydroxy, fluoro, and phenoxy; and wherein any phenyl- containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of C 1-6 alkanyl, Ci -6 alkanyloxy, fluoro, and hydroxy; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl or piperidinyl ring;
  • R 3 is selected from the group consisting of hydrogen, C- ⁇ - 8 alkanyl, C 2-8 alkenyl, C 2-8 alkynyl, Ci -8 alkanyloxy(Ci -8 )alkanyl, C 1-8 alkanylthio(Ci- 8 )alkanyl, hydroxyCi -8 alkanyl, thioformyl, phenylimino(C 1-8 )alkanyl, phenyl(C-i -8 )alkanyl, and heteroaryl(Ci -8 )alkanyl wherein heteroaryl is selected from the group consisting of hydrogen, methyl, allyl, or heteroarylmethyl; wherein heteroaryl is selected from the group consisting of benzo[1 ,3]dioxolyl, imidazolyl, furanyl, pyridinyl, and thienyl; wherein phenyl and heteroaryl are optionally substituted with one to three substituents independently selected from the
  • R 4 is one to three substituents independently selected from the group consisting of hydrogen, Ci -4 alkanyl, Ci -4 alkanyloxy, halogen, phenyl, furanyl, imidazolyl, indazolyl, indolyl, indolinyl, isoindolinyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, quinolinyl, tetrazolyl, thiazolyl, thienyl, and hydroxy;
  • R 5 is hydrogen
  • Re is one to two substituents independently selected from the group consisting of hydrogen and methyl;
  • Y is O or S
  • Z is O or NH; and enantiomers, diastereomers, tautomers, solvates, and pharmaceutically acceptable salts thereof.
  • compositions comprising a compound of Formula (I) wherein: G is independently selected from-C(Z)N(Ri)R 2 ,
  • Ci ⁇ alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, C ⁇ alkanyloxy, hydroxy, and 2,6-dimethyl-phenoxy; and wherein the any phenyl-containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of C-i- ⁇ alkanyl, Ci -6 alkanyloxy, fluoro, and hydroxy; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyi or piperidinyl ring wherein said pyrrolidinyl or piperidinyl is optionally substituted with a substituent selected from the group consisting of Ci- 3 alkanyl and hydroxy;
  • R 3 is a substituent selected from the group consisting of benzo[1 ,3]dioxol-5-ylmethyl, carbamimidoyl, 1-H-imidazol-4-ylmethyl, phenyliminomethyl, 1-prop-2-ynyl, thioformyl, 2-hydroxyphenyl-methyl, hydroxy-ethyl, methoxy-ethyl, 2-methyl-allyl, 2-methyl-but-2-enyl, allyl, furan-3-ylmethyl, H, Me, methylthioethyl, phenethyl, pyridin-2-yl methyl, and thiophen-2-ylmethyl;
  • R 4 is one to two substituents independently selected from the group consisting of hydrogen, Ci- 4 alkanyl, d ⁇ alkanyloxy, halogen, phenyl, furanyl, imidazolyl, indazolyl, indolyl, indolinyl, isoindolinyl, isoquinolinyl, isothiazolyl, isoxazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, quinolinyl, tetrazolyl, thiazolyl, thienyl, and hydroxy;
  • R 5 is hydrogen
  • Re is one to two substituents independently selected from the group consisting of hydrogen and methyl;
  • Y is O or S
  • Z is O or NH.
  • compositions comprising a compound of Formula (I) wherein:
  • G is selected from-C(Z)N(R-i)R 2 , 2-methylcarbonylaminophenyl, 2-aminocarbonyl-phenyl, 1 H-tetrazol-4-yl, 2-methyl-tetrazol-5-yl, 4H-[1 ,2,4]-oxadiazol-5-oxo-3-yl, 4H-[1 ,2,4]-oxadiazol-5-thioxo-3-yl, 4H-[1 ,2,4]thiadiazol-5-oxo-3-yl, [1 ,2,3,5]oxathiadiazol-2-oxo-4-yl, or pyridin-3-yl;
  • Ri is hydrogen, methyl, or ethyl
  • R 2 is a substituent selected from the group consisting of hydrogen
  • Ci- 4 alkanyl and phenyl wherein Ci -4 alkanyl is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, methoxy, hydroxy, and 2,6-dimethyl-phenoxy; and wherein any phenyl-containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of Ci- ⁇ alkanyl, C-i-ealkanyloxy, fluoro, and hydroxy; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl or piperidinyl ring wherein said pyrrolidinyl or piperidinyl are optionally substituted with a substituent selected from the group consisting of Ci- 3 alkanyl and hydroxy; R 3 is a substituent selected from the group consisting of benzo[1 ,3]dioxol-5-ylmethyl, carbamimidoyl, 1 -H-imidazol-4
  • R 4 is one to two substituents independently selected from the group consisting of hydrogen, methyl, methoxy, bromo, fluoro, ⁇ - or ⁇ '-phenyl, ⁇ '- or ⁇ '-pyridinyl, ⁇ '- or ⁇ '-furanyl, and hydroxy:
  • R 5 is hydrogen
  • R 6 is one to two substituents independently selected from the group consisting of hydrogen and methyl;
  • Y is O or S
  • Z is O or NH.
  • compositions comprising a compound of Formula (I) wherein:
  • G is selected from-C(Z)N(R- ⁇ )R 2 , 2-methylcarbonylaminophenyl, 2-aminocarbonyl-phenyl, 1 H-tetrazol-4-yl, 2-methyl-tetrazol-5-yl, 4H-[1 ,2,4]-oxadiazol-5-oxo-3-yl, 4H-[1 ,2,4]-oxadiazol-5 ⁇ thioxo-3-yl, 4H-[1 ,2,4]thiadiazol-5-oxo-3-yl, [1 ,2,3,5]oxathiadiazol-2-oxo-4-yl, or pyridin-3-yl;
  • Ri is hydrogen, methyl, or ethyl
  • R 2 is a substituent selected from the group consisting of hydrogen
  • Ci- 4 alkanyl and phenyl wherein is optionally substituted with one to three substituents independently selected from the group consisting of phenyl, methoxy, hydroxy, and 2,6-dimethyl-phenoxy; and wherein any phenyl-containing substituent of R 2 is optionally substituted with one to three substituents independently selected from the group consisting of C-i- ⁇ alkanyl, C 1-6 alkanyloxy, fluoro, and hydroxy; alternatively Ri and R2 are taken together with the nitrogen to which they are attached to form a pyrrolidinyl or piperidinyl ring wherein said pyrrolidinyl or piperidinyl are optionally substituted with a substituent selected from the group consisting of Ci- 3 alkanyl and hydroxy;
  • R 3 is a substituent selected from the group consisting of H, benzo[1 ,3]dioxol-5-ylmethyl, 1 -H-imidazol-4-yl methyl, furan-3-ylmethyl, pyridin-2-ylmethyl, and phenyliminomethyl;
  • R 4 is a substituent independently selected from the group consisting of hydrogen, methyl, methoxy, bromo, fluoro, ⁇ - or ⁇ '-phenyl, ⁇ '- or ⁇ '- pyridinyl, ⁇ '- or ⁇ '-furanyl, and hydroxy;
  • R5 is hydrogen
  • RQ is one to two substituents independently selected from the group consisting of hydrogen and methyl
  • Y is O or S
  • Z is O or NH.
  • Another embodiment of the present invention is directed to compounds of Formula (I) and to compostions compsiring compounds of Formula (I) wherein: G is -C(Z)N(Ri )R2, phenyl, or a heterocycle selected from the group consisting of tetrazolyl, oxadiazolyl, and pyridinyl; wherein phenyl and the heterocycles of G are optionally substituted with one to three substituents independently selected from the group consisting of Ci -4 alkanylcarbonylamino and oxo;
  • Ri is selected from the group consisting of hydrogen and ethyl
  • R 2 is selected from the group consisting of hydrogen and Ci -4 alkanyl; or R 1 and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl ring optionally substituted with hydroxy;
  • R 3 is hydrogen, C ⁇ -salkanyl, C 2-8 alkenyl, Ca-scycloalkanyl, phenyl(Ci- 8 )alkanyl, or heteroaryl(Ci- 8 )alkanyl wherein the heteroaryl is imidazolyl, furanyl, pyridinyl, or thienyl;
  • R 4 is one substituent selected from the group consisting of hydrogen, methoxy, chloro, and hydroxy
  • R 5 is hydrogen
  • R 6 is hydrogen
  • Y is O or S
  • Another embodiment of the present invention is directed to compounds of Formula (I) and to compostions compsiring compounds of Formula (I) wherein:
  • G is N,N-diethylaminocarbonyl, 3-(N,N-diethylaminocarbonyl)-phenyl, 2-methylcarbonylaminophenyl, N-N-diethylamidino, pyridin-3-yl, 3-(S)-hydroxypyrrolidin-1 ylcarbonyl, N-ethylaminocarbonyl, 1H-tetrazol-4-yl, pyridine-4-yl, or 4H-[1 ,2,4]-oxadiazol-5-oxo-3-yl;
  • Ri is selected from the group consisting of hydrogen and ethyl
  • R 2 is hydrogen or ethyl; or Ri and R 2 taken together with the nitrogen to which they are attached form a pyrrolidinyl ring optionally substituted with hydroxy;
  • R 3 is hydrogen, methyl, ethyl, propenyl, cyclopropylmethyl, benzyl, phenethyl, or heteroaryl wherein the heteroaryl is furanyl, imidazolyl, pyridinyl, or thienyl;
  • R 4 is one substituent and is hydrogen or hydroxy;
  • R 5 is hydrogen;
  • Re is hydrogen;
  • Y is O or S;
  • Z is O.
  • Still further embodiments of the invention relate to compounds of Formula (I) and to compositions containing one or more compounds of Formula (I) that are:
  • Another embodiment of the present invention is directed to a compound of Formula (I) wherein R 4 is preferably substituted at the a - or ⁇ '- position of Formula (I).
  • compositions comprising the dextrorotatory enantiomer of a compound of formula (I), wherein said composition is substantially free from the levorotatory isomer of said compound.
  • substantially free means less than 25 %, preferably less than 10 %, more preferably less than 5 %, even more preferably less than 2 % and even more preferably less than 1 % of the levorotatory isomer calculated as.
  • compositions comprising the levorotatory enantiomer of a compound of formula (I) wherein said composition is substantially free from the dextrorotatory isomer of said compound.
  • substantially free from means less than 25 %, preferably less than 10 %, more preferably less than 5 %, even more preferably less than 2 % and even more preferably less than 1 % of the dextrorotatory isomer calculated as
  • the compounds of the present invention may also be present in the form of pharmaceutically acceptable salts.
  • the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts" (Ref. International J. Pharm., 1986, 33, 201-217; J. Pharm.ScL, 1997 (Jan), 66, 1, 1).
  • Other salts well known to those in the art may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts.
  • organic or inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydriodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, mandelic, methanesulfonic, hydroxyethanesulfonic, benzenesulfonic, oxalic, pamoic, 2-naphthalenesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, saccharinic or trifluoroacetic acid.
  • Organic or inorganic bases include, but are not limited to, basic or cationic salts such as benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
  • basic or cationic salts such as benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium and zinc.
  • the present invention includes within its scope prodrugs of the compounds of this invention.
  • prodrugs will be functional derivatives of the compounds that are readily convertible in vivo into the required compound.
  • the term “administering” shall encompass the treatment of the various disorders described with the compound specifically disclosed or with a compound which may not be specifically disclosed, but which converts to the specified compound in vivo after administration to the patient.
  • Conventional procedures for the selection and preparation of suitable prodrug derivatives are described, for example, in "Design of Prodrugs", ed. H. Bundgaard, Elsevier, 1985.
  • the compounds according to this invention may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
  • the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers
  • these isomers may be separated by conventional techniques such as preparative chromatography.
  • the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
  • the compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as (-)-di-p-toluoyl-d-tartaric acid and/or (+)-di-p-toluoyl-l-tartaric acid followed by fractional crystallization and regeneration of the free base.
  • the compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
  • any of the processes for preparation of the compounds of the present invention it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P.G.M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991.
  • the protecting groups may be removed at a convenient subsequent stage using methods known from the art.
  • the compounds of the present invention can be administered alone, they will generally be administered in admixture with a pharmaceutical carrier, excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical or veterinary practice.
  • a pharmaceutical carrier excipient or diluent selected with regard to the intended route of administration and standard pharmaceutical or veterinary practice.
  • the present invention is directed to pharmaceutical and veterinary compositions comprising compounds of Formula (I) and one or more pharmaceutically acceptable carriers, excipients or diluents.
  • the compounds of the present invention may be admixed with any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), and/or solubilising agent(s).
  • Tablets or capsules of the compounds may be administered singly or two or more at a time, as appropriate. It is also possible to administer the compounds in sustained release formulations.
  • the compounds of the general Formula (I) can be administered by inhalation or in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder.
  • An alternative means of transdermal administration is by use of a skin patch.
  • they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin. They can also be incorporated, at a concentration of between 1 and 10% by weight, into an ointment consisting of a white wax or white soft paraffin base together with such stabilizers and preservatives as may be required.
  • compositions are administered orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavoring or coloring agents.
  • excipients such as starch or lactose
  • capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavoring or coloring agents.
  • the compositions (as well as the compounds alone) can also be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously.
  • the compositions will comprise a suitable carrier or diluent.
  • compositions are best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood.
  • compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.
  • compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral).
  • suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, stabilizers, coloring agents and the like;
  • suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like.
  • Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate the major site of absorption.
  • the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation.
  • Injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
  • compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily.
  • compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those skilled in that art.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • the therapeutically effective dose for active compounds of the invention or a pharmaceutical composition thereof will vary according to the desired effect. Therefore, optimal dosages to be administered may be readily determined and will vary with the particular compound used, the mode of administration, the strength of the preparation, and the advancement of the disease condition. In addition, factors associated with the particular subject being treated, including subject age, weight, diet and time of administration, will result in the need to adjust the dose to an appropriate therapeutic level.
  • the above dosages are thus exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.
  • Compounds of this invention may be administered in any of the foregoing compositions and dosage regimens or by means of those compositions and dosage regimens established in the art whenever use of the compounds of the invention as analgesics is required for a subject in need thereof.
  • the invention also provides a pharmaceutical or veterinary pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical and veterinary compositions of the invention.
  • a pharmaceutical or veterinary pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical and veterinary compositions of the invention.
  • Optionally associated with such containers can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
  • the compounds of the present invention may be used to treat mild to severe pain in warm-blooded animals such as humans by administration of an analgesically effective dose.
  • the dosage range would be from about 0.1 mg to about 15,000 mg, in particular from about 50 mg to about 3500 mg or, more particularly from about 100 mg to about 1000 mg of active ingredient in a regimen of about 1 to 4 times per day for an average (70 kg) human; although, it is apparent to one skilled in the art that the therapeutically effective amount for active compounds of the invention will vary as will the types of pain being treated.
  • a pharmaceutical composition is preferably provided in the form of tablets containing 0.01 , 10.0, 50.0, 100, 150, 200, 250, and 500 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the subject to be treated.
  • Compounds of the present invention are also useful as immunosuppressants, antiinflammatory agents, agents for the treatment and prevention of neurological and psychiatric conditions, for instance, depression and Parkinson's disease, agents for the treatment of urological and reproductive conditions, for instance, urinary incontinence and premature ejaculation, medicaments for drug and alcohol abuse, agents for treating gastritis and diarrhea, cardiovascular agents and cardioprotective agents and agents for the treatment of respiratory diseases.
  • antiinflammatory agents agents for the treatment and prevention of neurological and psychiatric conditions, for instance, depression and Parkinson's disease
  • agents for the treatment of urological and reproductive conditions for instance, urinary incontinence and premature ejaculation
  • medicaments for drug and alcohol abuse agents for treating gastritis and diarrhea
  • cardiovascular agents and cardioprotective agents and agents for the treatment of respiratory diseases for the treatment of respiratory diseases.
  • the compounds of the present invention are also useful in treating pain caused by osteoarthritis, rheumatoid arthritis, fibromyalgia, migraine, headache, toothache, burn, sunburn, snake bite (in particular, venomous snake bite), spider bite, insect sting, neurogenic bladder, benign prostatic hypertrophy, interstitial cystitis, rhinitis, contact dermatitis/hypersensitivity, itch, eczema, pharyngitis, mucositis, enteritis, cellulites, causalgia, sciatic neuritis, mandibular joint neuralgia, peripheral neuritis, polyneuritis, stump pain, phantom limb pain, post-operative ileus, cholecystitis, postmastectomy pain syndrome, oral neuropathic pain, Charcot's pain, reflex sympathetic dystrophy, Guillain-Barre syndrome, meralgia paresthetica, burning-mouth syndrome, post-herpetic neuralgia, tri
  • a therapeutically effective dose can be determined by persons skilled in the art by the use of established animal models. Such a dose would likely fall in the range of from about 0.01 mg to about 15,000 mg of active ingredient administered 1 to 4 times per day for an average (70 kg) human.
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described below and are illustrated in the schemes that follow. Since the schemes are an illustration, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • the linker -Y- is constructed between two monocyclic intermediates.
  • the bridge may be constructed by nucleophilic aromatic displacement of fluoride from intermediate int 2 (where Q' is an electron withdrawing group, readily convertible to a carboxylic acid, for instance cyano or alkoxycarbonyl) by a phenoxide or thiophenoxide, int 1.
  • Q' is an electron withdrawing group, readily convertible to a carboxylic acid, for instance cyano or alkoxycarbonyl
  • the 1 A compounds are then obtained by hydrolysis of int 3 with an alkali metal hydroxide.
  • the bridge in order to prepare 1B compounds, the bridge may be constructed by nucleophilic aromatic displacement of fluoride from intermediate int 5 by phenoxides or thiophenoxides (int 4).
  • the 1B compounds are then obtained by hydrolysis of int 6 with an alkali metal hydroxide.
  • Stage 2 compounds 1 A and 1B are converted by cycloacylation to ketones 2, using, for instance, BF3 ' Et.2O-trifluoroacetic acid or polyphosphoric acid.
  • the cyclization may be effected by converting acid 1A and 1 B to an acid chloride, for instance with thionyl chloride, followed by Friedel-Crafts ring closure in the presence of a Lewis acid, such as aluminum chloride.
  • Stages 1 and 2 may be performed in reverse to give compounds 2 that are ready to enter Stage 3.
  • Friedel-Crafts acylation between a methyl ether (int 7) and an appropriately substituted acid chloride (int 8) provides the ketone (int 9), which is simultaneously demethylated under the reaction conditions.
  • Subsequent formation of the bridge -Y- via a nucleophilic aromatic displacement gives compounds 2 that are ready to enter Stage 3.
  • the Q function of compounds 2 is converted into group G, which may be -C(Z)NRiR 2 , an aryl substituent, or an appropriate heterocycle as defined herein, to give compounds of formula 3.
  • group G which may be -C(Z)NRiR 2 , an aryl substituent, or an appropriate heterocycle as defined herein, to give compounds of formula 3.
  • the Q function of compounds 2 is a halogen or trifluoromethanesulfonyloxy, it may be converted to an ester via alkoxycarbonylation using carbon monoxide, an aliphatic alcohol, a trialkanyl amine, and a palladium catalyst such as bis(triphenylphosphine) palladium(ll)dichloride.
  • Q is an ester
  • the ester may be hydrolyzed to a carboxylic acid.
  • the carboxylic acid may then be coupled with ammonia, a primary amine, or a secondary amine to form a primary, secondary or tertiary amide, respectively.
  • the conversion of a carboxylic acid to an amide may be carried out via an acid chloride using thionyl chloride, oxalyl chloride, or the like, followed by a Schotten-Baumann reaction using ammonia or an amine in the presence of an alkali metal hydroxide.
  • the conversion of a carboxylic acid to an amide may be carried out via the use of peptide coupling agents such as 1 ,3- dicyclohexylcarbondiimide (DCC), O-(7-azabenzotriazol-1-yl)-/V, ⁇ /,/V' /V- tetramethyluronium hexafluorophosphate (HATU), O-benzotriazol-1 -yl- A/,MA/',/ ⁇ /-tetrarnethyluroniurn hexafluorophosphate (HBTU), or the like.
  • the ester may be converted directly to the amide by the action of a dimethylaluminum amide.
  • nitrile may be accomplished by treatment of the compounds 2 (when Q is bromo or trifluoromethanesulfonyloxy) with Zn(CN) 2 and a palladium catalyst such as (PhSP) 4 Pd or by treatment of the compounds 2 with CuCN at elevated temperatures.
  • PhSP palladium catalyst
  • the nitrile is treated with hydroxylamine under basic conditions to afford an oxime.
  • Treatment of the oxime with a primary or secondary amine, CuCI, and an alkali metal carbonate under microwave irradiation in an alcoholic solvent provides the amidino compounds of the present invention.
  • Microwave accelerated reactions may be performed using either a CEM Discover or a Persona! Chemistry Smith Synthesizer microwave instrument.
  • the oxime described above is instrumental in the preparation of compounds wherein G is a heterocycle.
  • the oxime may be cyclized with a variety of electrophiles known to one versed in the art to give the heterocycles of the present invention.
  • reaction of an oxime with CDI provides oxadiazolones
  • treatment of the oxime with TCDI provides the corresponding oxadiazolethiones.
  • the treatment of the oxime with thionyl chloride in the presence of a tertiary amine gives oxathiadiazoles of the present invention.
  • compounds where Q is a halogen atom or a trifluoromethanesulfonyloxy group may participate in transition metal-mediated coupling reactions such as Suzuki, Stille or Negishi chemistry.
  • an appropriately substituted 4-piperidinylidene function is attached to the tricyclic system, replacing the ketone to give compounds of type 4.
  • This operation may be carried out by McMurray condensation of ketones 3 with an appropriately substituted 4-piperidone species brought about by a lower valent titanium reagent such as the reagent obtained from addition of titanium tetrachloride to zinc dust.
  • an appropriately substituted 4-piperidinyl magnesium halide may be added to ketone to afford carbinols. Dehydration of such carbinols with acidic reagents such as formic acid, sulfuric acid or trifluoroacetic acid gives rise to compounds of type 4.
  • stages 3 and 4 may be carried out in reverse order.
  • the nitrogen atoms of compounds 4 may bear a group P.
  • This group may be an alkanyl, alkenyl or aralkanyl in which case they are the therapeutically useful products of this invention.
  • the group P may also be trifluoromethylcarbonyl, alkoxycarbonyl or aralkoxycarbonyl.
  • the olefin in compound 4 may be reduced to obtain the corresponding alkane (stage 5).
  • This transformation may be carried out by treatment of compounds 4 with hydrogen iodide in chloroform or a mixture of trimethylsilyl iodide and ethanol in chloroform to yield compounds 5.
  • the group P can be removed to produce free amines 6 (stage 6).
  • This transformation may be carried out using certain acidic reagents such as hydrogen bromide or trimethylsilyl iodide.
  • basic reagents such as potassium carbonate in an alcoholic solvent may be used for the removal of P.
  • Compounds of type 5 bearing readily cleavable groups such as methyl, allyl or benzyl may be transformed into the aforementioned alkoxycarbonyl derivatives by treatment with alkanylchloroformates such as ethyl chloroformate or 1-chloroethyl chloroformate.
  • Stages 5 and 6 may be performed in reverse to give compounds 6.
  • group P is removed as described above before the olefin is reduced.
  • the secondary amines 6 may be converted to any desired end product of the invention 7 as shown in Stage 7.
  • These transformations may be carried out by reductive alkylation using a carbonyl compound and a reducing agent such as sodium borohydride, sodium cyanoborohydride, sodium triacetoxyborohydride, or tetramethylammonium triacetoxyborohydride. They may also be carried out by alkyation using an alkanyl, alkenyl or aralkyl halide and an organic or inorganic base.
  • the transformation of compound 4 into compound 7 may also be performed by performing stages 5 through 7 in the following order: stage 6, followed by stage 7, followed by stage 5.
  • group P is removed first.
  • R 3 is introduced as described above, and the final step consists of reduction of the olefin to the corresponding saturated carbon-carbon bond.
  • Desired end products of the present invention may include chemical modifications at R 4 .
  • Such transformations may include the dealkylation of lower alkyl ethers to give their corresponding alcohols, using reagents such as boron trihalides.
  • Compounds where R4 is a halogen atom may participate in transition metal-mediated coupling reactions such as Suzuki, Stille or Negishi chemistry.
  • the compounds wherein the two phenyl rings are substituted in a nonsymmetrical fashion are chiral. They may be separated into their enantiomers by chromatography on a chiral stationary phase following Stages 4, 5, or 6. Alternatively, the basic compounds of types 5, 6, and 7 may be converted to diastereomeric salts by mixture with a chiral acid and resolved into their enantiomers by fractional crystallization.
  • the respective product of each process step be separated from other components of the reaction mixture and subjected to purification before its use as a starting material in a subsequent step.
  • Separation techniques typically include evaporation, extraction, precipitation and filtration.
  • Purification techniques typically include column chromatography (Still, W. C. et. al., J. Org. Chem. 1978, 43, 2921), thin-layer chromatography, crystallization and distillation.
  • the structures of the final products, intermediates and starting materials are confirmed by spectroscopic, spectrometric and analytical methods including nuclear magnetic resonance (NMR), mass spectrometry (MS) and liquid chromatography (HPLC).
  • ethyl ether, tetrahydrofuran and dioxane are common examples of an ethereal solvent; benzene, toluene, hexanes and heptanes are typical hydrocarbon solvents and dichloromethane and dichloroethane are representative halogenated hydrocarbon solvents.
  • the free base may be obtained by techniques known to those skilled in the art.
  • the salt may contain one or more equivalents of the acid.
  • Enantiomers of the compounds of the present invention may be separated using chiral HPLC.
  • Representative compounds of the present invention can be synthesized in accordance with the general synthetic methods described above and are illustrated more particularly in the schemes that follow. Since the schemes are illustrations, the invention should not be construed as being limited by the chemical reactions and conditions expressed. The preparation of the various starting materials used in the schemes is well within the skill of persons versed in the art.
  • 4-yl-9H-xanthene-3-carboxylic acid diethylamide 8a the title compound 1- furan-3-ylmethyl-4-[3-(1 H-tetrazol-5-yl)-9H-xanthen-9-yl]-piperidine, 4I was obtained as a TFA salt after reverse phase HPLC purification (eluent: acetonitrile in water containing 0.1 % TFA). MS m/z (MH + ) 414.1.
  • the pellet was resuspended in the same volume of Tris buffer containing 5 mM MgCb with several brief pulses from a Polytron homogenizer. This particulate preparation was used for the delta opioid binding assays. Following incubation with the delta selective peptide ligand ⁇ 4 nM [ 3 H]DPDPE or 0.15 nM [ 3 H]naltrindole at 25°C for 2.5 h in a 96-well plate with total volume of 1 mL, the plate contents were filtered through Wallac filtermat B sheets on a Tomtec 96-well harvester. The filters were rinsed three times with 2 mL of 10 mM HEPES (pH 7.4), and dried in a 650 W microwave oven for 1.75 min twice. To each sample area 2 x 50 ⁇ l_ of Betaplate Scint scintillation fluid (LKB) was added and the radioactivity was quantified on a LKB (Wallac) 1205 BetaPlate liquid scintillation counter.
  • Rat Brain Mu Opioid Receptor Binding Assay Procedure Male, Wistar rats (150-250 g, VAF, Charles River, Kingston, NY) were killed by CO 2 , and their brains were removed and placed immediately in ice cold Tris HCI buffer (50 mM, pH 7.4). The forebrains were separated from the remainder of the brain by a coronal transection, beginning dorsally at the colliculi and passing ventrally through the midbrain-pontine junction. After dissection, the forebrains were homogenized in Tris buffer in a Teflon ® -glass homogenizer.
  • the homogenate was diluted to a concentration of 1 g of forebrain tissue per 80 ml_ Tris and centrifuged at 39,000 x g for 10 min. The pellet was resuspended in the same volume of Tris buffer containing 5 mM MgCI 2 with several brief pulses from a Polytron homogenizer. This particulate preparation was used for the mu opioid binding assays. Following incubation with the mu selective peptide ligand, -0.8 nM [ 3 H]DAMGO, at 25 0 C for 2.5 h in a 96-well plate with total assay volume of 1 mL, the plate contents were filtered through Wallac filtermat B sheets on a Tomtec 96-well harvester.
  • the filters were rinsed three times with 2 mL of 10 mM HEPES (pH 7.4), and dried in a 650 W microwave oven for 1.75 min twice.
  • 2 X 40 ⁇ L of Betaplate Scint scintillation fluid (LKB) was added and the radioactivity was quantifed on a LKB (Wallac) 1205 BetaPlate liquid scintillation counter.
  • NG108-15 cell membranes were purchased from Applied Cell Sciences (Rockville, MD). 8 mg/mL of membrane protein was suspended in 10 mM TRIS-HCI pH 7.2, 2 mM EDTA, 10% sucrose. Membranes were maintained at 4-8 0 C. A 1 mL volume of membranes was added into 10 mL cold binding assay buffer.
  • the assay buffer contained 50 mM Tris, pH 7.6, 5 mM MgCI 2 , 100 mM NaCI, 1 mM DTT and 1 mM EGTA.
  • the membrane suspension was homogenized twice with a Polytron, and centrifuged at 3000 rpm for 10 min. The supernatant was then centrifuged at 18,000 rpm for 20 min. Ten ml_ assay buffer was added into the pellet containing tube. The pellet and buffer were mixed with a Polytron.
  • % of Basal (stimulated - non specific)*100/(basal - non specific).
  • EC 50 value values were calculated using GraphPad Prism. The data obtained are shown in Table 1 , below.
  • CHO-hMOR cell membranes can be purchased from Receptor Biology, Inc. (Baltimore, MD). About 10 mg/mL of membrane protein can be suspended in 10 mM TRIS-HCI pH 7.2, 2 mM EDTA, 10% sucrose, and the suspension kept on ice. A 1 mL volume of membranes can be added to 15 mL cold binding assay buffer containing 50 mM HEPES, pH 7.6, 5 mM MgC ⁇ , 100 mM NaCI, 1 mM DTT and 1 mM EDTA. The membrane suspension can be homogenized with a Polytron and centrifuged at 3,000 rpm for 10 min.
  • the supernatant can then be centrifuged at 18,000 rpm for 20 min.
  • the pellet can be resuspended in 10 mL assay buffer with a Polytron.
  • the membranes can be preincubated with wheat germ agglutinin coated SPA beads (Amersham) at 25 0 C for 45 min in the assay buffer.
  • the SPA bead (5 mg/mL) coupled membranes (10 ⁇ g/mL) can be then incubated with 0.5 nM [ 35 S]GTPyS in the assay buffer.
  • the basal binding can be that taking place in the absence of added test compound; this unmodulated binding can be considered as 100%, with agonist stimulated binding rising to levels significantly above this value.
  • a range of concentrations of receptor agonist can be used to stimulate [ 35 S]GTPyS binding. Both basal and non-specific binding can be tested in the absence of agonist; non-specific binding determination included 10 ⁇ M unlabeled GTP ⁇ S.
  • Compounds can be tested for function as antagonists by evaluating their potential to inhibit agonist-stimulated GTP ⁇ S binding. Radioactivity can be quantified on a Packard TopCount. The following parameters can be calculated:
  • % inhibition (% stimulation by 1 ⁇ M DAMGQ - % stimulation by test compound) x 100 (% stimulation by 1 ⁇ M DAMGO - 100)
  • EC 5O values can be calculated using GraphPad Prism.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

L'invention concerne des modulateurs des récepteurs opioïdes delta représentés par la formule (I). Plus spécifiquement, elle concerne des modulateurs des récepteurs opioïdes delta tricycliques. Des compositions pharmaceutiques et vétérinaires destinées à traiter les douleurs modérées à fortes sont également décrites.
PCT/US2005/046690 2004-12-22 2005-12-21 Modulateurs des recepteurs opioides delta tricycliques WO2006069275A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002592462A CA2592462A1 (fr) 2004-12-22 2005-12-21 Modulateurs des recepteurs opioides delta tricycliques
MX2007007625A MX2007007625A (es) 2004-12-22 2005-12-21 Moduladores delta-opioides triciclicos.
JP2007548492A JP2008525481A (ja) 2004-12-22 2005-12-21 三環式δ−オピオイド・モジュレーター
EP05855275A EP1836196A1 (fr) 2004-12-22 2005-12-21 Modulateurs des recepteurs opioides delta tricycliques
BRPI0519198-0A BRPI0519198A2 (pt) 2004-12-22 2005-12-21 moduladores de delta-opiàide tricÍclicos
AU2005319059A AU2005319059A1 (en) 2004-12-22 2005-12-21 Tricyclic delta-opioid modulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63831404P 2004-12-22 2004-12-22
US60/638,314 2004-12-22

Publications (1)

Publication Number Publication Date
WO2006069275A1 true WO2006069275A1 (fr) 2006-06-29

Family

ID=36177990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/046690 WO2006069275A1 (fr) 2004-12-22 2005-12-21 Modulateurs des recepteurs opioides delta tricycliques

Country Status (10)

Country Link
US (2) US20060135522A1 (fr)
EP (1) EP1836196A1 (fr)
JP (1) JP2008525481A (fr)
KR (1) KR20070092286A (fr)
CN (1) CN101128458A (fr)
AU (1) AU2005319059A1 (fr)
BR (1) BRPI0519198A2 (fr)
CA (1) CA2592462A1 (fr)
MX (1) MX2007007625A (fr)
WO (1) WO2006069275A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513407C (zh) 2003-06-27 2009-07-15 詹森药业有限公司 三环δ阿片样物质调节剂
EP1910353A1 (fr) * 2004-08-05 2008-04-16 Janssen Pharmaceutica N.V. Modulateurs d opioïdes delta tricycliques
CN101119992A (zh) * 2004-12-22 2008-02-06 詹森药业有限公司 三环δ阿片样物质调节剂
WO2006069276A2 (fr) 2004-12-22 2006-06-29 Janssen Pharmaceutica N.V. Modulateurs des recepteurs opioides $g(d) tricycliques
BRPI0519198A2 (pt) * 2004-12-22 2008-12-30 Janssen Pharmaceutica Nv moduladores de delta-opiàide tricÍclicos
EP1846400A2 (fr) * 2005-01-06 2007-10-24 Janssen Pharmaceutica N.V. Modulateurs delta-opioide tricycliques
JP2008543866A (ja) * 2005-06-16 2008-12-04 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 三環式オピオイドモジュレーター
IT1396951B1 (it) * 2009-12-18 2012-12-20 Neuroscienze Pharmaness S C A R L Composti farmaceutici
KR101275092B1 (ko) * 2011-05-19 2013-06-17 한미정밀화학주식회사 아질사르탄의 개선된 제조방법
CN102680310A (zh) * 2012-03-20 2012-09-19 中国人民解放军第二军医大学 一种微波辅助血浆样品前处理方法及在血浆代谢组学分析中的应用
EP3248230B1 (fr) * 2015-01-20 2020-05-06 cynora GmbH Utilisation des molecules organiques dans des composants optelectroniques
CN108069935A (zh) * 2017-12-25 2018-05-25 天津瑞岭化工有限公司 一种2,4-二乙基硫杂蒽酮的制备方法
CN115521319A (zh) * 2021-06-25 2022-12-27 沈阳兴齐眼药股份有限公司 2-(10-氧代-9-氧杂-1-氮杂蒽-6-基)丙酸酯类化合物的制备方法及用途
CN115521320B (zh) * 2021-06-25 2023-09-05 沈阳兴齐眼药股份有限公司 一种制备普拉洛芬的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931232A (en) * 1974-06-24 1976-01-06 Smithkline Corporation 3-Alkyl xanthene compounds
FR2290202A1 (fr) * 1974-11-06 1976-06-04 Smithkline Corp Nouveaux derives piperidylideniques, leur procede de preparation et leur application en therapeutique
WO2002048122A2 (fr) * 2000-12-14 2002-06-20 Ortho-Mcneil Pharmaceutical, Inc. Derives de la benzamidine
WO2004035541A1 (fr) * 2002-10-15 2004-04-29 Janssen Pharmaceutica, N.V. Derives (piperidine-4-yl)-aminobenzamido a substitution benzyl servant de modulateurs de recepteurs delta-opioides
WO2005003131A1 (fr) * 2003-06-27 2005-01-13 Janssen Pharmaceutica N.V. Modulateurs du recepteur opioide $g(d) tricycliques

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386006A (en) * 1943-09-09 1945-10-02 New York Air Brake Co Sander
US2368006A (en) * 1943-10-07 1945-01-23 Searle & Co Heterocyclic tertiary amines
US2784185A (en) * 1953-03-27 1957-03-05 Promonta Chem Fab Phenothiazine compounds
US2901478A (en) * 1957-02-11 1959-08-25 Promonta Chem Fab Phenothiazine compounds
US3179665A (en) * 1959-12-16 1965-04-20 Wander Ag Dr A 9-(n-ethyl and n-propyl piperidyl-3'-methyl)-thioxanthenes
DE1159954B (de) * 1961-11-25 1963-12-27 Boehringer & Soehne Gmbh Verfahren zur Herstellung neuer 10-(Alkoxypiperidinopropyl)-phenthiazine und ihrer Salze
US3470188A (en) * 1967-01-05 1969-09-30 Smithkline Corp 9-cycloalkyl-lower alkyl-piperidylidene derivatives of xanthenes and thioxanthenes
NL6818027A (fr) * 1968-01-09 1969-07-11
US3987042A (en) * 1969-03-03 1976-10-19 Claude Gueremy Phenothiazine derivative
US4086350A (en) * 1974-11-06 1978-04-25 Smithkline Corporation Pharmaceutical compositions and method of producing anti-psychotic activity without extrapyramidal symptoms
US4285956A (en) * 1978-05-12 1981-08-25 Kefalas A/S Xanthene and thioxanthene derivatives, compositions thereof and treatment therewith
US4356184A (en) * 1980-06-04 1982-10-26 G. D. Searle & Co. Anti-allergic or antihypertensive 1-piperidinylmethyl benzenamines
US4666907A (en) * 1983-10-05 1987-05-19 Merck Frosst Canada, Inc. Phenothiazine and derivatives and analogs and use as leukotriene biosynthesis inhibitors
US4777177A (en) * 1984-10-19 1988-10-11 Ciba-Geigy Corporation Pesticidal thioxanthen-9-ylidenepiperidines
FR2689013B1 (fr) * 1992-03-30 1995-05-05 Rhone Poulenc Rorer Sa Nouvelle application thérapeutique des dérivés de la phénothiazine.
ZA978792B (en) * 1996-10-04 1998-04-06 Novo Nordisk As N-substituted azaheterocyclic compounds.
SE9604786D0 (sv) * 1996-12-20 1996-12-20 Astra Pharma Inc New compounds
US6040318A (en) * 1997-06-25 2000-03-21 Novo Nordisk A/S Tricycle substituted with azaheterocyclic carboxylic acids
US6601009B2 (en) * 2001-07-12 2003-07-29 Yahoo Inc Method and system of automatic bandwidth detection
US7060711B2 (en) * 2001-10-25 2006-06-13 Biofrontera Bioscience Gmbh Derivatives of 4-(thio- or selenoxanthene-9-ylidene)-piperidine or acridine and its use as a selective 5-HT2B receptor antagonist
EP1910353A1 (fr) * 2004-08-05 2008-04-16 Janssen Pharmaceutica N.V. Modulateurs d opioïdes delta tricycliques
WO2006069276A2 (fr) * 2004-12-22 2006-06-29 Janssen Pharmaceutica N.V. Modulateurs des recepteurs opioides $g(d) tricycliques
BRPI0519198A2 (pt) * 2004-12-22 2008-12-30 Janssen Pharmaceutica Nv moduladores de delta-opiàide tricÍclicos
CN101119992A (zh) * 2004-12-22 2008-02-06 詹森药业有限公司 三环δ阿片样物质调节剂
EP1846400A2 (fr) * 2005-01-06 2007-10-24 Janssen Pharmaceutica N.V. Modulateurs delta-opioide tricycliques
JP2008543866A (ja) * 2005-06-16 2008-12-04 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 三環式オピオイドモジュレーター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931232A (en) * 1974-06-24 1976-01-06 Smithkline Corporation 3-Alkyl xanthene compounds
FR2290202A1 (fr) * 1974-11-06 1976-06-04 Smithkline Corp Nouveaux derives piperidylideniques, leur procede de preparation et leur application en therapeutique
WO2002048122A2 (fr) * 2000-12-14 2002-06-20 Ortho-Mcneil Pharmaceutical, Inc. Derives de la benzamidine
WO2004035541A1 (fr) * 2002-10-15 2004-04-29 Janssen Pharmaceutica, N.V. Derives (piperidine-4-yl)-aminobenzamido a substitution benzyl servant de modulateurs de recepteurs delta-opioides
WO2005003131A1 (fr) * 2003-06-27 2005-01-13 Janssen Pharmaceutica N.V. Modulateurs du recepteur opioide $g(d) tricycliques

Also Published As

Publication number Publication date
US20080306111A1 (en) 2008-12-11
AU2005319059A1 (en) 2006-06-29
CA2592462A1 (fr) 2006-06-29
BRPI0519198A2 (pt) 2008-12-30
JP2008525481A (ja) 2008-07-17
CN101128458A (zh) 2008-02-20
KR20070092286A (ko) 2007-09-12
MX2007007625A (es) 2008-01-28
EP1836196A1 (fr) 2007-09-26
US20060135522A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
EP1836196A1 (fr) Modulateurs des recepteurs opioides delta tricycliques
EP1833826B1 (fr) Modulateurs des recepteurs opioides-delta tricycliques
US8350041B2 (en) Tricyclic δ-opioid modulators
US7432257B2 (en) Piperdinyl-phenoxazine and phenothiazine derivatives as δ-opioid modulators
EP1910353A1 (fr) Modulateurs d opioïdes delta tricycliques
US7589104B2 (en) Tricyclic-bridged piperidinyline derivatives as §-opioid modulators
AU2011253957A1 (en) Tricyclic delta opioid modulators

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580048469.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 555865

Country of ref document: NZ

Ref document number: 2005319059

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2246/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/007625

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2592462

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007548492

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005319059

Country of ref document: AU

Date of ref document: 20051221

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077016473

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005855275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0519198

Country of ref document: BR