WO2006063512A1 - Procede de realisation de l'operation de commutation d'un reseau en anneau a origines et destinations multiples - Google Patents

Procede de realisation de l'operation de commutation d'un reseau en anneau a origines et destinations multiples Download PDF

Info

Publication number
WO2006063512A1
WO2006063512A1 PCT/CN2005/002166 CN2005002166W WO2006063512A1 WO 2006063512 A1 WO2006063512 A1 WO 2006063512A1 CN 2005002166 W CN2005002166 W CN 2005002166W WO 2006063512 A1 WO2006063512 A1 WO 2006063512A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection
channel
switching
ring network
signaling
Prior art date
Application number
PCT/CN2005/002166
Other languages
English (en)
French (fr)
Inventor
Guangjun Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to US11/568,579 priority Critical patent/US7924707B2/en
Publication of WO2006063512A1 publication Critical patent/WO2006063512A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration

Definitions

  • the present invention relates to the field of optical network communication technologies, and in particular, to a method for implementing a many-to-many, that is, M: ring network protection switching operation.
  • Survivability technology is a technology that improves the reliability performance of a network by providing the ability to recover services from service interruptions. This technology should be applied to all places where services are provided. Of course, for communication networks, providing protection switching is a must.
  • SDH/S0NET Synchronous Digital Sequence/Synchronous Optical Network
  • 1+1, 1:N -to-multiple
  • SNCP subnet connection protection
  • DNI Double Node Interconnect
  • the protection switching in each of the above communication networks does not involve the M: N protection mode.
  • the M: N protection mode refers to the protection mode of the M protection channels to protect the N working channels.
  • the ability of the protection channel and the working channel to resist failure is generally the same, so the integration rate of the protection channel and the working channel failure should also be the same, so 1: N protection is used, when N is relatively large
  • the probability of competing for a protection channel is still very large. At this time, the protection of some working channels will not be provided in the network. Therefore, it is necessary to implement M: N protection in the communication network.
  • US 2004/0022279 AI describes the method of M: N path protection.
  • the serial connection monitoring function, the serial reverse failure indication and the serial path identification are used. Specifically: when a failure is detected on the working section, the failure information is notified to the remote section by forcibly inserting the RDI (distal defect indication) into the serial path. Point, until the end of the failure, in the case of more than one protection path, the failure path is received and distinguished on the protection path by a unique path identifier.
  • one network node is defined as a slave node, which cooperates with the master node to ensure that the same protection path is used as the master node. Two timers are used during failover to complete the recovery process of protection switching.
  • the nodes of the ring network for M: N mainly include an optical cross matrix, which is used for bridging (silently) and switching (selecting functions) of optical signals.
  • a network of independent optical switches is included in the optical switching matrix, each corresponding to a protection channel, connected to the protection optical port through an optical transceiver. Changing the optical switching network can change the respective protection channels within the node.
  • a multiplexing and demultiplexing processing unit for converting between signals received by the optical port and optical cross-matrix processing signals. There is a failure detector that detects a signal failure after the signal is demultiplexed.
  • At least two network nodes are included in the network, and two optical fibers are connected between the network nodes to respectively transmit work services and protection services.
  • the patent application provides a method of arranging a protection service route such that at least two protection channels can protect a range of operating wavelengths.
  • This device does not detect the status of the protection channel. Therefore, the failure of the protection channel cannot be monitored, which will result in the failure of the protection switching.
  • an M: N ring network protection switching technology that uses a protection channel or a special control channel to transmit a switching protocol to perform signaling interaction and implement ring network protection switching.
  • external switching commands such as FS, MS, and LP can be supported, and the protection channel priority setting can be supported to support protection when the protection and working channel bandwidth are inconsistent.
  • the protection channel can transmit functions such as additional services, and can provide protection when multiple working channels fail. It can be optimized to realize long and short path protection channels can be used simultaneously.
  • Protecting the working channel service and providing complete protection switching the technology provides a powerful M: ⁇ implementation of non-network protection switching.
  • an object of the present invention is to provide a method for implementing a multi-pair and multi-ring network protection switching operation, which is reasonable and effective: ⁇ ring network protection switching definition and transmission in the process of switching.
  • the present invention provides a method for implementing a multi-pair and multi-ring network protection switching operation, including:
  • OK ⁇ ⁇ ring network protection switching switching request, switching request destination node, switching request source node, long and short path flag, switching bridge status, protected working channel channel number and protection channel usage information;
  • the ring network node After receiving the signaling, the ring network node performs M: N ring network protection switching operation according to the information carried by the ring network node.
  • the specific protection switching operation performs M: N ring network protection switching operation according to the channel number of the protected working channel and the usage information of the protection channel.
  • the signaling is based on automatic protection switching APS protocol signaling, and the signaling may be carried by overhead bytes or protocol data unit PDU packets.
  • the information carried in the signaling may further include:
  • the switching request information further includes:
  • Zone protection lock request and/or signal failure protection request information.
  • the use of the protection channel includes:
  • the state of the switching bridge includes:
  • Alarm indication signal AIS remote defect indication RDI
  • additional service occupation protection channel bridge switching, bridging and idle state.
  • the step A described further includes:
  • the network node that initiates the protection switching request determines the protection channel that can be occupied by the protection switching according to the locally saved protection channel usage information, and the protection status of the long and short path information of the protection channel and the state of the switching bridge.
  • the step A1 described further includes:
  • the protection channel that can be occupied is determined according to the priority of the switching request and the switching request priority corresponding to the applied protection channel.
  • the step B described further includes:
  • the signaling is transmitted in the ring network through a protection channel or a dedicated control channel in the ring network, and in the signaling transmitted through the dedicated control channel, the channel number of the protection channel that initiates the switching request is also required to be carried. .
  • the step B described further includes:
  • the signaling is transmitted through the protection channel or the dedicated control channel in the short-path direction and the long-path direction of the ring network, respectively, until the other end of the network node of the requesting segment.
  • the step C described includes:
  • the network node in the ring network After receiving the switching request, the network node in the ring network updates the usage information of the protection channel saved by the node according to the content information carried by the switching request signaling, and determines whether to use the corresponding protection channel according to the local switching request situation. If yes, continue to pass the switching request until the destination end of the section corresponding to the switching request, otherwise, terminate the switching request.
  • the step C when the signaling is delivered through a dedicated control channel, the step C includes:
  • the network node receives the APS protocol signaling PDU message, according to the check code to determine whether there is a bit error, if it occurs, discard the message, otherwise, step C2;
  • C2 Query the protocol version number in the APS protocol signaling, and determine whether it matches the local protocol version number. If yes, perform step C3. Otherwise, report the alarm information.
  • C3 Determine whether the PDU packet is lost according to the sequence number of the PDU packet. If yes, discard the packet. Otherwise, perform protection switching processing according to the switching request signaling.
  • the present invention provides a format of APS protocol signaling, which includes various types of information necessary for performing a switching operation, and provides specific signaling using overhead byte bearer.
  • the format, and the format of the signaling carried by the PDU message can be applied to both the protection channel and the dedicated control channel for transmission.
  • the present invention provides a reasonable and effective transmission mode of the APS protocol signaling for the switching operation for the M: N ring network protection switching, so that the corresponding protection switching process can be smoothly performed, and the ring network protection is improved. Reliability.
  • FIG. 1 is a schematic diagram of the format of signaling transmitted through a protection channel
  • FIG. 2 is a schematic diagram of a dedicated control channel for M:N ring network protection
  • FIG. 3 is a schematic diagram of a format of signaling transmitted using a dedicated control channel
  • Figure 4 is a schematic diagram of signaling using a protection channel
  • Figure 5 is a schematic diagram of signaling using a dedicated control channel
  • FIG. 6 is a flow chart of an embodiment of performing an M:N ring network protection switching operation according to the channel number of the protected working channel and the protection channel usage information.
  • the present invention provides a method for implementing an M : N protection switching operation in an M:N protection ring network, in which a format of signaling required for performing a protection switching operation and a manner of transmitting it in a ring network are defined, thereby The reliability of the M: N protection switching operation in the ring network is guaranteed.
  • the method according to the present invention uses information required for the signaling bearer protection switching operation based on the APS (Automatic Protection Switching) protocol, and transmits the APS protocol signaling through the protection channel or the dedicated control channel.
  • APS Automatic Protection Switching
  • the following describes the format of the corresponding signaling and the method of transmission in the ring network when signaling transmission through the protection channel or the dedicated control channel.
  • the information fields that the signaling needs to bear include: a switching request field, a destination node number field of the switching request, a source node number field of the switching request, and a long and short path flag.
  • Field, reversed bridge status field, protected work The channel number field of the channel, and the usage field of the protection channel;
  • the signaling bytes should be of sufficient length to be used in the 0TN (Optical Transport Network) standard ITU-T G.709 in four APS/PCC (Automatic Protection Switching/Protection Control)
  • the requirements of the channel) overhead byte are as follows.
  • the format of the signaling is as shown in FIG. 1.
  • the destination node of the switching request, the switching request, the source node of the switching request, and the channel number of the protected working channel are respectively It is represented by 5 bits, the long and short path flags are represented by 1 bit, the state of the switching bridge is represented by 3 bits, and the use of the protection channel is represented by 8 bits, as shown in FIG.
  • the value of all fields in the signaling refers to the value of the protection channel on the segment between the destination node of the switching request and the source node of the switching request; from Figure 1, the destination node number of the switching request and the source of the switching request It can be seen from the definition of the number of bits in the node number field that signaling in this format can support the protection switching operation of the ring network composed of 32 network nodes.
  • the switching request refers to a switching request on a working channel to be protected by the switching channel on the segment, basically including various types of switching requests defined in SDH/S0NET, and also for LP-S (segment protection locking) ) Distinguish from the priority of SF-P (Signal Failure Protection), see Table 1 below:
  • the long and short path fields are used to indicate that the switching request is: when the value is 1, it represents the long path, and when the value is 0, the short path is represented.
  • the switching bridging state is the state on both end nodes of the protection channel of the segment, and the values of the inverting bridging state field are as shown in Table 2:
  • the channel number of the working channel to be protected by the protection channel of the signaling can support up to 32 working channels;
  • the usage of the protection channel is the usage of all protection channels in this section.
  • the signaling in the format of Figure 1 can support up to 8 protection channels, that is, up to 8 : 32 ring network protection system;
  • the protection channel usage field A - H corresponds to the use of protection channels 1 - 8 respectively. When the A - H field takes the value 1, it indicates the corresponding protection. The channel has been used. When the value is 0, it indicates that the corresponding protection channel has not been used.
  • the corresponding overhead field may be extended on the basis of the field content information included in the signaling in FIG. 1, and the check field of the switching page is added to determine the switching page. It is correct to avoid the confusion of the protocol status.
  • the peer end is the westbound ring switching page, and the local end must be the eastbound ring switching page.
  • the sequence number field may be increased, and the network node receiving the signaling through the corresponding sequence number can more easily know whether the corresponding overhead byte is lost during the delivery process.
  • a check code field may also be added in the signaling to ensure the accuracy of the received information.
  • the protocol version number field may also be added in the signaling to avoid problems when different versions of the protocol are connected.
  • the APS protocol signaling can be transmitted in the ring network when the protection switching operation is required.
  • the specific transmission process is as follows:
  • the protection channel is in the direction of failure.
  • the short-track switching request overhead byte is sent, and the long-distance switching request overhead byte is sent in the opposite direction to the failure of the protection channel, and the overhead byte is filled according to the definition and the actual situation of the section.
  • the network node on each ring After receiving the two overhead bytes, the network node on each ring first updates the protection channel usage table saved by the network element, such as the protection channel usage record table shown in Table 3.
  • the intermediate network node determines whether the switching request is allowed to use the protection channel, and if allowed, the intermediate network node enters the through state (partial punch-through, full punch-through). Terminate this overhead byte if not allowed, send it as local The new overhead byte.
  • the two end nodes in the failed zone determine the bridging and switching action of the protection channel according to the signaling transmitted on the received protection channel.
  • a network node may receive signaling from different protection channels, and the protocol processor of the network node needs to be treated separately, so as to implement services on the relatively independent protection working channels of the m protection channels.
  • the APS protocol signaling can also be transmitted through a dedicated control channel. As shown in FIG. 2, the outermost channel in the ring network represented by a thick double arrow line is a dedicated control channel.
  • the signaling of the protection switching operation is transmitted through the dedicated control channel, the content of the information to be carried by the signaling is substantially the same as the content of the information word to be carried by the signaling transmitted through the protection channel, that is, still needed in the signaling.
  • the signaling needs to carry the channel number of the protection channel that initiates the request.
  • the specific format of the signaling is shown in FIG. 3 .
  • the signaling is carried by the PDU packet, and the information carried in each field is: version number: used to implement interconnection between different protocol versions to prevent interconnection problems caused by incompatible versions;
  • the channel number of the protection channel that initiates the request The segment between the destination node for indicating the switching request and the source node of the switching request attempts to protect with the protection channel, so the network element receiving the PDU signaling message needs to be based on The channel number determines whether the local protection channel is used to protect the higher priority request, and if so, the transmission of the message is aborted, if the local protection channel is idle (passing additional traffic) or the protection priority is low
  • the switching request is to suppress the local switching request by the request in the received PDU signaling message, and set the local protection channel to be in the through state, and the PDU message (ie, PDU signaling) is continuously transmitted to The next network node, that is, the opposite direction to the received message.
  • Msgid (identification of PD1 ⁇ ): It is used to transmit different messages to implement different functions. For example, the information carried by the Msgid field when performing protocol switching page check is PDU-ID-SWPG-VERIFY, if this message The information carried by the Msgid field when the APS switching protocol is used is PDU-1D-APS-PROTOCOL to extend the function of the PDU.
  • Serial number of the PDU packet To prevent the loss of the PDU packet or the first-come-first-served Image is a measure to improve the reliability of switching.
  • Destination node number The node number of the other endpoint of the zone that the node that initiated the switching request wishes to protect, which is a field required by the APS switching protocol.
  • Switching status The same as in the previous overhead byte, to identify the status of bridging and switching, and also to pass AIS and RDI information, which is also required for the APS switching protocol.
  • Source node number The node number of the network node that initiated the switch request. This field is also the field required by the APS switch protocol.
  • Long and short path flag It is used to distinguish whether it is long-path or short-path APS switching signaling. This field is also the field required by the APS switching protocol.
  • Switching request It is to identify the type of the switching request, which is the same as the definition in the previous delivery of the overhead byte, which is the field required by the APS switching protocol.
  • 1-16 Identifies the usage of 16 protection channels, which is a bit-by-bit value. A value of 0 indicates that the channel is not used. A value of 1 indicates that the channel is used. A failure area in the section switching state. The protection channel of the segment is used, and the protection channel of the long path of the failure segment in the ring switching state is used.
  • Channel number of the protected working channel Value 0-255, indicating the protection channel that initiated the switching request. Channel number of the working channel to be protected.
  • BIP8 checksum It is used to prevent bit errors in the transmission of PDU packets and affect the robustness of the switchover.
  • the dedicated control channel needs to reach all nodes on the ring network, and can satisfy point-to-point communication and signaling in a specified direction.
  • the specific signaling transmission mode is as follows: First, according to the check code byte of the received signaling, it is seen whether the signaling has a bit error during the transmission process, and if it is a bit error, it is discarded; otherwise, the query protocol continues. The version number is displayed to see if it matches. If there is no match, the alarm is reported. If it matches, different PDU messages are processed differently according to the Msgid field.
  • the present invention is only concerned with the processing of signaling PDU messages, that is, the location of the PDU-ID-APS-PROTOCOL message.
  • the check field of the switch page has no effect, but in the right
  • PDU-ID-SWPG- VERIFY message processing takes effect; for PDU message sequence number to prevent packet loss, the sequence number should be maintained for each protection channel of each segment, without comparison between each other Only the same segment is compared with the serial number of the protection channel to prevent packet loss; the channel number of the protection channel that initiates the request, the channel number of the protected working channel, and the usage field of the protection channel are used for the replacement channel.
  • the local protection channel usage information table should be updated when receiving the PDU packet, as shown in Table 3.
  • the values of other fields in the PDU are the fields required by the APS protocol. The processing of the field needs to be processed according to the APS protocol, and the usage of the protection channel needs to be referred to.
  • the resource preemption processing of the protection channel may be performed, and then the preemption processing of the protection channel resource is performed.
  • the process is described. Referring to Table 3, the specific protection channel resource preemption process is as follows:
  • Table 3 shows a usage record record of each zone protection channel saved by a network node with six network nodes and four protection channel ring networks as examples.
  • the overhead byte may be limited, and may not be transmitted. In this case, only the protection channels of different segments may be identified in Table 3. Whether it is used, if the unused value is 0, if it is used, the value is 1.
  • the protection channel No. 3 between the BC segments is protecting the services in the working channel No. 8, and the protection channels of other segments are transmitting additional services.
  • the service of the working channel is protected by the protection channel No. 2 on BC, CD, DE, EF, FA.
  • the protection channel usage record table can be used to know the usage of the protection channel of the full ring. Therefore, when a new switching request occurs, the APS protocol processor running in the network node queries the table and follows the corresponding rules (ie, The resource occupation and preemption rules are performed by the protection switching process, and the corresponding APS signaling for controlling the protection switching operation is generated.
  • the corresponding rule may be:
  • a protection channel in the network node is partially through (that is, the protection channel is only used to transmit overhead, but is not used to protect the working channel), and this channel can be used for protection;
  • the protection channel of a segment on the ring When the protection channel of a segment on the ring is used for segment switching, the state of the protection channel on the ring on other cells is partially through, and the protection channel in the partial punch-through state is preferentially used to improve protection.
  • Channel utilization because one protection channel can be used for segment switching simultaneously in different segments on the ring;
  • protection channel for protection If there is no protection channel in the partial punch-through state or idle state, that is, the protection channel of the segment is used to protect the service of the working channel, look for the protection channel in the zone protection, and use the long-path of the protection channel. Protection channel for protection;
  • protection channels There may be several such protection channels. In this case, you need to choose among these protection channels.
  • the rule of choice is as follows: If these protection channels have segment switching coexistence, the reverse of these channels must receive no pointing. The long-path segment switching request of the node; if the priority of the segment switching request is lower than the priority of the local latest switching request, the long path of the protection channel is used, if such a protection channel is further There are a few, the preemption has the lowest priority The long path of that protection channel.
  • the local protection channel may be used for protection of the long path of other segments, that is, the channel of the network node is in the full punch-through state.
  • These protection channels must receive a ring switching request whose long path does not point to the local node. If there is a lower than the local request in these switching requests, the switching is preempted, so that the protection channel is used for local segment protection.
  • the network nodes are all in a state of partial punch-through, and the bridges and switches that have been established in other sections are released.
  • the local protection channels are used for zone or ring switching protection, the long path of these protection channels is protected by the higher priority zone of other zones, then the local switching request cannot establish any Bridge and switch, the service on the working channel where this switching request occurs is not protected.
  • FIG. 4 shows a 1:2 ring system, which is composed of four network elements, and two working channel failures occur between ABs. The first time you can use zone switching for protection, the switching is handled in the same way as the 1:1 ring protection switching; after the successful failure of the working channel No. 1, the new working failure occurs in the working channel No.
  • the protection channel has been used, so the A node (assuming A is the initiating node for switching and B is the responding node for switching) tries to use the long path of the protection channel of the AB segment No. 1, that is, the BC, CD, and DA segments.
  • the protection channel is ring protected, so A sends a long-path SF-R switching request in the west direction, simultaneously passes the channel number 2 of the protected working channel, and the usage of the protection channel: is used.
  • the node D After receiving the SF-R switching request, the node D updates the table of the local protection channel usage. Because it is in the partial punch-through state, the protection channel 1 can be used, and the protection channel 1 enters the full punch-through state from the partial punch-through state. The signaling passes through.
  • the processing of the node C is similar to the processing of the node D.
  • the node A receives the long-distance switching request signaling sent by the B for bridging switching, and the node A also needs to send the long-path SF-R. Bridge switching signaling, node A receives this
  • the long-path reversal clearing signaling is also bridged and switched, so that the service of the working channel is protected. As shown in the figure, the service transmitted through the thick-dashed path is lost due to the failure of the working channel. At the same time, after the protection switching process, the service can be transmitted through the thick solid path in the figure to protect the service.
  • the signaling is transmitted as shown by a thin broken line in the figure.
  • the thick solid line in the figure represents a dedicated control channel, and the APS protocol signaling of all protection channels is transmitted through the dedicated control channel.
  • the dotted arrow line indicates the transmission path of the APS switching signaling.
  • the processing after receiving the APS protocol signaling by each network element in FIG. 5 is basically the same as the manner of transmitting the signaling by using the protection channel, but between all the nodes that initiate the switching request and the nodes that respond to the switching request.
  • the node needs to separately process the channel number field of the protection channel in the received switching signaling, that is, the signaling of different protection channel numbers is processed differently to ensure a relatively independent protection working channel of the protected channel, and It also needs to be processed according to the serial number of the signaling to avoid the problem of out-of-sequence of signaling caused by using the same control channel.
  • the specific M:N ring network protection switching operation is performed according to the channel number of the protected working channel and the usage information of the protection channel.
  • the internal table of each network node performing the flow of the embodiment shown in FIG. 6 stores the table shown in Table 4, the usage of each protection channel described in this table, including the protection channel used to protect that working channel, and the work What type of channel switching request is.
  • the process shown in FIG. 6 involves two nodes, wherein the process on the left side of FIG. 6 relates to a node that initiates switching,
  • the flow on the right side of Figure 6 relates to the node that responds to the switch.
  • a network node A when a network node A generates a new switching request in step 1 (for example, working channel 5), the network node that needs to perform the switching operation of detecting the switching request queries the table 4 maintained by itself in step 2, Check if there is any unused protection channel. If yes, decide which protection channel to use according to the set rules. For example, decide to use the protection channel with the lowest number that is not used, for example, the protection channel numbered 3. Otherwise, according to the setting.
  • the rule determines the protection channel that needs to be preempted, and releases the service originally protected by the channel, so that the channel acts as a protection channel to be used. Then, in step 5, the usage of the protection channel of Table 4 stored in the node is modified, and in step 6, the protocol signaling is sent through the protection channel of number 3.
  • the corresponding switched network node B detects the new protocol signaling from the protection channel numbered 3 in step 7, and passes it to the protocol processor embedded in the node.
  • the protocol processor first determines the reception in step 8. Whether the type of the protocol signaling is consistent with the protocol type of the node. If it is inconsistent, the alarm is reported and processed according to the default protocol type, and then step 10 is performed. Otherwise, it is directly determined in step 10 whether the selected protection channel is protected with the node. The usage of the channel conflicts. If there is a conflict, the alarm is reported in step 11, and the protection switching process is terminated. Otherwise, the protection channel usage of Table 4 of the node is modified in step 12, and the service is bridged, that is, the service of the working channel 5 is bridged to the protection channel 3. on. Then, in step 13, the protocol signal of the request type is reversed to the node that initiated the switching through the protection channel numbered 3.
  • the network node B reports the alarm operation in step 9 as follows: First, check the contents of Table 4 saved by the node. If the protection channel with the number less than 3 has not been used for protection, report the alarm. If the number 3 is protected. The channel has been used to protect other working channels, and another alarm is reported. If it is not the above, update Table 4 of the node, and then change the channel number of the corresponding protected working channel of protection channel 3 to 5. The network node B updates the request field in the signaling to be sent to the content of the switching request field in the above received signaling.
  • the network node A receives the protocol signaling of the reverse request in step 14, and updates the request of the working channel 5 in the table 4 of the node. Then, in step 15, the service is selected from the protection channel 3, and the service of the working channel 5 is bridged to the protection channel 3. Protocol signaling is then sent on protection channel 3.
  • the network node B receives the protocol letter sent by the network node A through the protection channel 3 in step 16. Let, select the service from the protection channel 3, and at the same time send the protocol signaling to the network node A in step 17, the network node A receives the signaling in step 18 and then ends the protection process.
  • an external protection lock is issued on a protection channel and the protection channel is detected locally, it is detected whether there is a protection channel that is not used. If there is a service bridge that switches the current protection channel to the unused protection channel with the lowest number. . If both are used, the switching request of the working channel protected by the protection channel is treated as a new switching request, and the following steps are taken: If the protection channel is not fully used, there is no protection channel preemption. If the protection channel used now is used and a new switching request is generated, query Table 4, find the lowest priority release of the switching request of a working channel from Table 4, and release the released protection channel. Protect the business on this work channel that generates new requests. If the switching requests for all working channels are the same, the protection channel with the smaller number has the highest priority.
  • the supported protocol type may be single-ended or double-ended; it may be either recovery or non-recovery, but in order to effectively use the protection channel to deliver additional services, the default is double-ended, recovery.
  • the supported protocol type may be single-ended or double-ended; it may be either recovery or non-recovery, but in order to effectively use the protection channel to deliver additional services, the default is double-ended, recovery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

实现多对多环网保护倒换操作的方法 技术领域 本发明涉及光网络通信技术领域, 尤其涉及一种实现多对多, 即 M: 环网保护倒换操作的方法。
背景技术 保护倒换在本质上是一种可生存性技术。可生存性技术是通过提供从 服务中断中恢复服务的能力来提高网络的可靠性性能的技术。 这种技术应 该可以应用于所有提供服务的场所, 当然对于通讯网络来说, 提供保护倒 换更是一个必备条件。
保护倒换在通讯网络中有着广泛的应用。 例如 SDH/S0NET (同步数字 序列 /同步光网络)提供了 1+1 , 1: N (—对多)保护, 两纤环 /四纤环复 用段保护, SNCP (子网连接保护)保护和 DNI (双节点互连)保护, 以及 0TN (光传送网)的保护等。
以上的各个通信网络中的保护倒换都没有涉及到 M: N的保护方式, 所 述的 M: N保护方式是指 M条保护通道保护 N条工作通道的保护方式。 在通信 网络中, 保护通道和工作通道的抗失效的能力一般情况下是相同的, 因此 保护通道和工作通道失效的积无率也应该是相同的, 因此采用 1 : N保护, 当 N比较大的情况下, 多条工作通道争用一条保护通道的概率还是很大的。 此时, 网絡中将不能提供对于某些工作通道的保护, 因此, 在通信网络中 推行 M: N保护是十分必要的, M、 N的关系为: 1< = M< = N。
为此, 在 US 2004/0022279 AI专利 请中提供了相应的 M: N路径保护 的实现方法, 在 EP1014613 A2专利申请中描述了进行 M: N保护倒换的网络 节点的结构和功能, 但是两件专利申请中均未提供一个完整的 M: N保护倒 换的方案, 且均存在着相应的不足。
其中, US 2004/0022279 AI描述了 M: N路径保护的方法。 在该专利提 供的 M: N的路径保护的方法中, 使用串连监视功能, 串连反向失效指示和 串连路径标识来完成。 具体为: 当在工作区段上检测到失效时, 将失效信 息通过强制*** RDI (远端缺陷指示)到串连路径中的方式告知远端的节 点, 一直到失效结束为止, 在有多于 1条保护路径的情况下失效路径通过 唯一的路径标识在保护路径上被接收并区分出来。 当有多个保护路径的时 候, 一个网络节点被定义为从节点, 它与主节点协同动作, 以保证与主节 点使用相同的保护路径。 在失效恢复的时候使用了两个定时器来完成保护 倒换的恢复过程。
可以看出, US 2004/ 0022279 AI专利提供的方法存在以下缺点:
1、 实现的灵活性受限;
2、 没有提供对于 FS (强制保护倒换)、 MS (人工保护倒换)、 LP (保 护锁定) 等外部倒换命令的支持。
另外, 在 EP101461 3 A2专利申请中描述了进行 M: N保护倒换的网絡节 点的结构和功能。 针对 M: N的环网的节点, 主要包括光交叉矩阵, 用于光 信号的桥接(默发)和倒换(选收功能) 。 在光倒换矩阵中包含许多独立 的光开关的网络,每个对应一个保护通道,通过光收发器连到保护光口上。 改变光倒换网络就可以在节点内改变各自的保护通道。还包括复用和解复 用处理单元用于光口收到的信号与光交叉矩阵处理信号之间的转换。 有一 个失效检测器在信号被解复用之后检测信号失效。 在网络中至少包括两个 网络节点, 网络节点间有两条光纤相连, 分别传递工作业务和保护业务。 该专利申请提供了一种布置保护业务路由的方法, 使至少两条的保护通道 可以保护一系列的工作波长。
可以看出, 这一技术方案存在以下缺点:
1、 只实现对于 DWDM (密集型波分复用) 的不同波长间的 M: N保护;
2、 这种装置没有检测保护通道的状态, 因此对于保护通道失效的情 况无法监控, 将导致保护倒换的失败。
为克服上述问题, 有人推出了通过开销字节或者特殊报文使用保护通 道或者专用控制通道传递倒换协议进行信令的交互, 并实现环网保护倒换 的 M: N环网保护倒换技术。 在该技术中, 可以支持对于 FS , MS , LP等外 部倒换命令, 支持保护通道优先级的设置, 支持保护和工作通道带宽不一 致时的保护。 保护通道可以传递额外业务等功能, 能够提供在发生多个工 作通道失效时的保护, 可以优化实现长、 短径保护通道均可以被同时用于 保护工作通道业务, 提供完善的保护倒换, 因此该技术提供了一种功能强 大的 M: Ν 不网保护倒换的实现方法。 但是, 在所述技术中还没有提供一 种具体的在 Μ: Ν环网保护倒换过程中信令的定义及传递方法, 因而, 目 前还没有一种艮好地方法用于在该技术提供的 Μ: Ν环网保护倒换过程中 进行信令的定义及传递处理, 从而可靠地实现 Μ: Ν保护倒换。
发明内容
鉴于上述现有技术所存在的问题, 本发明的目的是提供一种实现多对 多环网保护倒换操作的方法, 以合理有效的 Μ: Ν环网保护倒换过程中的信 令定义及传送。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种实现多对多环网保护倒换操作的方法, 包括:
Α、 确定 Μ: Ν环网保护倒换的倒换请求、 倒换请求的目的节点、 倒换 请求的源节点、 长短径标志、 倒换桥接的状态、 保护的工作通道的通道号 及保护通道使用情况信息;
Β、 将所述的信息承载于信令中, 并在环网中传递;
C、 环网节点收到所述的信令后, 根据其承载的信息进行 M: N环网保 护倒换操作。
具体的保护倒换操作根据保护的工作通道的通道号及保护通道使用 情况信息进行 M: N环网保护倒换操作。
所述的信令为基于自动保护倒换 APS协议的信令, 且所述的信令可以 通过开销字节或协议数据单元 PDU报文承载传送。
所述的信令中承载的信息还可以包括:
倒换页面校验、 序列号、 校验码或协议版本号信息。
所述的倒换请求信息还包括:
区段保护锁定请求和 /或信号失效保护请求信息。
所述的保护通道使用情况包括:
保护通道是否处于部分穿通状态、 保护通道是否空闲、保护通道被应 用于区段保护、 保护通道被应用于环保护和 /或保护通道被应用时对应的 倒换请求的优先级。 所述的倒换桥接的状态包括:
告警指示信号 AIS、 远端缺陷指示 RDI、 额外业务占用保护通道、 桥接 倒换、 桥接及空闲状态。
所述的步骤 A进一步包括:
Al、在发起保护倒换请求的网络节点根据本地保存的保护通道使用情 况信息确定本次保护倒换可以占用的保护通道, 保护通道的长短径标志信 息、 倒换桥接的状态。
所述的步骤 A1还包括:
当网络节点上的保护通道均被应用时,根据所述倒换请求的优先级及 被应用的保护通道对应的倒换请求优先级确定可以占用的保护通道。
所述的步骤 B还包括:
将所述的信令通过环网中的保护通道或者专用控制通道在所述环网 中传递, 而且, 在通过专用控制通道传递的信令中, 还需要承载发起倒换 请求的保护通道的通道号。
所述的步骤 B还包括:
在发起倒换请求的网络节点,将所述的信令通过保护通道或者专用控 制通道分别在所述环网中的短径方向和长径方向进行传递, 直到倒换请求 区段的另一端网络节点。
所述的步驟 C包括:
环网中的网络节点收到所述的倒换请求后,根据倒换请求信令承载的 内容信息更新本节点保存的保护通道使用情况信息, 并根据本地的倒换请 求情况确定是否允许使用相应的保护通道, 如果允许, 则继续传递所述倒 换请求,直到所述倒换请求对应的区段的目的端,否则,终结该倒换请求。
本发明中, 当通过专用控制通道传递所述的信令时, 所述的步骤 C包 括:
Cl、 网絡节点接收所述的 APS协议信令的 PDU报文, 根据校验码确定是 否出现误码, 如果出现, 则丢弃该报文, 否则, 执行步骤 C2;
C2、 查询 APS协议信令中的协议版本号, 并判断是否与本地协议版本 号匹配, 如果匹配, 则执行步骤 C3, 否则, 上报告警信息; C3、 才艮据 PDU报文的序列号判断 PDU报文是否丢失, 如果是, 则丢弃该 报文, 否则, 根据所述的倒换请求信令进行保护倒换处理。
由上述本发明提供的技术方案可以看出, 本发明提供了 APS协议信令 的格式, 其中包含了进行倒换操作所必需的各类信息, 并提供了具体的利 用开销字节承载的信令的格式,及利用 PDU报文承载的信令的格式,因而, 既可以应用于在保护通道中传送, 还可以应用于专用控制通道中传送。 同 时, 本发明还为 M: N环网保护倒换提供了一种合理有效的用于倒换操作 的 APS协议信令的传递方式, 从而使得相应的保护倒换过程可以顺利的进 行, 提高了环网保护的可靠性。
附图说明 图 1为通过保护通道传递的信令的格式示意图
图 2为 M: N环网保护的专用控制通道的示意图;
图 3为使用专用控制通道传递的信令的格式示意图;
图 4为使用保护通道传递信令的示意图;
图 5为使用专用控制通道传递信令的示意图;
图 6 是根据保护的工作通道的通道号及保护通道使用情况信息 进行 M: N环网保护倒换操作的实施例流程图。
具体实施方式
本发明提供了一种在 M: N保护环网中实现 M: N保护倒换操作的方法, 该方法中定义了进行保护倒换操作需要的信令的格式及其在环网中传递 的方式, 从而保证了环网中 M: N保护倒换操作的可靠性。
本发明所述的方法中采用的是基于 APS (自动保护倒换)协议的信令 承载保护倒换操作需要的信息, 并通过保护通道或专用控制通道传递所述 的 APS协议信令。
下面将分别对通过保护通道或专用控制通道进行信令传输时, 相应的 信令的格式及在环网中的传递方法进行说明。
首先, 当通过保护通道传输保护倒换操作的信令时, 所述的信令需要 承载的信息字段包括: 倒换请求字段, 倒换请求的目的节点号字段, 倒换 请求的源节点号字段, 长短径标志字段, 倒换桥接的状态字段, 保护的工 作通道的通道号字段, 以及保护通道的使用情况字段;
为了在信令字节中传递更多的信息, 信令字节应该有足够的长度, 以 0TN (光传送网)标准 ITU- T G.709中四个 APS/PCC (自动保护倒换 /保护控 制信道)开销字节的要求为例, 所述的信令的格式如图 1所示, 所述的倒 换清求、 倒换请求的目的节点、 倒换请求的源节点和保护的工作通道的通 道号分別以 5比特表示, 所述的长短径标志以 1比特表示, 所述的倒换桥接 的状态以 3比特表示, 所述的保护通道使用情况以 8比特表示, 如图 1所示。
在信令中所有字段的值都是指倒换请求的目的节点和倒换请求的源 节点之间的区段上的保护通道的值; 从图 1中, 倒换请求的目的节点号和 倒换请求的源节点号字段的比特位数的定义中可以看出, 这种格式的信令 可以支持 32个网络节点组成的环网的保护倒换操作。
所述倒换请求是指所述区段上的倒换通道要保护的工作通道上的倒 换请求, 基本上包括 SDH/S0NET中定义的各类倒换请求, 同时, 还对 LP-S (区段保护锁定)和 SF-P (信号失效保护)的优先级进行了区分, 见如下 表 1:
Bridge Request code (Bits D1-D5)/桥接请求码
Bits
D1D2D3D4D5
10000 Lockout of Protection (Span) LP-S/区段保护锁定
01111 Signal Fail (Protection) /信号失效保护
01110 Forced Switch (Span) FS-S/强制区段倒换
01101 Forced Switch (Ring) FS-R/强制环倒换
01100 Signal Fail (Span) SF-S/区段信号失效
01011 Signal Fail (Ring) SF-R/环信号失效
01010 Signal Degrade (Protection) SD-P/信号劣化保护
01001 Signal Degrade (Span) SD-S/区段信号劣化
01000 Signal Degrade (Ring) SD-R7环信号劣化
00111 Manual Switch (Span) MS-S/人工区段倒换
00110 Manual Switch (Ring) MS-R/人工环倒换 Bridge Request code (Bits D1-D5)/桥接请求码
Bits
00101 Wait-To-Restore WTR/等待重新配置
00100 Exerciser (Span) EXER-S/区段练习
00011 Exerciser (Ring) EXER-R/环练习
00010 Reverse Request (Span) RR-S/区段预留请求
00001 Reverse Request (Ring) RR-R/环预留请求
00000 No Request NR/无请求
Others Reserved for future use/予页留字段
所述的长、 短径字段用于指示倒换请求是, 取值为 1时代表长径, 取 值为 0时代表的是短径
所述的倒换桥接状态是这个区段的保护通道两个端节点上的状态,倒 换桥接状态字段的取值如表 2所示:
表 2:
Status/状态
Bit
678
111 AIS(AIann Indication Signal)/告警指示信号
110 RDI(Remote Defect Indication)/远端缺陷指示
101 Reserved for future use/预留
100 Reserved for future use/预留
011 Extra Traffic on protection channels/额外业务占用保护通道
010 Bridged and Switched (Br&Sw)/桥接倒换
001 Bridged (Br)/桥接
000 Idle/空闲
信令的 这个保护通道要保护的工作通道的通道号, 从图 1中保护的工作通道的通 道号的取值范围可以看出, 该格式的信令最多可以支持 32个工作通道; 所述的保护通道的使用情况是这个区段所有保护通道的使用情况; 从 保护通道的使用情况字段可以看出, 图 1格式的信令最多可以支持 8个保护 通道, 即最多可以配置成 8 : 32的环网保护***; 如图 1所示, 保护通道使 用情况字段 A - H, 分别对应 1 - 8号保护通道的使用情况, 当 A - H字段取值 为 1时, 表示对应的保护通道已经被使用, 当取值为 0时, 则表示相应的保 护通道还没有被使用。
本发明中, 为了增加保护倒换操作的可靠性, 还可以在图 1中信令包 括的字段内容信息的基础上对相应的开销字段进行扩展, 增加倒换页面的 校验字段, 用于确定倒换页面是否正确, 以避免出现协议状态混乱, 比如 对端的是西向环倒换页面, 本端的必须是东向环倒换页面。
本发明中, 为了防止开销字节在传递过程中的丟失, 可以增加序列号 字段, 通过相应的序列号接收信令的网络节点可以较为容易地了解相应的 开销字节在传递过程中是否丢失。
本发明中, 为了防止开销字节在传递过程中出现误码, 还可以在信令 中增加校验码字段, 以确保接收的信息的准确性。
本发明中, 还可以在信令中增加协议版本号字段, 以避免不同版本的 协议对接的时候出现问题。
定义了图 1所示的信令格式后, 则在需要进行保护倒换操作时, 便可 以在环网中传递所述的 APS协议信令, 具体的传送过程如下:
当发生新的倒换请求的时候, 如果通过比较倒换请求的优先级, 并考 虑保护通道的使用情况决定某条保护通道被用于这个倒换失效的保护, 则 在这个保护通道向发生失效的方向分别发送短径的倒换请求开销字节, 在 这个保护通道向发生失效的相反方向发送长径的倒换请求开销字节, 开销 字节按照定义和本区段的实际情况进行填写。
每个环上的网络节点接收到这两个开销字节后, 首先更新本网元保存 的保护通道使用情况表格, 如表 3所示的保护通道使用情况记录表。
然后根据本地的倒换请求的情况及 APS协议的规定决定是否允许这个 倒换请求使用这个保护通道, 如果允许则中间的网络节点进入穿通态(部 分穿通, 全穿通)。 如果不允许则终结这个开销字节, 按照本地情况发送 新的开销字节。 发生失效区段的两个端节点根据收到的保护通道上传递过 来的信令, 决定这个保护通道的桥接和倒换的动作。
一个网络节点可能收到来自不同保护通道上的信令, 这个网络节点的 协议处理器需分别对待, 这样才能实现 m条保护通道的相对独立的保护工 作通道上的业务。 其次, 所述的 APS协议信令还可以通过专用控制通道进行传递, 如图 2 所示, 环网中最外侧的以粗双箭头线表示的通道即为专用控制通道。 当通 过专用控制通道传输保护倒换操作的信令时, 所述的信令需要承载的信息 内容与上述通过保护通道传送的信令需要承载的信息字内容基本相同, 即 仍然需要在该信令中承载所述的倒换请求、 倒换请求的目的节点号字段、 倒换请求的源节点号字段、 长短径标志、 倒换桥接的状态、 保护的工作通 道的通道号以及保护通道的使用情况信息, 不同的是该信令中还需要承载 发起请求的保护通道的通道号, 所述信令的具体格式如图 3所示。
所述的信令采用 PDU报文承载发送, 其中各个字段承载的信息分别为: 版本号: 用于实现不同的协议版本之间的对接, 防止不兼容的版本引 起的对接问题;
发起请求的保护通道的通道号: 用于说明倒换请求的目的节点和倒换 请求的源节点之间的区段试图用该保护通道进行保护, 因此接到这个 PDU 信令报文的网元需要根据该通道号确定本地的该保护通道是否用于保护 更高优先级的请求, 如果是, 则中止这个报文的传递, 如果本地这个保护 通道正在空闲 (传递额外业务)或者正在保护优先级比较低的倒换请求, 则以收到的 PDU信令报文中的请求压制本地的倒换请求 , 设置本地的该保 护通道处于穿通态, 所述的 PDU^艮文(即 PDU信令)被继续传递到下一个网 络节点, 即向收到报文的相反方向传递。
Msgid ( PDl^艮文的标识): 用于传递不同的报文实现不同的功能, 如 进行协议倒换页 面的校验时 的 Msgid字段承载的信息为 PDU-ID-SWPG-VERIFY, 如果这个报文用于传递 APS倒换协议时的 Msgid字段 承载的信息为 PDU- 1 D-APS- PROTOCOL, 以扩展 PDU报文的功能。
PDU报文的序列号: 是为了防止 PDU报文的丟失或者出现后发先至的现 象, 是提高倒换的可靠性的措施。
目的节点号: 即本发起倒换请求的节点希望保护的区段的另一个端点 的节点号, 这是 APS倒换协议需要的一个字段。
倒换状态: 与前面通过开销字节中的情况相同, 是为了标识桥接和倒 换的状态, 还可以传递 AIS和 RDI信息, 这也是 APS倒换协议需要的字段。
源节点号: 即发起该倒换请求的网络节点的节点号, 该字段也是 APS 倒换协议需要的字段。
长短径标志: 用于区分是长径的还是短径的 APS倒换信令, 该字段还 是 APS倒换协议需要的字段。
倒换请求: 是为了标识倒换请求的类型, 与前面通过开销字节传递信 令中的定义相同, 该字段是 APS倒换协议需要的字段。
倒换页面的校验: 是为了倒换发生错误, 影响业务的时候协议进行自 动恢复时使用。
1-16: 标识 16个保护通道的使用情况, 是按位取值的, 取值为 0表示 这个通道没有被使用, 取值为 1时标识这个通道被使用; 处于区段倒换状 态的失效区段的保护通道被使用, 处于环倒换状态的失效区段的长径的保 护通道被使用。
保护的工作通道的通道号: 取值 0-255,表示发起倒换请求的保护通道 要保护的工作通道的通道号。
BIP8的校验码: 用于防止 PDU报文在传递过程中出现误码, 影响倒换 的健壮性。
针对上述 APS协议信令, 在采用专用控制通道在环网中传递过程中, 所述的专用控制通道需要可以到达环网上的所有节点, 并可以满足点对点 的通讯, 以及向指定的方向发送信令等; 具体的信令传递方式如下所述: 首先根据接收到的信令的校验码字节, 看是否信令在传递过程中出现 误码, 如果是误码则丢弃, 否则, 继续查询协议版本号, 看是否匹配, 如 果不匹配则上报告警, 如果匹配, 则根据 Msgid字段对不同的 PDU消息进行 不同的处理。
本发明仅关心信令 PDU报文的处理, 即 PDU-ID-APS- PROTOCOL报文的处 理, 对于这种报文, 倒换页面的校验字段没有作用 , 而在对
PDU- ID- SWPG- VERIFY报文的处理中则起作用; 对于 PDU报文序列号防止报 文的丟失, 该序列号应该每个区段的每个保护通道维持一个, 彼此之间不 进行比较, 只有同区段同保护通道的序列号进行比较, 以防止报文丢失; 发起请求的保护通道的通道号, 保护的工作通道的通道号和保护通道的使 用情况字段均为用于保换通道资源抢占的时候使用, 在收到 PDU报文的时 候, 应该利用这些信息更新本地保护通道使用情况信息表, 如表 3所示; PDU中其他字段的值都是 APS协议需要的字段, 对于这些字段的处理需要按 照 APS协议处理, 同时需要参考保护通道的使用情况。 0 本发明中相应的网絡节点确定需要进行保护倒换时, 涉及到需要为本 次倒换请求确定相应的保护通道, 为此可能需要进行保护通道的资源抢占 处理, 下面再针对保护通道资源的抢占处理过程进行说明。 参见表 3 , 所 述的具体的保护通道资源抢占过程如下:
表 3:
Figure imgf000013_0001
表 3为以六个网络节点、 4个保护通道环网为例的某一网络节点保存的 各区段保护通道使用情况记录表。
表 3中的取值为 0时, 表示某个区段的某个保护通道上没有传递工作通 道上的业务, 而正在传递额外的业务; 如果正在保护某个工作通道, 则其 耳又值为这个工作通道的通道号。
如果信令中没有传递保护的工作通道的通道号, 比如使用开销字节传 递信令的情况, 由于开销字节有限, 可能不能传递, 此时, 表 3中只能标 识不同区段的保护通道是否被使用,如未使用取值为 0,如被使用取值为 1。
以表 3中的取值为例可以看出, BC区段间的 3号保护通道正在保护 8号 工作通道中的业务, 其他区段的保护通道都正在传递额外业务; AB区段上 1号工作通道的业务被 BC, CD, DE, EF, FA上的 2号保护通道保护。
通过保护通道使用情况记录表可以知道全环的保护通道的使用情况, 因此, 在发生新倒换请求的时候, 网络节点中运行的 APS协议处理器就会 查询该表, 并按照相应的规则 (即资源占用及抢占规则)进行保护倒换处 理, 生成相应的用于控制保护倒换操作的 APS信令, 所述相应的规则可以 为:
1、 首先本网络节点中某个保护通道处于部分穿通状态 (即这个保护 通道现在只被用来传递开销 , 而没有用于保护工作通道 ) , 则可以使用这 个通道进行保护;
当环上一个区段的保护通道被用于区段倒换, 则这个环上的这个保护' 通道的在其他网元上的状态就是部分穿通状态, 优先使用处于部分穿通状 态的保护通道可以提高保护通道的利用率, 因为一个保护通道可以在环上 的不同区段被同时用于区段倒换;
2、 如果没有部分穿通状态的保护通道, 则使用本区段没有被使用的 保护通道(即该保护通道处于 idle态)进行区段保护;
3、 如果没有处于部分穿通状态或空闲状态的保护通道, 即本区段的 保护通道均被用于保护工作通道的业务, 则寻找处于区段保护的保护通 道, 使用这些保护通道的长径的保护通道进行保护;
这样的保护通道可能有几个, 这时需要在这些保护通道中进行选择, 选择的规则是这样的: 如果这些保护通道有区段倒换共存的情况, 则这些 通道的反向一定收到不指向本节点的长径的区段倒换请求; 在这些区段倒 换请求中如果有优先级比本地的这个最新倒换请求的优先级低的, 就使用 这些保护通道的长径, 如果这样的保护通道还有几个, 就抢占优先级最低 的那个保护通道的长径。
4、 如果采用 1 , 2 , 3的方式仍无法确定可用的保护通道, 则本地的保 护通道可能被用于其他区段进行长径的保护, 即本网络节点的这个通道处 于全穿通状态, 则这些保护通道一定收到长径不指向本节点的环倒换请 求, 如果这些倒换请求中有比本地请求低的则抢占这个倒换, 使这个保护 通道用于本地的区段保护, 这个保护通道的其他网络节点都处于部分穿通 状态, 原来已经在其他区段建立的环倒换的桥接和倒换都要释放。
5、 如果本地的保护通道都被用于区段或者环倒换保护, 这些保护通 道的长径都被其他区段的更高优先级的区段保护使用, 则本地的这个倒换 请求不能建立任何的桥接和倒换, 则发生这个倒换请求的工作通道上的业 务得不到保护。
对于本地的 SF、 SD请求如果能够用本地的短径的保护通道进行保护则 发送 SF-S、 SD- S倒换请求; 如果使用长径的保护通道进行保护, 则发送 SF- R、 SD-R倒换请求。 下面再以具体的 M: N环网保护倒换的实际用例对本发明进行说明。 以使用开销字节传递倒换信令为例, 如图 4所示, 图 4给出了一个 1 : 2 的环形***, 由 4个网元組成, AB之间发生了两次的工作通道失效, 第一 次可以使用区段倒换进行保护,倒换的处理方式与 1 : 1的环保护倒换相同; 在 1号工作通道失效成功保护之后, 这时 2号工作通道出现新的失效, 由于 AB之间的保护通道已经被使用, 所以 A节点 (假设 A为倒换的发起节点, B 为倒换的响应节点)试图使用 AB区段 1号保护通道的长径, 即 BC , CD, DA 区段的 1号保护通道进行环保护, 因此 A在西向发送长径的 SF - R倒换请求, 同时传递被保护的工作通道的通道号 2 , 以及保护通道的使用情况: 被使 用。
节点 D收到所述 SF - R倒换请求之后, 更新本地保护通道使用情况的表 格, 由于处于部分穿通状态, 因此保护通道 1可以被使用, 保护通道 1由部 分穿通状态进入全穿通状态, 将这个信令穿通过去, 节点 C的处理与节点 D 的处理过程相似, 节点 A收到 B发送过来的长径的倒换请求信令进行桥接倒 换, 同时节点 A还需要发送长径的 SF - R已桥接倒换的信令, 节点 A收到这 个长径倒换清求信令也进行桥接和倒换处理, 这样工作通道的业务就得到 了保护。 如图中经粗虚线路径传递的业务由于工作通道失效, 导致丢失, 同时由于保护倒换处理后, 可以通过图中的粗实线路径进行业务传递, 使 业务得到保护。
在上述实例中, 所述信令的传递如图中的细虚线所示。 再以使用专用控制通道传递倒换信令为例, 如图 5所示, 图中粗实线 的表示专用控制通道, 所有保护通道的 APS协议信令都是通过该专用控制 通道传递, 图中的虛箭头线表示的是 APS倒换信令的传递路径。
相应的处理过程为: 图 5中各个网元收到 APS协议信令之后的处理基本 与使用保护通道传递信令的方式是相同的, 但是所有发起倒换请求的节点 和响应倒换请求的节点之间的节点要对收到的倒换信令中的保护通道的 通道号字段进行分别的处理, 即不同保护通道号的信令进行不同的处理, 以保证被保护通道相对独立的保护工作通道, 而且, 还需要根据信令的序 列号进行处理, 以避免因为使用同一个控制通道所产生的信令的失序问题 出现。
具体的 M: N环网保护倒换操作根据保护的工作通道的通道号及保护通 道使用情况信息进行。 参考图 6。 执行图 6所述实施例流程的每个网络节点 的内部保存表 4所示的表格, 这个表格描述的每个保护通道的使用情况, 包括这个保护通道被用于保护那个工作通道, 以及这个工作通道的倒换请 求是什么类型。
Figure imgf000016_0001
图 6所述流程涉及两个节点,其中,图 6左侧流程涉及发起倒换的节点, 图 6右侧流程涉及响应倒换的节点。 按照图 6, 当一个网络节点 A在步骤 1产 生一个新的倒换请求的时候(例如工作通道 5 ) , 检测到这个倒换请求的 需要进行倒换操作的网络节点在步骤 2查询自己维护的表格 4,看是否有未 被使用的保护通道, 如果有, 根据设定的规则决定使用的保护通道, 例如 决定使用没有被使用的编号最小的保护通道, 例如是编号为 3的保护通道, 否则根据设定的规则, 决定需要抢占的保护通道, 释放该通道原来保护的 业务, 以使该通道作为需要使用的保护通道。 然后在步骤 5修改本节点存 储的表 4的保护通道的使用情况, 在步骤 6通过编号 3的保护通道发送协议 信令。
相应倒换的网络节点 B在步骤 7检测到编号为 3的保护通道传来的这个 新的协议信令, 将其传递给本节点内嵌的协议处理器, 该协议处理器首先 在步骤 8判断接收到的协议信令的类型是否与本节点的协议类型一致, 如 果不一致, 上告报警并按照默认的协议类型处理, 然后进行步驟 10 , 否则 直接在步骤 10判断所选择的保护通道是否与本节点保护通道的使用冲突 , 如果冲突, 在步骤 11上告报警, 结束保护倒换处理, 否则在步骤 12修改本 节点的表 4的保护通道使用情况, 并桥接业务, 即桥接工作通道 5的业务到 保护通道 3上。 然后在步骤 13通过编号为 3的保护通道向发起倒换的节点发 送请求类型为反向请求的协议信令。
网络节点 B在步骤 9的上告报警操作按照下述步骤完成: 首先查看本节 点保存的表 4的内容, 如果编号小于 3的保护通道还没有被用于保护则上报 告警, 如果编号 3的保护通道已经被用于保护其他的工作通道, 上报另一 种告警, 如果不是以上情况, 则更新本节点的表格 4 , 然后将保护通道 3的 对应的保护的工作通道的通道号的值改为 5 , 网络节点 B将要发送信令中 的请求字段更新为上述接受到的信令中的倒换请求字段的内容。
网络节点 A在步驟 14收到反向请求的协议信令, 更新本节点表格 4的内 为工作通道 5的请求。 然后在步骤 15从保护通道 3上选收业务, 同时桥接工 作通道 5的业务到保护通道 3上。 然后在保护通道 3上发送协议信令。
网络节点 B在步骤 16通过保护通道 3收到网絡节点 A发送过来的协议信 令, 从保护通道 3上选收业务, 同时在步驟 17向网絡节点 A发送协议信令, 网络节点 A在步骤 18接收所述信令然后结束保护过程。
实际中, 为了防止倒换抖动, 需要在本地倒换清除之后, 设置一个定 时器(每个倒换有一个定时器) , 在定时器超时之后才进行释放倒换和桥 接的动作, 使业务真正恢复到工作通道上, 在定时器超时之前发送 WTR ( WAIT TO RESTORE ) 的协议信令, 这时如果产生新的倒换请求, 则这个 通道的倒换请求按照 WTR参加保护通道的抢占。
在某个保护通道下发外部保护锁定和本地检测到保护通道失效之后, 检测是否有没有使用的保护通道, 如果有将现在的保护通道的业务桥接倒 换到未被使用的编号最小的保护通道上。 如果都被使用, 则将本保护通道 所保护工作通道的倒换请求当作一个新的倒换请求 , 按照下述步骤情况进 行处理: 如果保护通道没有被完全使用, 则不存在保护通道抢占的情况, 如果现在所用的保护通道都被使用, 又产生一个新的倒换请求, 则查询表 格 4, 从表格 4中找出一个工作通道的倒换请求优先级最低的释放掉, 将释 放出的保护通道用于保护这个产生新请求的工作通道上的业务。 如果所有 工作通道的倒换请求都相同, 则编号小的保护通道的优先级最高。
所述支持的协议类型可以是单端, 也可以是双端; 可以是恢复式也可 以是非恢复式,但是为了有效的使用保护通道传递额外业务,缺省为双端, 恢复式。 对于两端的两个网络节点, 如果协议的类型不同, 则按照双端和 恢复式的处理。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并 不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围 内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求书的保护范围为准。

Claims

权 利 要 求
1、 一种实现多对多环网保护倒换操作的方法, 其特征在于, 包括:
A、 环网节点确定 Μ: N环网保护倒换的倒换请求、倒换请求的目的节 点、 倒换请求的源节点、 长短径标志、 倒换桥接的状态、 保护的工作通道 的通道号及保护通道使用情况信息;
B、 将所述的信息承载于信令中, 并在环网中传递;
C、 环网节点收到所述的信令后, 根据其承载的信息进行 M: N环网 保护倒换操作。
2、根据权利要求 1所述的实现多对多环网保护倒换操作的方法, 其特 征在于, 所述的信令为基于自动保护倒换 APS协议的信令, 且所述的信令 通过开销字节或协议数据单元 PDU报文承载传送。
3、根据权利要求 1所述的实现多对多环网保护倒换操作的方法, 其特 征在于, 所述的信令中承载的信息还可以包括:
倒换页面校验、 序列号、 校验码或协议版本号信息。
4、根据权利要求 1所述的实现多对多环网保护倒换操作的方法, 其特 征在于, 所述的倒换请求信息包括:
区段保护锁定请求和 /或信号失效保护请求信息。
5、根据权利要求 1所述的实现多对多环网保护倒换操作的方法, 其特 征在于, 所述的保护通道使用情况包括:
保护通道是否处于部分穿通状态、 保护通道是否空闲、 保护通道被应 换请求的优先级。
6、 根据权利要求 1、 2、 3、 4或 5所述的实现多对多环网保护倒换操 作的方法, 其特征在于, 所述的倒换桥接的状态包括:
告警指示信号 AIS、 远端缺陷指示 RDI、 额外业务占用保护通道、 桥 接倒换、 桥接及空闲状态。
7、 根据权利要求 1、 2、 3、 4或 5所述的实现多对多环网保护倒换操 作的方法, 其特征在于,
在发起保护倒换请求的网络节点根据本地保存的保护通道使用情况 信息确定本次保护倒换可以占用的保护通道, 保护通道的长短径标志信 息、 倒换桥接的状态。
8、根据权利要求 7所述的实现多对多环网保护倒换操作的方法, 其特 征在于,
当网络节点上的保护通道均被应用时,根据所述倒换请求的优先级及 被应用的保护通道对应的倒换请求优先级确定可以占用的保护通道。
9、 根据权利要求 1、 2、 3、 4或 5所述的实现多对多环网保护倒换操 作的方法, 其特征在于,
将所述的信令通过环网中的保护通道或者专用控制通道在所述环网 中传递, 而且, 在通过专用控制通道传递的信令中, 还需要承载发起倒换 请求的保护通道的通道号。
10、 根据权利要求 9所述的实现多对多环网保护倒换操作的方法, 其 特征在于,
在发起倒换请求的网络节点 ,将所述的信令通过保护通道或者专用控 制通道分别在所述环网中的短径方向和长径方向进行传递。
11、 根据权利要求 9所述的实现多对多环网保护倒换操作的方法, 其 特征在于还包括:
环网中的网络节点收到所述的倒换请求后,根据倒换请求信令承载的 内容信息更新本节点保存的保护通道使用情况信息, 并根据本地的倒换请 求情况确定是否允许使用相应的保护通道, 如果允许, 则继续传递所述倒 换请求,直到所述倒换请求对应的区段的目的端, 否则,终结该倒换请求。
12、 根据权利要求 9所述的实现多对多环网保护倒换操作的方法, 其 特征在于, 还包括:
C1、 网络节点接收所述的 APS协议信令的 PDU报文, 根据校脸码判 断是否出现误码, 如果出现, 则丢弃该报文, 否则, 执行步骤 C2;
C2、 查询 APS协议信令中的协议版本号, 并判断是否与本地协议版 本号匹配, 如果匹配, 则执行步驟 C3, 否则, 上报告警信息;
C3、 根据 PDU报文的序列号判断 PDU报文是否丢失, 如果是, 则 丢弃该报文, 否则, 才艮据所述的倒换请求信令进行保护倒换处理。
13、 根据权利要求 1所述的实现多对多环网保护倒换操作的方法, 其 特征在于,根据保护的工作通道的通道号及保护通道使用情况信息进行 M: N环网保护倒换操作。
PCT/CN2005/002166 2004-12-13 2005-12-13 Procede de realisation de l'operation de commutation d'un reseau en anneau a origines et destinations multiples WO2006063512A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/568,579 US7924707B2 (en) 2004-12-13 2005-12-13 Method for realizing many to many protection switching of ring network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2004100984878A CN100352226C (zh) 2004-12-13 2004-12-13 实现m:n环网保护倒换操作的方法
CN200410098487.8 2004-12-13

Publications (1)

Publication Number Publication Date
WO2006063512A1 true WO2006063512A1 (fr) 2006-06-22

Family

ID=36587529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/002166 WO2006063512A1 (fr) 2004-12-13 2005-12-13 Procede de realisation de l'operation de commutation d'un reseau en anneau a origines et destinations multiples

Country Status (3)

Country Link
US (1) US7924707B2 (zh)
CN (1) CN100352226C (zh)
WO (1) WO2006063512A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426776C (zh) 2006-10-30 2008-10-15 华为技术有限公司 在通道保护环上对工作业务进行编号的方法
US20080281987A1 (en) * 2007-05-10 2008-11-13 Nortel Networks Limited Facilitating automatic protection switching for provider backbone network
CN101453264A (zh) * 2007-12-04 2009-06-10 华为技术有限公司 光网络的自愈保护方法及装置
US20100135291A1 (en) * 2008-11-28 2010-06-03 Nortel Networks Limited In-band signalling for point-point packet protection switching
CN101877665B (zh) 2009-04-29 2013-12-18 华为技术有限公司 环网保护方法、网络节点及环网络
CN103701677B (zh) * 2009-04-29 2017-03-08 华为技术有限公司 环网保护方法、网络节点及环网络
CN101997767B (zh) * 2009-08-31 2014-11-05 中兴通讯股份有限公司 一种环网节点获取协议报文的方法及装置
CN101848147B (zh) * 2010-04-21 2012-04-04 华为技术有限公司 SDH/Sonet段开销字节的传递方法、装置及***
US8509061B2 (en) * 2011-03-23 2013-08-13 Ciena Corporation Systems and methods for scaling performance of Ethernet ring protection protocol
CN103023683B (zh) * 2011-09-26 2017-08-08 中兴通讯股份有限公司 路径切换方法及装置
US9100210B2 (en) * 2011-11-15 2015-08-04 Rockwell Automation Technologies, Inc. Redundant gateway system for device level ring networks
CN102664702B (zh) * 2012-04-05 2014-12-03 烽火通信科技股份有限公司 一种交叉盘m比n的保护方式
CN104301027B (zh) * 2013-07-16 2018-10-26 南京中兴新软件有限责任公司 光突发交换环网中实现自动保护倒换的方法、***及节点
CN105721045B (zh) 2016-01-19 2018-08-21 华为技术有限公司 一种保护倒换的方法和节点
CN109905309A (zh) * 2019-02-15 2019-06-18 广州市高科通信技术股份有限公司 一种保持环网各节点状态一致的方法和网络节点
US11283518B2 (en) * 2019-11-08 2022-03-22 Infinera Corporation Method and apparatus for a restoration network with dynamic activation of pre-deployed network resources
US20220086078A1 (en) * 2020-09-11 2022-03-17 Ciena Corporation Segment Routing Traffic Engineering (SR-TE) with awareness of local protection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066003A (ko) * 2002-02-04 2003-08-09 주식회사 케이티 환형망의 링 보호 절체 방법
US20040179472A1 (en) * 2003-03-14 2004-09-16 Farid Khalilzadeh Shared path protection method and system
US20040223503A1 (en) * 2003-05-06 2004-11-11 Overture Networks, Inc. Protected switching ring

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259126B2 (ja) * 1995-09-26 2002-02-25 富士通株式会社 リング伝送システム及び該システムのスケルチ方法
DE69732676T2 (de) * 1996-04-23 2006-04-13 Hitachi, Ltd. Selbstheilendes Netzwerk, und Umschaltungsverfahren für Übertragungsleitungen und Übertragungseinrichtung dafür
EP1014613A2 (en) * 1998-12-23 2000-06-28 Nortel Networks Corporation Shared optical protection in an optical communications network
US7046619B2 (en) * 2000-11-07 2006-05-16 Ciena Corporation Method and system for bi-directional path switched network
CN1180578C (zh) * 2001-11-30 2004-12-15 上海贝尔有限公司 应用于光自愈环的自动保护倒换控制器及其控制方法
CN1149761C (zh) * 2002-03-19 2004-05-12 北京邮电大学 在全光网中基于业务的保护方法
US7173902B2 (en) * 2002-03-29 2007-02-06 Bay Microsystems, Inc. Expansion of telecommunications networks with automatic protection switching
US7145882B2 (en) * 2002-04-04 2006-12-05 Bay Microsystems, Inc. Multiplexed automatic protection switching channels
ATE281031T1 (de) * 2002-08-05 2004-11-15 Cit Alcatel M:n pfadschutz
CN1275436C (zh) * 2002-08-23 2006-09-13 华为技术有限公司 环网中实现快速光纤保护倒换的方法及其装置
US7340163B2 (en) * 2002-12-16 2008-03-04 Alcatel Lucent Signaling protocol and architecture for protection rings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030066003A (ko) * 2002-02-04 2003-08-09 주식회사 케이티 환형망의 링 보호 절체 방법
US20040179472A1 (en) * 2003-03-14 2004-09-16 Farid Khalilzadeh Shared path protection method and system
US20040223503A1 (en) * 2003-05-06 2004-11-11 Overture Networks, Inc. Protected switching ring

Also Published As

Publication number Publication date
US7924707B2 (en) 2011-04-12
CN100352226C (zh) 2007-11-28
US20080107416A1 (en) 2008-05-08
CN1791048A (zh) 2006-06-21

Similar Documents

Publication Publication Date Title
WO2006063512A1 (fr) Procede de realisation de l&#39;operation de commutation d&#39;un reseau en anneau a origines et destinations multiples
JP4212476B2 (ja) イーサネット上でsdh/sonet自動保護スイッチングをサポートするための方法
EP1737145B1 (en) Service restoration method for optical mesh networks
JP3972664B2 (ja) パス障害回復方式及び障害復旧後の切戻方式並びにそれらを用いるノード
EP0804001B1 (en) Self-healing network, method for transmission line switching thereof, and transmission equipment thereof
US7606886B1 (en) Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks
EP1898584B1 (en) A method and device for recovering the share mesh network
US8218434B1 (en) Ethernet facility and equipment protection
EP2458797B1 (en) Method, device and system for updating ring network topology information
EP1887733B1 (en) A method for processing network resource, a network unit in an intelligent optical network thereof
EP1087573A2 (en) Enhanced dual counter rotating ring network control system
US20030214962A1 (en) Method and apparatus for bandwidth optimization in network ring topology
US7835271B2 (en) Signaling protocol for p-cycle restoration
EP2461496B1 (en) A method for protecting the ring network of optical transport network
JP5163479B2 (ja) パス切替え方法
WO2006026914A1 (fr) Procede de protection de services pour reseau de transmission optique et dispositif de noeud
WO2006069549A1 (fr) Procede de protection de service de donnees dans un reseau d&#39;emission metropolitain
JPH09509028A (ja) 回線切替保護装置を有する通信網
WO2005022782A1 (fr) Structure d&#39;echange et procede de configuration de connexion entre reseaux optiques
WO2009074049A1 (fr) Procede et appareil de protection de reseau en anneau
WO2003065218A1 (en) Mesh protection service in a communications network
WO2011017941A1 (zh) 网络保护方法及装置
JP2008104144A (ja) パケット通信方法およびパケット通信装置
US20090100193A1 (en) Synchronization of state information to reduce APS switchover time
KR100968939B1 (ko) 링 망에서의 보호절체 방법 및 그 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11568579

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05804974

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11568579

Country of ref document: US